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Abstract

Scaling laws in deep learning – empirical power-law relationships linking
model performance to resource growth – have emerged as simple yet strik-
ing regularities across architectures, datasets, and tasks. These laws are
particularly impactful in guiding the design of state-of-the-art models, since
they quantify the benefits of increasing data or model size, and hint at
the foundations of interpretability in machine learning. However, most
studies focus on asymptotic behavior at the end of training. In this work,
we describe a richer picture by analyzing the entire training dynamics: we
identify two novel dynamical scaling laws that govern how performance
evolves as function of different norm-based complexity measures. Combined,
our new laws recover the well-known scaling for test error at convergence.
Our findings are consistent across CNNs, ResNets, and Vision Transformers
trained on MNIST, CIFAR-10 and CIFAR-100. Furthermore, we provide
analytical support using a single-layer perceptron trained with logistic loss,
where we derive the new dynamical scaling laws, and we explain them
through the implicit bias induced by gradient-based training.

1 Introduction

Neural scaling laws have emerged as a powerful empirical description of how model per-
formance improves as data and model size grow. The first kind of scaling laws that were
identified show that test error (or loss) often follows predictable power-law declines when
plotted against increasing training data or model parameters. For example, deep networks
exhibit approximately power-law scaling of error with dataset size and network width or
depth, a phenomenon observed across vision and language tasks (Hestness et al., 2017; Sun
et al., 2017; Rosenfeld et al., 2019). Such results highlight the macroscopic regularities of
neural network training, yet they largely summarize only the end-of-training behavior.

Since the advent of large language models, neural scaling laws started to include the training
time, especially in the form of computational budget spent to train a given model. A seminal
work (Kaplan et al., 2020) demonstrated that cross-entropy loss scales as a power law in
model size, data size, and compute budget, up to an irreducible error floor. These empirical
neural scaling laws, including those for generative modeling beyond language (Henighan
et al., 2020), indicate a remarkably smooth improvement of generalization performance as
resources increase. The main interest of this research line is, given a fixed compute budget,
to find optimal way to allocate it between model size and training data such that final
performance is maximized (Hoffmann et al., 2022). Even though empirical results show
clean scaling laws spanning for many decades, in particular for language models, there are
cases where there are different regimes with different exponents (Caballero et al., 2023). A
review that compares various recent methodologies for measuring neural scaling laws can be
found in Li et al. (2025). Notably, in contradiction to scaling laws, which are scale-free, some
capabilities of large language models emerge at a certain scale (Wei et al., 2022). However,
it is debated if such phenomena are intrinsic properties of scale or rather of the metrics used
(Schaeffer et al., 2023).
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A complementary line of research studied the so-called implicit bias of gradient-based learning
dynamics. Implicit bias refers to the inherent tendencies of optimization algorithms to favor
certain types of solutions, even without explicit regularization or constraints. For instance,
gradient descent often finds solutions that generalize well in overparameterized models
(Neyshabur et al., 2014; Zhang et al., 2017; Arnaboldi et al., 2024). Theoretical results have
shown that for linearly separable classification tasks, gradient descent on exponential or
logistic losses converges in direction to the maximum-margin classifier (Soudry et al., 2018),
and analogous bias toward maximizing margins has been proven for deep homogeneous
networks such as fully-connected ReLU networks (Lyu and Li, 2020) as well as certain wide
two-layer networks (Chizat and Bach, 2020).

In this work we join these perspectives together by asking whether the implicit bias of
gradient descent might itself induce predictable scaling behavior throughout the training
process, in models trained with logistic loss. The results are organized as follows. Section 2
focuses on perceptrons. We first observe a surprisingly good agreement between dynamical
learning curves and analytical predictions from the static models with norms fixed at values
corresponding to each training stage. We interpret this agreement as a training-time
implicit bias. Then we use the analytical predictions to highlight new dynamical scaling
laws, by plotting learning curves as a function of the model’s increasing norm.
Finally, we show how the new scaling laws can be used to derive established neural end-of-
training scaling laws. Section 3 focuses on deep architectures. By using a generalized notion
of norm, we reveal that the same set of scaling laws is present in deep networks,
consistently across architectures and datasets, robust against alternative choices of norm,
training algorithms and regularization (the exponents do depend on those details). In
section 4 we discuss the limits and potential consequences of these results.

Related works. The perceptron has long been a canonical model in the statistical me-
chanics of learning. Early work established its storage capacity using replica methods,
identifying the critical pattern-to-dimension ratio beyond which classification fails (Gardner,
1987; Gardner and Derrida, 1988). Later studies analyzed learning dynamics, including exact
convergence times (Opper, 1988), the superior generalization of maximum-margin solutions
(Opper et al., 1990), and Bayes-optimal learning curves as performance benchmarks (Opper
and Haussler, 1991). Online learning was also investigated, with analyses of sequential up-
dates (Biehl and Riegler, 1994), exact teacher–student dynamics in multilayer and committee
machines (Saad and Solla, 1995a;b), and Bayesian online approaches (Solla and Winther,
1998).

Our main focus is to highlight the role of the norm growth to describe the learning dynamics,
which is a perspective that is absent in the classic works. To do that, we use the solution
of logistic regression with fixed norm that was studied in Aubin et al. (2020). In our work
we present an equivalent calculation that reveals the implicit bias at training time and, as
a consequence, the new scaling laws. The idea that implicit bias can extend to the whole
learning trajectory can also be found in Wu et al. (2025), restricted to the overparametrized
regime.

Few studies on scaling laws include training time independently of the computational cost.
Simple models in controlled settings exhibit a power law in the number of training steps
(Velikanov and Yarotsky, 2021; Bordelon et al., 2024), favoring the discussion on the trade-off
between model scale and training time (Boopathy and Fiete, 2024) that is central to the
compute-optimal scalings. Particularly relevant is Montanari and Urbani (2025), where
the authors connect the different dynamical regimes of a committee machine to its norm,
suggesting that the same ideas that we present in our work can apply even outside the setting
of logistic loss. In fact, in the case of regression with square loss, gradient descent is biased
toward minimal ℓ2-norm solutions when there are many interpolating solutions (Gunasekar
et al., 2017).
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Figure 1: The learning curve of a perceptron with free norm resembles that
of fixed-norm problems, which interpolate between known learning rules. Left
panel: We plot the generalization error of the minimizers of the cross-entropy loss in a
teacher–student setup at a fixed ratio α = 5 of number of data over size of the system. The
blue curve represents the analytical result obtained under a fixed-norm constraint (with λ
as the hyperparameter of the loss), while the multicolored curve—where color varies with
training time—represents the result of numerical training in the free-norm case, where λ
corresponds to the norm of the weights; the model is trained with 106 steps of gradient
descent. The horizontal lines indicate the generalization error of classical learning rules.
Right panel: Same analysis for different values of α; solid curves are analytical solutions at
fixed norm, dashed curves are trajectories with free norm.

2 Scaling laws in learning curves of perceptrons

This section introduces the core intuitions that we will use for deep architectures – plotting
learning curves as function of the model’s norm – in a setting where we have analytical
control of the optimization process.

In the case of a perceptron trained on linearly separable data, it is known that the implicit
bias of gradient descent drives the weights toward the maximum-stability solution (the
direction that maximizes the classification margin) while the norm grows over time (Soudry
et al., 2018). In this section, we ask if the implicit bias has a role at intermediate stages
of training. Using the well-established teacher–student framework (Gardner and Derrida,
1988), we show that the model’s behavior throughout training is qualitatively captured
by the solution to the problem in which the norm is held fixed (Aubin et al., 2020). This
correspondence allows us to relate the evolution of the perceptron’s norm during training
to classical perceptron learning rules, offering a picture on how the implicit bias influences
learning dynamics.

Model definition in Teacher-Student scenario. To have an analytical prediction of the
generalization error, we consider a framework where a student perceptron www ∈ RN attempts
to learn an unknown teacher perceptron www∗ ∈ RN from P = αN labeled examples. Each
example xxxµ ∈ RN is a random vector with i.i.d. components xµ

i sampled from a Rademacher
distribution P (xµ

i ) =
1
2δ(x

µ
i − 1) + 1

2δ(x
µ
i + 1). The corresponding labels are generated by

the teacher as yµ = sign(xxxµ ·www∗). We assume both www∗ and www to lie on the N -sphere, i.e.,
∥www∗∥2 = ∥www∥2 = N . In this setting, the generalization error (or test error), defined as the
expected fraction of misclassified examples on new data, can be written as ϵ = 1

πarccos(R),
where R ≡ (www ·www∗)/N is the normalized overlap between student and teacher. The student
minimizes a loss function L(www). We study the logistic loss, which reads:

Lλ(www) = −
P∑

µ=1

1

λ
(λ∆µ − log 2 cosh (λ∆µ)) =

P∑
µ=1

Vλ(∆
µ), (1)
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Figure 2: Fixed-norm perceptrons exhibit scaling laws in the curves of relative
generalization error vs norm. Left panel: we plot the generalization error of the
minimizers of the cross-entropy loss in the fixed-norm teacher–student setup of the perceptron,
rescaled by the error of the Hebb rule ϵ0, as a function of the hyperparameter λ for different
values of α. The stars correspond to the optimal points (λopt, ϵ̂opt), i.e., the minima of the
generalization error for each curve. Right panel: we show the same curves after rescaling
each one by its corresponding optimal point. The insets display the power-law dependencies
of λopt and ϵ̂opt as functions of α.

where we defined the margin of the µ-th example as ∆µ ≡ yµ
(
www·xxxµ
√
N

)
, and λ is a hyperpa-

rameter controlling the sharpness of the logistic loss. Note that for the logistic cost Vλ(∆) we
chose the expression in Eq. (1) instead of the more common (but equivalent) ln

(
1 + e−λ∆

)
because the former is more convenient to discuss the limits in λ. For large N , the properties
of the minimizers of Eq. (1) can be analyzed via the semi-rigorous replica method from the
statistical mechanics of disordered systems, which outputs the average value of R from the
solutions www that minimize Lλ. In Appendix A we present a derivation alternative to that
in Aubin et al. (2020), where we focus the analysis on the role of the growing norm, which
allows us to notice the implicit bias at training time. This observation led us to notice that
we can use the norm λ(t) as a measure of training status at time t, which is one of the key
contributions of our work.

λ-Regimes of the Logistic Loss. In Figure 1, we show the analytical generalization error
as a function of λ, revealing three regimes:

1. Small λ regime (λ → 0): The second term of Eq. (1) vanishes as O(λ), yielding
Vλ→0(∆) = −∆, which corresponds (see Engel and Van den Broeck (2001)) to the
Hebbian learning, and defines a baseline generalization error ϵ0.

2. Intermediate regime and optimal λ: At a finite value λopt(α), the generalization
error is minimum. We find that this optimal ϵopt matches the generalization error
achieved by the Bayes-optimal predictor (Opper and Haussler, 1991), suggesting that
the logistic loss rule can achieve Bayes-optimality when λ is properly tuned. The
dependence of λopt(α) on α is shown in the top inset of the right panel of Figure 2.

3. Large λ regime (λ → ∞): The loss becomes: Vλ→∞(∆) = −2∆θ(−∆), where
we defined the step function θ(x) = 1 if x > 0 and θ(x) = 0 elsewhere. This loss
has a degenerate set of minima in ∆ for ∆ ≥ 0. In contrast, for any finite value λ,
the minimizer of Vλ(∆) is unique. For this reason, we cannot apply our method
directly to this potential. To recover the generalization error ϵ∞ in the limit λ → ∞,
one must first solve for finite λ and then take the limit λ → ∞. We find that this
limiting behavior corresponds to the generalization error of the maximally stable
perceptron wwwmaxStable = argmax

www
[minµ ∆

µ(www)] (Gardner, 1987; Opper et al., 1990).

In Figure 1 we presented curves for α > 1 because the scaling laws appear more clearly, but
the same regimes are present also when α < 1 (see Fig.6 in Appendix B).
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Norm scaling and interpretation. An important observation is that the logistic loss
defined in Eq. (1) depends only on the product λ∆ (up to an overall multiplicative factor
of λ that does not affect the location of the minimizers), where ∆ is linear in the norm of
the perceptron weights ∥www∥. Rescaling the weight norm is thus equivalent to adjusting λ,
meaning that analyzing a fixed-norm perceptron with varying λ is equivalent to studying
the minimizers of the loss at fixed λ and varying norm. This insight also helps explain
the behavior of ϵ∞: it is known (Soudry et al., 2018; Montanari et al., 2024) that in the
infinite-norm limit, the perceptron converges to the maximally stable solution during training
(implicit bias). Building on this observation, we compare two scenarios: the fixed-norm
case, where the norm ∥www∥2 = N is fixed and λ is treated as a tunable hyperparameter of the
loss (the results in this setting are obtained with the replica method); and the free-norm
case, where the parameter in the loss is fixed to 1 (i.e., we use the classical logistic loss), and
the norm ∥www(t)∥ ≡ λ(t) is left free to evolve during training (here the perceptron is trained
using standard gradient descent optimization techniques, and the results are obtained from
numerical simulations).

In Figure 1, we compare the generalization curves under these two scenarios. We remark
that in the fixed-norm case, each point on the curve corresponds to the endpoint of training
for a different perceptron (at given λ), while in the free-norm case, the curve represents the
trajectory of a single perceptron during training, with each point corresponding to a different
time step as the norm evolves. We see that the free-norm trajectory is qualitatively well
described by the set of fixed-norm optimal solutions, indicating that the fixed-norm static
analysis captures the essential features of the learning dynamics.

Scaling laws in learning curves at training time. From the left panel of Fig. 1, we
observe that for sufficiently large α the curves share the same slope but differ in their starting
point – that is the generalization error ϵ0 of Hebbian learning (for large α, ϵ0 ∼ α−1/2).
To highlight the power law scaling in λ, in the left panel of Fig. 2 we plot relative error
ϵ̂gen ≡ ϵgen/ϵ0 as a function of λ. We observe that for sufficiently large values of α, the
learning curves of the relative error split into two distinct regimes, which behave differently
as we vary α.

1. An early power-law regime, independent of α. The initial part of each learning
curves follows the same shape for any α, up to a value λelbow(α) where it saturates.
The curves collapse for λ < λelbow(α) on the power law

ϵ̂gen = k1λ
−γ1 + q1. (2)

Here we introduce the term q1 to be general, but in the perceptron we have q1 = 0.
Keeping q1 will be useful in the next section on deep networks, where it we will
connect to the irreducible error floor of realistic settings.

2. A late regime, which depends on α. After λelobw(α), the learning curves deviate
from the power law and saturate or overfit following a curve whose height depends
on α.

It is possible to find proper scalings that collapse also the late-phase curves (actually, the
whole training curves will collapse). First, we need to discuss the scaling law for the point of
minimum test error λopt(α). In the inset of the right panel of Fig. 2, we observe that the
curves follow the power law

λopt = k2α
γ2 + q2, (3)

Like q1, the term q2 is not needed in the fixed-norm perceptron, but we introduce it to obtain
a more general law applicable to deep networks. Now we can compute ϵ̂opt = ϵ̂(λopt) and
rescale the learning curves of the left panel horizontally by λopt(α) and vertically by ϵ̂opt (see
Fig. 2, right panel). For large values of α, the curves collapse onto a single master curve, i.e.

ϵ̂gen/ϵ̂opt = ϵgen/ϵopt = Φ(λ/λopt), (4)
for some universal function Φ. Note that it is a common practice when studying neural
scaling laws to drop models trained with too-small datasets (see Li et al. (2025)), and the
fact that our scaling laws appear only for large α provides a natural justification for this
practice. We also stress that these scaling laws are not a general phenomenon with any
choice of loss function: in Appendix C, as a counterexample, we plot learning curves for
Mean Square Error (MSE), which do not show scaling laws.
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Figure 3: Early-training learning curves collapse into a power law when plotted
as a function of the spectral complexity norm. We plot the generalization error ϵ
as a function of the norm λ(t) for different datasets and model architectures. Different
colors in the same panel refer to training curves with increasing values of the dataset size P ,
ranging from small (blue tones) to large (orange tones). The specific values of P used for
each dataset-model combination are listed in Appendix G.

Connection to end-of-training scaling law. It is tempting to combine the two scaling
laws in Eq. 2 and 3 to recover the well know scaling law ϵ̂gen(α) ∼ α−γ at the end of
training (Hestness et al., 2017). However, Eq. 2 is valid only for λ < λelbow(α), while
λopt(α) > λelbow(α). Therefore, substituting Eq. 3 into Eq. 2 seems an invalid step. Still,
in the limit of large α, Eq. 4 implies that the whole learning curve has the same power-law
scaling with α, and therefore we can use Eq. 3 for any λ. Plugging Eq. 3 in Eq. 2 we obtain

ϵ̂gen(α) = k1
(
k2α

γ2 + q2)
−γ1 + q1. (5)

For the perceptron Eq. 5 simplifies to ϵ̂gen(α) ∼ α−γ1γ2 , and we can recover γ as γ1γ2. For
the fixed-norm perceptron we obtain γ1 = −1/2 (Fig. 2, left panel) and γ2 = 1 (Fig. 2,
right panel, upper inset), which recovers γ1γ2 = γ = −1/2 (Fig. 2, right panel, lower inset).
Exponents computed for free-norm perceptron are γ1 = 0.4901± 0.0005 and γ2 = 0.96± 0.25;
we are unable to estimate γ in the free-norm case because training at large α and λ requires a
number of gradient descent steps that is exponential in λ (Soudry et al., 2018). In Appendix
D we provide analtical arguments to obtain the exponent in the fixed norm case and describe
the numerical methods that we used to compute exponents in both cases.

3 Scaling laws in learning curves of deep architectures

Methods. Motivated by results on perceptrons, we repeat for deep architectures the
analysis of the test error ϵ versus increasing norm during training λ(t). We test a simple

6
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Figure 4: The whole learning curves collapse at large P with the proper scalings.
We plot the generalization error ϵ as a function of the norm λ(t) for different datasets and
model architectures, rescaling each curve by its optimal point (λopt(α), ϵopt(α)). Different
colors in the same panel refer to training curves with increasing values of the dataset size
P , ranging from small (blue tones) to large (orange tones). The values of P used for each
dataset-model combination are listed in Appendix G.

CNN model (that in the following we will simply call "CNN") (LeCun et al., 1998a), ResNet
(He et al., 2016) and Vision Transformer (Dosovitskiy et al., 2021) architectures for image
classification over MNIST (LeCun et al., 1998b), CIFAR10 and CIFAR100 (Krizhevsky and
Hinton, 2009) datasets. For each dataset and architecture we make a standard choice of
hyperparameters (see Appendix G), without using a weight decay. Results with moderate
weight-decay are reported in Appendix H. For each experiment, we select a random subset
of P elements from training set and we train for a fixed number of epochs, large enough to
see the test error overfit or saturate. We do this procedure for all values of P selected and
then we repeat the training a number of times varying the random subset and of the initial
condition of the training. See Appendix G for more details.

For the norm definition in the case of deep networks, in the main analysis we opt for the
spectral complexity defined in Bartlett et al. (2017), In that work, the authors show that
this quantity has desirable properties for a norm, such as yielding a converging margin
distributions that reflect the complexity of the dataset. In Sec. 3. Given the set A of weight
matrices Ai, the spectral complexity norm RA of the models reads

RA =

(
L∏

i=1

ρi ∥Ai∥σ

)(
L∑

i=1

∥A⊤
i −M⊤

i ∥ 2/3
2,1

∥Ai∥ 2/3
σ

)3/2

, (6)

where L is the total number of layers in the network, ρi is the Lipschitz constant of the
activation function (e.g. for ReLU: ρi = 1), Ai is the linear operator at layer i for dense

7
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Figure 5: The combination of two
power laws reproduces known scal-
ings. We plot the combined power-law
scaling of the generalization error as a
function of the number of data (Equation
(5)). The parameters of the power-law are
chosen of the same order of magnitude as
typical results obtained for deep networks.

Model Dataset γpred γmeas σ

CNN MNIST 0.60 0.55 0.09
CNN CIFAR10 0.28 0.25 0.07
CNN CIFAR100 0.16 0.16 0.03
ResNet MNIST 0.57 0.69 0.08
ResNet CIFAR10 0.54 0.56 0.04
ResNet CIFAR100 0.31 0.37 0.03
ViT MNIST 0.47 0.54 0.03
ViT CIFAR10 0.23 0.21 0.03
ViT CIFAR100 0.14 0.12 0.04

Table 1: Predicted vs. measured ϵ(P ) ex-
ponents across datasets and architectures.
The exponent γpred is computed by indepen-
dently fitting γ1 and γ2, and combining them as
γpred = γ1γ2. The exponent γmeas is obtained
by fitting the ϵ(P ) curves directly. The value of
σ represents an estimate of the variability of the
overall process (see Appendix F for details).

layers and it is an appropriate matrix for convolutional layers (see Bartlett et al. (2017)
for a complete explanation). The so-called reference matrix Mi is chosen as 0 for linear
or convolutional layers and as the identity for residual layers. Then, ∥Ai∥σ is defined as
the largest singular value of Ai and ∥A∥2,1 is defined as the average of the ℓ2-norms of the
column vectors.

Throughout rest of the paper, when we write λ(t) for deep architectures we mean the spectral
complexity norm RA(t), measured after t training epochs. We can give an intuition on Eq. 6
by analyzing the contribution of the two terms. Given a layer i, first term is the maximum
amount that an input vector can be expanded in the output space, and second term is a
correction that estimates the effective rank of the outputs of the layer, that is the number of
columns that have weights substantially different from zero. In Appendix E (Fig. 10) we
show that the relation between λ and t is non trivial, and that simply plotting ϵ(t) does not
reveal the same scalings that plotting ϵ(λ(t)) does. We always observe the monotonicity of
λ(t) if a weight-decay is not present.

Main result 1: Dynamical scaling laws. In this section we consider three architectures
without changing their sizes, so P and α are interchangeable. In Fig. 3 we report the
learning curves mediated over different runs, for many values P (the values change for each
datasets and are reported in Appendix G, together with the other details of the training
process). Notably, we find the same dynamical scaling laws that we observed for perceptrons:
the learning curves have an early training regime independent on P and a late training
regime which depends on P (compare Fig. 3 to the left panel of Fig. 2). In Fig. 4 we
rescale the learning curves in the same way we did for perceptrons (dividing the axes by the
optimal norm and optimal error) fiding that they collapse for large P (compare Fig. 4 to the
right panel of Fig. 2). Note that, at variance with perceptrons, it is sufficient to plot the
generalization error to reveal the scaling laws (and not the relative error). We stress that
the collapse of the learning curves is surprising because we are far from the regime where P
is effectively infinite (since increasing P still decreases the generalization error of models):
we have a different loss landscape for each value of P , and the early stage curves at large P
includes the early stage curve of all loss landscapes at lower P .

Main result 2: Recovery of scaling laws at convergence. A natural question is
wether we can use the measured values of γ1 and γ2 to recover the end-of-training scaling
law in Eq. 5 also for deep models. In this case, since q2 ̸= 0 in general, we need to isolate
the proper power law regime. As we show in the sketch in Fig. 5, it is possible to identify
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two thresholds P− ∼ (q2/k2)
1/γ2 and P+ ∼ (k1k

−γ1

2 /q1)
1/(γ1γ2), which distinguish between

three regimes: 1) P ≪ P−, where ϵ(P ) ≃ k1q
−γ
2 + q1. In this regime, we expect ϵ(P ) to

be close to random guessing, which for classification is k1q
−γ
2 + q1 = (n− 1)/n, with n the

number of classes. 2) P− ≪ P ≪ P+, where ϵ(P ) ≃ k1k
−γ1

2 P−γ1γ2 . The exponent γ = γ1γ2
corresponds to the neural scaling law observed in Hestness et al. (2017). 3) P ≫ P+, where
ϵ(P ) → q1. Here we approach the lowest possible error of the dataset and the performance
saturates.

For each architecture and dataset we consider, we measure γ1, γ2 with a procedure described
in Appendix F (see the results in Tab. 2, Appendix F). In analogy with perceptrons, we can
recover the exponent of end of training scaling law as γpred = γ1γ2, and compare it to the
value γmeas that we fit directly from the minima of the learning curves at different values
of P . We observe from Tab. 1 that in all cases the two values are compatible within the
accuracy permitted by the fitting procedure. See Fig. 12 in Appendix F for a more detailed
comparison.

Effect of regularizations, alternative optimizers and different norms. In Appendix
H we show that the qualitative picture of scaling laws in learning curves holds also in the
presence of a moderate weight decay. Exponents γ1 and γ2 change depending on the amount
of weight decay, but the values of γpred remain compatible within errors with the case without
weight decay. In Appendix I we show that using SGD optimizer instead of Adam in CNN
architecture changes the dynamical learning curves, and consequently we obtain different
values γ1 and γ2. However, they produce the same end-of-training exponents γpred = γ1γ2 as
in the main analysis by using Adam. In short, we reproduce the scaling law from Hestness
et al. (2017) even when we employ weight decay and an alternative optimizer. In Appendix
J we show that also four other notions of norm reproduce the qualitative picture of the two
scaling laws, but they all find incompatible values of γpred and γmeas, suggesting that only
the spectral complexity norm properly captures the scaling behavior.

4 Discussion

Summary of results. Inspired by the implicit bias in perceptrons trained with logistic
loss, our study uncovers new neural scaling laws in deep architectures that govern how test
error evolves throughout training, not just at convergence.

• In perceptrons, we observe that the whole learning curve is biased towards
specific solutions. Early in the training the perceptron implements Hebbian learn-
ing, then it reaches a Bayes-optimal solution and finally it overfits by approaching
max-stability rule.

• The key point that we learn from perceptrons is to plot the learning curves as function
of the increasing norm (we use the spectral-complexity norm for deep architectures).
The resulting learning curves show two distinct regimes: an early-training regimes
that follows a power law that is independent of the size of the training set, and
a late-training regime that depends on the size of the training set.

• In deep networks, when the whole curves are rescaled by the optimal model norm
and the corresponding minimum test error, learning trajectories from different
large-dataset regimes collapse onto a single curve.

• Together, these scaling laws recover the classic end-of-training scaling of test error
with data.

Possible implications. The analogies between the scaling laws of perceptrons and deep
architectures suggests an implicit bias throughout the whole learning procedure also for
deep architectures. Overfitting can be seen as follows: although the asymptotic solution
maximizes classification margins, the learning trajectory may pass near solutions with fixed
spectral complexity and better generalization (cf. perceptrons, Fig. 1). An interesting future
research line could be to train a deep architecture while constraining its spectral complexity
to follow a predetermined trend over time λ(t) and study if such training procedure would

9
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produce the same learning curves ϵ(λ) . A second view comes from the self-similarity of early
learning: the process first finds a simple solution (low complexity), then gradually increases
the norm until reaching the maximum allowed by the dataset size. This provides a pictorial
explanation of implicit bias: trajectories with larger datasets shadow those of smaller ones,
until late training where overfitting may arise. A third, practical implication comes from
the collapse of learning curves over an asymptotic master curve (Fig. 4): it is possible to
measure the shape of the generalization error curve on small dataset and predict the same
shape for larger datasets, which can be of great practical convenience. However, this method
requires a validation with an extensive analysis of robustness across models and datasets, as
done for instance in Rosenfeld et al. (2019).

Limitations of the comparison between perceptrons and deep architectures The
idea of a training-time bias for perceptrons is fascinating, but in this work it remains mainly
qualitative. To obtain quantitative guarantees, one would need an approach similar to
Wu et al. (2025), or alternatively a full solution of the training dynamics using dynamical
mean-field theory (see for example Montanari and Urbani (2025)). Extending these ideas
to deep architectures is compelling, but while in perceptrons we can access analytically
solutions at fixed norm, there is no obvious analogous picture for deep architectures. The
spectral complexity norm seems a good candidate, but the extent to which this property can
be made quantitative is unknown. Here we provide a possible intuition for the success of the
comparison between perceptrons and deep models: the classification margin ∆ enters the
cross-entropy loss in both in perceptrons (where it is normalized by the L2 norm of weights)
and in deep networks. In Bartlett et al. (2017), it was shown that spectral complexity norm
reproduces the "correct" normalization of margins in deep architectures. This may be the
reason why the spectral complexity norm reveals in deep architectures the same scaling laws
of perceptrons (see Bartlett et al. (2017) for a more detailed definition of "correct").

Limitations and possible extensions of our numerical analysis. The main short-
coming of our analysis is that experiments were limited to image classification. We made
this choice because we wanted to form a clean conceptual picture before addressing other
domains, such as language models, that require larger-scale experiments. For similar reasons
we did not vary the number of parameters for each architecture, limiting our experiments to
few standard architectures. Moreover, our new scaling laws are motivated by the comparison
with a simple and fully understood model, and we lacked a similarly well-understood model
for multi-layer perceptrons (in perceptrons we cannot increase arbitrarily the number of
parameters because everything depends on the ratio P/N and there is no hidden layer).
Recently, some promising works Montanari and Urbani (2025); Barbier et al. (2025), and we
are optimistic that our analysis can be extended in the near future. Extending our analysis
to the joint scaling with width and depth will be essential to understand how our result may
impact compute-optimal predictions (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann
et al., 2022) (especially in larger models, where these predictions are vital). We expect this
direction to be particularly promising, since the spectral complexity norm scales properly
with the width and depth of architectures. Moreover, varying the number of parameters will
clarify the role of overparametrization in escaping early-training plateaus, as suggested in
Arnaboldi et al. (2024).

Final remarks. In this work we consolidate the evidence of dynamical scaling laws consis-
tently across dataset and architectures. At the same time, by linking implicit optimization
bias with empirical scaling laws, we propose a picture in which norm growth is the variable
that controls neural scaling laws during training. Our findings suggest that the same implicit
bias that drives gradient descent toward solutions with maximum margins may also shape
the learning trajectory throughout the entire training process, potentially providing a new
theoretical framework to understand the emergence of neural scaling laws, and possibly con-
necting with dynamical scaling laws obtained with other methods (Velikanov and Yarotsky,
2021; Bordelon et al., 2024; Arnaboldi et al., 2024; Montanari and Urbani, 2025).
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Appendix

Acknowledgment of LLMs usage. The authors acknowledge the usage of LLMs for pol-
ishing the text and to produce standard functions in the code for deep networks experiments.
All texts and codes produced by LLMs have been carefully analyzed and validated by the
authors.

A Replica Analysis

In this section, we provide a sketch of the necessary computations to obtain the analytical
curve for the fixed-norm perceptron. We are interested in computing the generalization error,
defined as the expected fraction of misclassified examples on new data. In the teacher-student
setup for the perceptron presented in the main text, this is given by ϵ = 1

πarccos(R), where
R ≡ (www ·www∗)/N is the normalized overlap between the student and the teacher.

Given a loss function of the form

L(www) =
P≡αN∑
µ=1

V (∆µ), (7)

where ∆µ ≡ yµ
(
www·xxxµ
√
N

)
is the margin of the µ-th example, we therefore need to compute the

typical overlap R̄ between a minimizer of Equation (7) and the teacher. To do this, one can
study the averaged free energy, defined as

f(β) = lim
N→∞

(
− 1

βN
⟨⟨lnZ⟩⟩xxxµ,www∗

)
, (8)

where β is the inverse temperature, ⟨·⟩xxxµ,www∗ denotes the average over the distribution of the
data points {xxxµ} and the teacher vector www∗. Z is the partition function defined, as

Z(www) ≡
∫

dµ(www) e−βL(www), (9)

where µ(www) is the probability distribution of the student vectors, assumed to be uniform on
the N -sphere. In the thermodynamic limit N → ∞, only a subset of students, characterized
by an overlap with the teacher R̄(β), contributes to f(β). By taking the limit β → ∞, one
can obtain the typical overlap considering only the minimizers of the loss.

To compute the average of lnZ in Equation (8), we apply the replica method (Mézard et al.,
1987), which involves rewriting the logarithmic average as

⟨⟨lnZ⟩⟩ = lim
n→0

⟨⟨Zn⟩⟩ − 1

n
,

where Zn is the replicated partition function defined by

Z(n) ≡ ⟨⟨Zn(xxxµ,www∗)⟩⟩xxxµ,www∗ =

〈〈∫ n∏
a=1

dµ(wwwa)

n∏
a=1

exp (−βL(wwwa))

〉〉
xxxµ,www∗

. (10)

One can introduce new variables Ra = (www∗ ·wwwa)/N and qab = (wwwa ·wwwb)/N , which represent
the normalized overlap of student a with the teacher, and the overlap between student vectors
a and b, respectively. The free energy function can then be rewritten in terms of these new
variables. Under the replica symmetric ansatz, i.e., choosing solutions of the form

Ra = R ∀a ∈ [1, n], qab = δab + q(1− δab) ∀a, b ∈ [1, n]. (11)
one obtains

f(β) = −extr
q,R

[
1

2β
ln(1− q) +

q −R2

2β(1− q)

× ln

∫
d∆

1√
2π(1− q)

exp

(
−βV (∆)−

(∆−√
qt)2

2(1− q)

)]
, (12)
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where H(x) = 1
2 erfc

(
x√
2

)
= 1

2

(
1− erf

(
x√
2

))
.

If the potential V (∆) has a unique minimum, one can evaluate the zero-temperature limit of
Equation (12), yielding

f(T = 0) = −extr
x,R

[
1−R2

2x
− 2α

∫
dt√
2π

e−t2/2 H

(
− Rt√

1−R2

)
×
(
V (∆0(t, x)) +

(∆0(t, x)− t)2

2x

)]
≡ e(x,R), (13)

where x ≡ β(1− q) and ∆0(t, x) ≡ argmin∆

(
V (∆) + (∆−t)2

2x

)
. By solving the saddle-point

equations

∂e

∂x

∣∣∣∣
x=x̄, R=R̄

= 0,
∂e

∂R

∣∣∣∣
x=x̄, R=R̄

= 0,

one can finally recover the value R̄ and, consequently, the generalization error.

B Perceptron in the over parametrized regime

In this section we show that the analysis of the different regimes in λ, shown in the main
text for α > 1, is qualitatively equivalent in the regime α < 1. In Figure 6, we plot the
generalization error as a function of the parameter λ for α = 0.5.

Figure 6: The fixed-norm problem is qualitatively the same in the over-
parametrized regime. We show the generalization error of the minimizers of the cross-
entropy loss in the teacher-student setup for α = 0.5,

C MSE loss in Perceptron

In Fig. 7 we show numerical results obtained with the same perceptron settings as in the
main analysis with the only difference that loss is chosen as MSE. The qualitative picture is
fundamentally different and we do not observe the same phenomenology.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: MSE loss does not produce the scaling laws in learning curves as
Cross-Entropy. Norm λ(t) increases during training epochs up to a certain value, where
training stops. We do not observe a scaling law in early training of the form ϵ ∼ λ−γ1 , and
λopt(α) is constant, not following second scaling-law.

D Analysis of the scaling laws in Perceptron

Fixed-norm analytical perceptron We provide an analytical argument to obtain the
first scaling law of the perceptron. We begin from the zero-temperature free energy per
neuron:

emin(α) = − extr
x>0,−1<R<1

[1−R2

2x
− 2α

∫ ∞

−∞
Dt H

(
−R t/

√
1−R2

)
min
∆

{Vλ(∆) + (∆−t)2

2x }
]
,

where Dt = dt√
2π

e−t2/2, H(u) =
∫∞
u

Dt.

Reusing the definition

∆0,λ(t, x) = argmin
∆

{
Vλ(∆) + (∆−t)2

2x

}
,

stationarity w.r.t. x and R yields the coupled equations:

1−R2 = 2α

∫
Dt (∆0,λ − t)2 H

(
−R t/

√
1−R2

)
, (14a)

R =
2α√

2π (1−R2)

∫
Dt ∆0,λ(t, x) exp

(
− R2t2

2(1−R2)

)
. (14b)

We focus on the regime α → ∞, where R = 1 − δ, δ ≪ 1 , x ≪ 1, and the generalization
error ε ≡ 1/π arccos(R) ≈

√
2δ/π. For x ≪ 1, we can solve the equation for ∆0,

V ′(∆0) +
∆0 − t

x
= 0 (15)

order by order. By assuming that the derivative of the potential is negligible with respect
to 1/x, at first order ∆0 = t, since x ≪ 1. We then assume ∆0 ∼ t+ c x. The minimizing
equation leads to V ′(t+ c x) + c ∼ V ′(t) + c xV ′′(t) + c = 0 =⇒ c = −V ′(t), where we have
implicitly assumed that V ′′(t) is negligible respect to 1/x. At the end we have

∆0,λ ∼ t− V ′
λ(t) x . (16)

As R → 1,

H
(
−R t/

√
1−R2

)
−→ Θ(t), exp

(
− R2t2

2(1−R2)

)
−→ exp

(
− t2

4δ

)
.

By plugging these two expressions into (14a), we get

1−R2 ≈ 2δ, 2α

∫
t>0

Dt (∆0,λ − t)2 ≈ 2α
〈
(∆0,λ − t)2

〉
t>0

.
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Since (∆0,λ − t)2 ∼ x2V ′
λ(t)

2, we have

δ ∼ αx2 Σ0(λ),

where we have introduced

Σ0(λ) =

∫
t>0

Dt
(∆0,λ(t, x)− t)2

x2
−−−→
x→0

∫
t>0

Dt [V ′
λ(t)]

2.

Similarly, from (14b) with the combined Gaussian:

R ≈ 2α√
4πδ

∫
Dt e−t2/(4δ)∆0,λ(t, x) ∼ α

∫
dt√
2πδ

e−t2/(4δ)
(
e−t2/2 ∆0,λ(t, x)

)
.

This integral exhibits a delta sequence structure in the δ → 0 limit, since the prefactor

1√
2πδ

e−t2/(4δ)

acts as an approximation to the Dirac delta function δD(t). Therefore, the integral localizes
around t = 0, and we obtain:

R ∼ α ·∆0,λ(0, x) ∼ αxV ′
λ(0)

Since R ≈ 1:

x ∼ 1

αV ′
λ(0)

. (17)

Substituting x into δ ∼ αx2 Σ0(λ):

δ ∼ α α−2(Vλ(0))
−2 Σ0(λ) =

Σ0(λ)

αV ′
λ(0)

2
(18)

For Vλ(∆) = ∆− 1
λ ln[2 cosh(λ∆)], we compute

V ′
λ(∆) = 1− tanh(λ∆), V ′

λ(0) = 1.

We now turn to

Σ0(λ) =

∫
t>0

Dt [V ′(t)]2 =

∫
t>0

Dt [1− tanh(λt)]2.

For large λ we have:
tanh(λt) ∼ 1− 2e−2λt + . . . .

Then, at leading order:

Σ0(λ) ∼
λ≫1

∫
t>0

Dt 4e−4λt = 4

∫
t>0

dt√
2π

e−t2/2e−4λt =
t′=λt

4

λ

∫
t′>0

dt′√
2π

e−t′2/(2λ2)e−4t′

∼ 4

λ

∫
t′>0

dt′√
2π

e−4t′ ∼ C

λ
(19)

Putting this back into δ, one finally gets for the log cosh potential

δ ∼ 1

αλ
=⇒ ε ∼ (αλ)−1/2 (20)

In order to understand the regime of validity of this scaling law, we analyze the second
derivative of the potential

V ′′
λ (∆) = −λ sech2(λ∆),

so in particular,
V ′′
λ (0) = −λ.
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This means that the hypothesis V ′′(t)x ∼ λ/α ≪ 1 is no longer valid when λ ∼ α, implying
that the regime of validity of this power law is

1 ≪ λ ≪ α (21)

We now provide numerical evidence of the convergence to a −1/2 exponent in the ϵ(λ) curve
for the perceptron by analyzing the theoretical curves. In Fig. 8 we plot d log ϵ

d log λ for different
values of α, showing that as α increases there appears a broader region of λ where the
effective exponent approaches −1/2.

10 2 10 1 100 101 1020.6
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Figure 8: Convergence of the perceptron learning exponent. We plot d log ϵ
d log λ for

different values of α. As α increases, an extended region of λ develops where the effective
exponent approaches −1/2, which corresponds to the asymptotic behavior ϵ ∼ λ−1/2. The
dashed red line marks the reference slope −1/2 while the black dotted line marks the zero
derivative point.

Unbounded numerical perceptron We compute the two exponents of the unbounded
perceptron. For consistency, we have chosen to follow the same procedure that resulted to
be the best for deep networks experiments, reported in Appendix F. In Fig. 9 we report the
fitting plot for γ1 and γ2 exponents. The two exponents result not compatible considering
errors with the analytical result for fixed-norm perceptrons γ1 = 0.5, γ2 = 1.0, but the
differences are only of the order of 5%. So not only the fixed-norm analytical case predict
qualitatively the dynamical behavior of the unbounded perceptron, it also approximates
quantitatively the values of the dynamical exponents.

Figure 9: Dynamical exponents of unbounded Perceptron are close to the fixed-
norm analytical prediction. (left) Curves collapsed by rescaling axes for the minima,
using values of α > 25. (right) Fit of the scaling of minima of curves, λopt(α), using only
curves for which the minimum have been reached during numerical simulation.
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E Training curves in function of time (number of epochs)

We show in fig. 10 that plotting ϵ versus time instead of λ do not make the curves collapse.
In particular λ(t) is nonlinear, meaning that the two plots ϵ(t) and ϵ(λ) are qualitatively
different.

Figure 10: The function λ(t) is highly non-trivial. The left panel shows the general-
ization error of a CNN trained on MNIST as a function of the number of epochs for different
dataset sizes P . The right panel shows the behavior of the spectral complexity as a function
of the number of epochs.

F Results of ϵ(P ) power law exponent coefficients and
computation of errors

The aim of this section is to explain the procedure used to compute the exponents γ1, γ2 of
the power laws

ϵ = k1λ
−γ1 + q1,

λopt = k2P
γ2 + q2.

It is possible to combine the two power laws only in the regime of P large enough such that

ϵ

ϵopt
= Φ

(
λ

λopt

)
,

with a master curve function Φ that does not depend on P .

The first passage is to decide the minimum P to consider for the procedure. We observed
that a value of P slightly bigger or smaller than the chosen one did not change substantially
the estimate of γ1. In almost all cases we used P ∼ 26000 as the minimum value.

Then, in the collapsed graph in Fig. 11 a least-squares fit is performed over the pure
power-law region to obtain a prediction of γ1 for each value of P . The final γ1 value is the
mean, and the associated error is the error of the mean.

To obtain γ2 the minimum of the curves λ∗ is plotted versus P in Fig. 11, and from the fit
γ2 is obtained with the associated error.

Then γpred = γ1γ2 and the error is

σpred = γpred

√(
σ1

γ1

)2

+

(
σ2

γ2

)2

.

The exponent to compare with is γmeas. For each value of P , we considered the minimum of
the curve during training, obtaining the empirical curve of ϵ(P ). Then a power-law fit is
performed over that curve, obtaining γmeas and the σmeas of the fit. Numerical comparisons
are reported in Tab. 1 and the empirical and predicted power-laws are compared visually in
Fig. 12.
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Table 2: Results of the fit for the exponents γ1 and γ2. We report the numerical
values of the power-law exponents γ1 and γ2, along with their respective uncertainties, across
different datasets and model architectures.

Model Dataset γ1 σ1 γ2 σ2

CNN MNIST 0.59 0.06 1.01 0.11
CNN CIFAR10 0.21 0.01 1.32 0.32
CNN CIFAR100 0.112 0.003 1.44 0.22
ResNet MNIST 1.15 0.14 0.50 0.02
ResNet CIFAR10 0.53 0.03 1.01 0.04
ResNet CIFAR100 0.31 0.01 1.03 0.07
ViT MNIST 0.139 0.005 3.41 0.11
ViT CIFAR10 0.0124 0.0002 18.4 2.1
ViT CIFAR100 0.0068 0.0004 21 6

The error assigned to the comparison of exponents is computed as σ =
√
σ2
pred + σ2

meas.
We observe that the magnitude of σ is similar across experiments, while exponents change
from the maximum of γpred = 0.60 for CNN MNIST to the minimum γpred = 0.14 of ViT
CIFAR100. For this reason the relative error is higher the lower is the exponent. Being in
possess of more computational power it would be possible to mitigate this effect producing
more statistics for models and datasets with lower exponents.

Figure 11: The curve collapse helps predict the numerical exponents. (left)
Rescaled generalization error curves used to obtain γ1 from the fit. The fitted power laws
are shown as dashed lines. (right) The numerical fit used to estimate γ2.
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Figure 12: The predicted power laws closely match the empirical ones. We
graphically present the numerical results from Table 1. The power laws fitted on the data
are compared with the predicted ones. For the predicted power laws, only the exponent is
known; the coefficient is chosen to enable visual comparison.

All intermediate plots as Fig. 11, computations and choices of value of P and λ to compute
power-laws reported in the paper are reported in the supplementary material, as notebooks
in the repository of codes with plots and data. We did not report in the paper all details
because it would have been necessary to show O(100) plots to evaluate all cases.

G Architectures, datasets, training and resources in details

Architectures and hyperparameters We used PyTorch Adam optimizer for CNNs and
ResNets and AdamW for ViT, in all cases with lerning rate 0.001. We used the standard and
most simple possible definitions of the architectures, taken from the original papers. Please
refer to the code in the supplementary to the precise definition of each block and width and
number of layers.

Trainings and values of P We trained for 500 epochs CNNs and for 1000 epochs ResNets
and ViTs. Values of P are

• For MNIST in all cases 89, 188, 375, 750, 1500, 3000, 6000, 12000, 24000, 30000,
36000, 42000, 48000.

• For CIFAR10 and CIFAR100 with ResNet and ViT in all cases: from 6000 to 46000
every 5000.

• For CNN in CIFAR10/100, in the main analysis from 4000 to 48000 every 4000, and
in computation of norms and the effect of weight decay from 6000 to 46000 every
5000.

Resources to replicate the study For perceptron curves the necessary resources are
irrelevant. All deep network trainings have been carried on 18 V100 GPUs using 4 CPUs
for each, for a period of two months. We set a maximum number of 30 repetitions for each
training to get a statistic of learning curves and a month of computation. For smaller models
we finished all 30 repetitions while for the slowest one we obtain a total of 5 repetitions.
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H Effect of weight decay

We reapeted the experiment with the 3 deep architectures analyzed in the paper over
CIFAR10 dataset, but with an increasing level of weight decay (WD). In Fig. 13 and 14 we
see that in all cases the qualitative picture remain the same, even if the norm of the models
doesn’t increase monotonically as the case without a weight-decay. In Tab. 3 we observe
that the values of γ1 and γ2 exponents change depending on the amount of weight decay, but
their product γpred remains compatible with γmeas within the accuracy permitted by the
fitting procedure. For ResNet architecture, with a fixed computing budget we found difficult
to find the right hyperparameters to obtain overfitting or to saturate the generalization error
with the weight decays used for other two architectures, so we reported the result for smaller
weight-decays. Due to the increase in training time and corresponding decrease in statistics,
the exponents fitted and predicted are affected by a larger error than in other two cases.

Model WD γpred γmeas σ

CNN 1e-3 0.163 0.212 0.033
CNN 1e-4 0.136 0.193 0.050
CNN 1e-5 0.133 0.184 0.024
ResNet 1e-6 0.269 0.525 0.090
ResNet 1e-7 0.611 0.550 0.079
ResNet 1e-8 0.450 0.567 0.075
ViT 1e-3 0.205 0.176 0.014
ViT 1e-4 0.198 0.174 0.023
ViT 1e-5 0.193 0.173 0.016

Model WD γ1 σ1 γ2 σ2

CNN 1e-3 0.2773 0.0184 0.5883 0.0943
CNN 1e-4 0.1880 0.0133 0.7257 0.2551
CNN 1e-5 0.1343 0.0177 0.9906 0.0815
ResNet 1e-6 0.6487 0.0247 0.4149 0.1342
ResNet 1e-7 0.6572 0.0298 0.9298 0.1101
ResNet 1e-8 0.6641 0.0272 0.6780 0.1047
ViT 1e-3 0.0132 0.0003 15.5590 0.7670
ViT 1e-4 0.0121 0.0003 16.3150 1.8161
ViT 1e-5 0.0124 0.0003 15.5182 1.0233

Table 3: Results on CIFAR10 dataset and increasing levels of weight decay. (left)
Predicted and measured exponents. (right) γ1 and γ2 exponents computed by fitting the
data.

Figure 13: Curves from experiments with weight decay on CIFAR10 dataset. Values of
weight decay in parentheses refer to ResNet.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 14: Curves after rescaling collapse onto a master curve also in the presence of a
moderate weight-decay. Values of weight decay in parentheses refer to ResNet.

Figure 15: Comparison between predicted scaling laws by combining γ1 and γ2 and the
empirical one measured at end-of-training. Values of weight decay in parentheses refer to
ResNet.

I Using SGD optimizer instead of Adam on CNNs

We reapeted the experiment using SGD optimizer instead of Adam, with only CNN archi-
tecture over CIFAR10 and CIFAR100 datasets. We did not repeat the experiment over the
other two more complex architecture (ResNet, ViT) because Adam and AdamW (respectively
used for ResNets and ViTs) are fundamental to make these architectures work appropriately.
In Fig. 16 and 17 we see that in all cases the qualitative picture remain the same as in the
main analysis also for these other norm definitions. At same time exponents predicted are
compatible with the ones measured, and compatible as well with the exponents measured
in the main analysis using Adam optimizer. This experimental result suggests that the
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Figure 17: Curves after rescaling collapse onto a master curve also in the case of SGD
optimizer instead of Adam.

optimizer is not relevant for the end-of-training scaling law exponent γ, in ϵ ∼ ϵγ . This
instead is not true for the dynamics to reach the optimal value of weights: for example the
number of epochs increases dramatically using SGD instead of Adam. This difference in the
dynamics is captured from the dynamical exponent. Even though γpred = γ1γ2 is equal with
Adam and SGD, we observe that γSGD

1 > γAdam
1 , while γSGD

2 < γAdam
2 .

Model Norm γpred γmeas σ

CNN CIFAR10 0.202 0.225 0.047
CNN CIFAR100 0.150 0.122 0.013

Model Norm γ1 σ1 γ2 σ2

CNN CIFAR10 0.4735 0.0268 0.4276 0.0962
CNN CIFAR100 0.1469 0.0098 1.0233 0.0170

Table 4: Results on CIFAR10/100 datasets with CNN using SGD optimizer.
(left) Predicted and measured exponents. (right) γ1 and γ2 exponents computed by fitting
the data.

Figure 16: Curves from experiments using SGD optimizer instead of Adam with CNN
architecture.
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Figure 18: Comparison between predicted scaling laws by combining γ1 and γ2 and the
empirical one measured at end-of-training.

J Using other definitions of norm λ

We reapeted the experiment with the 3 deep architectures analyzed in the paper over
CIFAR10 dataset, but measuring other norms instead of the spectral complexity. The norms
are:

1. (L1) Entry-wise ℓ1 norm: ∥A∥1 =
∑L

i=1

∑
j,k |(Ai)j,k|

2. (L2) Frobenius (entry-wise ℓ2) norm: ∥A∥F =
(∑L

i=1

∑
j,k(Ai)

2
j,k

)1/2
3. (G21) Group (2, 1) norm ∥A∥2,1 =

∑L
i=1

∑
j

(∑
k(Ai)

2
k,j

)1/2
i.e. the sum over

columns of their ℓ2 norms.

4. (Spectral) norm product:
∏L

i=1 ∥Ai∥σ, where ∥Ai∥σ is the largest singular value of
Ai.

In Fig. 19 and 20 we see that in all cases the qualitative picture remain the same as in
the main analysis also for these other norm definitions: plotting learning curves against
every tested definition of norm produces the two scaling laws with exponents γ1 and γ2,
and rescaling by minima make the curves to collapse over a master curve. However, the
exponents predicted are not compatible with the ones measured. This result suggest that
Spectral Complexity norm of Eq. 6 is the correct quantity that generalizes in deep networks
the role of L2 norm in the Perceptron analysis.
Even if γmeas ̸= γpred = γ1γ2, we observe a compensation mechanism between γ1 and γ2
exponents: a bigger γ1 implies in almost all cases a smaller γ2 with respect to other norms
for the same model.

Model Norm γpred γmeas σ

CNN L1 0.083 0.181 0.023
CNN L2 0.118 0.181 0.028
CNN G21 0.107 0.181 0.026
CNN Spectral 0.081 0.181 0.042
ResNet L1 0.634 0.500 0.013
ResNet L2 0.750 0.500 0.013
ResNet G21 0.680 0.500 0.018
ResNet Spectral 0.641 0.500 0.011
ViT L1 0.252 0.175 0.027
ViT L2 0.323 0.175 0.040
ViT G21 0.262 0.175 0.028
ViT Spectral 0.193 0.175 0.018

Model Norm γ1 σ1 γ2 σ2

CNN L1 0.5687 0.0300 0.1458 0.0358
CNN L2 0.5894 0.0157 0.2000 0.0426
CNN G21 0.5482 0.0187 0.1958 0.0428
CNN Spectral 0.1861 0.0041 0.4339 0.2161
ResNet L1 1.1634 0.0107 0.5447 0.0087
ResNet L2 1.4406 0.0130 0.5208 0.0063
ResNet G21 1.1997 0.0157 0.5669 0.0121
ResNet Spectral 0.5699 0.0058 1.1239 0.0119
ViT L1 0.4089 0.0171 0.6170 0.0556
ViT L2 0.5491 0.0392 0.5881 0.0571
ViT G21 0.4313 0.0173 0.6075 0.0567
ViT Spectral 0.0133 0.0001 14.4951 1.1217

Table 5: Results on CIFAR10 dataset and different norm definitions. (left)
Predicted and measured exponents are not compatible using these norm definitions instead
of Spectral Complexity norm. (right) γ1 and γ2 exponents computed by fitting the data.
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Figure 19: Curves from experiments with different norm definitions on CIFAR10 dataset.

Figure 20: Curves after rescaling collapse onto a master curve also for the other norm
considered.
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Figure 21: Comparison between predicted scaling laws by combining γ1 and γ2 and the
empirical one measured at end-of-training. Other norms considered predict exponents at
end-of-training not always compatible with the empirical ones, even if we can consider them
as an approximation of the correct exponent that can be computed using spectral complexity
as the norm λ.
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