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ABSTRACT

Scaling laws in deep learning – empirical power-law relationships linking model
performance to resource growth – have emerged as simple yet striking regularities
across architectures, datasets, and tasks. These laws are particularly impactful
in guiding the design of state-of-the-art models, since they quantify the benefits
of increasing data or model size, and hint at the foundations of interpretability
in machine learning. However, most studies focus on asymptotic behavior at the
end of training. In this work, we describe a richer picture by analyzing the entire
training dynamics: we identify two novel dynamical scaling laws that govern how
performance evolves as function of different norm-based complexity measures.
Combined, our new laws recover the well-known scaling for test error at conver-
gence. Our findings are consistent across CNNs, ResNets, and Vision Transformers
trained on MNIST, CIFAR-10 and CIFAR-100. Furthermore, we provide analytical
support using a single-layer perceptron trained with logistic loss, where we derive
the new dynamical scaling laws, and we explain them through the implicit bias
induced by gradient-based training.

1 INTRODUCTION

Neural scaling laws have emerged as a powerful empirical description of how model performance
improves as data and model size grow. The first kind of scaling laws that were identified show that
test error (or loss) often follows predictable power-law declines when plotted against increasing
training data or model parameters. For example, deep networks exhibit approximately power-law
scaling of error with dataset size and network width or depth, a phenomenon observed across vision
and language tasks (Hestness et al., 2017; Sun et al., 2017; Rosenfeld et al., 2019). Such results
highlight the macroscopic regularities of neural network training, yet they largely summarize only
the end-of-training behavior.

Since the advent of large language models, neural scaling laws started to include the training time,
especially in the form of computational budget spent to train a given model. A seminal work (Kaplan
et al., 2020) demonstrated that cross-entropy loss scales as a power law in model size, data size, and
compute budget, up to an irreducible error floor. These empirical neural scaling laws, including those
for generative modeling beyond language (Henighan et al., 2020), indicate a remarkably smooth
improvement of generalization performance as resources increase. The main interest of this research
line is, given a fixed compute budget, to find optimal way to allocate it between model size and
training data such that final performance is maximized (Hoffmann et al., 2022).

A complementary line of research studied the so-called implicit bias of gradient-based learning
dynamics. Implicit bias refers to the inherent tendencies of optimization algorithms to favor certain
types of solutions, even without explicit regularization or constraints. For instance, gradient descent
often finds solutions that generalize well in overparameterized models (Neyshabur et al., 2014; Zhang
et al., 2017; Arnaboldi et al., 2024). Theoretical results have shown that for linearly separable
classification tasks, gradient descent on exponential or logistic losses converges in direction to the
maximum-margin classifier (Soudry et al., 2018), and analogous bias toward maximizing margins has
been proven for deep homogeneous networks such as fully-connected ReLU networks (Lyu and Li,
2020) as well as certain wide two-layer networks (Chizat and Bach, 2020).
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In this work we join these perspectives together by asking whether the implicit bias of gradient descent
might itself induce predictable scaling behavior throughout the training process, in models trained
with logistic loss. The results are organized as follows. Section 2 focuses on perceprons. We first
observe a surprisingly good agreement between numerical learning curves and analytical predictions
from models at the corresponding fixed norm. We interpret this agreement as a training-time implicit
bias. Then we use the analytical predictions to highlight new dynamical scaling laws, by plotting
learning curves as a function of the model’s increasing norm. Finally, we show how the new
scaling laws can be used to derive established neural end-of-training scaling laws. Section 3 focuses
on deep architectures. By using a generalized notion of norm, we reveal that the same set of scaling
laws is present in deep networks, consistently across architectures and datasets, robust against
alternative choices of norm, training algorithms and regularization (the exponents do depend on those
details). In section 4 we discuss the limits and potential consequences of these results.

Related works. The perceptron has long been a canonical model in the statistical mechanics of
learning. Early work established its storage capacity using replica methods, identifying the critical
pattern-to-dimension ratio beyond which classification fails (Gardner, 1987; Gardner and Derrida,
1988). Later studies analyzed learning dynamics, including exact convergence times (Opper, 1988),
the superior generalization of maximum-margin solutions (Opper et al., 1990), and Bayes-optimal
learning curves as performance benchmarks (Opper and Haussler, 1991). Online learning was also
investigated, with analyses of sequential updates (Biehl and Riegler, 1994), exact teacher–student
dynamics in multilayer and committee machines (Saad and Solla, 1995a;b), and Bayesian online
approaches (Solla and Winther, 1998).

Our main focus is to highlight the role of the norm growth to describe the learning dynamics, which is
a perspective that is absent in the classic works. To do that, we use the solution of logistic regression
with fixed norm that was studied in (Aubin et al., 2020). In our work we present an equivalent
calculation that reveals the implicit bias at training time and, as a consequence, the new scaling laws.
The idea that implicit bias can extend to the whole learning trajectory can also be found in (Wu et al.,
2025), restricted to the overparametrized regime.

Few studies on scaling laws include training time independently of the computational cost. Simple
models in controlled settings exhibit a power law in the number of training steps (Velikanov and
Yarotsky, 2021; Bordelon et al., 2024), favoring the discussion on the trade-off between model
scale and training time (Boopathy and Fiete, 2024) that is central to the compute-optimal scalings.
Particularly relevant is (Montanari and Urbani, 2025), where the authors connect the different
dynamical regimes of a committee machine to its norm, suggesting that the same ideas that we present
in our work can apply even outside the setting of logistic loss. In fact, in the case of regression
with square loss, gradient descent is biased toward minimal ℓ2-norm solutions when there are many
interpolating solutions (Gunasekar et al., 2017).

2 SCALING LAWS IN LEARNING CURVES OF PERCEPTRONS

This section introduces the core intuitions that we will use for deep architectures – plotting learning
curves as function of the model’s norm – in a setting where we have analytical control of the
optimization process.

In the case of a perceptron trained on linearly separable data, it is known that the implicit bias
of gradient descent drives the weights toward the maximum-stability solution (the direction that
maximizes the classification margin) while the norm grows over time (Soudry et al., 2018). In
this section, we ask if the implicit bias has a role at intermediate stages of training. Using the
well-established teacher–student framework (Gardner and Derrida, 1988), we show that the model’s
behavior throughout training is qualitatively captured by the solution to the problem in which the
norm is held fixed (Aubin et al., 2020). This correspondence allows us to relate the evolution of the
perceptron’s norm during training to classical perceptron learning rules, offering a picture on how the
implicit bias influences learning dynamics.

Model definition in Teacher-Student scenario. To have an analytical prediction of the general-
ization error, we consider a framework where a student perceptron www ∈ RN attempts to learn
an unknown teacher perceptron www∗ ∈ RN from P = αN labeled examples. Each example
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Figure 1: The learning curve of a perceptron with free norm resembles that of fixed-norm
problems, which interpolate between known learning rules. Left panel: We plot the generalization
error of the minimizers of the cross-entropy loss in a teacher–student setup at a fixed ratio α = 5
of number of data over size of the system. The blue curve represents the analytical result obtained
under a fixed-norm constraint (with λ as the hyperparameter of the loss), while the multicolored
curve—where color varies with training time—represents the result of numerical training in the
free-norm case, where λ corresponds to the norm of the weights; the model is trained with 106 steps
of gradient descent. The horizontal lines indicate the generalization error of classical learning rules.
Right panel: Same analysis for different values of α; solid curves are analytical solutions at fixed
norm, dashed curves are trajectories with free norm.

xxxµ ∈ RN is a random vector with i.i.d. components xµ
i sampled from a Rademacher distribu-

tion P (xµ
i ) =

1
2δ(x

µ
i − 1) + 1

2δ(x
µ
i + 1). The corresponding labels are generated by the teacher as

yµ = sign(xxxµ ·www∗). We assume both www∗ and www to lie on the N -sphere, i.e., ∥www∗∥2 = ∥www∥2 = N . In
this setting, the generalization error (or test error), defined as the expected fraction of misclassified
examples on new data, can be written as ϵ = 1

π arccos(R), where R ≡ (www ·www∗)/N is the normalized
overlap between student and teacher. The student minimizes a loss function L(www). We study the
logistic loss, which reads:

Lλ(www) = −
P∑

µ=1

1

λ
(λ∆µ − log 2 cosh (λ∆µ)) =

P∑
µ=1

Vλ(∆
µ), (1)

where we defined the margin of the µ-th example as ∆µ ≡ yµ
(
www·xxxµ
√
N

)
, and λ is a hyperparameter

controlling the sharpness of the logistic loss. Note that for the logistic cost Vλ(∆) we chose the
expression in Eq. 1 instead of the more common (but equivalent) ln

(
1 + e−λ∆

)
because the former

is more convenient to discuss the limits in λ. For large N , the properties of the minimizers of Eq. 1
can be analyzed via the semi-rigorous replica method from the statistical mechanics of disordered
systems, which outputs the average value of R from the solutionswww that minimize Lλ. In Appendix A
we present a derivation alternative to that in (Aubin et al., 2020), where we focus the analysis on the
role of the growing norm, which allows us to notice the implicit bias at training time. This observation
led us to notice that we can use the norm as a measure of training time, which is one of the key
contributions of our work.

λ-Regimes of the Logistic Loss. In Figure 1, we show the analytical generalization error as a
function of λ, revealing three regimes:

1. Small λ regime (λ → 0): The second term of Eq. 1 vanishes as O(λ), yielding Vλ→0(∆) =
−∆, which corresponds (see Engel and Van den Broeck (2001)) to the Hebbian learning,
and defines a baseline generalization error ϵ0.

2. Intermediate regime and optimal λ: At a finite value λopt(α), the generalization error is
minimum. We find that this optimal ϵopt matches the generalization error achieved by the
Bayes-optimal predictor (Opper and Haussler, 1991), suggesting that the logistic loss rule
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Figure 2: Fixed-norm perceptrons exhibit scaling laws in the curves of relative generalization
error vs norm. Left panel: we plot the generalization error of the minimizers of the cross-entropy
loss in the fixed-norm teacher–student setup of the perceptron, rescaled by the error of the Hebb
rule ϵ0, as a function of the hyperparameter λ for different values of α. The stars correspond to the
optimal points (λopt, ϵ̂opt), i.e., the minima of the generalization error for each curve. Right panel: we
show the same curves after rescaling each one by its corresponding optimal point. The insets display
the power-law dependencies of λopt and ϵ̂opt as functions of α.

can achieve Bayes-optimality when λ is properly tuned. The dependence of λopt(α) on α is
shown in the top inset of the right panel of Figure 2.

3. Large λ regime (λ → ∞): The loss becomes: Vλ→∞(∆) = −2∆θ(−∆), where we
defined the step function θ(x) = 1 if x > 0 and θ(x) = 0 elsewhere. This loss has a
degenerate set of minima in ∆ for ∆ ≥ 0. In contrast, for any finite value λ, the minimizer
of Vλ(∆) is unique. For this reason, we cannot apply our method directly to this potential.
To recover the generalization error ϵ∞ in the limit λ → ∞, one must first solve for finite
λ and then take the limit λ → ∞. We find that this limiting behavior corresponds to the
generalization error of the maximally stable perceptron wwwmaxStable = argmax

www
[minµ ∆

µ(www)]

(Gardner, 1987; Opper et al., 1990).

In Figure 1 we presented curves for α > 1 because the scaling laws appear more clearly, but the same
regimes are present also when α < 1 (see Fig.6 in Appendix B).

Norm scaling and interpretation. An important observation is that the logistic loss defined in Eq. 1
depends only on the product λ∆ (up to an overall multiplicative factor of λ that does not affect the
location of the minimizers), where ∆ is linear in the norm of the perceptron weights ∥www∥. Rescaling
the weight norm is thus equivalent to adjusting λ, meaning that analyzing a fixed-norm perceptron
with varying λ is equivalent to studying the minimizers of the loss at fixed λ and varying norm. This
insight also helps explain the behavior of ϵ∞: it is known (Soudry et al., 2018; Montanari et al.,
2024) that in the infinite-norm limit, the perceptron converges to the maximally stable solution during
training (implicit bias). Building on this observation, we compare two scenarios: the fixed-norm
case, where the norm ∥www∥2 = N is fixed and λ is treated as a tunable hyperparameter of the loss
(the results in this setting are obtained with the replica method); and the free-norm case, where the
parameter in the loss is fixed to 1 (i.e., we use the classical logistic loss), and the norm ∥www(t)∥ ≡ λ(t)
is left free to evolve during training (here the perceptron is trained using standard gradient descent
optimization techniques, and the results are obtained from numerical simulations).

In Figure 1, we compare the generalization curves under these two scenarios. We remark that in
the fixed-norm case, each point on the curve corresponds to the endpoint of training for a different
perceptron (at given λ), while in the free-norm case, the curve represents the trajectory of a single
perceptron during training, with each point corresponding to a different time step as the norm evolves.
We see that the free-norm trajectory is qualitatively well described by the set of fixed-norm optimal
solutions, indicating that the fixed-norm static analysis captures the essential features of the learning
dynamics.
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Scaling laws in learning curves at training time. From the left panel of Fig. 1, we observe that
for sufficiently large α the curves share the same slope but differ in their starting point – that is the
generalization error ϵ0 of Hebbian learning (for large α, ϵ0 ∼ α−1/2). To highlight the power law
scaling in λ, in the left panel of Fig. 2 we plot relative error ϵ̂gen ≡ ϵgen/ϵ0 as a function of λ. We
observe that for sufficiently large values of α, the learning curves of the relative error split into two
distinct regimes, which behave differently as we vary α.

1. An early power-law regime, independent of α. The initial part of each learning curves
follows the same shape for any α, up to a value λelbow(α) where it saturates. The curves
collapse for λ < λelbow(α) on the power law

ϵ̂gen = k1λ
−γ1 + q1. (2)

Here we introduce the term q1 to be general, but in the perceptron we have q1 = 0. Keeping
q1 will be useful in the next section on deep networks, where it we will connect to the
irreducible error floor of realistic settings.

2. A late regime, which depends on α. After λelbow(α), the learning curves deviate from the
power law and saturate or overfit following a curve whose height depends on α.

It is possible to find proper scalings that collapse also the late-phase curves (actually, the whole
training curves will collapse). First, we need to discuss the scaling law for the point of minimum test
error λopt(α). In the inset of the right panel of Fig. 2, we observe that the curves follow the power
law

λopt = k2α
γ2 + q2, (3)

Like q1, the term q2 is not needed in the fixed-norm perceptron, but we introduce it to obtain a
more general law applicable to deep networks. Now we can compute ϵ̂opt = ϵ̂(λopt) and rescale
the learning curves of the left panel horizontally by λopt(α) and vertically by ϵ̂opt (see Fig. 2, right
panel). For large values of α, the curves collapse onto a single master curve, i.e.

ϵ̂gen/ϵ̂opt = ϵgen/ϵopt = Φ(λ/λopt), (4)

for some universal function Φ.

Connection to end-of-training scaling law. It is tempting to combine the two scaling laws in Eq. 2
and 3 to recover the well know scaling law ϵ̂gen(α) ∼ α−γ at the end of training (Hestness et al.,
2017). However, Eq. 2 is valid only for λ < λelbow(α), while λopt(α) > λelbow(α). Therefore,
substituting Eq. 3 into Eq. 2 seems an invalid step. Still, in the limit of large α, Eq. 4 implies that the
whole learning curve has the same power-law scaling with α, and therefore we can use Eq. 3 for any
λ. Plugging Eq. 3 in Eq. 2 we obtain

ϵ̂gen(α) = k1
(
k2α

γ2 + q2)
−γ1 + q1. (5)

For the perceptron Eq. 5 simplifies to ϵ̂gen(α) ∼ α−γ1γ2 , and we can recover γ as γ1γ2. For the
fixed-norm perceptron we obtain γ1 = −1/2 (Fig. 2, left panel) and γ2 = 1 (Fig. 2, right panel, upper
inset), which recovers γ1γ2 = γ = −1/2 (Fig. 2, right panel, lower inset). Exponents computed for
free-norm perceptron are γ1 = 0.4901± 0.0005 and γ2 = 0.96± 0.25; we are unable to estimate γ
in the free-norm case because training at large α and λ requires a number of gradient descent steps
that is exponential in λ (Soudry et al., 2018). In Appendix C we describe the numerical methods that
we used to compute exponents in both cases.

3 SCALING LAWS IN LEARNING CURVES OF DEEP ARCHITECTURES

Methods. Motivated by results on perceptrons, we repeat for deep architectures the analysis of
the test error ϵ versus increasing norm during training λ(t). We test CNN (LeCun et al., 1998a),
ResNet (He et al., 2016) and Vision Transformer (Dosovitskiy et al., 2021) architectures for image
classification over MNIST (LeCun et al., 1998b), CIFAR10 and CIFAR100 (Krizhevsky and Hinton,
2009) datasets. For each dataset and architecture we make a standard choice of hyperparameters (see
Appendix F), without using a weight decay. Results with moderate weight-decay are reported in
Appendix G. For each experiment, we select a random subset of P elements from training set and we
train for a fixed number of epochs, large enough to see the test error overfit or saturate. We do this
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procedure for all values of P selected and then we repeat the training a number of times varying the
random subset and of the initial condition of the training. See Appendix F for more details.

For the norm definition in the case of deep networks, in the main analysis we opt for the spectral
complexity defined in (Bartlett et al., 2017), In that work, the authors show that this quantity has
desirable properties for a norm, such as yielding a converging margin distributions that reflect the
complexity of the dataset. In Sec. 3. Given the set A of weight matrices Ai, the spectral complexity
norm RA of the models reads

RA =

(
L∏

i=1

ρi ∥Ai∥σ

)(
L∑

i=1

∥A⊤
i −M⊤

i ∥ 2/3
2,1

∥Ai∥ 2/3
σ

)3/2

, (6)

where L is the total number of layers in the network, ρi is the Lipschitz constant of the activation
function (e.g. for ReLU: ρi = 1), Ai is the linear operator at layer i for dense layers and it is an
appropriate matrix for convolutional layers (see Bartlett et al. (2017) for a complete explanation).
The so-called reference matrix Mi is chosen as 0 for linear or convolutional layers and as the identity
for residual layers. Then, ∥Ai∥σ is defined as the largest singular value of Ai and ∥A∥2,1 is defined
as the average of the ℓ2-norms of the column vectors.

Throughout rest of the paper, when we write λ(t) for deep architectures we mean the spectral
complexity norm RA(t), measured after t training epochs. We can give an intuition on Eq. 6 by
analyzing the contribution of the two terms. Given a layer i, first term is the maximum amount that an
input vector can be expanded in the output space, and second term is a correction that estimates the
effective rank of the outputs of the layer, that is the number of columns that have weights substantially
different from zero. In Appendix D (Fig. 9) we show that the relation between λ and t is non trivial,
and that simply plotting ϵ(t) does not reveal the same scalings that plotting ϵ(λ(t)) does. We always
observe the monotonicity of λ(t) if a weight-decay is not present.

Main result 1: Dynamical scaling laws. In this section we consider three architectures without
changing their sizes, so P and α are interchangeable. In Fig. 3 we report the learning curves mediated
over different runs, for many values P (the values change for each datasets and are reported in
Appendix F, together with the other details of the training process). Notably, we find the same
dynamical scaling laws that we observed for perceptrons: the learning curves have an early training
regime independent on P and a late training regime which depends on P (compare Fig. 3 to the left
panel of Fig. 2). In Fig. 4 we rescale the learning curves in the same way we did for perceptrons
(dividing the axes by the optimal norm and optimal error) fiding that they collapse for large P
(compare Fig. 4 to the right panel of Fig. 2). Note that, at variance with perceptrons, it is sufficient to
plot the generalization error to reveal the scaling laws (and not the relative error).

Main result 2: Recovery of scaling laws at convergence. A natural question is wether we can
use the measured values of γ1 and γ2 to recover the end-of-training scaling law in Eq. 5 also for
deep models. In this case, since q2 ̸= 0 in general, we need to isolate the proper power law regime.
As we show in the sketch in Fig. 5, it is possible to identify two thresholds P− ∼ (q2/k2)

1/γ2

and P+ ∼ (k1k
−γ1

2 /q1)
1/(γ1γ2), which distinguish between three regimes: 1) P ≪ P−, where

ϵ(P ) ≃ k1q
−γ
2 + q1. In this regime, we expect ϵ(P ) to be close to random guessing, which for

classification is k1q
−γ
2 + q1 = (n− 1)/n, with n the number of classes. 2) P− ≪ P ≪ P+, where

ϵ(P ) ≃ k1k
−γ1

2 P−γ1γ2 . The exponent γ = γ1γ2 corresponds to the neural scaling law observed in
(Hestness et al., 2017). 3) P ≫ P+, where ϵ(P ) → q1. Here we approach the lowest possible error
of the dataset and the performance saturates.

For each architecture and dataset we consider, we measure γ1, γ2 with a procedure described in
Appendix E (see the results in Tab. 2, Appendix E). In analogy with perceptrons, we can recover the
exponent of end of training scaling law as γpred = γ1γ2, and compare it to the value γmeas that we fit
directly from the minima of the learning curves at different values of P . We observe from Tab. 1 that
in all cases the two values are compatible within the accuracy permitted by the fitting procedure. See
Fig. 11 in Appendix E for a more detailed comparison.

Effect of regularizations, alternative optimizers and different norms. In Appendix G we show
that the qualitative picture of scaling laws in learning curves holds also in the presence of a moderate
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Figure 3: Early-training learning curves collapse into a power law when plotted as a function
of the spectral complexity norm. We plot the generalization error ϵ as a function of the norm λ(t)
for different datasets and model architectures. Different colors in the same panel refer to training
curves with increasing values of the dataset size P , ranging from small (blue tones) to large (orange
tones). The specific values of P used for each dataset-model combination are listed in Appendix F.

Figure 4: The whole learning curves collapse at large P with the proper scalings. We plot the
generalization error ϵ as a function of the norm λ(t) for different datasets and model architectures,
rescaling each curve by its optimal point (λopt(α), ϵopt(α)). Different colors in the same panel refer to
training curves with increasing values of the dataset size P , ranging from small (blue tones) to large
(orange tones). The values of P used for each dataset-model combination are listed in Appendix F.
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Figure 5: The combination of two power
laws reproduces known scalings. We plot
the combined power-law scaling of the gen-
eralization error as a function of the number
of data (Equation 5). The parameters of the
power-law are chosen of the same order of
magnitude as typical results obtained for deep
networks.

Model Dataset γpred γmeas σ

CNN MNIST 0.60 0.55 0.09
CNN CIFAR10 0.28 0.25 0.07
CNN CIFAR100 0.16 0.16 0.03
ResNet MNIST 0.57 0.69 0.08
ResNet CIFAR10 0.54 0.56 0.04
ResNet CIFAR100 0.31 0.37 0.03
ViT MNIST 0.47 0.54 0.03
ViT CIFAR10 0.23 0.21 0.03
ViT CIFAR100 0.14 0.12 0.04

Table 1: Predicted vs. measured ϵ(P ) exponents
across datasets and architectures.
The exponent γpred is computed by independently

fitting γ1 and γ2, and combining them as
γpred = γ1γ2. The exponent γmeas is obtained by

fitting the ϵ(P ) curves directly. The value of σ
represents an estimate of the variability of the
overall process (see Appendix E for details).

weight decay. Exponents γ1 and γ2 change depending on the amount of weight decay, but the values
of γpred remain compatible within errors with the case without weight decay. In Appendix H we
show that using SGD optimizer instead of Adam in CNN architecture changes the dynamical learning
curves, and consequently we obtain different values γ1 and γ2. However, they produce the same
end-of-training exponents γpred = γ1γ2 as in the main analysis by using Adam. In short, we reproduce
the scaling law from (Hestness et al., 2017) even when we employ weight decay and an alternative
optimizer. In Appendix I we show that also four other notions of norm reproduce the qualitative
picture of the two scaling laws, but they all find incompatible values of γpred and γmeas, suggesting
that only the spectral complexity norm properly captures the scaling behavior.

4 DISCUSSION

Summary of results. Inspired by the implicit bias in perceptrons trained with logistic loss, our
study uncovers new neural scaling laws in deep architectures that govern how test error evolves
throughout training, not just at convergence.

• In perceptrons, we observe that the whole learning curve is biased towards specific
solutions. Early in the training the perceptron implements Hebbian learning, then it reaches
a Bayes-optimal solution and finally it overfits by approaching max-stability rule.

• The key point that we learn from perceptrons is to plot the learning curves as function of the
increasing norm (we use the spectral-complexity norm for deep architectures). The resulting
learning curves show two distinct regimes: an early-training regimes that follows a power
law that is independent of the size of the training set, and a late-training regime that depends
on the size of the training set.

• In deep networks, when the whole curves are rescaled by the optimal model norm and the
corresponding minimum test error, learning trajectories from different large-dataset
regimes collapse onto a single curve.

• Together, these scaling laws recover the classic end-of-training scaling of test error with
data.

Possible implications. The analogies between the scaling laws of perceptrons and deep architec-
tures suggests an implicit bias throughout the whole learning procedure also for deep architectures.
Overfitting can be seen as follows: although the asymptotic solution maximizes classification margins,
the learning trajectory may pass near solutions with fixed spectral complexity and better generaliza-
tion (cf. perceptrons, Fig. 1). An interesting future development may be to train a deep architecture
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while constraining its spectral complexity. A second view comes from the self-similarity of early
learning: the process first finds a simple solution (low complexity), then gradually increases the norm
until reaching the maximum allowed by the dataset size. This provides a pictorial explanation of
implicit bias: trajectories with larger datasets shadow those of smaller ones, until late training where
overfitting may arise.

Limitations of the comparison between perceptrons and deep architectures The idea of a
training-time bias for perceptrons is fascinating, but in this work it remains mainly qualitative.
To obtain quantitative guarantees, one would need an approach similar to (Wu et al., 2025), or
alternatively a full solution of the training dynamics using dynamical mean-field theory (see for
example (Montanari and Urbani, 2025)). Extending these ideas to deep architectures is compelling,
but while in perceptrons we can access analytically solutions at fixed norm, there is no obvious
analogous picture for deep architectures. The spectral complexity norm seems a good candidate, but
the extent to which this property can be made quantitative is unknown.

Limitations and possible extensions of our numerical analysis. The main shortcoming of our
analysis is that experiments were limited to image classification. We made this choice because
we wanted to form a clean conceptual picture before addressing other domains, such as language
models, that require larger-scale experiments. For similar reasons we did not vary the number of
parameters for each architecture, limiting our experiments to few standard architectures. Extending
our analysis to the joint scaling with width and depth will be essential to understand how our result
may impact compute-optimal predictions (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al.,
2022) (especially in larger models, where these predictions are vital). We expect this direction to be
particularly promising, since the spectral complexity norm scales properly with the width and depth of
architectures. Moreover, varying the number of parameters will clarify the role of overparametrization
in escaping early-training plateaus, as suggested in (Arnaboldi et al., 2024).

Final remarks. In this work we consolidate the evidence of dynamical scaling laws consistently
across dataset and architectures. At the same time, by linking implicit optimization bias with empirical
scaling laws, we propose a picture in which norm growth is the variable that controls neural scaling
laws during training. Our findings suggest that the same implicit bias that drives gradient descent
toward solutions with maximum margins may also shape the learning trajectory throughout the entire
training process, potentially providing a new theoretical framework to understand the emergence
of neural scaling laws, and possibly connecting with dynamical scaling laws obtained with other
methods (Velikanov and Yarotsky, 2021; Bordelon et al., 2024; Arnaboldi et al., 2024; Montanari and
Urbani, 2025).
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APPENDIX

Acknowledgment of LLMs usage. The authors acknowledge the usage of LLMs for polishing
the text and to produce standard functions in the code for deep networks experiments. All texts and
codes produced by LLMs have been carefully analyzed and validated by the authors.

A REPLICA ANALYSIS

In this section, we provide a sketch of the necessary computations to obtain the analytical curve
for the fixed-norm perceptron. We are interested in computing the generalization error, defined as
the expected fraction of misclassified examples on new data. In the teacher-student setup for the
perceptron presented in the main text, this is given by ϵ = 1

π arccos(R), where R ≡ (www ·www∗)/N is
the normalized overlap between the student and the teacher.

Given a loss function of the form

L(www) =

P≡αN∑
µ=1

V (∆µ), (7)

where ∆µ ≡ yµ
(
www·xxxµ
√
N

)
is the margin of the µ-th example, we therefore need to compute the typical

overlap R̄ between a minimizer of Equation 7 and the teacher. To do this, one can study the averaged
free energy, defined as

f(β) = lim
N→∞

(
− 1

βN
⟨⟨lnZ⟩⟩xxxµ,www∗

)
, (8)

where β is the inverse temperature, ⟨·⟩xxxµ,www∗ denotes the average over the distribution of the data
points {xxxµ} and the teacher vector www∗. Z is the partition function defined, as

Z(www) ≡
∫

dµ(www) e−βL(www), (9)

where µ(www) is the probability distribution of the student vectors, assumed to be uniform on the
N -sphere. In the thermodynamic limit N → ∞, only a subset of students, characterized by an
overlap with the teacher R̄(β), contributes to f(β). By taking the limit β → ∞, one can obtain the
typical overlap considering only the minimizers of the loss.

To compute the average of lnZ in Equation 8, we apply the replica method (Mézard et al., 1987),
which involves rewriting the logarithmic average as

⟨⟨lnZ⟩⟩ = lim
n→0

⟨⟨Zn⟩⟩ − 1

n
,

where Zn is the replicated partition function defined by

Z(n) ≡ ⟨⟨Zn(xxxµ,www∗)⟩⟩xxxµ,www∗ =

〈〈∫ n∏
a=1

dµ(wwwa)

n∏
a=1

exp (−βL(wwwa))

〉〉
xxxµ,www∗

. (10)

One can introduce new variables Ra = (www∗ ·wwwa)/N and qab = (wwwa ·wwwb)/N , which represent the
normalized overlap of student a with the teacher, and the overlap between student vectors a and b,
respectively. The free energy function can then be rewritten in terms of these new variables. Under
the replica symmetric ansatz, i.e., choosing solutions of the form

Ra = R ∀a ∈ [1, n], qab = δab + q(1− δab) ∀a, b ∈ [1, n]. (11)

one obtains

f(β) = −extr
q,R

[
1

2β
ln(1− q) +

q −R2

2β(1− q)

× ln

∫
d∆

1√
2π(1− q)

exp

(
−βV (∆)−

(∆−√
qt)2

2(1− q)

)]
, (12)
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where H(x) = 1
2 erfc

(
x√
2

)
= 1

2

(
1− erf

(
x√
2

))
.

If the potential V (∆) has a unique minimum, one can evaluate the zero-temperature limit of Equation
12, yielding

f(T = 0) = −extr
x,R

[
1−R2

2x
− 2α

∫
dt√
2π

e−t2/2 H

(
− Rt√

1−R2

)
×
(
V (∆0(t, x)) +

(∆0(t, x)− t)2

2x

)]
≡ e(x,R), (13)

where x ≡ β(1 − q) and ∆0(t, x) ≡ argmin∆
(
V (∆) + (∆−t)2

2x

)
. By solving the saddle-point

equations

∂e

∂x

∣∣∣∣
x=x̄, R=R̄

= 0,
∂e

∂R

∣∣∣∣
x=x̄, R=R̄

= 0,

one can finally recover the value R̄ and, consequently, the generalization error.

B PERCEPTRON IN THE OVER PARAMETRIZED REGIME

In this section we show that the analysis of the different regimes in λ, shown in the main text for
α > 1, is qualitatively equivalent in the regime α < 1. In Figure 6, we plot the generalization error
as a function of the parameter λ for α = 0.5.

Figure 6: The fixed-norm problem is qualitatively the same in the overparametrized regime.
We show the generalization error of the minimizers of the cross-entropy loss in the teacher-student
setup for α = 0.5,

C ANALYSIS OF THE SCALING LAWS IN PERCEPTRON

Fixed-norm analytical perceptron We provide numerical evidence of the convergence to a −1/2
exponent in the ϵ(λ) curve for the perceptron by analyzing the theoretical curves. In Fig. 7 we plot
d log ϵ
d log λ for different values of α, showing that as α increases there appears a broader region of λ where
the effective exponent approaches −1/2.
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Figure 7: Convergence of the perceptron learning exponent. We plot d log ϵ
d log λ for different values of

α. As α increases, an extended region of λ develops where the effective exponent approaches −1/2,
which corresponds to the asymptotic behavior ϵ ∼ λ−1/2. The dashed red line marks the reference
slope −1/2 while the black dotted line marks the zero derivative point.

Unbounded numerical perceptron We compute the two exponents of the unbounded perceptron.
For consistency, we have chosen to follow the same procedure that resulted to be the best for deep
networks experiments, reported in Appendix E. In Fig. 8 we report the fitting plot for γ1 and γ2
exponents. The two exponents result not compatible considering errors with the analytical result for
fixed-norm perceptrons γ1 = 0.5, γ2 = 1.0, but the differences are only of the order of 5%. So not
only the fixed-norm analytical case predict qualitatively the dynamical behavior of the unbounded
perceptron, it also approximates quantitatively the values of the dynamical exponents.

Figure 8: Dynamical exponents of unbounded Perceptron are close to the fixed-norm analytical
prediction. (left) Curves collapsed by rescaling axes for the minima, using values of α > 25. (right)
Fit of the scaling of minima of curves, λopt(α), using only curves for which the minimum have been
reached during numerical simulation.

D TRAINING CURVES IN FUNCTION OF TIME (NUMBER OF EPOCHS)

We show in fig. 9 that plotting ϵ versus time instead of λ do not make the curves collapse. In particular
λ(t) is nonlinear, meaning that the two plots ϵ(t) and ϵ(λ) are qualitatively different.
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Figure 9: The function λ(t) is highly non-trivial. The left panel shows the generalization error of
a CNN trained on MNIST as a function of the number of epochs for different dataset sizes P . The
right panel shows the behavior of the spectral complexity as a function of the number of epochs.

E RESULTS OF ϵ(P ) POWER LAW EXPONENT COEFFICIENTS AND
COMPUTATION OF ERRORS

The aim of this section is to explain the procedure used to compute the exponents γ1, γ2 of the power
laws

ϵ = k1λ
−γ1 + q1,

λopt = k2P
γ2 + q2.

It is possible to combine the two power laws only in the regime of P large enough such that

ϵ

ϵopt
= Φ

(
λ

λopt

)
,

with a master curve function Φ that does not depend on P .

The first passage is to decide the minimum P to consider for the procedure. We observed that a value
of P slightly bigger or smaller than the chosen one did not change substantially the estimate of γ1. In
almost all cases we used P ∼ 26000 as the minimum value.

Then, in the collapsed graph in Fig. 10 a least-squares fit is performed over the pure power-law region
to obtain a prediction of γ1 for each value of P . The final γ1 value is the mean, and the associated
error is the error of the mean.

To obtain γ2 the minimum of the curves λ∗ is plotted versus P in Fig. 10, and from the fit γ2 is
obtained with the associated error.

Then γpred = γ1γ2 and the error is

σpred = γpred

√(
σ1

γ1

)2

+

(
σ2

γ2

)2

.

The exponent to compare with is γmeas. For each value of P , we considered the minimum of the
curve during training, obtaining the empirical curve of ϵ(P ). Then a power-law fit is performed over
that curve, obtaining γmeas and the σmeas of the fit. Numerical comparisons are reported in Tab. 1 and
the empirical and predicted power-laws are compared visually in Fig. 11.
The error assigned to the comparison of exponents is computed as σ =

√
σ2
pred + σ2

meas. We observe
that the magnitude of σ is similar across experiments, while exponents change from the maximum of
γpred = 0.60 for CNN MNIST to the minimum γpred = 0.14 of ViT CIFAR100. For this reason the
relative error is higher the lower is the exponent. Being in possess of more computational power it
would be possible to mitigate this effect producing more statistics for models and datasets with lower
exponents.
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Table 2: Results of the fit for the exponents γ1 and γ2. We report the numerical values of the
power-law exponents γ1 and γ2, along with their respective uncertainties, across different datasets
and model architectures.

Model Dataset γ1 σ1 γ2 σ2

CNN MNIST 0.59 0.06 1.01 0.11
CNN CIFAR10 0.21 0.01 1.32 0.32
CNN CIFAR100 0.112 0.003 1.44 0.22
ResNet MNIST 1.15 0.14 0.50 0.02
ResNet CIFAR10 0.53 0.03 1.01 0.04
ResNet CIFAR100 0.31 0.01 1.03 0.07
ViT MNIST 0.139 0.005 3.41 0.11
ViT CIFAR10 0.0124 0.0002 18.4 2.1
ViT CIFAR100 0.0068 0.0004 21 6

Figure 10: The curve collapse helps predict the numerical exponents. (left) Rescaled general-
ization error curves used to obtain γ1 from the fit. The fitted power laws are shown as dashed lines.
(right) The numerical fit used to estimate γ2.

Figure 11: The predicted power laws closely match the empirical ones. We graphically present
the numerical results from Table 1. The power laws fitted on the data are compared with the predicted
ones. For the predicted power laws, only the exponent is known; the coefficient is chosen to enable
visual comparison.
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All intermediate plots as Fig. 10, computations and choices of value of P and λ to compute power-
laws reported in the paper are reported in the supplementary material, as notebooks in the repository
of codes with plots and data. We did not report in the paper all details because it would have been
necessary to show O(100) plots to evaluate all cases.

F ARCHITECTURES, DATASETS, TRAINING AND RESOURCES IN DETAILS

Architectures and hyperparameters We used PyTorch Adam optimizer for CNNs and ResNets
and AdamW for ViT, in all cases with lerning rate 0.001. We used the standard and most simple
possible definitions of the architectures, taken from the original papers. Please refer to the code in the
supplementary to the precise definition of each block and width and number of layers.

Trainings and values of P We trained for 500 epochs CNNs and for 1000 epochs ResNets and
ViTs. Values of P are

• For MNIST in all cases 89, 188, 375, 750, 1500, 3000, 6000, 12000, 24000, 30000, 36000,
42000, 48000.

• For CIFAR10 and CIFAR100 with ResNet and ViT in all cases: from 6000 to 46000 every
5000.

• For CNN in CIFAR10/100, in the main analysis from 4000 to 48000 every 4000, and in
computation of norms and the effect of weight decay from 6000 to 46000 every 5000.

Resources to replicate the study For perceptron curves the necessary resources are irrelevant. All
deep network trainings have been carried on 18 V100 GPUs using 4 CPUs for each, for a period
of two months. We set a maximum number of 30 repetitions for each training to get a statistic of
learning curves and a month of computation. For smaller models we finished all 30 repetitions while
for the slowest one we obtain a total of 5 repetitions.

G EFFECT OF WEIGHT DECAY

We reapeted the experiment with the 3 deep architectures analyzed in the paper over CIFAR10 dataset,
but with an increasing level of weight decay (WD). In Fig. 12 and 13 we see that in all cases the
qualitative picture remain the same, even if the norm of the models doesn’t increase monotonically
as the case without a weight-decay. In Tab. 3 we observe that the values of γ1 and γ2 exponents
change depending on the amount of weight decay, but their product γpred remains compatible with
γmeas within the accuracy permitted by the fitting procedure. For ResNet architecture, with a fixed
computing budget we found difficult to find the right hyperparameters to obtain overfitting or to
saturate the generalization error with the weight decays used for other two architectures, so we
reported the result for smaller weight-decays. Due to the increase in training time and corresponding
decrease in statistics, the exponents fitted and predicted are affected by a larger error than in other
two cases.

Model WD γpred γmeas σ

CNN 1e-3 0.163 0.212 0.033
CNN 1e-4 0.136 0.193 0.050
CNN 1e-5 0.133 0.184 0.024
ResNet 1e-6 0.269 0.525 0.090
ResNet 1e-7 0.611 0.550 0.079
ResNet 1e-8 0.450 0.567 0.075
ViT 1e-3 0.205 0.176 0.014
ViT 1e-4 0.198 0.174 0.023
ViT 1e-5 0.193 0.173 0.016

Model WD γ1 σ1 γ2 σ2

CNN 1e-3 0.2773 0.0184 0.5883 0.0943
CNN 1e-4 0.1880 0.0133 0.7257 0.2551
CNN 1e-5 0.1343 0.0177 0.9906 0.0815
ResNet 1e-6 0.6487 0.0247 0.4149 0.1342
ResNet 1e-7 0.6572 0.0298 0.9298 0.1101
ResNet 1e-8 0.6641 0.0272 0.6780 0.1047
ViT 1e-3 0.0132 0.0003 15.5590 0.7670
ViT 1e-4 0.0121 0.0003 16.3150 1.8161
ViT 1e-5 0.0124 0.0003 15.5182 1.0233

Table 3: Results on CIFAR10 dataset and increasing levels of weight decay. (left) Predicted and
measured exponents. (right) γ1 and γ2 exponents computed by fitting the data.
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Figure 12: Curves from experiments with weight decay on CIFAR10 dataset. Values of weight decay
in parentheses refer to ResNet.

Figure 13: Curves after rescaling collapse onto a master curve also in the presence of a moderate
weight-decay. Values of weight decay in parentheses refer to ResNet.
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Figure 14: Comparison between predicted scaling laws by combining γ1 and γ2 and the empirical
one measured at end-of-training. Values of weight decay in parentheses refer to ResNet.

H USING SGD OPTIMIZER INSTEAD OF ADAM ON CNNS

We reapeted the experiment using SGD optimizer instead of Adam, with only CNN architecture
over CIFAR10 and CIFAR100 datasets. We did not repeat the experiment over the other two more
complex architecture (ResNet, ViT) because Adam and AdamW (respectively used for ResNets and
ViTs) are fundamental to make these architectures work appropriately. In Fig. 15 and 16 we see that
in all cases the qualitative picture remain the same as in the main analysis also for these other norm
definitions. At same time exponents predicted are compatible with the ones measured, and compatible
as well with the exponents measured in the main analysis using Adam optimizer. This experimental
result suggests that the optimizer is not relevant for the end-of-training scaling law exponent γ, in
ϵ ∼ ϵγ . This instead is not true for the dynamics to reach the optimal value of weights: for example
the number of epochs increases dramatically using SGD instead of Adam. This difference in the
dynamics is captured from the dynamical exponent. Even though γpred = γ1γ2 is equal with Adam
and SGD, we observe that γSGD

1 > γAdam
1 , while γSGD

2 < γAdam
2 .

Model Norm γpred γmeas σ

CNN CIFAR10 0.202 0.225 0.047
CNN CIFAR100 0.150 0.122 0.013

Model Norm γ1 σ1 γ2 σ2

CNN CIFAR10 0.4735 0.0268 0.4276 0.0962
CNN CIFAR100 0.1469 0.0098 1.0233 0.0170

Table 4: Results on CIFAR10/100 datasets with CNN using SGD optimizer. (left) Predicted and
measured exponents. (right) γ1 and γ2 exponents computed by fitting the data.
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Figure 16: Curves after rescaling collapse onto a master curve also in the case of SGD optimizer
instead of Adam.

Figure 15: Curves from experiments using SGD optimizer instead of Adam with CNN architecture.

Figure 17: Comparison between predicted scaling laws by combining γ1 and γ2 and the empirical
one measured at end-of-training.

I USING OTHER DEFINITIONS OF NORM λ

We reapeted the experiment with the 3 deep architectures analyzed in the paper over CIFAR10 dataset,
but measuring other norms instead of the spectral complexity. The norms are:

1. (L1) Entry-wise ℓ1 norm: ∥A∥1 =
∑L

i=1

∑
j,k |(Ai)j,k|

2. (L2) Frobenius (entry-wise ℓ2) norm: ∥A∥F =
(∑L

i=1

∑
j,k(Ai)

2
j,k

)1/2
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3. (G21) Group (2, 1) norm ∥A∥2,1 =
∑L

i=1

∑
j

(∑
k(Ai)

2
k,j

)1/2
i.e. the sum over columns

of their ℓ2 norms.

4. (Spectral) norm product:
∏L

i=1 ∥Ai∥σ , where ∥Ai∥σ is the largest singular value of Ai.

In Fig. 18 and 19 we see that in all cases the qualitative picture remain the same as in the main
analysis also for these other norm definitions: plotting learning curves against every tested definition
of norm produces the two scaling laws with exponents γ1 and γ2, and rescaling by minima make the
curves to collapse over a master curve. However, the exponents predicted are not compatible with the
ones measured. This result suggest that Spectral Complexity norm of Eq. 6 is the correct quantity
that generalizes in deep networks the role of L2 norm in the Perceptron analysis.
Even if γmeas ̸= γpred = γ1γ2, we observe a compensation mechanism between γ1 and γ2 exponents:
a bigger γ1 implies in almost all cases a smaller γ2 with respect to other norms for the same model.

Model Norm γpred γmeas σ

CNN L1 0.083 0.181 0.023
CNN L2 0.118 0.181 0.028
CNN G21 0.107 0.181 0.026
CNN Spectral 0.081 0.181 0.042
ResNet L1 0.634 0.500 0.013
ResNet L2 0.750 0.500 0.013
ResNet G21 0.680 0.500 0.018
ResNet Spectral 0.641 0.500 0.011
ViT L1 0.252 0.175 0.027
ViT L2 0.323 0.175 0.040
ViT G21 0.262 0.175 0.028
ViT Spectral 0.193 0.175 0.018

Model Norm γ1 σ1 γ2 σ2

CNN L1 0.5687 0.0300 0.1458 0.0358
CNN L2 0.5894 0.0157 0.2000 0.0426
CNN G21 0.5482 0.0187 0.1958 0.0428
CNN Spectral 0.1861 0.0041 0.4339 0.2161
ResNet L1 1.1634 0.0107 0.5447 0.0087
ResNet L2 1.4406 0.0130 0.5208 0.0063
ResNet G21 1.1997 0.0157 0.5669 0.0121
ResNet Spectral 0.5699 0.0058 1.1239 0.0119
ViT L1 0.4089 0.0171 0.6170 0.0556
ViT L2 0.5491 0.0392 0.5881 0.0571
ViT G21 0.4313 0.0173 0.6075 0.0567
ViT Spectral 0.0133 0.0001 14.4951 1.1217

Table 5: Results on CIFAR10 dataset and different norm definitions. (left) Predicted and
measured exponents are not compatible using these norm definitions instead of Spectral Complexity
norm. (right) γ1 and γ2 exponents computed by fitting the data.
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Figure 18: Curves from experiments with different norm definitions on CIFAR10 dataset.

Figure 19: Curves after rescaling collapse onto a master curve also for the other norm considered.
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Figure 20: Comparison between predicted scaling laws by combining γ1 and γ2 and the empirical
one measured at end-of-training. Other norms considered predict exponents at end-of-training not
always compatible with the empirical ones, even if we can consider them as an approximation of the
correct exponent that can be computed using spectral complexity as the norm λ.
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