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Abstract

Grammar-constrained decoding (GCD) empow-001
ers LLMs to generate highly structured output002
such as programming code (ex: SQL, Python,003
Go, etc.). Although GCD is effective in gen-004
erating structurally valid code (Poesia et al.,005
2022; Ugare et al., 2024) and does not require006
fine-tuning, this line of work has two notable007
limitations: (a) these methods demand high008
inference times as compared to that of the un-009
constrained autoregressive decoding, making010
them unfit for real-time code generation appli-011
cations (AI Assistants and Co-pilots); and (b)012
these methods are prone to schema hallucina-013
tion errors like autoregressive decoding.014

In this paper, we tackle the above research gap015
particularly in the context of a SQL generation016
task. By observing that the standard autoregres-017
sive LLM decoding methods are on par with018
GCD methods at generating structurally valid019
SQL code, we propose a novel unified approach020
− we refer to as Tree-guided Token Decoding021
(TTD) − which guides LLMs in decoding both022
SQL-keywords and database schema items (i.e.023
names of tables and columns) without focusing024
on the SQL grammar. Guiding schema items025
reduces hallucination errors, and such guiding026
often results in auto-filling certain tokens with-027
out explicit LLM calls, which also results in028
reduced inference times. We conducted exten-029
sive experiments using two popular datasets030
(Spider and BIRD) with three language mod-031
els to demonstrate the efficacy of our proposed032
TTD approach using three metrics: execution033
accuracy, token rate, and number of executable034
SQLs generated.035

1 Introduction036

Large language models (LLMs) have been exten-037

sively used in several complex generation tasks038

with impressive human-level performance (Chang039

et al., 2024; Lin et al., 2021). Typically, LLMs de-040

code auto-regressively one token at a time (Vaswani041

et al., 2017). In each decoding step, the LLMs first042

calculate a probability distribution on a predefined 043

vocabulary, and then the decoding algorithm takes 044

advantage of this probability distribution to sam- 045

ple the next generated token (Vaswani et al., 2017; 046

Lin et al., 2021). Note that, in general, such LLM 047

decoded output need not follow any rigid syntac- 048

tic structure. However, for certain highly struc- 049

tured tasks− such as data serialization formats (ex: 050

JSON, YAML, etc.), programming code (ex: SQL, 051

Python, Go, etc.) and regular expressions − the 052

LLM output is expected to satisfy certain syntactic 053

constraints (Willard and Louf, 2023; Bailin Wang, 054

2023; Ugare et al., 2024). 055

The well-known techniques such as in-context 056

learning and fine-tuning of LLMs have been shown 057

to be inadequate (to meet the needs of the above 058

sort of highly structured tasks) as their output 059

fails miserably to satisfy the syntactic constraints 060

(Beurer-Kellner et al., 2024; Honghua Zhang, 061

2023). The reason for this behavior is that these 062

techniques provide certain examples (in the form 063

of say <question, answer> pairs) which only im- 064

plicitly contains the syntax/grammar aspects of the 065

underlying programming language, without any 066

explicit treatment of such structural requirements 067

(Ugare et al., 2024). 068

Grammar-constrained decoding (GCD) is a tech- 069

nique proposed in the literature (Willard and Louf, 070

2023; Beurer-Kellner et al., 2024; Saibo Geng, 071

2024; Park et al., 2024; Zhuoer Wang, 2024) to 072

mitigate the above challenges by restricting the out- 073

put space conditioned on the previously generated 074

tokens, given a set of globally valid structural con- 075

straints. The key advantages of the GCD approach 076

are three-fold: (i) Exhibit satisfactory performance 077

in generating syntactically valid code, (ii) Con- 078

strain the generation of keyword tokens of the un- 079

derlying programming language; and (iii) This ap- 080

proach does not require any training or fine-tuning. 081

However, this strand of work has the following two 082

notable limitations: 083
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Figure 1: Using ground-truth SQLs from Spider and BIRD-Minidev datasets respectively, we compute distribution
of three categories of tokens: SQL-keyword tokens, Database-Schema tokens, Other tokens (includes operators,
special symbols, etc.)

Limitation A: The existing GCD methods require084

high inference time as compared to that of the auto-085

regressive unconstrained generation methods. For086

example, the work (Ugare et al., 2024) reports an087

average increase of 22% in inference time. The088

high inference time overhead of these GCD meth-089

ods negatively impact the user experience in real-090

time code generation applications such as AI As-091

sistants and Co-Pilots wherein the user’s natural092

language question has to be translated into code on093

the fly.094

Limitation B: Note that a syntactically valid SQL095

as generated by GCD techniques may not be exe-096

cutable (due to hallucination of database schema097

items, tables, and columns) and, even if the gen-098

erated SQL is executable, it may result in wrong099

outcomes (due to semantic errors such as wrong100

usage of schema items in the SQL). That is, schema101

hallucination errors adversely impact the final ac-102

curacy of syntactically valid SQLs. For example,103

considering the SQL generation task using the Spi-104

der data set (Poesia et al., 2022), even though 76%105

of the generated SQLs are syntactically valid, the106

reported execution accuracy using the constrained107

GPT-3 175B model is only 37%. Similarly, Syn-108

Code (Ugare et al., 2024) exhibits very low func-109

tional correctness despite its very high syntactical110

accuracy − refer to Table 2 and Table 4 in (Ugare111

et al., 2024) for more details.112

Note: Please refer to Appendix B for more de-113

tails on the limitations of GCD-based approaches.114

In this paper, we attempt to address the above115

limitations - latency overhead and hallucination of116

schema items - by developing a novel approach.117

especially for the SQL code generation task. In118

what follows, we explain our proposal to tackle the119

above two limitations in the context of developing120

our approach for SQL generation. We start with121

two key observations.122

Key observation 1: Since GCD methods im-123

% of Executable
LLM Model SQLs

Spider BIRD
SQLCoder-7B 75% 51%

Code-Llama-7B-Instruct 93% 59%
Granite-8b-code-instruct-4k 89% 53%

GPT-3.5-Turbo-175B 96% 82%

Table 1: For SQL generation task using Spider and
BIRD-Minidev public datasets, the percentage of exe-
cutable SQLs generated by using unconstrained auto-
regressive LLM models

pose significantly high inference overhead in the 124

process of generating structurally valid SQL code, 125

let us shed some light on how satisfactory the pre- 126

trained auto-regressive models are to generate valid 127

SQL code. For example, using Spider and BIRD- 128

Minidev datasets (refer to Section 4 for more de- 129

tails on these two datasets), Table 1 shows that the 130

percentage of executable SQL code generated is 131

on par with that of the GCD methods − refers to 132

the percentage of valid SQLs using the base LLM 133

models in Table 2 from (Poesia et al., 2022). In 134

summary, GCD methods with high inference time 135

demand may not be required to generate executable 136

SQL code, as auto-regressive language models are 137

adequate for this task. 138

Key Observation 2: Using ground-truth SQLs 139

from the Spider and BIRD-Minidev datasets (re- 140

fer to Section 4 for more details), respectively, 141

we study the distribution of three categories of 142

tokens: SQL-keyword tokens, database schema 143

(tables/columns) tokens, and other tokens (such as 144

operators, etc.). Figure 1 shows the distribution of 145

these tokens. From this figure, we observe that the 146

fraction of database schema tokens is significantly 147

higher (about 3 times) than that of SQL keyword to- 148

kens. Since we know the database schema a priori 149

like the SQL grammar, it is technically possible to 150
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restrict the decoding of schema tokens (in addition151

to SQL-keyword tokens) to reduce schema halluci-152

nation errors by LLMs and thereby aim to improve153

the accuracy of the SQL generation task.154

Inspired by the above two key observations, in155

this paper, we summarize our proposed approach156

as well as specific contributions:157

[1] Since auto-regressive (or generically fine-158

tuned) LLM decoding methods are very efficient159

in generating executable SQL code (and thus pay-160

ing no attention to SQL-grammar constraints), we161

propose to augment the auto-regressive LLM de-162

coding process with a computationally light-weight163

and efficient mechanism (unlike GCD approaches)164

that restricts the token space wherever possible165

while decoding SQL-keywords, schema tables, and166

schema columns.167

[2] To meet the proposed needs, in an offline168

manner, we construct THREE types of trees aligned169

with the LLM token space: one for SQL-keywords,170

one for database schema tables, and one more for171

database schema columns.172

[3] During the inference time, we leverage these173

trees to restrict the token space for LLM decoding174

or to directly autofill the next token (without LLM175

call) if the potential restricted token space contains176

only the 1 token. Thus, we refer to our proposed ap-177

proach as Tree-guided Token Decoding (TTD) for178

SQL generation. The auto-fill feature of our TTD179

approach is triggered more often as the names of180

schema tables and several columns are unique; thus181

having unique LLM token sequences, respectively,182

and thus the restricted token space often contains183

just the 1 token. This autofill feature of the TTD ap-184

proach contributes significantly to the reduction of185

inference time (please refer to the results in Section186

4.1 for empirical evidence). This autofill feature187

also helps to reduce schema hallucination errors,188

and Figure 2 highlights the same using an example189

from the Spider data set.190

To the best of our knowledge, there is no known191

effort in the literature to tackle the two limitations192

of GCD approach and ours is first attempt indeed.193

[4] The proposed TTD approach can be aug-194

mented with language models in the following195

two different settings. First, in the standard auto-196

regressive decoding setting (in particular, open lan-197

guage models such as Code-Llama, SQL-Coder,198

etc.). Second, in the speculative decoding set-199

ting (with both draft and target language mod-200

els) (Yaniv Leviathan, 2023; Charlie Chen, 2023).201

Figure 2: An illustrative example from Spider Dataset:
Mitigating schema hallucination using our proposed
TTD approach

Please refer to Appendix D for more results on this. 202

[5] We demonstrate the joint reduction of latency 203

(through improved token generation rates) and hal- 204

lucination (through improved accuracy by properly 205

generating schema tokens) using thorough experi- 206

ments on the SQL generation task using 3 metrics 207

(execution accuracy, token rate, and number of ex- 208

ecutable SQLs) and 2 public datasets: Spider and 209

BIRD-Minidev. 210

2 Relevant Work 211

Here we cover the relevant literature on the use 212

of auto-regressive generative models for structured 213

code generation tasks - wherein the output needs 214

to satisfy certain programming language (ex: SQL, 215

Cypher, Bash, etc.) constraints. Constrained de- 216

coding is a technique that has been proposed to 217

guide the language model generation process to 218

produce only valid outputs as needed by the syntax 219

rules of underlying structured code task. In what 220

follows, we divide the relevant literature into two 221

broad categories. 222

Category 1: General Constrained Decoding 223

(Grammar): There are largely two subcategories in 224

this line of research. The first subcategory of the 225

work deals with an in-context learning approach 226

for grammar-constrained decoding. In particular, 227

(Bailin Wang, 2023) deals with providing the lan- 228

guage grammar as a few shot examples to conduct 229

constrained decoding. 230

The second subcategory of the work deals with 231

grammar constraints using sketches (suited for 232

black-box LLMs) or finite-state machines (FSM). 233
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In particular, (Saibo Geng, 2024) proposed a novel234

sketch-guided constrained decoding that is suit-235

able for black-box LLM decoding. Again, (Luca236

Beurer-Kellner and Vechev, 2023) proposed an iter-237

ative constrained decoding approach for black-box238

LLMs. (Kexun Zhang, 2023; Zhuoer Wang, 2024)239

dealt with the constrained generation of API calls240

for tool usage using a FSM. Similarly, the follow-241

ing relevant literature (Beurer-Kellner et al., 2024;242

Willard and Louf, 2023; Park et al., 2024; Ugare243

et al., 2024) uses FSMs for grammar-constrained244

decoding for highly structured domains. We so far245

provided a few representative references on the rel-246

evant literature on grammar-constrained decoding,247

and it is by no means not an exhaustive coverage.248

By the way, this highlighted literature does not deal249

with SQL code generation task and we cover the250

same in the following.251

Category 2: Constrained Decoding for SQL Gen-252

eration: There is only a limited relevant literature253

available on this topic. Perhaps (Poesia et al., 2022)254

is the first paper that dealt with SQL generation and255

demonstrated results using Spider public data set.256

Like we already pointed out in the Introduction257

section. This paper (Poesia et al., 2022) reports258

22% additional overhead on the inference time as259

compared to that of the standard auto-regressive260

setting.261

Another interesting line of work262

(Torsten Scholak, 2021; Samuel Arcadinho,263

2022) dealt with an incremental parsing-based264

approach (PICARD) for constrained beam-search265

for decoding SQL and this approach is compatible266

with any auto-regressive LLM. In particular, at267

each decoding step, this approach operates on the268

output of the language model to determine valid269

output sequences by rejecting inadmissible tokens270

from the beam at the earliest possible time. Clearly,271

this work does not deal with error mitigation during272

inference time as in our approach in this paper.273

Furthermore, since PICARD (Torsten Scholak,274

2021; Samuel Arcadinho, 2022) performs a275

constrained beam search and post-decode error276

correction, its overall SQL inference time would be277

extremely high and the authors (Torsten Scholak,278

2021; Samuel Arcadinho, 2022) did not report the279

running times.280

Note: Please refer to Appendix C for more ref-281

erences on Text-to-SQL problem.282

3 Our Proposed Approach 283

Let D be the set of vocabulary corresponding to 284

SQL programming language and we define it to be 285

the collection of SQL-keywords, names of database 286

schema tables and columns, defined as follows: 287

D = {a1, a2, . . . am} (1) 288

where, ai refer to the ith element ofD. Let V be vo- 289

cabulary/tokens of the underlying language model 290

(LLM). Let T be the set of tokens that correspond 291

to the elements of D. That is, 292

T = {(i, j, k) | ai[j : j + k − 1] ∈ V } (2) 293

where i refers to the ith element of D (i.e., ai), 294

j refers to the starting index of substring of ai, 295

k refers to the length of that substring that corre- 296

sponds to a token in V . That is, T ⊆ V . Then, 297

t ∈ T can be defined as t = (i, j, k). Note that 298

each token t ∈ T also corresponds to a token id of 299

the underlying tokenizer of the LLM. Let the End 300

of Sequence token be denoted as tEOS . Also, let us 301

define a function Next(.) : T → T ∪ {tEOS} for 302

each t = (i, j, k) as: 303

Next(t) =

{
b = (i, j + k, k′), b ∈ T
tEOS , Otherwise

(3) 304

Using this, we define a tree with tokens being nodes 305

and the set of edges − call it Etokens − is defined 306

as: 307

Etokens = {(t,Next(t)) | t ∈ T} (4) 308

Note that Etokens is defined in the LLM token 309

space. Now, we define the set of outbound tokens 310

(or sub-strings) given a token (or sub-string) t ∈ T 311

using a function P : T → T as follows: 312

P (t) = {Next(t) | (t,Next(t)) ∈ Etokens}.
(5) 313

We make use of this formulation to restrict the 314

decoding space (i.e. possible set of tokens) of the 315

underlying LLM as follows. Let us define another 316

function g : T → V for each t = (i, j, k) as: 317

g(t) =


P (t), if ∃ (t,Next(t)) ∈ Etokens

for some Next(t) ∈ T

V, Otherwise
(6) 318

Note that g(.) performs token restriction wherever 319

possible using Etokens (i.e. tree). 320
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Using the above framework, we are in a posi-321

tion to define our proposed tree-guided token de-322

coding (TTD) approach. Towards this end, let323

S = {t1, t2, . . . , ti} be the sequence of already324

decoded tokens with S[−1] = ti being the latest325

decoded token. Given that S is already decoded326

token sequence, let fLLM (S, V ) be any arbitrary327

LLM decoding function that auto-regressively de-328

codes a new token from the token space V . Also,329

define that V ∗ = g(S[−1]) denotes (possibly re-330

stricted) token space given the latest decoded token331

is S[−1].332

Now, we define another function, h(.) that per-333

forms tree-guided token decoding for SQL genera-334

tion as follows:335

h(S, V ∗) =

{
t, if V ∗ = {t}
fLLM (S, V ∗), Otherwise.

(7)336

Note that, if V ∗ = {t}, then we directly auto-fill337

the next token to be decoded with h(S, V ∗) = t.338

This is a powerful feature of our proposed TTD339

approach that contributes to reduce the inference340

time. Algorithm 1 formally defines the key steps341

involved in our proposed TTD approach. In this342

algorithm, we need to define one more function,343

ψ(.), which takes the current state of KV cache of344

the LLM, and updates it with the calculations made345

to decode the new token.346

Algorithm 1 TTD: Tree-guided Token Decoding
for SQL Generation

Require: S = {t1, t2, . . . , ti}: Initial sequence of
already decoded tokens; K: Initial KV-cache;
V : Vocabulary/tokens of the underlying LLM;
N : Maximum length for the tokens to be gen-
erated.

1: t∗ = ϕ
2: while t∗ ̸= tEOS or len(S) < N do
3: V ∗ ← g(S[−1])
4: t∗ ← h(S, V ∗)
5: S ← S ∪ t∗
6: K ← ψ(t∗,K)
7: end while

Note that the existence of the tree and its corre-347

sponding token edges Etokens play a critical role to348

efficiently infer the subsequent tokens as shown in349

Algorithm 1. Hence, it is important to understand350

how we construct the tree as well as the set Etokens.351

In fact, we construct this tree in offline fashion as352

described below.353

3.1 Offline Construction of Trees 354

We construct 3 type of trees offline for decoding 355

during inference: (1) one for SQL-keywords (2) 356

one for database schema - tables (3) and the other 357

for database schema - columns. Below, we describe 358

our offline construction approach for these trees. 359

Towards this end, we have to establish a mapping 360

from each of SQL-keywords list, schema tables list, 361

and schema columns list respectively to the list 362

of LLM tokens (to tackle the token-misalignment 363

problem (Beurer-Kellner et al., 2024; Ugare et al., 364

2024; Poesia et al., 2022)). For each of the above 365

three lists (i.e., SQL-keywords, tables, columns) 366

respectively, we carry out the following processing: 367

(a) We prepare a comprehensive list to account for 368

various allowed versions of the individual elements 369

(such as lower and upper cases); (b) We next tok- 370

enize each element in this list resulting in a list of 371

substrings aligned with LLM tokens − for instance 372

using Spider dataset, ’singer_in_concert’ is a table 373

name (i.e. element) in the list of schema tables and 374

tokenizing this element results in the following list 375

of substrings aligned with the SQLCoder tokens: 376

[’singer’,’_’,’in’,’con’,’cert’]. Repeating this pro- 377

cess for each SQL based element (keywords, tables, 378

columns) results in a collection of list of substrings 379

aligned with LLM-tokens; (c) We then construct 380

a tree leveraging the substrings (or LLM tokens) 381

from this list as vertices and each edge in the tree 382

denotes the sequence in which they appear in the 383

list so that when we traverse the resulting tree, we 384

get the tokenized version of the entity under consid- 385

eration. For example, Figure 3 refers to one such 386

tree of substrings (aligned with SQLCoder tokens) 387

using a list of schema tables (which contains 3 ta- 388

bles: ’stadium’, ’singer_in_concert’, ’concert’) of 389

one database from Spider dataset. 390

Figure 3: For a database schema from Spider dataset
that contains 3 tables (’stadium’, ’singer_in_concert’,
’concert’), we construct a corresponding tree aligned
with LLM tokens space

The above constructed trees are extremely useful 391

during inference by LLMs (via Etokens set) in the 392
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sense that, starting from a given node (token), if393

there is only a single child in the tree, then we can394

directly auto-fill that token, to invoking the LLM395

decoding step (thus reducing inference time!). As396

these trees are constructed by keeping the order of397

the tokens present in the tokenized version of the398

entity under consideration, auto-filling in this fash-399

ion would not result in any incorrect (hallucinated)400

tokens being decoded. In case there is more than401

one child in the tree corresponding to the already402

decoded token, then LLM decoding is triggered by403

restricting the possible token space to the set of all404

children of that decoded token in the tree. In this405

manner, we ensure that the LLMs always decode406

the names of SQL-keywords, schema tables, and407

schema columns without any hallucination (refer408

to Section 4 for empirical evidence on the halluci-409

nation error reduction).410

Thus, the above trees built from the tokens of the411

SQL keywords, schema tables, schema columns412

primarily serve the dual purpose of speeding up413

inference wherever possible (via auto-fill which414

takes orderwise lesser time than an LLM invoca-415

tion) and ensuring token restriction resulting in416

reduced LLM hallucination.417

3.2 Invoking Trees during LLM Decoding418

To make appropriate use of the proposed token419

trees during LLM decoding process, it’s important420

to ensure that our TTD (Tree-guided Token Decod-421

ing) approach by restricting the decoding space422

of the LLM is invoked only at the relevant places423

(as our approach do not constrain SQL grammar).424

Accordingly, we come up with a simple set of care-425

fully crafted rules, which when applied ensures that426

invoking our TTD approach results in improvement427

in the quality of SQL being generated. We devise428

the following rules corresponding to each type of429

the tree:430

Tree - SQL-keywords: The main objective of the431

keyword tree is to provide us speedup in token de-432

coding rate. This tree is invoked via TTD only433

when the tokens corresponding to the current word434

being decoded by the model are present in the tree.435

Tree - Schema Tables: The main objective of this436

tree is to ensure that LLM decodes the schema ta-437

ble names accurately (without any hallucination).438

Note that pre-trained LLMs are not aware of the439

schema tables as they are user-defined or propri-440

etary, unless they are fine-tuned over the schema441

under consideration. We augment this tree when442

the last decoded words are "FROM" or "JOIN" -443

SQL structure implies that the subsequent set of 444

tokens must correspond to a table name. However, 445

they can also be followed by parenthesis, "(", to 446

accommodate for nested queries, and the alias used 447

for them (ex: refer to Figure 3). 448

Tree - Schema Columns: Similar to the tree for 449

schema tables as above, this tree also has the main 450

objective of reducing the hallucination errors corre- 451

sponding to schema columns during the SQL gen- 452

eration task. We invoke this tree via TTD whenever 453

the last decoded literal is ".", and the second last 454

literal is not a numeral - in these case, the next set 455

of tokens must correspond to a column. 456

Dataset Type #Test #DBs
Questions

Spider Public 992 19

BIRD
(MiniDev) Public 500 11

Table 2: Description of two public datasets used in our
Experiments. Here #DBs refers to Number of Databases

4 Experiments 457

In this section, we first describe the datasets, exper- 458

imental setup and then our experimental results in 459

detail. 460

Description of Datasets: We work with 2 pub- 461

lic datasets for our experiments. 462

Spider - Public Dataset: It is a popular cross- 463

domain database for Text-to-SQL parsing (Tao Yu, 464

2018). There is no overlap between questions or 465

databases among the respective training, devel- 466

opment and test sets. This dataset contains 200 467

databases that cover 138 domains, such as col- 468

leges, government, etc. There are 10181 questions 469

with 5693 unique SQL queries. Among them, Spi- 470

der randomly selects 7000 annotated instances as 471

the training set and rest form the development set. 472

From the development set, we used 19 databases, 473

totaling 992 questions. 474

BIRD (Minidev) - Public Dataset: This (develop- 475

ment) dataset aims to streamline development cy- 476

cles, specifically for testing and improving SQL 477

query generation models in a cost-effective manner. 478

Compiled from community feedback, it consists of 479

500 high-quality text-to-SQL pairs sourced from 480

11 different databases from the Bird development 481

environment (Li et al., 2024). 482
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Metric Spider BIRD MiniDev
AR SynCode TTD AR SynCode TTD

Execution Accuracy (EX) 50.9% 52.2% 51.7% 21.2% 21.2% 22%
(
x2.55%) (

x1.57%) (
x3.77%)

Token Rate (TR) 15.74 14.77 17.33 15.17 13.64 15.59
(
y6.16%) (

x10.1%) (
y10.09%) (

x2.77%)
#Executable SQLs 744 754 759 255 255 288

(+10) (+15) (+ 33)

Table 3: Results for the SQLCoder-7B model. All the increments/decrements shown are with respect to the AR.

LLM Models Used in Our Experiments: We483

use 4 LLM models in our experiments: (i) SQL-484

Ccoder 1 7B model, (ii) CodeLlama 2 7B-instruct485

model, and (iii) Granite-8b-code-instruct-4k 3486

Experimental Settings: We conduct our ex-487

periments using the following 3 experimental con-488

figurations: (i) Standard autoregressive decoding489

(which we refer to as AR); (ii) Syncode (GCD); (iii)490

Our proposed approach (TTD). Further, given a Nat-491

ural Language question, we use the setup provided492

in SQLCoder documentation (prompt as well as493

post-processing module) to obtain the SQL query.494

However, for Codellama and Granite, as they are495

not specifically fine-tuned for the NL2SQL task,496

they are prone to generate text other than an SQL497

query. To limit the generation only to SQL, we used498

"\n\n" and "[/" (based on the SQLCoder prompt) as499

additional stopping criteria.500

Evaluation Approach: We used the evaluation501

framework presented in (Zhong et al., 2020) 4 for502

evaluating results over the Spider dataset, and the503

setup provided at the official Github repository504

of BIRD (Minidev)5, to evaluate generated SQL505

queries from the variety of approaches/models.506

Three Evaluation Metrics: We use the follow-507

ing three metrics to benchmark the efficacy of our508

approach compared to the baseline methods:509

Execution accuracy (EX): We use this metric510

(Tao Yu, 2018) to measure the overall correct-511

ness of the generated SQL. Following this met-512

ric, we check whether or not the database results513

extracted using the generated SQL are equivalent514

to the database results extracted using the ground-515

truth SQL.516

1https://github.com/defog-ai/sqlcoder/tree/main
2https://huggingface.co/collections/meta-llama/code-

llama-family-661da32d0a9d678b6f55b933
3https://huggingface.co/ibm-granite/granite-8b-code-

instruct-4k
4https://github.com/taoyds/spider
5https://github.com/bird-bench/mini_dev

Token Rate (TR): We use this metric to measure 517

the latency (or inference time) of any given LLM 518

model for the SQL generation task. Following this 519

metric, we calculate the average number of LLM 520

tokens generated per second. Note that for a higher 521

token rate, the inference time of the underlying 522

LLM model becomes shorter (and the better it is). 523

Number of Executable SQLs Generated: Since a 524

structurally valid SQL may not be executable (due 525

to hallucination of schema items), we focus on the 526

number of executable SQLs generated by the LLM 527

as a metric. Note that every executable SQL is a 528

structurally valid SQL, but not vice versa. 529

4.1 Our Results [TTD Approach] 530

Here we present our results by considering the three 531

configurations mentioned above for each of the 532

three language models we used in our experiments 533

for both Spider and Bird Minidev data sets. 534

Table 3 presents evaluation metrics for the SQL- 535

Coder 7b model. For the Bird minidev dataset, TTD 536

outperforms other approaches in all metrics. For 537

the Spider dataset, TTD surpasses AR and Syncode 538

in token rate and executable SQLs, while Syncode 539

achieves marginally higher execution accuracy than 540

TTD. 541

Table 4 presents evaluation metrics for the Code- 542

Llama-7B-Instruct model. For the Bird minidev 543

dataset, TTD leads in all metrics. In the Spider 544

dataset, TTD outperforms AR and Syncode in to- 545

ken rate and number of executable SQLs, while 546

AR is best for execution accuracy. Note that TTD 547

performs almost similar to AR and achieves about 548

3% better accuracy than Syncode. For results using 549

Granite model, please refer to Appendix A. 550

As observed, the TTD approach achieves higher 551

token rates on average. This improvement is due 552

to reduced inference times in SQL generation, as 553

TTD performs token auto-filling when the restricted 554

token space is just 1, eliminating the need for an 555

7



Metric Spider BIRD MiniDev
AR SynCode TTD AR SynCode TTD

Execution Accuracy (EX) 60.4% 57.7% 60.1% 24.6% 24.6% 25%
(
y4.47%) (

y0.5%) (
x1.63%)

Token Rate (TR) 16.47 14.19 17.12 15.44 13.68 15.47
(
y13.84%) (

x3.95%) (
y11.4%)

#Executable SQLs 924 906 929 295 292 330
(-18) (+5) (-3) (+ 35)

Table 4: Results for Code-Llama-7B-Instruct. All the increments/decrements shown are with respect to the AR.

explicit LLM decoding call. Tables 5 and 6 show556

that a significant fraction of tokens are auto-filled557

using TTD: on average (across Spider and BIRD558

minidev datasets), 15.52% of tokens are auto-filled559

with SQLCoder, 11.7% with Code-Llama, and 7%560

with Granite.561

Model Fraction of Auto-filled
Tokens by TTD

SQLCoder-7B 7798
43758 = 17.82%

Code-Llama-7B 7312
51564 = 14.18%

granite-8b-code 3358
33980 = 9.88%

Table 5: The fraction of auto-filled tokens (without
explicit LLM decoding) by our proposed TTD approach
using different LLM models on the Spider dataset

Model Fraction of Auto-filled
Tokens by TTD

SQLCoder-7B 4742
35890 = 13.21%

Code-Llama-7B 3916
42531 = 9.21%

granite-8b-code 1474
29411 = 5.01%

Table 6: The fraction of auto-filled tokens (without
explicit LLM decoding) by our proposed TTD approach
using different LLM models on the Bird minidev dataset

4.2 Comparison with GCD (Syncode) Baseline562

We compare the performance of our TTD approach563

with one GCD baseline − Syncode (Ugare et al.,564

2024) − using three metrics (execution accuracy,565

token rate, and number of executable SQLs) and566

two datasets (Spider and BIRD MiniDev). From567

the results in Table 3, Table 4 and Table 7, TTD568

outperforms Syncode in 17 of 18 comparisons (i.e.,569

6 comparisons coming from each table). In par-570

ticular, we make the following two key empirical571

observations:572

• TTD generates more executable SQLs than 573

Syncode. This is because Syncode only re- 574

stricts SQL grammar tokens, not schema 575

items, leading to hallucinations in schema 576

items that may prevent SQL execution. In 577

contrast, TTD guides both SQL keywords and 578

schema item generation. 579

• The token rate of TTD is higher than that of 580

Syncode. This is mainly due to the auto-fill 581

feature of our proposed TTD approach. 582

Comparison between Syncode and AR: Syn- 583

code has a lower token rate than AR in all scenarios 584

in these tables, indicating higher inference times 585

for GCD. Regarding executable SQLs, Syncode 586

generates more executable SQLs than AR in 2 in- 587

stances, but in 3 instances, it generates fewer than 588

AR. 589

5 Conclusions and Future Work 590

Although constrained decoding generates syntacti- 591

cally valid code, it requires higher inference times 592

than autoregressive models and is prone to schema 593

hallucinations, as shown. To address these issues, 594

we propose the tree-guided token decoding (TTD) 595

approach, which avoids SQL grammar constraints 596

and only guides the LLM to generate SQL key- 597

words, table names, and column names. We em- 598

pirically demonstrated the effectiveness of TTD 599

compared to the autoregressive approach and GCD 600

approaches (Syncode) using execution accuracy 601

and token rate metrics. 602

An interesting future research direction would 603

be to extend our approach to other low-code gener- 604

ation tasks such as Cypher code or Bash code. 605

6 Limitations 606

Since we do not leverage the SQL grammar explic- 607

itly due to its high inference times (which does not 608

8



suit to real-time code generation settings), we use a609

rule-based approach to decide when to trigger our610

proposed tree-guided token decoding approach.611

Also note that we do not leverage the tree guid-612

ance in every LLM token decoding. Below are a613

few such instances:614

(a) While our approach guides the LLMs in gen-615

erating the names of database schema items (tables616

and columns), it does not verify the membership of617

columns to the tables. This would further improve618

the accuracy of our proposed approach.619

(b) If a table alias is used in both the outer and in-620

ner subqueries, such table aliases are not leveraged621

by our approach while generating the respective622

column names.623
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A Granite-8b-code-instruct-4k: Results 813

Table 7 shows the evaluation metrics for the 814

Granite-8b-code-instruct-4k model. In this case, 815

the same trend is observed for both data sets, that 816

is, TTD outperforms the other approaches in terms 817

of execution accuracy and number of executable 818

SQLs, and AR is the best in terms of token rate. 819

However, even in this scenario, TTD is better than 820

Syncode. 821
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Metric Spider BIRD MiniDev
AR SynCode TTD AR SynCode TTD

Execution Accuracy (EX) 68.2% 67.7% 68.6% 22.6% 22.6% 23.2%
(
y4.47%) (

x2.65%)
Token Rate (TR) 13.97 13.24 13.43 13.12 12.27 12.62

(
y5.23%) (

y3.86%) (
y6.48%) (

y3.81%)
#Executable SQLs 885 891 895 267 268 271

(-18) (+5) (+1) (+4)

Table 7: Results for Granite-8b-code-instruct-4k. All the increments/decrements shown are with respect to the AR.

B Clarification of GCD Limitations and822

Efficiency of TTD Approach823

In this section, we provide a more detailed dis-824

cussion on the limitations of grammar-constrained825

decoding approaches.826

B.1 Limitation A - Inference Time827

The existing GCD methods require a long inference828

time compared to non-constrained auto-regressive829

generation methods. The primary reason for these830

high inference times of the GCD methods is the831

processing of finite-state machines to identify the832

feasible LLM tokens from which the next token833

needs to be generated.834

Since token trees in our proposed approach are835

constructed offline, the time taken to build these836

trees is not included in the reported latency im-837

provements. This is analogous to how mask gen-838

eration in GCD (Syncode) is excluded from the839

calculation of token rates. However, it is worth840

noting that while mask store generation in GCD841

typically takes several minutes, the tree generation842

in our case is completed in a matter of seconds.843

Following our TTD approach, three types of to-844

ken trees are constructed: SQL Keyword Trees, Ta-845

ble Trees, and Column Trees. For SQL keywords846

and tables, a single tree is constructed for each.847

In contrast, multiple trees are created for columns.848

Specifically, a tree is built that includes all columns849

across all tables, and additional individual column850

trees are constructed for each table based solely on851

the columns present within that specific table.852

The tree containing all columns is used when853

aliases are involved in the query to connect column854

names, but the alias has not yet been defined. On855

the other hand, the individual column trees are in-856

strumental in further restricting the decoding space857

of the large language model (LLM) when com-858

plete table names are used to link column names,859

or when an alias has already been defined. This860

ensures that the LLM only selects columns that be- 861

long to the corresponding table, thereby improving 862

the latency and accuracy of the decoding process. 863

B.2 Limitation B - Schema Hallucination 864

Note that a syntactically valid SQL as generated 865

by GCD techniques may not be executable (due 866

to hallucination of database schema items, tables, 867

and columns) and, even if the generated SQL is 868

executable, it may result in wrong outcomes (due 869

to semantic errors such as wrong usage of schema 870

items in the SQL). Below two examples from our 871

datasets highlight that GCD (syncode) does not 872

reduce the hallucination related to schema items. 873

Example 1: What is the full name of each car 874

maker, along with its id and how many models it 875

produces? 876

Auto-Regressively Generated SQL: SELECT 877

m.id, m.full_name, COUNT(DISTINCT ml.model) 878

AS model_count FROM car_makers m JOIN 879

model_list ml ON m.id = ml.maker GROUP BY 880

m.id, m.full_name 881

Syncode Generated SQL: SELECT m.id,
m.full_name, COUNT(DISTINCT ml.model)
AS model_count FROM car_makers m JOIN
model_list ml ON m.id = ml.maker GROUP BY
m.id, m.fullname

Both autoregressive and GCD (Syncode) 882

approaches hallucinated the column name 883

full_name, which is not the schema. The cor- 884

rect column name is fullname. 885

TTD Approach Generated Correct SQL: SE- 886

LECT m.id, m.fullname, COUNT(DISTINCT 887

ml.model) AS model_count FROM car_makers m 888

JOIN model_list ml ON m.id = ml.maker GROUP 889

BY m.id, m.fullname ORDER BY m.fullname 890

NULLS LAST; 891

Example 2: Give me Brazil’s population and 892
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life expectancies.893

Auto-Regressively Generated SQL: SELECT894

c.population, c.life_expectancy FROM country c895

WHERE c.code = ’BRA’;896

Syncode Generated SQL: SELECT c.population,897

c.life_expectancy FROM country c WHERE c.code898

= ’BRA’;899

Both autoregressive and GCD (Syncode)900

approaches hallucinated the column name901

life_expectancy, which is not the schema. The902

correct column name is lifeexpectancy.903

TTD Generated Correct SQL: SELECT904

c.population, c.lifeexpectancy FROM country c905

WHERE c.code = ’BRA’;906

The above provides an intuition why the num-907

ber of Executable SQLs is less than that of our908

proposed approach.909

C Relevant Work - More References910

There exists substantial amount of relevant re-911

search on the Text-To-SQL from databases, ma-912

chine learning, and natural language communi-913

ties. Early research efforts are largely driven by914

either rule based models (Christopher Baik and Ja-915

gadish, 2020; Jaydeep Sen and Sankaranarayanan,916

2020) or sequence-to-sequence based models with917

encoder-decoder architectures (Octavian Popescu918

and Sheinin, 2022; Ruichu Cai and Liang, 2018).919

The advancement of deep learning architectures,920

such as BERT (Jacob Devlin and Toutanova, 2019),921

have contributed significantly to the design of922

SoTA models for Text-To-SQL problem (Brunner923

and Stockinger, 2021; Pengcheng Yin and Riedel,924

2020).925

With the emergence of large language mod-926

els such as GPT 46 and LLaMA (Hugo Tou-927

vron and Lample, 2023), one of the prominent928

research efforts to address Text-To-SQL problem929

is prompt engineering (Linyong Nan and Radev,930

2023; Aiwei Liu and Yu, 2023). In-context learn-931

ing (Qingxiu Dong and Sui, 2023) is an approach932

that allows LLMs to identify the inherent patterns933

from contextual information, such as relevant exam-934

ples, thereby leading to few-shot learning scenar-935

ios (Chang and Fosler-Lussier, 2023; Aiwei Liu936

and Yu, 2023; Linyong Nan and Radev, 2023;937

Dawei Gao and Zhou, 2023).938

The efficiency of LLMs to address the Text-to-939

SQL problem can be further enhanced by fine-940

6https://openai.com/

tuning LLMs using a collection of high-quality 941

labeled data comprising of <example, SQL> tu- 942

ples (Ruoxi Sun and Pfister, 2023; Dawei Gao and 943

Zhou, 2023). Thus, in-context learning and fine- 944

tuning form the two pillars of adopting LLMs to 945

Text-To-SQL problem. 946

Generating explanations for SQL queries has 947

been an active research area (Simitsis and Ioannidis, 948

2009) for a long time. (Andreas Kokkalis, 2012) 949

proposed an approach in which the SQL query is 950

represented using a graph and traversing this graph 951

results in explanations. (Ahmed Elgohary, 2020) 952

and (Ahmed Elgohary, 2020) proposed a template 953

approach (or rule-based) to generate explanations. 954

These approaches cannot handle any arbitrary SQL 955

queries. 956

Finally, we refer the readers to the following 957

surveys for more details on Text-to-SQL problem. 958

First, (Deng et al., 2022) provides a detailed review 959

of techniques and advances in the text-to-SQL prob- 960

lem by highlighting major challenges such as en- 961

coding the meaning of natural utterances, decoding 962

SQL queries, and translating the semantics between 963

these two forms. Second, (Zhu et al., 2024) surveys 964

the text-to-SQL generations enhanced by the large 965

language model, classifying them into prompt engi- 966

neering, fine-tuning, pre-trained and agent groups 967

according to training strategies. 968

D Speculative Decoding with TTD 969

Approach 970

Here we present our results by considering the fol- 971

lowing two configurations: (a) the standard spec- 972

ulative decoding (SD) approach; and (b) the spec- 973

ulative decoding augmented with our proposed 974

TTD approach (SD + TTD). In particular, to setup 975

the speculative decoding framework, we consider 976

SQLCoder-7B as the draft model and SQLCoder- 977

70B as the target model. Using vanilla speculative 978

decoding SD model, the token rate is 5.29± 0.06; 979

whereas the token rate using our proposed SD+TTD 980

approach is 5.66±0.09. Clearly, there is a speedup 981

of 7% in the token rate using our SD+TTD ap- 982

proach as compared to that of vanilla SD approach. 983

Further, note that both auto-regressive and specula- 984

tive decoding approaches generate the same token 985

sequences and thus the execution accuracy of both 986

these approaches remain the same. Accordingly, 987

we don’t report the execution accuracy (EX) num- 988

bers in this speculative decoding setting. 989
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