
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPLICIT BIAS PRODUCES NEURAL SCALING LAWS IN
LEARNING CURVES, FROM PERCEPTRONS TO DEEP NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling laws in deep learning – empirical power-law relationships linking model
performance to resource growth – have emerged as simple yet striking regularities
across architectures, datasets, and tasks. These laws are particularly impactful
in guiding the design of state-of-the-art models, since they quantify the benefits
of increasing data or model size, and hint at the foundations of interpretability
in machine learning. However, most studies focus on asymptotic behavior at the
end of training. In this work, we describe a richer picture by analyzing the entire
training dynamics: we identify two novel dynamical scaling laws that govern how
performance evolves as function of different norm-based complexity measures.
Combined, our new laws recover the well-known scaling for test error at conver-
gence. Our findings are consistent across CNNs, ResNets, and Vision Transformers
trained on MNIST, CIFAR-10 and CIFAR-100. Furthermore, we provide analytical
support using a single-layer perceptron trained with logistic loss, where we derive
the new dynamical scaling laws, and we explain them through the implicit bias
induced by gradient-based training.

1 INTRODUCTION

Neural scaling laws have emerged as a powerful empirical description of how model performance
improves as data and model size grow. The first kind of scaling laws that were identified show that
test error (or loss) often follows predictable power-law declines when plotted against increasing
training data or model parameters. For example, deep networks exhibit approximately power-law
scaling of error with dataset size and network width or depth, a phenomenon observed across vision
and language tasks (Hestness et al., 2017; Sun et al., 2017; Rosenfeld et al., 2019). Such results
highlight the macroscopic regularities of neural network training, yet they largely summarize only
the end-of-training behavior.

Since the advent of large language models, neural scaling laws started to include the training time,
especially in the form of computational budget spent to train a given model. A seminal work (Kaplan
et al., 2020) demonstrated that cross-entropy loss scales as a power law in model size, data size, and
compute budget, up to an irreducible error floor. These empirical neural scaling laws, including those
for generative modeling beyond language (Henighan et al., 2020), indicate a remarkably smooth
improvement of generalization performance as resources increase. The main interest of this research
line is, given a fixed compute budget, to find optimal way to allocate it between model size and
training data such that final performance is maximized (Hoffmann et al., 2022).

A complementary line of research studied the so-called implicit bias of gradient-based learning
dynamics. Implicit bias refers to the inherent tendencies of optimization algorithms to favor certain
types of solutions, even without explicit regularization or constraints. For instance, gradient descent
often finds solutions that generalize well in overparameterized models (Neyshabur et al., 2014; Zhang
et al., 2017; Arnaboldi et al., 2024). Theoretical results have shown that for linearly separable
classification tasks, gradient descent on exponential or logistic losses converges in direction to the
maximum-margin classifier (Soudry et al., 2018), and analogous bias toward maximizing margins has
been proven for deep homogeneous networks such as fully-connected ReLU networks (Lyu and Li,
2020) as well as certain wide two-layer networks (Chizat and Bach, 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work we join these perspectives together by asking whether the implicit bias of gradient descent
might itself induce predictable scaling behavior throughout the training process, in models trained
with logistic loss. The results are organized as follows. Section 2 focuses on perceprons. We first
observe a surprisingly good agreement between numerical learning curves and analytical predictions
from models at the corresponding fixed norm. We interpret this agreement as a training-time implicit
bias. Then we use the analytical predictions to highlight new dynamical scaling laws, by plotting
learning curves as a function of the model’s increasing norm. Finally, we show how the new
scaling laws can be used to derive established neural end-of-training scaling laws. Section 3 focuses
on deep architectures. By using a generalized notion of norm, we reveal that the same set of scaling
laws is present in deep networks, consistently across architectures and datasets, robust against
alternative choices of norm, training algorithms and regularization (the exponents do depend on those
details). In section 4 we discuss the limits and potential consequences of these results.

Related works. The perceptron has long been a canonical model in the statistical mechanics of
learning. Early work established its storage capacity using replica methods, identifying the critical
pattern-to-dimension ratio beyond which classification fails (Gardner, 1987; Gardner and Derrida,
1988). Later studies analyzed learning dynamics, including exact convergence times (Opper, 1988),
the superior generalization of maximum-margin solutions (Opper et al., 1990), and Bayes-optimal
learning curves as performance benchmarks (Opper and Haussler, 1991). Online learning was also
investigated, with analyses of sequential updates (Biehl and Riegler, 1994), exact teacher–student
dynamics in multilayer and committee machines (Saad and Solla, 1995a;b), and Bayesian online
approaches (Solla and Winther, 1998).

Our main focus is to highlight the role of the norm growth to describe the learning dynamics, which is
a perspective that is absent in the classic works. To do that, we use the solution of logistic regression
with fixed norm that was studied in (Aubin et al., 2020). In our work we present an equivalent
calculation that reveals the implicit bias at training time and, as a consequence, the new scaling laws.
The idea that implicit bias can extend to the whole learning trajectory can also be found in (Wu et al.,
2025), restricted to the overparametrized regime.

Few studies on scaling laws include training time independently of the computational cost. Simple
models in controlled settings exhibit a power law in the number of training steps (Velikanov and
Yarotsky, 2021; Bordelon et al., 2024), favoring the discussion on the trade-off between model
scale and training time (Boopathy and Fiete, 2024) that is central to the compute-optimal scalings.
Particularly relevant is (Montanari and Urbani, 2025), where the authors connect the different
dynamical regimes of a committee machine to its norm, suggesting that the same ideas that we present
in our work can apply even outside the setting of logistic loss. In fact, in the case of regression
with square loss, gradient descent is biased toward minimal ℓ2-norm solutions when there are many
interpolating solutions (Gunasekar et al., 2017).

2 SCALING LAWS IN LEARNING CURVES OF PERCEPTRONS

This section introduces the core intuitions that we will use for deep architectures – plotting learning
curves as function of the model’s norm – in a setting where we have analytical control of the
optimization process.

In the case of a perceptron trained on linearly separable data, it is known that the implicit bias
of gradient descent drives the weights toward the maximum-stability solution (the direction that
maximizes the classification margin) while the norm grows over time (Soudry et al., 2018). In
this section, we ask if the implicit bias has a role at intermediate stages of training. Using the
well-established teacher–student framework (Gardner and Derrida, 1988), we show that the model’s
behavior throughout training is qualitatively captured by the solution to the problem in which the
norm is held fixed (Aubin et al., 2020). This correspondence allows us to relate the evolution of the
perceptron’s norm during training to classical perceptron learning rules, offering a picture on how the
implicit bias influences learning dynamics.

Model definition in Teacher-Student scenario. To have an analytical prediction of the general-
ization error, we consider a framework where a student perceptron www ∈ RN attempts to learn
an unknown teacher perceptron www∗ ∈ RN from P = αN labeled examples. Each example

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

10−2 10−1 100 101 102

Norm λ

10−2

10−1

Ge
ne

ra
liz

at
io

n
er

ro
r ε

ge
n

α= 3.10
α= 6.25
α= 12.50

α= 25.00
α= 50.00
α= 100.00

α= 3.10
α= 6.25
α= 12.50

α= 25.00
α= 50.00
α= 100.00

Figure 1: The learning curve of a perceptron with free norm resembles that of fixed-norm
problems, which interpolate between known learning rules. Left panel: We plot the generalization
error of the minimizers of the cross-entropy loss in a teacher–student setup at a fixed ratio α = 5
of number of data over size of the system. The blue curve represents the analytical result obtained
under a fixed-norm constraint (with λ as the hyperparameter of the loss), while the multicolored
curve—where color varies with training time—represents the result of numerical training in the
free-norm case, where λ corresponds to the norm of the weights; the model is trained with 106 steps
of gradient descent. The horizontal lines indicate the generalization error of classical learning rules.
Right panel: Same analysis for different values of α; solid curves are analytical solutions at fixed
norm, dashed curves are trajectories with free norm.

xxxµ ∈ RN is a random vector with i.i.d. components xµ
i sampled from a Rademacher distribu-

tion P (xµ
i) =

1
2δ(x

µ
i − 1) + 1

2δ(x
µ
i + 1). The corresponding labels are generated by the teacher as

yµ = sign(xxxµ ·www∗). We assume both www∗ and www to lie on the N -sphere, i.e., ∥www∗∥2 = ∥www∥2 = N . In
this setting, the generalization error (or test error), defined as the expected fraction of misclassified
examples on new data, can be written as ϵ = 1

π arccos(R), where R ≡ (www ·www∗)/N is the normalized
overlap between student and teacher. The student minimizes a loss function L(www). We study the
logistic loss, which reads:

Lλ(www) = −
P∑

µ=1

1

λ
(λ∆µ − log 2 cosh (λ∆µ)) =

P∑
µ=1

Vλ(∆
µ), (1)

where we defined the margin of the µ-th example as ∆µ ≡ yµ
(
www·xxxµ
√
N

)
, and λ is a hyperparameter

controlling the sharpness of the logistic loss. Note that for the logistic cost Vλ(∆) we chose the
expression in Eq. 1 instead of the more common (but equivalent) ln

(
1 + e−λ∆

)
because the former

is more convenient to discuss the limits in λ. For large N , the properties of the minimizers of Eq. 1
can be analyzed via the semi-rigorous replica method from the statistical mechanics of disordered
systems, which outputs the average value of R from the solutionswww that minimize Lλ. In Appendix A
we present a derivation alternative to that in (Aubin et al., 2020), where we focus the analysis on the
role of the growing norm, which allows us to notice the implicit bias at training time. This observation
led us to notice that we can use the norm as a measure of training time, which is one of the key
contributions of our work.

λ-Regimes of the Logistic Loss. In Figure 1, we show the analytical generalization error as a
function of λ, revealing three regimes:

1. Small λ regime (λ → 0): The second term of Eq. 1 vanishes as O(λ), yielding Vλ→0(∆) =
−∆, which corresponds (see Engel and Van den Broeck (2001)) to the Hebbian learning,
and defines a baseline generalization error ϵ0.

2. Intermediate regime and optimal λ: At a finite value λopt(α), the generalization error is
minimum. We find that this optimal ϵopt matches the generalization error achieved by the
Bayes-optimal predictor (Opper and Haussler, 1991), suggesting that the logistic loss rule

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

10−2 10−1 100 101 102

Norm λ
10−1

100

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

Re
la

tiv
e

ge
ne

ra
liz

at
io

n
er

ro
r

̂ ε g
en

∝ λ−1/2

(λopt , ̂εopt)

α= 3.10
α= 6.25
α= 12.50

α= 25.00
α= 50.00
α= 100.00

10−2 10−1 100 101
λ/

100

2×100

3×100

4×100

̂ ε g
en
/

λopt

̂ ε o
pt

101 102
α

101

102

λ o
pt ∝α

101 102
α

10−1̂ ε o
pt

∝α−1/2

Figure 2: Fixed-norm perceptrons exhibit scaling laws in the curves of relative generalization
error vs norm. Left panel: we plot the generalization error of the minimizers of the cross-entropy
loss in the fixed-norm teacher–student setup of the perceptron, rescaled by the error of the Hebb
rule ϵ0, as a function of the hyperparameter λ for different values of α. The stars correspond to the
optimal points (λopt, ϵ̂opt), i.e., the minima of the generalization error for each curve. Right panel: we
show the same curves after rescaling each one by its corresponding optimal point. The insets display
the power-law dependencies of λopt and ϵ̂opt as functions of α.

can achieve Bayes-optimality when λ is properly tuned. The dependence of λopt(α) on α is
shown in the top inset of the right panel of Figure 2.

3. Large λ regime (λ → ∞): The loss becomes: Vλ→∞(∆) = −2∆θ(−∆), where we
defined the step function θ(x) = 1 if x > 0 and θ(x) = 0 elsewhere. This loss has a
degenerate set of minima in ∆ for ∆ ≥ 0. In contrast, for any finite value λ, the minimizer
of Vλ(∆) is unique. For this reason, we cannot apply our method directly to this potential.
To recover the generalization error ϵ∞ in the limit λ → ∞, one must first solve for finite
λ and then take the limit λ → ∞. We find that this limiting behavior corresponds to the
generalization error of the maximally stable perceptron wwwmaxStable = argmax

www
[minµ ∆

µ(www)]

(Gardner, 1987; Opper et al., 1990).

In Figure 1 we presented curves for α > 1 because the scaling laws appear more clearly, but the same
regimes are present also when α < 1 (see Fig.6 in Appendix B).

Norm scaling and interpretation. An important observation is that the logistic loss defined in Eq. 1
depends only on the product λ∆ (up to an overall multiplicative factor of λ that does not affect the
location of the minimizers), where ∆ is linear in the norm of the perceptron weights ∥www∥. Rescaling
the weight norm is thus equivalent to adjusting λ, meaning that analyzing a fixed-norm perceptron
with varying λ is equivalent to studying the minimizers of the loss at fixed λ and varying norm. This
insight also helps explain the behavior of ϵ∞: it is known (Soudry et al., 2018; Montanari et al.,
2024) that in the infinite-norm limit, the perceptron converges to the maximally stable solution during
training (implicit bias). Building on this observation, we compare two scenarios: the fixed-norm
case, where the norm ∥www∥2 = N is fixed and λ is treated as a tunable hyperparameter of the loss
(the results in this setting are obtained with the replica method); and the free-norm case, where the
parameter in the loss is fixed to 1 (i.e., we use the classical logistic loss), and the norm ∥www(t)∥ ≡ λ(t)
is left free to evolve during training (here the perceptron is trained using standard gradient descent
optimization techniques, and the results are obtained from numerical simulations).

In Figure 1, we compare the generalization curves under these two scenarios. We remark that in
the fixed-norm case, each point on the curve corresponds to the endpoint of training for a different
perceptron (at given λ), while in the free-norm case, the curve represents the trajectory of a single
perceptron during training, with each point corresponding to a different time step as the norm evolves.
We see that the free-norm trajectory is qualitatively well described by the set of fixed-norm optimal
solutions, indicating that the fixed-norm static analysis captures the essential features of the learning
dynamics.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Scaling laws in learning curves at training time. From the left panel of Fig. 1, we observe that
for sufficiently large α the curves share the same slope but differ in their starting point – that is the
generalization error ϵ0 of Hebbian learning (for large α, ϵ0 ∼ α−1/2). To highlight the power law
scaling in λ, in the left panel of Fig. 2 we plot relative error ϵ̂gen ≡ ϵgen/ϵ0 as a function of λ. We
observe that for sufficiently large values of α, the learning curves of the relative error split into two
distinct regimes, which behave differently as we vary α.

1. An early power-law regime, independent of α. The initial part of each learning curves
follows the same shape for any α, up to a value λelbow(α) where it saturates. The curves
collapse for λ < λelbow(α) on the power law

ϵ̂gen = k1λ
−γ1 + q1. (2)

Here we introduce the term q1 to be general, but in the perceptron we have q1 = 0. Keeping
q1 will be useful in the next section on deep networks, where it we will connect to the
irreducible error floor of realistic settings.

2. A late regime, which depends on α. After λelbow(α), the learning curves deviate from the
power law and saturate or overfit following a curve whose height depends on α.

It is possible to find proper scalings that collapse also the late-phase curves (actually, the whole
training curves will collapse). First, we need to discuss the scaling law for the point of minimum test
error λopt(α). In the inset of the right panel of Fig. 2, we observe that the curves follow the power
law

λopt = k2α
γ2 + q2, (3)

Like q1, the term q2 is not needed in the fixed-norm perceptron, but we introduce it to obtain a
more general law applicable to deep networks. Now we can compute ϵ̂opt = ϵ̂(λopt) and rescale
the learning curves of the left panel horizontally by λopt(α) and vertically by ϵ̂opt (see Fig. 2, right
panel). For large values of α, the curves collapse onto a single master curve, i.e.

ϵ̂gen/ϵ̂opt = ϵgen/ϵopt = Φ(λ/λopt), (4)

for some universal function Φ.

Connection to end-of-training scaling law. It is tempting to combine the two scaling laws in Eq. 2
and 3 to recover the well know scaling law ϵ̂gen(α) ∼ α−γ at the end of training (Hestness et al.,
2017). However, Eq. 2 is valid only for λ < λelbow(α), while λopt(α) > λelbow(α). Therefore,
substituting Eq. 3 into Eq. 2 seems an invalid step. Still, in the limit of large α, Eq. 4 implies that the
whole learning curve has the same power-law scaling with α, and therefore we can use Eq. 3 for any
λ. Plugging Eq. 3 in Eq. 2 we obtain

ϵ̂gen(α) = k1
(
k2α

γ2 + q2)
−γ1 + q1. (5)

For the perceptron Eq. 5 simplifies to ϵ̂gen(α) ∼ α−γ1γ2 , and we can recover γ as γ1γ2. For the
fixed-norm perceptron we obtain γ1 = −1/2 (Fig. 2, left panel) and γ2 = 1 (Fig. 2, right panel, upper
inset), which recovers γ1γ2 = γ = −1/2 (Fig. 2, right panel, lower inset). Exponents computed for
free-norm perceptron are γ1 = 0.4901± 0.0005 and γ2 = 0.96± 0.25; we are unable to estimate γ
in the free-norm case because training at large α and λ requires a number of gradient descent steps
that is exponential in λ (Soudry et al., 2018). In Appendix C we describe the numerical methods that
we used to compute exponents in both cases.

3 SCALING LAWS IN LEARNING CURVES OF DEEP ARCHITECTURES

Methods. Motivated by results on perceptrons, we repeat for deep architectures the analysis of
the test error ϵ versus increasing norm during training λ(t). We test CNN (LeCun et al., 1998a),
ResNet (He et al., 2016) and Vision Transformer (Dosovitskiy et al., 2021) architectures for image
classification over MNIST (LeCun et al., 1998b), CIFAR10 and CIFAR100 (Krizhevsky and Hinton,
2009) datasets. For each dataset and architecture we make a standard choice of hyperparameters (see
Appendix F), without using a weight decay. Results with moderate weight-decay are reported in
Appendix G. For each experiment, we select a random subset of P elements from training set and we
train for a fixed number of epochs, large enough to see the test error overfit or saturate. We do this

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

procedure for all values of P selected and then we repeat the training a number of times varying the
random subset and of the initial condition of the training. See Appendix F for more details.

For the norm definition in the case of deep networks, in the main analysis we opt for the spectral
complexity defined in (Bartlett et al., 2017), In that work, the authors show that this quantity has
desirable properties for a norm, such as yielding a converging margin distributions that reflect the
complexity of the dataset. In Sec. 3. Given the set A of weight matrices Ai, the spectral complexity
norm RA of the models reads

RA =

(
L∏

i=1

ρi ∥Ai∥σ

)(
L∑

i=1

∥A⊤
i −M⊤

i ∥ 2/3
2,1

∥Ai∥ 2/3
σ

)3/2

, (6)

where L is the total number of layers in the network, ρi is the Lipschitz constant of the activation
function (e.g. for ReLU: ρi = 1), Ai is the linear operator at layer i for dense layers and it is an
appropriate matrix for convolutional layers (see Bartlett et al. (2017) for a complete explanation).
The so-called reference matrix Mi is chosen as 0 for linear or convolutional layers and as the identity
for residual layers. Then, ∥Ai∥σ is defined as the largest singular value of Ai and ∥A∥2,1 is defined
as the average of the ℓ2-norms of the column vectors.

Throughout rest of the paper, when we write λ(t) for deep architectures we mean the spectral
complexity norm RA(t), measured after t training epochs. We can give an intuition on Eq. 6 by
analyzing the contribution of the two terms. Given a layer i, first term is the maximum amount that an
input vector can be expanded in the output space, and second term is a correction that estimates the
effective rank of the outputs of the layer, that is the number of columns that have weights substantially
different from zero. In Appendix D (Fig. 9) we show that the relation between λ and t is non trivial,
and that simply plotting ϵ(t) does not reveal the same scalings that plotting ϵ(λ(t)) does. We always
observe the monotonicity of λ(t) if a weight-decay is not present.

Main result 1: Dynamical scaling laws. In this section we consider three architectures without
changing their sizes, so P and α are interchangeable. In Fig. 3 we report the learning curves mediated
over different runs, for many values P (the values change for each datasets and are reported in
Appendix F, together with the other details of the training process). Notably, we find the same
dynamical scaling laws that we observed for perceptrons: the learning curves have an early training
regime independent on P and a late training regime which depends on P (compare Fig. 3 to the left
panel of Fig. 2). In Fig. 4 we rescale the learning curves in the same way we did for perceptrons
(dividing the axes by the optimal norm and optimal error) fiding that they collapse for large P
(compare Fig. 4 to the right panel of Fig. 2). Note that, at variance with perceptrons, it is sufficient to
plot the generalization error to reveal the scaling laws (and not the relative error).

Main result 2: Recovery of scaling laws at convergence. A natural question is wether we can
use the measured values of γ1 and γ2 to recover the end-of-training scaling law in Eq. 5 also for
deep models. In this case, since q2 ̸= 0 in general, we need to isolate the proper power law regime.
As we show in the sketch in Fig. 5, it is possible to identify two thresholds P− ∼ (q2/k2)

1/γ2

and P+ ∼ (k1k
−γ1

2 /q1)
1/(γ1γ2), which distinguish between three regimes: 1) P ≪ P−, where

ϵ(P) ≃ k1q
−γ
2 + q1. In this regime, we expect ϵ(P) to be close to random guessing, which for

classification is k1q
−γ
2 + q1 = (n− 1)/n, with n the number of classes. 2) P− ≪ P ≪ P+, where

ϵ(P) ≃ k1k
−γ1

2 P−γ1γ2 . The exponent γ = γ1γ2 corresponds to the neural scaling law observed in
(Hestness et al., 2017). 3) P ≫ P+, where ϵ(P) → q1. Here we approach the lowest possible error
of the dataset and the performance saturates.

For each architecture and dataset we consider, we measure γ1, γ2 with a procedure described in
Appendix E (see the results in Tab. 2, Appendix E). In analogy with perceptrons, we can recover the
exponent of end of training scaling law as γpred = γ1γ2, and compare it to the value γmeas that we fit
directly from the minima of the learning curves at different values of P . We observe from Tab. 1 that
in all cases the two values are compatible within the accuracy permitted by the fitting procedure. See
Fig. 11 in Appendix E for a more detailed comparison.

Effect of regularizations, alternative optimizers and different norms. In Appendix G we show
that the qualitative picture of scaling laws in learning curves holds also in the presence of a moderate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Early-training learning curves collapse into a power law when plotted as a function
of the spectral complexity norm. We plot the generalization error ϵ as a function of the norm λ(t)
for different datasets and model architectures. Different colors in the same panel refer to training
curves with increasing values of the dataset size P , ranging from small (blue tones) to large (orange
tones). The specific values of P used for each dataset-model combination are listed in Appendix F.

Figure 4: The whole learning curves collapse at large P with the proper scalings. We plot the
generalization error ϵ as a function of the norm λ(t) for different datasets and model architectures,
rescaling each curve by its optimal point (λopt(α), ϵopt(α)). Different colors in the same panel refer to
training curves with increasing values of the dataset size P , ranging from small (blue tones) to large
(orange tones). The values of P used for each dataset-model combination are listed in Appendix F.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: The combination of two power
laws reproduces known scalings. We plot
the combined power-law scaling of the gen-
eralization error as a function of the number
of data (Equation 5). The parameters of the
power-law are chosen of the same order of
magnitude as typical results obtained for deep
networks.

Model Dataset γpred γmeas σ

CNN MNIST 0.60 0.55 0.09
CNN CIFAR10 0.28 0.25 0.07
CNN CIFAR100 0.16 0.16 0.03
ResNet MNIST 0.57 0.69 0.08
ResNet CIFAR10 0.54 0.56 0.04
ResNet CIFAR100 0.31 0.37 0.03
ViT MNIST 0.47 0.54 0.03
ViT CIFAR10 0.23 0.21 0.03
ViT CIFAR100 0.14 0.12 0.04

Table 1: Predicted vs. measured ϵ(P) exponents
across datasets and architectures.
The exponent γpred is computed by independently

fitting γ1 and γ2, and combining them as
γpred = γ1γ2. The exponent γmeas is obtained by

fitting the ϵ(P) curves directly. The value of σ
represents an estimate of the variability of the
overall process (see Appendix E for details).

weight decay. Exponents γ1 and γ2 change depending on the amount of weight decay, but the values
of γpred remain compatible within errors with the case without weight decay. In Appendix H we
show that using SGD optimizer instead of Adam in CNN architecture changes the dynamical learning
curves, and consequently we obtain different values γ1 and γ2. However, they produce the same
end-of-training exponents γpred = γ1γ2 as in the main analysis by using Adam. In short, we reproduce
the scaling law from (Hestness et al., 2017) even when we employ weight decay and an alternative
optimizer. In Appendix I we show that also four other notions of norm reproduce the qualitative
picture of the two scaling laws, but they all find incompatible values of γpred and γmeas, suggesting
that only the spectral complexity norm properly captures the scaling behavior.

4 DISCUSSION

Summary of results. Inspired by the implicit bias in perceptrons trained with logistic loss, our
study uncovers new neural scaling laws in deep architectures that govern how test error evolves
throughout training, not just at convergence.

• In perceptrons, we observe that the whole learning curve is biased towards specific
solutions. Early in the training the perceptron implements Hebbian learning, then it reaches
a Bayes-optimal solution and finally it overfits by approaching max-stability rule.

• The key point that we learn from perceptrons is to plot the learning curves as function of the
increasing norm (we use the spectral-complexity norm for deep architectures). The resulting
learning curves show two distinct regimes: an early-training regimes that follows a power
law that is independent of the size of the training set, and a late-training regime that depends
on the size of the training set.

• In deep networks, when the whole curves are rescaled by the optimal model norm and the
corresponding minimum test error, learning trajectories from different large-dataset
regimes collapse onto a single curve.

• Together, these scaling laws recover the classic end-of-training scaling of test error with
data.

Possible implications. The analogies between the scaling laws of perceptrons and deep architec-
tures suggests an implicit bias throughout the whole learning procedure also for deep architectures.
Overfitting can be seen as follows: although the asymptotic solution maximizes classification margins,
the learning trajectory may pass near solutions with fixed spectral complexity and better generaliza-
tion (cf. perceptrons, Fig. 1). An interesting future development may be to train a deep architecture

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

while constraining its spectral complexity. A second view comes from the self-similarity of early
learning: the process first finds a simple solution (low complexity), then gradually increases the norm
until reaching the maximum allowed by the dataset size. This provides a pictorial explanation of
implicit bias: trajectories with larger datasets shadow those of smaller ones, until late training where
overfitting may arise.

Limitations of the comparison between perceptrons and deep architectures The idea of a
training-time bias for perceptrons is fascinating, but in this work it remains mainly qualitative.
To obtain quantitative guarantees, one would need an approach similar to (Wu et al., 2025), or
alternatively a full solution of the training dynamics using dynamical mean-field theory (see for
example (Montanari and Urbani, 2025)). Extending these ideas to deep architectures is compelling,
but while in perceptrons we can access analytically solutions at fixed norm, there is no obvious
analogous picture for deep architectures. The spectral complexity norm seems a good candidate, but
the extent to which this property can be made quantitative is unknown.

Limitations and possible extensions of our numerical analysis. The main shortcoming of our
analysis is that experiments were limited to image classification. We made this choice because
we wanted to form a clean conceptual picture before addressing other domains, such as language
models, that require larger-scale experiments. For similar reasons we did not vary the number of
parameters for each architecture, limiting our experiments to few standard architectures. Extending
our analysis to the joint scaling with width and depth will be essential to understand how our result
may impact compute-optimal predictions (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al.,
2022) (especially in larger models, where these predictions are vital). We expect this direction to be
particularly promising, since the spectral complexity norm scales properly with the width and depth of
architectures. Moreover, varying the number of parameters will clarify the role of overparametrization
in escaping early-training plateaus, as suggested in (Arnaboldi et al., 2024).

Final remarks. In this work we consolidate the evidence of dynamical scaling laws consistently
across dataset and architectures. At the same time, by linking implicit optimization bias with empirical
scaling laws, we propose a picture in which norm growth is the variable that controls neural scaling
laws during training. Our findings suggest that the same implicit bias that drives gradient descent
toward solutions with maximum margins may also shape the learning trajectory throughout the entire
training process, potentially providing a new theoretical framework to understand the emergence
of neural scaling laws, and possibly connecting with dynamical scaling laws obtained with other
methods (Velikanov and Yarotsky, 2021; Bordelon et al., 2024; Arnaboldi et al., 2024; Montanari and
Urbani, 2025).

REFERENCES

Arnaboldi, L., Krzakala, F., Loureiro, B., and Stephan, L. (2024). Escaping mediocrity: how two-layer
networks learn hard generalized linear models with SGD. arXiv:2305.18502 [stat].

Aubin, B., Krzakala, F., Lu, Y., and Zdeborová, L. (2020). Generalization error in high-dimensional
perceptrons: Approaching Bayes error with convex optimization. In Advances in Neural Informa-
tion Processing Systems, volume 33, pages 12199–12210. Curran Associates, Inc.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. (2017). Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems, volume 30, pages
6240–6249.

Biehl, M. and Riegler, P. (1994). On-line learning with a perceptron. Europhysics Letters, 28(7):525–
530.

Boopathy, A. and Fiete, I. (2024). Unified neural network scaling laws and scale-time equivalence.
arXiv preprint arXiv:2409.05782.

Bordelon, B., Atanasov, A., and Pehlevan, C. (2024). A dynamical model of neural scaling laws.
arXiv preprint arXiv:2402.01092.

Chizat, L. and Bach, F. (2020). Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on Learning Theory (COLT).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations (ICLR).

Engel, A. and Van den Broeck, C. (2001). Statistical Mechanics of Learning. Cambridge University
Press.

Gardner, E. (1987). Maximum storage capacity in neural networks. Europhysics Letters, 4(4):481–
485.

Gardner, E. and Derrida, B. (1988). Optimal storage properties of neural network models. Journal of
Physics A: Mathematical and general, 21(1):271.

Gunasekar, S., Woodworth, B., Bhojanapalli, S., Neyshabur, B., and Srebro, N. (2017). Implicit
regularization in matrix factorization. In Advances in Neural Information Processing Systems,
volume 30, pages 6151–6159.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778. IEEE.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C., Jackson, J., Jun, H., Brown, T. B., Dhariwal,
P., Gray, S., et al. (2020). Scaling laws for autoregressive generative modeling. arXiv preprint
arXiv:2010.14701.

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M. M. A.,
Yang, Y., and Zhou, Y. (2017). Deep learning scaling is predictable, empirically. arXiv preprint
arXiv:1712.00409.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. d. L.,
Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., et al. (2020). Scaling
laws for neural language models. arXiv preprint arXiv:2001.08361.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images (cifar-10
dataset). Technical Report Technical Report 0, University of Toronto.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Cortes, C., and Burges, C. J. C. (1998b). MNIST handwritten digit database. http:
//yann.lecun.com/exdb/mnist/. Accessed: 2025-05-14.

Lyu, K. and Li, J. (2020). Gradient descent maximizes the margin of homogeneous neural networks.
In International Conference on Learning Representations (ICLR).

Mézard, M., Parisi, G., and Virasoro, M. A. (1987). Spin glass theory and beyond: An Introduction
to the Replica Method and Its Applications, volume 9. World Scientific Publishing Company.

Montanari, A. and Urbani, P. (2025). Dynamical Decoupling of Generalization and Overfitting in
Large Two-Layer Networks. arXiv:2502.21269 [stat].

Montanari, A., Zhong, Y., and Zhou, K. (2024). Tractability from overparametrization: The ex-
ample of the negative perceptron. Probability Theory and Related Fields, 188(3–4):805–910.
arXiv:2110.15824.

Neyshabur, B., Tomioka, R., and Srebro, N. (2014). In search of the real inductive bias: On the role
of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614.

Opper, M. (1988). Learning times of neural networks: Exact solution for a perceptron algorithm.
Physical Review A, 38(8):3824–3826.

10

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Opper, M. and Haussler, D. (1991). Generalization performance of the optimal bayes algorithm for
learning a perceptron. Physical Review Letters, 66(21):2677–2680.

Opper, M., Kinzel, W., Kleinz, J., and Nehl, R. (1990). On the ability of the optimal perceptron to
generalize. Journal of Physics A: Mathematical and General, 23(11):L581–L586.

Rosenfeld, J. S., Rosenfeld, A., Belinkov, Y., and Shavit, N. (2019). A constructive prediction of the
generalization error across scales. arXiv preprint arXiv:1909.12673.

Saad, D. and Solla, S. A. (1995a). Exact solution for on-line learning in multilayer neural networks.
Physical Review Letters, 74(21):4337–4340.

Saad, D. and Solla, S. A. (1995b). On-line learning in soft committee machines. Physical Review E,
52(4):4225–4243.

Solla, S. A. and Winther, O. (1998). Optimal perceptron learning: an on-line bayesian approach. In
Saad, D., editor, On-line Learning in Neural Networks, pages 157–178. Cambridge University
Press.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit bias of
gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57.

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting unreasonable effectiveness of
data in deep learning era. In Proceedings of the IEEE international conference on computer vision,
pages 843–852.

Velikanov, M. and Yarotsky, D. (2021). Explicit loss asymptotics in the gradient descent training of
neural networks. Advances in Neural Information Processing Systems, 34:2570–2582.

Wu, J., Bartlett, P., Telgarsky, M., and Yu, B. (2025). Benefits of Early Stopping in Gradient Descent
for Overparameterized Logistic Regression. arXiv:2502.13283 [cs].

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding deep learning
requires rethinking generalization. In International Conference on Learning Representations
(ICLR).

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

Acknowledgment of LLMs usage. The authors acknowledge the usage of LLMs for polishing
the text and to produce standard functions in the code for deep networks experiments. All texts and
codes produced by LLMs have been carefully analyzed and validated by the authors.

A REPLICA ANALYSIS

In this section, we provide a sketch of the necessary computations to obtain the analytical curve
for the fixed-norm perceptron. We are interested in computing the generalization error, defined as
the expected fraction of misclassified examples on new data. In the teacher-student setup for the
perceptron presented in the main text, this is given by ϵ = 1

π arccos(R), where R ≡ (www ·www∗)/N is
the normalized overlap between the student and the teacher.

Given a loss function of the form

L(www) =

P≡αN∑
µ=1

V (∆µ), (7)

where ∆µ ≡ yµ
(
www·xxxµ
√
N

)
is the margin of the µ-th example, we therefore need to compute the typical

overlap R̄ between a minimizer of Equation 7 and the teacher. To do this, one can study the averaged
free energy, defined as

f(β) = lim
N→∞

(
− 1

βN
⟨⟨lnZ⟩⟩xxxµ,www∗

)
, (8)

where β is the inverse temperature, ⟨·⟩xxxµ,www∗ denotes the average over the distribution of the data
points {xxxµ} and the teacher vector www∗. Z is the partition function defined, as

Z(www) ≡
∫

dµ(www) e−βL(www), (9)

where µ(www) is the probability distribution of the student vectors, assumed to be uniform on the
N -sphere. In the thermodynamic limit N → ∞, only a subset of students, characterized by an
overlap with the teacher R̄(β), contributes to f(β). By taking the limit β → ∞, one can obtain the
typical overlap considering only the minimizers of the loss.

To compute the average of lnZ in Equation 8, we apply the replica method (Mézard et al., 1987),
which involves rewriting the logarithmic average as

⟨⟨lnZ⟩⟩ = lim
n→0

⟨⟨Zn⟩⟩ − 1

n
,

where Zn is the replicated partition function defined by

Z(n) ≡ ⟨⟨Zn(xxxµ,www∗)⟩⟩xxxµ,www∗ =

〈〈∫ n∏
a=1

dµ(wwwa)

n∏
a=1

exp (−βL(wwwa))

〉〉
xxxµ,www∗

. (10)

One can introduce new variables Ra = (www∗ ·wwwa)/N and qab = (wwwa ·wwwb)/N , which represent the
normalized overlap of student a with the teacher, and the overlap between student vectors a and b,
respectively. The free energy function can then be rewritten in terms of these new variables. Under
the replica symmetric ansatz, i.e., choosing solutions of the form

Ra = R ∀a ∈ [1, n], qab = δab + q(1− δab) ∀a, b ∈ [1, n]. (11)

one obtains

f(β) = −extr
q,R

[
1

2β
ln(1− q) +

q −R2

2β(1− q)

× ln

∫
d∆

1√
2π(1− q)

exp

(
−βV (∆)−

(∆−√
qt)2

2(1− q)

)]
, (12)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

where H(x) = 1
2 erfc

(
x√
2

)
= 1

2

(
1− erf

(
x√
2

))
.

If the potential V (∆) has a unique minimum, one can evaluate the zero-temperature limit of Equation
12, yielding

f(T = 0) = −extr
x,R

[
1−R2

2x
− 2α

∫
dt√
2π

e−t2/2 H

(
− Rt√

1−R2

)
×
(
V (∆0(t, x)) +

(∆0(t, x)− t)2

2x

)]
≡ e(x,R), (13)

where x ≡ β(1 − q) and ∆0(t, x) ≡ argmin∆
(
V (∆) + (∆−t)2

2x

)
. By solving the saddle-point

equations

∂e

∂x

∣∣∣∣
x=x̄, R=R̄

= 0,
∂e

∂R

∣∣∣∣
x=x̄, R=R̄

= 0,

one can finally recover the value R̄ and, consequently, the generalization error.

B PERCEPTRON IN THE OVER PARAMETRIZED REGIME

In this section we show that the analysis of the different regimes in λ, shown in the main text for
α > 1, is qualitatively equivalent in the regime α < 1. In Figure 6, we plot the generalization error
as a function of the parameter λ for α = 0.5.

Figure 6: The fixed-norm problem is qualitatively the same in the overparametrized regime.
We show the generalization error of the minimizers of the cross-entropy loss in the teacher-student
setup for α = 0.5,

C ANALYSIS OF THE SCALING LAWS IN PERCEPTRON

Fixed-norm analytical perceptron We provide numerical evidence of the convergence to a −1/2
exponent in the ϵ(λ) curve for the perceptron by analyzing the theoretical curves. In Fig. 7 we plot
d log ϵ
d log λ for different values of α, showing that as α increases there appears a broader region of λ where
the effective exponent approaches −1/2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

10 2 10 1 100 101 1020.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

dl
og

dl
og

Derivative dlog /dlog

=1000
=300
=100
=30
=10
=3
=1
=0.3
=0.1

Figure 7: Convergence of the perceptron learning exponent. We plot d log ϵ
d log λ for different values of

α. As α increases, an extended region of λ develops where the effective exponent approaches −1/2,
which corresponds to the asymptotic behavior ϵ ∼ λ−1/2. The dashed red line marks the reference
slope −1/2 while the black dotted line marks the zero derivative point.

Unbounded numerical perceptron We compute the two exponents of the unbounded perceptron.
For consistency, we have chosen to follow the same procedure that resulted to be the best for deep
networks experiments, reported in Appendix E. In Fig. 8 we report the fitting plot for γ1 and γ2
exponents. The two exponents result not compatible considering errors with the analytical result for
fixed-norm perceptrons γ1 = 0.5, γ2 = 1.0, but the differences are only of the order of 5%. So not
only the fixed-norm analytical case predict qualitatively the dynamical behavior of the unbounded
perceptron, it also approximates quantitatively the values of the dynamical exponents.

Figure 8: Dynamical exponents of unbounded Perceptron are close to the fixed-norm analytical
prediction. (left) Curves collapsed by rescaling axes for the minima, using values of α > 25. (right)
Fit of the scaling of minima of curves, λopt(α), using only curves for which the minimum have been
reached during numerical simulation.

D TRAINING CURVES IN FUNCTION OF TIME (NUMBER OF EPOCHS)

We show in fig. 9 that plotting ϵ versus time instead of λ do not make the curves collapse. In particular
λ(t) is nonlinear, meaning that the two plots ϵ(t) and ϵ(λ) are qualitatively different.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 9: The function λ(t) is highly non-trivial. The left panel shows the generalization error of
a CNN trained on MNIST as a function of the number of epochs for different dataset sizes P . The
right panel shows the behavior of the spectral complexity as a function of the number of epochs.

E RESULTS OF ϵ(P) POWER LAW EXPONENT COEFFICIENTS AND
COMPUTATION OF ERRORS

The aim of this section is to explain the procedure used to compute the exponents γ1, γ2 of the power
laws

ϵ = k1λ
−γ1 + q1,

λopt = k2P
γ2 + q2.

It is possible to combine the two power laws only in the regime of P large enough such that

ϵ

ϵopt
= Φ

(
λ

λopt

)
,

with a master curve function Φ that does not depend on P .

The first passage is to decide the minimum P to consider for the procedure. We observed that a value
of P slightly bigger or smaller than the chosen one did not change substantially the estimate of γ1. In
almost all cases we used P ∼ 26000 as the minimum value.

Then, in the collapsed graph in Fig. 10 a least-squares fit is performed over the pure power-law region
to obtain a prediction of γ1 for each value of P . The final γ1 value is the mean, and the associated
error is the error of the mean.

To obtain γ2 the minimum of the curves λ∗ is plotted versus P in Fig. 10, and from the fit γ2 is
obtained with the associated error.

Then γpred = γ1γ2 and the error is

σpred = γpred

√(
σ1

γ1

)2

+

(
σ2

γ2

)2

.

The exponent to compare with is γmeas. For each value of P , we considered the minimum of the
curve during training, obtaining the empirical curve of ϵ(P). Then a power-law fit is performed over
that curve, obtaining γmeas and the σmeas of the fit. Numerical comparisons are reported in Tab. 1 and
the empirical and predicted power-laws are compared visually in Fig. 11.
The error assigned to the comparison of exponents is computed as σ =

√
σ2
pred + σ2

meas. We observe
that the magnitude of σ is similar across experiments, while exponents change from the maximum of
γpred = 0.60 for CNN MNIST to the minimum γpred = 0.14 of ViT CIFAR100. For this reason the
relative error is higher the lower is the exponent. Being in possess of more computational power it
would be possible to mitigate this effect producing more statistics for models and datasets with lower
exponents.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Results of the fit for the exponents γ1 and γ2. We report the numerical values of the
power-law exponents γ1 and γ2, along with their respective uncertainties, across different datasets
and model architectures.

Model Dataset γ1 σ1 γ2 σ2

CNN MNIST 0.59 0.06 1.01 0.11
CNN CIFAR10 0.21 0.01 1.32 0.32
CNN CIFAR100 0.112 0.003 1.44 0.22
ResNet MNIST 1.15 0.14 0.50 0.02
ResNet CIFAR10 0.53 0.03 1.01 0.04
ResNet CIFAR100 0.31 0.01 1.03 0.07
ViT MNIST 0.139 0.005 3.41 0.11
ViT CIFAR10 0.0124 0.0002 18.4 2.1
ViT CIFAR100 0.0068 0.0004 21 6

Figure 10: The curve collapse helps predict the numerical exponents. (left) Rescaled general-
ization error curves used to obtain γ1 from the fit. The fitted power laws are shown as dashed lines.
(right) The numerical fit used to estimate γ2.

Figure 11: The predicted power laws closely match the empirical ones. We graphically present
the numerical results from Table 1. The power laws fitted on the data are compared with the predicted
ones. For the predicted power laws, only the exponent is known; the coefficient is chosen to enable
visual comparison.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

All intermediate plots as Fig. 10, computations and choices of value of P and λ to compute power-
laws reported in the paper are reported in the supplementary material, as notebooks in the repository
of codes with plots and data. We did not report in the paper all details because it would have been
necessary to show O(100) plots to evaluate all cases.

F ARCHITECTURES, DATASETS, TRAINING AND RESOURCES IN DETAILS

Architectures and hyperparameters We used PyTorch Adam optimizer for CNNs and ResNets
and AdamW for ViT, in all cases with lerning rate 0.001. We used the standard and most simple
possible definitions of the architectures, taken from the original papers. Please refer to the code in the
supplementary to the precise definition of each block and width and number of layers.

Trainings and values of P We trained for 500 epochs CNNs and for 1000 epochs ResNets and
ViTs. Values of P are

• For MNIST in all cases 89, 188, 375, 750, 1500, 3000, 6000, 12000, 24000, 30000, 36000,
42000, 48000.

• For CIFAR10 and CIFAR100 with ResNet and ViT in all cases: from 6000 to 46000 every
5000.

• For CNN in CIFAR10/100, in the main analysis from 4000 to 48000 every 4000, and in
computation of norms and the effect of weight decay from 6000 to 46000 every 5000.

Resources to replicate the study For perceptron curves the necessary resources are irrelevant. All
deep network trainings have been carried on 18 V100 GPUs using 4 CPUs for each, for a period
of two months. We set a maximum number of 30 repetitions for each training to get a statistic of
learning curves and a month of computation. For smaller models we finished all 30 repetitions while
for the slowest one we obtain a total of 5 repetitions.

G EFFECT OF WEIGHT DECAY

We reapeted the experiment with the 3 deep architectures analyzed in the paper over CIFAR10 dataset,
but with an increasing level of weight decay (WD). In Fig. 12 and 13 we see that in all cases the
qualitative picture remain the same, even if the norm of the models doesn’t increase monotonically
as the case without a weight-decay. In Tab. 3 we observe that the values of γ1 and γ2 exponents
change depending on the amount of weight decay, but their product γpred remains compatible with
γmeas within the accuracy permitted by the fitting procedure. For ResNet architecture, with a fixed
computing budget we found difficult to find the right hyperparameters to obtain overfitting or to
saturate the generalization error with the weight decays used for other two architectures, so we
reported the result for smaller weight-decays. Due to the increase in training time and corresponding
decrease in statistics, the exponents fitted and predicted are affected by a larger error than in other
two cases.

Model WD γpred γmeas σ

CNN 1e-3 0.163 0.212 0.033
CNN 1e-4 0.136 0.193 0.050
CNN 1e-5 0.133 0.184 0.024
ResNet 1e-6 0.269 0.525 0.090
ResNet 1e-7 0.611 0.550 0.079
ResNet 1e-8 0.450 0.567 0.075
ViT 1e-3 0.205 0.176 0.014
ViT 1e-4 0.198 0.174 0.023
ViT 1e-5 0.193 0.173 0.016

Model WD γ1 σ1 γ2 σ2

CNN 1e-3 0.2773 0.0184 0.5883 0.0943
CNN 1e-4 0.1880 0.0133 0.7257 0.2551
CNN 1e-5 0.1343 0.0177 0.9906 0.0815
ResNet 1e-6 0.6487 0.0247 0.4149 0.1342
ResNet 1e-7 0.6572 0.0298 0.9298 0.1101
ResNet 1e-8 0.6641 0.0272 0.6780 0.1047
ViT 1e-3 0.0132 0.0003 15.5590 0.7670
ViT 1e-4 0.0121 0.0003 16.3150 1.8161
ViT 1e-5 0.0124 0.0003 15.5182 1.0233

Table 3: Results on CIFAR10 dataset and increasing levels of weight decay. (left) Predicted and
measured exponents. (right) γ1 and γ2 exponents computed by fitting the data.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 12: Curves from experiments with weight decay on CIFAR10 dataset. Values of weight decay
in parentheses refer to ResNet.

Figure 13: Curves after rescaling collapse onto a master curve also in the presence of a moderate
weight-decay. Values of weight decay in parentheses refer to ResNet.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 14: Comparison between predicted scaling laws by combining γ1 and γ2 and the empirical
one measured at end-of-training. Values of weight decay in parentheses refer to ResNet.

H USING SGD OPTIMIZER INSTEAD OF ADAM ON CNNS

We reapeted the experiment using SGD optimizer instead of Adam, with only CNN architecture
over CIFAR10 and CIFAR100 datasets. We did not repeat the experiment over the other two more
complex architecture (ResNet, ViT) because Adam and AdamW (respectively used for ResNets and
ViTs) are fundamental to make these architectures work appropriately. In Fig. 15 and 16 we see that
in all cases the qualitative picture remain the same as in the main analysis also for these other norm
definitions. At same time exponents predicted are compatible with the ones measured, and compatible
as well with the exponents measured in the main analysis using Adam optimizer. This experimental
result suggests that the optimizer is not relevant for the end-of-training scaling law exponent γ, in
ϵ ∼ ϵγ . This instead is not true for the dynamics to reach the optimal value of weights: for example
the number of epochs increases dramatically using SGD instead of Adam. This difference in the
dynamics is captured from the dynamical exponent. Even though γpred = γ1γ2 is equal with Adam
and SGD, we observe that γSGD

1 > γAdam
1 , while γSGD

2 < γAdam
2 .

Model Norm γpred γmeas σ

CNN CIFAR10 0.202 0.225 0.047
CNN CIFAR100 0.150 0.122 0.013

Model Norm γ1 σ1 γ2 σ2

CNN CIFAR10 0.4735 0.0268 0.4276 0.0962
CNN CIFAR100 0.1469 0.0098 1.0233 0.0170

Table 4: Results on CIFAR10/100 datasets with CNN using SGD optimizer. (left) Predicted and
measured exponents. (right) γ1 and γ2 exponents computed by fitting the data.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 16: Curves after rescaling collapse onto a master curve also in the case of SGD optimizer
instead of Adam.

Figure 15: Curves from experiments using SGD optimizer instead of Adam with CNN architecture.

Figure 17: Comparison between predicted scaling laws by combining γ1 and γ2 and the empirical
one measured at end-of-training.

I USING OTHER DEFINITIONS OF NORM λ

We reapeted the experiment with the 3 deep architectures analyzed in the paper over CIFAR10 dataset,
but measuring other norms instead of the spectral complexity. The norms are:

1. (L1) Entry-wise ℓ1 norm: ∥A∥1 =
∑L

i=1

∑
j,k |(Ai)j,k|

2. (L2) Frobenius (entry-wise ℓ2) norm: ∥A∥F =
(∑L

i=1

∑
j,k(Ai)

2
j,k

)1/2
20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

3. (G21) Group (2, 1) norm ∥A∥2,1 =
∑L

i=1

∑
j

(∑
k(Ai)

2
k,j

)1/2
i.e. the sum over columns

of their ℓ2 norms.

4. (Spectral) norm product:
∏L

i=1 ∥Ai∥σ , where ∥Ai∥σ is the largest singular value of Ai.

In Fig. 18 and 19 we see that in all cases the qualitative picture remain the same as in the main
analysis also for these other norm definitions: plotting learning curves against every tested definition
of norm produces the two scaling laws with exponents γ1 and γ2, and rescaling by minima make the
curves to collapse over a master curve. However, the exponents predicted are not compatible with the
ones measured. This result suggest that Spectral Complexity norm of Eq. 6 is the correct quantity
that generalizes in deep networks the role of L2 norm in the Perceptron analysis.
Even if γmeas ̸= γpred = γ1γ2, we observe a compensation mechanism between γ1 and γ2 exponents:
a bigger γ1 implies in almost all cases a smaller γ2 with respect to other norms for the same model.

Model Norm γpred γmeas σ

CNN L1 0.083 0.181 0.023
CNN L2 0.118 0.181 0.028
CNN G21 0.107 0.181 0.026
CNN Spectral 0.081 0.181 0.042
ResNet L1 0.634 0.500 0.013
ResNet L2 0.750 0.500 0.013
ResNet G21 0.680 0.500 0.018
ResNet Spectral 0.641 0.500 0.011
ViT L1 0.252 0.175 0.027
ViT L2 0.323 0.175 0.040
ViT G21 0.262 0.175 0.028
ViT Spectral 0.193 0.175 0.018

Model Norm γ1 σ1 γ2 σ2

CNN L1 0.5687 0.0300 0.1458 0.0358
CNN L2 0.5894 0.0157 0.2000 0.0426
CNN G21 0.5482 0.0187 0.1958 0.0428
CNN Spectral 0.1861 0.0041 0.4339 0.2161
ResNet L1 1.1634 0.0107 0.5447 0.0087
ResNet L2 1.4406 0.0130 0.5208 0.0063
ResNet G21 1.1997 0.0157 0.5669 0.0121
ResNet Spectral 0.5699 0.0058 1.1239 0.0119
ViT L1 0.4089 0.0171 0.6170 0.0556
ViT L2 0.5491 0.0392 0.5881 0.0571
ViT G21 0.4313 0.0173 0.6075 0.0567
ViT Spectral 0.0133 0.0001 14.4951 1.1217

Table 5: Results on CIFAR10 dataset and different norm definitions. (left) Predicted and
measured exponents are not compatible using these norm definitions instead of Spectral Complexity
norm. (right) γ1 and γ2 exponents computed by fitting the data.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 18: Curves from experiments with different norm definitions on CIFAR10 dataset.

Figure 19: Curves after rescaling collapse onto a master curve also for the other norm considered.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 20: Comparison between predicted scaling laws by combining γ1 and γ2 and the empirical
one measured at end-of-training. Other norms considered predict exponents at end-of-training not
always compatible with the empirical ones, even if we can consider them as an approximation of the
correct exponent that can be computed using spectral complexity as the norm λ.

23

	Introduction
	Scaling laws in learning curves of perceptrons
	Scaling laws in learning curves of deep architectures
	Discussion
	Replica Analysis
	Perceptron in the over parametrized regime
	Analysis of the scaling laws in Perceptron
	Training curves in function of time (number of epochs)
	Results of (P) power law exponent coefficients and computation of errors
	Architectures, datasets, training and resources in details
	Effect of weight decay
	Using SGD optimizer instead of Adam on CNNs
	Using other definitions of norm

