
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NTK-LORA: CALIBRATING FINE-TUNED
VISION TRANSFORMERS USING
GAUSSIAN PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning remains essential for adapting foundation models to domains where
high precision is required, such as medical imaging or autonomous driving. How-
ever, this often leads to overconfident and poorly calibrated models, especially
when fine-tuned on small datasets. We propose NTK-LoRA, a simple and effec-
tive post-hoc calibration method for fine-tuned Transformer models (e.g., Vision
Transformers and LLMs) that leverages the Gaussian process view of neural net-
works to perform Laplace approximation of the posterior. Our method is almost
as straightforward to implement as temperature scaling (TS), requires no hyperpa-
rameter tuning or deeper expertise, allows incorporating prior knowledge through
the choice of GP kernel, achieves better or comparable performance to TS and
consistently outperforms Laplace calibration, which in our experiments often fails
to improve over the baseline on binary classification.

1 INTRODUCTION

Deep learning has advanced rapidly in the last years, leading to powerful foundational models in both
vision and language. Vision Transformers (ViT) (Dosovitskiy et al., 2021) and their successors have
become standard backbones in computer vision, while models like GPT-4 (Achiam et al., 2023) and
LLaMA-3 (Grattafiori et al., 2024) exemplify progress in large language models (LLMs). Pretrained
on massive datasets, these models show strong zero- and few-shot performance, yet fine-tuning
remains essential for high-precision, domain-specific applications.

Fine-tuned models often suffer from overconfidence, even when their predictions are incorrect. Dur-
ing fine-tuning, the model’s parameters become overly specialized to the small dataset, leading to
overly confident outputs for inputs it has not encountered before (Hendrycks & Gimpel, 2017; Guo
et al., 2017). Correct calibration is particularly important when predictions are used to make deci-
sions in critical applications such as healthcare, finance, engineering, or autonomous systems. This
overconfidence may undermine their reliability.

Various methods have been proposed to address overconfidence in deep learning. Temperature scal-
ing Guo et al. (2017) is a widely used post-hoc calibration method due to its simplicity and effec-
tiveness, but it is limited to scaling logits and cannot capture more complex forms of miscalibration.
Bayesian approaches treat model weights as random variables and estimate their posterior distribu-
tion, which can lead to improved calibration; however, exact inference is computationally intractable
even for small networks and requires approximations.

A classical approach, originally proposed for small models, is the Laplace approximation (MacKay,
1992), which approximates the posterior distribution of neural network weights with a Gaussian.
While effective for smaller networks, the Laplace approximation becomes less effective for modern
Transformer-based architectures, as (i) covariance factorization is required, which can affect perfor-
mance, and (ii) simple priors such as isotropic Gaussians can lead to pathological behavior, partly
due to the high dimensionality of the parameter space (Cinquin et al., 2021).

Recent work Yang et al. (2023) has applied the Laplace approximation to fine-tuned large language
models (LLMs) such as LLaMA-2 Touvron et al. (2023) using Low-rank Adaptation (LoRA) Hu
et al. (2021). LoRA enables efficient adaptation of pretrained Transformer-based models by training

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 High-level overview of our method
Input:
- Model: Transformer fine-tuned using LoRA for binary classification (e.q. ViT or LLM)
- Calibrated weights: w (all trainable weights during finetuning or subset)
- Data: Training inputs Xtrain, binary labels Ytrain and test inputs Xtest

Algorithm:
for all inputs x ∈ Xtrain ∪Xtest do

Compute Jacobian Jw(x) of output logits w.r.t. weights w
Reshape Jw(x) into feature vector ϕ̃(x)

end for
Fit a GP on normalized feature vectors {ϕ(x) : x ∈ Xtrain} and labels Ytrain
Compute calibrated probabilities and uncertainty for Xtest

only a small number of parameters, to which Laplace can then be applied. However, even with
LoRA, covariance factorizations (e.g., diagonal or Kronecker) are still required for tractability Ritter
et al. (2018); Daxberger et al. (2021), and implementing these efficiently for large models remains
challenging in practice.1

Applying the Laplace approximation has been shown to be equivalent to Gaussian process (GP)
inference with the Neural Tangent Kernel (NTK) that plays an important role in the theoretical un-
derstanding of neural networks Lee et al. (2018); Garriga-Alonso et al. (2019); Novak et al. (2019).
Building on this insight, recent work has proposed efficient variants of the Laplace approximation
(Immer et al., 2021; Cohen et al., 2022; Daxberger et al., 2023). These approaches avoid explicit
parameter-space covariance computations and enable more flexible kernel choices, demonstrating
strong results in uncertainty estimation and calibration. However, to the best of our knowledge, no
prior work has applied the Gaussian process view of Laplace approximations to LoRA fine-tuned
transformer models. This setting is particularly well-suited to GP-based inference, since fine-tuning
is often performed on relatively small datasets where sparse or variational GP approximations are not
required. Moreover, applying Laplace in the GP view scales linearly with the number of parameters,
making it especially suitable for large models trained on modest-sized datasets.

We introduce NTK-LoRA, a calibration method for LoRA-finetuned Vision Transformers that is
simple to implement and requires no specialized knowledge of Gaussian processes, making it acces-
sible to a broad range of researchers and practitioners. Although we focus on binary classification
with Vision Transformers, the approach is general and is not limited to vision. NTK-LoRA consis-
tently improves calibration and log-likelihood while preserving or improving predictive accuracy.
In this work, we make the following contributions:

• We propose NTK-LoRA, the first method that applies the Gaussian process view of the
Laplace approximation to LoRA-finetuned Transformer models.

• We provide a simple and practical implementation that requires no expertise in Bayesian
inference or Gaussian processes, making it accessible to practitioners and researchers from
other fields.

• We conduct extensive empirical validation on vision datasets (CelebA, CUB-200),
demonstrating improvements in calibration and uncertainty estimation compared to base-
lines for Vision Transformers.

• We show that NTK-LoRA can in some cases perform comparably with fully-trained
models after as few as one epoch of fine-tuning, suggesting potential speedups in low-
resource or time-constrained settings.

An overview of the method is provided in Algorithm 1. Code to reproduce our experiments will be
made publicly available upon acceptance.

1Existing Laplace approximation libraries Daxberger et al. (2021) are straightforward to use for small net-
works, but applying them to large Transformer models can be more difficult in practice, for example due to
external dependencies, compatibility with quantized models, or version requirements.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

In this section, we review the background needed to understand the theory and motivation behind
our method and its relation to the Laplace approximation. Readers primarily interested in imple-
mentation details may skip directly to Section 3.3.

2.1 LOW-RANK ADAPTATION (LORA)

LoRA (Hu et al., 2021) is a widely used parameter-efficient fine-tuning method for Transformer
models. Like other parameter-efficient approaches, it keeps the pretrained weights frozen while
introducing a small number of additional trainable parameters. Concretely, before fine-tuning, LoRA
inserts low-rank adapters into selected attention layers by replacing each projection matrix W with
W +AB, where A and B define a low-rank decomposition whose parameter count is much smaller
than that ofW . This approach offers several benefits, including lower memory usage during training,
reduced catastrophic forgetting, and the ability to store many fine-tuned models efficiently.

2.2 BAYESIAN INFERENCE

The Bayesian approach treats model parameters probabilistically. Instead of a single vector of pa-
rameter values, it considers their joint probability distribution. A prior distribution p(w) is specified
and, after observing data, updated into a posterior p(w|D) according to Bayes’ theorem:

p(w|D) =
p(D|w)p(w)

p(D)
∝ p(D|w)p(w),

where p(D|w) denotes the likelihood of the observed data D given model weights w. To make
predictions for a new, unseen test input x∗, the predictive distribution is computed as

p(y∗|x∗) =
∫
p(y∗|x∗, w)p(w|D)dw.

This predictive distribution assigns probabilities to all possible outputs, providing more information
than a single point prediction. For instance, concentrated probability mass indicates low uncer-
tainty, while a more diffuse distribution reflects higher uncertainty. In situations where only a point
estimate is required, the most probable output can be selected as yMAP = argmax p(y∗ | x∗),
known as Maximum a Posteriori (MAP) estimation. Bayesian methods offer key advantages: they
capture uncertainty in predictions and allow prior knowledge to be incorporated through the prior
distribution. However, for large models the exact predictive distribution is intractable and requires
approximate inference.

2.3 LINEARIZED LAPLACE

Bayesian inference can be applied even to models with a large number of parameters, such as neu-
ral networks, when suitable approximations are used. One such method is the Linearized Laplace
(LLaplace) approximation (Daxberger et al., 2021), which combines two approximations to yield a
closed-form predictive distribution. First, the posterior is locally approximated by a Gaussian,

p(w|D) ≈ q(w) = N (µw,Σw),

where µw = w∗ are the trained model weights and Σw is the weight covariance, which can be
approximated using the Jacobian of the output logits with respect to the weights. For the second
approximation, a fixed test input x∗ is assumed, and the neural network is viewed as a function of
its weights, f(w) = f(x∗;w). The function f(w) can then be approximated in weight space by a
first-order Taylor expansion around the trained weights w∗:

f(x;w) ≈ flin(x;w) = f(x;w∗) + Jw∗(x) (w − w∗),

where Jw∗ = ∇wf(w)
∣∣
w=w∗ is the Jacobian of the output logits with respect to the weights w, and

w∗ denotes the trained model parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.4 LINEARIZED LAPLACE AS BAYESIAN LINEAR REGRESSION

LLaplace can be interpreted as approximating the neural network with a Bayesian linear regression
model in weight space, where the basis functions correspond to Jacobians of the network outputs
with respect to the weights. Let ϕ(x) = Jw∗(x)⊤ denote the transposed Jacobian features, and
define the deterministic mean function as b(x) = f(x;w∗) − Jw∗(x)w∗. With output noise ϵ, the
LLaplace model can then be expressed as

y = flin(x;w) + ϵ

= ϕ(x)Tw + b(x) + ϵ

= ϕ′(x)Tw′ + ϵ

The mean function b(x) can be eliminated by transforming the dataset as ỹ = ϕ(x)⊤w + ϵ. Al-
ternatively, the basis function can be augmented to include the bias term, ϕ′(x) = (ϕ(x), b(x)),
with a corresponding extended weight vector w′ = (w, 1). For simplicity of notation, we will write
y = ϕ(x)⊤w + ϵ.

Bayesian linear regression with Gaussian weights and output noise yields a closed-form predictive
distribution N (µy,Σy). However, when the number of parameters is large (e.g., 104 or more), the
full covariance matrix becomes prohibitively large to compute and store. In such cases, approxima-
tions are employed to make LLaplace tractable, though often at the cost of reduced performance.
For a more detailed introduction to the Laplace approximation, we refer readers to (Daxberger et al.,
2021).

2.5 LINEARIZED LAPLACE AS GAUSSIAN PROCESS

A Gaussian process (GP) is a collection of random variables such that any finite subset follows a joint
Gaussian distribution. A GP is fully specified by its mean function µ(x) and covariance function
(kernel) k(x, x′). Equivalently, a GP can be viewed as a distribution over functions f : X → Y , with
the property that evaluations at any finite set of inputs yield samples from a multivariate Gaussian
distribution.

f(x) ∼ GP (m(x), k(x,x′))

Mercer’s theorem implies that every GP can be expressed as a Bayesian linear regression in some
feature space, which may be infinite-dimensional and difficult to find. Conversely, given a Bayesian
linear regression model, the corresponding GP representation is straightforward to obtain. For
LLaplace with a weight prior w ∼ N (0, σ2

wI), an equivalent GP with the same predictive distri-
bution can be constructed. This GP has the following kernel.

k(x, x′) = σ2
wJw∗(x)Jw∗(x

′)T

This kernel is known as the (scaled) Neural Tangent Kernel (NTK), which plays an important role
in the theory of infinitely wide neural networks Lee et al. (2018); Garriga-Alonso et al. (2019);
Novak et al. (2019). In our context, the key property is that a GP with this kernel yields the same
predictive distribution as the Linearized Laplace approximation. This perspective is often referred
to as GP-Laplace or Function-Space Laplace (Immer et al., 2021; Daxberger et al., 2023).

3 METHOD

Our method applies post-hoc calibration to a fine-tuned Transformer model using Low-Rank Adap-
tation (LoRA) (Hu et al., 2021). We focus on binary classification, though with minor modifications
the approach could also be extended to multi-class problems and regression. To perform calibration,
only the parameters updated during fine-tuning (i.e., the LoRA weights and the final classification
layer) are treated as probabilistic and denoted by w, while the remaining pretrained weights are kept

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

fixed. We apply the Laplace approximation to the selected weights w in function space, as a Gaus-
sian process. Compared to parameter-space Laplace, this approach offers simpler implementation
and greater flexibility for incorporating priors.

3.1 GP KERNEL

Our GP kernel is a simple linear kernel defined on feature vectors given by transformed Jacobians.
Specifically, an input x (e.g., an image or text) is mapped to the Jacobian of the two output logits
with respect to the weights w, evaluated at the trained parameters w∗:

J(x) = ∇wf(x;w)|w=w∗ f(x;w) ∈ R2.

The Jacobians are reshaped from 2× d matrixes into feature vectors ϕ̃(x) = vec(Jw∗(x)) of length
2d, where d is the number of parameters. The feature vectors are then normalized as ϕ(x) =

(ϕ̃(x)−µϕ)/σϕ, where µϕ and σϕ are estimated on the training data. This leads to a better numerical
stability and gives individual weights more balanced contribution. From Bayesian perspective, we
can interpret this as having a diagonal covariance prior that corresponds to the scaling values. The
final kernel is as a dot product between two feature vectors with an optional noise kernel for the
output noise.

k(x, x′) = σ2
priorϕ(x)

Tϕ(x′) + σ2
noiseδxx′ ,

where δxx′ is Kronecker delta, σ2
prior is prior variance for weights and σ2

noise is prior variance for
the output noise — two hyper-parameters fitted on the training data. Our kernel is a scalar kernel —
i.e. it outputs a single scalar number instead of c × c covariance between c outputs of two samples
x and x′. Outputting a single logit is sufficient for binary classification, improves computational
efficiency, and simplifies the implementation.

3.2 BINARY CLASSIFICATION

To fit the GP model and make predictions, we use the GaussianProcessClassifier (GPC)
from scikit-learn (version 1.7). Scikit-learn is a widely used ML library that simplifies implemen-
tation and ensures reproducibility. GPC transforms the output logits z into probabilities using the
logistic link function (sigmoid), P (y = 1 | z) = (1 + e−z)−1, which gives the probability of the
positive class conditioned on logit. In GPC, logits are treated as latent variables since binary labels
cannot be represented directly in logit space. Fitting the GP estimates the kernel hyperparameters
(prior and noise variance) by maximizing the marginal log-likelihood.

3.3 IMPLEMENTATION

Implementing our method requires only 20–30 lines of code and two standard ML libraries:
scikit-learn and PyTorch (or any library with automatic differentiation). This compactness al-
lows us to include the full implementation within this paper. Jacobians are computed using
torch.autograd.grad; for simplicity, we iterate over individual data samples, though a
batched implementation could improve performance.

After computing the Jacobians for all training samples and reshaping them into feature vectors, we
normalize the features using StandardScaler from sklearn. We then fit a GPC, which automati-
cally determines the optimal prior variance (scale of the linear kernel) and noise variance. Our kernel
can be easily extended with non-linear kernels or more complex priors, implemented as transforma-
tions of the feature vectors. For prediction, we compute Jacobians for the test samples, transform
them into feature vectors, and use predict proba from scikit-learn to obtain calibrated proba-
bilities. Optionally, latent mean and variance (available in scikit-learn version 1.7 or later)
can be used to obtain a distribution over logits, which allows estimating second-order uncertainty.

Our implementation is not restricted to LoRA parameters. Any other parameter-efficient fine-
tuning method, or any chosen subset of weights, could be used in place of the LoRA pa-
rameters. For regression tasks, GaussianProcessClassifier can be replaced with
GaussianProcessRegressor. In the multi-class setting, the same implementation can be

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Calibration with NTK-LoRA. Left: we take Jacobians as feature vectors, normalize them, and fit
a Gaussian Process Classifier with the kernel defined at Section 3.1. Right: prediction code that returns cali-
brated probabilities, optionally, full Gaussian predictive distribution over logits is also returned for uncertainty
estimation.

applied, although results may be suboptimal, since GPC does not natively support multi-class clas-
sification and instead trains multiple one-vs-rest binary classifiers. For the complete implementation,
see Figure 1 and Figure 3 (Appendix, second figure).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our method across six diverse binary classification tasks spanning two different vision
domains: CelebA - a large-scale dataset of celebrity face images with binary attribute annotations
commonly used to evaluate models for calibration, and CUB-200 – a fine-grained bird classification
dataset with binary attribute labels.

From each dataset, we evaluate on three challenging attributes. For CelebA, we focus on blurry, pale
skin, and rosy cheeks, which have been noted as inconsistent or noisy (Wu et al., 2023; Lingenfelter
et al., 2022); we omit attributes where fine-tuning provides no improvement over the pretrained
model. To the best of our knowledge, no prior work systematically identifies the most difficult
attributes in CUB. We therefore used a large language model to suggest the most difficult attributes
for our experiments: buff underparts, olive back, and bill length shorter than head.

Since calibration is particularly important for models trained on small datasets, we randomly sam-
ple 1,000 training images with balanced positive and negative classes. An equally sized test set
is constructed in the same way, except for the second CUB attribute, which contains only about
350 training and 350 test samples after balanced sampling. We fine-tune DeiT-Tiny, the small-
est variant of the Data-efficient Image Transformer (DeiT) (Touvron et al., 2021), pre-trained on
ImageNet-1k (1M images across 1,000 classes). The full set of training hyperparameters is provided
in Appendix B.

4.2 MAIN RESULTS

In our main experiments, we apply early stopping and select the model with the best validation
loss. We compare our method against temperature scaling (Guo et al., 2017) and Laplace with
Kronecker-factored covariance, implemented using the Laplace library (Daxberger et al., 2021).
Each experiment is repeated 5–8 times with different random seeds, and the averaged results are
reported in Table 4.2. We evaluate three main metrics: accuracy (ACC), negative log-likelihood
(NLL), and expected calibration error (ECE). In addition, we report accuracy on the top k% most
certain predictions (k ∈ {10, 20, 30}), where uncertainty is estimated using the Bernoulli variance.

NTK-LoRA achieves performance comparable to or better than temperature scaling (TS), and con-
sistently outperforms both Laplace and the uncalibrated baseline. We attribute the weaker per-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on six binary classification tasks across CelebA and CUB. CelebA attributes: blurry (1),
pale skin (2), rosy cheeks (3); CUB attributes: buff underparts (1), olive back (2), bill length shorter than
head (3). All models are calibrated using the checkpoint with the best validation loss. Compared methods:
(1) baseline (no calibration), (2) temperature scaling, (3) Laplace with Kronecker-factored covariance, and (4)
NTK-LoRA (ours). Best and near-best results are shown in bold.

ACC NLL ECE ACC 10% ACC 20% ACC 30%

Baseline 0.7103 0.5976 0.1028 0.8583 0.8542 0.8339

Temperature 0.7103 0.5678 0.0528 0.8583 0.8542 0.8339

Laplace 0.7070 0.6056 0.1094 0.8550 0.8508 0.8322

NTK-LoRA (ours) 0.7150 0.5665 0.0433 0.8817 0.8575 0.8494

CUB Attr1

ACC NLL ECE ACC 10% ACC 20% ACC 30%

0.7723 0.5510 0.1535 0.9188 0.9203 0.9128

0.7723 0.4858 0.0553 0.9188 0.9203 0.9128

0.7723 0.5645 0.1674 0.9062 0.9188 0.9097

0.7950 0.4645 0.0817 0.9438 0.9359 0.9244

CUB Attr2

ACC NLL ECE ACC 10% ACC 20% ACC 30%

Baseline 0.7208 0.5911 0.1004 0.9020 0.8790 0.8527

Temperature 0.7208 0.5636 0.0525 0.9020 0.8790 0.8527

Laplace 0.7208 0.5961 0.1083 0.9000 0.8760 0.8520

NTK-LoRA (ours) 0.7266 0.5620 0.0456 0.9040 0.8780 0.8600

CUB Attr3

ACC NLL ECE ACC 10% ACC 20% ACC 30%

0.8333 0.4899 0.1696 0.9912 0.9844 0.9750

0.8333 0.3930 0.0542 0.9912 0.9844 0.9750

0.8334 0.5081 0.1916 0.9912 0.9862 0.9754

0.8346 0.3769 0.0421 0.9912 0.9838 0.9767

CelebA Attr1

ACC NLL ECE ACC 10% ACC 20% ACC 30%

Baseline 0.7865 0.5308 0.1519 0.9625 0.9500 0.9296

Temperature 0.7865 0.4600 0.0513 0.9625 0.9500 0.9296

Laplace 0.7865 0.5456 0.1707 0.9638 0.9475 0.9296

NTK-LoRA (ours) 0.7866 0.4559 0.0453 0.9700 0.9569 0.9354

CelebA Attr2

ACC NLL ECE ACC 10% ACC 20% ACC 30%

0.8001 0.5185 0.1508 0.9725 0.9606 0.9421

0.8001 0.4460 0.0541 0.9725 0.9606 0.9421

0.8001 0.5311 0.1661 0.9713 0.9588 0.9429

0.8044 0.4404 0.0483 0.9488 0.9469 0.9379

CelebA Attr3

formance of Laplace to its use of a Kronecker-factored covariance, which imposes independence
assumptions across layers. In contrast, our method does not rely on such assumptions.

4.3 CALIBRATION DURING TRAINING

To study the effect of model selection, we calibrate models after each training epoch and report
averages over multiple runs in Figure 2. On the CelebA dataset, NTK-LoRA yields more stable
performance and is less sensitive to the choice of epoch compared to TS. This property is particularly
useful when the validation set is unavailable or too small. An additional advantage is that, even
after only a few epochs, NTK-LoRA calibrated models often achieve performance comparable to
the fully trained model. On the other hand, our method’s performance typically degrades once the
model begins to overfit, sometimes even before the uncalibrated baseline reaches its best validation
loss. Thus, early stopping is recommended to obtain the best results with our approach.

4.4 CALIBRATION WITH LIMITED TRAINING TIME

Using the same setup as in the previous experiments, we evaluate models calibrated after a single
training epoch. Results are reported in Table 2. In most cases, our method substantially improves
accuracy over the baseline and other calibration approaches. Remarkably, in some settings NTK-
LoRA achieves performance close to a fully trained model, even when applied after only a single
epoch of fine-tuning.

These results are consistent with prior observations that Gaussian process views of neural networks,
such as Neural Tangent Kernels, can provide competitive performance without full training (Lee
et al., 2018; Novak et al., 2019), and with results showing that Bayesian posteriors can compensate
for limited training by integrating uncertainty (Daxberger et al., 2021). We believe this could point
toward a practical strategy for scenarios such as adaptation of vision models on small datasets with
strict compute or time budgets (e.q. training on edge-devices), where training only for a short period
followed by calibration suffices to obtain models that are both accurate and well-calibrated.

5 CONCLUSION

In this work, we introduced NTK-LoRA, a simple post-hoc calibration method for Transformer mod-
els fine-tuned for binary classification. Our approach leverages the Gaussian process view of neural

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Calibration after one epoch. Same setting as Table 4.2, except models are trained for a single epoch.
NTK-LoRA substantially improves accuracy over other methods, in some cases achieving performance close
to the fully trained model (e.q., CelebA attribute 3 – rosy cheeks).

ACC NLL ECE ACC 10% ACC 20% ACC 30%

Baseline 0.7042 0.6137 0.1058 0.8400 0.8367 0.8189

Temperature 0.7042 0.5860 0.0558 0.8400 0.8367 0.8189

Laplace 0.7042 0.6175 0.1111 0.8417 0.8350 0.8178

NTK-LoRA (ours) 0.7158 0.5676 0.0431 0.8833 0.8558 0.8450

CUB Attr1

ACC NLL ECE ACC 10% ACC 20% ACC 30%

0.7427 0.6111 0.1697 0.8781 0.8547 0.8298

0.7427 0.5516 0.0924 0.8781 0.8547 0.8298

0.7427 0.6182 0.1780 0.8625 0.8578 0.8277

0.8036 0.4802 0.0914 0.9219 0.9156 0.9055

CUB Attr2

ACC NLL ECE ACC 10% ACC 20% ACC 30%

Baseline 0.7080 0.6001 0.1018 0.8920 0.8540 0.8313

Temperature 0.7080 0.5707 0.0475 0.8920 0.8540 0.8313

Laplace 0.7080 0.6039 0.1096 0.8920 0.8550 0.8287

NTK-LoRA (ours) 0.7232 0.5589 0.0449 0.8960 0.8850 0.8520

CUB Attr3

ACC NLL ECE ACC 10% ACC 20% ACC 30%

0.7321 0.6059 0.1554 0.9425 0.9138 0.8912

0.7321 0.5366 0.0627 0.9425 0.9138 0.8912

0.7321 0.6118 0.1627 0.9450 0.9150 0.8925

0.8099 0.4230 0.0571 0.9925 0.9819 0.9671

CelebA Attr1

ACC NLL ECE ACC 10% ACC 20% ACC 30%

Baseline 0.6699 0.6371 0.1097 0.8762 0.8406 0.8121

Temperature 0.6699 0.6036 0.0540 0.8762 0.8406 0.8121

Laplace 0.6699 0.6406 0.1152 0.8762 0.8394 0.8146

NTK-LoRA (ours) 0.7492 0.5246 0.0631 0.9438 0.9244 0.9004

CelebA Attr2

ACC NLL ECE ACC 10% ACC 20% ACC 30%

0.7317 0.5906 0.1251 0.9563 0.9194 0.8938

0.7317 0.5403 0.0583 0.9563 0.9194 0.8938

0.7317 0.5960 0.1341 0.9588 0.9219 0.8933

0.8004 0.4532 0.0636 0.9662 0.9450 0.9325

CelebA Attr3

networks and can be implemented with only a few lines of code using standard libraries such as
PyTorch and scikit-learn, making it accessible to a broad range of practitioners. Across experiments
with Vision Transformers on CelebA and CUB, NTK-LoRA achieved performance comparable to
or better than temperature scaling in terms of acuracy, negative log-likelihood, and calibration, and
generally outperformed Laplace with Kronecker-factored covariance, which often failed to improve
over the uncalibrated baseline. Notably, we find that NTK-LoRA can achieve strong performance
after only a single epoch of fine-tuning, sometimes approaching the accuracy of fully trained mod-
els. This highlights its potential in scenarios where training time or computational resources are
limited. Overall, NTK-LoRA provides a practical calibration tool that integrates seamlessly with
existing fine-tuning workflows.

6 LIMITATIONS AND FUTURE WORK

While our experiments focused on Vision Transformers for binary classification, the approach is ap-
plicable to other Transformer-based models (e.g., large language models) fine-tuned with parameter-
efficient methods, and with minor modifications could also extend to regression and other tasks.
Further experiments are needed to validate its effectiveness in these broader settings. However,
since our method is primarily designed for problems with a small number of outputs, scaling it to
high-dimensional generative settings (e.g., next-token prediction or image generation) would require
developing more efficient extensions that would scale sublinearly in the number of outputs.

Our method performs well for fine-tuned Vision Transformers with a relatively small number of
calibrated parameters and training examples (up to a few thousand). There is no inherent restric-
tion on the size of the pretrained model. When calibrating larger parameter sets, the method still
scales linearly; however, in preliminary experiments we observed somewhat reduced efficiency in
high-dimensional spaces, requiring more careful selection of training hyperparameters and priors,
consistent with findings by Cinquin et al. (2021). To address this limitation, future work could
explore more suitable priors or employ parameter-efficient fine-tuning methods that adapt fewer
parameters than LoRA.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.750

0.775

0.800

0.825

C
el

eb
A

 •
A

ttr
1

ACC ↑

0.4

0.5

0.6

NLL ↓

0.05

0.10

0.15

0.20
ECE ↓

0.70

0.75

C
el

eb
A

 •
A

ttr
2

0.45

0.50

0.55

0.60

0.05

0.10

0.15

5 10 15
Epoch

0.74

0.76

0.78

0.80

C
el

eb
A

 •
A

ttr
3

5 10 15
Epoch

0.45

0.50

0.55

0.60

5 10 15
Epoch

0.05

0.10

0.15

Baseline Temperature Scaling Laplace NTK-LoRA (ours)

(a) CelebA attributes.

0.700

0.705

0.710

0.715

0.720

C
U

B
 •

A
ttr

1

ACC ↑

0.56

0.58

0.60

0.62
NLL ↓

0.04

0.06

0.08

0.10

0.12
ECE ↓

0.74

0.76

0.78

0.80

C
U

B
 •

A
ttr

2

0.45

0.50

0.55

0.60

0.10

0.15

5 10
Epoch

0.710

0.715

0.720

C
U

B
 •

A
ttr

3

5 10
Epoch

0.56

0.58

0.60

5 10
Epoch

0.04

0.06

0.08

0.10

0.12

Baseline Temperature Scaling Laplace NTK-LoRA (ours)

(b) CUB attributes.

Figure 2: Calibration during training. (a) CelebA attributes: blurry (1), pale skin (2), rosy cheeks (3);
(b) CUB attributes: buff underparts (1), olive back (2), bill length shorter than head (3). Models are calibrated
after each epoch, with results averaged over multiple random seeds. NTK-LoRA provides more stable perfor-
mance across epochs than TS and outperforms other methods in early epochs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tristan Cinquin, Alexander Immer, Max Horn, and Vincent Fortuin. Pathologies in priors and
inference for bayesian transformers. arXiv preprint arXiv:2110.04020, 2021. URL https:
//arxiv.org/abs/2110.04020.

Jeremy M. Cohen, Erik A. Daxberger, Zachary Nado, James Martens, Mark van der Wilk, and
Richard E. Turner. Validating neural network uncertainty using the laplace approximation. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,
and Philipp Hennig. Laplace redux: Effortless bayesian deep learning. In Ad-
vances in Neural Information Processing Systems, volume 34 of NeurIPS, pp. 8516–
8528, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
08f94f9b64cbf46147743e21143f7dba-Abstract.html.

Erik A. Daxberger, Agustinus Kristiadi, Alexander Immer, Matthias Bauer, and Richard E. Turner.
Fsp-laplace: Function-space priors for the laplace approximation in bayesian deep learning. In In-
ternational Conference on Machine Learning (ICML), 2023. URL https://proceedings.
mlr.press/v202/daxberger23a.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Adrià Garriga-Alonso, Carl Edward Rasmussen, and Richard E. Turner. Deep neural networks as
gaussian processes. In International Conference on Learning Representations (ICLR), 2019. URL
https://openreview.net/forum?id=Bklfsi0cKm.

A. Grattafiori et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. URL https:
//arxiv.org/abs/2407.21783.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of ICML, pp. 1321–1330. PMLR, 2017. URL
http://proceedings.mlr.press/v70/guo17a.html.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.
URL https://openreview.net/forum?id=Hkg4TI9xl.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Alexander Immer, Matthias Bauer, Vincent Fortuin, and Gunnar Rätsch. Improving predictions
of bayesian neural nets via local linearization. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2021. URL https://proceedings.mlr.press/v130/
immer21a.html.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. In International Conference on
Learning Representations (ICLR), 2018. URL https://openreview.net/forum?id=
B1EA-M-0Z.

Bryson Lingenfelter, Sara R. Davis, and Emily M. Hand. A quantitative analysis of labeling issues in
the celeba dataset. In Advances in Visual Computing, pp. 129–141. Springer, 2022. doi: 10.1007/
978-3-031-20713-6\ 10. URL https://par.nsf.gov/servlets/purl/10436785.

10

https://arxiv.org/abs/2110.04020
https://arxiv.org/abs/2110.04020
https://proceedings.neurips.cc/paper/2021/hash/08f94f9b64cbf46147743e21143f7dba-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/08f94f9b64cbf46147743e21143f7dba-Abstract.html
https://proceedings.mlr.press/v202/daxberger23a.html
https://proceedings.mlr.press/v202/daxberger23a.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=Bklfsi0cKm
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://proceedings.mlr.press/v70/guo17a.html
https://openreview.net/forum?id=Hkg4TI9xl
https://proceedings.mlr.press/v130/immer21a.html
https://proceedings.mlr.press/v130/immer21a.html
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z
https://par.nsf.gov/servlets/purl/10436785

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural Com-
putation, 4(3):448–472, 1992. doi: 10.1162/neco.1992.4.3.448.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein,
and Samuel S Schoenholz. Bayesian deep convolutional networks with many channels are gaus-
sian processes. In International Conference on Learning Representations (ICLR), 2019. URL
https://openreview.net/forum?id=B1gde3C5Fm.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Scalable laplace approximations for neural
networks. In International Conference on Learning Representations (ICLR), 2018. URL https:
//openreview.net/forum?id=Skdvd2xAZ.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention.
In Proceedings of the 38th International Conference on Machine Learning, volume 139 of
ICML, pp. 10347–10357. PMLR, 2021. URL http://proceedings.mlr.press/v139/
touvron21a.html.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Siddharth Batra, Apoorv Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Haiyu Wu, Grace Bezold, Manuel Günther, Terrance E. Boult, Michael C. King, and Kevin W.
Bowyer. Consistency and accuracy of celeba attribute values. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3258–3266,
2023. doi: 10.1109/CVPRW59228.2023.00328. URL https://openaccess.thecvf.
com/content/CVPR2023W/VDU/papers/Wu_Consistency_and_Accuracy_of_
CelebA_Attribute_Values_CVPRW_2023_paper.pdf.

Alex X Yang, Maarten Robeyns, Xin Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. arXiv preprint arXiv:2308.13111, 2023.

A GAUSSIAN PROCESSES

A.1 DEFINITION AND BASIC PROPERTIES

A Gaussian Process (GP) is a collection of random variables, where finite subsets have a joint Gaus-
sian distribution. Every GP is uniquely specified by its mean µ(x) and covariance function (kernel)
k(x1, x2). We can also see it as a distribution on functions f : X → Y , we write:

f(x) ∼ GP (m(x), k(x,x′))

Perhaps, a more intuitive way to think about GPs for ML practitioners is as the following Bayesian
linear regression model.

y = f(x) + ϵ = wTψ(x) + ϵ

, where ψ(x) is a basis function, w ∼ N (0, σ2I) are the weight and ϵ ∼ N (µ,Σ) is the output
noise. Mercer’s theorem tells us every GP is equivalent to a BLR in certain feature space (that could
be infinite and difficult to find). On the other hand, going from BLR to GP is straightforward. Given
a BLR model, we can define a GP as follows.

m(x) = E[f(x)] = ψ(x)Tµw

k(x1, x2) = Cov(f(x1), f(x2)) = ψ(x)TΣwψ(x)

where f(x) = wTψ(x) and w ∼ N(µw,Σw).

11

https://openreview.net/forum?id=B1gde3C5Fm
https://openreview.net/forum?id=Skdvd2xAZ
https://openreview.net/forum?id=Skdvd2xAZ
http://proceedings.mlr.press/v139/touvron21a.html
http://proceedings.mlr.press/v139/touvron21a.html
https://openaccess.thecvf.com/content/CVPR2023W/VDU/papers/Wu_Consistency_and_Accuracy_of_CelebA_Attribute_Values_CVPRW_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023W/VDU/papers/Wu_Consistency_and_Accuracy_of_CelebA_Attribute_Values_CVPRW_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023W/VDU/papers/Wu_Consistency_and_Accuracy_of_CelebA_Attribute_Values_CVPRW_2023_paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

This simplifies for w ∼ N (0, σ2
priorI), where σ2

prior is the prior variance and ϵ ∼ N (0, σ2
noiseI),

where σ2
noise is the noise variance, this simplifies to.

m(x) = 0 and k(x1, x2) = σ2
priorψ(x)

Tψ(x)

A.2 COMPUTING PREDICTIONS

To make predictions with GPs, we look at the join distribution of test and training data, which is by
the definition Gaussian. From that we can derive the following formula for the predictive distribution
that is a Gaussian N(µy∗ , σ

2
y∗
) for a test input x∗ and output y∗.

µy∗ = E
[
f(x∗) | X,y

]
= k⊤

∗
(
K + σ2

nI
)−1

y

σ2
∗ = Var

[
f(x∗) | X,y

]
= k(x∗,x∗)− k⊤

∗
(
K + σ2

nI
)−1

k∗,

where

• Kij = k(xi,xj)

• k∗ =
[
k(x1,x∗), . . . , k(xn,x∗)

]⊤
,

• σ2
n is the variance of the i.i.d. Gaussian observation noise.

GPs are non-parametric, they don’t have any weight vector to fit, only hyper-parameters that can be
optimized after observing the data. This is done by maximization of the marginal log-likelihood.

A.3 BINARY CLASSIFICATION

Classification with Gaussian processes is slightly more involved than regression, since the likelihood
is no longer Gaussian. In our experiments we use the GaussianProcessClassifier (GPC)
implementation from scikit-learn (version 1.7). The GPC supports only binary classification
directly; multi-class problems are handled internally using a one-vs-rest reduction to multiple bi-
nary classifiers. Unlike regression, where the GP represents the predicted values directly, here it
represents logits f that have to be converted to class probabilities via a logistic link:

P (y = 1 | f) = σ(f) =
1

1 + e−f
.

Instead of transforming the training labels into logits directly (which would give us infinite values),
we treat logits as latent values and find the hyper-parameters (in our case prior and noise variance)
by maximization of the marginal log-likelihood.

log p(y | X, θ) = log

∫
p(y | f) p(f | X, θ) df

Because the Bernoulli likelihood breaks conjugacy, the posterior p(f | X, y) is intractable. By
default scikit-learn’s GaussianProcessClassifier uses the Laplace approximation (similar
to the one we use to approximate posterior of the neural network) to form a Gaussian approximation
around the MAP latent f̂ , and then computes predictive probabilities via one-dimensional quadra-
ture.

B EXPERIMENTAL SETUP

We use pretrained Vision Transformers from HuggingFace: DeiT-Tiny for our main experiments,
DeiT-Small, and ViT-Base (ImageNet-21k) for our additional experiments. LoRA fine-
tuning is applied to a subset of attention layers (typically the last one), with rank 1 and scaling
parameter α = 4. Adapters are inserted into the query and value projection matrices. The last layer
and LoRA adapters are trained, other model weights remain frozen.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 3: Computing Jacobians with PyTorch autograd. Given an input sample, the model, and
the parameters to calibrate (LoRA adapters and the final layer), we compute the Jacobian of the
output logits with respect to those parameters.

We train with the Adam optimizer (learning rate 1.5× 10−3, weight decay 0.01), using a batch size
of 32 for 10 epochs for CUB and 15 epochs for CelebA. We repeat experiments with 5-8 random
seeds, different seed sets are used for each attribute to ensure robustness.

Experiments are implemented in PyTorch (v2.7) and scikit-learn (v1.7). We use Hugging-
Face Transformers for pretrained ViTs. All experiments were conducted on an NVIDIA A40 GPU
with 48GB memory. However, our experiments with smaller models (DeiT-Tiny) can be reproduced
on cheaper GPUs, on Apple Silicon devices, or even on CPUs without dedicated accelerators.

C LLM USAGE

In preparing this work, we used ChatGPT (OpenAI’s GPT-4 and GPT-5) as a writing and editing as-
sistant to improve clarity and readability of text passages, suggest alternative phrasings, and provide
LATEX code snippets for tables, figures, and formatting. In addition, large language models were used
to generate Python code for figures and visualizations and to suggest suitable datasets for evaluation.

All scientific contributions, research ideas, model development, experiments, analyses, and conclu-
sions are entirely our own. The LLM was not used for the ideation of the method, the design of the
experiments, the data analysis, or the generation of the results, but only to provide feedback on the
ideas of the authors. The authors take full responsibility for the final content of the paper.

13

	Introduction
	Background
	Low-Rank Adaptation (LoRA)
	Bayesian Inference
	Linearized Laplace
	Linearized Laplace as Bayesian Linear Regression
	Linearized Laplace as Gaussian Process

	Method
	GP Kernel
	Binary Classification
	Implementation

	Experiments
	Experimental Setup
	Main Results
	Calibration During Training
	Calibration with Limited Training Time

	Conclusion
	Limitations and Future Work
	Gaussian Processes
	Definition and Basic Properties
	Computing Predictions
	Binary Classification

	Experimental Setup
	LLM Usage

