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Abstract

While significant progress has been made in specifying neural networks capable
of representing uncertainty, deep networks still often suffer from overconfidence
and misaligned predictive distributions. Existing approaches for addressing this
misalignment are primarily developed under the framework of calibration, with
common metrics such as Expected Calibration Error (ECE). However, calibration
can only provide a strictly marginal assessment of probabilistic alignment. Con-
sequently, calibration metrics such as ECE are distribution-wise measures and
cannot diagnose the point-wise reliability of individual inputs, which is impor-
tant for real-world decision-making. We propose a stronger condition, which we
term conditional congruence, for assessing probabilistic fit. We also introduce a
metric, Conditional Congruence Error (CCE), that uses conditional kernel mean
embeddings to estimate the distance, at any point, between the learned predictive
distribution and the empirical, conditional distribution in a dataset. We show that
using CCE to measure congruence 1) accurately quantifies misalignment between
distributions when the data generating process is known, 2) effectively scales to
real-world, high dimensional image regression tasks, and 3) can be used to gauge
model reliability on unseen instances.

1 INTRODUCTION

As more machine learning technologies are deployed into the real world, increasing attention is being
paid to the ability of these systems to accurately represent their uncertainty [1]. Faithful uncertainty
quantification improves the safety, robustness, and reliability of an ML system in the face of imperfect
information about the world [2, 3] and has applications to out-of-distribution detection [4–6], active
learning [7, 8], and reinforcement learning [2, 9].

While a variety of methods exist for building uncertainty-aware ML systems, in recent years train-
ing neural networks to fit high dimensional probability distributions via maximum likelihood has
emerged as an effective strategy [10]. For example, a network trained to minimize cross entropy also
maximizes the likelihood of a categorical distribution over the labels. In the regression setting, one
can parameterize the mean and variance of a Gaussian distribution [11–13] as the outputs of a neural
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Figure 1: An illustration of the shortcomings of using ECE to measure probabilistic fit in regression
problems. We simulate data with the following data-generating process: X ∼ N (0, 1), Y |X ∼
N (αX, 1), α = 3, and introduce a poorly specified model, f , that ignores the conditional relationship
between X and Y , but has the same marginal: f(x) ∼ N (0, 1+α2) (see Appendix A.1 for derivation).
(a) We plot samples drawn from the true data-generating distribution, Y |X , along with samples from
the model f ; clearly f is misspecified. (b) We marginalize out X from Y |X and plot the histogram
of the marginal of Y , next to the PDF of the model, f , showing their statistical equivalence. (c) We
compute ECE and plot the associated “reliability” diagram, achieving near-perfect calibration under
ECE. (d) Only an input-aware measure of congruence, like CCE, correctly recovers the discrepancy
between our model and ground-truth distributions and assesses probabilistic fit at each xi.

network,
[
µ̂i, σ̂

2
i

]T
= fΘ(xi) and maximize the likelihood of the regression targets. When modeling

discrete outputs, a similar approach can be employed using a Poisson [14], Negative Binomial [15],
or Double Poisson [16] distribution. While these models generally achieve good mean accuracy,
they have been shown to produce misaligned predictive distributions and in many cases exhibit
overconfident behavior [17, 18].

Such probabilistic misalignment is frequently studied through the framework of calibration, which
broadly means when a model assigns a probability p to a certain event, in the long run, that event
should occur p% of the time. Historically, the notion of calibration was studied in the context of
classification [19], and formalized under the Expected Calibration Error (ECE) metric [20, 21]. More
recently, [22] propose an ECE analog for regression problems where empirical quantiles of test data
are compared to a model’s predicted CDF. Regression-based calibration has received less attention
than classification, despite having many relevant applications such as crowd counting [23, 24], traffic
flow estimation [25–27], agricultural yield prediction [28], inventory management [29], and cellular
bacterial prediction [30]

While ECE is widely used to measure calibration, it has significant shortcomings. Fundamentally, it is
a distribution-wise measure, which reduces calibration to a single, aggregated statistic over an entire
dataset. In doing so, it can only provide a diagnostic on the marginal distribution of the regression
targets, PY , and is unable to measure the alignment of the conditional distribution, PY |X . In fact, a
regressor that ignores the input and predicts the marginal distribution of the targets for every instance
will be considered calibrated under the paradigm introduced by [22]. See Figure 1 for an example.
Moreover, this aggregation sacrifices meaningful signal at the level of each instance; it is unable
to assess how well a model communicates uncertainty about a single prediction, f(xi). Previous
work has pointed out “being able to assess the reliability of a probability score for each instance
is much more powerful than assigning an aggregate reliability score” [31]. Consider for example,
when machine learning is applied to healthcare domains; a patient is likely much more interested in a
model’s reliability for her specific case than the average reliability of the system across a test dataset
[32].

To address these issues, we propose to measure the probabilistic fit of machine learning regression
models with a stronger, quantifiable condition, called congruence. In contrast to calibration, which is
an aggregated, distribution-wise measure of the marginal PY , congruence assesses the point-wise
uncertainty of the conditional distribution at each specific point, PY |X=xi

. To measure congruence,
we propose a novel metric called Conditional Congruence Error (CCE). Rather than rely on quantile-
or coverage-based measurements, we leverage recent theoretical advances in conditional kernel
mean embeddings [33] to compute conditional congruence by estimating the discrepancy between a
model’s learned, predictive distribution and the empirical, conditional distribution in a dataset. Our
approach does not require distributional assumptions about the data or the evaluation of a likelihood.
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We show that using CCE to measure point-wise congruence 1) recovers the true discrepancy between
the predictive and ground truth distributions when the data generating process is known, 2) scales to
high dimensional problems, such as image regression, and 3) can be used to assess the uncertainty of
unseen instances.

2 PRELIMINARIES

2.1 Notation

Suppose we are given an unknown data-generating distribution (X,Y ), where Y has a conditional
relationship with X , Y |X . Let X take values x ∈ X and let Y take values y ∈ Y . We denote PY to
be the space of all possible distributions over Y . Let PY |X : X → PY be nature’s mapping implied
by (X,Y ) that takes conditioning values in X and outputs distributions over Y . By PY |X=x ∈ PY ,
we refer to the specific, conditional distribution obtained over Y given a realization of X , x ∈ X . PX

and PY denote the marginal distributions of X and Y . We assume access to a probabilistic model
f : X → PY , as well as a set S of n draws from (X,Y ), (xi, yi)

n
i=1, that have been withheld from

model training.

2.2 Assessing Probabilistic Fit

As discussed above, calibration is not a sufficient condition for a well-fit probabilistic model. Rather
than use calibration to evaluate a model, we propose a point-wise condition that more fully captures
the desiderata of supervised learning — a model that closely approximates (or is congruent with) the
true conditional distribution for any input-output pair:

Definition 1. A conditional distribution f(x) output by a probabilistic model f : X → PY is
congruent with the true, data-generating distribution (X,Y ) if PY |X=x = f(x). A model f is
conditionally congruent (otherwise called point-wise congruent) if, for all x ∈ X , f(x) is congruent.

Quantifying conditional congruence is straightforward — for all x ∈ X , we compute the distance
between the model’s learned conditional distribution f(x) and the ground-truth PY |X=x. Adopting
the terminology of [34] (which proposes a distance-based definition of marginal calibration in the
binary classification setting), given a model f , we quantify its “distance from conditional congruence”
(DC) as follows:

DC(f, PY |X) = E
x∈X

[
ρ(f(x), PY |X=x)

]
(1)

where ρ : PY ×PY → R measures distance between two probability distributions over Y . Clearly,
DC(f, PY |X) = 0 if and only if f is conditionally, or point-wise, congruent.

3 MEASURING CONDITIONAL CONGRUENCE
Despite the usefulness of Equation 1 for theoretically treating congruence, in practice, an exact
calculation of this distance is intractable due to finite data. In this section, we introduce a sample-
based method for estimating the point-wise congruence of a model via conditional kernel mean
embeddings.

3.1 Maximum Conditional Mean Discrepancy (MCMD)

In machine learning problems that model with uncertainty, we are only given a finite number of draws
from (X,Y ) to evaluate the quality of a predictive distribution. This introduces great difficulty in
estimating DC(f, PY |X), because we require multiple examples with the exact same conditioning
input x to approximate PY |X=x with any degree of confidence [34]. In most domains, the probability
of this occurrence across multiple inputs is essentially zero.

One reasonable assumption to make estimation of PY |X=x more tractable is that similar inputs
should yield similar conditional distributions. Thus, PY |X=x can be approximated by aggregating
(x, y) samples with similar x values. This process is formalized using kernel functions. When a
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kernel, k : X × X → R, is symmetric, continuous, and positive semi-definite, k(x,x′) represents an
inner product ⟨ϕ(x), ϕ(x′)⟩V in some (possibly higher-dimensional) feature space V , thus yielding a
similarity measure in that space.

Kernel mean embeddings [35] extend the idea of applying a higher-dimensional feature map, ϕ, to
the space of probability distributions, PX . Let P ∈ PX be a probability distribution over X . Then
the kernel mean embedding is defined as ϕ(P ) = UP ≜

∫
X k(x, ·)dP (x). In this formulation, P

is represented as UP ∈ H, an element of an infinite-dimensional reproducing kernel Hilbert space
(RKHS) [35]. One application of this technique is the maximum mean discrepancy (MMD), which
estimates the distance between two distributions, P ∈ PX and Q ∈ PX , by computing the magnitude
of the difference between their respective mean embeddings: MMD(P,Q) = ∥UP − UQ∥H. Using
the kernel trick we can estimate this distance (which is an inner product) from data points without
having to explicitly evaluate the mapping ϕ(x).

The MMD was extended to the conditional probability setting by [35], resulting in the Maximum
Conditional Mean Discrepancy (MCMD). Let PY |X and PY ′|X′ be two mappings from X to PY
implied by the (possibly equivalent) joint distributions (X,Y ) and (X ′, Y ′). Then, given conditional
kernel mean embeddings (defined for each x ∈ X ), we have MCMD(PY |X , PY ′|X′ , ·) = ∥UY |X(·)−
UY ′|X′(·)∥HY . Recently, [33] derived a closed-form estimate of MCMD, which we provide in
Equation 2.

3.1.1 Computing MCMD

Given a set of draws S = (xi, yi)
n
i=1 ∼ (X,Y ) and S ′ = (x′

i, y
′
i)

m
i=1 ∼ (X ′, Y ′), we have

the following closed-form, sample-based estimate from [33] for the squared MCMD at a given
conditioning value (·) ∈ X :

M̂CMD2(S,S ′, ·) = kT
X(·)WXKY WT

XkX(·)
− 2kT

X(·)WXKY Y ′WT
X′kX′(·)

+ kT
X′(·)WX′KY ′WT

X′kX′(·)
(2)

where we first choose input and output kernels kX and kY , yielding K(ij)
Y = kY(yi, yj),

K(ij)

Y ′ = kY(y
′
i, y

′
j), K(ij)

Y Y ′ = kY(yi, y
′
j), K(ij)

X = kX (xi, xj), K(ij)

X′ = kX (x′
i, x

′
j), kX(·) =

[kX (x1, ·), ..., kX (xm, ·)]T , kX′(·) = [kX (x′
1, ·), ..., kX (x′

m, ·)]T , WX = (KX + nλIn)−1 and WX′ =
(KX′ +mλ′Im)−1

Both λ and λ′ are regularizing hyperparameters that we set to 0.1 throughout this paper. We study the
effect of λ in Appendix C.3.

3.1.2 Theoretical Guarantees of MCMD

[33] provide a handful of theoretical guarantees associated with the MCMD. The most relevant to our
work (Theorem 5.2 in the original paper) is restated below, with adjustments to match our notation:
Theorem 1. Suppose kX and kY are characteristic kernels. Also suppose that the probability
measures associated with X and X ′ in the conditioning space, PX and P ′

X , are absolutely continuous
with respect to each other. Finally, suppose that PY |X and PY ′|X′ admit regular versions. Then
MCMD(PY |X , PY ′|X′ , ·) = 0 almost everywhere if and only if the set of conditioning inputs {x |
x ∈ X ,∃ y ∈ Y s.t. PY |X=x(y) ̸= PY ′|X′=x(y)} has probability zero.

This is a useful theorem, and as stated by [33], does not have restrictive assumptions. We note

that the guarantees are given in terms of MCMD(PY |X , PY ′|X′ , ·) and not the estimate M̂CMD2.
However, if we also assume bounded kernels (once again, not restrictive), [33] provide several
desirable convergence properties with their estimate (see Theorems 4.4, 4.5 in their paper) that give
us confidence in employing the MCMD as a measure of congruence.

If a model f yields samples that achieve near-zero MCMD when compared to the ground-truth sam-
ples, these theoretical results ensure that the model has learned a conditional probability distribution
with an almost-sure equality to the ground-truth data-generating distribution. In fact, this allows us to
use the MCMD to directly estimate DC(f, PY |X), as detailed in the next section.
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Figure 2: Visualization of the probabilistic fit of 4 deep neural networks on a synthetic dataset with
discrete regression targets. (Row 1) A plot of the mean and centered 95% credible interval for
each model, along with the ECE and NLL. (Row 2) CCE between the ground-truth and predictive
distributions, along with the mean value (CCE) across the evaluation grid.

3.2 Conditional Congruence Error

While the MCMD is a powerful theoretical tool, applying it to high-dimensional joint distributions
common to deep learning introduces two main challenges: 1) representation of the inputs in a space
that lends itself to kernelized similarities; and 2) a method for defining (and obtaining samples from)
(X ′, Y ′) given only a test set S = (xi, yi)

n
i=1 and a model f . We specify a process that addresses

both challenges, thus yielding a metric, the Conditional Congruence Error (CCE), that provides a
holistic look at a model’s probabilistic fit across the input space.

To compute the CCE, we first specify an encoding function φ : X → Rd that can map each complex
input (images, text, etc.) to a fixed-length vector in a semantic embedding space, similar to [36] and
[37]. We then embed each input in our test set and treat Sφ = (φ(xi), yi)

n
i=1 as our sample from

nature’s distribution (φ(X), Y ). To obtain S ′φ = (φ(x′
i), y

′
i)

m
i=1 ∼ (φ(X ′), Y ′), we draw ℓ Monte

Carlo samples from each predictive distribution f(xi). This forms a collection of m = nℓ draws
{(φ(xi), yik)

ℓ
k=1}ni=1 from the model’s learned conditional distributions which we can then compare

with the ground-truth draws. Armed with these samples, we can now define CCE:

CCE(f,S, φ, ·) =
√

M̂CMD2(Sφ,S ′φ, ·) (3)

Unless otherwise specified, we use CLIP [38] as our choice of φ due to its impressive representational
capacity and ease of implementation using libraries such as OpenCLIP [39]. For kX , we use
the polynomial kernel, k(x,x′) = ( 1dx

Tx′ + 1)3, similar to [40]. When forming S ′φ, we draw
ℓ = 1 samples per test point. For kY , we use the radial basis function (RBF) kernel k(x,x′) =

exp−γ ∥x− x′∥2, with γ = 1

2σ̂2
y

, where σ̂2
y = 1

n−1

∑n
i=1(yi− ȳ)2 is estimated from our test targets.

Empirically, we find that this choice of kernels and hyperparameters yields well-behaved CCE values
that match with intuition. For a more extensive investigation of hyperparameters, see Appendix C.3.

Once we fix S, the CCE is defined for any input x ∈ X , even if we do not have an associated label
y ∈ Y . This makes it a powerful tool for quantifying model reliability in a variety of deployment
settings where labels are not known. We show how this property enables point-wise diagnostics in
Section 4.3, and demonstrate how it yields a natural algorithm for the subfield of machine learning
with rejection in Appendix C.1.

To evaluate a model’s congruence, we compute the CCE for each xi in our test data. The resultant
array of values provides a notion of probabilistic alignment across the entire input space. When
a single summary statistic is desired, we take the mean of these CCE values (denoted CCE). An
algorithm describing our process in greater detail can be found in Appendix B.1.

Note that since UY |X(x) can be considered a representation of PY |X=x, with UY ′|X′(x) a represen-
tation of f(x) (in an infinite-dimensional Hilbert space), if we let ρ be the distance metric induced by
∥·∥HY

, CCE can be viewed as a direct estimate of DC(f, PY |X) as defined in Equation 1.
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Figure 3: We train three neural regression models (Poisson, β-Gaussian [41], and DDPN [16]) on the
count regression task of COCO-People and apply progressively increasing levels of perturbation to
the test data. We assess the ability of CCE to describe the misalignment of each model’s predictive
distribution. (a) We increase the level of Gaussian blur (σ) to the pixels of each image, thus modifying
PX ; (b) we apply Gaussian noise with constant variance (µ, σ = 1.0) to each label, modifying PY ;
(c) We apply the Mixup augmentation [42], (1 − α)z1 + αz2, to both the images and labels and
perturb the conditional, PY |X . Under all three perturbation regimes, we see that CCE is effective at
describing increasing levels of incongruence between the model’s predictive distribution and the test
data. This effect is invariant to the choice of model.

4 EXPERIMENTS

To demonstrate the effectiveness of CCE, we show how it can both quantify a model’s overall
probabilistic fit and act as a point-wise diagnostic tool for identifying specific model shortcomings.
First, we show how CCE effectively recovers the true discrepancy between a predictive distribution
and test data when the data generating process is known. Second, we show how CCE scales to
high-dimensional image regression tasks, and again effectively identifies distributional misalignment
under known perturbations to the data. Third, we show how CCE compares to existing measures of
probabilistic fit across a variety of image regression tasks. Finally, we include two case studies in
which we use the CCE to pinpoint areas in the input space where models are most- and least-congruent.
All code used in these experiments is freely available online1.

In our experiments, CCE is compared to ECE, which directly measures calibration, and Negative Log
Likelihood (NLL), which is a proper scoring rule [43]. In contrast to ECE, NLL can be evaluated
point-wise, but requires distributional assumptions, is difficult to compare across regressors, and is
sensitive to outliers. In Appendix D.2 we show that point-wise NLL is subject to these pathologies
and that CCE avoids them. Finally, in Appendix C.3 we perform extensive hyperparameter studies
for λ, γ, ℓ and the choice of kernel.

4.1 CCE with a Known Data-Generating Process (Synthetic Data)

Our primary aim is to demonstrate that CCE can effectively evaluate a model’s overall probabilistic
fit. We first use a synthetic dataset [16]) where the true data-generating process is known. The
data describe a one-dimensional discrete synthetic regression problem that exhibits various levels of
dispersion, with high levels of uncertainty at low counts and severe under-dispersion at high counts.
Both continuous and discrete neural regressors can be fit to this dataset. We train a small multi-layer
perceptron (MLP) to output the parameters of a Poisson, Negative Binomial (NB), Gaussian,
and Double Poisson distribution [16] using the appropriate NLL loss. The models’ predictive
distributions over the test split of the dataset are visualized in row 1 of Figure 2, with the respective
NLL and ECE of the model overlaid on the plot. We also compute the CCE for each model on all test
inputs. We plot the resultant values in row 2 of Figure 2 (with CCE indicated in each respective plot).
Since our inputs, xi, are one-dimensional, we set φ to be the identity and use the RBF kernel with
γ = 0.5 for kX .

1https://anonymous.4open.science/r/probcal-8294
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The Poisson and Negative Binomial distributions do not have the flexibility to represent under-
dispersion. Accordingly, they struggle most in the [π, 2π] region of the input (where the requisite
regression targets have very low variance). This is where the CCE identifies the largest incongruence
between the model and the data. Meanwhile, the Gaussian and Double Poisson models achieve
much more aligned predictive distributions. This is supported by their near-zero CCE values.
Measuring congruence via CCE allows us to (rightly) conclude that the Gaussian NN and Double
Poisson NN achieve the best probabilistic fit.

In Figure 2 we observe disagreement between the CCE and ECE when assessing the probabilistic fit
of the Gaussian and Double Poisson models. In fact, as further expanded upon in Appendix D.1,
this may be due to an implicit bias in the ECE computation against discrete models. We also note that
though the NLL suggests a similar ranking of models as the CCE in this scenario, its undetermined
lower bound makes it difficult to quantify how close to perfectly fit each model is, since the NLL
cannot be easily interpreted as an estimate of DC(f, PY |X).

Table 1: Comparison of ECE, NLL, and CCE. We denote the best performer on each metric in bold
and the second-best performer with an underline.

COCO-People FG-Net AAF

ECE (↓) NLL (↓) CCE (↓) ECE (↓) NLL (↓) CCE (↓) ECE (↓) NLL (↓) CCE (↓)
Poisson NN 0.088 2.316 0.061 (0.001) 0.039 3.027 0.062 (0.011) 0.035 3.324 0.026 (0.003)
NB NN 0.067 2.248 0.072 (0.002) 0.023 2.863 0.043 (0.014) 0.023 3.380 0.022 (0.003)
DDPN 0.052 2.270 0.075 (0.001) 0.054 3.300 0.082 (0.010) 0.091 3.433 0.051 (0.004)
Gaussian NN 0.078 2.411 0.125 (0.001) 0.050 3.144 0.049 (0.001) 0.027 3.432 0.026 (0.003)
Stirn et al. [12] 0.081 2.650 0.140 (0.002) 0.031 3.142 0.065 (0.019) 0.104 4.230 0.042 (0.002)
Immer et al. [13] 0.057 2.298 0.081 (0.001) 0.626 10.843 0.657 (0.001) 0.026 3.430 0.031 (0.003)
Seitzer et al. [41] 0.055 2.374 0.072 (0.002) 0.093 3.618 0.079 (0.003) 0.115 4.252 0.063 (0.001)

Table 2: Comparison of ECE, NLL, and CCE for the EVA dataset (a continuous image regression
task). We denote the best performer on each metric in bold and the second-best performer with an
underline.

EVA

ECE (↓) NLL (↓) CCE (↓)
Gaussian NN 0.235 1.563 0.086 (0.009)
Stirn et al. [12] 0.148 1.404 0.100 (0.007)
Immer et al. [13] 0.165 1.207 0.041 (0.002)
Seitzer et al. [41] 0.194 1.389 0.068 (0.004)

4.2 CCE with an Unknown Data-Generating Process (Image Regression)

In the following section we demonstrate that CCE can effectively scale beyond low-dimensional data.
To do so, we perform a series of image regression tasks. In real-world problems, the data generating
process is not known. However, we show that CCE is effective at identifying increasing divergence
between a model’s predictive distribution and test data when we apply growing levels of perturbations.
We then provide a comparison of CCE, ECE, and NLL across a variety of datasets.

4.2.1 CCE Under Known Distribution Shift

We perform an image regression task where the goal is to accurately predict the number of people in
an image using the ‘person’ class of the MS-COCO dataset [44]. The bounding boxes for each image
have been translated into a single, discrete count [16]. This task allows us to train regressors with
both continuous and discrete predictive distributions.

We train three different regression models, each with a different predictive distribution: a Poisson
NN [14], β-Gaussian (β = 0.5) [41] and DDPN [16]. Each network is trained with the same
backbone, the pooled output from a ViT [45] (initialized from the vit-base-patch16-224-in21k
checkpoint). Both β-Gaussian and DDPN are modern, highly flexible regressors, while Poisson is
subject to equi-dispersion and has a more rigid parametric form. This diversity in models allows
us to observe how well CCE captures increasing levels of data shift under a variety of predictive
distributions.
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For each model, we perform three types of data shift. First, we apply varying levels of Gaussian
blur to the input image, which perturbs the marginal of the input, PX , away from the training data.
Second, we apply Gaussian noise to the marginal of the output, PY . Third, we apply the Mixup
transform [42] to both the images and the labels, which is a perturbation to the conditional, PY |X .
For each model, we perform five trials of the data perturbation strategy and evaluation, and plot the
mean and standard deviation of the resulting CCE statistic. For each instance in the test data, we
draw a single Monte Carlo sample from the predictive distribution (ℓ = 1).

Results are shown in Figure 3. We see that under all three data shift regimes, CCE smoothly increases
as as perturbations of progressively larger magnitude are applied. Additionally, we observe that
because CCE is a measure of conditional congruence, it can identify misalignment in both the
conditional, PY |X , and marginal distributions, PX and PY . Additionally, CCE can even detect
divergence when a model’s predictive distribution is less expressive, such as the Poisson network,
which only has one parameter to represent predictive mean and variance.

4.2.2 Comparing CCE to ECE and NLL Across Datasets

Next we diagnose the behavior of CCE across a variety of tasks and datasets. In these experiments,
there is no model that is a priori known to be best-fit, and the data generating process is unknown.
Our goal is to compare and contrast the measures of probabilistic alignment provided by CCE, ECE,
and NLL.

The regression tasks studied include the COCO-People task introduced above, predicting a person’s
age from an image (FG-Net [46], AAF [47]), and regressing a score describing how appealing an
image is (EVA [48]). On all counting tasks (COCO-People, FG-Net, and AAF), we train a Poisson NN
[14], a Negative Binomial NN [15], a DDPN [16], a vanilla Gaussian NN 2 [11], and modern Gaussian
regressors such the β-modified Gaussian (β = 0.5) [41], the naturally parameterized Gaussian [13],
and the “faithful” heteroscedastic regressor [12]. For the EVA dataset, we only benchmark Gaussian
models since the labels are continuous. All architecture, hardware, and hyperparameter details for
these experiments can be found in Appendix A.2.

Tables 1 and 2 contain the CCE, ECE and NLL for different models trained on COCO-People,
FG-Net, AAF, and EVA. We compute CCE 5 times and report the mean and standard deviation of this
statistic (in parentheses) across trials. CCE values were computed according to the description in
Section 3.2.

In general, we observe broad agreement among CCE, ECE, and NLL. The best model with respect
to conditional congruence (CCE) also exhibits the best (or near-best) marginal calibration (ECE)
and average NLL. For example, on FG-Net, the Negative Binomial NN achieves the lowest error by
all three measures. On AAF, Negative Binomial is once again the best performer on ECE and CCE.
Meanwhile, [13] scores best on NLL and CCE while coming in second with its ECE. These results
are to be expected — since point-wise congruence implies marginal calibration, our metrics should
tend toward agreement in the aggregate.

4.3 Diagnosing Point-wise Model Failures with CCE

While CCE is an effective overall descriptor of probabilistic fit, one of the greatest virtues of CCE is
as a point-wise reliability measure. Specifically, by viewing the inputs that incur both the highest
and lowest CCE values, we can gain insight into a model’s performance on specific regions of X .
Most importantly, this analysis can be done without access to labels. To do this, we take S to be
the validation split of a dataset, and evaluate CCE(f,S, φ, ·) at all inputs from the test split. The
resultant values provide insight into the types of examples the model is best- and worst-fit on. We
demonstrate this diagnostic process on two model-dataset pairs: [41]’s β-Gaussian that has been fit
on the AAF dataset (see Figure 4) and the Poisson NN trained on COCO-People (see Figure 5).

In the first row of Figure 4, we plot the images from AAF with the lowest CCE values in our test
data. These are images where the model’s learned conditional distributions are most congruent with
the true data-generating distribution. In the second row, we plot the images with the highest CCE
values, where the model’s distributions are least congruent. According to our measurement, the

2Although modeling discrete data with a Gaussian distribution is not entirely proper, it is a common practice
due to the distribution’s flexibility.
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model struggles most in terms of probabilistic alignment when predicting the ages of young-adult
women, while it appears to be more reliable when given images of middle-aged males, shedding light
on possible biases learned by our model. While the AAF dataset is made up of around 55% female
faces, each model’s feature extractor was pre-trained on much larger datasets where racial or gender
bias likely exists [49].

Figure 5 reveals where the Poisson NN trained on COCO-People performs best (top row) and worst
(bottom row) with respect to CCE. Interestingly, the Poisson model struggles to form distributions
over severely high counts in crowded scenes. This may be due to the rigid equivariance assumption
inherent to a Poisson model. If the true data-generating distribution in the region of “large crowds” is
under- or over-dispersed, the Poisson NN would not be able to represent this fact. Thus, the model
outputs distributions over Y that are incongruent with the ground truth. Overall, this analysis provides
an effective framework for discovering point-wise incongruence for test examples.

0.0385 0.0388 0.0396 0.0402 0.0407

0.0897 0.0901 0.0903 0.0905 0.0918

Figure 4: Test images that incurred the lowest (first row) and highest (second row) CCE values for a
β-Gaussian model [41] trained on the AAF dataset. CCE values indicated above each image. High
values correspond to the largest distance between learned and actual conditional distributions.

0.0441 0.0441 0.0447 0.0453 0.0454

0.0758 0.0768 0.0772 0.0776 0.0800

Figure 5: Lowest and highest CCE values for a Poisson NN trained on COCO-People.

5 Conclusion

In this paper, we identify issues with current approaches used to evaluate the quality of predictive
distributions produced by neural networks. We show that existing measurements that target calibration
are inherently marginal and ignore conditional dependencies in the data. To address this, we introduce
a stronger definition of probabilistic fit, called congruence, and propose Conditional Congruence
Error (CCE) as a novel measure. CCE is a conditional, rather than marginal, statistic and can be
computed point-wise for unseen test instances. We show CCE can effectively recover divergence
between predictive distributions and test data and can be used to interpret failure cases of a model.
Future work should study open questions about using CCE in the classification setting, using CCE
as a regularizer during training, or incorporating point-wise CCE values into an active learning
framework.
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[40] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying mmd gans,” 2021.
[Online]. Available: https://arxiv.org/abs/1801.01401

[41] M. Seitzer, A. Tavakoli, D. Antic, and G. Martius, “On the pitfalls of heteroscedastic uncertainty
estimation with probabilistic neural networks,” arXiv preprint arXiv:2203.09168, 2022.

[42] H. Zhang, C. Moustapha, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical
risk minimization,” International Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=r1Ddp1-Rb

[43] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction, and estimation,” Journal
of the American statistical Association, vol. 102, no. 477, pp. 359–378, 2007.

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,
“Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer,
2014, pp. 740–755.

[45] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka, J. Gonzalez, K. Keutzer, and
P. Vajda, “Visual transformers: Token-based image representation and processing for computer
vision,” 2020.

[46] G. Panis and A. Lanitis, “An overview of research activities in facial age estimation using
the fg-net aging database,” in Computer Vision-ECCV 2014 Workshops: Zurich, Switzerland,
September 6-7 and 12, 2014, Proceedings, Part II 13. Springer, 2015, pp. 737–750.

[47] J. Cheng, Y. Li, J. Wang, L. Yu, and S. Wang, “Exploiting effective facial patches for robust
gender recognition,” Tsinghua Science and Technology, vol. 24, no. 3, pp. 333–345, 2019.

[48] C. Kang, G. Valenzise, and F. Dufaux, “Eva: An explainable visual aesthetics dataset,” in Joint
workshop on aesthetic and technical quality assessment of multimedia and media analytics for
societal trends, 2020, pp. 5–13.

[49] K. Kärkkäinen and J. Joo, “Fairface: Face attribute dataset for balanced race, gender, and age,”
arXiv preprint arXiv:1908.04913, 2019.

[50] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.

[51] ——, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv preprint arXiv:1608.03983,
2016.

[52] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning
augmentation policies from data,” arXiv preprint arXiv:1805.09501, 2018.

[53] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 1314–1324.

12

https://arxiv.org/abs/2103.00020
https://doi.org/10.5281/zenodo.5143773
https://arxiv.org/abs/1801.01401
https://openreview.net/forum?id=r1Ddp1-Rb


[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierar-
chical image database,” in 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[55] K. Fukushima, “Visual feature extraction by a multilayered network of analog threshold ele-
ments,” IEEE Transactions on Systems Science and Cybernetics, vol. 5, no. 4, pp. 322–333,
1969.

[56] K. Hendrickx, L. Perini, D. V. der Plas, W. Meert, and J. Davis, “Machine learning with a reject
option: A survey,” 2024. [Online]. Available: https://arxiv.org/abs/2107.11277

[57] B. Efron, “Double exponential families and their use in generalized linear regression,” Journal
of the American Statistical Association, vol. 81, no. 395, pp. 709–721, 1986.

[58] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning
research, vol. 9, no. 11, 2008.

13

https://arxiv.org/abs/2107.11277


A SUPPLEMENTARY EXPERIMENTAL DETAILS

A.1 Derivation of the Marginal Distribution of Y in Figure 1

Suppose Y |X ∼ N (αX, 1), where X ∼ N (0, 1). By normal-normal conjugacy, we know that
Y ∼ N (µY , σ

2
Y ). We solve for µY and σ2

Y as follows:

µY = E [Y ] σ2
Y = Var(Y )

=

∫ ∞

−∞
E [Y |X]P (X = x)dx = E [Var(Y |X)] + Var(E [Y |X])

=

∫ ∞

−∞
αxP (X = x)dx = E [1] + Var(αX)

= α

∫ ∞

−∞
xP (X = x)dx = 1 + α2Var(X)

= αE [X] = 1 + α2

= 0

Thus, Y ∼ N (0, 1 + α2).

A.2 Detailed Description of Experiments

In all experiments, the model that achieved the best loss on the validation set during training was
selected for evaluation. This helped mitigate the overfitting that we observed with respect to NLL as
training continued.

Data was split into train/val/test using a fixed random seed, allocating 70% to train, 10% to val, and
20% to test.

The AdamW optimizer [50] was used for all training jobs, with an initial learning rate of 10−3 that
decayed to 0 on a cosine annealing schedule [51]. We used a weight decay value of 10−5. For image
regression tasks, we applied the standard ImageNet normalization constants and augmented with the
AutoAugment [52] transformation during training. Though we specify the feature encoder used for
each dataset, we refer the reader to our source code 3 as well as the original literature on each model
to find exact details about the regression heads fit on top of each encoder.

The following subsections contain further details for the models we trained, organized by dataset. We
also provide relevant licensing information and URLs for each dataset where applicable.

A.2.1 Synthetic Dataset

Following [16], the MLPs we trained for the synthetic dataset in 4.1 had layers of widths [128, 128,
128, 64]. Training ran for 200 epochs on a 2021 MacBook Pro CPU, with a batch size of 32.

We generated this dataset locally using the process defined by [16].

A.2.2 FG-Net, AAF, and EVA

We used a MobileNetV3 [53] as our feature encoder (fine-tuned from the ImageNet [54] checkpoint)
for the FG-Net, AAF, and EVA datasets. Each feature encoder was topped by the corresponding
regression head for each type of model. An effective batch size of 32 was used to train all models
on each of these datasets. Training was performed in BFloat16 Mixed Precision for 200 epochs on
AAF and EVA, and for 100 epochs on FG-Net. Training code ran on an internal cluster of 4 NVIDIA
GeForce RTX 2080 Ti GPUs. Evaluation was performed on a CPU.

No licensing information is available for FG-Net, but it can be publicly accessed at http:
//yanweifu.github.io/FG_NET_data/FGNET.zip. AAF is hosted at https://github.com/

3https://anonymous.4open.science/r/probcal-8294
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JingchunCheng/All-Age-Faces-Dataset and does not specify any license. EVA is distributed
under the CCO-1.0 license and accessible at https://github.com/kang-gnak/eva-dataset.

A.2.3 COCO-People

On COCO-People, we use the pooled output from a ViT backbone (initialized from the
vit-base-patch16-224-in21k checkpoint [45, 54]), followed by a [384, 256] MLP with ReLU
activations [55] for our feature encoder. This matches the setup used by [16]. Models were trained
on an internal cluster of 2 NVIDIA GeForce RTX 4090 GPUs with an effective batch size of 256.
Training ran for 30 epochs with BFloat16 Mixed Precision. All CCE evaluation was done on a single
GPU of this cluster, which has 24GB of VRAM.

The COCO dataset from which [16] defines COCO-People is distributed with a CCBY 4.0 license. See
https://cocodataset.org/#home.

B COMPUTING CCE — PRACTICAL CONSIDERATIONS

B.1 Algorithm to Compute CCE for a Model

Assuming an existing implementation of the MCMD (which can be easily derived from Equation
2 after a choice of kernel), we employ Algorithm 1 to compute CCE values for a given model f ,
embedder φ, and set of g.t. samples S = (xi, yi)

n
i=1.

Algorithm 1: Procedure to estimate the conditional congruence of a model f using the
CCE.
S←

[
(φ(xi), yi)

]n
i=1

;
S_prime← [] ;
cce_vals← [] ;
for i = 1 to n do

for k = 1 to ℓ do
Draw yik ∼ f(xi) ;
S_prime.append((φ(xi), yik)) ;

end
end
for x in {xi}ni=1 do

cce← MCMD(S, S_prime, φ(x)) ;
cce_vals.append(cce) ;

end
return cce_vals, mean(cce_vals) ;

For an implementation of this algorithm in Python, we refer the reader to our source code.

B.2 Accelerating the CCE Computation

Though we use loops for clarity in specifying Algorithm B.1, in practice, we vectorize all computa-
tions (including measuring the MCMD across a grid of values) to decrease runtime. In addition to
this vectorization, we observe significant speed-ups (on the order of 15-20×) when moving all matrix
operations to a GPU.

The CCE computation can be accelerated even further (and made more numerically stable) by taking
advantage of the structure of the Gram matrices involved in the MCMD (see Equation 2). Since
(KX + nλIn) and (KY +mλ′Im) are positive definite and symmetric, we compute their inverses
via the Cholesky decomposition (which has half the cost of the typical LU decomposition performed
by linear algebra libraries). Our provided code elegantly handles these details, yielding a performant
and scalable CCE implementation.
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Figure 6: CCE results with various sample sizes k < n (n = 100). The mean across 5 trials is
indicated with a dot, while the error bars indicate ± 1 standard deviation.

B.3 Addressing Memory Limitations

As is common with kernel methods, the CCE (which relies on computing the MCMD for a collection
of encoded inputs) grows rapidly in terms of memory requirements with the size of the data, exhibiting
quadratic spatial complexity. In this work, we found that our hardware was sufficient to compute
CCE values for evaluation datasets with up to ≈ 12,000 examples (which requires, at peak usage,
around 10 GB of memory). However, for datasets with significantly larger test splits, modifications
to our technique have to be made. One approach to solve this problem is uniform downsampling:
select some k < n, then from the test set, uniformly sample k input/output pairs. In the notation of
Section 3.1.1, if S = (xi, yi)

n
i=1 is our original sample of test data, then we downsample to obtain

Sk = (xj , yj)
k
j=1.

The risk of downsampling (as with other forms of compression) is that important signal contained
in the similarities derived from the full sample, S, can be lost from Sk. To investigate this concern,
with variously-sized uniform samples from the full test set, we compute CCE 5 times for each
model trained on the synthetic data presented in Section 4.1. The results are plotted in Figure 6.
Encouragingly, the relative ranking of models stays largely unperturbed, even when working with
25% of the full dataset — the Poisson and Negative Binomial models exhibit poor probabilistic fit,
while the Gaussian and Double Poisson models nearly reach exact conditional congruence. The
relative variance in the CCE estimator grows generally smaller as the sample size increases, which
aligns with common estimation theory.

C ADDITIONAL EXPERIMENTS

C.1 Using CCE for Machine Learning with Rejection

The rising subfield of “Machine Learning with a Reject Option” centers around uncovering principled
techniques for avoiding predictions when they are expected to be inaccurate or probabilistically
misaligned [56]. A typical setup defines some “unreliability score” that we can compute on an
arbitrary test input. We then select a threshold, and for any input with an unreliability score above
that threshold, we withhold from making a prediction.

We investigate whether the CCE can be used as an effective reliability score. To do this,
we train a Gaussian NN on data drawn from X ∼ Uniform(0, 2π), Y |X ∼ N (X cos2 X −√
|X|+ 3, 2|2−X|+1

8 ). As in Section 4.3, we then compute the CCE over the test split of the
data without its labels (the validation split is used as S). This simulates reality, where test labels are
not available to help make decisions.

Once we have obtained CCE values, we form an increasing, nonnegative grid of thresholds
{τi}ti=1, 0 ≤ τ0 ≤ τ1 ≤ ... ≤ τt. For each threshold τi, we filter our test samples to only
those which incur an CCE value less than or equal to τi and evaluate the model’s mean absolute error
(MAE) and NLL on that subset. We calculate the proportion of data that was “held out” and plot
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Figure 7: Results of experiment with “reject” option using CCE thresholds. The left subplot depicts
how test MAE changes on the subset selected via this method, while the right depicts how test NLL
changes. CCE provides a valuable mechanism for determining inputs on which predictions will be
unreliable.

this proportion against each error metric. For the sake of comparison, we also compute error metrics
when holding out varying proportions of data through uniform random sampling. Results are pictured
in Figure 7.

C.2 Understanding the Behavior of MCMD on Known Distributions

To build intuition about the behavior of the MCMD (and illustrate why we use it as the backbone
of our CCE metric), we show how it estimates distance in a variety of settings where the data
generating distribution is known. We simulate two data-generating processes, one heteroscedastic,
one homoscedastic. For each, we sample 1000 (x, y) pairs to represent the ground truth. We then
draw 500 (x′, y′) pairs from 1) the same distribution; 2) a distribution with the same mean but smaller
variance; 3) a distribution with the same mean but higher variance; 4) a distribution with a different
mean and smaller variance; 5) a distribution with a different mean and higher variance; and 6) a
distribution with an entirely different conditional relationship. Pairing each of (1-6) with the original

distribution, we compute and plot the MCMD (

√
M̂CMD2) between (x, y) and (x′, y′) across a

uniform grid spanning the input space as in [33]. In addition to the MCMD plot, we report the mean
value of the MCMD. We compute the MCMD with the regularization parameter λ = 0.1. To measure
similarity in both x and y, we employ the RBF kernel kγ(x,x′) = exp (−γ||x− x′||2), with γ = 1
for kX , and kY selected as described in Section 3.2. Results are visualized in Figures 8 and 9.

Overall, the MCMD appears to behave quite intuitively, with higher values consistently corresponding
to areas where the distributions vary from each other more in both mean and standard deviation.
Beyond the “eye test”, we specifically highlight a few key desirable characteristics of this metric.
First, we see from columns 4 and 5 of Figures 8 and 9 that poor mean fit is penalized more harshly
by MCMD when the corresponding variance is low. This indicates that the MCMD requires high
variance to explain misalignment of means, which is arguably the correct stipulation to enforce.
Additionally, from columns 2 and 3, we observe that the MCMD recognizes the case where the
means match but the spread of two distributions is different. This suggests the MCMD is robust at
identifying various forms of potential discrepancy between a predictive distribution and the ground
truth.

C.3 Hyperparameter Study

Computing the CCE for a given model requires a handful of up-front decisions — primarily, which
functions to use for kX and kY (including kernel hyperparameters) and what values to select for λ
and λ′. Additionally, one must decide how many Monte Carlo samples, ℓ, to take when forming S ′
from a model f . In Section 3.2, we provide a variety of “default” settings that have proven effective in
our work. To further investigate the impact of the choice of kernel, λ, and ℓ, we explore the empirical
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Figure 8: MCMD plots for heteroscedastic ground-truth data compared against various conditional
distributions. The ground-truth mean and standard deviation are denoted µ and σ, while µ′ and σ′

describe the comparison sample.
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Figure 9: MCMD plots for homoscedastic data compared against various conditional distributions.
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(b) The effect of λ on CCE for three models trained on
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Figure 10: Studying the impact of the regularizer λ.

impact of these hyperparameters. To facilitate our study, we compare samples from two data-
generating distributions via MCMD: (X,Y ), where X ∼ Uniform(0, 2π), Y |X ∼ N (cos(X), 1

4 )

and (X ′, Y ′), where X ′ ∼ Uniform(0, 2π), Y ′|X ′ ∼ N (X ′ − 5, 1
4 ). We also run a series of CCE

computations (with differing hyperparameters) for models trained on COCO-People.
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C.3.1 Investigating λ
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Figure 11: The effect of the number of Monte
Carlo samples, ℓ, on CCE for three models trained
on AAF.

To isolate the impact of λ, we first focus on how
it affects the MCMD computation between our
samples from (X,Y ) and (X ′, Y ′) as specified
above. We fix our kernels kX (RBF kernel with
γ = 0.5) and kY (RBF kernel with γ = 1

2σ̂2
Y

).

We vary λ along a grid of values between 0 and
1, then compute the MCMD across the input
space. For simplicity, we set λ′ = λ. In Figure
10a we plot these MCMD values (second row),
along with a scatterplot of the samples being
compared (first row). Note that when λ is very
small, the MCMD becomes quite sensitive to in-
dividual points (observe, for example, the spike
in MCMD around 2π for λ = 0.001). As λ
increases, the MCMD between the two samples
grows smoother and tends toward zero. This be-
havior agrees with [33]’s categorization of λ as a
regularizer (λ controls the regularization term in
the empirical loss [33] minimize to obtain their
estimate of MCMD). Thus, we can consider λ
as a knob that we can turn depending on how
much we “believe” that the samples represent
the underlying conditional distributions being
compared. When λ is large, we discard all evi-
dence from our sample that the distributions are
different (thus, the MCMD is 0). When λ is small, we place more weight on the individual deviations
observed between samples. Generally, λ values around 0.05 or 0.1 exhibit reasonable behavior. We
set λ = 0.1 in our experiments in the main body of the paper.

We also investigate the effect of λ on CCE (which calculates MCMD using samples obtained from a
model) for three neural networks trained on the COCO-People dataset. Using the same regressors
discussed in Section 4.2.1, we compute CCE across a grid of λ values for each model and display the
results in Figure 10b. We observe a similar pattern as before: increasing λ shrinks the mean CCE
values towards zero, and we aggressively discard evidence from the data. Interestingly, the relative
ordering of the three models is generally preserved across the domain of λ, suggesting that using
CCE to make comparisons across models is fairly robust to the choice of λ.

C.3.2 Modifying kX and kY

We next investigate the impact of the γ hyperparameter in kX and kY , which is present in both
the RBF and Laplacian kernels. Specifically, we fix λ = 0.1 and vary γ simultaneously in kX and
kY . We perform this experiment on the synthetic samples from (X,Y ) and (X ′, Y ′) we generated
earlier. We use the RBF kernel, but since γ induces a similar effect on the Laplacian kernel, we
expect an equivalent analysis. Figure 12a displays how MCMD computations are affected as γ
increases. Since the RBF kernel essentially computes similarities by centering a Gaussian at each
point with standard deviation 1√

2γ
, we translate each γ value into an “ellipse of influence” spanning

two standard deviations in both the x and y direction. These are visualized in light red around each
point in the dataset. As γ increases, the number of points that are considered similar to a given
(x, y) pair decreases (since the implied Gaussian becomes more concentrated). This increases the
sensitivity of the MCMD computation, similarly to selecting low values of λ. Though most practical
applications of MCMD (such as our CCE computation) will not use the RBF kernel for the input
values, this behavior provides a good intuition for selecting γ for kY . A workable heuristic is to select
γ = 1

2σ̂2
Y

, which ensures that the majority of similarities in Y are nonzero, with closer points exerting

more influence.

Lastly, we directly compare MCMD values obtained with three different kernels: RBF, Laplacian,
and Polynomial (applying the same kernel class to the input and the output spaces). For the RBF
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Figure 12: Studying the impact of the kernel functions kX and kY on the MCMD.

and Laplacian kernels, we set γ = 2 for kX and γ = 1

2σ̂2
Y

for kY . For the polynomial kernel, we

use a degree of 3, offset of 1, and multiply the inner product by 0.02 (mostly to ensure MCMD
values live on the same scale). For all MCMD computations, we set λ = 0.1. Figure 12b displays
how the MCMD differs across X for each kernel. We note that each method largely agrees as to
the regions with the most and least discrepancy between the samples. Interestingly, the polynomial
kernel produces the smoothest MCMD curve, followed by RBF and Laplacian. From these results,
we suspect that the choice of kernel does not matter as much as the hyperparameters associated with
that kernel.

C.3.3 Increasing the Value of ℓ

Finally, we examine the impact of the number of Monte Carlo samples, ℓ, on CCE in Figure 11.
Specifically, we examine the same three models from Section 4.2.1 and their performance on the AAF
dataset. For each model we vary the number of samples, ℓ ∈ {1, 2, 3, 4, 5}. We compute CCE three
times and plot the mean and standard deviation over the three trials. Importantly, we observe that
CCE is robust to the number of Monte Carlo samples; this effect is consistent across models. We
recommend setting ℓ = 1 to reduce computational complexity, and do so in all of our experiments.
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Figure 13: We simulate four data generating processes for (X,Y ) with identical first and second mo-
ments. Data are drawn from a Gaussian, Poisson, Negative Binomial, and Double Poisson
[57] distribution, where X ∼ Uniform(1, 10) and Y |X is defined, respectively, as Gaussian(X,X),
Poisson(X), NegativeBinomial(⌈X2

ε ⌉, 1−ε), where (ε << 1), and Double Poisson(X, 1). We
draw 2000 samples from each distribution. (Row 1) A perfectly specified probabilistic model with
mean and 95% centered credible intervals. (Row 2) A histogram of each model’s Probability Integral
Transform (PIT). (Row 3) A reliability diagram in the style of [22], along with each model’s ECE
(α = 1). (Row 4) The Conditional Congruence Error (CCE) between samples drawn from each
predictive distribution and the ground truth dataset. Though the histograms, reliability diagrams,
and ECE values identify the well-specified Gaussian model, they fail to capture calibration for the
discrete models. Meanwhile, our proposed approach using the CCE correctly indicates that each
model is (with some sampling error) perfectly congruent, and thus calibrated.
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Figure 14: Comparison of NLL with CCE for pointwise analysis of probabilistic fit. From left to
right: A t-SNE projection of the test split of AAF (color indicates age), the NLL values achieved by
the DDPN model, and the CCE values on each test input. NLL is sensitive to outliers and is even
undefined for some values (where the probability of the true target was zero). Meanwhile, CCE
illuminates the input regions where the model is least congruent. In this case, these regions appear to
line up with images of older faces, suggesting a potential inability of the model to reliably assess the
ages of elderly people.
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D SHORTCOMINGS OF EXISTING METRICS

D.1 On Bias in the ECE Against Discrete Models

While writing this paper, we noticed some strange behavior with [22]’s ECE score. This led us to
investigate further, and we have uncovered significant issues with using this metric to quantify the
calibration of discrete regression models. We first restate the definition of ECE in Equation 4:

ECE(F1, y1, ..., Fn, yn) =

q∑
j=1

wj · |pj − p̂j |α (4)

where Fi denotes a model’s predicted cumulative density function (CDF) for target yi, we select q
confidence levels 0 ≤ p1 < ... < pq ≤ 1, and for each pj we compute the empirical quantity

p̂j = E
i=1,...,n

[1{Fi(yi) ≤ pj}] =
|{yi|Fi(yi) ≤ pj , i = 1, ..., n|

n
(5)

This metric can be viewed as a direct application of the Probability Integral Transform (PIT; also
known as universality of the uniform), since it is simply an empirical estimate of the distance
(Wasserstein when α = 1, Cramér–von Mises when α = 2) between realizations of the PIT
Zi = Fi(yi) and Uniform(0, 1) [10].

When the assumptions of the PIT hold (namely, that PY |X=x is a random variable with a continuous
CDF for each x), the ECE can differentiate between well-calibrated and miscalibrated distributions.
However, we note that in the discrete setting, PY |X=x (and by extension, its CDF) is not continuous.
In fact, a discrete CDF has a countable range, thus the PIT realizations of a discrete model can never
be distributed as Uniform(0, 1). This provides reason to doubt the applicability of the ECE for count
regression.

We illustrate this point empirically in Figure 13. In this figure, we simulate data from a Gaussian,
Poisson, Negative Binomial, and Double Poisson [57] distribution, each with identical mean
and variance. We then perfectly specify a probabilistic model for each dataset and compute the
corresponding ECE. Even though each model is known a priori to be congruent (and thus calibrated),
the ECE fails to recover this fact when the data / model are discrete. Reliance on uniformity of the PIT,
which is not a necessary condition for calibration in the discrete case, causes the ECE to overestimate
the true calibration error for the Poisson, Negative Binomial, and Double Poisson models
(which clearly do not have uniform PITs). Meanwhile, the ECE is essentially zero for the perfectly
calibrated Gaussian model. These results support our theoretical analysis identifying the ECE as an
insufficient (and biased) measure when quantifying the calibration of a discrete regression model.

D.2 On the Limited Applicability of NLL for Point-Wise Analysis

While the ECE is strictly defined in the aggregate sense, it is possible to evaluate the NLL at specific
inputs (provided a label is available) to gain some understanding about point-wise probabilistic fit. In
practice, however, we find that because NLL lacks context outside the specific point being evaluated,
it is sensitive to outliers and produces a rather discontinuous loss surface. Additionally, since NLL
has no fixed lower bound, it can be hard to interpret just how close to perfectly-fit a given predictive
distribution is ([34] discusses this in some detail). These shortcomings do not extend to the CCE, as
its kernelized computation incorporates similar inputs and outputs when assessing congruence and its
minimum is 0. As an added bonus, the CCE can be computed on inputs that do not have a label (see
Section 4.3 for an explanation of how this works).

To make a more concrete comparison between the NLL and CCE as tools for point-wise comparison,
we assess the conditional distributions learned by the DDPN [16] trained on AAF in two ways: by
computing the NLL for each test point, and by computing the CCE for each test point (using the
validation split as S). We use t-SNE [58] to project the embeddings of each input φ(xi) to two
dimensions for easy visualization, and create a contour plots indicating NLL and CCE across the
input space. To build intuition around the geometric structure of the input space, we also provide a
plot showing the magnitude of the labels for each test input. Results are displayed in Figure 14.
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E ADDITIONAL CASE STUDIES

E.1 AAF

Additional case studies in the style of Section 4.3 for the various models we trained on the AAF dataset
can be found in Figures 15, 16, 17, 18, 19, and 20 (excepting the β-Gaussian, which is displayed in
Figure 4 in the main body).

E.2 COCO-People

We also provide additional case studies showing the best and worst examples in terms of CCE for
each model trained on the COCO-People dataset (excepting the Poisson that we showcase in Figure
5 in the main body). See Figures 21, 22, 23, 24, 25, and 26.

0.0353 0.0366 0.0371 0.0373 0.0374

0.0953 0.0959 0.0963 0.0964 0.0978

Figure 15: AAF test images that incurred the lowest (first row) and highest (second row) CCE values
for the DDPN model.

0.0229 0.0241 0.0242 0.0250 0.0253

0.0587 0.0590 0.0594 0.0599 0.0624

Figure 16: AAF test images that incurred the lowest (first row) and highest (second row) CCE values
for [12]’s “faithful” Gaussian.
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0.0205 0.0210 0.0218 0.0218 0.0227

0.0838 0.0842 0.0848 0.0855 0.0864

Figure 17: AAF test images that incurred the lowest (first row) and highest (second row) CCE values
for a Gaussian NN.

0.0198 0.0210 0.0220 0.0220 0.0222

0.0875 0.0880 0.0904 0.0921 0.0924

Figure 18: AAF test images that incurred the lowest (first row) and highest (second row) CCE values
for [13]’s Natural Gaussian.

0.0048 0.0050 0.0053 0.0055 0.0059

0.0395 0.0398 0.0406 0.0416 0.0426

Figure 19: AAF test images that incurred the lowest (first row) and highest (second row) CCE values
for a Negative Binomial NN.

24
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0.0755 0.0758 0.0761 0.0766 0.0766

Figure 20: AAF test images that incurred the lowest (first row) and highest (second row) CCE values
for a Poisson NN.
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0.0996 0.0999 0.1002 0.1015 0.1052

Figure 21: COCO-People test images that incurred the lowest (first row) and highest (second row)
CCE values for the DDPN model.

0.1036 0.1048 0.1060 0.1065 0.1068

0.1882 0.1884 0.1887 0.1893 0.1914

Figure 22: COCO-People test images that incurred the lowest (first row) and highest (second row)
CCE values for [12]’s “faithful” Gaussian NN.
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0.1556 0.1558 0.1567 0.1575 0.1577

Figure 23: COCO-People test images that incurred the lowest (first row) and highest (second row)
CCE values for a Gaussian NN.

0.0576 0.0589 0.0592 0.0594 0.0600

0.1224 0.1225 0.1225 0.1226 0.1246

Figure 24: COCO-People test images that incurred the lowest (first row) and highest (second row)
CCE values for [13]’s natural Gaussian NN.

0.0489 0.0493 0.0495 0.0500 0.0502

0.1060 0.1072 0.1080 0.1081 0.1109

Figure 25: COCO-People test images that incurred the lowest (first row) and highest (second row)
CCE values for a Negative Binomial NN.
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0.1040 0.1040 0.1044 0.1046 0.1066

Figure 26: COCO-People test images that incurred the lowest (first row) and highest (second row)
CCE values for a β-Gaussian NN [41].

27


	INTRODUCTION
	PRELIMINARIES
	Notation
	Assessing Probabilistic Fit

	MEASURING CONDITIONAL CONGRUENCE
	Maximum Conditional Mean Discrepancy (MCMD)
	Computing MCMD
	Theoretical Guarantees of MCMD

	Conditional Congruence Error

	EXPERIMENTS
	CCE with a Known Data-Generating Process (Synthetic Data)
	CCE with an Unknown Data-Generating Process (Image Regression)
	CCE Under Known Distribution Shift
	Comparing CCE to ECE and NLL Across Datasets

	Diagnosing Point-wise Model Failures with CCE

	Conclusion
	SUPPLEMENTARY EXPERIMENTAL DETAILS
	Derivation of the Marginal Distribution of Y in Figure 1
	Detailed Description of Experiments
	Synthetic Dataset
	FG-Net, AAF, and EVA
	COCO-People


	COMPUTING CCE — PRACTICAL CONSIDERATIONS
	Algorithm to Compute CCE for a Model
	Accelerating the CCE Computation
	Addressing Memory Limitations

	ADDITIONAL EXPERIMENTS
	Using CCE for Machine Learning with Rejection
	Understanding the Behavior of MCMD on Known Distributions
	Hyperparameter Study
	Investigating 
	Modifying kX and kY
	Increasing the Value of 


	SHORTCOMINGS OF EXISTING METRICS
	On Bias in the ECE Against Discrete Models
	On the Limited Applicability of NLL for Point-Wise Analysis

	ADDITIONAL CASE STUDIES
	AAF
	COCO-People


