Let a Neural Network Be Your Invariant
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Abstract

Safety verification ensures that a system avoids undesired behaviour. Liveness
complements safety, ensuring that the system also achieves its desired objectives.
A complete specification of functional correctness must combine both safety and
liveness. Proving with mathematical certainty that a system satisfies a safety
property demands presenting an appropriate inductive invariant of the system,
whereas proving liveness requires showing a measure of progress witnessed by a
ranking function. Neural model checking has recently introduced a data-driven
approach to the formal verification of reactive systems, albeit focusing on ranking
functions and thus addressing liveness properties only. In this paper, we extend and
generalise neural model checking to additionally encompass inductive invariants
and thus safety properties as well. Given a system and a linear temporal logic
specification of safety and liveness, our approach alternates a learning and a
checking component towards the construction of a provably sound neural certificate.
Our new method introduces a neural certificate architecture that jointly represents
inductive invariants as proofs of safety, and ranking functions as proofs of liveness.
Moreover, our new architecture is amenable to training using constraint solvers,
accelerating prior neural model checking work otherwise based on gradient descent.
We experimentally demonstrate that our method is orders of magnitude faster
than the state-of-the-art model checkers on pure liveness and combined safety and
liveness verification tasks written in SystemVerilog, while enabling the verification
of richer properties than was previously possible for neural model checking.

1 Introduction

Model checking addresses the question of whether a reactive system M meets a specification of
intended behaviour ® [42]]. Reactive systems are systems that continually respond to inputs and
operate over infinite executions. Exemplars include hardware designs implementing processing units,
communication and arbitration protocols, as well as digital controllers for automotive, aerospace,
or medical applications, where safety is paramount. Safety properties require that nothing bad ever
happens. A safety violation is a finite execution the last state of which falsifies ® and the damage is
irredeemable [[77]]. Safety properties are dual to liveness properties, which require that something
good eventually happens. A liveness violation is evidenced by an infinite execution that falsifies ®,
as any finite violating prefix could in principle still be extended to a compliant execution [77]. Every
linear-time specification is the composition of a safety and a liveness property [8], and linear temporal
logic (LTL) provides an expressive language for specifying linear-time properties of reactive systems.
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SystemVerilog Assertions (SVA) bring linear-time logic into commercial hardware design flows [56]],
and electronic design automation vendors have spent decades optimising symbolic model checkers for
them. Testing and simulation alone cannot fully guarantee that a system meets its specifications, and
explicitly enumerating every possible behaviour is impractical, except for the most trivial hardware
designs. Symbolic model checking has made it feasible to handle large state spaces. Two symbolic
paradigms dominate. Algorithms based on binary decision diagrams (BDDs) provide sound and
complete procedures for LTL model checking, yet BDDs often explode in size when faced with
arithmetic data paths ubiquitous in modern hardware design [26| |52]. Bounded model checking
(BMC) algorithms enjoy the much more scalable combinatorial and arithmetic reasoning of SAT
solvers, but only explore the state space up to a finite depth, sacrificing completeness over unbounded
execution [17]. Incremental algorithms for the construction of exploration frontiers (IC3) bridge that
gap in unbounded safety verification [20]], but fall short on liveness.

Neural model checking is an automated approach that leverages neural certificates to verify reactive
systems against LTL specifications, but prior work has exclusively focused on liveness properties [63]].
This prior cognate work learns ranking functions represented as neural networks—which serve as
proof of liveness—f{rom random executions and then checks their validity using symbolic reasoning,
thereby providing formal guarantees. However, specifications that characterise pure safety or combi-
nations of safety and liveness additionally demand the construction of inductive invariants—which
serve as proofs of safety. Prior work does not construct such invariants, leaving safety out of reach.

In this paper, we demonstrate that neural networks are an effective representation for inductive
invariants as well. Our novel method leverages neural certificates to simultaneously represent ranking
functions and inductive invariants. Given a hardware design M and a non-deterministic Biichi
automaton A_g that recognises the violations to an LTL formula ®, we train a neural certificate on
sample transitions of the synchronous composition M || .A_4. This network (i) classifies each state
as inside or outside the invariant and (ii) ranks the states, within the invariant, to strictly decrease
whenever an accepting state is encountered. We then pose a one-step BMC query to check if the
neural certificate is true over the entire state space. On affirmation, this proves every accepting state
is either (i) unreachable or (ii) visited at most finitely many times. This implies that no reachable
behaviour of M satisfies ~®, thereby proving that every reachable behaviour of M satisfies .

We implemented our method using a new neural ranking function architecture that enables training
using constraint solvers, in contrast to prior work that exclusively relies on gradient descent for
training [63)]. Our new architecture yields more compact representations and it is much more efficient
and numerically stable than prior work. We extended the prior benchmark with standard safety
and combined liveness and safety verification problems, and have compared our method with the
state-of-the-art hardware model checkers. Measuring against the per-task fastest on pure-liveness, our
method is faster on 66 % of tasks, 10x faster on 46 %, 10%x on 11 %, and 10* x on 4 %. On pure
safety tasks, while not outperforming, we match the best symbolic tools: 80 % of instances complete
for all approaches in under 1s. The picture changes dramatically for properties that demand both an
inductive invariant and a ranking function: our method is faster than the leading model checkers on
61 % of tasks, running 10%x on 43 %, 10*x on 27 %, and 10° x on 6 %.

Our contribution is threefold. First, by simultaneously representing inductive invariants and ranking
functions using neural networks, we extend and generalise neural model checking to verify arbitrary
LTL properties encompassing both safety and liveness. Second, by introducing a neural architecture
amenable to training using constraint solvers, we achieve both superior runtime efficiency and numer-
ical stability. Third, by evaluating our method across a 634-task benchmark suite, we demonstrate
that our method outperforms the state of the art in automated formal verification.

2 Model Checking Safety and Liveness

We consider specifications ® in LTL over a set of atomic propositions II. LTL extends propositional
logic with temporal operators: X ® meaning ® holds at the next step, F ® meaning ® eventually holds,
G @ meaning ¢ always holds, ®; U @3 meaning ®; holds at all times until ®, necessarily holds at
some future step, and ®; W &5 meaning ®; holds at all time before ®5 possibly occurs [102]. LTL
naturally expresses safety, liveness, and their combinations for reactive systems. For IT = {a, b},
the formula G a is a safety property: a single finite prefix whose last state violates a refutes it.
By contrast, F b is a liveness property: no finite execution suffices to disprove it, since b may still



occur later. The formula a U b combines both: its safety component forbids any prefix containing
—a/\—b before the first b, while its liveness component requires that b eventually occurs. Equivalently,
aUb = aWb A F b, where aW b is pure safety and F b is pure liveness.

We model a reactive system M over a finite variable set X ¢ as a state transition system by an
initial condition Init¢ and a sequential update relation Update,,. The variables are split into
inputs inp X o and state-holding registers reg X r. Init ¢ is a first-order predicate over reg X g
and Update , is a first-order predicate over X 4 U reg X, ;, where the set of primed variables
denotes the next-cycle values. A reactive system M induces a transition system with state space .S
of valuations of X o4, initial states Sy C S with s € Sy <= Initr((reg s), and transition relation
—mC S x Swiths - s < Update,,(s,regs’). The executions of M are the infinite
sequences (Sg, S1, S2 . . .) where s € Sp and s; — ¢ S;41 foralli € N.

We cast our model checking question as a language inclusion question. Given a system M, we
define as obs Xy C X its set of observables, and in turn define the language L 4 of M as the
set of sequences (obs sg, obs s1 ... )—which we call the traces of M—induced by the executions
(s0,81...) of M. Given an LTL formula ® over atomic propositions II and the alphabet ¥ =
21T of valuations of II, we define the language Ly C X¢ of ® as the set of all possible traces
(00,01 ...) € ¥ satisfying ®. Provided that IT = obs X »4 (which we require to be Boolean), the
model checking question asks whether L yq C Lg, i.e., all traces of M satisfy ®. This is equivalent
to the language emptiness question L N L_g = (), i.e., no trace of M violates ® [[111[42].

As is standard in automata-theoretic verification, we reduce the language emptiness question to an
equivalent fair emptiness question. A non-deterministic Biichi automaton A consists of a finite set of
states (), an initial state gy € @, input alphabet 3, transition relation § C @) x X x @), and a set of fair
states F' C  [8[39,[125]]. This can be viewed as a reactive system with a single variable X 4 = {q}
over ), where Init 4(¢) <= ¢ = qo and Update 4(0,¢,¢') < (q,0,¢") € 6. We define the
fair language Lf4 of A as the set of traces of A whose respective executions visit F’ infinitely often.
We rely on the fact that every LTL formula ¢ admits a non-deterministic Biichi automaton 44 for
which LY, = Lg. Our reduction to fair emptiness thus constructs an automaton .A-g and forms the
synchronous product M || A_g between M and A4 with the fair states defined as S x F'. We refer
the reader to the literature for a full formal definition of the synchronous product [9} [11} 42]; the key
property to note is that Livm Ay =LmN Lf%. Hence, our language emptiness question and, in

turn, our model checking question amount to deciding the fair emptiness question Lg‘/l\l As = 0.

We answer the fair emptiness question by presenting a certificate consisting of two components: (i) an
inductive invariant defined as a set I C reg .S x (@) that captures (or over-approximates) the reachable
states of M || A_g, and (ii) a ranking function V' : I — W over a well-founded relation (W, <) that
assigns ranks to all states within the invariant that prove that all reachable executions visit fair states
at most finitely many times. Concretely, for all s, s’ €S and q,¢' €Q,

se Sy = (reg s, qo) € I, )
(8,9) = mijag (8,¢) N (regs,q) el = (regs’,q') €1, 2)
(5,0) 2 mjag (8,4") N (regs,q) eI = V(regs,q) = V(regs',q'), 3

(8,0) = mjaze (8,4) N (regs,q) el AN qe F = V(regs,q) = V(regs',¢'). 4

Clauses () and (2) state that initial states lie in I and that I is closed under transitions, so I forms
an over-approximation of the set of reachable states. Clauses (3) and (4) require that, along every
transition whose source is in I, the rank V' never increases, and it decreases strictly whenever the
source state is fair (¢ € F'). Because (W, <) is well founded, only finitely many strict decreases are
possible; hence, fair states must be visited at most finitely many times. This implies that all executions
are unfair, i.e., Lﬁ\AH Ag = (), which is equivalent to saying all traces of M satisfy @ [123].

Figure|[I]illustrates our workflow on an example. Figure[Th gives a SystemVerilog module M that
satisfies the LTL property ® = a U b. Figure[Ip gives a Biichi automaton A_¢ recognising —®.
Figure depicts the state space of the synchronous product M || A-4: product states are arranged
on a two-dimensional grid, each state corresponding to the pair of a state s; of M (where i is the
value of the register c) and a state go, g1, or g2 of A_g. The sole initial state is (so, go), and the
dotted region indicates the inductive invariant I. Each state in [ indicates in its upper-right corner the
respective rank, taken from N. Along each transition in I, the rank strictly decreases when leaving a
fair state and never increases otherwise, ensuring that the sole fair cycle within / terminates. Notably,



| module MODEL (input clk, output reg a, b);
2 reg [6:0] c = 0;

3 assign a = (c < 60);

4 assign b = (c == 60);

5 always @(posedge clk) begin
6 c <= c¢c + 1;

7 end

8 Phi: assert property

9 (@(posedge clk) a s_until b);
10 endmodule

Figure 1: Model checking safety and liveness on an illustrative example

the system has a non-terminating fair cycle (e.g., the cycle on ¢s), but this is unreachable and excluded
by I. In general, invariants may include unreachable states, provided none can lead to a fair cycle.

3 Neural Partially-Ranking Functions

We reduce the fair emptiness problem to a machine learning task by (i) modelling the invariant
I as a classifier over-approximating the reachable states, and (ii) modelling the ranking function
V as a regressor. In this section, we present our learn-check workflow which, upon termination
of our procedure, formally ensures that these two components jointly satisfy conditions (T)—@).
Crucially, we introduce the neural partially-ranking function, which combines the definition of
inductive invariant and ranking function into a single neural network.

We define a neural partially-ranking function over discrete parameter space © as the function
ViregSx0 =7 ®)

Our objective is to learn an upper bound x € Z and a set of parameters {6, € ©},cq, such that for
all s,s" € Sand ¢,q" € Q, the following two conditions hold:

s €Sy = k> V(regs;0y), (6)
(5,9) = Mm|lA-, (s',¢) Nk >V(regs;0,) = V(regs;0,) > V(regs';0y)+1r(q). (7)
where 17(q) = 1if ¢ € F else 0. The trainable network parameters are in © and are distinct for
each automaton state ¢ € ), while « is global. The initiation condition of Eq. (6) ensures that all
initial states receive a rank bounded above by «. The ranking condition of Eq. (7)) ensures that states

bounded above by « are inductively assigned a rank. Ultimately, a solution « and {0, }4c¢ induces
an invariant I and ranking function V satisfying the clauses (I)—@), respectively defined as follows:

I= {(regs,q) : k> V(regs;0,)}, V(regs,q) = V(regs;8,)if (regs,q) € 1. (8)
Since the hardware state space S and () are finite, the image W = {V (reg s;0,): s € S,q € Q} of

V for a constant parameter {0} 40 is finite as well, having a least element under the strict inequality
< over the integers. This makes (W, <) well founded, having no infinite descending chain.

We train V in a counterexample-guided inductive synthesis loop as illustrated in Figure [2p [T, [T17].
Our procedure incrementally constructs two datasets Dinix and Dyyans to train V' to respectively satisfy
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Figure 2: Our learn-check workflow (a) and our architecture for neural partially-ranking functions (b)

conditions (6) and (7). The dataset Dj,;x contains sample initial register values reg s of M where
s € Sy, and the dataset Dyyans contains sample transitions of M | A, in the form of quadruples
(reg s, q,reg s’, q') where (s, q) = Ml Ay (s',q’). Initially, we assume that Djnit and Dyyans are
empty. Our learning component computes a set of parameters {0, }4c¢ to hold over the set of samples
Dinit and Dyyans. Our checking component formally verifies whether conditions (6) and (7) hold over
the entire state space. If the checker confirms the conditions, then the procedure halts successfully. In
the converse case, it provides sets of counterexamples Cjnix and Clyans, Which are respectively added
to Dinit and Dyyaps, and learning and checking are repeated in a loop.

Learning Our learning phase computes a set of parameters for which our initiation and ranking
conditions are valid across all samples in the dataset. More precisely, enforcing our initiation
condition amounts to satisfying the following constraint:

LearnInit(6, k) = /\ (k> V(r;04)) ©)
7€ Dinit
Similarly, satisfying our ranking condition amounts to satisfying the following constraint:
LearnRank(6, k) = /\ (k= V(r;g) = V(r;0q) > V(r';0g) +1r(q))  (10)
(r,g,7",q") € Drrans

Overall, our learning phase is tasked to solve the following question which, as we show in Section 4]
we cast to a constraint satisfaction problem:

36, k: LearnInit (0, k) A LearnRank(, ) (11)

If a valid set of parameters exists, then this is passed on to the checking phase. If a valid set of
parameters does not exist, this indicates a larger network is needed or no solution exists at all. In this
case, our strategy is to progressively add a hidden layer or widen it and retry until a preset limit.

Checking Our checking phase determines the presence or the absence of counterexamples to
our initiation and ranking conditions for the candidate parameters «, {6,},cq. More precisely, a
counterexample for the initiation condition must satisfy the following constraint:

CheckInit(s) = Init pq4_4 (5, q0) A k& < V(reg s; 0g,) (12)
Similarly, a counterexample for the ranking condition must satisfy the following constraint:
CheckRank(s, ¢,’,q") = Update v .4_, (5,47, ¢ )A
k> V(regs;0,) AV (regs;0,) <V(r';0,)+ 1r(q) (13)
Overall, our checking phase asks whether the following statement holds:
Js: CheckInit(s) VvV  3s,q,7’,¢: CheckRank(s,q,7’,q") (14)

We check the initialisation and ranking conditions independently. If both queries are unsatisfiable,
then we conclude that V' is a valid neural partially-ranking function. If either or both are satisfiable,



then the respective assignments constitute counterexamples. To produce multiple counterexamples
Chinit or Clrans in each iteration, we check @ over explicitly enumerated automaton pairs (g, q')
independently. This accelerates convergence, and gives equal emphasis to each transition of A_g.

Our counterexample-guided inductive synthesis procedure captures task-specific edge cases that yield
succinct datasets. This is in contrast to prior work that benefits from random initialisation of the
datasets before the first iteration [63]]. Moreover, as we show in SectionE], we further optimise our
procedure by proposing a specialised architecture that is amenable not only to checking but also to
learning using efficient and numerically stable constraint satisfaction solvers.

4 Learning Neural Partially-Ranking Functions Using MILP Solvers

We present a specialised architecture for neural partially-ranking functions amenable to training
using constraint satisfaction solvers. Our architecture is illustrated in Figure 2p. Given a vector of
word-level register values r = (rq,...,7,) with n = |reg X (|, our architecture feeds r into two

branches. The left component a("%) consists of L fully connected layers (Wl(q), bgq), o W]-Eq), b(Lq))
with Ny, ..., N neurons, respectively, sign activation functions on the hidden layers, and step
function on the output layer featuring m = NN, neurons. The right component consists of m linear
functions with n inputs each: 579 = A@y 4 (@) The left component v acts as a mask that selects
or excludes the linear functions of the right component 3; in other words, V (7, ) = almd) . gra),

Every application of arguments (r, §4) to V in Eqs. (©@)—(TT) requires encoding. We build upon the
result for which feed-forward neural networks with sign activation functions are amenable to training
with mixed-integer linear programming (MILP) solvers [67} [121]]. Henceforth, we use 4, j to index
individual elements of linear components, specifically ¢ for the inputs elements and j for output
elements, and we use [ to index layers of the network. A single hyperparameter P € N+, bounds
the magnitude of all decision variables in the encoding. Decision variables shared across multiple

occurrences of r and associated to a common q are denoted as wfgj), bg), E?), ng) e [-P,P]to

respectively refer to the elements of Wl(q), bl(Q), A@ and ¢(@); the threshold & € [P, P]is also a

common decision variable in the learning phase. Decision variables associated to specific occurrences

(r.q) Z(Zj,q) to

represent neuron—welght products where ziljiq) € [-PM,, PM,] with M, = max(|r1],...,|rs|)

and z(r 9 ¢ € [-P, P] with [ > 2, and finally vﬁr’q) € [-PM,, PM,] to represent the overall output
of the network. First, we encode the relationship between z, r and w at layer 1 as

of 7 and g are u,; ™"’ € {0, 1} to indicate the activation status of the corresponding neurons, z

2 =) (15)
Then, for !l =1, ..., L, we encode the relationship between u, z and b at layer [ (where € > 0) as
(ug N2 N bej + > ien, EZJQ) >€) A (ug’q) =0=bej + D ien, , zl?;;r") < —¢€) (16)
Forl = 2,..., L, we encode the relationship between u at layer [ — 1 and z and w at layer [ as
( l(zq) (Q) + QPUE ,Q)) < 2P) A (2 (r _,Q) _i_wl(gj) QPUE; ql)) <0)A ]
T, T, ™ T, ( 7)
(z45® — uig) 2P“E Q)) > =2P) A ( z(/jq) +wif) +2P “Ez q1)) > 0)
which represents zz(ﬁj D = gy, if u(e;ql)) =1, and z( "9 — _w,,; otherwise. Finally, we encode
the relationship between v, a, ¢ and u at layer L as
(ug’] 9 _ 1 U(r,q) (‘q) Y, Tia E;I)) A (ugj,q) 0= v(r,q) _ O) (18)
As a result, each occurrence of V (7, 6) in Eqs. (O)—(TT) corresponds to the linear term Y-, v ZT D),

(r9) a5 a product between a neuron variable and w'?

Notably, a naive encoding that represents z;,/ it
would induce bilinear constraints; our encoding avoids this and produces an equivalent encoding with

linear constraints only. This enables using efficient MILP (and SMT) solvers in the learning phase.

Essentially, our architecture represents a piecewise function with 2™ configurations, given by o €
{0,1}™, each of which induces a specific summation of linear functions, given by 5 € Z™, in the
spirit of piecewise-linear ranking functions [76, 123 [124]. In our implementation, we restrict all
decision variables to the integer type, which results in neural networks that are naturally quantised.



Table 1: Tasks completed per tool, per design; in bold the max per design, per spec-type
[ [LS [LCD [ Tmcp [ i2¢S [ 7-Seg | PWM [ VGA [ UART [ Delay | Gray [ Blink [ Total |

Pure Safety
Tasks [16] 28 [ 17 [20 ] 15 [ 12 [ 20 [ 10 [ 32 [ 11 [ 25 [ 206
Our 16 | 28 17 4 15 12 20 10 32 11 25 | 190
ABC 16 | 28 17 20 15 12 20 10 32 11 25 | 206
nuXmv | 16 | 28 17 20 15 12 20 10 32 11 25 | 206
rIC3 16 | 28 17 20 15 2 20 10 32 11 25 | 196

Pure Liveness
Tasks [16[ 14[ 17 [20[ 30 [ 12 [ 10[ 10 [ 32 [33[25 [219

Our 0 14 17 20 30 12 10 10 32 33 14 192
ABC 3 5 9 4 10 3 5 10 8 16 5 78

nuXmv | 12| 13 17 16 28 7 4 10 32 33 8 180
rIC3 7 7 13 7 17 4 6 10 14 19 6 110
NMC’24 | 15 | 3 10 20 30 10 9 10 32 33 0 172

Safety + Liveness
Tasks [32] 14 [ 17 [20 [ 15 [ 12 ] 10 [ 10 [ 32 [ 22 [ 25 ]209

Our 32| 14 17 3 9 12 10 10 32 22 11 172
ABC 7 12 11 20 5 3 10 7 6 11 4 96
nuXmv 11 12 14 16 15 6 10 10 26 14 20 154
rIC3 12| 14 14 20 8 4 10 9 18 14 6 129

5 Experimental Evaluation

Implementation We implemented a prototype using a modular Python 3.12 pipeline El Given
an LTL formula ®, we obtained A_¢ with Spot 2.11.6 [S1]], converted SystemVerilog to bit-
vector SMT using EBMC 5.6 [91]], performed validity queries and computed counterexamples us-
ing Bitwuzla 0.7.0 [96], and trained a neural partially-ranking function using the MILP solver
Gurobi 12.0.1 [65]. Our method relies on a single global hyperparameter configuration, be-
sides the integer bound P (see Section f). We chose P from a finite set of configurations
{1,5,10, | M/10], | M /2|, M, M+1,2M}, where M is the largest value any register can take in
the hardware design; this renders the bounds for z;1; and v; quadratic in M except when P =1,
5, or 10. We configured the architecture to start with a linear model (per ¢ € A-4) and add one
hidden layer with a single neuron (left branch of Figure[2h) upon the first failure of the learning phase,
subsequently increasing its width by one neuron upon subsequent failures, up to 5 attempts.

Experimental Setup Building on the ten parameterised SystemVerilog designs and 194 pure-
liveness tasks of prior work [[63]], we add an eleventh design and, for all eleven, contribute additional
pure-safety and combined safety—liveness specifications on each task, yielding a 634-task suite that
retains the original diversity (Appendix [A). We compared against (i) the gradient-based neural model
checking approach, labelled NMC’ 24 (liveness only) [63]], and (ii) the winners of recent HWMCC
editions [107]: nuXmv 2.1.0 [28]], rIC3 1.5.1 [L19]], and ABC/Super-Prove [24]. For nuXmv we
translated each design with its assertions to SMV using EBMC; then, we converted SMV to AIG
for ABC and rIC3 with AIGER [18], yielding a fully automated flow. All experiments ran on an
AWS mo6a.4xlarge instance (16 vCPUs, 64 GB RAM, Ubuntu 24.04). Each task had a 5 h timeout per
tool; in aggregate, the experiments consumed 9083 h (=378 d) of compute time.

Overall Efficacy Table |I| presents all solved instances by property class. For pure-safety—
historically emphasised in HWMCC [16, [107]—symbolic tools clear > 95 % of tasks, and we
remain close to decades-mature tools at 92 %. For pure-liveness, performance spreads: nuXmv 82 %,
ABC 36 %, rIC3 50 %, NMC’24 79 %, while we complete 88 %. On safety—plus-liveness properties,
the gap widens, nuXmv solves 74 %, ABC 46 %, rIC3 61 %, and our approach reaches 82 %.

Comparison on Pure Safety We generally perform on par with leading symbolic checkers with
decades of optimisation, as Figure [3p indicates, while being faster than NuXmv on 17 %, rIC3 on

https://github.com/aiverification/neuralmc
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Figure 3: Runtime comparison with the state of the art (all times are in log scale)

25 %, and ABC on 32 % of safety tasks. Figure plots each individual task by time, with the per-task
fastest symbolic solver on the z-axis and our method on the y-axis; point size and brightness reflect
state-space size. While symbolic tools often lead on individual instances, in 80 % of tasks both
finish within 1 s, indicating that a our method can meaningfully match a portfolio of symbolic safety
checkers, besides being the first neural model checking framework to support general safety.

Comparison on Pure Liveness Figure 3b indicates that our method is consistently faster than the
others. Within 1 s we solve 24 % more tasks than nuXmv, 59 % more tasks than rIC3, 59 % more than
ABC, and 64 % more than NMC’24; at 1 min the margins widen to 31 %, 68 %, 76 %, 71 %, and they
still measure 12 %, 45 %, 59 %, 13 % after 1 h. The percentage of tasks completed in 5 h per task by
nuXmv, NMC’ 24, rIC3, and ABC are completed in under 7's, 3, 0.6 s, 0.3 s by our method. FigureEH
shows the per-task runtime gains against the fastest competing method per task: our method is faster
on 66 % of tasks, at least 10x faster on 46 %, 102 x faster on 29 %, 102 x faster on 11 %, 10* x faster
on 4 %, and 10° x faster on 1 % with respect to the whole state of the art. On a specific comparison
with NMC’ 24 we obtain speedups of at least 10x on 88 %, 102x on 79 %, 103 x on 45 %, 10*x on
18 %, and 105 x on 5 %. Finally overall, 5 % of tasks timeout for all tools except ours.

Comparison on Combined Safety and Liveness Figure 3k indicates that the performance gap
between our method and the alternatives further widens on safety-liveness tasks. Within 1s our
approach completes 31 % more tasks than nuXmv, 34 % more than rIC3 and 36 % more than ABC;
after 1 min the gaps grow to 38 %, 43 %, 54 %, and persist at 20 %, 31 %, 41 % after 1 h. Benchmarks
that exhaust nuXmv, ABC or rIC3 in 5h finish in 56's, 65, 0.8 s per task with our approach. Figure 3f
shows that we are faster on 61 %, 10x faster on 52 %, 102 x faster on 43 %, 10°x faster on 36 %,
10% x faster on 27 %, and 10° x faster on 6 % of the tasks; all tools, besides ours, hit the 5 h timeout
on 18 % of the task suite, bringing arbitrary LTL verification to runtime parity with pure-safety.

Neural Certificates Expressivity In Figure[dh, Auto is our default configuration that starts with
linear for each state g of A4 and escalates to neural models only if linear is infeasible; Only Linear
is the ablation that exits immediately when the linear model fails. The linear model completes 48 %
of tasks within 9 s per task and makes no progress thereafter; by contrast, our default finishes 87 %
overall. Since the default always tries the linear model first, it never trails the ablation; when linear
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Figure 4: Runtime analysis of our approach (all times are in log scale)

fails, automatic widening provides the expressivity needed to solve a lot more instances, showing that
purely affine certificates are insufficient while our neural-certificate architecture succeeds.

Comparison with Random Dataset Generation Our iterative procedure presented in Figure
starts with empty datasets D;,x and Dy, and populates them purely via a counterexample-guided
procedure, which identifies edge-cases one by one towards the synthesis of neural partially-ranking
functions. This is in contrast with the cognate neural model checking approach based on gradient
descent, which benefits from random test generation to initially populate the datasets and rarely relies
on the generation of data by means of counterexamples 63, Section 5]. Figure @b evaluates our
MILP-based approach under multiple random initialisation sizes with O (our default), 10, 25, and
50 randomly generated samples, respectively. As our experiment indicates, our default approach is
nearly indistinguishable from the Best curve (which indicates the fastest configuration per instance).
This indicates that our MILP-based approach does not benefit from unguided random data generation.

Comparison with SMT Learning Engines Our new architecture makes learning amenable to
MILP solving and, more generally, to decision procedures for linear theories implemented in SMT
solvers. Figure f compares alternative engines for our learn phase, where we replace the MILP
solver Gurobi with the SMT solvers CVC5 1.1.2 [[14], MathSAT 5.6.10 [36], and Z3 4.13.0 [49]] via
PySMT [59]]. Within the 5h timeout, MathSAT completed 81 % of tasks, Gurobi completed 87 %,
CvC5 completed 88 %, and Z3 completed 96 % of tasks. Gurobi and Z3 offer the best compromise
between speed and efficacy, with Z3 demonstrating superior coverage and Gurobi shorter runtimes:
Gurobi was on average 7 X faster than Z3 on successfully solved instances. However, Gurobi failed
to return a result in 13 % of cases because of memory segmentation faults, model infeasibility for
our hyper-parameters, numerical mismatches after evaluation of the result with NumPy; only 2 tasks
were timeouts. The Best curve selects the fastest engine per instance—obviously outperforming
every other solver, providing a baseline for a potential portfolio implementation. We remark that all
experiments besides this comparison (Figure @) use only Gurobi as its learning engine.

Strengths and Limitations Our approach is much more straightforward in terms of parameter
tuning then the prior neural model checking approach [63]], owing to the theoretical completeness
and the superior numerical stability of MILP and SMT algorithms over stochastic gradient descent.
However, this strongly relies on sign-activated feed-forward neural networks; the generalisation to
further architectures is an open problem for future investigation. Our method is amenable to training
over parameters of integer type, which naturally results in quantised neural partially-raking functions.
On the other hand, our approach is limited to hardware and reactive systems without arrays or strings
of parametric length, procedure calls or dynamic data structures, which are topics for future work.

Threats to Validity Our empirical evaluation has demonstrated the superior performance of our
approach over the state of the art on verification tasks derived from standard textbook level hardware
designs. Our benchmark suite encompasses word-level designs with safety and liveness properties,
unlike the standard HWMCC’ 24 benchmarks which focus on pure safety properties [19]. Our
benchmark is arguably the hardest (as of today) for word-level liveness and combined safety-liveness
hardware verification. Yet, our evaluation may not be representative of verifications tasks other than
our suite and further research is required to assess the generalisability and the scalability of our
approach to other workloads. Future work includes the integration of neural and compositional model
checking towards the scalable formal verification of industrial-scale designs [40} 88, [134]].



6 Related Work

Model Checking Linear Temporal Logic Formal hardware verification relies on model checking
LTL specifications—codified, e.g., as SystemVerilog Assertions—to guarantee safety and live-
ness properties [8l 156, [77, [102]. Symbolic engines based on BDD fixed-points [10, 41} [75] or
SAT/IC3 reasoning [17} 120} [73, 187 [114] among other methods have evolved over fifty years, with
key contributions to formal verification honoured by the ACM Turing Awards of 1996, 2007,
and 2013. The automata-theoretic approaches to model checking often reduce model checking
to fair-emptiness. This has been tackled via k-liveness bounded model checking [38 |69]], IC3
with strongly connected components [23], or BDDs with Emerson—Lei fixed-point computation
[52]. Ranking functions were originally devised for program termination [S5] and later gen-
eralised to liveness certificates [} 16} 44} |50l 164} 81}, [125], may be linear [21, [104], piecewise-
defined [76} 123 [124]], word-level [32, 471, lexicographic [22, [82], or represented as disjunctive
well-founded relations [37} 14345, 74, [103]]. Traditional algorithms for the automated construction of
ranking functions and inductive invariants usually rely on constraint solving (using Farkas’ lemma or
Positivstellensatz results) or abstract interpretation 31} 143} 45. 74, 103} [103]].

Machine Learning for Automated Reasoning Neural methods have permeated every layer of
formal reasoning. In theorem proving, they guide clause selection [53\ [84]], premise selection [[13]
68 189, [127], tactic prediction [[100} [132], and even end-to-end proof search 54, [106]]. In constraint
solving, neural approaches have been integrated into SMT [12, 185} [112] and SAT solving [61} [79,
1131 [128]], and have been further extended to combinatorial optimisation [83] and MILP [60, 93]
Similar ideas have been applied to program synthesis [[15, 33} 72} [122]], algorithm selection [80, |86],
termination analysis [[7]], circuit synthesis and repair from temporal logic specifications [46} [111]],
and generation of satisfying traces for given LTL properties [66]. A large body of work focussed on
learning inductive invariants via teacher—learner loops [57]], decision trees [58}[76l], random search
[L15], data-driven templates [98]], neural networks [109, [133]], reinforcement learning [[116} [131]] and,
most recently, large language models [29] 71} 1101} [130]. These techniques target safety alone; LTL
specifications that encompass both safety and liveness are out of scope. Handling properties that
combine safety and liveness using machine learning fills a significant gap in the field.

Neural Certificates As opposed to using neural networks to generate formal proof certificates, our
approach uses neural networks to represent them (along with mathematical guarantees), falling within
the spectrum of neural certificates. This extends recent work on control [2,130, 14878192, 95,108} 135+
137]], formal verification of software and probabilistic programs [3| |4, [62], and model checking
reactive systems under pure liveness LTL properties [63]. Our work has enabled neural certificates to
effectively prove arbitrary LTL properties, orders of magnitude faster than the state of the art.

7 Conclusion

We have presented a novel and improved neural model checking approach for arbitrary compositions
of safety and liveness specifications. By introducing a specialised neural partially-ranking function
architecture that (i) simultaneously represents inductive invariants and ranking functions and (ii) is
amenable to training with numerically stable MILP solvers in a counterexample-guided procedure,
our method yields compact and naturally quantised certificates. We implemented a lightweight
Python prototype that combines off-the-shelf MILP (Gurobi), SMT (Bitwuzla), and BMC (EBMC)
to train and certify the network in an iterative approach that provides formal guarantees [65} (91 196].
Our improved technique attains speedups up to 10°x and 10 % higher completion (within a 5h
time limit) over the state-of-the-art symbolic model checkers and prior work on neural model
checking [24}281163|[119]], on a benchmark suite of 634 hardware model checking tasks encompassing
safety, liveness and combined safety-liveness verification tasks written in SystemVerilog.

A complete specification for the functional correctness of reactive systems must capture both safety
and liveness: the former guarantees the absence of undesired behaviour; the latter guarantees the
presence of desired behaviour. Our approach has extended neural model checking to capture both
safety and liveness, simultaneously. This paves a path towards the provably safe application of
artificial intelligence and machine learning to the design of high-assurance industrial hardware,
with impact to avionics [90, [118]], automotive [97, [120], medical devices [70} [126], nuclear control
[27, 199], rail signalling [34} 35}, robotics [110} [129]], utility grids [25}94], and more.
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Model

LTL Specification (Pure-Liveness)

DELAY

FG 'rst — GF sig
FG 'rst — GF (sig AX !sig)

LCD Controller

FG 1cd_enable — GF ready

Blink FG 'rst — GF led0ON
Thermocouple FG !'rst — GF get_data
FG 'rst - GF disp = 1
7-Segment

FG !rst — (GF disp = 0 AGF disp = 1)

i2c Stretch

FG (!rst A ena) — GF strc

Pulse Width Modulation

GF !pulse

VGA Controller

FG 'rst — GF disp_ena

UART Transmi

tter FG 'rst — GF wait

Load-Store FG 'rst — GF sig
FG 'rst — GF sig
Gray Counter FG trst — GF (sig AX !sig)

FG 'rst — (GF sig A GF !sig)

Table 2: Model Name and LTL Specification in our Benchmark (Pure-Liveness)

Model

LTL Specification (Pure-Safety)

DELAY

Glerr

G (sig - X !sig)

LCD Controller

G ((!lcd_enable Aready) — X ready

)

G (X wait — busy)

Blink G ((model A Xmodel) — X (cnt!=0))
Thermocouple G (( !'spi_busy A get_data A !rst) — Xget_data)
7-Segment G ((!sig AX tsig A lrst) — ((dsO AXds0) V (ds1 A X dsl)))

i2c Stretch

G (( Istrc A X strc) — X switch)

Pulse Width Modulation

G <(pulseLB — pulse) A (!pulseUB — !pulse

VGA Controller

en A !rst) — ((hs X !hs) V (!hs <—>th)

)
G (( )
G (( )

N—TN—

en A !rst) — ((vs — X !vs) \Y, (!vs <—>Xvs)

UART Transmitter

G

(

(wait — !busy) A (transmit — busy))

Load-Store

G <sig — XX !sig)

Gray Counter

G ((sig/\ Irst) — X !sig)

Table 3: Model Name and LTL Specification in our Benchmark (Pure-Safety)
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Model LTL Specification (Safety-Liveness)
G !rst = XG (ent < N Usig)
Delay
FG trst — FG (ent < N Usig)
LCD Controller G (receive — (receive U ready ))
Blink Gl!rst — G (ledON — (1edON U mode0 ))
Thermocouple G'!rst — G (pause — (pause U get_data )>
7-Segment Glrst » G (((dsO A Xds0) Vv (dsi A Xds1))U sig)
i2¢c Stretch G'rst — G ( tstrc = (!strcU switch))
Pulse Width Modulation GF !'pulseUB A XG ( 'pulseUB — !pulse)
VGA Controller G ((Vcnt == 0) — ((Vent == 0) U (Hent == )))
UART Transmitter Glrst —» G (busy — (busy Uwait ))
Glrst —» G (modeUP — (modeUP U sig ))
Load-Store
Glrst - XG (modeUP — ( 'sig U modeDOWN ))
G !rst - XG (ent > 0 U sig)
Gray Counter
FG trst — FG (cnt > 0U sig)

Table 4: Model Name and LTL Specification in our Benchmark (Safety + Liveness)

A Details of the Case Studies

We benchmark our tool on eleven RTL designs. Ten are adopted from the neural model-checking
study of [63]], which provided only pure-liveness properties. We extend every design with semantically
natural pure safety and safety plus liveness specifications. Table [2]lists all pure-liveness formulas,
Table [3|the pure-safety formulas, and Table ] the safety-liveness formulas, all in Linear Temporal
Logic (LTL). Below we discuss each design together with its full specification suite.

Delay (DELAY) . A counter cnt raises a pulse sig after a fixed delay and is reset by rst. Liveness
requires FG 'rst — GF sig and, to prevent sig from sticking, FG !'rst — GF (sig A X !sig).
Safety bounds the counter, G cnt <= N, and clears sig in the next cycle, G (sig — X !sig).
Safety-Liveness formulas constrain cnt until sig occurs, G 'rst — XG (cnt < N U sig) and its

eventually variant FG !rst — FG (cnt < N U sig).

LCD Controller (LCD) . After initialisation the controller waits for 1cd_enable, switches from
ready to send, and returns to ready. Liveness demands FG 1cd_enable — GF ready. Safety
preserves ready when lcd_enable is low, G((!1cd_enable A ready) — X ready), and asserts
busy in wait, G(X wait — busy); for safety-liveness a receive phase persists until ready,
G(receive — (receive U ready)).

Blink (BLINK). A counter toggles led on every wrap and raises a one-cycle flag £1g. Liveness
asserts FG 'rst — GF 1edON, while safety enforces staying in mode1 if cnt has not wrapped:
G((model A Xmodel) — X(cnt # 0)). The safety-liveness specification ensures that 1ed remains

on until modeO is reached: G !'rst — G(1edON — (1edON Umode0)).

Thermocouple (Tmcp.) . The FSM cycles through start, get_data, pause. Liveness requires
FG !rst — GF get_data. Safety keeps get_data active on an idle bus and safety-liveness
keeps pause active until get_data becomes reachable: G(!spi_busy A get_data A !'rst —

X get_data) and G !rst — G(pause — (pause U get_data)).
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7-Segment (7-Seg). Two displays alternate unless reset. Liveness enforces FG !rst —
(GF disp = 0 A GF disp = 1) and the single-display variant FG !'rst — GF disp = 1. Safety
freezes the display in the absence of sig: G(!sigAX!sigAlrst — ((ds0AXds0)V(ds1AXds1)))
while safety-liveness holds the display until sig, G !rst — G(((dsO A Xds0) V (ds1 A
Xds1)) U sig).

i2c Stretch (i2cS) . Timing signals sc1_clk and data_clk are generated according to bus fre-
quency; stretch handles clock stretching. Liveness states FG (!'rst A ena) — GF strc.
Safety links a rising stretch to switch: G(!strc A Xstrc — Xswitch) meanwhile safety-
liveness, under permanent reset-low, keeps stretch low until switch, G 'rst — G(!strc —
(tstrc U switch)).

Pulse Width Modulation (PWM) . An N-bit counter drives pulse; the design must regularly unset
the pulse. Accordingly, liveness requires GF !'pulse. Two guard signals bound the duty-cycle
window: pulseLB (minimum width) and pulseUB (maximum width). Safety enforces these bounds
at every cycle, G((pulseLB—pulse) A (!pulseUB— !pulse)), and safety-liveness strengthens
them with a fairness clause that forces the upper bound to be violated—and thus pulse to be
low—infinitely often: GF !'pulseUB A XG(!pulseUB— !pulse).

VGA Controller (VGA) . Horizontal and vertical counters drive disp_ena. Liveness: FG !rst —
GF disp_ena. Safety flips hs and vs under disp_ena: G((en A 'rst) — ((hs 4> X!hs) V
(ths <+ Xhs))), G((en A !rst) — ((vs <> Xtvs) V (!vs <> Xvs))), and safety-liveness asserts a
vertical-horizontal counter relationship G (Vent==0 — (Vent==0 U Hent==0)).

UART Transmitter (UARTt). The FSM toggles between wait and transmit. Liveness:
FG 'rst — GF wait. Safety couples busy with required modes: G((wait — !busy) A
(transmit — busy)), and safety-liveness under permanent reset-low holds busy until wait,
G !rst — G(busy — (busy U wait)).

Load-Store (LS) . A counter counts up in load, down in store; sig triggers the switch. Liveness:
FG !rst — GF sig. Safety clears sig after two cycles: G(sig — XX!sig). The safety-
liveness formulas hold modeUP until sig and, symmetrically, !sig until modeDOWN: G !rst —
G(modeUP — (modeUP U sig)) and G !rst — XG(modeUP — (!sig U modeDOWN)).

Gray Counter (Gray) . Counts in Gray code to minimise bit flips. Liveness: FG !rst — GF sig,
FG!rst — GF(sig A X!sig), and FG!rst — (GFsig A GF!sig). Safety clears sig one step
later: G(sig A !rst — X!sig). Safety-liveness bind the counter until sig: G !'rst — XG(cnt >
0 U sig) and its eventually counterpart FG !'rst — FG(cnt > 0 U sig).

Collectively, these benchmarks exercise handshake logic, clock stretching, display timing, PWM
generation, UART serialisation, counter bounds, and Gray-code sequencing. Each property appears
in pure-liveness, pure-safety, and safety-liveness form, enabling a comprehensive assessment across
the complete verification spectrum.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims of this paper are stated in the abstract and elaborated in
Section [I} There, we briefly outline the theoretical underpinnings of these claims and
summarise experimental results that quantify the scalability of our approach.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalise to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section[5]includes a dedicated Strengths and Limitations subsection, where
we explicitly state our drawbacks and justify their reasonableness, along with a discussion
of theoretical and practical constraints. Section [3] contains a class of problems (pure-
safety) where we underperform. The accompanying Threats to Validity subsection critically
evaluates the scope of our claims by motivating the benchmark selection used for comparison
against alternative verification methods.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide references for all theoretical foundations underpinning our work,
including automata-theoretic LTL model checking, fair termination, inductive invariant and
the use of ranking functions and inductive invariants in sec

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The Implementation subsection of Section [5|describes the full pipeline used
in our prototype and specifies the versions of all external dependencies. It outlines the
neural network architecture under both linear and automatic configurations, as well as
the learning engines used. This section also states the configurations employed in our
main experiments and ablation studies. In contrast, Section E] addresses the theoretical
underpinnings of the learning procedure, including dataset generation, the design of the
neural architecture, and the SMT-based check step, as part of our iterative approach. Together,
these sections provide sufficient detail to replicate our method for neural model checking of
safety and liveness properties. Additionally, the Experimental Setup subsection discusses
the versions of competing tools, the hardware environment used for evaluation, and the
translation procedure from SystemVerilog to the appropriate input formats for each tool. For
reproducibility and further implementation details, our code and benchmarks will be made
publicly available.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Alongside the paper, we provide a zip archive as per NeurIPS guidelines. It
includes all benchmarks, experiment scripts, and a README . md with detailed instructions
for reproducing our results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5] particularly the Implementation subsection, discusses our use of a
single hyperparameter and outlines how it is selected. We also detail the tools used for the
learn and check phases. Our approach to dataset generation is described in Section |3} and a
full description of the benchmark suite is provided in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Because formal-verification tools are deterministic and must return provably
correct answers, traditional variance measures—error bars and confidence intervals—are
not meaningful. Instead for statistical significance, we run each tool once on a substantial
benchmark suite of 634 instances and provide cactus plots, an experimental setup consistent
with community practice in formal verification competitions such as HWMCC. Statistical
evidence is conveyed by cactus plots (Figure [3(a—c); Figure f{(b-c)), which report, for
every time cap up to 15 min, the cumulative number of tasks each competitor completes.
Scatter plots (Figure 3] d—f)) complement this view by plotting one point per benchmark task,
exposing the full runtime distribution rather than aggregate summaries. We additionally
annotate salient figures in our text—e.g., the percentage of tasks finished within a given
cap and the count lying to the right of the 10x diagonal—to underscore the consistent
performance gaps observed across tools and throughout our ablation study.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute environment is described in the Experimental Setup subsection of
Section[5] where we specify our Amazon EC2 instance (type and configuration) and report
the total wall-clock time across all experiments. To avoid cluttering the paper with over
7 000 individual measurements (634 tasks x multiple settings), we provide the complete
runtime data in the supplementary ZIP archive and through cactus plots. In the main paper,
one can visualise the per-task runtime through the cactus (Figure [3(a—);Figure @{b-c)) and
scatter plots [3[(d-f)).

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We affirm that all content presented in this work is disclosed with full academic
integrity. All original contributions are properly cited, and our methodology is described
in detail throughout the paper to ensure reproducibility. In addition, we provide our full
implementation and experimental setup as part of the supplementary materials. Our experi-
ments exclusively use synthetic data, with no human subjects involved, and are therefore
fully aligned with ethical research standards. The goal of our method is to enhance the
reliability and safety of computer systems. The benchmark hardware designs are drawn from
prior work, which is cited accordingly, with one additional design introduced by us. While
the pure-liveness specifications are taken from the same work, we developed additional
pure-safety and safety-liveness specifications based on the semantics of each design. We
have reviewed the NeurIPS Code of Ethics and confirm our strict adherence to its principles.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As discussed in the introduction and conclusion, improving the correctness
of hardware designs prior to fabrication contributes to the development of safer and more
reliable systems. Avoiding the manufacture of flawed silicon also reduces material waste.
We are not aware of any direct path by which our method could be applied to harmful ends.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work contributes to improving the correctness of hardware systems. The
benchmark designs used in our evaluation are extensions of a prior benchmark suite and
consist of standard hardware modules drawn from well-known literature. These designs are
in the public domain and do not pose any risk of misuse.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include the licenses for all tools stated in section[5] and provide appropriate
citations for each.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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Justification: We include the source code of our prototype and the extended benchmark suite
as supplementary material to this paper, released under the MIT License.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve large language
models (LLMs) as any important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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