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Abstract

Simulating interactions between deformable bodies is vital in fields like material science,
mechanical design, and robotics. While learning-based methods with Graph Neural Networks
(GNNs) are effective at solving complex physical systems, they encounter scalability issues
when modeling deformable body interactions. To model interactions between objects,
pairwise global edges have to be created dynamically, which is computationally intensive
and impractical for large-scale meshes. To overcome these challenges, drawing on insights
from geometric representations, we propose an Adaptive Spatial Tokenization (AST) method
for efficient representation of physical states. By dividing the simulation space into a grid of
cells and mapping unstructured meshes onto this structured grid, our approach naturally
groups adjacent mesh nodes. We then apply a cross-attention module to map the sparse
cells into a compact, fixed-length embedding, serving as tokens for the entire physical state.
Self-attention modules are employed to predict the next state over these tokens in latent space.
This framework leverages the efficiency of tokenization and the expressive power of attention
mechanisms to achieve accurate and scalable simulation results. Extensive experiments
demonstrate that our method significantly outperforms state-of-the-art methods in modeling
deformable body interactions. Notably, it remains effective on large-scale simulations with
meshes exceeding 100,000 nodes, where existing methods are hindered by computational
limitations. Additionally, we contribute a novel large-scale dataset encompassing a wide
range of deformable body interactions to support future research in this area.

1 Introduction

Solving interactions between deformable bodies plays a vital role in a wide range of applications, including
material science (David Müzel et al., 2020; Barbero, 2023), mechanical design (Thompson & Sung, 1986;
Zienkiewicz & Taylor, 2005), and robotics (Collins et al., 2021). The finite element method (FEM) is a widely
used numerical approach for addressing such problems (Courant et al., 1994). However, FEM typically incurs
high computational costs and requires significant manual effort from engineers to ensure solver stability and
convergence (Oc, 2000; Hughes, 2003; Cook et al., 2007; Elrefaie et al., 2024). Recently, there has been
growing interest in leveraging learning-based methods to address deformable body simulation. MeshGraphNet
(MGN) and related approaches (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Fortunato et al., 2022)
represent unstructured meshes as graphs and employ stacked message-passing blocks to propagate physical
information across the mesh. Subsequent variants have introduced various graph pooling operations and
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U-Net-like architectures (Lino et al., 2021; Deshpande et al., 2024; Cao et al., 2023) to solve the multi-scale
challenges in different simulation tasks. To model interactions between distinct deformable bodies, these
methods typically construct dynamic edges based on the proximity of mesh nodes (Pfaff et al., 2020; Yu et al.,
2024). However, maintaining global pairwise edges across all mesh nodes becomes a significant computational
bottleneck, limiting the scalability of such models to larger or more complex scenes. Rubanova et al. (2024)
proposed to use 3D implicit representations like Signed Distance Function (SDF) for more efficient collision
detection, but it has to be built on the solid body prior. Thuerey et al. (2018) interpolated the input 2D
field onto a 128×128 grid and applied a convolutional U-Net to process the grid input for CFD simulation.
O Pinheiro et al. (2023) proposed representing atoms as continuous densities and molecules as discretizations
of 3D space on voxel grids. Similar to image tasks, they applied a score-based generative model to generate
molecules by denoising noisy voxelized representations. Beyond regular grids suitable for convolutional
operations, later methods such as GraphCast (Lam et al., 2023) introduced a background grid to which the
mesh is attached, enabling more efficient message passing in graph neural networks. However, this effectively
converts an unstructured mesh into a structured one, which may work well for simple, regular geometries but
can suffer from reduced accuracy and efficiency when applied to complex shapes.

Methods such as GraphCast (Lam et al., 2023) propose creating a background grid to which the mesh is
attached, enabling more efficient message passing. However, this effectively converts an unstructured mesh
into a structured one, which can work well for simple, regular geometries such as spheres. When applied to
complex shapes, however, this approach may suffer from reduced accuracy and efficiency. Transformer-based
models such as HCMT (Yu et al., 2024) propose using two sets of attention blocks to model contacts and
collisions between deformable objects. However, the attention matrices are constructed over mesh nodes and
global edges, resulting in high memory consumption. This makes the approach computationally prohibitive
when scaling to larger meshes.

Recent advances in computer vision (Dosovitskiy et al., 2020; Radford et al., 2021; Li et al., 2023) and
computer geometry (Zhang et al., 2023b; Li et al., 2025) have shown that applying learnable tokenization to raw
input signals is critical for downstream understanding and generation tasks. In computer vision (Dosovitskiy
et al., 2020; Radford et al., 2021), input images are typically divided into patches, which are then mapped via
linear layers to patch embeddings. These embeddings, along with added positional information, are processed
further using token-wise operations. Similarly, in geometric tasks, 3D shapes—represented as meshes, point
clouds, or signed distance functions (SDFs)—are typically embedded into compact latent representations
before being passed to downstream components (Zhang et al., 2023a; Li et al., 2025). These approaches
inspired us to design an effective tokenization strategy for physical states in simulation, where the state can
be viewed as a set of vector fields defined over a given 3D geometry.

In this work, we introduce Adaptive Spatial Tokenization (AST), a novel method for encoding diverse
physical states into fixed-length embeddings. We begin by quantizing the spatial domain into a grid of cells,
effectively mapping the unstructured mesh onto a structured spatial partition. To manage this representation
efficiently, we also provide the option to use an octree-like hierarchical indexing system for scalable storage
and fast lookup. As showed in Figure 1, in our proposed representation, adjacent mesh nodes are naturally
grouped into shared cells, enabling structured local interactions. We then apply sparse convolution to
propagate information between cells, allowing inter-object interactions to emerge naturally. This approach
eliminates the need for explicitly constructing costly pairwise global edges, which is a common bottleneck in
prior graph-based methods. Inspired by the use of cross-attention in Transformer architectures and its success
in 3D shape representation(Zhang et al., 2023b; Li et al., 2025), we design a cross-attention module that
queries features from the quantized sparse cells using compact, fixed-length vectors—our adaptive spatial
tokens. These tokens are then processed in latent space using a Transformer-style network composed of
a series of self-attention layers, enabling next-step prediction of the physical state. We conduct extensive
experiments across various scenarios involving deformable body interactions. Our method consistently
outperforms state-of-the-art baselines, particularly in modeling inter-object interactions. Furthermore, in
large-scale simulations involving meshes with over 100,000 nodes—where most existing methods fail due to
memory constraints—our approach continues to produce accurate and stable predictions.

Our primary contributions can be summarized as follows:
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Figure 1: Spatial Cells for interactions.

1. We propose Adaptive Spatial Tokenization (AST) to efficiently represent physical states in simulation
by mapping unstructured meshes into structured grid cells and compressing them into a compact,
fixed-length representation via cross-attention.

2. We develop an attention-based model that operates on spatial tokens in latent space to simulate
interactions between deformable bodies, without relying on explicit global connectivity.

3. Our method achieves significant improvements over state-of-the-art baselines, particularly in modeling
complex object interactions.

4. We introduce ABCD-XL, a novel large-scale dataset featuring diverse deformable body interactions
for benchmarking.

2 Related Work

In recent years, solving physics simulation with learning based methods have been an active research area.
One of the most representative work is MGN (Pfaff et al., 2020), in which mesh data with physical states is
treated as graph. It adopts Encode-Process-Decode architecture (Sanchez-Gonzalez et al., 2020), stacking
multiple message passing layers as the core processing module to propagate the physics information through
the graph. Several variants, such as BSMS (Cao et al., 2023), MAgNET (Deshpande et al., 2024), and
GNN-U-Net (Gladstone et al., 2023), introduce enhancements including virtual edges, graph pooling, and
U-Net structures to improve computational efficiency and handle long-range interactions. To simulate
interactions between objects, these methods typically construct dynamic world edges by connecting spatially
close mesh nodes across objects at each time step. FIGNet (Allen et al., 2023) extends this idea by defining
multiple edge types (face-to-face, mesh-to-mesh, and object-to-mesh) to better capture rigid body dynamics.
More recently, SDF-Sim (Rubanova et al., 2024) introduces implicit representations such as signed distance
functions (SDFs) for efficient collision detection between rigid bodies. However, both methods focus on rigid
body interactions and do not offer scalable solutions for deformable body simulations. HCMT (Yu et al.,
2024) explores the use of Transformer-style attention blocks to model the dynamics between deformable
bodies. While promising, it still relies on constructing world edges and requires computing dense node-wise
attention matrices, which limits its scalability to large meshes.

Recently, learnable tokenizers have been widely adopted in both computer vision (Oord et al., 2017; Dosovitskiy
et al., 2020; Radford et al., 2021) and computer geometry (Wang, 2023; Zhang et al., 2023b; Li et al., 2025)
to improve efficiency and scalability, leading to state-of-the-art performance in downstream tasks such
as understanding and generation. In vision tasks, methods like ViT (Dosovitskiy et al., 2020) first split
the input image into fixed-size patches. These patches are mapped to embeddings using linear layers,
which, when combined with positional embeddings, form patch-level image tokens. VQ-VAE (Oord et al.,
2017) uses a variational autoencoder to learn reconstructable tokens for image patches and applies vector
quantization to map them into a discrete codebook. In computer geometry, hierarchical structures like the
Octree (Meagher, 1982) are designed for efficient storage of 3D shapes and their properties (Wang et al., 2017).
In Octformer (Wang, 2023), following the approach of ViT, sparse convolutions are applied to structured
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point clouds to tokenize the input and map it into latent space for downstream tasks. Shape2VecSet (Zhang
et al., 2023a) and Tripos (Li et al., 2025) use cross-attention modules to map 3D shapes to fixed-length
vectors, treating them as latent tokens. Diffusion models are then trained over these learned tokens for
generation tasks.

Building on insights from previous works, we treat the physical state in simulations as vector fields defined
over a given 3D shape, and propose Adaptive Spatial Tokenization to push the boundaries. Inspired by
approaches in graphics and vision tasks, our pipeline divide vectors in the space to cell patches, encode cells
to compact, fixed-length tokens, and apply attention-based modules to complete next-step prediction in the
simulation. We conduct a series of experiments and ablation studies to demonstrate how Adaptive Spatial
Tokenization enhances both the efficiency and performance of simulations involving deformable bodies with
interactions.

3 Preliminaries

In this section, we briefly introduce the preliminary techniques used in our method and refer interested
readers to the original sources for further details.

3.1 Graph Operations

Graphs offer a flexible structure for representing complex data. We leverage message-passing operations to
aggregate features on input graphs before transforming them into discrete tokens.

Message-Passing Message passing refers to feature aggregation operations over graphs. While numerous
variants exist in the literature, we adopt the formulation from Pfaff et al. (2020) and extend it to heterogeneous
graphs. Given an edge set Et, edge attributes {eij} defined on each edge, and the corresponding sender
and receiver node features {vs

i } and {vr
j}, the message passing operation vr ← Message-Passing(e, vs, vr)

proceeds in two steps:

e′
ij = fe(eij , vs

i , vr
j ),

v′
j

r = fv(vr
j ,

∑
i

e′
ij), (1)

where fe is the edge update function and fv is the node update function, typically implemented as multilayer
perceptrons (MLPs). The implementation details of the MLPs can be found in Section A.5. The sum is taken
over all sender nodes i connected to receiver node j. Message passing operations can also be applied in the
absence of explicit edge features, resulting in an edge-free formulation: vr ← Message-Passing(vs, vr), where
the edge update function simplifies to:

e′
ij = fe(vs

i , vr
j ). (2)

3.2 Spatial Operations

Although graph operations are flexible and generalizable to various data structures, they can be inefficient
and memory-intensive due to explicit edge representations. To address this, we introduce spatial techniques
from the 3D vision literature—originally designed for large-scale point clouds—to enable more efficient
computation.

Sparse Convolution Sparse convolution is a powerful technique widely used in 3D shape analysis and
synthesis (Graham, 2015; Yan et al., 2018; Wang et al., 2017). It enables efficient operations on sparse 3D
representations, such as point clouds and volumetric grids, by leveraging octree structures to compress spatial
information without loss. In the context of mesh-based physical simulation, we briefly outline how sparse
convolution is applied, and refer readers to Wang et al. (2017) for more comprehensive details.

Starting from a unit cell (the level-0 cell defined over the space [−1, 1]3) that encompasses the entire 3D
object, an octree is constructed by recursively subdividing each cell into eight child cells whenever the parent
cell contains at least one mesh node. This process continues until a maximum predefined level-L is reached,
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and the cells at level-L have side length 21−L. Each cell is assigned a coordinate Pl = (xl, yl, zl) that indicates
its position in the uniform grid at level-l, derived by uniformly dividing the unit cell into 21−l segments per
axis.

A sparse convolution from level-(l + s) to level-l is applied at each non-empty level-l cell cl
i using the following

rule:

cl
i =

K∑
k=1

wl
k · cl+s

N (l+s,i,k) + bl, i ∈ [1, N l], (3)

where cl
i denotes the feature at cl

i, N l is the number of non-empty cells at level-l and v′c
t = [cL

1 , ..., cL
NL ].

K is the number of neighbors involved in the convolution, wk and b are learnable convolution weights and
bias, and N (l + s, i, k) returns the k-th neighboring cell relative to cl

i at level-(l + s). More precisely, based
on the cell at position Pl+s = floor{Pl/2s}, where Pl is the position of cl

i, {N (l + s, i, k)}K
k=1 designates a

group of relative positions representing the convolution kernel. For example, a 3× 3× 3 convolution kernel
corresponds to {N (l + s, i, k)}K

k=1 pointing to the cells at positions:

{(xl+s + α, yl+s + β, zl+s + γ)}, α, β, γ ∈ {−1, 0, 1}. (4)

If no cell is present at the corresponding position, the features are treated as all zeros, similar to a padding
operation. Recursively applying sparse convolution layers forms an OCNN operation, defined as

OCNN(cL) = SparseConvNconv(...(SparseConv1(cL))), (5)

where Nconv denotes the number of convolutional layers, and each SparseConvi operation can have distinct
configurations based on specific design choices.

Farthest Point Sampling The Farthest Point Sampling (FPS, (Eldar et al., 1997; Qi et al., 2017))
algorithm selects a representative subset of points (or cells, in our context) based on spatial distribution. It is
defined as

h = FPS(c, pc), (6)
where c is the input feature set with corresponding spatial positions pc, and h ⊂ c is the sampled subset.

4 Method

4.1 Problem Setup

We consider the evolution of the physics-based system discretized on a mesh, which could be directly
represented by a heterogeneous graph Gt = ({Vm

t ,Ve
t }, {Em2m

t , Em2e
t , Ee2m

t }). Vm
t and Ve

t represent the node
sets associated with physical properties (e.g., material properties, strain, stress) defined on mesh nodes and
element nodes, respectively. The edge sets Em2m

t , Em2e
t , and Ee2m

t capture physical relationships between
mesh-to-mesh, mesh-to-element, and element-to-mesh pairs, respectively.

We choose to include the element nodes besides the mesh nodes to form a heterograph, as we found that
explicitly modeling elements is critical for realistic physical simulations. Many physical quantities—such as
strain and stress—are defined via integration over entire elements rather than at individual nodes. Thus,
representing such properties at the element level aligns more naturally with formulations found in classical
PDE solvers.

At each time step t, certain node positions or physical properties may be externally specified. These are
collectively referred to as the boundary condition Bt. For example, in a quasi-static scenario where a
deformable object is being compressed by a rigid body, the movement of the rigid body must be provided;
otherwise, the resulting deformation cannot be inferred solely from the current state.

The objective is to model the evolution of the vector field by learning a transformation F :

Ĝt+1 = F(Bt, Gt, Gt−1, Gt−2, . . . , Gt−h+1), (7)
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Figure 2: Model structure overview. Graph-based physical states are encoded into latent tokens via Adaptive
Spatial Tokenization (AST), processed with attention-based mechanism, and decoded back for next-step
prediction. The green cells are selected by the FPS algorithm and serve as query tokens in the cross-attention
shown in the top row.
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where h is the number of historical steps considered.

4.2 Adaptive Spatial Tokenization

4.2.1 Overall Architecture

Existing methods typically employ message-passing or graph pooling operations to retain the expressive
power of graph representations. However, graph-based structures do not scale well to large-scale meshes, and
their information aggregation is inherently slow due to the localized nature of propagation. To overcome
these limitations, our novel approach—Adaptive Spatial Tokenization (AST)—aggregates features defined on
graphs into compact latent tokens through the following steps:

1. Encode the raw features on Gt into an embedded feature graph Ḡt (Section 4.2.2).

2. Aggregate the mesh node features v̄m
t from Ḡt into cell features v̄c

t defined on spatial cells CL,t

(Section 4.2.3).

3. Project the cell features v̄c
t into a fixed-length set of latent tokens ht (Section 4.2.4).

4. After transformer-based processing on ht, decode the tokens back to spatial cells CL,t, and then
reconstruct the output graph Ĝt+1 (Section 4.2.5).

Notably, the spatial cells are constructed on a per-frame basis to capture instantaneous spatial interactions
at each time step. The overall model architecture is illustrated in Figure 2.

4.2.2 Graph Embedding Encoder

The input heterograph Gt will first be transformed to Ḡt = ({V̄m
t , V̄e

t }, {Ēm2m
t , Ēe2m

t , Ēm2e
t }) via the graph

embedding encoders. Specifically, node features vm
t , ve

t and edge features em2m
t , em2e

t , ee2m
t are projected

into latent space using MLPs, resulting in v̄m
t , v̄e

t , ēm2m
t , ēm2e

t , and ēe2m
t . An E2M (element-to-mesh)
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message-passing operation is then applied to aggregate features from element nodes to mesh nodes:

v̄m
t ← Message-Passing(ēe2m

t , v̄e
t , v̄m

t ). (8)

Optionally, or when no element-level features are available, an M2M (mesh-to-mesh) message-passing operation
can be performed to encode positional and structural information via Em2m

t :

v̄m
t ← Message-Passing(ēm2m

t , v̄m
t , v̄m

t ). (9)

These message-passing operations encode the input graph structure and features into the mesh node repre-
sentation v̄m

t .

4.2.3 Mesh To Cell Aggregation

Although graphs offer high flexibility and generalization across diverse data structures, message-passing
operations typically require explicitly materializing vs and vr along graph edges, which leads to significant
memory overhead on large-scale graphs. Our method overcomes this limitation by partitioning space into a
regular grid and mapping mesh nodes onto it.

We construct an octree of depth L based on the mesh node positions pm
t , and the non-empty leaf cells are

referred to as CL,t. A visualization is shown in Figure 1. We then establish edge sets between mesh nodes
and spatial cells—denoted Em2c

t and Ec2m
t —based on spatial inclusion, i.e., whether a mesh node falls within

a given cell. The positions of the cells pc
t are defined as their center coordinates, and the cell features v̄c

t are
obtained by an average of the connected mesh nodes.

The number of cells—equivalently, the octree level L—is a design parameter akin to the world edge radius:
mesh nodes falling within the same cell are considered to interact. For large-scale graphs or dense meshes, we
split the space with finer resolution cells CL+LOCNN , stored in a (L + LOCNN)-level octree, and then apply
sparse convolutions to downscale the features to the L level. Details for the sparse convolution refers to
section 3.2. We discussed the impact of spatial cells resolution in section A.5.

It’s worth noticing that although we do not explicitly model interactions between separate graphs, by
aggregating the mesh nodes into spatial cells, it can capture such interactions through cells that encompass
nodes from different graphs. Experiments in section 5.3 showed the effectiveness of modeling the interactions
by spatial cells.

M2C (mesh-to-cell) message passing is performed to aggregate mesh node features to the corresponding cell
features:

v̄c
t ← Message-Passing(v̄c

t , v̄m
t ). (10)

Later, to reconstruct features back onto the original graph from the cell representations, a C2M (cell-to-mesh)
message-passing operation can be performed:

v̄m
t ← Message-Passing(v̄m

t , v̄c
t). (11)

4.2.4 Cell Tokenization

Spatial cells efficiently and effectively capture the structure and information present in the original graph. While
OCNN or message-passing operations can be applied to further aggregate the features within each interaction
cell, these methods are inherently local—propagating information incrementally through neighborhood
connections. This introduces an inductive locality bias into the learned representations. In contrast, attention
mechanisms (Vaswani et al., 2017) are designed to overcome such limitations by enabling global feature
aggregation in a single step, without relying on local connectivity. This makes them particularly well-suited
for capturing long-range dependencies and holistic patterns in complex graphs. For a brief review of our
attention module design, see Section A.4.
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Figure 3: The encoder (left) and decoder (right) cross-attention blocks. We use v to denote feature vectors
on the sparse grid (i.e., the previously defined sparse cells), and h to denote the compact latent tokens. Our
attention module design are detailed in Section A.4.

We apply cross-attention mechanisms to transform features embedded in spatial cells CL into compact latent
tokens ht with a selected dimension dtoken, as illustrated in Figure 3:

ṽc
t = PosEmb(v̄c

t , pc
t),

ht = CrossAttn(FPS(ṽc
t , pc

t), ṽc
t),

(12)

where PosEmb and CrossAttn are defined in Section A.4.

4.2.5 Processor and Decoder

The latent tokens ht are further processed through LSA layers of self-attention modules to condense and
integrate global information. During decoding, to reconstruct features on the spatial cells CL,t from the
processed latent tokens, we use the positionally embedded features as queries and the latent tokens as context
for an cross-attention operation, namely:

v̄c
t ← CrossAttn(ṽc

t , ht). (13)

The output mesh graph features are first obtained via Equation (11), and the predicted mesh features v̂m
t+1

are then produced by applying an MLP. Similarly, the output element features v̂e
t+1 are computed through

an M2E (mesh-to-element) message-passing followed by an MLP.

5 Experiments

5.1 Experiment Setup

Datasets We adopt two representative public datasets from GraphMeshNets (Pfaff et al., 2020) that involve
object interactions: 1) DeformingPlate: A deformable object is compressed by a rigid body, with ~1.3k
mesh/4k element nodes per mesh; 2) SphereSimple: A piece of cloth interacts with a kinematic sphere,
with ~2k mesh/4k element nodes per mesh. To further validate our method on large-scale physical simulation
tasks—an area where existing literature is limited—we introduce two new datasets: 3)ABCD: ABCD stands
for A Big CAD Deformation, where two deformable objects squish each other, with ~4k mesh/12k element
nodes per mesh; 4) ABCD-XL: follows the same setup as the Abcd dataset, except it uses significantly
denser meshes, with ~100k mesh/300k element nodes per mesh.

ABCD and ABCD-XL To our knowledge, there were no large-scale physical simulation datasets on a
wide variety of geometries available. We constructed a larger and more generalized dataset to fill this gap.
The goal of this dataset was to have a wide variety of geometric shapes that are deformed after coming into
contact with each other. We used the ABC dataset (Koch et al., 2019), which is a CAD model dataset used
for geometric deep learning, to get a wide sample of parts and shapes to deform. Within the ABC dataset, we
selected 400 single-part CAD models with relatively higher CAD quality. To generate a simulation, we first
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Figure 4: Randomized FEA simulation dataset using geometry from ABC dataset.

Figure 5: The FEA simulation results using ABC CAD dataset highlight various deformation modes, including
compression with associated tension around a hole, as well as plate and beam bending.

randomly select two of these CAD geometries, then auto-mesh them with the meshing tool Shabaka (Hafez &
Rashid, 2023). We then align the two meshed parts in 3D space and apply compressive boundary conditions
to simulate the parts coming into contact. Figure 4 illustrates the workflow of the dataset construction
process. Due to the wide variety of CAD geometries used in the simulations, the resulting deformation exhibit
an equally wide variety of deformation modes and stress states within each element. Figure 5 shows several
example simulations and the modes of deformation achieved through contact. Using this simulation workflow,
we generated two datasets with different mesh resolutions. The ABCD dataset has a mesh size of 4k mesh
nodes, and the ABCD-XL dataset has a mesh size that is 25 times larger of 100k mesh nodes.

Dataset #Mesh Nodes Mesh Type #Steps System Type #Samples
DeformingPlate 1271 Tetrahedral 3D 400 Quasi-static 1000 : 100 : 100

SphereSimple 1731 Triangle 3D 400 Newtonian 1000 : 100 : 100
ABCD 4408 Tetrahedral 3D 20 Quasi-static 6000 : 300 : 300

ABCD-XL 99997 Tetrahedral 3D 20 Quasi-static 1000 : 100 : 100

Table 1: Details of the datasets used in this work. System Type refers to the underlying PDEs. All
simulations use linear elements. For DeformingPlate and SphereSimple, the dataset providers report
using ArcSim (Narain et al., 2012) and COMSOL (De Bézenac et al., 2019), respectively. For Abcd and
Abcd-XL, we generated simulations using ABAQUS (Barbero, 2023). #Samples indicates the number of
simulations generated for training, validation, and testing, respectively.

Baselines We compare our method against several strong baselines across all datasets. 1) MeshGraph-
Nets(MGN): A state-of-the-art message-passing-based graph neural network; 2) Bi-stride Multi-scale
GNN(BSMS): Extends MeshGraphNets with bi-stride pooling to construct a U-Net structure for improved
scalability; 3) Hierarchical Contact Mesh Transformer(HCMT): A Transformer-based architecture
specifically designed to model interaction problems using contact-aware mesh transformer blocks. The details
of our training settings can be found in Section A.2.
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5.2 Results

We evaluate all methods on the benchmark datasets by selecting the checkpoints with the lowest validation loss
and report their rollout inference accuracy on the test set in Table 2. All experiments on DeformingPlate,
SphereSimple, and Abcd are conducted on a single machine equipped with 4 V100 GPUs. For the large-scale
ABCD-XL dataset, experiments are run on a machine with 8 V100 GPUs. Other training details can be
found in Section A.1 and Section A.2. Our method demonstrates superior performance compared to prior
methods, achieving a substantial improvement.

Dataset MGN BSMS HCMT Ours

DeformingPlate u 5.5± 0.2 5.4± 0.5 2.9± 0.2 1.1± 0.1
σ 6891± 89 10719± 544 7272± 45 4842± 174

SphereSimple u 19.0± 4.9 15.0± 0.8 Diverge 14.4± 0.8
Abcd u 0.641± 0.007 0.736± 0.017 0.541± 0.006 0.505± 0.002

Abcd-XL u OOM OOM OOM 0.480± 0.002
σ 2.11± 0.82

Table 2: RMSE (rollout-all, ×10−3 for displacement) evaluation results. u = xt − x0 denotes displacement
and σ denotes stress. OOM stands for out-of-memory. RMSE is computed as described in Section A.1, with
results shown as mean ± standard deviation over three independent runs.

5.3 Ablation and Parameter Analysis

In this section, we first visualize the spatial cells to demonstrate their effectiveness in capturing interactions,
and then present a parameter analysis of key design choices, including the spatial cell length and the number
of latent tokens.

Spatial Cell for Interactions Existing graph-based methods typically rely on world edges to model
interactions. However, computing world edges requires evaluating pairwise distances between mesh nodes,
leading to an O(n2) complexity that limits scalability on large-scale meshes. In contrast, our method leverages
spatial quantization to reduce this complexity to O(n) by aggregating nodes into structured cells. We visualize
these cells in Figure 6, demonstrating their ability to effectively capture interactions. While it is possible to
compute world edges using similar spatial quantization techniques, our approach goes further—by encoding
graphs into compact latent tokens, our model combines the expressive power of graph representations with
the computational efficiency and global context aggregation capabilities of token-based processing.

Quantization Cell Length We run our model on the DeformingPlate dataset with different Lcell

values and report the validation loss in Figure 7. When Lcell = 7, all mesh nodes are assigned to a single cell
at the initial frame, tokens then fail to capture interactions among neighboring nodes, degrading accuracy
despite the finer resolution. These results verify that grouping a reasonable number of mesh nodes into
interaction cells plays a vital role in effectively learning deformable body interactions.

Number of Latent Tokens We conduct a parameter search on the number of latent tokens using the
DeformingPlate dataset, reporting both the validation loss and the training epoch time in Figure 8. As
shown, too few latent tokens degrade model accuracy, while an excessive number increases training time.
Owing to the parallelism of GPUs, model efficiency remains stable up to a certain threshold, beyond which
additional tokens improve performance at the cost of runtime. In general, a typical choice for datasets fewer
than 10k mesh nodes is 512 latent tokens, which provides sufficient capacity while maintaining comparable
training and inference efficiency to smaller values.
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Figure 6: We visualize the spatial cells on the Abcd dataset (left) and DeformingPlate dataset (right).
The figure displays one representative feature channel across the cells. Warmer colors correspond to higher
feature norms. Their concentration at the collision regions indicates that the spatial cells effectively capture
the critical interactions between the disconnected meshes.

Figure 7: Validation results on the Deforming-
Plate dataset with different Lcell settings. The
nodes/cells ratio denotes the average number of mesh
nodes per cell at the initial frame.
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Figure 8: Validation loss and training epoch time on
the DeformingPlate dataset for varying numbers
of latent tokens. Accuracy generally improves with
more latent tokens, while training time remains stable
until increasing sharply beyond a threshold.

5.4 Computational Efficiency and Scaling Capability

The training and inference times are reported in Table 3. All experiments are conducted on a machine
equipped with 4 V100 GPUs. While increasing the batch size significantly improves training efficiency (e.g.,
2.8× for MGN, 4.8× for BSMS, and 3.1× for ours when using a batch size of 48 on SphereSimple), we
ensure a fair comparison by fixing the batch size to 4 (i.e., 1 per GPU) across all methods. Our method
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demonstrates comparable training and inference efficiency to state-of-the-art graph-based approaches on
small-scale mesh size.

Model DeformingPlate SphereSimple Abcd Abcd-XL
Train Val Train Val Train Val Train Val

MGN 9393 316 8744 361 3425 215 - -
BSMS 17700 410 12754 508 5442 332 - -
HCMT 16450 470 12913 510 5862 328 - -
Ours 9333 392 7282 394 2742 188 16435 8123

Table 3: Training and inference epoch time (seconds) evaluation. The reported epoch time refers to the total
time taken for a single pass over the entire dataset during training or inference. For a fair comparison, all
models are evaluated on a 4-GPU node with a total batch size of 4.

Figure 9: Training time per epoch across different
mesh sizes. MGN, BSMS, and HCMT run out of
memory at mesh sizes beyond 40K, 8K, and 6K,
respectively.

Figure 10: Inference time per epoch across different
mesh sizes.

To further evaluate scalability, we conducted experiments on the Abcd-XL dataset by generating subgraphs
with varying mesh sizes. We compared the training and inference time of different methods on a machine
equipped with 4 V100 GPUs, and we used the training set to evaluate both training and inference efficiency.
As shown in Figure 9-10, all methods exhibit similar performance in the small-scale regime. However, our
method demonstrates significantly better scalability as the element size exceeds 20k.

Although the BSMS method demonstrated good scalability on surface meshes in its original paper, we
observed that it scales poorly on volume meshes due to the increased number of bi-stride edges introduced
during pooling. On surface meshes, bi-stride edges consistently downsample upper-layer edges. However,
in the case of volume meshes, the edge count can grow significantly. For example, in a volume mesh graph
with 21k mesh nodes, the number of nodes and edges across a 6-layer BSMS model are: 21k/210k, 11k/276k,
5.7k/534k, 3.2k/1.8M, 1.8k/1.6M, 0.9k/483k.

5.5 Visualizations

We present a prediction result on the Abcd dataset in Figure 11, and DeformingPlate dataset on Figure 12.
Further visualizations are provided in Section A.3.
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GT MGN BSMS

HCMT Ours

Figure 11: Visualization results on the Abcd dataset. Displacement is visualized using color warmth, with
warmer tones indicating greater displacement magnitude. Our method yields predictions that are closer to
the ground truth at the collision region.

GT MGN BSMS

HCMT Ours

Figure 12: Visualization results on the DeformingPlate dataset. Stress is visualized using color warmth,
with warmer tones indicating greater stress magnitude. Our method produces shapes that more closely match
the ground truth, indicating more accurate displacement predictions, while the red-colored cells highlight
correspondingly closer stress predictions.
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6 Limitation and Future Work

Despite its effectiveness, the method has certain limitations. Specifically, the octree structure enforces a fixed
set of cell lengths across levels, making it difficult to identify an optimal configuration. As shown in Figure 7,
the performance curve remains relatively flat near the optimal Lcell, but a more flexible and finer grid control
could yield further improvements. Besides, we employed FPS and CA to construct an efficiency-oriented
bottleneck, yet recent work such as AnchorFormer Shan et al. (2025) introduces anchor-based approximations
for full attention, offering a promising alternative that can preserve efficiency while potentially improving
accuracy. Furthermore, adding additional constraints on physical laws such as the conservation of energy,
enforcing boundary conditions, or satisfying the underlying PDEs could also further improve the models
performance and generalization.

7 Conclusion

In this paper, we proposed a new method that encodes graphs into compact tokens by leveraging sparse 3D
operations, followed by transformer-based processing for expressive learning. This strategy combines the
structural richness of graphs with the scalability and efficiency of 3D computation, enabling our model to
scale to large inputs without compromising accuracy.
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A Technical Appendices and Supplementary Material

A.1 Dataset Details

Dataset Settings In Table 4 we list details of all the dataset used in the experiments.

Dataset System Solver Mesh type steps ∆t rW

SphereSimple cloth ArcSim triangle 3D 500 0.01 0.05
DeformingPlate hyper-el. COMSOL textrahedral 3D 400 - 0.03
Abcd/Abcd-XL hyper-el. Abaqus textrahedral 3D 21 - 0.003

Table 4: Dataset details. rW denotes the world edge radius, meaning that nodes within a distance of rW

are considered connected by world edges. Note that world edges are only computed for MGN, BSMS, and
HCMT.

Our method uses slightly different input features with Pfaff et al. (2020), as we do not explicitly compute
world edges. The input and output features used in our method are summarized in Table 5. Specifically,
vm

i and ve
i represent the input features on mesh and element nodes, respectively, while vm

o and ve
o denote

the corresponding output features. em2m
i and ee2m

i are input edge features for mesh-to-mesh (m2m) and
element-to-mesh (e2m) edges.

We use n and m to denote node type and material type, respectively. The node type indicates whether a
mesh node is a boundary node—such nodes have predefined next-frame values and therefore do not require
updates. σ denotes stress.

For MGN, BSMS, and HCMT, the input and output features follow the exact definitions from Pfaff et al.
(2020) on SphereSimple and DeformingPlate. We note that in the BSMS paper, the authors included
velocity as an input feature for DeformingPlate. In contrast, we follow the original MeshGraphNets
(MGN) implementation, which uses node type and (relative) positions as input. On Abcd, the definitions of
vm

i , em2m
i , and vm

o are consistent with that in Table 5, and the world edges are associated with edge features
pij

t

∣∣∥pij
t ∥.

Dataset vm
i ve

i em2m
i , ee2m

i vm
o ve

o history

SphereSimple n, ṗt ṗt pij
0

∣∣∥pij
0 ∥

∣∣pij
t

∣∣∥pij
t ∥ p̈t - 1

DeformPlate n, ut ut pij
0

∣∣∥pij
0 ∥

∣∣pij
t

∣∣∥pij
t ∥ ṗt, σt+1 - 0

Abcd n, m, ut ut pij
0

∣∣∥pij
0 ∥

∣∣pij
t

∣∣∥pij
t ∥ ṗt - 0

Abcd-XL n, ut m, σt, ut pij
0

∣∣∥pij
0 ∥

∣∣pij
t

∣∣∥pij
t ∥ ṗt σt+1 0

Table 5: Input and output features for our method.

World Edge Calculation We adopt the world-edge construction method proposed in the MGN paper,
with modifications to accommodate the dense meshes in the Abcd dataset. Compared to DeformingPlate
and SphereSimple, the meshes in Abcd are significantly denser, which causes the original world-edge
computation to sometimes produce world edges even larger than mesh edges. To address this, we retain only
the 1000 world edges with the smallest pairwise distances.

RMSE Calculation The Root Mean Square Error (RMSE) is computed in a per-sequence manner: we
first calculate the mean squared error for each sequence, then take the square root, and finally average the
RMSE across all sequences in the dataset.
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A.2 Training Settings

For all datasets, we adopt a pairwise training strategy where a graph is randomly selected from a sequence
as the input, and its subsequent graph is used as the target. We follow the same training noise strategy as
proposed in Pfaff et al. (2020). The noise scale is set to 0.003 for both the Abcd and Abcd-XL datasets.
The input and target features are all normalized to zero mean and unit variance based on the statistics of
the training set. All experiments are conducted on a machine equipped with four V100-32GB GPUs, unless
otherwise specified.

We did some modifications to the training process for a improved performance:

Batch Size We increased the training batch size from 1 or 2 to 48 (12 per GPU on a 4-GPU node) for MGN
and BSMS which showed a much faster training procedure. HCMT inherently not applicable on batched
graphs, so we kept a batch size with 1 per GPU.

Learning Rate We adopt square root scaling for the learning rate with respect to batch size. Starting
with a base learning rate of 0.0001 for a batch size of 2, the final learning rate LR for a batch size of 48 is
computed as 0.0001×

√
48/2 ≈ 0.00049. The learning rate is linearly warmed up from 0.0001LR to LR over

the first 2000 steps, followed by cosine decay to zero at the 101st epoch (training stops at the 100th epoch).

For purely graph-based methods—namely MGN, HCMT, and BSMS—we found that the learning rate
scheduling strategy facilitates faster convergence, while the square root scaling strategy had a negative effect.
Therefore, we retain the scheduling strategy and use a fixed learning rate of 0.0001 across all datasets.

Training Iterations We extend the training iterations from 5M steps (approximately 25 epochs) to 100
epochs.

Loss We use mean squared error (MSE) loss across all experiments. For the DeformingPlate and
Abcd-XL datasets, we adopt multi-head outputs to jointly predict displacement and stress, assigning loss
weights of 1 and 0.01, respectively.

A.3 Further Discussion

MGN MeshGraphNets (MGN) is a strong baseline for mesh-based physical simulations due to the expres-
siveness of its graph-based representation. However, this expressiveness also introduces several challenges:

• Edge overhead: The computational burden in graph models often arises from the edge set, which
can be several times larger than the node set. This issue is exacerbated on large-scale meshes, where
edge-based feature aggregation results in significant computational and memory overhead.

• Limited global context: Message-passing operations in graphs are inherently local, requiring many
iterations to propagate information across distant nodes. For meshes with over 100K nodes, hundreds
of message-passing steps may be needed to fully capture global interactions.

• Scalability of world edges: On dense meshes, the number of world edges can grow prohibitively
large. This not only increases computation but also makes it difficult to distinguish meaningful
interactions from spurious ones.

BSMS BSMS introduces the bi-stride pooling mechanism to address some of the limitations of MGN. By
recursively down-scaling the graph—halving the mesh size at each stage—the method reduces both the number
of nodes and edges, allowing for faster propagation of global information. While this strategy proves effective
for small to medium-scale meshes, it still inherits the structural limitations of graph-based methods when
applied to large-scale problems. In industrial FEA simulations where mesh sizes can exceed 100K elements, the
graph structure remains a bottleneck. Moreover, as discussed in Section 5.4, the bi-stride pooling algorithm
fails to generalize effectively to volume meshes, limiting its applicability to 3D deformable body problems.
Furthermore, although pooling edges can be precomputed—thereby accelerating training—the precomputation
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process involves matrix multiplications whose complexity scales with the number of mesh nodes. This becomes
prohibitively expensive for large meshes, limiting the applicability of BSMS in high-resolution simulation
settings.

HCMT HCMT incorporates attention mechanisms to address one of the key limitations of MGN—its
inefficiency in aggregating global information. However, the attention computations in HCMT are performed
directly on each mesh node. While they modify the original attention formulation to avoid the O(n2)
complexity associated with standard attention matrices, this comes at the cost of reduced theoretical
soundness. Moreover, despite these modifications, the method still scales poorly to large-scale meshes, limiting
its practicality in high-resolution simulation tasks.

On the SphereSimple dataset, HCMT performs well during the initial 50 frames but gradually diverges
thereafter. This suggests that, while HCMT is effective on the quasi-static DeformingPlate dataset, it
may face difficulty generalizing to dynamic problems like SphereSimple.

A.4 Transformer Operations

Following the design in Zhang et al. (2023a), originally developed for point clouds, we extend this framework
to handle vector fields.

Positional Embedding Given a feature set c with associated positions pc, we first inject spatial information
into the features via positional embedding:

c′ = c + PosEmb(pc), (14)

where PosEmb : Rd → Rdc is a column-wise embedding function that maps input positions pc (with d ∈ {2, 3})
to the feature space of dimension dc, matching the dimensionality of c.

Attention An attention operation is defined to aggregate three feature vectors q ∈ RNq×dq , k ∈ RNk×dk ,
v ∈ RNv×dv , where Nk, Nq, Nv ∈ R are sequence lengths and dq, dk, dv ∈ R are feature dimensions,

Attention(q, k, v) = softmax(qkT

√
dk

)v. (15)

A Multi-head Attention (MHA) operation is defined as

MHA(q, k, v) = Concat(head1, ..., headh)W o,

headi = Attention(qW q
i , kW k

i , vW v
i ).

(16)

Transformer Blocks Building on the multi-head attention mechanism and adopting a pre-norm structure,
we construct two types of Transformer blocks, as illustrated in Figure 13.

• CrossAttn: Given a set of query features cquery and context features ccontext, the Cross-Attention
operation

h = CrossAttn(cquery, ccontext) (17)
aggregates information from ccontext into cquery. The output h maintains the same length as the
query, making this block particularly useful for compressing or decompressing representations of the
context features.

• SelfAttn: This is the standard self-attention mechanism where the query and context features are
identical, i.e.,

h = SelfAttn(c). (18)

FFN stands for Feed-Forward Network. In all our CrossAttn and SelfAttn blocks, we use an FFN module
with GEGLU activation as described in Shazeer (2020).
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Figure 13: Transformer blocks. The CrossAttn is displayed on the left, while the SelfAttn is displayed on the
right.

A.5 Model Details

MLP The MLPs used in input, message-passing and output layers are two-layer MLPs with ReLU activations
with output size of 128. The hidden layer size of message-passing and input MLPs are 128, while the output
MLPs are 32. The outputs of the message-passing MLPs are further normalized using LayerNorm. To
enhance their effectiveness, we adopt Random Weight Factorization (RWF, (Wang et al., 2022)).

Transformer We use attention layers with 8 heads, each with a feature dimension of 64. The query, key,
and value projections are implemented using bias-free linear layers, while the output projection includes a
bias term. We adopt a pre-norm setup, applying LayerNorm before both the attention and FFN layers. The
FFN follows the GEGLU formulation as described in Shazeer (2020), and has a hidden dimension of 512.
Dropout with a rate of 0.1 is applied within both the attention and FFN modules.

Dataset Lcell locnn dtoken LSA

SphereSimple 5 0 256 12
DeformingPlate 5 0 256 12

Abcd 8 0 512 12
Abcd-XL 12 4 512 12

Figure 14: Model hyperparameter.

Model Architecture The input and
output features on graph nodes and edges
are normalized using statistics computed
from 400 randomly selected graph pairs
from the dataset. Our model begins with
an input encoding MLP that maps node
and edge features into a hidden space of
size 128. This is followed by a one-step
message-passing operation—either m2m
or e2m—to aggregate information onto
the mesh nodes.

Mesh node positions are then quantized using an Lcell-layer octree, where Lcell is a hyperparameter. A
one-step message-passing is used to aggregate mesh node features into each cell. Optionally, an OCNN
module with locnn layers (also a hyperparameter) is applied to downscale the features from the Lcell-th octree
layer to the (Lcell − locnn)-th layer. Each OCNN layer consists of a sparse convolution with a 3× 3× 3 kernel
and a stride of 2, which effectively moves features up one level in the octree hierarchy.

To obtain a compact latent representation, a cross-attention layer is applied to map features on the sparse
cells to a fixed set of tokens of dimension dtoken. These tokens are then processed using LSA self-attention
transformer blocks.
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The decoding process mirrors the encoder. We first apply a cross-attention mechanism to decode the latent
tokens back to the octree features. These features are then upscaled to the original Lcell-layer resolution using
a transposed sparse convolution-based OCNN with the same number of layers as in the encoder. A one-step
message-passing operation is performed to decode the cell features back to the mesh nodes. The resulting
features are concatenated with the original mesh node features from the input encoding MLP to produce
v′m

t , which is then passed through an output MLP to generate the final predictions. If output features are
also required on element nodes, an additional one-step message-passing—without edge features—is performed
from mesh to element nodes, followed by a separate output MLP.

The fore-mentioned hyperparameter for each dataset are listed in Table 14.

A.6 Farthest Point Sampling Implementation

We outline the FPS algorithm in Algorithm 1, while noting that readers may directly use existing open-source
implementations.

Algorithm 1 Farthest Point Sampling (FPS)
Require: Point set P = {p1, . . . , pN}, sample size K
Ensure: Sample indices S of size K

1: Initialize S ← {}.
2: Randomly choose initial index i0.
3: S ← S ∪ {i0}.
4: for each i ∈ {1, . . . , N} \ S do
5: d[i]← dist(pi, pi0)
6: end for
7: for t← 2 to K do
8: j ← arg max

i ̸∈S
d[i]

9: S ← S ∪ {j}
10: for each i ̸∈ S do
11: d[i]← min

(
d[i], dist(pi, pj)

)
12: end for
13: end for
14: return S

B Additional Experiments

B.1 MAPE Evaluation

For completeness, we also report the Mean Absolute Percentage Error (MAPE) on the DeformingPlate,
SphereSimple, and Abcd datasets in Table 6. MAPE measures the relative prediction error as a percentage
and is scale-independent, but it is known to be unstable when ground-truth values are close to zero. This
issue is particularly relevant for DeformingPlate and Abcd, where simulated objects are centered around
zero. To mitigate, we mask out ground-truth values with ∥yt∥2 < 10−5. The MAPE used in this paper is
defined as:

1
T

T∑
t=1

MASK
(
∥ŷt − yt∥2

∥yt∥2

)
, (19)

where yt and ŷt denote the ground-truth and predicted values at time t, and MASK(·) discards terms with
∥yt∥2 < 10−5. We emphasize that these results are provided only as a reference; RMSE remains the primary
and more reliable metric for comparison across methods.
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Dataset MGN BSMS HCMT Ours
DeformingPlate u 0.293± 0.006 2.099± 0.0175 0.391± 0.023 0.132± 0.008

SphereSimple u 0.059± 0.001 0.031± 0.001 Diverge 0.030± 0.001
Abcd u 0.626± 0.012 1.732± 0.033 0.673± 0.001 0.691± 0.004

Table 6: The Mean Absolute Percentage Error (MAPE) (rollout-all) evaluation results.

B.2 Rollout Visulization

We select one representative case from DeformingPlate, SphereSimple, and Abcd, and show their
visualizations in Figures 15–17. The per-frame RMSE of the selected cases, along with the average over the
test datasets, is reported in Figures 18–20.
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Figure 15: Rollout visualization results on the DeformingPlate dataset.
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Figure 16: Rollout visualization results on the SphereSimple dataset.
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Figure 17: Rollout visualization results on the Abcd dataset.
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Figure 18: Prediction variance over time on the DeformingPlate dataset. The deformation increases and
reaches its maximum at the 360th frame across all cases. Our method exhibits a smaller growth rate with
respect to deformation and successfully recovers to the initial state once the deformation ends.
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Figure 19: Prediction variance over time on the SphereSimple dataset. The gray region marks the interaction
period between the ball and the cloth. After separation, our method maintains consistent predictions.
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Figure 20: Prediction variance over time on the Abcd dataset. The maximum deformation occurs at the
final frame.
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