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Abstract

Grammar-constrained decoding (GCD) empow-
ers LLMs to generate highly structured output
such as programming code (ex: SQL, Python,
Go, etc.). Although GCD is effective in gen-
erating structurally valid code (Poesia et al.,
2022; Ugare et al., 2024) and does not require
fine-tuning, this line of work has two notable
limitations: (a) these methods demand high
inference times as compared to that of the un-
constrained autoregressive decoding, making
them unfit for real-time code generation appli-
cations (Al Assistants and Co-pilots); and (b)
these methods are prone to schema hallucina-
tion errors like autoregressive decoding.

In this paper, we tackle the above research gap
particularly in the context of a SQL generation
task. By observing that the standard autoregres-
sive LLM decoding methods are on par with
GCD methods at generating structurally valid
SQL code, we propose a novel unified approach
— we refer to as Tree-guided Token Decoding
(TTD) — which guides LLMs in decoding both
SQL-keywords and database schema items (i.e.
names of tables and columns) without focusing
on the SQL grammar. Guiding schema items
reduces hallucination errors, and such guiding
often results in auto-filling certain tokens with-
out explicit LLM calls, which also results in
reduced inference times. We conducted exten-
sive experiments using two popular datasets
(Spider and BIRD) with three language mod-
els to demonstrate the efficacy of our proposed
TTD approach using three metrics: execution
accuracy, token rate, and number of executable
SQLs generated.

1 Introduction

Large language models (LLMs) have been exten-
sively used in several complex generation tasks
with impressive human-level performance (Chang
et al., 2024; Lin et al., 2021). Typically, LLMs de-
code auto-regressively one token at a time (Vaswani
et al., 2017). In each decoding step, the LLMs first

calculate a probability distribution on a predefined
vocabulary, and then the decoding algorithm takes
advantage of this probability distribution to sam-
ple the next generated token (Vaswani et al., 2017;
Lin et al., 2021). Note that, in general, such LLM
decoded output need not follow any rigid syntac-
tic structure. However, for certain highly struc-
tured tasks — such as data serialization formats (ex:
JSON, YAML, etc.), programming code (ex: SQL,
Python, Go, etc.) and regular expressions — the
LLM output is expected to satisfy certain syntactic
constraints (Willard and Louf, 2023; Bailin Wang,
2023; Ugare et al., 2024).

The well-known techniques such as in-context
learning and fine-tuning of LLMs have been shown
to be inadequate (to meet the needs of the above
sort of highly structured tasks) as their output
fails miserably to satisfy the syntactic constraints
(Beurer-Kellner et al., 2024; Honghua Zhang,
2023). The reason for this behavior is that these
techniques provide certain examples (in the form
of say <question, answer> pairs) which only im-
plicitly contains the syntax/grammar aspects of the
underlying programming language, without any
explicit treatment of such structural requirements
(Ugare et al., 2024).

Grammar-constrained decoding (GCD) is a tech-
nique proposed in the literature (Willard and Louf,
2023; Beurer-Kellner et al., 2024; Saibo Geng,
2024; Park et al., 2024; Zhuoer Wang, 2024) to
mitigate the above challenges by restricting the out-
put space conditioned on the previously generated
tokens, given a set of globally valid structural con-
straints. The key advantages of the GCD approach
are three-fold: (i) Exhibit satisfactory performance
in generating syntactically valid code, (ii) Con-
strain the generation of keyword tokens of the un-
derlying programming language; and (iii) This ap-
proach does not require any training or fine-tuning.
However, this strand of work has the following two
notable limitations:
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Figure 1: Using ground-truth SQLs from Spider and BIRD-Minidev datasets respectively, we compute distribution
of three categories of tokens: SQL-keyword tokens, Database-Schema tokens, Other tokens (includes operators,

special symbols, etc.)

Limitation A: The existing GCD methods require
high inference time as compared to that of the auto-
regressive unconstrained generation methods. For
example, the work (Ugare et al., 2024) reports an
average increase of 22% in inference time. The
high inference time overhead of these GCD meth-
ods negatively impact the user experience in real-
time code generation applications such as Al As-
sistants and Co-Pilots wherein the user’s natural
language question has to be translated into code on
the fly.

Limitation B: Note that a syntactically valid SQL
as generated by GCD techniques may not be exe-
cutable (due to hallucination of database schema
items, tables, and columns) and, even if the gen-
erated SQL is executable, it may result in wrong
outcomes (due to semantic errors such as wrong
usage of schema items in the SQL). That is, schema
hallucination errors adversely impact the final ac-
curacy of syntactically valid SQLs. For example,
considering the SQL generation task using the Spi-
der data set (Poesia et al., 2022), even though 76%
of the generated SQLs are syntactically valid, the
reported execution accuracy using the constrained
GPT-3 175B model is only 37%. Similarly, Syn-
Code (Ugare et al., 2024) exhibits very low func-
tional correctness despite its very high syntactical
accuracy — refer to Table 2 and Table 4 in (Ugare
et al., 2024) for more details.

Note: Please refer to Appendix B for more de-
tails on the limitations of GCD-based approaches.

In this paper, we attempt to address the above
limitations - latency overhead and hallucination of
schema items - by developing a novel approach.
especially for the SQL code generation task. In
what follows, we explain our proposal to tackle the
above two limitations in the context of developing
our approach for SQL generation. We start with
two key observations.

Key observation 1: Since GCD methods im-

% of Executable
LLM Model SQLs
Spider | BIRD
SQLCoder-7B 75% 51%
Code-Llama-7B-Instruct 93% 59%
Granite-8b-code-instruct-4k | 89% 53%
GPT-3.5-Turbo-175B 96% 82%

Table 1: For SQL generation task using Spider and
BIRD-Minidev public datasets, the percentage of exe-
cutable SQLs generated by using unconstrained auto-
regressive LLM models

pose significantly high inference overhead in the
process of generating structurally valid SQL code,
let us shed some light on how satisfactory the pre-
trained auto-regressive models are to generate valid
SQL code. For example, using Spider and BIRD-
Minidev datasets (refer to Section 4 for more de-
tails on these two datasets), Table 1 shows that the
percentage of executable SQL code generated is
on par with that of the GCD methods — refers to
the percentage of valid SQLs using the base LLM
models in Table 2 from (Poesia et al., 2022). In
summary, GCD methods with high inference time
demand may not be required to generate executable
SOL code, as auto-regressive language models are
adequate for this task.

Key Observation 2: Using ground-truth SQLs
from the Spider and BIRD-Minidev datasets (re-
fer to Section 4 for more details), respectively,
we study the distribution of three categories of
tokens: SQL-keyword tokens, database schema
(tables/columns) tokens, and other tokens (such as
operators, etc.). Figure 1 shows the distribution of
these tokens. From this figure, we observe that the
fraction of database schema tokens is significantly
higher (about 3 times) than that of SQL keyword to-
kens. Since we know the database schema a priori
like the SQL grammar, it is technically possible to



restrict the decoding of schema tokens (in addition
to SQL-keyword tokens) to reduce schema halluci-
nation errors by LLMs and thereby aim to improve
the accuracy of the SQL generation task.

Inspired by the above two key observations, in
this paper, we summarize our proposed approach
as well as specific contributions:

[1] Since auto-regressive (or generically fine-
tuned) LLM decoding methods are very efficient
in generating executable SQL code (and thus pay-
ing no attention to SQL-grammar constraints), we
propose to augment the auto-regressive LLM de-
coding process with a computationally light-weight
and efficient mechanism (unlike GCD approaches)
that restricts the token space wherever possible
while decoding SQL-keywords, schema tables, and
schema columns.

[2] To meet the proposed needs, in an offline
manner, we construct THREE types of trees aligned
with the LLM token space: one for SQL-keywords,
one for database schema tables, and one more for
database schema columns.

[3] During the inference time, we leverage these
trees to restrict the token space for LLM decoding
or to directly autofill the next token (without LLM
call) if the potential restricted token space contains
only the 1 token. Thus, we refer to our proposed ap-
proach as Tree-guided Token Decoding (TTD) for
SQL generation. The auto-fill feature of our TTD
approach is triggered more often as the names of
schema tables and several columns are unique; thus
having unique LLM token sequences, respectively,
and thus the restricted token space often contains
just the 1 token. This autofill feature of the TTD ap-
proach contributes significantly to the reduction of
inference time (please refer to the results in Section
4.1 for empirical evidence). This autofill feature
also helps to reduce schema hallucination errors,
and Figure 2 highlights the same using an example
from the Spider data set.

To the best of our knowledge, there is no known
effort in the literature to tackle the two limitations
of GCD approach and ours is first attempt indeed.

[4] The proposed TTD approach can be aug-
mented with language models in the following
two different settings. First, in the standard auto-
regressive decoding setting (in particular, open lan-
guage models such as Code-Llama, SQL-Coder,
etc.). Second, in the speculative decoding set-
ting (with both draft and target language mod-
els) (Yaniv Leviathan, 2023; Charlie Chen, 2023).

Question: How many models does each car maker produce?
List maker full name, id and the number.

SQL Generated using SQLCoder-7B Model:

SELECT m.full_name, m.id, COUNT(ml.model_id)

AS model_count

FROM car_makers m JOIN model_list ml ON m.id = ml.maker
GROUP BY m.full_name, m.id

ORDER BY model_count DESC NULLS LAST;

Schema Column Hallucination Error: Here note that
full_name is not a valid column.

(Corrected) SQL Generated using TTD Model (SQLCoder-
7B):

SELECT m.fullname, m.id, COUNT(ml.modelid) AS
model_count

FROM car_makers m JOIN model_list ml ON m.id = ml.maker
GROUP BY m.fullname, m.id

ORDER BY model_count DESC NULLS LAST;

Figure 2: An illustrative example from Spider Dataset:
Mitigating schema hallucination using our proposed
TTD approach

Please refer to Appendix D for more results on this.

[5] We demonstrate the joint reduction of latency
(through improved token generation rates) and hal-
lucination (through improved accuracy by properly
generating schema tokens) using thorough experi-
ments on the SQL generation task using 3 metrics
(execution accuracy, token rate, and number of ex-
ecutable SQLs) and 2 public datasets: Spider and
BIRD-Minidev.

2 Relevant Work

Here we cover the relevant literature on the use
of auto-regressive generative models for structured
code generation tasks - wherein the output needs
to satisfy certain programming language (ex: SQL,
Cypher, Bash, etc.) constraints. Constrained de-
coding is a technique that has been proposed to
guide the language model generation process to
produce only valid outputs as needed by the syntax
rules of underlying structured code task. In what
follows, we divide the relevant literature into two
broad categories.

Category 1: General Constrained Decoding
(Grammar): There are largely two subcategories in
this line of research. The first subcategory of the
work deals with an in-context learning approach
for grammar-constrained decoding. In particular,
(Bailin Wang, 2023) deals with providing the lan-
guage grammar as a few shot examples to conduct
constrained decoding.

The second subcategory of the work deals with
grammar constraints using sketches (suited for
black-box LLMs) or finite-state machines (FSM).



In particular, (Saibo Geng, 2024) proposed a novel
sketch-guided constrained decoding that is suit-
able for black-box LLLM decoding. Again, (Luca
Beurer-Kellner and Vechev, 2023) proposed an iter-
ative constrained decoding approach for black-box
LLMs. (Kexun Zhang, 2023; Zhuoer Wang, 2024)
dealt with the constrained generation of API calls
for tool usage using a FSM. Similarly, the follow-
ing relevant literature (Beurer-Kellner et al., 2024;
Willard and Louf, 2023; Park et al., 2024; Ugare
et al., 2024) uses FSMs for grammar-constrained
decoding for highly structured domains. We so far
provided a few representative references on the rel-
evant literature on grammar-constrained decoding,
and it is by no means not an exhaustive coverage.
By the way, this highlighted literature does not deal
with SQL code generation task and we cover the
same in the following.

Category 2: Constrained Decoding for SQL Gen-
eration: There is only a limited relevant literature
available on this topic. Perhaps (Poesia et al., 2022)
is the first paper that dealt with SQL generation and
demonstrated results using Spider public data set.
Like we already pointed out in the Introduction
section. This paper (Poesia et al., 2022) reports
22% additional overhead on the inference time as
compared to that of the standard auto-regressive
setting.

Another  interesting  line of  work
(Torsten Scholak, 2021; Samuel Arcadinho,
2022) dealt with an incremental parsing-based
approach (PICARD) for constrained beam-search
for decoding SQL and this approach is compatible
with any auto-regressive LLM. In particular, at
each decoding step, this approach operates on the
output of the language model to determine valid
output sequences by rejecting inadmissible tokens
from the beam at the earliest possible time. Clearly,
this work does not deal with error mitigation during
inference time as in our approach in this paper.
Furthermore, since PICARD (Torsten Scholak,
2021; Samuel Arcadinho, 2022) performs a
constrained beam search and post-decode error
correction, its overall SQL inference time would be
extremely high and the authors (Torsten Scholak,
2021; Samuel Arcadinho, 2022) did not report the
running times.

Note: Please refer to Appendix C for more ref-
erences on Text-to-SQL problem.

3 Our Proposed Approach

Let D be the set of vocabulary corresponding to
SQL programming language and we define it to be
the collection of SQL-keywords, names of database
schema tables and columns, defined as follows:

D ={ay,a9,...an} (D

where, a; refer to the i** element of D. Let V be vo-
cabulary/tokens of the underlying language model
(LLM). Let T be the set of tokens that correspond
to the elements of D. That is,

T={(j.k)lalj:j+k—-1 €V} (2

where i refers to the i*" element of D (i.e., a;),
j refers to the starting index of substring of a;,
k refers to the length of that substring that corre-
sponds to a token in V. That is, " C V. Then,
t € T can be defined as t = (i, j, k). Note that
each token ¢ € T" also corresponds to a token id of
the underlying tokenizer of the LLM. Let the End
of Sequence token be denoted as t gog. Also, let us
define a function Nezt(.) : T — T U {tgos} for
each t = (i,7, k) as:

b = (Z7] + k7k/)?
tEos,

beT

Otherwise

3)
Using this, we define a tree with tokens being nodes
and the set of edges — call it Fyopens — is defined
as:

Next(t) = {

Eiokens = {(t, Next(t)) | te T} @

Note that E;pens 18 defined in the LLM token
space. Now, we define the set of outbound tokens
(or sub-strings) given a token (or sub-string) t € T’
using a function P : T' — T as follows:

P(t) = {Next(t) | (t, Next(t)) € Eiokens}-
®)
We make use of this formulation to restrict the
decoding space (i.e. possible set of tokens) of the
underlying LLM as follows. Let us define another
function g : 7' — V for each t = (i, j, k) as:
P(t)v Zf 3 (t’ Ne:ct(t)) € Etokens

for some Next(t) € T
o(t) = v

V, Otherwise
(6)
Note that g(.) performs token restriction wherever
possible using Fjokens (i.€. tree).



Using the above framework, we are in a posi-
tion to define our proposed tree-guided token de-
coding (TTD) approach. Towards this end, let
S = {t1,to,...,t;} be the sequence of already
decoded tokens with S[—1] = ¢; being the latest
decoded token. Given that S is already decoded
token sequence, let frra/(S, V) be any arbitrary
LLM decoding function that auto-regressively de-
codes a new token from the token space V. Also,
define that V* = ¢(S[—1]) denotes (possibly re-
stricted) token space given the latest decoded token
is S[—1].

Now, we define another function, h(.) that per-
forms tree-guided token decoding for SQL genera-
tion as follows:

WS, V") = {t’ V=1 )

from (S, V*), Otherwise.
Note that, if V* = {t}, then we directly auto-fill
the next token to be decoded with h(S,V*) = t.
This is a powerful feature of our proposed TTD
approach that contributes to reduce the inference
time. Algorithm 1 formally defines the key steps
involved in our proposed TTD approach. In this
algorithm, we need to define one more function,
¥(.), which takes the current state of KV cache of
the LLM, and updates it with the calculations made
to decode the new token.

Algorithm 1 TTD: Tree-guided Token Decoding

for SQL Generation

Require: S = {t1,t,...,t;}: Initial sequence of
already decoded tokens; K: Initial KV-cache;
V': Vocabulary/tokens of the underlying LLM;
N: Maximum length for the tokens to be gen-
erated.

L t"=¢

2: while t* # tppg or len(S) < N do

32 V¥« g(S[-1))

4t <« h(S,V¥)

5

6

7

S« SuUt*
K« ¢(t", K)
. end while

Note that the existence of the tree and its corre-
sponding token edges E} kens play a critical role to
efficiently infer the subsequent tokens as shown in
Algorithm 1. Hence, it is important to understand
how we construct the tree as well as the set Fjorens-
In fact, we construct this tree in offline fashion as
described below.

3.1 Offline Construction of Trees

We construct 3 type of trees offline for decoding
during inference: (1) one for SQL-keywords (2)
one for database schema - tables (3) and the other
for database schema - columns. Below, we describe
our offline construction approach for these trees.

Towards this end, we have to establish a mapping
from each of SQL-keywords list, schema tables list,
and schema columns list respectively to the list
of LLM tokens (to tackle the token-misalignment
problem (Beurer-Kellner et al., 2024; Ugare et al.,
2024; Poesia et al., 2022)). For each of the above
three lists (i.e., SQL-keywords, tables, columns)
respectively, we carry out the following processing:
(a) We prepare a comprehensive list to account for
various allowed versions of the individual elements
(such as lower and upper cases); (b) We next tok-
enize each element in this list resulting in a list of
substrings aligned with LLM tokens — for instance
using Spider dataset, ’singer_in_concert’ is a table
name (i.e. element) in the list of schema tables and
tokenizing this element results in the following list
of substrings aligned with the SQLCoder tokens:
[’singer’,_’,in’, con’, cert’]. Repeating this pro-
cess for each SQL based element (keywords, tables,
columns) results in a collection of list of substrings
aligned with LLM-tokens; (c) We then construct
a tree leveraging the substrings (or LLM tokens)
from this list as vertices and each edge in the tree
denotes the sequence in which they appear in the
list so that when we traverse the resulting tree, we
get the tokenized version of the entity under consid-
eration. For example, Figure 3 refers to one such
tree of substrings (aligned with SQLCoder tokens)
using a list of schema tables (which contains 3 ta-
bles: ’stadium’, ’singer_in_concert’, ’concert’) of
one database from Spider dataset.

singer H singer_ H singer_in H singer_in_con H singer_in_concert

Figure 3: For a database schema from Spider dataset
that contains 3 tables (’stadium’, ’singer_in_concert’,
“concert’), we construct a corresponding tree aligned
with LLM tokens space

The above constructed trees are extremely useful
during inference by LLMs (via Eiogens Set) in the



sense that, starting from a given node (token), if
there is only a single child in the tree, then we can
directly auto-fill that token, to invoking the LLM
decoding step (thus reducing inference time!). As
these trees are constructed by keeping the order of
the tokens present in the tokenized version of the
entity under consideration, auto-filling in this fash-
ion would not result in any incorrect (hallucinated)
tokens being decoded. In case there is more than
one child in the tree corresponding to the already
decoded token, then LLM decoding is triggered by
restricting the possible token space to the set of all
children of that decoded token in the tree. In this
manner, we ensure that the LLMs always decode
the names of SQL-keywords, schema tables, and
schema columns without any hallucination (refer
to Section 4 for empirical evidence on the halluci-
nation error reduction).

Thus, the above trees built from the tokens of the
SQL keywords, schema tables, schema columns
primarily serve the dual purpose of speeding up
inference wherever possible (via auto-fill which
takes orderwise lesser time than an LLLM invoca-
tion) and ensuring token restriction resulting in
reduced LLM hallucination.

3.2 Invoking Trees during LLLM Decoding

To make appropriate use of the proposed token
trees during LLM decoding process, it’s important
to ensure that our TTD (Tree-guided Token Decod-
ing) approach by restricting the decoding space
of the LLLM is invoked only at the relevant places
(as our approach do not constrain SQL grammar).
Accordingly, we come up with a simple set of care-
fully crafted rules, which when applied ensures that
invoking our TTD approach results in improvement
in the quality of SQL being generated. We devise
the following rules corresponding to each type of
the tree:

Tree - SQL-keywords: The main objective of the
keyword tree is to provide us speedup in token de-
coding rate. This tree is invoked via TTD only
when the tokens corresponding to the current word
being decoded by the model are present in the tree.
Tree - Schema Tables: The main objective of this
tree is to ensure that LLM decodes the schema ta-
ble names accurately (without any hallucination).
Note that pre-trained LLMs are not aware of the
schema tables as they are user-defined or propri-
etary, unless they are fine-tuned over the schema
under consideration. We augment this tree when
the last decoded words are "FROM" or "JOIN" -

SQL structure implies that the subsequent set of
tokens must correspond to a table name. However,
they can also be followed by parenthesis, "(", to
accommodate for nested queries, and the alias used
for them (ex: refer to Figure 3).

Tree - Schema Columns: Similar to the tree for
schema tables as above, this tree also has the main
objective of reducing the hallucination errors corre-
sponding to schema columns during the SQL gen-
eration task. We invoke this tree via TTD whenever
the last decoded literal is ".", and the second last
literal is not a numeral - in these case, the next set
of tokens must correspond to a column.

Dataset Type #Test #DBs
Questions
Spider Public 992 19
BIRD
(MiniDev) | Public 500 11

Table 2: Description of two public datasets used in our
Experiments. Here #DBs refers to Number of Databases

4 Experiments

In this section, we first describe the datasets, exper-
imental setup and then our experimental results in
detail.

Description of Datasets: We work with 2 pub-
lic datasets for our experiments.

Spider - Public Dataset: It is a popular cross-
domain database for Text-to-SQL parsing (Tao Yu,
2018). There is no overlap between questions or
databases among the respective training, devel-
opment and test sets. This dataset contains 200
databases that cover 138 domains, such as col-
leges, government, etc. There are 10181 questions
with 5693 unique SQL queries. Among them, Spi-
der randomly selects 7000 annotated instances as
the training set and rest form the development set.
From the development set, we used 19 databases,
totaling 992 questions.

BIRD (Minidev) - Public Dataset: This (develop-
ment) dataset aims to streamline development cy-
cles, specifically for testing and improving SQL
query generation models in a cost-effective manner.
Compiled from community feedback, it consists of
500 high-quality text-to-SQL pairs sourced from
11 different databases from the Bird development
environment (Li et al., 2024).



Metric Spider BIRD MiniDev

AR SynCode TTD AR SynCode TTD

Execution Accuracy (EX) | 50.9% | 52.2% 51.7% | 21.2% 21.2% 22%
(12.55%) | (11.57%) (13.77%)

Token Rate (TR) 15.74 14.77 17.33 15.17 13.64 15.59
(16.16%) | (110.1%) (110.09%) | (12.77%)

#Executable SQLs 744 754 759 255 255 288

(+10) (+15) (+33)

Table 3: Results for the SQLCoder-7B model. All the increments/decrements shown are with respect to the AR.

LLM Models Used in Our Experiments: We
use 4 LLM models in our experiments: (i) SQL-
Ccoder ' 7B model, (ii) CodeLlama * TB-instruct
model, and (iii) Granite-8b-code-instruct-4k 3

Experimental Settings: We conduct our ex-
periments using the following 3 experimental con-
figurations: (i) Standard autoregressive decoding
(which we refer to as AR); (ii) Syncode (GCD); (iii)
Our proposed approach (TTD). Further, given a Nat-
ural Language question, we use the setup provided
in SQLCoder documentation (prompt as well as
post-processing module) to obtain the SQL query.
However, for Codellama and Granite, as they are
not specifically fine-tuned for the NL2SQL task,
they are prone to generate text other than an SQL
query. To limit the generation only to SQL, we used
"\n\n" and "[/" (based on the SQLCoder prompt) as
additional stopping criteria.

Evaluation Approach: We used the evaluation
framework presented in (Zhong et al., 2020) * for
evaluating results over the Spider dataset, and the
setup provided at the official Github repository
of BIRD (Minidev), to evaluate generated SQL
queries from the variety of approaches/models.

Three Evaluation Metrics: We use the follow-
ing three metrics to benchmark the efficacy of our
approach compared to the baseline methods:

Execution accuracy (EX): We use this metric
(Tao Yu, 2018) to measure the overall correct-
ness of the generated SQL. Following this met-
ric, we check whether or not the database results
extracted using the generated SQL are equivalent
to the database results extracted using the ground-
truth SQL.

"https://github.com/defog-ai/sqlcoder/tree/main

Zhttps://huggingface.co/collections/meta-llama/code-
llama-family-661da32d0a9d678b6£55b933

3https://huggingface.co/ibm-granite/granite-8b-code-
instruct-4k

*https://github.com/taoyds/spider

>https://github.com/bird-bench/mini_dev

Token Rate (TR): We use this metric to measure
the latency (or inference time) of any given LLM
model for the SQL generation task. Following this
metric, we calculate the average number of LLM
tokens generated per second. Note that for a higher
token rate, the inference time of the underlying
LLM model becomes shorter (and the better it is).

Number of Executable SQLs Generated: Since a
structurally valid SQL may not be executable (due
to hallucination of schema items), we focus on the
number of executable SQLs generated by the LLM
as a metric. Note that every executable SQL is a
structurally valid SQL, but not vice versa.

4.1 Our Results [TTD Approach]

Here we present our results by considering the three
configurations mentioned above for each of the
three language models we used in our experiments
for both Spider and Bird Minidev data sets.

Table 3 presents evaluation metrics for the SQL-
Coder 7b model. For the Bird minidev dataset, TTD
outperforms other approaches in all metrics. For
the Spider dataset, 77D surpasses AR and Syncode
in token rate and executable SQLs, while Syncode
achieves marginally higher execution accuracy than
TTD.

Table 4 presents evaluation metrics for the Code-
Llama-7B-Instruct model. For the Bird minidev
dataset, TTD leads in all metrics. In the Spider
dataset, 77D outperforms AR and Syncode in to-
ken rate and number of executable SQLs, while
AR is best for execution accuracy. Note that 77D
performs almost similar to AR and achieves about
3% better accuracy than Syncode. For results using
Granite model, please refer to Appendix A.

As observed, the TTD approach achieves higher
token rates on average. This improvement is due
to reduced inference times in SQL generation, as
TTD performs token auto-filling when the restricted
token space is just 1, eliminating the need for an



Metric Spider BIRD MiniDev

AR SynCode TTD AR SynCode TTD

Execution Accuracy (EX) | 60.4% 57.7% 60.1% | 24.6% | 24.6% 25%
(1447%) | (|0.5%) (11.63%)

Token Rate (TR) 16.47 14.19 17.12 15.44 13.68 15.47

(113.84%) | (13.95%) (111.4%)
#Executable SQLs 924 906 929 295 292 330
(-18) (+5) (-3) (+35)

Table 4: Results for Code-Llama-7B-Instruct. All the increments/decrements shown are with respect to the AR.

explicit LLM decoding call. Tables 5 and 6 show
that a significant fraction of tokens are auto-filled
using T7TD: on average (across Spider and BIRD
minidev datasets), 15.52% of tokens are auto-filled
with SQLCoder, 11.7% with Code-Llama, and 7%
with Granite.

Model Fraction of Auto-filled

Tokens by TTD

7798 _

7312
32— 14.18%

3358 _
5050 = 9-88%

SQLCoder-7B
Code-Llama-7B
granite-8b-code

Table 5: The fraction of auto-filled tokens (without
explicit LLM decoding) by our proposed TTD approach
using different LLM models on the Spider dataset

Model Fraction of Auto-filled

Tokens by TTD

4742
AT2 —13.21%

3916 o
42531 9.21%

1474
29411 5.01%

SQLCoder-7B
Code-Llama-7B
granite-8b-code

Table 6: The fraction of auto-filled tokens (without
explicit LLM decoding) by our proposed 77D approach
using different LLM models on the Bird minidev dataset

4.2 Comparison with GCD (Syncode) Baseline

We compare the performance of our 77D approach
with one GCD baseline — Syncode (Ugare et al.,
2024) — using three metrics (execution accuracy,
token rate, and number of executable SQLs) and
two datasets (Spider and BIRD MiniDev). From
the results in Table 3, Table 4 and Table 7, TTD
outperforms Syncode in 17 of 18 comparisons (i.e.,
6 comparisons coming from each table). In par-
ticular, we make the following two key empirical
observations:

* TTD generates more executable SQLs than
Syncode. This is because Syncode only re-
stricts SQL grammar tokens, not schema
items, leading to hallucinations in schema
items that may prevent SQL execution. In
contrast, 77D guides both SQL keywords and
schema item generation.

* The token rate of 77D is higher than that of
Syncode. This is mainly due to the auto-fill
feature of our proposed TTD approach.

Comparison between Syncode and AR: Syn-
code has a lower token rate than AR in all scenarios
in these tables, indicating higher inference times
for GCD. Regarding executable SQLs, Syncode
generates more executable SQLs than AR in 2 in-
stances, but in 3 instances, it generates fewer than
AR.

5 Conclusions and Future Work

Although constrained decoding generates syntacti-
cally valid code, it requires higher inference times
than autoregressive models and is prone to schema
hallucinations, as shown. To address these issues,
we propose the tree-guided token decoding (T7D)
approach, which avoids SQL grammar constraints
and only guides the LLM to generate SQL key-
words, table names, and column names. We em-
pirically demonstrated the effectiveness of 77D
compared to the autoregressive approach and GCD
approaches (Syncode) using execution accuracy
and token rate metrics.

An interesting future research direction would
be to extend our approach to other low-code gener-
ation tasks such as Cypher code or Bash code.

6 Limitations

Since we do not leverage the SQL grammar explic-
itly due to its high inference times (which does not



suit to real-time code generation settings), we use a
rule-based approach to decide when to trigger our
proposed tree-guided token decoding approach.

Also note that we do not leverage the tree guid-
ance in every LLM token decoding. Below are a
few such instances:

(a) While our approach guides the LLMs in gen-
erating the names of database schema items (tables
and columns), it does not verify the membership of
columns to the tables. This would further improve
the accuracy of our proposed approach.

(b) If a table alias is used in both the outer and in-
ner subqueries, such table aliases are not leveraged
by our approach while generating the respective
column names.
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A Granite-8b-code-instruct-4k: Results

Table 7 shows the evaluation metrics for the
Granite-8b-code-instruct-4k model. In this case,
the same trend is observed for both data sets, that
is, TTD outperforms the other approaches in terms
of execution accuracy and number of executable
SQLs, and AR is the best in terms of token rate.
However, even in this scenario, 77D is better than
Syncode.



Metric Spider BIRD MiniDev
AR SynCode TTD AR SynCode TTD
Execution Accuracy (EX) | 68.2% 67.7% 68.6 % 22.6% 22.6% 23.2%
(14.47%) (12.65%)
Token Rate (TR) 13.97 13.24 13.43 13.12 12.27 12.62
(15.23%) | (|3.86%) (16.48%) | (|3.81%)
#Executable SQLs 885 891 895 267 268 271
(-18) (+5) (+1) (+4)

Table 7: Results for Granite-8b-code-instruct-4k. All the increments/decrements shown are with respect to the AR.

B Clarification of GCD Limitations and
Efficiency of TTD Approach

In this section, we provide a more detailed dis-
cussion on the limitations of grammar-constrained
decoding approaches.

B.1 Limitation A - Inference Time

The existing GCD methods require a long inference
time compared to non-constrained auto-regressive
generation methods. The primary reason for these
high inference times of the GCD methods is the
processing of finite-state machines to identify the
feasible LLM tokens from which the next token
needs to be generated.

Since token trees in our proposed approach are
constructed offline, the time taken to build these
trees is not included in the reported latency im-
provements. This is analogous to how mask gen-
eration in GCD (Syncode) is excluded from the
calculation of token rates. However, it is worth
noting that while mask store generation in GCD
typically takes several minutes, the tree generation
in our case is completed in a matter of seconds.

Following our TTD approach, three types of to-
ken trees are constructed: SQL Keyword Trees, Ta-
ble Trees, and Column Trees. For SQL keywords
and tables, a single tree is constructed for each.
In contrast, multiple trees are created for columns.
Specifically, a tree is built that includes all columns
across all tables, and additional individual column
trees are constructed for each table based solely on
the columns present within that specific table.

The tree containing all columns is used when
aliases are involved in the query to connect column
names, but the alias has not yet been defined. On
the other hand, the individual column trees are in-
strumental in further restricting the decoding space
of the large language model (LLM) when com-
plete table names are used to link column names,
or when an alias has already been defined. This
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ensures that the LLM only selects columns that be-
long to the corresponding table, thereby improving
the latency and accuracy of the decoding process.

B.2 Limitation B - Schema Hallucination

Note that a syntactically valid SQL as generated
by GCD techniques may not be executable (due
to hallucination of database schema items, tables,
and columns) and, even if the generated SQL is
executable, it may result in wrong outcomes (due
to semantic errors such as wrong usage of schema
items in the SQL). Below two examples from our
datasets highlight that GCD (syncode) does not
reduce the hallucination related to schema items.

Example 1: What is the full name of each car
maker, along with its id and how many models it
produces?

Auto-Regressively Generated SQL: SELECT
m.id, m.full_name, COUNT(DISTINCT ml.model)
AS model_count FROM car_makers m JOIN
model_list ml ON m.id = ml.maker GROUP BY
m.id, m.full name

Syncode Generated SQL: SELECT m.id,
m.full_name, COUNT(DISTINCT ml.model)
AS model_count FROM car_makers m JOIN
model_list ml ON m.id = ml.maker GROUP BY
m.id, m.full,,ame

Both autoregressive and GCD (Syncode)
approaches hallucinated the column name
Jfull_name, which is not the schema. The cor-
rect column name is fullname.

TTD Approach Generated Correct SQL: SE-
LECT m.id, m.fullname, COUNT(DISTINCT
ml.model) AS model_count FROM car_makers m
JOIN model_list ml ON m.id = ml.maker GROUP
BY m.id, m.fullname ORDER BY m.fullname
NULLS LAST;

Example 2: Give me Brazil’s population and



life expectancies.
Auto-Regressively Generated SQL: SELECT
c.population, c.life_expectancy FROM country c
WHERE c.code = ’BRA’;

Syncode Generated SQL: SELECT c.population,
c.life_expectancy FROM country c WHERE c.code
=’BRA’;

Both autoregressive and GCD (Syncode)
approaches hallucinated the column name
life_expectancy, which is not the schema. The
correct column name is lifeexpectancy.

TTD Generated Correct SQL: SELECT
c.population, c.lifeexpectancy FROM country c
WHERE c.code = 'BRA’;

The above provides an intuition why the num-
ber of Executable SQLs is less than that of our
proposed approach.

C Relevant Work - More References

There exists substantial amount of relevant re-
search on the Text-To-SQL from databases, ma-
chine learning, and natural language communi-
ties. Early research efforts are largely driven by
either rule based models (Christopher Baik and Ja-
gadish, 2020; Jaydeep Sen and Sankaranarayanan,
2020) or sequence-to-sequence based models with
encoder-decoder architectures (Octavian Popescu
and Sheinin, 2022; Ruichu Cai and Liang, 2018).
The advancement of deep learning architectures,
such as BERT (Jacob Devlin and Toutanova, 2019),
have contributed significantly to the design of
SoTA models for Text-To-SQL problem (Brunner
and Stockinger, 2021; Pengcheng Yin and Riedel,
2020).

With the emergence of large language mod-
els such as GPT 4° and LLaMA (Hugo Tou-
vron and Lample, 2023), one of the prominent
research efforts to address Text-To-SQL problem
is prompt engineering (Linyong Nan and Radev,
2023; Aiwei Liu and Yu, 2023). In-context learn-
ing (Qingxiu Dong and Sui, 2023) is an approach
that allows LLMs to identify the inherent patterns
from contextual information, such as relevant exam-
ples, thereby leading to few-shot learning scenar-
ios (Chang and Fosler-Lussier, 2023; Aiwei Liu
and Yu, 2023; Linyong Nan and Radev, 2023;
Dawei Gao and Zhou, 2023).

The efficiency of LLMs to address the Text-to-
SQL problem can be further enhanced by fine-

®https://openai.com/
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tuning LL.Ms using a collection of high-quality
labeled data comprising of <example, SQL> tu-
ples (Ruoxi Sun and Pfister, 2023; Dawei Gao and
Zhou, 2023). Thus, in-context learning and fine-
tuning form the two pillars of adopting LLMs to
Text-To-SQL problem.

Generating explanations for SQL queries has
been an active research area (Simitsis and Ioannidis,
2009) for a long time. (Andreas Kokkalis, 2012)
proposed an approach in which the SQL query is
represented using a graph and traversing this graph
results in explanations. (Ahmed Elgohary, 2020)
and (Ahmed Elgohary, 2020) proposed a template
approach (or rule-based) to generate explanations.
These approaches cannot handle any arbitrary SQL
queries.

Finally, we refer the readers to the following
surveys for more details on Text-to-SQL problem.
First, (Deng et al., 2022) provides a detailed review
of techniques and advances in the text-to-SQL prob-
lem by highlighting major challenges such as en-
coding the meaning of natural utterances, decoding
SQL queries, and translating the semantics between
these two forms. Second, (Zhu et al., 2024) surveys
the text-to-SQL generations enhanced by the large
language model, classifying them into prompt engi-
neering, fine-tuning, pre-trained and agent groups
according to training strategies.

D Speculative Decoding with TTD
Approach

Here we present our results by considering the fol-
lowing two configurations: (a) the standard spec-
ulative decoding (SD) approach; and (b) the spec-
ulative decoding augmented with our proposed
TTD approach (SD + TTD). In particular, to setup
the speculative decoding framework, we consider
SQLCoder-7B as the draft model and SQLCoder-
70B as the target model. Using vanilla speculative
decoding SD model, the token rate is 5.29 4 0.06;
whereas the token rate using our proposed SD+TTD
approach is 5.66 £ 0.09. Clearly, there is a speedup
of 7% in the token rate using our SD+TTD ap-
proach as compared to that of vanilla SD approach.
Further, note that both auto-regressive and specula-
tive decoding approaches generate the same token
sequences and thus the execution accuracy of both
these approaches remain the same. Accordingly,
we don’t report the execution accuracy (EX) num-
bers in this speculative decoding setting.



	Introduction
	Relevant Work
	Our Proposed Approach
	Offline Construction of Trees
	Invoking Trees during LLM Decoding

	Experiments
	Our Results [TTD Approach]
	Comparison with GCD (Syncode) Baseline

	Conclusions and Future Work
	Limitations
	Granite-8b-code-instruct-4k: Results
	Clarification of GCD Limitations and Efficiency of TTD Approach
	Limitation A - Inference Time
	Limitation B - Schema Hallucination

	Relevant Work - More References
	Speculative Decoding with TTD Approach

