

000
 001
 002
 003
 004
 005
 006
 007 **IMPLICIT BIAS PRODUCES NEURAL SCALING LAWS IN**
 008 **LEARNING CURVES, FROM PERCEPTRONS TO DEEP**
 009 **NETWORKS**

010
 011 **Anonymous authors**
 012 Paper under double-blind review

013 **ABSTRACT**
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027

Scaling laws in deep learning – empirical power-law relationships linking model performance to resource growth – have emerged as simple yet striking regularities across architectures, datasets, and tasks. These laws are particularly impactful in guiding the design of state-of-the-art models, since they quantify the benefits of increasing data or model size, and hint at the foundations of interpretability in machine learning. However, most studies focus on asymptotic behavior at the end of training. In this work, we describe a richer picture by analyzing the entire training dynamics: we identify two novel *dynamical* scaling laws that govern how performance evolves as function of different norm-based complexity measures. Combined, our new laws recover the well-known scaling for test error at convergence. Our findings are consistent across CNNs, ResNets, and Vision Transformers trained on MNIST, CIFAR-10 and CIFAR-100. Furthermore, we provide analytical support using a single-layer perceptron trained with logistic loss, where we derive the new dynamical scaling laws, and we explain them through the implicit bias induced by gradient-based training.

028
 029
 030 **1 INTRODUCTION**
 031

032 Neural scaling laws have emerged as a powerful empirical description of how model performance improves as data and model size grow. The first kind of scaling laws that were
 033 identified show that test error (or loss) often follows predictable power-law declines when
 034 plotted against increasing training data or model parameters. For example, deep networks
 035 exhibit approximately power-law scaling of error with dataset size and network width or
 036 depth, a phenomenon observed across vision and language tasks (Hestness et al., 2017; Sun
 037 et al., 2017; Rosenfeld et al., 2019). Such results highlight the macroscopic regularities of
 038 neural network training, yet they largely summarize only the *end-of-training* behavior.

039 Since the advent of large language models, neural scaling laws started to include the training
 040 time, especially in the form of computational budget spent to train a given model. A seminal
 041 work (Kaplan et al., 2020) demonstrated that cross-entropy loss scales as a power law in
 042 model size, data size, and compute budget, up to an irreducible error floor. These empirical
 043 neural scaling laws, including those for generative modeling beyond language (Henighan
 044 et al., 2020), indicate a remarkably smooth improvement of generalization performance as
 045 resources increase. The main interest of this research line is, given a fixed compute budget,
 046 to find optimal way to allocate it between model size and training data such that final
 047 performance is maximized (Hoffmann et al., 2022). Even though empirical results show
 048 clean scaling laws spanning for many decades, in particular for language models, there are
 049 cases where there are different regimes with different exponents (Caballero et al., 2023). A
 050 review that compares various recent methodologies for measuring neural scaling laws can be
 051 found in Li et al. (2025). Notably, in contradiction to scaling laws, which are scale-free, some
 052 capabilities of large language models emerge at a certain scale (Wei et al., 2022). However,
 053 it is debated if such phenomena are intrinsic properties of scale or rather of the metrics used
 (Schaeffer et al., 2023).

054 A complementary line of research studied the so-called *implicit bias* of gradient-based learning
 055 dynamics. Implicit bias refers to the inherent tendencies of optimization algorithms to favor
 056 certain types of solutions, even without explicit regularization or constraints. For instance,
 057 gradient descent often finds solutions that generalize well in overparameterized models
 058 (Neyshabur et al., 2014; Zhang et al., 2017; Arnaboldi et al., 2024). Theoretical results have
 059 shown that for linearly separable classification tasks, gradient descent on exponential or
 060 logistic losses converges in direction to the *maximum-margin* classifier (Soudry et al., 2018),
 061 and analogous bias toward maximizing margins has been proven for deep homogeneous
 062 networks such as fully-connected ReLU networks (Lyu and Li, 2020) as well as certain wide
 063 two-layer networks (Chizat and Bach, 2020).

064 In this work we join these perspectives together by asking whether the implicit bias of
 065 gradient descent might itself induce predictable scaling behavior throughout the training
 066 process, in models trained with logistic loss. The results are organized as follows. Section 2
 067 focuses on perceptrons. We first observe a surprisingly good agreement between dynamical
 068 learning curves and analytical predictions from the static models with norms fixed at values
 069 corresponding to each training stage. We interpret this agreement as a **training-time**
 070 **implicit bias**. Then we use the analytical predictions to highlight **new dynamical scaling**
 071 **laws**, by plotting **learning curves as a function of the model’s increasing norm**.
 072 Finally, we show how the new scaling laws can be used to derive established neural end-of-
 073 training scaling laws. Section 3 focuses on deep architectures. By using a generalized notion
 074 of norm, we reveal that the **same set of scaling laws is present in deep networks**,
 075 consistently across architectures and datasets, robust against alternative choices of norm,
 076 training algorithms and regularization (the exponents do depend on those details). In
 077 section 4 we discuss the limits and potential consequences of these results.
 078
 079
 080
 081
 082

083 **Related works.** The perceptron has long been a canonical model in the statistical me-
 084 chanics of learning. Early work established its storage capacity using replica methods,
 085 identifying the critical pattern-to-dimension ratio beyond which classification fails (Gardner,
 086 1987; Gardner and Derrida, 1988). Later studies analyzed learning dynamics, including exact
 087 convergence times (Opper, 1988), the superior generalization of maximum-margin solutions
 088 (Opper et al., 1990), and Bayes-optimal learning curves as performance benchmarks (Opper
 089 and Haussler, 1991). Online learning was also investigated, with analyses of sequential up-
 090 dates (Biehl and Riegler, 1994), exact teacher–student dynamics in multilayer and committee
 091 machines (Saad and Solla, 1995a;b), and Bayesian online approaches (Solla and Winther,
 092 1998).

093 Our main focus is to highlight the role of the norm growth to describe the learning dynamics,
 094 which is a perspective that is absent in the classic works. To do that, we use the solution
 095 of logistic regression with fixed norm that was studied in Aubin et al. (2020). In our work
 096 we present an equivalent calculation that reveals the implicit bias at training time and, as
 097 a consequence, the new scaling laws. The idea that implicit bias can extend to the whole
 098 learning trajectory can also be found in Wu et al. (2025), restricted to the overparametrized
 099 regime.

100 Few studies on scaling laws include training time independently of the computational cost.
 101 Simple models in controlled settings exhibit a power law in the number of training steps
 102 (Velikanov and Yarotsky, 2021; Bordelon et al., 2024), favoring the discussion on the trade-off
 103 between model scale and training time (Boopathy and Fiete, 2024) that is central to the
 104 compute-optimal scalings. Particularly relevant is Montanari and Urbani (2025), where
 105 the authors connect the different dynamical regimes of a committee machine to its norm,
 106 suggesting that the same ideas that we present in our work can apply even outside the setting
 107 of logistic loss. In fact, in the case of regression with square loss, gradient descent is biased
 108 toward minimal ℓ_2 -norm solutions when there are many interpolating solutions (Gunasekar
 et al., 2017).

Figure 1: The learning curve of a perceptron with free norm resembles that of fixed-norm problems, which interpolate between known learning rules. *Left panel:* We plot the generalization error of the minimizers of the cross-entropy loss in a teacher–student setup at a fixed ratio $\alpha = 5$ of number of data over size of the system. The blue curve represents the analytical result obtained under a fixed-norm constraint (with λ as the hyperparameter of the loss), while the multicolored curve—where color varies with training time—represents the result of numerical training in the free-norm case, where λ corresponds to the norm of the weights; the model is trained with 10^6 steps of gradient descent. The horizontal lines indicate the generalization error of classical learning rules. *Right panel:* Same analysis for different values of α ; solid curves are analytical solutions at fixed norm, dashed curves are trajectories with free norm.

2 SCALING LAWS IN LEARNING CURVES OF PERCEPTRONS

This section introduces the core intuitions that we will use for deep architectures – plotting learning curves as function of the model’s norm – in a setting where we have analytical control of the optimization process.

In the case of a perceptron trained on linearly separable data, it is known that the implicit bias of gradient descent drives the weights toward the maximum-stability solution (the direction that maximizes the classification margin) while the norm grows over time (Soudry et al., 2018). In this section, we ask if the implicit bias has a role *at intermediate stages of training*. Using the well-established teacher–student framework (Gardner and Derrida, 1988), we show that the model’s behavior throughout training is qualitatively captured by the solution to the problem in which the norm is held fixed (Aubin et al., 2020). This correspondence allows us to relate the evolution of the perceptron’s norm during training to classical perceptron learning rules, offering a picture on how the implicit bias influences learning dynamics.

Model definition in Teacher–Student scenario. To have an analytical prediction of the generalization error, we consider a framework where a *student* perceptron $\mathbf{w} \in \mathbb{R}^N$ attempts to learn an unknown *teacher* perceptron $\mathbf{w}^* \in \mathbb{R}^N$ from $P = \alpha N$ labeled examples. Each example $\mathbf{x}^\mu \in \mathbb{R}^N$ is a random vector with i.i.d. components x_i^μ sampled from a Rademacher distribution $P(x_i^\mu) = \frac{1}{2}\delta(x_i^\mu - 1) + \frac{1}{2}\delta(x_i^\mu + 1)$. The corresponding labels are generated by the teacher as $y^\mu = \text{sign}(\mathbf{x}^\mu \cdot \mathbf{w}^*)$. We assume both \mathbf{w}^* and \mathbf{w} to lie on the N -sphere, i.e., $\|\mathbf{w}^*\|^2 = \|\mathbf{w}\|^2 = N$. In this setting, the generalization error (or test error), defined as the expected fraction of misclassified examples on new data, can be written as $\epsilon = \frac{1}{\pi} \arccos(R)$, where $R \equiv (\mathbf{w} \cdot \mathbf{w}^*)/N$ is the normalized overlap between student and teacher. The student minimizes a loss function $L(\mathbf{w})$. We study the logistic loss, which reads:

$$L_\lambda(\mathbf{w}) = - \sum_{\mu=1}^P \frac{1}{\lambda} (\lambda \Delta^\mu - \log 2 \cosh(\lambda \Delta^\mu)) = \sum_{\mu=1}^P V_\lambda(\Delta^\mu), \quad (1)$$

Figure 2: Fixed-norm perceptrons exhibit scaling laws in the curves of relative generalization error vs norm. *Left panel:* we plot the generalization error of the minimizers of the cross-entropy loss in the fixed-norm teacher–student setup of the perceptron, rescaled by the error of the Hebb rule ϵ_0 , as a function of the hyperparameter λ for different values of α . The stars correspond to the optimal points $(\lambda_{\text{opt}}, \hat{\epsilon}_{\text{opt}})$, i.e., the minima of the generalization error for each curve. *Right panel:* we show the same curves after rescaling each one by its corresponding optimal point. The insets display the power-law dependencies of λ_{opt} and $\hat{\epsilon}_{\text{opt}}$ as functions of α .

where we defined the *margin* of the μ -th example as $\Delta^\mu \equiv y^\mu \left(\frac{\mathbf{w} \cdot \mathbf{x}^\mu}{\sqrt{N}} \right)$, and λ is a hyperparameter controlling the sharpness of the logistic loss. Note that for the logistic cost $V_\lambda(\Delta)$ we chose the expression in Eq. (1) instead of the more common (but equivalent) $\ln(1 + e^{-\lambda\Delta})$ because the former is more convenient to discuss the limits in λ . For large N , the properties of the minimizers of Eq. (1) can be analyzed via the semi-rigorous *replica method* from the statistical mechanics of disordered systems, which outputs the average value of R from the solutions \mathbf{w} that minimize L_λ . In Appendix A we present a derivation alternative to that in Aubin et al. (2020), where we focus the analysis on the role of the growing norm, which allows us to notice the implicit bias at training time. This observation led us to notice that we can use the norm $\lambda(t)$ as a measure of training status at time t , which is one of the key contributions of our work.

λ-Regimes of the Logistic Loss. In Figure 1, we show the analytical generalization error as a function of λ , revealing three regimes:

1. **Small λ regime ($\lambda \rightarrow 0$):** The second term of Eq. (1) vanishes as $\mathcal{O}(\lambda)$, yielding $V_{\lambda \rightarrow 0}(\Delta) = -\Delta$, which corresponds (see Engel and Van den Broeck (2001)) to the Hebbian learning, and defines a baseline generalization error ϵ_0 .
2. **Intermediate regime and optimal λ :** At a finite value $\lambda_{\text{opt}}(\alpha)$, the generalization error is minimum. We find that this optimal ϵ_{opt} matches the generalization error achieved by the Bayes-optimal predictor (Opper and Haussler, 1991), suggesting that the logistic loss rule can achieve Bayes-optimality when λ is properly tuned. The dependence of $\lambda_{\text{opt}}(\alpha)$ on α is shown in the top inset of the right panel of Figure 2.
3. **Large λ regime ($\lambda \rightarrow \infty$):** The loss becomes: $V_{\lambda \rightarrow \infty}(\Delta) = -2\Delta\theta(-\Delta)$, where we defined the step function $\theta(x) = 1$ if $x > 0$ and $\theta(x) = 0$ elsewhere. This loss has a degenerate set of minima in Δ for $\Delta \geq 0$. In contrast, for any finite value λ , the minimizer of $V_\lambda(\Delta)$ is unique. For this reason, we cannot apply our method directly to this potential. To recover the generalization error ϵ_∞ in the limit $\lambda \rightarrow \infty$, one must first solve for finite λ and then take the limit $\lambda \rightarrow \infty$. We find that this limiting behavior corresponds to the generalization error of the maximally stable perceptron $\mathbf{w}_{\text{maxStable}} = \arg\max_{\mathbf{w}} [\min_\mu \Delta^\mu(\mathbf{w})]$ (Gardner, 1987; Opper et al., 1990).

In Figure 1 we presented curves for $\alpha > 1$ because the scaling laws appear more clearly, but the same regimes are present also when $\alpha < 1$ (see Fig.6 in Appendix B).

Norm scaling and interpretation. An important observation is that the logistic loss defined in Eq. (1) depends only on the product $\lambda\Delta$ (up to an overall multiplicative factor of λ that does not affect the location of the minimizers), where Δ is linear in the norm of the perceptron weights $\|\mathbf{w}\|$. Rescaling the weight norm is thus equivalent to adjusting λ , meaning that analyzing a fixed-norm perceptron with varying λ is equivalent to studying the minimizers of the loss at fixed λ and varying norm. This insight also helps explain the behavior of ϵ_∞ : it is known (Soudry et al., 2018; Montanari et al., 2024) that in the infinite-norm limit, the perceptron converges to the maximally stable solution during training (implicit bias). Building on this observation, we compare two scenarios: the **fixed-norm** case, where the norm $\|\mathbf{w}\|^2 = N$ is fixed and λ is treated as a tunable hyperparameter of the loss (the results in this setting are obtained with the replica method); and the **free-norm** case, where the parameter in the loss is fixed to 1 (i.e., we use the classical logistic loss), and the norm $\|\mathbf{w}(t)\| \equiv \lambda(t)$ is left free to evolve during training (here the perceptron is trained using standard gradient descent optimization techniques, and the results are obtained from numerical simulations).

In Figure 1, we compare the generalization curves under these two scenarios. We remark that in the fixed-norm case, each point on the curve corresponds to the endpoint of training for a different perceptron (at given λ), while in the free-norm case, the curve represents the trajectory of a single perceptron during training, with each point corresponding to a different time step as the norm evolves. We see that the free-norm trajectory is qualitatively well described by the set of fixed-norm optimal solutions, indicating that the fixed-norm static analysis captures the essential features of the learning dynamics.

Scaling laws in learning curves at training time. From the left panel of Fig. 1, we observe that for sufficiently large α the curves share the same slope but differ in their starting point – that is the generalization error ϵ_0 of Hebbian learning (for large α , $\epsilon_0 \sim \alpha^{-1/2}$). To highlight the power law scaling in λ , in the left panel of Fig. 2 we plot relative error $\hat{\epsilon}_{\text{gen}} \equiv \epsilon_{\text{gen}}/\epsilon_0$ as a function of λ . We observe that for sufficiently large values of α , the learning curves of the relative error split into two distinct regimes, which behave differently as we vary α .

1. **An early power-law regime, independent of α .** The initial part of each learning curves follows the same shape for any α , up to a value $\lambda_{\text{elbow}}(\alpha)$ where it saturates. The curves collapse for $\lambda < \lambda_{\text{elbow}}(\alpha)$ on the power law

$$\epsilon_{\text{gen}} = k_1 \lambda^{-\gamma_1} + q_1. \quad (2)$$

Here we introduce the term q_1 to be general, but in the perceptron we have $q_1 = 0$. Keeping q_1 will be useful in the next section on deep networks, where it we will connect to the *irreducible error floor* of realistic settings.

2. **A late regime, which depends on α .** After $\lambda_{\text{elbow}}(\alpha)$, the learning curves deviate from the power law and saturate or overfit following a curve whose height depends on α .

It is possible to find proper scalings that collapse also the late-phase curves (actually, the whole training curves will collapse). First, we need to discuss the scaling law for the point of minimum test error $\lambda_{\text{opt}}(\alpha)$. In the inset of the right panel of Fig. 2, we observe that the curves follow the power law

$$\lambda_{\text{opt}} = k_2 \alpha^{\gamma_2} + q_2, \quad (3)$$

Like q_1 , the term q_2 is not needed in the fixed-norm perceptron, but we introduce it to obtain a more general law applicable to deep networks. Now we can compute $\hat{\epsilon}_{\text{opt}} = \hat{\epsilon}(\lambda_{\text{opt}})$ and rescale the learning curves of the left panel horizontally by $\lambda_{\text{opt}}(\alpha)$ and vertically by $\hat{\epsilon}_{\text{opt}}$ (see Fig. 2, right panel). For large values of α , the curves collapse onto a single master curve, i.e.

$$\hat{\epsilon}_{\text{gen}}/\hat{\epsilon}_{\text{opt}} = \epsilon_{\text{gen}}/\epsilon_{\text{opt}} = \Phi(\lambda/\lambda_{\text{opt}}), \quad (4)$$

for some universal function Φ . Note that it is a common practice when studying neural scaling laws to drop models trained with too-small datasets (see Li et al. (2025)), and the fact that our scaling laws appear only for large α provides a natural justification for this practice. We also stress that these scaling laws are not a general phenomenon with any choice of loss function: in Appendix C, as a counterexample, we plot learning curves for Mean Square Error (MSE), which do not show scaling laws.

Figure 3: Early-training learning curves collapse into a power law when plotted as a function of the spectral complexity norm. We plot the generalization error ϵ as a function of the norm $\lambda(t)$ for different datasets and model architectures. Different colors in the same panel refer to training curves with increasing values of the dataset size P , ranging from small (blue tones) to large (orange tones). The specific values of P used for each dataset-model combination are listed in Appendix G.

Connection to end-of-training scaling law. It is tempting to combine the two scaling laws in Eq. 2 and 3 to recover the well known scaling law $\hat{\epsilon}_{\text{gen}}(\alpha) \sim \alpha^{-\gamma}$ at the end of training (Hestness et al., 2017). However, Eq. 2 is valid only for $\lambda < \lambda_{\text{elbow}}(\alpha)$, while $\lambda_{\text{opt}}(\alpha) > \lambda_{\text{elbow}}(\alpha)$. Therefore, substituting Eq. 3 into Eq. 2 seems an invalid step. Still, in the limit of large α , Eq. 4 implies that the whole learning curve has the same power-law scaling with α , and therefore we can use Eq. 3 for any λ . Plugging Eq. 3 in Eq. 2 we obtain

$$\hat{\epsilon}_{\text{gen}}(\alpha) = k_1(k_2\alpha^{\gamma_2} + q_2)^{-\gamma_1} + q_1. \quad (5)$$

For the perceptron Eq. 5 simplifies to $\hat{\epsilon}_{\text{gen}}(\alpha) \sim \alpha^{-\gamma_1\gamma_2}$, and we can recover γ as $\gamma_1\gamma_2$. For the fixed-norm perceptron we obtain $\gamma_1 = -1/2$ (Fig. 2, left panel) and $\gamma_2 = 1$ (Fig. 2, right panel, upper inset), which recovers $\gamma_1\gamma_2 = \gamma = -1/2$ (Fig. 2, right panel, lower inset). Exponents computed for free-norm perceptron are $\gamma_1 = 0.4901 \pm 0.0005$ and $\gamma_2 = 0.96 \pm 0.25$; we are unable to estimate γ in the free-norm case because training at large α and λ requires a number of gradient descent steps that is exponential in λ (Soudry et al., 2018). In Appendix D we provide analytical arguments to obtain the exponent in the fixed norm case and describe the numerical methods that we used to compute exponents in both cases.

3 SCALING LAWS IN LEARNING CURVES OF DEEP ARCHITECTURES

Methods. Motivated by results on perceptrons, we repeat for deep architectures the analysis of the test error ϵ versus increasing norm during training $\lambda(t)$. We test a simple

Figure 4: The whole learning curves collapse at large P with the proper scalings.
 We plot the generalization error ϵ as a function of the norm $\lambda(t)$ for different datasets and model architectures, rescaling each curve by its optimal point $(\lambda_{\text{opt}}(\alpha), \epsilon_{\text{opt}}(\alpha))$. Different colors in the same panel refer to training curves with increasing values of the dataset size P , ranging from small (blue tones) to large (orange tones). The values of P used for each dataset-model combination are listed in Appendix G.

CNN model (that in the following we will simply call "CNN") (LeCun et al., 1998a), ResNet (He et al., 2016) and Vision Transformer (Dosovitskiy et al., 2021) architectures for image classification over MNIST (LeCun et al., 1998b), CIFAR10 and CIFAR100 (Krizhevsky and Hinton, 2009) datasets. For each dataset and architecture we make a standard choice of hyperparameters (see Appendix G), without using a weight decay. Results with moderate weight-decay are reported in Appendix H. For each experiment, we select a random subset of P elements from training set and we train for a fixed number of epochs, large enough to see the test error overfit or saturate. We do this procedure for all values of P selected and then we repeat the training a number of times varying the random subset and of the initial condition of the training. See Appendix G for more details.

For the norm definition in the case of deep networks, in the main analysis we opt for the spectral complexity defined in Bartlett et al. (2017). In that work, the authors show that this quantity has desirable properties for a norm, such as yielding a converging margin distributions that reflect the complexity of the dataset. In Sec. 3. Given the set A of weight matrices A_i , the spectral complexity norm R_A of the models reads

$$R_A = \left(\prod_{i=1}^L \rho_i \|A_i\|_\sigma \right) \left(\sum_{i=1}^L \frac{\|A_i^\top - M_i^\top\|_{2,1}^{2/3}}{\|A_i\|_\sigma^{2/3}} \right)^{3/2}, \quad (6)$$

where L is the total number of layers in the network, ρ_i is the Lipschitz constant of the activation function (e.g. for ReLU: $\rho_i = 1$), A_i is the linear operator at layer i for dense

Figure 5: The combination of two power laws reproduces known scalings. We plot the combined power-law scaling of the generalization error as a function of the number of data (Equation (5)). The parameters of the power-law are chosen of the same order of magnitude as typical results obtained for deep networks.

Model	Dataset	γ_{pred}	γ_{meas}	σ
CNN	MNIST	0.60	0.55	0.09
CNN	CIFAR10	0.28	0.25	0.07
CNN	CIFAR100	0.16	0.16	0.03
ResNet	MNIST	0.57	0.69	0.08
ResNet	CIFAR10	0.54	0.56	0.04
ResNet	CIFAR100	0.31	0.37	0.03
ViT	MNIST	0.47	0.54	0.03
ViT	CIFAR10	0.23	0.21	0.03
ViT	CIFAR100	0.14	0.12	0.04

Table 1: Predicted vs. measured $\epsilon(P)$ exponents across datasets and architectures. The exponent γ_{pred} is computed by independently fitting γ_1 and γ_2 , and combining them as $\gamma_{pred} = \gamma_1 \gamma_2$. The exponent γ_{meas} is obtained by fitting the $\epsilon(P)$ curves directly. The value of σ represents an estimate of the variability of the overall process (see Appendix F for details).

layers and it is an appropriate matrix for convolutional layers (see Bartlett et al. (2017) for a complete explanation). The so-called *reference matrix* M_i is chosen as 0 for linear or convolutional layers and as the identity for residual layers. Then, $\|A_i\|_\sigma$ is defined as the largest singular value of A_i and $\|A\|_{2,1}$ is defined as the average of the ℓ_2 -norms of the column vectors.

Throughout rest of the paper, when we write $\lambda(t)$ for deep architectures we mean the spectral complexity norm $R_{A(t)}$, measured after t training epochs. We can give an intuition on Eq. 6 by analyzing the contribution of the two terms. Given a layer i , first term is the maximum amount that an input vector can be expanded in the output space, and second term is a correction that estimates the effective rank of the outputs of the layer, that is the number of columns that have weights substantially different from zero. In Appendix E (Fig. 10) we show that the relation between λ and t is non trivial, and that simply plotting $\epsilon(t)$ does not reveal the same scalings that plotting $\epsilon(\lambda(t))$ does. We always observe the monotonicity of $\lambda(t)$ if a weight-decay is not present.

Main result 1: Dynamical scaling laws. In this section we consider three architectures without changing their sizes, so P and α are interchangeable. In Fig. 3 we report the learning curves mediated over different runs, for many values P (the values change for each datasets and are reported in Appendix G, together with the other details of the training process). Notably, *we find the same dynamical scaling laws that we observed for perceptrons*: the learning curves have an early training regime independent on P and a late training regime which depends on P (compare Fig. 3 to the left panel of Fig. 2). In Fig. 4 we rescale the learning curves in the same way we did for perceptrons (dividing the axes by the optimal norm and optimal error) finding that they collapse for large P (compare Fig. 4 to the right panel of Fig. 2). Note that, at variance with perceptrons, it is sufficient to plot the generalization error to reveal the scaling laws (and not the relative error). We stress that the collapse of the learning curves is surprising because we are far from the regime where P is effectively infinite (since increasing P still decreases the generalization error of models): we have a different loss landscape for each value of P , and the early stage curves at large P includes the early stage curve of all loss landscapes at lower P .

Main result 2: Recovery of scaling laws at convergence. A natural question is whether we can use the measured values of γ_1 and γ_2 to recover the end-of-training scaling law in Eq. 5 also for deep models. In this case, since $q_2 \neq 0$ in general, we need to isolate the proper power law regime. As we show in the sketch in Fig. 5, it is possible to identify

432 two thresholds $P_- \sim (q_2/k_2)^{1/\gamma_2}$ and $P_+ \sim (k_1 k_2^{-\gamma_1}/q_1)^{1/(\gamma_1 \gamma_2)}$, which distinguish between
 433 three regimes: 1) $P \ll P_-$, where $\epsilon(P) \simeq k_1 q_2^{-\gamma} + q_1$. In this regime, we expect $\epsilon(P)$ to
 434 be close to random guessing, which for classification is $k_1 q_2^{-\gamma} + q_1 = (n-1)/n$, with n the
 435 number of classes. 2) $P_- \ll P \ll P_+$, where $\epsilon(P) \simeq k_1 k_2^{-\gamma_1} P^{-\gamma_1 \gamma_2}$. The exponent $\gamma = \gamma_1 \gamma_2$
 436 corresponds to the neural scaling law observed in Hestness et al. (2017). 3) $P \gg P_+$, where
 437 $\epsilon(P) \rightarrow q_1$. Here we approach the lowest possible error of the dataset and the performance
 438 saturates.

439
 440 For each architecture and dataset we consider, we measure γ_1, γ_2 with a procedure described
 441 in Appendix F (see the results in Tab. 2, Appendix F). In analogy with perceptrons, we can
 442 recover the exponent of end of training scaling law as $\gamma_{\text{pred}} = \gamma_1 \gamma_2$, and compare it to the
 443 value γ_{meas} that we fit directly from the minima of the learning curves at different values
 444 of P . We observe from Tab. 1 that in all cases the two values are compatible within the
 445 accuracy permitted by the fitting procedure. See Fig. 12 in Appendix F for a more detailed
 446 comparison.

447 **Effect of regularizations, alternative optimizers and different norms.** In Appendix
 448 H we show that the qualitative picture of scaling laws in learning curves holds also in the
 449 presence of a moderate weight decay. Exponents γ_1 and γ_2 change depending on the amount
 450 of weight decay, but the values of γ_{pred} remain compatible within errors with the case without
 451 weight decay. In Appendix I we show that using SGD optimizer instead of Adam in CNN
 452 architecture changes the dynamical learning curves, and consequently we obtain different
 453 values γ_1 and γ_2 . However, they produce the same end-of-training exponents $\gamma_{\text{pred}} = \gamma_1 \gamma_2$ as
 454 in the main analysis by using Adam. In short, we reproduce the scaling law from Hestness
 455 et al. (2017) even when we employ weight decay and an alternative optimizer. In Appendix
 456 J we show that also four other notions of norm reproduce the qualitative picture of the two
 457 scaling laws, but they all find incompatible values of γ_{pred} and γ_{meas} , suggesting that only
 458 the spectral complexity norm properly captures the scaling behavior.

4 DISCUSSION

461 **Summary of results.** Inspired by the implicit bias in perceptrons trained with logistic
 462 loss, our study uncovers new neural scaling laws in deep architectures that govern how test
 463 error evolves throughout training, not just at convergence.

- 465 • In perceptrons, we observe that **the whole learning curve is biased towards**
 466 **specific solutions**. Early in the training the perceptron implements Hebbian learning,
 467 then it reaches a Bayes-optimal solution and finally it overfits by approaching
 468 max-stability rule.
- 469 • The key point that we learn from perceptrons is to plot the learning curves as function
 470 of the increasing norm (we use the spectral-complexity norm for deep architectures).
 471 The resulting learning curves show two distinct regimes: an **early-training regimes**
 472 **that follows a power law** that is independent of the size of the training set, and
 473 a late-training regime that depends on the size of the training set.
- 474 • In deep networks, when the *whole* curves are rescaled by the optimal model norm
 475 and the corresponding minimum test error, **learning trajectories from different**
 476 **large-dataset regimes collapse onto a single curve**.
- 477 • Together, these scaling laws recover the classic end-of-training scaling of test error
 478 with data.

480 **Possible implications.** The analogies between the scaling laws of perceptrons and deep
 481 architectures suggests an implicit bias throughout the whole learning procedure also for
 482 deep architectures. Overfitting can be seen as follows: although the asymptotic solution
 483 maximizes classification margins, the learning trajectory may pass near solutions with fixed
 484 spectral complexity and better generalization (cf. perceptrons, Fig. 1). An interesting future
 485 research line could be to train a deep architecture while constraining its spectral complexity
 486 to follow a predetermined trend over time $\lambda(t)$ and study if such training procedure would

486 produce the same learning curves $\epsilon(\lambda)$. A second view comes from the self-similarity of early
 487 learning: the process first finds a simple solution (low complexity), then gradually increases
 488 the norm until reaching the maximum allowed by the dataset size. This provides a pictorial
 489 explanation of implicit bias: trajectories with larger datasets shadow those of smaller ones,
 490 until late training where overfitting may arise. A third, practical implication comes from
 491 the collapse of learning curves over an asymptotic master curve (Fig. 4): it is possible to
 492 measure the shape of the generalization error curve on small dataset and predict the same
 493 shape for larger datasets, which can be of great practical convenience. However, this method
 494 requires a validation with an extensive analysis of robustness across models and datasets, as
 495 done for instance in Rosenfeld et al. (2019).
 496

497 **Limitations of the comparison between perceptrons and deep architectures** The
 498 idea of a training-time bias for perceptrons is fascinating, but in this work it remains mainly
 499 qualitative. To obtain quantitative guarantees, one would need an approach similar to
 500 Wu et al. (2025), or alternatively a full solution of the training dynamics using dynamical
 501 mean-field theory (see for example Montanari and Urbani (2025)). Extending these ideas
 502 to deep architectures is compelling, but while in perceptrons we can access analytically
 503 solutions at fixed norm, there is no obvious analogous picture for deep architectures. The
 504 spectral complexity norm seems a good candidate, but the extent to which this property can
 505 be made quantitative is unknown. Here we provide a possible intuition for the success of the
 506 comparison between perceptrons and deep models: the classification margin Δ enters the
 507 cross-entropy loss in both in perceptrons (where it is normalized by the L2 norm of weights)
 508 and in deep networks. In Bartlett et al. (2017), it was shown that spectral complexity norm
 509 reproduces the "correct" normalization of margins in deep architectures. This may be the
 510 reason why the spectral complexity norm reveals in deep architectures the same scaling laws
 511 of perceptrons (see Bartlett et al. (2017) for a more detailed definition of "correct").
 512

513 **Limitations and possible extensions of our numerical analysis.** The main short-
 514 coming of our analysis is that experiments were limited to image classification. We made
 515 this choice because we wanted to form a clean conceptual picture before addressing other
 516 domains, such as language models, that require larger-scale experiments. For similar reasons
 517 we did not vary the number of parameters for each architecture, limiting our experiments to
 518 few standard architectures. Moreover, our new scaling laws are motivated by the comparison
 519 with a simple and fully understood model, and we lacked a similarly well-understood model
 520 for multi-layer perceptrons (in perceptrons we cannot increase arbitrarily the number of
 521 parameters because everything depends on the ratio P/N and there is no hidden layer).
 522 Recently, some promising works Montanari and Urbani (2025); Barbier et al. (2025), and we
 523 are optimistic that our analysis can be extended in the near future. Extending our analysis
 524 to the joint scaling with width and depth will be essential to understand how our result may
 525 impact compute-optimal predictions (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann
 526 et al., 2022) (especially in larger models, where these predictions are vital). We expect this
 527 direction to be particularly promising, since the spectral complexity norm scales properly
 528 with the width and depth of architectures. Moreover, varying the number of parameters will
 529 clarify the role of overparametrization in escaping early-training plateaus, as suggested in
 530 Arnaboldi et al. (2024).
 531

532 **Final remarks.** In this work we consolidate the evidence of dynamical scaling laws consist-
 533 ently across dataset and architectures. At the same time, by linking implicit optimization
 534 bias with empirical scaling laws, we propose a picture in which norm growth is the variable
 535 that controls neural scaling laws during training. Our findings suggest that the same implicit
 536 bias that drives gradient descent toward solutions with maximum margins may also shape
 537 the learning trajectory throughout the entire training process, potentially providing a new
 538 theoretical framework to understand the emergence of neural scaling laws, and possibly con-
 539 nnecting with dynamical scaling laws obtained with other methods (Velikanov and Yarotsky,
 2021; Bordelon et al., 2024; Arnaboldi et al., 2024; Montanari and Urbani, 2025).

540 REFERENCES

- 541
- 542 Arnaboldi, L., Krzakala, F., Loureiro, B., and Stephan, L. (2024). Escaping mediocrity:
543 how two-layer networks learn hard generalized linear models with SGD. *arXiv:2305.18502*
544 [stat].
- 545 Aubin, B., Krzakala, F., Lu, Y., and Zdeborová, L. (2020). Generalization error in high-
546 dimensional perceptrons: Approaching Bayes error with convex optimization. In *Advances*
547 in *Neural Information Processing Systems*, volume 33, pages 12199–12210. Curran Asso-
548 ciates, Inc.
- 549 Barbier, J., Camilli, F., Nguyen, M.-T., Pastore, M., and Skerk, R. (2025). Statistical physics
550 of deep learning: Optimal learning of a multi-layer perceptron near interpolation.
551
- 552 Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. (2017). Spectrally-normalized margin
553 bounds for neural networks. In *Advances in Neural Information Processing Systems*,
554 volume 30, pages 6240–6249.
- 555 Biehl, M. and Riegler, P. (1994). On-line learning with a perceptron. *Europhysics Letters*,
556 28(7):525–530.
- 557 Boopathy, A. and Fiete, I. (2024). Unified neural network scaling laws and scale-time
558 equivalence. *arXiv preprint arXiv:2409.05782*.
- 559
- 560 Bordelon, B., Atanasov, A., and Pehlevan, C. (2024). A dynamical model of neural scaling
561 laws. *arXiv preprint arXiv:2402.01092*.
- 562
- 563 Caballero, E., Gupta, K., Rish, I., and Krueger, D. (2023). Broken neural scaling laws.
- 564
- 565 Chizat, L. and Bach, F. (2020). Implicit bias of gradient descent for wide two-layer neural
566 networks trained with the logistic loss. In *Conference on Learning Theory (COLT)*.
- 567
- 568 Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
569 Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
570 (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations (ICLR).
- 571
- 572 Engel, A. and Van den Broeck, C. (2001). *Statistical Mechanics of Learning*. Cambridge
University Press.
- 573
- 574 Gardner, E. (1987). Maximum storage capacity in neural networks. *Europhysics Letters*,
4(4):481–485.
- 575
- 576 Gardner, E. and Derrida, B. (1988). Optimal storage properties of neural network models.
577 *Journal of Physics A: Mathematical and general*, 21(1):271.
- 578
- 579 Gunasekar, S., Woodworth, B., Bhojanapalli, S., Neyshabur, B., and Srebro, N. (2017). Im-
580 plicit regularization in matrix factorization. In *Advances in Neural Information Processing
Systems*, volume 30, pages 6151–6159.
- 581
- 582 He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)*, pages 770–778. IEEE.
- 583
- 584 Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C., Jackson, J., Jun, H., Brown, T. B.,
585 Dhariwal, P., Gray, S., et al. (2020). Scaling laws for autoregressive generative modeling.
586 *arXiv preprint arXiv:2010.14701*.
- 587
- 588 Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M.
589 M. A., Yang, Y., and Zhou, Y. (2017). Deep learning scaling is predictable, empirically.
590 *arXiv preprint arXiv:1712.00409*.
- 591
- 592 Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D.
593 d. L., Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). Training compute-optimal large
language models. *arXiv preprint arXiv:2203.15556*.

- 594 Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., et al. (2020).
 595 Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*.
 596
- 597 Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images
 598 (cifar-10 dataset). Technical Report Technical Report 0, University of Toronto.
 599
- 600 LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning applied
 601 to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324.
 602
- 603 LeCun, Y., Cortes, C., and Burges, C. J. C. (1998b). MNIST handwritten digit database.
 604 <http://yann.lecun.com/exdb/mnist/>. Accessed: 2025-05-14.
 605
- 606 Li, M., Kudugunta, S., and Zettlemoyer, L. (2025). (mis)fitting: A survey of scaling laws.
 607
- 608 Lyu, K. and Li, J. (2020). Gradient descent maximizes the margin of homogeneous neural
 609 networks. In *International Conference on Learning Representations (ICLR)*.
 610
- 611 Mézard, M., Parisi, G., and Virasoro, M. A. (1987). *Spin glass theory and beyond: An
 612 Introduction to the Replica Method and Its Applications*, volume 9. World Scientific
 613 Publishing Company.
 614
- 615 Montanari, A. and Urbani, P. (2025). Dynamical Decoupling of Generalization and Overfitting
 616 in Large Two-Layer Networks. *arXiv:2502.21269 [stat]*.
 617
- 618 Montanari, A., Zhong, Y., and Zhou, K. (2024). Tractability from overparametrization: The
 619 example of the negative perceptron. *Probability Theory and Related Fields*, 188(3–4):805–
 620 910. *arXiv:2110.15824*.
 621
- 622 Neyshabur, B., Tomioka, R., and Srebro, N. (2014). In search of the real inductive bias: On
 623 the role of implicit regularization in deep learning. *arXiv preprint arXiv:1412.6614*.
 624
- 625 Opper, M. (1988). Learning times of neural networks: Exact solution for a perceptron
 626 algorithm. *Physical Review A*, 38(8):3824–3826.
 627
- 628 Opper, M. and Haussler, D. (1991). Generalization performance of the optimal bayes
 629 algorithm for learning a perceptron. *Physical Review Letters*, 66(21):2677–2680.
 630
- 631 Opper, M., Kinzel, W., Klein, J., and Nehl, R. (1990). On the ability of the optimal
 632 perceptron to generalize. *Journal of Physics A: Mathematical and General*, 23(11):L581–
 633 L586.
 634
- 635 Rosenfeld, J. S., Rosenfeld, A., Belinkov, Y., and Shavit, N. (2019). A constructive prediction
 636 of the generalization error across scales. *arXiv preprint arXiv:1909.12673*.
 637
- 638 Saad, D. and Solla, S. A. (1995a). Exact solution for on-line learning in multilayer neural
 639 networks. *Physical Review Letters*, 74(21):4337–4340.
 640
- 641 Saad, D. and Solla, S. A. (1995b). On-line learning in soft committee machines. *Physical
 642 Review E*, 52(4):4225–4243.
 643
- 644 Schaeffer, R., Miranda, B., and Koyejo, S. (2023). Are emergent abilities of large language
 645 models a mirage?
 646
- 647 Solla, S. A. and Winther, O. (1998). Optimal perceptron learning: an on-line bayesian
 648 approach. In Saad, D., editor, *On-line Learning in Neural Networks*, pages 157–178.
 649 Cambridge University Press.
 650
- 651 Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit bias
 652 of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):1–57.
 653
- 654 Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting unreasonable effectiveness
 655 of data in deep learning era. In *Proceedings of the IEEE international conference on
 656 computer vision*, pages 843–852.

- 648 Velikanov, M. and Yarotsky, D. (2021). Explicit loss asymptotics in the gradient descent
649 training of neural networks. *Advances in Neural Information Processing Systems*, 34:2570–
650 2582.
- 651 Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma,
652 M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J.,
653 and Fedus, W. (2022). Emergent abilities of large language models.
- 654 Wu, J., Bartlett, P., Telgarsky, M., and Yu, B. (2025). Benefits of Early Stopping in Gradient
655 Descent for Overparameterized Logistic Regression. arXiv:2502.13283 [cs].
- 656 Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding deep
657 learning requires rethinking generalization. In *International Conference on Learning
658 Representations (ICLR)*.
- 661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

Acknowledgment of LLMs usage. The authors acknowledge the usage of LLMs for polishing the text and to produce standard functions in the code for deep networks experiments. All texts and codes produced by LLMs have been carefully analyzed and validated by the authors.

A REPLICA ANALYSIS

In this section, we provide a sketch of the necessary computations to obtain the analytical curve for the fixed-norm perceptron. We are interested in computing the generalization error, defined as the expected fraction of misclassified examples on new data. In the teacher-student setup for the perceptron presented in the main text, this is given by $\epsilon = \frac{1}{\pi} \arccos(R)$, where $R \equiv (\mathbf{w} \cdot \mathbf{w}^*)/N$ is the normalized overlap between the student and the teacher.

Given a loss function of the form

$$L(\mathbf{w}) = \sum_{\mu=1}^{P \equiv \alpha N} V(\Delta^\mu), \quad (7)$$

where $\Delta^\mu \equiv y^\mu \left(\frac{\mathbf{w} \cdot \mathbf{x}^\mu}{\sqrt{N}} \right)$ is the *margin* of the μ -th example, we therefore need to compute the typical overlap \bar{R} between a minimizer of Equation (7) and the teacher. To do this, one can study the averaged free energy, defined as

$$f(\beta) = \lim_{N \rightarrow \infty} \left(-\frac{1}{\beta N} \langle \langle \ln Z \rangle \rangle_{\mathbf{x}^\mu, \mathbf{w}^*} \right), \quad (8)$$

where β is the inverse temperature, $\langle \cdot \rangle_{\mathbf{x}^\mu, \mathbf{w}^*}$ denotes the average over the distribution of the data points $\{\mathbf{x}^\mu\}$ and the teacher vector \mathbf{w}^* . Z is the partition function defined, as

$$Z(\mathbf{w}) \equiv \int d\mu(\mathbf{w}) e^{-\beta L(\mathbf{w})}, \quad (9)$$

where $\mu(\mathbf{w})$ is the probability distribution of the student vectors, assumed to be uniform on the N -sphere. In the thermodynamic limit $N \rightarrow \infty$, only a subset of students, characterized by an overlap with the teacher $\bar{R}(\beta)$, contributes to $f(\beta)$. By taking the limit $\beta \rightarrow \infty$, one can obtain the typical overlap considering only the minimizers of the loss.

To compute the average of $\ln Z$ in Equation (8), we apply the replica method (Mézard et al., 1987), which involves rewriting the logarithmic average as

$$\langle \langle \ln Z \rangle \rangle = \lim_{n \rightarrow 0} \frac{\langle \langle Z^n \rangle \rangle - 1}{n},$$

where Z^n is the replicated partition function defined by

$$Z^{(n)} \equiv \langle \langle Z^n(\mathbf{x}^\mu, \mathbf{w}^*) \rangle \rangle_{\mathbf{x}^\mu, \mathbf{w}^*} = \left\langle \left\langle \int \prod_{a=1}^n d\mu(\mathbf{w}^a) \prod_{a=1}^n \exp(-\beta L(\mathbf{w}^a)) \right\rangle \right\rangle_{\mathbf{x}^\mu, \mathbf{w}^*}. \quad (10)$$

One can introduce new variables $R^a = (\mathbf{w}^* \cdot \mathbf{w}^a)/N$ and $q_{ab} = (\mathbf{w}^a \cdot \mathbf{w}^b)/N$, which represent the normalized overlap of student a with the teacher, and the overlap between student vectors a and b , respectively. The free energy function can then be rewritten in terms of these new variables. Under the replica symmetric ansatz, i.e., choosing solutions of the form

$$R^a = R \quad \forall a \in [1, n], \quad q_{ab} = \delta_{ab} + q(1 - \delta_{ab}) \quad \forall a, b \in [1, n]. \quad (11)$$

one obtains

$$\begin{aligned} f(\beta) &= -\text{extr}_{q, R} \left[\frac{1}{2\beta} \ln(1 - q) + \frac{q - R^2}{2\beta(1 - q)} \right. \\ &\quad \left. \times \ln \int d\Delta \frac{1}{\sqrt{2\pi(1 - q)}} \exp \left(-\beta V(\Delta) - \frac{(\Delta - \sqrt{q}t)^2}{2(1 - q)} \right) \right], \end{aligned} \quad (12)$$

756 where $H(x) = \frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right) = \frac{1}{2} \left(1 - \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)$.
 757

758 If the potential $V(\Delta)$ has a unique minimum, one can evaluate the zero-temperature limit of
 759 Equation (12), yielding
 760

$$762 f(T=0) = -\underset{x,R}{\operatorname{extr}} \left[\frac{1-R^2}{2x} - 2\alpha \int \frac{dt}{\sqrt{2\pi}} e^{-t^2/2} H\left(-\frac{Rt}{\sqrt{1-R^2}}\right) \right. \\ 763 \left. \times \left(V(\Delta_0(t, x)) + \frac{(\Delta_0(t, x) - t)^2}{2x} \right) \right] \equiv e(x, R), \quad (13)$$

767 where $x \equiv \beta(1 - q)$ and $\Delta_0(t, x) \equiv \operatorname{argmin}_\Delta \left(V(\Delta) + \frac{(\Delta - t)^2}{2x} \right)$. By solving the saddle-point
 768 equations
 769

$$771 \frac{\partial e}{\partial x} \Big|_{x=\bar{x}, R=\bar{R}} = 0, \quad \frac{\partial e}{\partial R} \Big|_{x=\bar{x}, R=\bar{R}} = 0,$$

775 one can finally recover the value \bar{R} and, consequently, the generalization error.
 776

778 B PERCEPTRON IN THE OVER PARAMETRIZED REGIME

781 In this section we show that the analysis of the different regimes in λ , shown in the main
 782 text for $\alpha > 1$, is qualitatively equivalent in the regime $\alpha < 1$. In Figure 6, we plot the
 783 generalization error as a function of the parameter λ for $\alpha = 0.5$.
 784

799 **Figure 6: The fixed-norm problem is qualitatively the same in the over-
 800 parametrized regime.** We show the generalization error of the minimizers of the cross-
 801 entropy loss in the teacher-student setup for $\alpha = 0.5$,
 802

805 C MSE LOSS IN PERCEPTRON

808 In Fig. 7 we show numerical results obtained with the same perceptron settings as in the
 809 main analysis with the only difference that loss is chosen as MSE. The qualitative picture is
 fundamentally different and we do not observe the same phenomenology.

Figure 7: MSE loss does not produce the scaling laws in learning curves as Cross-Entropy. Norm $\lambda(t)$ increases during training epochs up to a certain value, where training stops. We do not observe a scaling law in early training of the form $\epsilon \sim \lambda^{-\gamma_1}$, and $\lambda_{\text{opt}}(\alpha)$ is constant, not following second scaling-law.

D ANALYSIS OF THE SCALING LAWS IN PERCEPTRON

Fixed-norm analytical perceptron We provide an analytical argument to obtain the first scaling law of the perceptron. We begin from the zero-temperature free energy per neuron:

$$e_{\min}(\alpha) = - \underset{x > 0, -1 < R < 1}{\text{extr}} \left[\frac{1 - R^2}{2x} - 2\alpha \int_{-\infty}^{\infty} Dt H(-Rt/\sqrt{1 - R^2}) \min_{\Delta} \{V_{\lambda}(\Delta) + \frac{(\Delta - t)^2}{2x}\} \right],$$

where $Dt = \frac{dt}{\sqrt{2\pi}} e^{-t^2/2}$, $H(u) = \int_u^{\infty} Dt$.

Reusing the definition

$$\Delta_{0,\lambda}(t, x) = \arg \min_{\Delta} \left\{ V_{\lambda}(\Delta) + \frac{(\Delta - t)^2}{2x} \right\},$$

stationarity w.r.t. x and R yields the coupled equations:

$$1 - R^2 = 2\alpha \int Dt (\Delta_{0,\lambda} - t)^2 H(-Rt/\sqrt{1 - R^2}), \quad (14a)$$

$$R = \frac{2\alpha}{\sqrt{2\pi(1 - R^2)}} \int Dt \Delta_{0,\lambda}(t, x) \exp\left(-\frac{R^2 t^2}{2(1 - R^2)}\right). \quad (14b)$$

We focus on the regime $\alpha \rightarrow \infty$, where $R = 1 - \delta$, $\delta \ll 1$, $x \ll 1$, and the generalization error $\epsilon \equiv 1/\pi \arccos(R) \approx \sqrt{2\delta}/\pi$. For $x \ll 1$, we can solve the equation for Δ_0 ,

$$V'(\Delta_0) + \frac{\Delta_0 - t}{x} = 0 \quad (15)$$

order by order. By assuming that the derivative of the potential is negligible with respect to $1/x$, at first order $\Delta_0 = t$, since $x \ll 1$. We then assume $\Delta_0 \sim t + cx$. The minimizing equation leads to $V'(t + cx) + c \sim V'(t) + cxV''(t) + c = 0 \implies c = -V'(t)$, where we have implicitly assumed that $V''(t)$ is negligible respect to $1/x$. At the end we have

$$\boxed{\Delta_{0,\lambda} \sim t - V'_{\lambda}(t) x.} \quad (16)$$

As $R \rightarrow 1$,

$$H(-Rt/\sqrt{1 - R^2}) \rightarrow \Theta(t), \quad \exp\left(-\frac{R^2 t^2}{2(1 - R^2)}\right) \rightarrow \exp\left(-\frac{t^2}{4\delta}\right).$$

By plugging these two expressions into (14a), we get

$$1 - R^2 \approx 2\delta, \quad 2\alpha \int_{t>0} Dt (\Delta_{0,\lambda} - t)^2 \approx 2\alpha \langle (\Delta_{0,\lambda} - t)^2 \rangle_{t>0}.$$

864 Since $(\Delta_{0,\lambda} - t)^2 \sim x^2 V'_\lambda(t)^2$, we have
 865

$$866 \quad \delta \sim \alpha x^2 \Sigma_0(\lambda),$$

867 where we have introduced
 868

$$869 \quad \Sigma_0(\lambda) = \int_{t>0} Dt \frac{(\Delta_{0,\lambda}(t,x) - t)^2}{x^2} \xrightarrow{x \rightarrow 0} \int_{t>0} Dt [V'_\lambda(t)]^2.$$

871 Similarly, from (14b) with the combined Gaussian:
 872

$$873 \quad R \approx \frac{2\alpha}{\sqrt{4\pi\delta}} \int Dt e^{-t^2/(4\delta)} \Delta_{0,\lambda}(t,x) \sim \alpha \int \frac{dt}{\sqrt{2\pi\delta}} e^{-t^2/(4\delta)} \left(e^{-t^2/2} \Delta_{0,\lambda}(t,x) \right).$$

875 This integral exhibits a *delta sequence structure* in the $\delta \rightarrow 0$ limit, since the prefactor
 876

$$877 \quad \frac{1}{\sqrt{2\pi\delta}} e^{-t^2/(4\delta)}$$

879 acts as an approximation to the *Dirac delta function* $\delta_D(t)$. Therefore, the integral localizes
 880 around $t = 0$, and we obtain:
 881

$$882 \quad R \sim \alpha \cdot \Delta_{0,\lambda}(0, x) \sim \alpha x V'_\lambda(0)$$

883 Since $R \approx 1$:
 884

$$885 \quad \boxed{x \sim \frac{1}{\alpha V'_\lambda(0)}}. \quad (17)$$

887 Substituting x into $\delta \sim \alpha x^2 \Sigma_0(\lambda)$:
 888

$$889 \quad \boxed{\delta \sim \alpha \alpha^{-2} (V_\lambda(0))^{-2} \Sigma_0(\lambda) = \frac{\Sigma_0(\lambda)}{\alpha V'_\lambda(0)^2}} \quad (18)$$

892 For $V_\lambda(\Delta) = \Delta - \frac{1}{\lambda} \ln[2 \cosh(\lambda\Delta)]$, we compute
 893

$$894 \quad V'_\lambda(\Delta) = 1 - \tanh(\lambda\Delta), \quad V'_\lambda(0) = 1.$$

895 We now turn to
 896

$$897 \quad \Sigma_0(\lambda) = \int_{t>0} Dt [V'(t)]^2 = \int_{t>0} Dt [1 - \tanh(\lambda t)]^2.$$

898 For large λ we have:
 899

$$900 \quad \tanh(\lambda t) \sim 1 - 2e^{-2\lambda t} + \dots$$

901 Then, at leading order:
 902

$$903 \quad \Sigma_0(\lambda) \underset{\lambda \gg 1}{\sim} \int_{t>0} Dt 4e^{-4\lambda t} = 4 \int_{t>0} \frac{dt}{\sqrt{2\pi}} e^{-t^2/2} e^{-4\lambda t} \underset{t'=\lambda t}{=} \frac{4}{\lambda} \int_{t'>0} \frac{dt'}{\sqrt{2\pi}} e^{-t'^2/(2\lambda^2)} e^{-4t'} \\ 904 \quad \sim \frac{4}{\lambda} \int_{t'>0} \frac{dt'}{\sqrt{2\pi}} e^{-4t'} \sim \frac{C}{\lambda} \quad (19)$$

908 Putting this back into δ , one finally gets for the log cosh potential
 909

$$910 \quad \boxed{\delta \sim \frac{1}{\alpha \lambda} \implies \varepsilon \sim (\alpha \lambda)^{-1/2}} \quad (20)$$

913 In order to understand the regime of validity of this scaling law, we analyze the second
 914 derivative of the potential
 915

$$916 \quad V''_\lambda(\Delta) = -\lambda \operatorname{sech}^2(\lambda\Delta),$$

917 so in particular,

$$V''_\lambda(0) = -\lambda.$$

918 This means that the hypothesis $V''(t)x \sim \lambda/\alpha \ll 1$ is no longer valid when $\lambda \sim \alpha$, implying
 919 that the regime of validity of this power law is
 920

$$1 \ll \lambda \ll \alpha \quad (21)$$

922 We now provide numerical evidence of the convergence to a $-1/2$ exponent in the $\epsilon(\lambda)$ curve
 923 for the perceptron by analyzing the theoretical curves. In Fig. 8 we plot $\frac{d \log \epsilon}{d \log \lambda}$ for different
 924 values of α , showing that as α increases there appears a broader region of λ where the
 925 effective exponent approaches $-1/2$.
 926

927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941 **Figure 8: Convergence of the perceptron learning exponent.** We plot $\frac{d \log \epsilon}{d \log \lambda}$ for
 942 different values of α . As α increases, an extended region of λ develops where the effective
 943 exponent approaches $-1/2$, which corresponds to the asymptotic behavior $\epsilon \sim \lambda^{-1/2}$. The
 944 dashed red line marks the reference slope $-1/2$ while the black dotted line marks the zero
 945 derivative point.

946
 947 **Unbounded numerical perceptron** We compute the two exponents of the unbounded
 948 perceptron. For consistency, we have chosen to follow the same procedure that resulted to
 949 be the best for deep networks experiments, reported in Appendix F. In Fig. 9 we report the
 950 fitting plot for γ_1 and γ_2 exponents. The two exponents result not compatible considering
 951 errors with the analytical result for fixed-norm perceptrons $\gamma_1 = 0.5, \gamma_2 = 1.0$, but the
 952 differences are only of the order of 5%. So not only the fixed-norm analytical case predict
 953 qualitatively the dynamical behavior of the unbounded perceptron, it also approximates
 954 quantitatively the values of the dynamical exponents.
 955

956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968 **Figure 9: Dynamical exponents of unbounded Perceptron are close to the fixed-norm analytical prediction.** (left) Curves collapsed by rescaling axes for the minima, using values of $\alpha > 25$. (right) Fit of the scaling of minima of curves, $\lambda_{opt}(\alpha)$, using only curves for which the minimum have been reached during numerical simulation.

972 E TRAINING CURVES IN FUNCTION OF TIME (NUMBER OF EPOCHS)
973974 We show in fig. 10 that plotting ϵ versus time instead of λ do not make the curves collapse.
975 In particular $\lambda(t)$ is nonlinear, meaning that the two plots $\epsilon(t)$ and $\epsilon(\lambda)$ are qualitatively
976 different.
977978
979 **Figure 10: The function $\lambda(t)$ is highly non-trivial.** The left panel shows the general-
980 ization error of a CNN trained on MNIST as a function of the number of epochs for different
981 dataset sizes P . The right panel shows the behavior of the spectral complexity as a function
982 of the number of epochs.
983984 F RESULTS OF $\epsilon(P)$ POWER LAW EXPONENT COEFFICIENTS AND
985 COMPUTATION OF ERRORS
986987 The aim of this section is to explain the procedure used to compute the exponents γ_1, γ_2 of
988 the power laws
989

990
$$\epsilon = k_1 \lambda^{-\gamma_1} + q_1,$$

991
$$\lambda_{\text{opt}} = k_2 P^{\gamma_2} + q_2.$$

992 It is possible to combine the two power laws only in the regime of P large enough such that
993

994
$$\frac{\epsilon}{\epsilon_{\text{opt}}} = \Phi\left(\frac{\lambda}{\lambda_{\text{opt}}}\right),$$

995

996 with a master curve function Φ that does not depend on P .
9971000 The first passage is to decide the minimum P to consider for the procedure. We observed
1001 that a value of P slightly bigger or smaller than the chosen one did not change substantially
1002 the estimate of γ_1 . In almost all cases we used $P \sim 26000$ as the minimum value.
10031004 Then, in the collapsed graph in Fig. 11 a least-squares fit is performed over the pure
1005 power-law region to obtain a prediction of γ_1 for each value of P . The final γ_1 value is the
1006 mean, and the associated error is the error of the mean.
10071008 To obtain γ_2 the minimum of the curves λ^* is plotted versus P in Fig. 11, and from the fit
1009 γ_2 is obtained with the associated error.
10101011 Then $\gamma_{\text{pred}} = \gamma_1 \gamma_2$ and the error is
1012

1013
$$\sigma_{\text{pred}} = \gamma_{\text{pred}} \sqrt{\left(\frac{\sigma_1}{\gamma_1}\right)^2 + \left(\frac{\sigma_2}{\gamma_2}\right)^2}.$$

1014

1015 The exponent to compare with is γ_{meas} . For each value of P , we considered the minimum of
1016 the curve during training, obtaining the empirical curve of $\epsilon(P)$. Then a power-law fit is
1017 performed over that curve, obtaining γ_{meas} and the σ_{meas} of the fit. Numerical comparisons
1018 are reported in Tab. 1 and the empirical and predicted power-laws are compared visually in
1019 Fig. 12.
1020

1026 **Table 2: Results of the fit for the exponents γ_1 and γ_2 .** We report the numerical
 1027 values of the power-law exponents γ_1 and γ_2 , along with their respective uncertainties, across
 1028 different datasets and model architectures.

Model	Dataset	γ_1	σ_1	γ_2	σ_2
CNN	MNIST	0.59	0.06	1.01	0.11
CNN	CIFAR10	0.21	0.01	1.32	0.32
CNN	CIFAR100	0.112	0.003	1.44	0.22
ResNet	MNIST	1.15	0.14	0.50	0.02
ResNet	CIFAR10	0.53	0.03	1.01	0.04
ResNet	CIFAR100	0.31	0.01	1.03	0.07
ViT	MNIST	0.139	0.005	3.41	0.11
ViT	CIFAR10	0.0124	0.0002	18.4	2.1
ViT	CIFAR100	0.0068	0.0004	21	6

1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 The error assigned to the comparison of exponents is computed as $\sigma = \sqrt{\sigma_{\text{pred}}^2 + \sigma_{\text{meas}}^2}$.
 1051 We observe that the magnitude of σ is similar across experiments, while exponents change
 1052 from the maximum of $\gamma_{\text{pred}} = 0.60$ for CNN MNIST to the minimum $\gamma_{\text{pred}} = 0.14$ of ViT
 1053 CIFAR100. For this reason the relative error is higher the lower is the exponent. Being in
 1054 possess of more computational power it would be possible to mitigate this effect producing
 1055 more statistics for models and datasets with lower exponents.
 1056

1077 **Figure 11: The curve collapse helps predict the numerical exponents.** (left)
 1078 Rescaled generalization error curves used to obtain γ_1 from the fit. The fitted power laws
 1079 are shown as dashed lines. (right) The numerical fit used to estimate γ_2 .

Figure 12: The predicted power laws closely match the empirical ones. We graphically present the numerical results from Table 1. The power laws fitted on the data are compared with the predicted ones. For the predicted power laws, only the exponent is known; the coefficient is chosen to enable visual comparison.

All intermediate plots as Fig. 11, computations and choices of value of P and λ to compute power-laws reported in the paper are reported in the supplementary material, as notebooks in the repository of codes with plots and data. We did not report in the paper all details because it would have been necessary to show $\mathcal{O}(100)$ plots to evaluate all cases.

G ARCHITECTURES, DATASETS, TRAINING AND RESOURCES IN DETAILS

Architectures and hyperparameters We used PyTorch Adam optimizer for CNNs and ResNets and AdamW for ViT, in all cases with learning rate 0.001. We used the standard and most simple possible definitions of the architectures, taken from the original papers. Please refer to the code in the supplementary to the precise definition of each block and width and number of layers.

Trainings and values of P We trained for 500 epochs CNNs and for 1000 epochs ResNets and ViTs. Values of P are

- For MNIST in all cases 89, 188, 375, 750, 1500, 3000, 6000, 12000, 24000, 30000, 36000, 42000, 48000.
- For CIFAR10 and CIFAR100 with ResNet and ViT in all cases: from 6000 to 46000 every 5000.
- For CNN in CIFAR10/100, in the main analysis from 4000 to 48000 every 4000, and in computation of norms and the effect of weight decay from 6000 to 46000 every 5000.

Resources to replicate the study For perceptron curves the necessary resources are irrelevant. All deep network trainings have been carried on 18 V100 GPUs using 4 CPUs for each, for a period of two months. We set a maximum number of 30 repetitions for each training to get a statistic of learning curves and a month of computation. For smaller models we finished all 30 repetitions while for the slowest one we obtain a total of 5 repetitions.

H EFFECT OF WEIGHT DECAY

We reapeded the experiment with the 3 deep architectures analyzed in the paper over CIFAR10 dataset, but with an increasing level of weight decay (WD). In Fig. 13 and 14 we see that in all cases the qualitative picture remain the same, even if the norm of the models doesn't increase monotonically as the case without a weight-decay. In Tab. 3 we observe that the values of γ_1 and γ_2 exponents change depending on the amount of weight decay, but their product γ_{pred} remains compatible with γ_{meas} within the accuracy permitted by the fitting procedure. For ResNet architecture, with a fixed computing budget we found difficult to find the right hyperparameters to obtain overfitting or to saturate the generalization error with the weight decays used for other two architectures, so we reported the result for smaller weight-decays. Due to the increase in training time and corresponding decrease in statistics, the exponents fitted and predicted are affected by a larger error than in other two cases.

Model	WD	γ_{pred}	γ_{meas}	σ	Model	WD	γ_1	σ_1	γ_2	σ_2
CNN	1e-3	0.163	0.212	0.033	CNN	1e-3	0.2773	0.0184	0.5883	0.0943
CNN	1e-4	0.136	0.193	0.050	CNN	1e-4	0.1880	0.0133	0.7257	0.2551
CNN	1e-5	0.133	0.184	0.024	CNN	1e-5	0.1343	0.0177	0.9906	0.0815
ResNet	1e-6	0.269	0.525	0.090	ResNet	1e-6	0.6487	0.0247	0.4149	0.1342
ResNet	1e-7	0.611	0.550	0.079	ResNet	1e-7	0.6572	0.0298	0.9298	0.1101
ResNet	1e-8	0.450	0.567	0.075	ResNet	1e-8	0.6641	0.0272	0.6780	0.1047
ViT	1e-3	0.205	0.176	0.014	ViT	1e-3	0.0132	0.0003	15.5590	0.7670
ViT	1e-4	0.198	0.174	0.023	ViT	1e-4	0.0121	0.0003	16.3150	1.8161
ViT	1e-5	0.193	0.173	0.016	ViT	1e-5	0.0124	0.0003	15.5182	1.0233

Table 3: Results on CIFAR10 dataset and increasing levels of weight decay. (left) Predicted and measured exponents. **(right)** γ_1 and γ_2 exponents computed by fitting the data.

Figure 13: Curves from experiments with weight decay on CIFAR10 dataset. Values of weight decay in parentheses refer to ResNet.

Figure 14: Curves after rescaling collapse onto a master curve also in the presence of a moderate weight-decay. Values of weight decay in parentheses refer to ResNet.

Figure 15: Comparison between predicted scaling laws by combining γ_1 and γ_2 and the empirical one measured at end-of-training. Values of weight decay in parentheses refer to ResNet.

I USING SGD OPTIMIZER INSTEAD OF ADAM ON CNNS

We reapeated the experiment using SGD optimizer instead of Adam, with only CNN architecture over CIFAR10 and CIFAR100 datasets. We did not repeat the experiment over the other two more complex architecture (ResNet, ViT) because Adam and AdamW (respectively used for ResNets and ViTs) are fundamental to make these architectures work appropriately. In Fig. 16 and 17 we see that in all cases the qualitative picture remain the same as in the main analysis also for these other norm definitions. At same time exponents predicted are compatible with the ones measured, and compatible as well with the exponents measured in the main analysis using Adam optimizer. This experimental result suggests that the

Figure 17: Curves after rescaling collapse onto a master curve also in the case of SGD optimizer instead of Adam.

optimizer is not relevant for the end-of-training scaling law exponent γ , in $\epsilon \sim \epsilon^\gamma$. This instead is not true for the dynamics to reach the optimal value of weights: for example the number of epochs increases dramatically using SGD instead of Adam. This difference in the dynamics is captured from the dynamical exponent. Even though $\gamma_{pred} = \gamma_1 \gamma_2$ is equal with Adam and SGD, we observe that $\gamma_1^{SGD} > \gamma_1^{Adam}$, while $\gamma_2^{SGD} < \gamma_2^{Adam}$.

Model	Norm	γ_{pred}	γ_{meas}	σ	Model	Norm	γ_1	σ_1	γ_2	σ_2
CNN	CIFAR10	0.202	0.225	0.047	CNN	CIFAR10	0.4735	0.0268	0.4276	0.0962
CNN	CIFAR100	0.150	0.122	0.013	CNN	CIFAR100	0.1469	0.0098	1.0233	0.0170

Table 4: Results on CIFAR10/100 datasets with CNN using SGD optimizer. (left) Predicted and measured exponents. (right) γ_1 and γ_2 exponents computed by fitting the data.

Figure 16: Curves from experiments using SGD optimizer instead of Adam with CNN architecture.

Figure 18: Comparison between predicted scaling laws by combining γ_1 and γ_2 and the empirical one measured at end-of-training.

J USING OTHER DEFINITIONS OF NORM λ

We reapted the experiment with the 3 deep architectures analyzed in the paper over CIFAR10 dataset, but measuring other norms instead of the spectral complexity. The norms are:

1. (L1) Entry-wise ℓ_1 norm: $\|A\|_1 = \sum_{i=1}^L \sum_{j,k} |(A_i)_{j,k}|$
2. (L2) Frobenius (entry-wise ℓ_2) norm: $\|A\|_F = \left(\sum_{i=1}^L \sum_{j,k} (A_i)_{j,k}^2 \right)^{1/2}$
3. (G21) Group (2, 1) norm $\|A\|_{2,1} = \sum_{i=1}^L \sum_j \left(\sum_k (A_i)_{k,j}^2 \right)^{1/2}$ i.e. the sum over columns of their ℓ_2 norms.
4. (Spectral) norm product: $\prod_{i=1}^L \|A_i\|_\sigma$, where $\|A_i\|_\sigma$ is the largest singular value of A_i .

In Fig. 19 and 20 we see that in all cases the qualitative picture remain the same as in the main analysis also for these other norm definitions: plotting learning curves against every tested definition of norm produces the two scaling laws with exponents γ_1 and γ_2 , and rescaling by minima make the curves to collapse over a master curve. However, the exponents predicted are not compatible with the ones measured. This result suggest that Spectral Complexity norm of Eq. 6 is the correct quantity that generalizes in deep networks the role of L2 norm in the Perceptron analysis.

Even if $\gamma_{meas} \neq \gamma_{pred} = \gamma_1 \gamma_2$, we observe a compensation mechanism between γ_1 and γ_2 exponents: a bigger γ_1 implies in almost all cases a smaller γ_2 with respect to other norms for the same model.

Model	Norm	γ_{pred}	γ_{meas}	σ	Model	Norm	γ_1	σ_1	γ_2	σ_2
CNN	L1	0.083	0.181	0.023	CNN	L1	0.5687	0.0300	0.1458	0.0358
CNN	L2	0.118	0.181	0.028	CNN	L2	0.5894	0.0157	0.2000	0.0426
CNN	G21	0.107	0.181	0.026	CNN	G21	0.5482	0.0187	0.1958	0.0428
CNN	Spectral	0.081	0.181	0.042	CNN	Spectral	0.1861	0.0041	0.4339	0.2161
ResNet	L1	0.634	0.500	0.013	ResNet	L1	1.1634	0.0107	0.5447	0.0087
ResNet	L2	0.750	0.500	0.013	ResNet	L2	1.4406	0.0130	0.5208	0.0063
ResNet	G21	0.680	0.500	0.018	ResNet	G21	1.1997	0.0157	0.5669	0.0121
ResNet	Spectral	0.641	0.500	0.011	ResNet	Spectral	0.5699	0.0058	1.1239	0.0119
ViT	L1	0.252	0.175	0.027	ViT	L1	0.4089	0.0171	0.6170	0.0556
ViT	L2	0.323	0.175	0.040	ViT	L2	0.5491	0.0392	0.5881	0.0571
ViT	G21	0.262	0.175	0.028	ViT	G21	0.4313	0.0173	0.6075	0.0567
ViT	Spectral	0.193	0.175	0.018	ViT	Spectral	0.0133	0.0001	14.4951	1.1217

Table 5: Results on CIFAR10 dataset and different norm definitions. (left) Predicted and measured exponents are not compatible using these norm definitions instead of Spectral Complexity norm. (right) γ_1 and γ_2 exponents computed by fitting the data.

1375 **Figure 19:** Curves from experiments with different norm definitions on CIFAR10 dataset.
1376
1377

1402 **Figure 20:** Curves after rescaling collapse onto a master curve also for the other norm
1403 considered.

Figure 21: Comparison between predicted scaling laws by combining γ_1 and γ_2 and the empirical one measured at end-of-training. Other norms considered predict exponents at end-of-training not always compatible with the empirical ones, even if we can consider them as an approximation of the correct exponent that can be computed using spectral complexity as the norm λ .