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ABSTRACT

One of the inherent challenges in deploying transformers on time series is that
reality only happens once; namely, one typically only has access to a single
trajectory of the data-generating process comprised of non-i.i.d. observations. We
derive non-asymptotic statistical guarantees in this setting through bounds on the
generalization of a transformer network at a future-time t, given that it has been
trained using N ⩽ t observations from a single perturbed trajectory of a bounded
and exponentially ergodic Markov process. We obtain a generalization bound
which effectively converges at the rate ofO(1/

√
N). Our bound depends explicitly

on the activation function (Swish, GeLU, or tanh are considered), the number
of self-attention heads, depth, width, and norm-bounds defining the transformer
architecture. Our bound consists of three components: (I) The first quantifies the
gap between the stationary distribution of the data-generating Markov process and
its distribution at time t, this term converges exponentially to 0. (II) The next
term encodes the complexity of the transformer model and, given enough time,
eventually converges to 0 at the rate O(log(N)r/

√
N) for any r > 0. (III) The

third term guarantees that the bound holds with probability at least 1 − δ, and
converges at a rate ofO(

√
log(1/δ)/

√
N). Example of (non i.i.d.) data-generating

processes which we can treat are the projection of several SDEs onto a compact
convex set C, and bounded Markov processes satisfying a log-Sobolev inequality.

1 INTRODUCTION

Transformers Vaswani et al. (2017) have become the main architectural building block in deep
learning-based state-of-the-art foundation models Bommasani et al. (2021); Zhao et al. (2023);
Wei et al. (2022). Transformers are primarily deployed on sequential learning tasks which have
complex temporal relationships, and thus, transformers are trained on non-i.i.d. data. The i.i.d.
assumption is typically made (e.g. Neyshabur et al. (2015); Bartlett et al. (2017); Zhang et al. (2024))
to derive theoretical statistical guarantees, but in practice, it is rarely satisfied; e.g. in natural language
processing (NLP) (Zhou et al., 2021), physics Paul and Baschnagel (2013), medical research Beck
and Pauker (1983), reinforcement learning Sutton and Barto (2018), optimal control Touzi (2013),
and in finance Föllmer and Schied (2011). This creates a mismatch between available statistical
guarantees in deep learning (which often rely on the i.i.d. assumption or they do not provide explicit
constants for transformers trained on non-i.i.d. data) and how transformers are used in practice.

Thus, this paper fills this gap by guaranteeing that transformers trained on a single time-series
trajectory can generalize at future moments in time, with explicit constants. We, therefore, consider
the learning problem where the user is supplied with N paired samples (X1, Y1), . . . , (XN , YN ),
where each input Yn = f⋆(Xn) for a smooth (unknown) target function f⋆ : Rd×M → RD is
to be learned, depending on a history length M , and where the inputs are generated by a time-
homogeneous Markov process X·

def.
=(Xn)

∞
n=1. Note that the assumption Yn = f⋆(Xn) results in

only a mild loss of generality since if X· is a discretized solution to a stochastic differential equation
then Yn ≈ signal + additive noise due to stochastic calculus considerations (see Appendix G).

The performance of any transformer model T : Rd×M → RD is quantified via a smooth loss function
ℓ : RD × RD → R. When M = 1, the generalization of such a T is measured by the gap between
its empirical risk R(N), computed from the single-path training data, and its (true) t-future risk Rt at
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a (possibly infinite) future time N ⩽ t ⩽∞ (t ∈ N+) defined by

Rt(T ) def.
=E

[
ℓ(T (Xt), f

⋆(Xt))
]

whereRt (resp.R∞) is computed with respect to the distribution of Xt (resp. stationary distribution
of X·). The time-t excess-risk Rt, which is generally unobservable, is estimated by a single-path
estimator known as the empirical risk computed using all the noisy samples observed thus far

R(N)(T ) def.
=

1

N

N∑
n=1

ℓ(T (Xn), f
⋆(Xn)).

Our objective is to obtain a statistical learning guarantee bounding the gap between the empirical risk
and the t-future risk of transformer models trained on a single path.

Contribution. Our main result is a bound on the future-generalization, at any given time t ⩾ N , of
a transformer trained from N samples collected from an unknown transformation (f⋆) of any suitable
unknown Markov process (X·). For this, fix a class of transformers TC for respective input and output
dimensions d and D, i.e. determine the number of transformer blocks, the number of attention heads,
channel sizes, and specify a constraints on its weights. Then, the first takeaway of our main result
(Theorem 1) is that with probability at least 1− δ

sup
T ∈TC

∣∣Rt(T )−R(N)(T )
∣∣ ∈ O( log(1/δ) + log(N)1/s√

N

)
(FutureGen)

where s > 0 can be made arbitrarily large and O hides a dimensional constant depending on s.

Our primary contribution is a full analysis of the constant under the bigO in our future-generalization
bound (Theorem 1) via a complete estimation of the higher order sensitivities/derivatives of the trans-
former network (Theorems 6 and 7). Our result provides the first generalization bound applicable to
transformers trained on non-i.i.d. data with explicit constants; all other available statistical guarantees
for models trained on non-i.i.d. data which we are aware of, e.g. Yu (1994); Mohri and Rostamizadeh
(2008; 2010); Kuznetsov and Mohri (2017); Simchowitz et al. (2018); Foster et al. (2020); Ziemann
and Tu (2022), do not yield explicit bounds for transformers since they alone do not yield explicit
constants without appealing to our main technical results: Theorems 6 and 7.

Our secondary contribution is a detailed analysis of the effects of the number of attention heads,
depth, and width of the transformed model, and weight and bias restriction, as well as on the activation
functions used on the generalization of the transformer model. This is because the explicit constants
our main results are clearly expressed in terms of these quantities. We also perform an in-depth
analysis for the Swish Ramachandran et al. (2017), GeLU Hendrycks and Gimpel (2016), and the
tanh activation functions. We validate the empirical evidence suggesting that the popular activation
functions such as Swish provide superior performance than unconventional choices such as tanh.

Benefit our Optimal Transport-Theoretic Approach. An important feature of our generalization
bound is that it relies on a recently well-studied optimal transport-theoretic notion of exponential
ergodicity, which is easily verified, or already known, for most data-generating processes. Indeed,
there is a large and growing body of literature verifying that a broad range of standard processes
verify this mixing condition (Assumption 2), from classical SDEs to McKean-Vlasov and reflected
SDEs. Several examples are provided in Section 2.

Related Work. The mathematical foundations of transformer networks have recently come into
focus in the deep learning theory community. Most of the available statistical guarantees for trans-
formers either concern: in-context learning for linear transformers Zhang et al. (2024); Garg et al.
(2022), transformers Von Oswald et al. (2023); Akyürek et al. (2023) trained with gradient descent,
or instance-dependent bounds Trauger and Tewari (2023) for general transformers. These results,
however, do not apply in time series analysis contexts where each training sample is not independent
of the others but is rather generated by some recursive stochastic process, e.g. a Markov process.

Analytic counterparts to the statistical guarantees for transformers have also emerged. These include
universal approximation theorems for transformer networks Yun et al. (2019; 2020); Fang et al.
(2023) and contained universal approximation results for networks leveraging generalized attention
mechanisms Kratsios and Papon (2022), and the identification of function classes which can be
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efficiently approximated by transformers special classes Likhosherstov et al. (2021); Frieder et al.
(2024). From the computability standpoint, transformers are Turing complete Bhattamishra et al.
(2020).

Generalization bounds for multilayer perceptrons (MLPs) have been actively studied for years. For
classification problems, these generalization bounds often rely on bounding the VC-dimension of
classes of MLPs, depending on their depth, width, norm bounds on their parameters and activation
functions Bartlett et al. (1998; 2019), or similar quantities. In regression problems, one instead
controls the Rademacher complexity of similar classes of MLPs Bartlett et al. (2017); Neyshabur
et al. (2019); Yin et al. (2019), due to the results such as Koltchinskii (2001); Bartlett and Mendelson
(2002), or turns to instance-dependent bounds which control the path-norm of the MLP Neyshabur
et al. (2015); Golowich et al. (2020); Galanti et al. (2024) and local variants of these quantities;
e.g. Bartlett et al. (2005) or Hou et al. (2023b). Our generalization bounds also partially borrow ideas
from both of these directions, but instead, we use high-order sensitivities (partial derivatives) of our
transformer networks to obtain tighter bounds for large enough N . This does not yield a faster rate,
since the O(1/

√
N) rate is generally optimal, by the central limit theorem, but it allows us to better

control the constants in the generalization bound and thus yields more precise bounds. Thus, a key
part of our technical contributions is the computation of these higher-order derivatives (Cs-norms,
see Definition 3) both of the transformer and the MLP models using smooth activation functions.

These statistical learning results assume that the data samples are i.i.d. However, time-series data
is rarely i.i.d, they are often generated by Markov process or at least embeddable into a Markovian
setting Cuchiero and Teichmann (2019; 2020a). Though there are generalization bounds for non-i.i.d.
relying on martingale arguments e.g. Kontorovich (2014) and concentration of measure phenomena
for martingale sums e.g. Bercu et al. (2015); Boucheron et al. (2013) those results primarily focus
on Lipschitz functions; thus, they do not consider higher-order derivatives. Our results add to this
literature since we rely on the concentration of measure phenomena for Markov processes with respect
to smooth counterparts of the 1-Wasserstein distance (a tool used in many martingale arguments,
e.g. Kontorovich and Raginsky (2017), for Lipschitz classes).

There are several results in the literature addressing learning with non-i.i.d. data satisfying a mix-
ing/ergodicity condition dating back, at least, to Yu (1994). However, none of these results provide
explicit generalization bounds for transformer classes as they either rely on bounding the Rademacher
complexity of the transformer class, e.g. in applying Mohri and Rostamizadeh (2008), or they rely
on computing the cardinality of delta nets Ziemann and Tu (2022), both of which necessitate the
computation of the worst-case Lipschitz (or Cs norm) of any transformer in the hypothesis class
using (van der Vaart and Wellner, 2023, Theorem 2.7.4) and (Lorentz et al., 1996, Equation (15.1.8)).
These highly technical computations of the worst-case Cs norm case of any transformer our hypothe-
sis class was never computed before our Theorems 6 and 7. Alternatively, prior results impose strong
assumptions on the data-generating process Simchowitz et al. (2018); Foster et al. (2020).

We require that the data-generating Markov process has an exponentially contracting Markov kernel
Kloeckner (2020). For Markov chains, i.e. finite-state space Markov processes, this means that the
generator (Q-matrix) of the Markov chain has a spectral gap. These spectral gaps are actively studied
in the Markov chain literature Mufa (1996); Kontoyiannis and Meyn (2012); Atchadé (2021); Paulin
(2015); Kloeckner (2019) since these have a finite mixing time, meaning that the distribution of such
Markov chains approaches their stationary limit after a large finite time has elapsed; i.e. they have
well-behaved (approximate) mixing times Montenegro et al. (2006); Hsu et al. (2015); Wolfer and
Kontorovich (2019); Zamanlooy (2024). We rely on actively-studied optimal transport-theoretic
notions of mixing since it is easily verified, or already known, for most data-generating processes
than more classical notions; e.g. Kuznetsov and Mohri (2017); Mohri and Rostamizadeh (2010).

Our generalization bounds rely on concentration of measure arguments for the “smooth” integral
probability metrics (IPMs) studied in Kloeckner (2020); Riekert (2022), by refining the arguments
of Hou et al. (2023b); Benitez et al. (2023); Kratsios et al. (2024) to the non-i.i.d. and smooth setting.
In the i.i.d. case, our computation of the maximum Cs-norm (R ⩾ 0) of the class TC (Theorem 6)
can be used to relate the rate at which measure concentrates to other bounds based on classical
quantities such as the Rademacher complexity of the class of Cs-functions on Rd; which is bounded
by R, see e.g. (Sriperumbudur et al., 2012, Theorem 3.3).
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Further Applications of our Secondary Results. The upper bounds, which we compute for the
Cs norms of the transformers models, can be used in conjunction with classical VC-dimension
van der Vaart and Wellner (2023), Rademacher complexity Bartlett and Mendelson (2002), or optimal
transport Hou et al. (2023b) type arguments to obtain generalization bounds in the simpler setting
of i.i.d. data where there is no notion of (future) time, not considered here. This can be done using
classical tools, e.g. entropy estimates in (van der Vaart and Wellner, 2023, Theorem 2.7.4) on compact
domains due to the Sobolev embedding theorem, applied to the larger class of Cs on Rd×M whose
Cs-norms are almost equal to the one we have computed for TC in Theorems 6 and 7.

2 BACKGROUND AND PRELIMINARIES

This section overviews the necessary background for a self-contained formulation of our main results.
This includes the definition of transformers and examples of data-generating processes treatable
within our framework.

2.1 ADMISSIBLE DATA-GENERATING PROCESSES

Fix dimensions d,D ∈ N+, a finite memory M ∈ N+, and let X·
def.
=(Xn)n∈N0

be a stochastic process
taking values in Rd, such that the lifted/concatenated process XM

·
def.
=(XM

[0∨(n−M),...,0∨n])n∈N0 is
Markovian on RMd. Let P be a Markov kernel on a non-empty Borel XM ⊆ RMd with initial
distribution X0 ∼ µ0 ∈ P(RMd) given by XM

n ∼ µn
def.
=Pnµ0

def.
=P(XM

n ∈ ·) and for each x ∈ RMd

and n ∈ N+, set Pn(x, ·) def.
=P(XM

n ∈ ·|XM
0 = x). The process XM

· is called a Markovian lift of X·
in the literature; see e.g. Cuchiero and Teichmann (2020b).
Examples of processes with finite-dimensional Markovian lifts are ARIMA times-series models, see
e.g. (Cryer and Kellet, 1991), or stochastic delay differential equations; see e.g. Buckwar (2000).
Assumption 1 (Bounded Trajectories). There is a c > 0 such that P(supt∈N ∥Xt∥ ⩽ c) = 1.

Assumption 2 (Exponential Ergodicity). There is a κ ∈ (0, 1) such that: for each µ, ν ∈ P(RMd)
and every t ∈ N+ one hasW1(P

tµ, P tν) ⩽ κtW1(µ, ν).

2.1.1 EXAMPLES: PROJECTED SDES - FROM LANGEVIN DYNAMICS TO MARTINGALES

A broad class of non-i.i.d. data-generating processes satisfying our assumptions is a broad generaliza-
tion of any Markov processes obtained by “projecting” the strong solution to a stochastic differential
equation (SDE) with overdampened drift onto a compact convex subset of Rd. The processes which
we can project are vast generalizations of the forward process used in denoising diffusion models; see
e.g. Song et al. (2020) whose convergence is by now well-understood; see e.g. Chen et al. (2023).
Example 1 (Projected SDEs with Overdampened Drift). Consider a latent dimension d̄ ∈ N+,
µ : Rd̄ → Rd̄ be Lipschitz and the gradient of a strongly convex function; i.e. there is a K > 0 such
that (µ(x) − µ(y))⊤(x − y) ⩽ −K∥x − y∥2 for all x, y ∈ Rd. For any x ∈ Rd̄ let Zx

·
def.
=(Zx

t )t⩾0

be the unique strong solution (which exists by (Da Prato, 2008, Theorem 8.2) since µ is Lipschitz)

Zx
t = x+

∫ t

0

µ(Zx
s ) ds+

∫ t

0

Ws (1)

where W· is a d̄-dimensional Brownian motion. Let f : Rd̄ → Rd be a bounded 1-Lipschitz function
and consider the discrete-time Markov process X·

def.
=(Xn)

∞
n=0 on Rd given by

Xx
n

def.
= f(Zx

n).

As shown in Proposition 2, X· satisfies Assumptions 1 and 2. The standard example of SDEs (1) are
Langevin dynamics for a strictly convex potential U : Rd → R. As shown in Bolley et al. (2012)

µ(x) = −∇U(x)/2. ◁

Example 2 (Projections of Diffusive Martingales). Let d ∈ N+. Let σ : Rd → P+
d taking values

in the cone P+
d of d × d-dimensional positive definite matrices, be Lipschitz with the Fröbenius

norm on Rd×d, and satisfy the uniform ellipticity condition: there exists a λ > 0 such that for
every x ∈ Rd holds smin(σ(x)σ(x)

⊤) ⩾ λ, where smin(A) denotes the minimal singular values
of a matrix A. Consider the martingale Z· (see (Da Prato, 2008, Proposition 6.15) for a proof of
martingality) defined for each t ⩾ 0 by Zt =

∫ t

0
σ(Zs) dWs where W·

def.
=(Wt)t⩾0 is a d-dimensional

4
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Brownian motion. Let f : Rd → Rd be any 1-Lipschitz bounded function. By Proposition 3, the
data-generating Markov process X·

def.
=(Xn)

∞
n=0, defined for each n ∈ N+ by Xn

def.
= f(Zn) satisfies

both Assumptions 1 and 2. ◁

We have presented the simplest cases here; which is readily generalizable. By Lemma 1 to any Markov
process exponentially ergodic Z·, not necessarily solving the simple dynamics (1), automatically
yields examples of data-generating processes satisfying both Assumptions 1 and 2. We list some
examples of such processes here: McKean-Vlasov type with relatively general, i.e. it can have
non-constant law-dependent drift and diffusion coefficients (Wang, 2023, Corollary 4.4) (possibly
with reflections), several SDEs is driven by a pure-jump Lévy process (Luo and Wang, 2019, Theorem
3.1). Note when considering reflected SDEs (possibly of McKean-Vlasov type), where the reflections
constrain the process to remain in a bounded convex domain, we do not need f to be bounded, as
the processes themselves are already bounded. Further examples of such can be constructed using
compact Riemannian sub-manifolds of Rd with suitable curvature bounds Ollivier (2009).

2.1.2 EXAMPLES: MARKOV PROCESSES WITH LOG-SOBOLEV-TYPE KERNEL

Our main result is equally valid under the assumption that the stationary distribution of the Markov
chain and its kernels all satisfy a log-Sobolev inequality (LSI). Since their introduction, LSIs have been
heavily studied Gross (1975); Ledoux et al. (2015); Zimmermann (2013); Inglis and Papageorgiou
(2019); Chen et al. (2021) and have found numerous applications in differential privacy Minami et al.
(2016); Ye and Shokri (2022), optimization Chaudhari et al. (2019), random matrix theory Wigner
(1955; 1957), optimal transport Dolera and Mainini (2023), since they typically imply Gozlan (2010);
Gozlan et al. (2015) and effectively characterizes Gozlan (2009) dimension-free rate for concentration
of measure. We define the entropy functionalHµ associated to any Borel probability measure µ on
Rd acts on smooth functions g : Rd → R by

Hµ(g)
def.
=EX∼µ

[
g(X) log

( g(X)

EZ∼µ[g(Z)]

)]
.

The entropy functional can be used to express the log-Sobolev inequalities.
Definition 1 (Log-Sobolev Inequality). A probability measure µ on Rd is said to satisfy a log-Sobolev
inequality with constant C > 0 (LSIC) if for every smooth function g : Rd → R

Hµ(g
2) ⩽ C EX∼µ[∥∇g(X)∥2]

We require that the Markov process is time-homogeneous to admit a satisfactory measure. Further,
we require that its Markov kernel and its stationary measure all satisfy LSIC .
Assumption 3 (Satisfactions of the Log-Sobolev Inequality). There exists a C > 0 such that µ̄, µ0,
and P (x, ·) all satisfy LSIC , for each x ∈ X .

Instead of the compact support Assumption 1 we may consider the following weaker condition.

Assumption 4 (Exponential Moments). There exist λ, C̃ > 0 and γ ∈ (0, 1) such that: for each
x ∈ X we have EX∼P (x,·)[e

λ|X|] ⩽ γ eλ|x| + C̃.

Note that, Assumption 1 implies 4, but not conversely.

Several examples of Markov processes satisfying LSI inequalities are given in Ledoux (2006) and
Gaussian processes satisfy the Exponential Moments Assumption. If one instead
Proposition 1 (Log-Sobolev Conditions and Exponential Moments Imply Assumption 2). If Assump-
tions 4 and 3 hold then the process X· satisfies Assumption 2.

2.2 THE TRANSFORMER MODEL
The overall structure of transformers is summarized in Figure 1, and we give an in-depth definition of
all components with their respective dimensions in Appendix C, which is relevant for the details of
the bound computation. On a high level, the most important aspects are:

Multi-Head Attention [MH]. Consists of parallel application of the attention mechanism, described
by the following steps. (i) Inputs are used three-fold, as keys, queries, and values, all are transformed
by distinct linear transformations. (ii) Keys and queries are multiplied, scaled, and transformed by a
softmax application. (iii) This output is combined in a matrix multiplication with the values.

5
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MatMul

Scale

Softmax

Keys Queries Values

Linear Linear Linear

MatMul

Linear

(a) Multi-Head Att. (Def. 4)

SLP

Layer Norm

Layer Norm

Multi-Head
Attention

(b) Transformer Block (Def. 5)

...

Affine Layer

Transformer
Block

Transformer
Block

(c) Transformer (Def. 6)

Figure 1: The transformer architecture.

Transformer Block [TB]. Here, (i) input features are mapped to contexts via multi-head attention
mechanism, (ii) the output of the multi-head attention mechanism and the input features (via a skip
connection) are normalized by a layer-norm [LN ] (see Appendix C), (iii) the normalized contextual
features are transformed non-linearly by a single-layer perceptron [PL], and (iv) its outputs, together
with the first set of normalized context (via another skip connection), are normalized by a final
layer-norm and returned by the transformer block.
Transformer [T ]. Iteratively feed input features through a series of transformer blocks before pro-
cessing their outputs with a (fully connected affine layer). We denote a class of transformers of a
fixed architecture by TC, with each parameter bounded to a predefined domain.

2.3 SETTING
We consider smooth loss and target functions that are concentrated on a compact region, along
with their derivatives. The growth rate of the Cs-norm (see Definition 3 in Appendix A) of the
loss function and its derivatives quantifies the degree of concentration. One easily verifies that any
function in the Schwartz class satisfies this former of the following conditions, cf. Treves (2016).
Definition 2 (Polynomial Growth of Derivatives). Let d,D,M ∈ R. A smooth function g : RMd →
RD is in the class C∞

poly:C,r([0, 1]
Md,RD) if C, r ⩾ 0 are such that ∥g∥Cs([0,1]Md) ⩽ C sr for each

s ∈ N+. Here, ∥ · ∥Cs is the uniform Sobolev norm on the specified domain.

In Appendix E.2 we show that, in one dimension, any real analytic function whose power series
expansion at 0, has coefficients growing at an O((s+ 1)r) rate belongs to g ∈ C∞

poly:C,r([0, 1],R).
One can easily extend this argument to multiple dimensions to obtain further examples.

We consider an realizable PAC learning problem, determined by a smooth 1-Lipschitz target function
f⋆ : Rd → RD which we would like to learn using a sequence of random observations

(
(Xt, Yt)

)
t∈N

as our training data. That is, for each t ∈ N+

Yt
def.
= f⋆(Xt)

We aim to learn f from a single path. The ability of a model to reliably recover the function
f : Rd → RD at time t, given the input Xt, is quantified by the t-future risk

Rt(f)
def.
=E

[
ℓ(f(Xt), f

⋆(Xt))
]
.

The time-t excess-riskRt, which is generally unobservable, is estimated by a single-path estimator
known as the empirical risk computed using all the noisy samples to observed thus far

R(N)(f) def.
=

1

N

N∑
n=1

ℓ(f(Xt), f
⋆(Xt)).

Our objective is to obtain a statistical learning guarantee on the quality of our estimate of the target
function given by the time t (∈ N+) generalization gap

∣∣Rt(f)−R(N)(f)
∣∣.

We now summarize our setting and all parameters defining it, e.g. dimension, number of attention
heads in the transformer, growth rate of the derivatives of the target and loss functions, etc.
Setting 2.1 (Standing Assumptions). Consider a hypothesis class TC. Fix rf , rℓ, Cf , Cℓ ⩾ 0, as
well as a target function f∗ and loss function ℓ with

f⋆ ∈ C∞
poly:Cf ,rf

(RMd,RD) and ℓ ∈ C∞
poly:Cℓ,rℓ

(R2D,R);
and suppose that Assumption 1 and either of 2 or 3 hold.
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3 MAIN RESULTS

3.1 FUTURE GENERALIZATION
Having formalized our setting, we may now state our first main result, which is a version
of (FutureGen). This version provides insights on the future-generalization of transformers via: 1) ex-
plicit constants and 2) explicit phase transition times above which the convergence rate in (FutureGen)
accelerates by a polylogarithmic factor. We express these times of convergence rate acceleration
using the following convergence rate function

rates(N) def.
=


log(cN)d−2s+s/d

c2 Ns/d if Md > 2s (initial phases)
log(cN)
cN1/2 if Md = 2s (critical phase)
log(cN)d/(2s+1)

cN1/2 if Md < 2s (eventual phases)

(rate)

where c def.
=1− κ, c2 def.

= cs/d, and 0 < κ < 1 are constants depending only on X·.
Theorem 1 (Pathwise Generalization Bounds for Transformers). In Setting 2.1, there exists κ ∈ (0, 1),
depending only on X·, and t0 ∈ N0; such that for each t0 ⩽ N ⩽ t ⩽∞ and δ ∈ (0, 1] the following
holds with probability at-least 1− δ

sup
T ∈TC

∣∣Rmax{t,N}(T )−R(N)(T )
∣∣ ≲ ∞∑

s=0
IN∈[τs,τs+1) Cℓ,TC,K,s

(
κt︸︷︷︸
(I)

+ rates(N)︸ ︷︷ ︸
(II)

+

√
2 ln(1/δ)

N1/2︸ ︷︷ ︸
(III)

)

with I· as indicator function, rates(N) as in (rate), the constant Cℓ,TC,K,s
def.
= supT ∈TC ∥ℓ(T , f∗)∥Cs ,

and the transition times (τs)∞s=0 are given iteratively by τ0
def.
=0 and for each s ∈ N+

τs
def.
= inf

{
t ⩾ τs−1 : Cℓ,TC,K,s(κ

t + rates(N) +

√
log(1/δ)√

N
) ⩽ Cℓ,TC,K,s−1(κ

t + rates−1(N) +

√
log(1/δ)√

N
)

}
.

Furthermore, c def.
=1− κ, c2 def.

= cs/d, κ∞ def.
= limt→∞ κt = 0, and ≲ hides an absolute constant.

2 4 6 8 10
input dimension (d)

10
2

10
4

10
6

10
8

s

Phase transition times for Transformer Block

s = 1
s = 2
s = 3
s = 4

Figure 2: Transition times: (y-axis)
when the future-generalization bound
accelerates by a polylogarithmic factor
(in N ) for a single transformer block in
terms of the input dimension d (x axis).
See Section 3.2 for details on constants.

Theorem 1 implies the order estimate in (FutureGen). This
is because Cℓ,TC,K,s is constant in N and rates(N) <
rates−1(N); thus, for every s > 0 the right-hand side
our bound is eventually bounded by any Cℓ,TC,K,s(κ

t +√
2 ln(1/δ)/N1/2 + rates(N)) for N large enough. How-

ever, unlike the order estimate (FutureGen), Theorem 1 pro-
vides an explicit description of the actual size of the future-
generalization gap in terms of three factors which we now
interpret.

Non-Stationarity Term. Term (I) quantifies the rate at which
the data-generating Markov process X· becomes stationary.
This term only depends on the time t and a constant 0 < κ < 1
determined only by X·. We use the notational convention
κ∞ def.

= lim
t→∞

κt = 0 to describe the limiting case.
Model Complexity Term (Phase Transitions). Term (II) captures the complexity of the trans-
former network in terms of the number of self-attention heads, depth, width, and the activation
function used to define the class TC. Each constant C1 ⩽ . . . ⩽ Cs ⩽ . . . collects the higher-
order sensitivities (sth order partial derivatives; where s ∈ N+) of the transformer model. Each
0 = τ0 ⩽ τ1 ⩽ . . . ⩽ τs ⩽ indicates the times at which there is a phase-transition in the convergence
rate of the generalization bound accelerates. Once t ⩾ τs, then the convergence rate of Term (II)
accelerates, roughly speaking, by a reciprocal log-factor of 1/ log(N). Observe that the rate function
is asymptotically equal to the rate function from the central limit theorem, as s tends to infinity;
that is, lims→∞ rates(N) = 1/(c

√
N). The rate (rate) is the (optimal) rate at which the empirical

measure generated by observations from a Markov process converges to its stationary distribution in
1-Wasserstein distance Kloeckner (2020); Riekert (2022). The polylogarithmic factor is removable if
the data is i.i.d. Graf and Luschgy (2000); Dereich et al. (2013).
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Figure 3: Effects of Transformer Components of FutureGen: (left to right.) The first figure shows the Cs bound
of various activation functions according to results in Appendix F.3.3. The second illustrates Cs bounds for
Multi-Head Attention (Definition 4), single-layer perceptrons, and the layer norm. The third shows the Cs-bound
of a transformer block (Definition 5), distinguishing if the bound was computed level-specific (Corollary 1) or
type specific (Theorem 5). The parameters used for the above plots are the base cases of Tables 1 to 5.

Probabilistic Validity Term. Term (III) captures the cost of the bound being valid with probability
at least 1−δ. The convergence rate of this term cannot be improved due to the central limit theorem. It
is responsible for the overall convergence rate of our generalization bound being “stuck” at the optimal
rate of O(1/

√
N) from the central limit theorem; as the other two terms converge exponentially to 0.

3.2 BOUND OF THE Cs-NORM OF TRANSFORMER CLASSES
Our second main result is the computation of Cℓ,TC,K,s, which encodes the maximal size of the first
s partial derivatives of any transformer in the class TC. Thus, it encodes the complexity of the class
TC (e.g. int terms of number of attention heads, depth, width, etc...), the size of the compact set K,
and the smoothness of the loss function and target functions.

We note that, any uniform generalization bound for smooth functions thus necessarily contains
constants of the same order hidden within the big O. See e.g. the entropy bound in (van der Vaart
and Wellner, 2023, Theorem 2.71) which yields VC-dimension bounds via standard Dudley integral
estimates in the i.i.d. case.

Critically, when the function class is defined by function composition, i.e. as in deep learning, then
these maximal partial derivatives tend to grow factorially in s. This is a feature of the derivatives
of composite functions in high dimensions as characterized by the multi-variate chain rule (i.e. the
Faá di Bruno formula Faa di Bruno (1855); Constantine and Savits (1996)). The combinatorics
of these partial derivatives is encoded by the coefficients in the well-studied bell-polynomials Bell
(1934); Mihoubi (2008); Wang and Wang (2009) whose growth rate has been recently understood
in Khorunzhiy (2022) and contains factors of the order of O(

(
2s

e ln s (1 + o(1))
)s
).

Remark that, in the feedforward case, i.e. when no layernorms or multihead attention are used, then
the s = 1 case is bounded above by the well-studied path-norms; see e.g. Bartlett et al. (2017);
Neyshabur et al. (2015), which are simply the product of the weight matrices of in the network and
serve as a simple upper-bound for the largest Lipschitz constant (i.e. C1 norm) of the class TC. These
constants are included as very specific cases of our constant bounds. This is why we present two
versions: a weaker but simpler bound, as well as a more accurate but detailed bound.
Theorem 2 (TC-bound in terms of O). In the case of a single transformer block Cℓ,TC,K,s is of the
order of

O
(

Cℓ,f⋆

︸ ︷︷ ︸
Loss & Target

CLN
K(3)(⩽s)

sCLN
K(1)(⩽s)

s3︸ ︷︷ ︸
Layernorms

CPL
K(2)(⩽s)

s2︸ ︷︷ ︸
Perceptron

(
1 + CMH

K (⩽s)

)s4

︸ ︷︷ ︸
Multihead Attention

Ds2 d2s
3

︸ ︷︷ ︸
dimensions

cs
s+s3+s4

s︸ ︷︷ ︸
Generic: s-th order Derivative

)

where the “generic higher-order derivative constant” is cs def.
=

2s
e ln s (1 + o(1)). Further,

Cℓ,f⋆

= O
(
Cs

f s
rℓ+2s2

)
, CPL

K (⩽s) = O
(
cPL + dff∥σ∥sc̃ss(cPL)s+1

)
,

CLN
K (⩽s) = O

(
s(1+s)/2css

)
, CMH

K (⩽s) = O
(
e−2sM2(2dindK · cs)s(s · cMH)2s+2

)
.

Here c̃s
def.
= s1/2(n/e)scss; din is the input-dimension and dK is the key-dimension of the multi-head

attentionMH (see Definition 4 for details); dff is the width of the neural network PL (see Definition 5
for details); cPL as well as cMH are parameter bounds on PL as well asMH, respectively (see

8
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Theorem 7 for details); and ∥σ∥s is the Cs-bound of the activation function used. If no layer norms,
SLP, or multi head attention mechanisms are included in the class, then their respective terms in our
order estimate should be taken to be 1.

Proof. The result is a direct consequence of Theorems 7 and 9. The order of the bounds CLN
K , CPL

K ,
and CMH

K are given by Corollaries 4, 8 and 9.

See Appendix F for a full version of this result for deep transformers (Theorem 7).

Explicit bound computation. We further refined this result by deriving formulae that enable
the precise calculation of these bounds. In order to enhance the accuracy of these estimates, we
distinguished not only between different levels of derivatives but also between various types of
derivatives. An exemplary improvement of the bound by this distinction can be seen on the RHS of
Figure 3. Since these results are fairly technical and verbose, we relegate them to Appendix F.3, see
Theorem 6 for the analogue result to Theorem 7 and Lemmata 7, 12 and 13 for tighter bounds on
CLN

K , CPL
K , and CMH

K . Additionally, we provide software tools to efficiently compute the bounds of
a given transformer architecture.1

3.2.1 IMPLICATIONS OF ARCHITECTURE CHOICES.
dff

dout

din

dk

CQ, K

CV, W

CA, B

C

10
11

10
7

10
3

10
1

10
5

10
9

10
13

10
17 s = 1

s = 2
s = 3
s = 4
s = 5

Figure 4: Absolute changes in Cs-
bound for changes in architecture.
Changes in dimensions (d·) are ×2,
while changes in parameter-bounds
(C·) are ×10, from the base parame-
ters (see Tables 1 to 5).

Figure 3 illustrates the effect of various building blocks in the
construction of a transformer (e.g. activation choice, multi-
head attention (MHA), layernorms) through their effect on the
constants in our generalization bounds. While Tables 1 to 5
contain more details, highlight here some key implications that
architecture choices have on the bound:

I) Choice of Activation Function: We found (see Lemmata 8
to 11) that the Cs-bounds of activation function may vary sub-
stantially, framing softplus and swish as the more regular,
and tanh resulting in the highest bound. Note that the activa-
tion bound impacts the PL-bound linearly and therefore effects
the transformer-block bound of order s2.

II) Effects of Three Different Block-Types: Considering
the three components –MH,LN ,PL – that make up a trans-
former block, we observe that for low s the regularization by
LN has the highest bound, but becomes less relevant with the
exponential increase of theMH,PL-bounds for larger s.

III) Weight Size for MLP vs. Multi-Head Attention: As evident in Figure 4 (and Table 4), the
parameter-bounds on PL (denoted by CA,B) seem to have a more substantial impact on the bound
than the parameter bounds ofMH. For the latter, bounds on key- and query-matrices (CK,Q) seem
to have bigger impacts for lower s than value- and aggregation-matrices (CV,W ) (see Definition 4 for
details on notation), however show larger growth rates for larger s, as also shown in Table 5.

IV) Effect of Dimensions (Key, Input, etc. . . ): Eventually, we can examine how various di-
mensions effect the bound. The input dimension (din) has a slightly higher impact than the output
dimension (dout). When it comes to choosing latent dimensions, scaling the hidden dimension of the
PL (dff ), has an effect similar to changes in the output dimension, and substantially higher comparing
to the key-dimension dK (see Definitions 4 and 5 in Appendix C for details and notation).

Consequentially, we show the effect on the phase-transition times (τt)∞t=0, defined in Theorem 1,
dictating when the bound accelerates by a polylogarithmic factor in N .

3.3 INTUITION VIA PROOF SKETCH
The first step in deriving our generalization bounds is to quantify the regularity of the transformer
model as a function of its depth, number of attention heads, and norm of its weight matrices. By

1The source code to compute derivative bounds is available at https://anonymous.4open.
science/r/transfomer-bounds-B476.
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regularity, we mean the number and size of the continuous partial derivatives admitted by the
transformer. To quantify the size of the partial derivatives of the transformer we first remark that it is
smooth; that is, it admits continuous partial derivatives of all orders (see Theorem 6).

We will uniformly bound the generalization capabilities of the class of transformers T ∈ TC by
instead uniformly bounding the generalization of any Cs functions on RMd with Cs-norm at most
equal to the largest Cs-norm in the class TC. That is, we control the right-hand side of

supT ∈TC
∣∣Rt(T )−R(N)(T )

∣∣ ⩽ supf̂∈Cs
R(RMd)

∣∣Rt(f̂)−R(N)(f̂)
∣∣ (2)

where R = Cℓ,TC,K,s as defined in Theorem 1, describes the higher-order fluctuations of the
“difference” between the target function f⋆ and any transformer T ∈ TC, as quantified by the loss
function ℓ. Our first step is thus to bound R by upper-bounding maximal size of the sth partial
derivatives of all transformers T ∈ TC. Explicit bounds are computed in Theorem 6, and their order
estimates (as a function of s) are given in Theorem 7. Combing these estimates with the maximal sth
partial derivatives of the loss and target function, via a Faá di Bruno-type formula (in Theorem 3 or
Lemma 4), which is a multivariant higher-order chain rule, yields our estimate for R in (2).

Now that we have bounded R, appearing in the supremum term in (2), it remains to translate this
into a generalization bound. We can do this by relating it to the so-called smooth Wasserstein
distance ds between the distribution of the Markov chain at time µt and its empirical distribution
µ(N) def.

=1/N
∑N

n=1 δXn
obtained by collecting samples up to time N . The smooth Wasserstein

distance ds, studied by Kloeckner (2020); Riekert (2022); Hou et al. (2023a), is the integral probability
metric (IPM)-type distance quantifying the distance between any two Borel probability measures µ, ν
on RMd as the maximal distance which they can produced when tested on any function in Cs

1(RMd)

ds(µ, ν)
def.
= sup

g∈Cs
1(RMd)

EX∼µ[g(X)]− EY∼ν [g(Y )].

The right-hand side (RHS) of (2) can be expressed as R times the ds distance between the (true)
distribution µt of the process X· at time t and the (empirical) distribution µ(N) collected from samples

RHS (2) ⩽ sup
f̂∈Cs

R(RMd)

∥ℓ(f̂ , f⋆)∥Cs ds(µt, µ
(N)). (3)

The ds distance between the process X· at time t, i.e. µt, and the running empirical distribution µ(N)

can be accomplished in two steps. First, we fast-forward time and bound the ds-distance between
µ(N) and the stationary distribution µ∞ of the data-generating Markov chain X· (at time t = ∞).
We then rewind time and bound the ds-distance between the stationary distribution µ∞ and the
distribution µt of the Markov process up to time t; by setting up the i.i.d. concentration of measure
results of Kloeckner (2019); Riekert (2022). This last step is possible since our assumptions on X·
essentially guarantee that it has a finite (approximate) mixing time.

4 CONCLUSION, LIMITATIONS, AND FUTURE WORK
We provided a theoretical foundation for the future-generalization of transformer trained on a single
perturbed realization of a time-series trajectory (Theorem 1). Our results thus help provide insight on
the reliability of LLMs outside the i.i.d. framework and their principled use in time-series analysis.

We obtain explicit estimates on the constants in these generalization bounds which relied on explicitly
bounding all the higher-order derivatives of transformers; in terms of their number of attention
heads, activation functions, depth, width, and weights constraints (Theorems 6 and 7). These bounds
can equally be used in conjunction with classical tools, e.g. Rademacher or VC-type bounds in the
i.i.d. setting, or other applications where one needs to understand the higher-order sensitivities of
transformers to their inputs.

Several dynamical systems and financial markets have long-term memory and thus are non-Markovian.
In future work, it would be interesting to extend our results to cover such settings as well. It would
be interesting to extend our generalizations bounds to the fully non-Markovian setting, where every
Markovian lift of X· is infinite-dimensional. However, one would have to extend the concentration of
measure result used in Benitez et al. (2024) to allow for non-i.i.d. data or use a local Glivenko-Cantelli
theorem such as Cohen and Kontorovich (2023). One would only need more general concentration
inequalities than Proposition 5, which is already extended well beyond the standard i.i.d. setting.
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A NOTATION

In this section, we present the notation that will be employed throughout the appendix. This notation
builds upon the framework established in the main body of the text, while incorporating additional
levels of specificity. Given the technical nature of certain results discussed herein, a more detailed
and precise formulation of the notation is necessary to ensure clarity and rigor in the statements that
follow.
Notation 1 (Multi-index Notation). We will fix the following multivariate notation.

• Multi-indices α def.
=(α1, . . . , αk) ∈ Nk, k ∈ N are denoted by Greek letters.

• The sum of entries is given by |α| def.
=
∑k

i=1 αk.
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• Its faculty is defined by α! def.
=
∏k

i=1 αk!,
• We denote the derivative w.r.t. α by Dα def.

= ∂|α|/∂xα1
1 · · · ∂x

αk

k if |α| > 0 else Dα is the
identity operator.

• For a vector x ∈ Rk, we write xα def.
=
∏k

i=1 x
αk

k .
• We define the relation α ≺ β for β ∈ Nk if one of the three following holds

(i) |α| < |β|;
(ii) |α| = |β|, and α1 < β1; or

(iii) |α| = |β|, and αi = βi for i ∈ {1, . . . , j − 1} and αj < βj for j ∈ {2, . . . , k}.
• Unit vectors ei ∈ {0, 1}k are defined by (ei)j = 0 for i ̸= j and (ei)i = 1.

Definition 3 (Cs-norm). For any s > 0, the norm ∥ · ∥Cs of a smooth function f : Rd → R is defined
by

∥f∥Cs
def.
= max

k=1,...,s−1
max

α∈{1,...,d}d

∥∥∥ ∂kf

∂xα1
. . . ∂xαk

∥∥∥
∞

+ max
α∈{1,...,d}s−1

Lip
( ∂s−1f

∂xα1
. . . ∂xαs−1

)
.

We use the following notation to streamline the analytic challenges the tacking of Cs-norms.
Notation 2 (Order operator for multi-indeces). Define the order operator o for multi-indeces by

o : Nk −→ Nk, α1, . . . , αk 7−→ ατα(1), . . . , ατα(k),

where τα : {1, . . . , k} → {1, . . . , k} s.t. ατα(1) ⩾ . . . ⩾ ατα(k). We write α ∼ β if o(α) = o(β) for
α, β ∈ Nk. Further, denote by Ok

n the set {o(α) : α ∈ Nk, |α| = n} and write Ok
⩽n

def.
= {o(α) : α ∈

Nk, |α| ⩽ n}. Eventually, define N(α) def.
=#|{α′ ∈ Nk : o(α′) = α}|.

We will use the following notation to tabulate the sizes of a Cs-norm.
Notation 3 (Derivatives). Let k ∈ N, K ∈ Rk be a set, f : K → Rm a function and α ∈ Ok

n an
ordered multi-index. Then,

• the uniform bound of α-like derivatives on K is given by

Cf
K(α) def.

= max
i∈{1,...,m}

max
γ∼α
∥Dγfi∥K ,

• we define the bound at / up to derivative level n by

Cf
K(n) def.

= max
α∈Ok

n

Cf
K(α), Cf

K(⩽n) def.
= max

α∈Ok
⩽n

Cf
K(α),

• we write ∥K∥ def.
= supx∈K ∥x∥, and

• the ℓ∞-matrix norm of any n×m matrix A ∈ Rn×m is abbreviated as

CA def.
= max

i∈{1,...,n},j∈{1,...,m}
|Ai,j |.

When segmenting, truncating, or manipulating time series we will using the following notation.
Notation 4 (Time Series Notation). The following notation is when indexing paths of any time series.

• Realized Path up to time t is denoted by x⩽t
def.
=(xs)s∈Z, s⩽t.

• Segment of a Path Given a sequence x ∈ RZ and integers s ⩽ t, we denote x[s:t]
def.
=(xi)

t
i=s.

Lastly, we recorded some additional notations that were required throughout our manuscript.
Notation 5 (Miscellaneous). We define:

• N -Simplex. For N ∈ N we write

∆N
def.
= {u ∈ [0, 1]N :

N∑
i=1

ui = 1}.

• Infinite powers: For c ∈ (0, 1), we define

c∞ def.
= lim

t→∞
ct = 0.
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• Reshape operator: For any F1, F2 ∈ N+, the operator is given by reshapeF1×F2
, mapping

any vector u ∈ RF1F2 to the F1 × F2 matrix

reshapeF1×F2
(x)i,j

def.
=x(i−1)F2+j .

We denote the inverse of the map reshapeF1×F2
by vecF1,F2 : RF1×F2 → RF1F2 .

• Softmax operator: For each F ∈ N+ and each x ∈ RF ,

softmax(x) def.
= smax(x) def.

=(exp(xi)/
∑F−1

j=0 exp(xj))
F−1
i=0 .

B EXAMPLES OF DATA-GENERATING PROCESSES SATISFYING
ASSUMPTIONS 1 AND 2

This section provides several examples of stochastic (data-generating) processes which satisfy our
assumptions and are outside the i.i.d. restrictions.

B.1 PROJECTED EXPONENTIALLY ERGODIC LATENT PROCESSES
Proposition 2 (Lipschitz-Transformed SDEs with Overdampened Drift). In the setting of Example 1,
{(Pn(x, ·))∞n=0}x∈[0,1]d satisfies both Assumptions 1 and 2.

The proof of Proposition 2 uses the following lemma.
Lemma 1 (Enforcing Boundedness via 1-Lipschitz Maps Preserves Exponential Ergodicity). Let
d̃, d ∈ N+ and Z· be a Markov process on Rd̃ satisfying Assumption 2. Given any bounded Lipschitz
function f : Rd̃ → Rd the Markov process X·

def.
=(Xn)

∞
n=0 in Rd, defined for each n by Xn

def.
= f(Zn),

satisfies both Assumption 1 and 2.

Proof of Lemma 1. Since f is bounded, then there exists some r > 0 such that f(Rd) ⊂ Bd
r

def.
= {u ∈

Rd : ∥u∥ ⩽}. For each x ∈ N+, let Pn(x, ·) def.
=P(Xt ∈ ·|X0 = x) = P(f(Zt) ∈ ·|f(Z0) =

f(x)) = f#P
n(x, ·) then the Kantorovich duality, see e.g. (Villani, 2009, Theorem 5.10), implies

that f# : P1(Rd)→ P1(B
d
r ) is 1-Lipschitz; whence (4) imples that: for each x ∈ [0, 1]d and every

n ∈ N we have

W1

(
Pn(x, ·), Pn(y, ·)

)
⩽ Lip(f)W1

(
P̃n(x, ·), P̃n(y, ·)

)
⩽ κ ∥x− y∥. (4)

Thus, Assumption 2 holds. Finally, we note that Assumption 1 holds since each Pn(x, ·) ∈ P1(B
d
r ).

Proof of Proposition 2. For any µ ∈ P1(RD) consider the unique strong solution (which exists by
our Lipschitz assumption) For the following SDE (which is a Markov process)

Zµ
t = Zµ

0 +

∫ t

0

µ(Zµ
s ) ds+

∫ t

0

Ws

where W·
def.
=(Wn)

∞
n=0 is a d-dimensional Brownian motion and Zµ

0 is distributed according to µ. For
every n ∈ N+ let P̃nµ def.

=P(Zµ
n ∈ ·) and, for each x ∈ Rd, let P̃n(x, ·) def.

= P̃nδx. Then (Luo and
Wang, 2016, Theorem 1.1) implies that: for all n ∈ N and each µ, ν ∈ P1(Rd) we have

W1

(
P̃nµ, P̃nν

)
⩽ κW1(µ, ν) (5)

where κ = exp(−K); note that κ ∈ (0, 1) since K > 0. That is, (P̃n)∞n=0 satisfies Assumption 2
upon taking µ = δx and ν = δy, for any given x, y ∈ Rd, since W1(δx, δy) = ∥x − y∥ , see
e.g. (Villani, 2009, page 99 point 5) or note that the only coupling between δx and δy is the product
measure δx ⊗ δy).

W1

(
P̃n(x, ·), P̃n(x, ·)

)
⩽ κ ∥x− y∥.

Applying Lemma 1 yields the conclusion.

Proposition 3. Consider the setting of Example 2. Then, the process X· satisfies both Assumptions 1
and 2.
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Proof of Proposition 3. Under our assumptions σ satisfies (Wang, 2023, Assumption (A8) (1) and
(A8) (3)). Therefore, the stochastic process Z·

def.
=(Zt)t⩾0 defined by

Zt
def.
=

∫ t

0

σ(Zs) dWs (6)

where W· is a d-dimensional Brownian motion, satisfies the conditions of (Wang, 2023, Corollary 4.4)
from which we deduce that Z· satisfies Assumption 2. Applying Lemma 1 yields the conclusion.

B.2 MARKOV PROCESSES SATISFYING A LOG-SOBOLEV INEQUALITIES
Proof of Proposition 1. Under the log-Sobolev Assumption 3, (Bobkov and Götze, 1999, Theorem
1.3) can be applied to µ̄ and P (x, ·) for each x ∈ X , implying that the transport inequalities hold: for
each ν ∈ P(X ) and each µ̃ ∈ {µ̄, µ0} ∪ {P (x, ·)}x∈X

W1(µ̃, ν)
2 ⩽ 2C2 KL(ν|µ̃) (7)

where we recall the definition of the Kullback–Leibler divergence KL(ν|µ) def.
=EX∼ν [log(

dν
dµ (X))].

Thus, (7) implies that the following exponential contractility property of the Markov kernel: there
exists some κ ∈ (0, 1) such that for each x, x̃ ∈ X and every t ∈ N+

W1

(
P t(x, ·), P t(x̃, ·)

)
⩽ κt ∥x− x̃∥. (8)

This completes the proof.

C TRANSFORMER DEFINITION DETAILS

For any F ∈ N+, we will consider a weighted (parametric) variant of the layer normalization function
of Ba et al. (2016), which permits a variable level of regularization. Our weighted layer normalization
is defined by LayerNorm : RF → RF defined for any u ∈ RF by

LN (u; γ, β, w) def.
= γ

(u− µw
u )√

1 + (σw
u )

2
+ β

where µw
u

def.
=
∑F

i=1
w
F ui and (σw

u )
2 def.
=
∑F

i=1
w
F ∥ui − µu∥2, splus def.

= ln(1 + exp(·)), parameters
β ∈ RF and γ ∈ R, and the normalization strength parameter w ∈ [0, 1] with w = 1 being the
default choice. Here, we prohibit the layer norm from magnifying the size of its outputs when the
layer-wise weighted variance σw

u is small.2

Definition 4 (Multi-Head Self-Attention). Fix din ∈ N. For x ∈ RM×din , Q,K ∈ RdK×din , and
V ∈ RdV ×din , where we have key-dimension dK ∈ N and value-dimension dV ∈ N; we define

Att(x;Q,K, V ) def.
=

( M∑
j=0

softmax

(( ⟨Qxm,Kxi⟩√
dk

)M
i=0

)
j

V xj

)M

m=1

∈ RM×dV .

For H ∈ N, set Q def.
=(Q(h))Hh=1,K

def.
=(K(h))Hh=1 ⊆ RdK×din , V def.

=(V (h))Hh=1 ⊆ RdV ×din , and
W def.

=(W (h))Hh=1 ⊆ Rdin×dV . For x ∈ RM×din , we define

MH(x;Q,K, V,W ) def.
=

( H∑
h=1

W (h) Att(x;Q(h),K(h), V (h))m

)M

m=1

∈ RM×din .

Each transformer block takes a set of inputs and intersperses normalization via layer norms, contextual
comparisons via multi-head attention mechanisms, and non-linear transformations via a single layer
perceptron (SLP). We also allow the transformer block to extend or contract the length of the generated
sequence.
Definition 5 (Transformer Block). Fix a non-affine activation function σ ∈ C∞(R). Fix a di-
mensional multi-index d = (din, dK , dV , dff , dout) ∈ N5, a sequence length M ∈ N+, and a

2Note that this formulation of the layer norm avoids division by 0 when the entries of u are identical.
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number of self-attention heads H ∈ N+. A transformer block is a permutation equivariant map
TB : RM×din → RM×dout represented for each x ∈ RM×din

TB(x) def.
=
(
LN

(
B(1)x′

m +B(2)
(
σ • (Ax′

m + a)
)
; γ2, β2, w2

))M
m=1

x′ def.
=
(
LN

(
xm +MH(x;Q,K, V,W )m; γ1, β1, w1

))M
m=1

(9)

for γ1, γ2 ∈ R, w1, w2 ∈ [0, 1], β1 ∈ Rdin , β2 ∈ Rdout , A ∈ Rdff×din , a ∈ Rdff , B(1) ∈ Rdout×din ,
B(2) ∈ Rdout×dff , and Q,K, V,W as in Definition 4. Above, we write • for a pointwise application.

The class of transformer blocks with representation (9) and bounds on
γ1, γ2, β1, β2, a, A,B(1), B(2), Q,K, V,W is denoted by TBC.

A transformer concatenates several transformer blocks before passing their outputs to an affine layer
and ultimately outputting its prediction.
Definition 6 (Transformers). Fix depth L ∈ N+, memory M ∈ N, width W ∈ N5

+, number of
heads H ∈ N+, and input-output dimensions D, d ∈ N+. A transformer (network) is a map
T : RM×D → Rd with representation

T (x) = A
(
vec1+M,dL

out
◦ TBL ◦ · · · ◦ TB1(x)

)
+ b (10)

where multi-indices dl = (dlin, d
l
K , dlV , d

l
ff , d

l
out) ⩽ W are such that d1in = D, dl+1

in = dlout for each
l = 1, . . . , L− 1, and where H def.

=(H l)Ll=1 are the number of self-attention heads, C ′ def.
=(Cl)Ll=1 the

parameter bounds, and for l = 1, . . . , L we have TBl ∈ TBCl, where TBCl is a transformer block
class with din = dl,M = M, and H = H l. Furthermore, A ∈ Rd×MdL

out and b ∈ Rd.

The set of transformer networks with representation (10) and bounds on A, b is denoted by TC.

D ELUCIDATION OF CONSTANTS IN THEOREM 1
The aim of this section is to elucidate the magnitude of the constants appearing in Theorem 1. We
aim of to make each of these concrete by numerically estimating them, which we report in a series of
tables. Importantly, we see how subtle choices of the activation function used to define the transformer
model can have dramatic consequences on the size of these constants, which could otherwise be
hidden in big O notation.

Interestingly, in Tables 1 and 2, we see that the softplus activation function produces significantly
tighter bounds than the tanh activation function through much smaller constants, and the GeLU and
SWISH activation functions are a relatively comparable second-place.

The bounds depicted in Table 2 exhibits a notable trait of independence from both input dimension
and the compactum they are defined on. Notably, the selection of latent dimensionality demonstrates
a relatively minor influence in contrast to the pronounced impact of parameter bounds. This suggests
that while adjusting the latent dimension may have some effect, the primary driver of the derivative
bound lies within the constraints imposed on the parameters. Despite the seemingly conservative
nature of the chosen parameter-bounds, it is important to acknowledge their alignment with the
parameter ranges observed in trained transformer-models.

Note that the latter can be observed as well for Multi-Head attention (Table 5), however, we see
that here the input dimension (composed of din and M ) is of greater importance with respect to the
derivative bound.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 1: Cs-bounds of activation functions based on numerical maximization of analytic derivatives in Ap-
pendix F.3.3.

Bound softplus GeLU tanh Swish

C1 0.25 1.12 4.00 1.10

C2 0.10 0.48 8.00 0.50

C3 0.12 0.75 16.00 0.31

C4 0.13 1.66 32.00 0.50

C5 0.25 4.34 156.65 0.66

C6 0.41 12.95 1651.32 1.50

C7 1.06 42.77 20405.43 2.91

C8 2.39 153.76 292561.95 8.50

C9 7.75 594.17 4769038.09 21.76

C10 22.25 2445.69 87148321.71 77.50

The bound of the layer-norm (see Table 3) seems to be particularly effected by the domain it is
defined on, which can be problematic if it appears in later layers. An immediate solution is the usage
of its parameter γ, a more drastic approach would be applications in combination with an upstream
sigmoid activation.

Eventually, as also shown in Figure 3, we included in Tables 4 and 5 a comparison of using type-
specific bounds (see Theorem 5) or level-specific bounds (Theorem 4) in the computation of the
constants. This effect seems to become more evident with higher number of function compositions.

Table 2: Derivative Bounds of the Perceptron Layer by derivative level according to Lemma 13.

Parameters Derivative Level
σ dff C{A,B(1),B(2)} 1 2 3 4 5

softmax 64 1.0 17.00 50.47 236.94 1.34E+03 1.33E+04
tanh 129.00 1.02E+03 8.96E+03 9.83E+04 1.34E+06

GeLU 73.25 237.41 1.25E+03 1.16E+04 1.81E+05
SWISH 71.39 236.78 870.75 5.33E+03 4.13E+04

16 5.00 12.62 59.23 334.15 3.31E+03
32 9.00 25.24 118.47 668.30 6.63E+03

128 33.00 100.95 473.87 2.67E+03 2.65E+04
256 65.00 201.90 947.75 5.35E+03 5.30E+04

0.01 17.00 44.32 180.94 919.87 6.52E+03
0.1 17.00 44.38 181.00 919.92 6.52E+03
10.0 17.00 660.15 5.62E+04 4.17E+06 6.73E+08

100.0 17.00 6.16E+04 5.60E+07 4.17E+10 6.73E+13
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Table 3: Layer Norm

Parameters Derivative Level
k ∥K∥ γ 1 2 3 4 5

5 10.0 0.1 18.67 28.56 104.49 1.49E+03 4.93E+03
3 18.67 28.56 104.49 945.21 4.93E+03
10 18.67 28.56 104.49 1.49E+03 4.93E+03
20 18.67 28.56 104.49 1.49E+03 4.93E+03

0.1 0.17 3.61 5.37 7.05 8.87
1.0 1.73 5.20 6.95 8.71 10.64

100.0 321.71 7.68E+03 7.88E+05 1.42E+08 4.39E+09
1000.0 321.71 7.68E+03 7.88E+05 1.42E+08 4.39E+09

0.01 1.73 2.07 2.24 2.42 2.59
1.0 321.71 7.75E+03 7.91E+05 1.42E+08 4.44E+09

Table 4: Derivative Bounds of Transformer Block by derivative level according to Theorem 7.

Parameters Derivative Level
din C{K,Q,V,W} C{A,B(1,2)} γ 1 2 3 4 5

5 0.01 0.001 0.01 21.15 1.13E+04 4.81E+06 2.59E+09 2.22E+11
— using derivative level — 212.70 1.53E+06 7.47E+09 4.55E+13 3.75E+16

10 111.32 4.51E+05 1.71E+09 1.45E+13 8.70E+16
20 1.29E+03 1.25E+08 3.47E+13 1.85E+19 2.20E+24

0.001 21.15 1.13E+04 4.81E+06 2.59E+09 2.22E+11
0.1 21.16 1.13E+04 4.83E+06 2.61E+09 2.32E+11
1.0 22.30 4.64E+04 6.96E+08 1.70E+13 1.95E+17

0.0001 5.05 126.27 1.12E+04 4.94E+06 6.87E+08
0.01 182.17 1.12E+06 4.66E+09 2.43E+13 1.71E+16
0.1 1.79E+03 1.12E+08 4.65E+12 2.42E+17 1.70E+21

0.0001 0.21 108.21 4.44E+04 2.27E+07 1.58E+09
0.001 2.09 1.09E+03 4.46E+05 2.29E+08 1.60E+10

0.1 240.09 2.45E+05 7.31E+08 4.96E+12 8.79E+15
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E SUPPORTING TECHNICAL RESULTS ON THE Cs-NORMS OF SMOOTH
FUNCTIONS

This section contains many of the technical tools on which we build our analysis. Most results
concern smooth functions, especially their derivatives and those of compositions thereof. However,
the first set of results concerns the integral probability metric ds.

E.1 INTEGRAL PROBABILITY METRICS AND RESTRICTION TO COMPACT SETS

Fix d ∈ N+ and a non-empty compact subset K ⊆ Rd. Observe that any Borel probability measure
µ on K can be canonically extended to a compactly supported Borel probability measure µ+ on all
of Rd via

µ+(B) def.
=µ(B ∩K),

for any Borel subset B of Rd; noting only that B ∩K is Borel.

Let P(K) denote the set of Borel probability measures on K. Suppose that K is a regular compact
set, i.e. the closure of its interior is itself. As usual, see Evans (2022), for any s ∈ N+, we denote
the set of functions from the interior of K to R with s continuous partial derivatives thereon and
with a continuous extension to K by Cs(K). This space, is a Banach space when equipped with the
(semi-)norm

∥f∥s:K def.
= maxk=1,...,s−1 maxα∈{1,...,d}k supu∈K

∥∥∥ ∂kf
∂xα1

...∂xαk
(u)
∥∥∥+maxα∈{1,...,d}s−1 Lip

(
∂s−1f

∂xα1
...∂xαs−1

)
.

We may define an associated integral probability metric ds:K on P(K) via
ds:K(µ, ν) def.

= sup
f∈Cs(K)

∥EX∼µ[f(X)]− EX∼ν [f(X)]∥

for any µ, ν ∈ P(K). The main purpose of this technical subsection is simply to reassure ourselves,
and the reader, that quantities ds:K(µ, ν) and ds(µ

+, ν+) are equal for any µ, ν ∈ P(K). Therefore,
we may use them interchangeably.
Lemma 2 (Consistency of Smooth IMP Extension - Beyond Regular Compact Sets). Fix d, s ∈ N+

and let K be a non-empty regular compact subset of Rd. For any µ, ν ∈ P(K) the following holds
ds:K(µ, ν) = ds(µ

+, ν+).

Proof. Let int(K) denote the interior of K, By the Whitney extension theorem, as formulated in
(Fefferman, 2005, Theorem A), for any f ∈ Cs(K) there exists a Cs-extension F : Rd → R of
f |int(K) to all of Rd; i.e. F |int(K) = f and ∈ Cs(Rd). Since any continuous function is uniformly
continuous on a compact set, int(K) is dense in K, and since uniformly continuous functions are
uniquely determined by their values on compact sets, then f coincides with F on all of K (not only
on int(K)).

For any µ ∈ P(K), by definition of µ+ we have that
EX∼µ+ [F (X)] = EX∼µ+ [F (X)IX∈K ] = EX∼µ+ [f(X)IX∈K ] = EX∼µ[f(X)].

Therefore, for any µ, ν ∈ P(K) we conclude that and each f ∈ Cs(K) there exists some F ∈
Cs(Rd) such that

EY∼µ[f(Y )]− EY∼ν [f(Y )] = EX∼µ+ [F (X)]− EX∼ν+ [F (X)].

Consequentially, ds:K(µ, ν) ⩽ ds(µ
+, ν+). Conversely, since the restriction of any g ∈ Cs(Rd) to

K belongs to Cs(K) then the reverse inequality holds; namely, ds:K(µ, ν) ⩾ ds(µ
+, ν+).

By Lemma 2 we henceforth may interpret any such µ as its extension µ+, without loss of generality.

E.2 EXAMPLES OF FUNCTIONS IN THE CLASSES Cs
poly:C,r([0, 1]

d,R) AND Cs
exp:C,r([0, 1]

d,R)
In several learning theory papers, especially in the kernel ridge regression literature e.g. Simon
et al. (2023); Barzilai and Shamir (2023); Tsigler and Bartlett (2023); Simon et al. (2023); Cheng
et al. (2024a;b), one often quantifies the learnability of a target function in terms of some sort of
decay/growth rates of its coefficients in an appropriate expansion; e.g. the decay of its coefficients in
an eigenbasis associated to a kernel. These decay/growth rates are often equivalent to the smoothness
of a function3. Therefore, in a like spirit, we unpack the meaning of the smoothness condition in

3See e.g. (Atkinson and Han, 2012, page 120-121) for an example between the decay rate of the Laplacian
eigenspectrum characterize the smoothness of the functions in the RKHS of radially symmetric kernels.
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Assumption 2 which impacts the learning rates in Theorem 1 by giving examples of functions in the
classes Cs

poly:C,r([0, 1]
d,R) and Cs

exp:C,r([0, 1]
d,R).

For brevity and transparency in our illustration, we consider the one-dimensional case. In particular,
this shows that the class is far from being void.
Proposition 4 (Functions with Polynomially/Exponentially Growing Cs-Norms on [0, 1]). Fix
d ∈ N+ and let K be a non-empty regular compact subset of Rd. If f : R→ R is real-analytic with
power-series expansion at 0 given by

f(x) =

∞∑
i=0

βi x
i

i!
,

and if there are C, r > 0 such that

(i) Polynomial Growth: |βi| ⩽ Cei r (∀i ∈ N), then f ∈ C∞
poly:C,r([0, 1],R); or

(ii) Exponential Growth: |βi| ⩽ C(1 + i)r (∀i ∈ N), then f ∈ C∞
poly:C,r([0, 1],R).

Proof. Since f is real-analytic we may consider its Maclaurin-Taylor series expansion which, co-
incides with

∑∞
i=0

βi x
i

i! ; meaning that for each i ∈ N we have βi = ∂i f(0). Therefore, standard
analytic estimates and manipulations of the Maclaurin-Taylor series—see e.g. (Rudin, 1976, page
173)—yield

max
0⩽x⩽1

∣∣∣ ∞∑
i=0

βi x
i

i!
− f(x)

∣∣∣ ⩽ 1

(s+ 1)!
sup

0⩽x⩽1

∣∣∣( ∞∑
i=0

βi x
i

i!

)s+1 − ∂fs+1(x)
∣∣∣

⩽
1

(s+ 1)!
βs(s+ 1)!.

(11)

If (i) holds, then the right-hand side of (11) is bounded from above by C (s + 1)r and f ∈
C∞

poly:C,r([0, 1],R). If instead (ii) holds, then the right-hand side of (11) is bounded from above by
C es r implying f ∈ C∞

exp:C,r([0, 1],R).

F PROOF OF THEOREM 1
Section 3.3, the proof will be largely broken down into two steps. First, we derive our concentration
of measure result for the empirical mean compared to the true mean general of an arbitrary Cs

function applied to a random input, where the Cs-norm of the Cs function is at most R ⩾ 0 (in
Subsection F.2).

Next, (in Subsection F.2), we use the Faà di Bruno-type results in Section F.1 to bound the maximal
Cs norm over the relevant class of transformer networks. We do this by first individually bounding
each of the Cs-norms of its constituent pieces, namely the multi-head attention layers, the SLP blocks
with smooth activation functions, and then ultimately, we bound the Cs-norms of the composition of
transformer blocks using the earlier Faà di Bruno-type results.

Compute: Uniform Upper-
Bound on Partial Derivatives
of Transformers of Order s

Get: Concentration of Measure
Result for Integral Probability
Metric With Non-i.i.d. Data

For each integer s

Get: General Bounds on
Derivatives of Compositions

of Smooth Functions

Generalization
Bound of "order s"

Figure 5: Workflow of the proof technique used to derive Theorem 1.
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Our main result (Theorem 1) is then then obtained upon merging these two sets of estimates. The
workflow which we use can be applied to derive generalization bounds for other machine learning,
and is summarized in Figure 5.

F.1 STEP 0 - BOUNDS ON THE Cs REGULARITY OF MULTIVARIATE COMPOSITE FUNCTIONS
In this section, we will derive a bound for the Sobolev norm of multivariate composite functions.

F.1.1 MULTIVARIATE FAÀ DI BRUNO FORMULA REVISITED

We begin by establishing notation and stating the multivariate Faà di Bruno formula from Constantine
and Savits (1996).
Theorem 3 (Multivariate Faà di Bruno Formula, Constantine and Savits (1996)). Let n,m, k ∈ N,
α ∈ Nk with |α| = n, and define

h(x1, . . . , xk)
def.
= f (1)(g(1)(x1, . . . , xk), . . . , g

(m)(x1, . . . , xk)).

Then, using the multivariate notation from Notation 1,

Dαh(x) =
∑

1⩽|β|⩽n

(Dβf)(g(x))
∑

η,ζ∈P(α,β)

α!

n∏
j=1

[Dζ(j)

g(x)]η
(j)

η(j)!(ζ(j)!)|η(j)| .

where

P(α, β) =
{
η def.
=(η(1), . . . , η(n)) ∈ (Nm)n, ζ def.

=(ζ(1), . . . , ζ(n)) ∈ (Nk)n :

∃j ⩽ m : η(i) = 0, ζ(i) = 0 for i < j, |η(i)| > 0 for i ⩾ j,

0 ≺ ζ(j) ≺ . . . ≺ ζ(n),
∑n

i=1 η
(i) = β and

∑n
i=1 |η(i)|ζ(i) = α

}
.

Proof. See Constantine and Savits (1996).

F.1.2 UNIVERSAL BOUNDS

Theorem 4. In the notation of Theorem 3, we have for a compact set K ⊆ Rk and an multi-index
α ∈ Nk, |α| = n,

Ch
K(α) ⩽ max

n′∈{1,...,n}
Cg

g[K](n
′)Cf

K(⩽n)n
′ ∑
1⩽|β|⩽n

∑
η,ζ∈P(α,β)

α!

n∏
j=1

1

η(j)!(ζ(j)!)|η(j)|

where Ch
K(·), Cf

g[K](·), C
g
K(·) are defined as in Notation 3.

Proof. Using Theorem 3,

Ch
K(α) ⩽

∑
1⩽|β|⩽n

∥Dβf∥g[K]

∑
η,ζ∈P(α,β)

α!

n∏
j=1

∏m
i=1 ∥(Dζ(j)

g)i∥
η
(j)
i

K

η(j)!(ζ(j)!)|η(j)|

⩽
∑

1⩽|β|⩽n

Cg
g[K](|β|)

∑
η,ζ∈P(α,β)

α!

n∏
j=1

∏m
i=1 C

f
K(⩽n)η

(j)
i

η(j)!(ζ(j)!)|η(j)|

⩽
∑

1⩽|β|⩽n

Cg
g[K](|β|)C

f
K(⩽n)|β|

∑
η,ζ∈P(α,β)

α!

n∏
j=1

1

η(j)!(ζ(j)!)|η(j)|

⩽ max
n′∈{1,...,n}

Cg
g[K](n

′)Cf
K(⩽n)n

′ ∑
1⩽|β|⩽n

∑
η,ζ∈P(α,β)

α!

n∏
j=1

1

η(j)!(ζ(j)!)|η(j)| .
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Next, we refine the strategy used in Hou et al. (2023b) to convert our uniform risk-bound to a
concentration of measure problem. Once done, the remainder of the proof will be to obtain bounds
on the rate at which this measure concentrates.
Lemma 3. For α ∈ {1, · · · , k}n, it satisfies that∑

1⩽|β|⩽n

∑
η,ζ∈P(α,β)

α!

n∏
j=1

1

η(j)!(ζ(j)!)|η(j)| =
[ 2m|α|
e ln |α|

(1 + o(1))
]|α|

where P(α, β) is as defined in Theorem 3.

Proof. Consider functions

g(i)(x) = g(i)(x1, · · · , xd)
def.
= exp

( d∑
j=1

xj

)
: Rd → R, i = 1, ..., 2m,

f(g(1), · · · , g(2m)) def.
= exp

( 2m∑
i=1

g(i)
)
: R2m → R,

Since
∂

∂g(i)
f(g(1), · · · , g(2m)) = f(g(1), · · · , g(2m)),

it follows that

(Dβf)(g(1)(x), · · · , g(2m)(x)) = f(g(1)(x), · · · , g(2m)(x)), ∀β ∈ {1, · · · , 2m}n.

Since
∂

∂xj
f(g(1)(x1, · · · , xk), · · · , g(2m)(x1, · · · , xk))

=

2m∑
i=1

∂

∂g(i)
f(g(1)(x1, · · · , xk), · · · , g(2m)(x1, · · · , xk))

∂g(i)(x1, · · · , xk)

∂xj

=

2m∑
i=1

f(g(1)(x1, · · · , xk), · · · , g(2m)(x1, · · · , xk))g
(i)(x1, · · · , xk)

=

2m∑
i=1

∂

∂g(i)
f(g(1)(x), · · · , g(2m)(x))

∂g(i)(x)

∂xj

=f(g(1)(x), · · · , g(2m)(x))

2m∑
i=1

g(i)(x)

and
∂g(i)(x1, · · · , xk)

∂xj
= g(i)(x1, · · · , xk),

we can show by the Faà di Bruno formula that

Dαf(g(1)(x), · · · , g(2m)(x))

= Dα exp
( 2m∑
i=1

g(i)(x)
)

=
∑ |α|!

γ1!(1!)γ1 · · · γ|α|!(|α|!)γ|α|

(
Dγ1+···+γ|α| exp

)( 2m∑
i=1

g(i)(x)
) |α|∏
j=1

[
mj(

2m∑
i=1

g(i)(x))
]γj

,

where the summation on the right side of the last equality is over all |α|-tuples (γ1, · · · , γ|α|) ⩾ 0
such that 1 · γ1 + 2 · γ2 + · · ·+ |α| · γ|α| = |α|.
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By the multivariate Faà di Bruno formula. For each n = 1, ..., s − 1 fixed, and for each α ∈
{1, · · · , k}n, we have

Dαf(g(1)(x), · · · , g(2m)(x))

=
∑

1⩽|β|⩽n

(Dβf)(g(1)(x), · · · , g(2m)(x))
∑

η,ζ∈P(α,β)

α!

n∏
j=1

[Dζ(j)

(g(1)(x), · · · , g(2m)(x))]η
(j)

η(j)!(ζ(j)!)|η(j)| .

Taking x = (x1, · · · , xk) = 0, we have

Dαf(g(1)(0), · · · , g(2m)(0)) =
∑ |α|!

γ1!(1!)γ1 · · · γ|α|!(|α|!)γ|α|
exp(2m)

|α|∏
j=1

(2m)γj

(mβf)(g(1)(0), · · · , g(2m)(0)) = f(g(1)(0), · · · , g(2m)(0)) = exp(2m),

Dζ(j)

(g(1)(x), · · · , g(2m)(x)) = (1, · · · , 1).
Substituting the above derivatives into the Faà di Bruno formula, we obtain∑

1⩽|β|⩽n

∑
η,ζ∈P(α,β)

α!

k∏
j=1

1

η(j)!(ζ(j)!)|η(j)| =
∑ |α|!

γ1!(1!)γ1 · · · γ|α|!(|α|!)γ|α|

|α|∏
j=1

(2m)γj

⩽(2m)|α|
∑ |α|!

γ1!(1!)γ1 · · · γ|α|!(|α|!)γ|α|

=(2m)|α|
( |α|
e ln |α|

)|α|
(1 + o(1))|α|,

where the last equality follows from (Khorunzhiy, 2022, Theorem 2.1),∑ |α|!
γ1!(1!)γ1 · · · γ|α|!(|α|!)γ|α|

=
( |α|
e ln |α|

)|α|
(1 + o(1))|α|.

Corollary 1 (Level Specific Cs-Norm Bounds for Transformer Blocks). In the notation of Theorem 4,
it holds for n ∈ N, n > 1 that

Ch
K(⩽n) ⩽ max

n′∈{1,...,n}
Cg

g[K](n
′)Cf

K(⩽n)n
′
[ 2mn

e lnn
(1 + o(1))

]n
.

and if Cf
K(⩽n) ⩾ 1,

Ch
K(⩽n) ⩽ Cg

g[K](⩽n)C
f
K(⩽n)n

[ 2mn

e lnn
(1 + o(1))

]n
.

Proof. Follows directly from Theorem 4 and Lemma 3.

F.1.3 BOUNDS IN DERIVATIVE TYPE

The goal of this section is to bound the derivative of composite functions by grouping with respect to
∼, defined in Notation 2.
Theorem 5. In the notation of Theorem 3, we have for a compact set K ⊆ Rk and an ordered
multi-index α ∈ Ok

n

Ch
K(α) ⩽ α!

∑
β∈Om

⩽n

N(β)Cf
g[K](β)

∑
η,ζ∈P′(α,β)

n∏
j=1

Cg
K(o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| ,

where Ch
K(·), Cf

g[K](·), C
g
K(·) are defined as in Notation 3; and

P ′(α, β) =
{
η def.
=(η(1), . . . , η(n)) ∈ (Nm)n, ζ def.

=(ζ(1), . . . , ζ(n)) ∈ (Nk)n :

∃j ⩽ m : η(i) = 0, ζ(i) = 0 for i < j, |η(i)| > 0 for i ⩾ j,

0 < ζ(j) ◁ . . . ◁ ζ(n),
∑n

i=1 η
(i) = β and

∑n
i=1 |η(i)|ζ(i) = α

}
,

where α ◁ β for α, β ∈ Nk if |α| ⩽ |β| and α ̸= β.
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Proof. We have for α ∈ Ok
n

Ch
K(α) ⩽ max

γ∼α

∑
1⩽|β|⩽n

∥Dβf∥g[K]

∑
η,ζ∈P(γ,β)

α!

n∏
j=1

∏m
i=1 ∥(Dζ(j)

g)i∥
η
(j)
i

K

η(j)!(ζ(j)!)|η(j)|

⩽
∑

1⩽|β|⩽n

Cf
g[K](o(β))max

γ∼α

∑
η,ζ∈P(γ,β)

α!

n∏
j=1

Cg
K(o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| .

Then {
η, (o(ζ(1)), ..., o(ζ(n)))

∣∣∣(η, ζ) ∈ P ′(α, β)
}

is invariant in α with respect to ∼ and thus

Ch
K(α) ⩽

∑
1⩽|β|⩽n

Cf
g[K](o(β))

∑
η,ζ∈P′(α,β)

α!

n∏
j=1

Cg
K(o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| .

Further, notice that {
((|η(1)|, η(1)!), . . . , (|η(n)|, η(n)!)), ζ

∣∣∣(η, ζ) ∈ P ′(α, β)
}

is invariant in β with respect to ∼ and the assertion follows.

Corollary 2. In the notation of Theorem 5, if f is affine-linear,

Ch
K(α) ⩽ mα!Cf

g[K](e1)C
g
K(α),

where Cf
g[K](e1) is the maximum weight of the matrix representing f .

Proof. Theorem 5 yields

Ch
K(α) ⩽ mα!Cf

g[K](e1)
∑

η,ζ∈P′(α,β)

n∏
j=1

Cg
K(o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| ,

and since P ′(α, e1) = {(0, ..., 0, e1), (0, ..., 0, α)} the result follows.

F.2 STEP 1 - CONCENTRATION OF MEASURE - BOUNDING THE RIGHT-HAND SIDE OF (2)
We are now ready to derive our main concentration of measure results used to derive our risk-bound.
This corresponds to bounding term (2) by controlling the integral probability term ds(µt, µ

(N)) in (3),
with high probability, where the randomness is due to the randomness of the empirical measure µ(N).

We state the next bound in the case where the input space if Rd. Note that the results hold for any
other input dimension, such as Md, simply by relabeling d ← Md. Thus, it applies to the finite-
dimensional Markovian lifts XM

· of data-generating processes X·, where M ∈ N+, by relabeling.
Therefore, for notational minimality, we chose to label the input dimension d and not dM .
Proposition 5 (Excess Risk-Bound). Under Assumption 1 and either 2 or 3, let f⋆ : Rd → RD,
ℓ : R2D → R, and R, r > 0 be a such that the composite map Rd ∋ x 7→ ℓ(f⋆(x), f(x)) belongs
to CsR(Rd) for all f ∈ C2

r (Rd). Then, there exists some κ ∈ (0, 1) depending only on the Markov
chain X· and some t0 ∈ N0 such that for each t0 ⩽ N < t ⩽ ∞, each “rate-to-constant-tradeoff
parameter” s ∈ N+, and every “confidence level” δ ∈ (0, 1] the following

sup
g∈Cs

R(Rd)

∣∣Rmax{t,N}(g)−R(N)(g)
∣∣

R
≲ κt +

√
2 ln(1/δ)

N1/2
+


log
(
cN
)d/(2s+1)

cN1/2 if d < 2s
log
(
cN
)

cN1/2 if d = 2s

log
(
cN
)d−2s+(s/d)

c2 Ns/d if d = 2s

holds with probability at least 1− δ; where 0 < κ < 1, and we use the notation κ∞ def.
=0.

Proof of Proposition 5. By hypothesis, f̃ ∈ Cs
r (Rd) the induced map

f : Rd → R
x 7→ f(x) def.

= ℓ
(
f⋆(x), f̃(x)

) (12)

belongs to Cs
R(Rd).
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Conversion to a Concentration of Measure Problem. Denote the empirical (random) measure
associated with the samples {(Xn, Yn)}Nn=1 by µ(N) def.

=
1
N

∑N
n=1 δ(Xn,Yn). Note that the generaliza-

tion bound is 0 for any constant function; therefore, we consider the bound over Cs
R(Rd)\Lip0 where

Lip0 denotes the set of constant functions from Rd to R. Note the bijection between Cs
R(Rd) \ Lip0

and Cs
1(Rd) \ Lip0 given by f 7→ 1

max{1,∥f∥
Cs(Rd)

}f . Therefore, we compute∣∣Rt(f)−R(N)(g)
∣∣ ⩽ sup

g∈Cs
R(Rd)

∣∣Rt(f)−R(N)(g)
∣∣

⩽R sup
g∈Cs

1(Rd)

∣∣Rt(g)−R(N)(g)
∣∣

⩽RdCs(µmax{t,N}, µ
(N))

⩽R
(
dCs(µt, µ̄)︸ ︷︷ ︸

(IV)

+ dCs(µ̄, µ(N))︸ ︷︷ ︸
(V)

)
. (13)

Next, we bound terms (I) and (II).

Bounding Term (IV). If Assumption 2 holds then: for every t ∈ N+ each x, x̃ ∈ X we have

W1

(
P t(x, ·), P t(x̃, ·)

)
⩽ κtW1(δx, δx̃) = κt ∥x− x̃∥.

If, instead, we operate under the log-Sobolev Assumption 3, then (Bobkov and Götze, 1999, Theorem
1.3) can be applied to µ̄ and P (x, ·) for each x ∈ X , implying that the transport inequalities hold: for
each ν ∈ P(X ) and each µ̃ ∈ {µ̄, µ0} ∪ {P (x, ·)}x∈X

W1(µ̃, ν)
2 ⩽ 2C2 KL(ν|µ̃) (14)

where we recall the definition of the Kullback–Leibler divergence KL(ν|µ) def.
=EX∼ν [log(

dν
dµ (X))].

Thus, (14) implies that the following exponential contractility property of the Markov kernel: there
exists some κ ∈ (0, 1) such that for each x, x̃ ∈ X and every t ∈ N+

W1

(
P t(x, ·), P t(x̃, ·)

)
⩽ κt ∥x− x̃∥. (15)

Furthermore, (15) implies that the conditions for (Riekert, 2022, Theorem 1.5) are met; whence, for
every ε ⩾ 0 and each N ∈ N the following holds with probability at-least 1− exp

(−N ε2(1−κ)2

2C2

)
(IV) = ds(µ̄, µ

(N)) ⩽ E
[
ds(µ̄, µ

(N))
]
+ ε, (16)

for some C > 0. Upon setting ε def.
=

C
√

2 ln(1/δ)√
N (1−κ2)

, (16) implies that: for every N ∈ N and each

δ ∈ (0, 1] the following holds with probability at-least 1− δ

(IV) = ds(µ̄, µ
(N)) ⩽ E

[
ds(µ̄, µ

(N))
]︸ ︷︷ ︸

(VI)

+
C
√

2 ln(1/δ)√
N (1− κ2)

. (17)

It remains to bound the expectation term (VI) in (17) to bound term (IV).

Under the exponential moment assumption 4, we have that

EX∼P (x,·)[e
β|X| − 1] ⩽ γ (eβ|x| − 1) + (C − 1 + γ). (18)

Therefore (Riekert, 2022, Proposition 1.3), implies that supt∈N0
E[eβ|Xt| − 1] < ∞. Whence,

(Riekert, 2022, Assumption 2) holds with Young function Φ(x) = 1
max{1,supt∈N+} E[eβ|Xt−1]

(eβ|Xt|−
1); namely, supt∈N0

E[Φ(|Xt|)] ⩽ 1. Consequentially, (Riekert, 2022, Theorem 1.1) applies from
which we conclude that there is some t0 ∈ N+ such that for all N ⩾ t0

(VI) = E
[
ds(µ̄, µ

(N))
]
≲ log

(
(1− κ)N

)s


log
(
(1−κ)N

)d/(2s)+1

(1−κ)1/2 N1/2 if 1 = d < 2s

log
(
(1−κ)N

)
(1−κ)1/2 N1/2 if d = 2s

log
(
(1−κ)N

)d−2s+s/d

(1−κ)s/d Ns/d if d = 2s

. (19)
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Combining the order estimate of (VI) in (19) with the estimate in (17) implies that: for every N ⩾ t0
and each δ ∈ (0, 1] we have

(IV) = ds(µ̄, µ
(N)) ≲

√
2 ln(1/δ)

N1/2
+


log
(
cN
)d/(2s)+1

cN1/2 if 1 = d < 2s
log
(
cN
)

cN1/2 if d = 2s

log
(
cN
)d−2s+s/d

c2 Ns/d if d = 2s

(20)

where c def.
=(1− κ), c2

def.
= cs/d ∈ (0, 1), and ≲ suppresses the absolute constant max{1, C} > 0.

Bounding Term (V). Next, we bound (V) by computing

(V) = dCs(µt, µ̄)
def.
= sup

g∈Cs
1(Rd)

µt[g]− µ̄[g]

⩽ sup
g∈Lip1(Rd)

µt[g]− µ̄[g]

=W1(µt, µ̄)

=W1(P
tµ0, µ̄)

=W1(P
tµ0, P

tµ̄)

⩽κtW1(µ0, µ̄)
def.
=κt C

(21)

(22)

(23)

(24)

(25)

where (21) held by definition of the MMD dCs and by the inclusion of Cs1(Rd) ⊂ Lip1(Rd), (22)
held by Kantorovich duality (see (Villani, 2009, Theorem 5.10)), (24) held since µ̄ is the stationary
probability measure for the Markov chain X·, it is invariant to the action of the Markov kernel,
and (25) followed from (Olivera and Tudor, 2019, Corollary 21) since we deduced the exponential
contractility property (15) of the Markov kernel. Note that C def.

=W1(µ0, µ̄) is a constant depending
only on the initial and stationary distributions of the Markov chain.

Conclusion. Incorporating the estimates for (V) and (IV) into the right-hand side of (13) implies
that: for every t,N ⩾ t0, s ∈ N+, and each δ ∈ (0, 1] the following holds

sup
g∈Cs

R(Rd)

∣∣Rmax{t,N}(g)−R(N)(g)
∣∣

R
≲It<∞ κt +

√
2 ln(1/δ)

N1/2
+


log
(
cN
)d/(2s+1)

cN1/2 if 1 = d < 2s
log
(
cN
)

cN1/2 if d = 2s

log
(
cN
)d−2s+(s/d)

c2 Ns/d if d = 2s

with probability at-least 1− δ; where c def.
=(1− κ) and κ ∈ (0, 1); where It<∞k∞ def.

=0 if t =∞.

F.3 STEP 2 (A) - BOUNDING THE Cs REGULARITY OF TRANSFORMER BUILDING BLOCKS
We begin by the following simple remark, that if the activation function used to defined the transformer
is smooth, then so must the entire transformer model.
Proposition 6 (Transformers with Smooth Activation Functions are Smooth). Fix TC, as in Defini-
tion 6, then every transformer T ∈ TC is smooth.

Theorem 6. The smoothness of Att follows directly from the smoothness of softmax, which immedi-
ately implies smoothness ofMH since the operators used for its definition are smooth. Furthermore,
the LN is smooth due to its smooth and lower-bounded denominator and the activation function
σ is smooth by definition, therefore we conclude that TB ∈ TBC is smooth for every TBC as in
Definition 5 and we obtain smoothness of T ∈ TC as a consequence.

F.3.1 THE SOFTMAX FUNCTION

Lemma 4 (Representation of higher-order softmax derivatives). For F ∈ N and

smax : RF → RF , x 7→
(
exp(xi)/

∑F−1
j=0 exp(xj)

)F
i=1

.
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there exists for any multi-index α ∈ NF and m ∈ {1, . . . , F} indicators (aki,j)
k∈{1,...,|α|!}
i,j∈I(α) ⊆ {0, 1}

such that

smax(α)(xm) =

|α|!∑
k=1

smax(xm)
∏

i,j∈I(α)

(aki,j − smax(xj)), (26)

where I(α) def.
= {(i, j) : i = 1, . . . , F, j = 1, . . . , αi}.

Proof. For |α| = 0, we have n ∈ {1, . . . , F} s.t. αn = 1, therfore

smax(α)(xm) =
∂ smax

∂xn
(xm) = smax(xm) (δmn − smax(xn)) ,

which is of the form (26). Now, let α ∈ NF arbitrary, therefore, by defining α′ ∈ NF by α′
i

def.
=αi for

i ̸= n and α′
n

def.
=αn − 1 (w.l.o.g. αn > 0). We have

smax(α)(xm) =
∂ smax(α

′)

∂xn
(xm)

=
∂

∂xn

|α′|!∑
k=1

smax(xm)
∏

i,j∈I(α′)

(a′ki,j − smax(xj)).

Since for any k

∂

∂xn
smax(xm)

∏
i,j∈I(α′)

(a′ki,j − smax(xj))

= smax(xm) (δmn − smax(xn))
∏

i,j∈I(α′)

(a′ki,j − smax(xj))

+ smax(xm)
∑

i′,j′∈I(α′)

− smax(xj′) (δj′,n − smax(xn))
∏

i,j∈I(α)
(i,j) ̸=(i′,j′)

(a′ki,j − smax(xj)),

we can define (aki,j)
k∈{1,...,|α′|+1}
i,j∈I(α) ⊆ {0, 1} such that

∂

∂xn
smax(xm)

∏
i,j∈I(α′)

(a′ki,j − smax(xj)) =

|α|∑
k=1

smax(xm)
∏

i,j∈I(α)

(aki,j − smax(xj)).

Since |α|! = |α| · |α′|!, this concludes the proof.

Lemma 5 (Bound of higher-order softmax derivatives). With Notation 3, it holds for any set
K ∈ Rk, k ∈ N and any α ∈ Ok

<∞ that

Csmax(α) ⩽ |α|!.

Proof. This is a direct consequence of the representation in Lemma 4 together with ∥ smax ∥ = 1.

F.3.2 THE MULTI-HEAD SELF-ATTENTION MECHANISM

Lemma 6 (Bound of Dot product). In the notation of Definition 4 and for m ∈ {1, . . . ,M}

dpm( · ;Q,K) : RMdin −→ RM , x 7−→ ⟨Qxm,Kxj⟩Mj=0

we have using Notation 3

1. C
dpm

K (e1) ⩽ 2dindK∥K∥CQCK , where CQ def.
= maxi,i′∈{1,...,dK}×{1,...,din} |Qi,i′ |, CK

analogously, and ∥K∥ def.
= maxx∈K ∥x∥. Additionally,

2. C
dpm

K (α) ⩽ 2dKCQCK , for |α| = 2, and
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3. C
dpm

K (α) = 0 for |α| > 2.

Since all bounds are not dependent on m we write Cdp short for Cdpm .

Proof. 1. Let l = (l1, l2) ∈ {1, . . . ,M} × {1, . . . , din}. Assume l1 = m. If j ̸= m, then

Del dpm(x;Q,K)j = Del

dK∑
i=1

(Kxj)i

din∑
i′=1

Qi,i′(xm)i′ =

dK∑
i=1

( din∑
i′=1

Ki,i′(xj)i′

)
Qi,l2 ,

implying

∥Del dpm(x;Q,K)∥ ⩽ ∥K∥
dK∑
i=1

Qi,l2

din∑
i′=1

Ki,i′ ⩽ dindK∥K∥CQCK . (27)

If j = m,

Del dpm(x;Q,K)j = Del

dK∑
i=1

( din∑
i′=1

Ki,i′(xm)i′

)( din∑
i′=1

Qi,i′(xm)i′

)

=

dK∑
i=1

(
Ki,l2

din∑
i′=1

Qi,i′(xm)i′ +Qi,l2

din∑
i′=1

Ki,i′(xm)i′

)
therefore implying

∥Del dpm(x;Q,K)∥ ⩽ 2dindK∥K∥CQCK .

If l1 ̸= m then for j ̸= l1, Del dpm(x;Q,K)j = 0, for j = l1

Del dpm(x;Q,K)j = Del

dK∑
i=1

(Qxm)i

din∑
i′=1

Ki,i′(xj)i′ =

dK∑
i=1

( din∑
i′=1

Qi,i′(xm)i′

)
Ki,l2 ,

and we obtain (27) analogously.

2. If l1 = m and j ̸= m

Del

(
(xm)l2

dK∑
i=1

( din∑
i′=1

ki,i′(xj)i′

)
qi,l2

)
= 0,

implying ∥D2el dpm(x;Q,K)∥ ⩽ 0, what analogously holds for l1 ̸= m. However, for l1 = m and
j = m

Del

( dK∑
i=1

Ki,l2

din∑
i′=1

Qi,i′(xm)i′ +Qi,l2

din∑
i′=1

Ki,i′(xm)i′

)
=

dK∑
i=1

Ki,l2Qi,l2 +Qi,l2Ki,l2

we have
∥D2el dpm(x;Q,K)∥ ⩽ 2dKCQCK .

3. Let l′ = (l′1, l
′
2) ∈ {1, . . . ,M} × {1, . . . , din}. Assume l1 = m, j ̸= m. If l′1 ̸= j,

Del+el′ dpm(x;Q,K)j = 0. For l′1 = j follows Del+el′ dpm(x;Q,K)j =
∑dK

i=1 Ki,l′2
Qi,l2 .

If l1 = m, j ̸= m, we have Del+el′ dpm(x;Q,K)j = 0 in the case that l′1 ̸= m, and for l′1 ̸= m we
obtain

Del+el′ dpm(x;Q,K)j =

dK∑
i=1

Ki,l2Qi,l′2
+Qi,l2Ki,l′2

.

This means, we can use the bound

∥Del+el′ dpm(x;Q,K)∥ ⩽ 2dKCQCK .
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Lemma 7 (Bound of Self-Attention for Derivative Type). Using the notation of Notation 3, Defini-
tion 4 and Lemma 6, it holds that

CAtt
K (α) ⩽ dinMCV

(
∥K∥Csmax ◦ dp

K (α) +

Mdin∑
l=1

αlC
smax ◦ dp
K (α− el)

)
where

Csmax ◦ dp
K (α) ⩽ α!

∑
β∈OM

⩽n

N(β)Csmax
dp[K](β)

∑
η,ζ∈P′(α,β)

n∏
j=1

Cdp
K (o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| . (28)

Proof. Fix α ∈ Nk, and note that
∥Dα Att(x;Q,K, V )∥ ⩽ max

m∈{1,...,M}
max

i∈{0,...,dV }
∥Dα Att(x;Q,K, V )m,i∥

and
∥Dα Att(x;Q,K, V )m,i∥

⩽
M∑
j=1

din∑
i′=0

∥Dα smax ◦ dp(x;Q,K)jVi,i′(xj)i′∥

⩽ dinM max
j∈{1,...,M}

max
i′∈{0,...,din}

∥Dα smax ◦ dp(x;Q,K)jVi,i′(xj)i′∥.

Due to the extended Leibnitz rule Hardy (2006), we have
∥Dα smax ◦dp(x;Q,K)jVi,i′(xj)i′∥

⩽ ∥Dα smax ◦ dp(x;Q,K)jVi,i′(xj)i′∥+
Mdin∑
l=1

Vi,i′αl∥Dα−el smax ◦ dp(x;Q,K)j∥.

Equation (28) follows directly from Theorem 5.

Corollary 3 (Bound of Self-Attention for Derivative Level). Using the setting of Lemma 7, for
n ∈ N,

CAtt
K (n) ⩽ dinMCV Csmax ◦ dp

K (⩽n) (∥K∥+ ndinM) (29)
where

Csmax ◦ dp
K (⩽n) ⩽ Csmax

dp[K](⩽n)C
dp
K (⩽n)n

[2nM
e lnn

(1 + o(1))
]n

. (30)

Proof. Equation (29) follows directly from Lemma 7; and (30) is a consequence of Corollary 1.

Corollary 4 (Bound of Multi-head Self-Attention). In the notation of Definition 4, Theorem 5 and
Lemma 6 it holds that

CMH
K (α) ⩽ α!dV C

WCAtt
K (α)

where
CAtt

K
def.
= max

h∈{1,...,H}
C

Att( · ;Q(h),K(h),V (h))
K , CW def.

= max
h∈{1,...,H}

W (h).

In particular, we have the following order estimate

CMH
K (⩽ n) ∈ O

(
M2∥K∥∥W∥∥V ∥(cdin,dK

∥K∥∥Q∥∥K∥)n n2
(n
e

)2n
Cn

n

)
.

Proof. From Corollary 2 and Lemma 7 we directly obtain

CMH
K (α) ⩽n!dV C

W dinMCV n!(2dindK∥K∥CQCK)n

× (∥K∥+ ndinM)
[2nM
e lnn

(1 + o(1))
]n

.
(31)

Applying Stirling’s approximation, we have that

CMH
K (α) ∈ O

(
M2∥K∥∥W∥∥V ∥(cdin,dK

∥K∥∥Q∥∥K∥)n n2
(n
e

)2n
Cn

n

)
, (32)

where Cn
def.
=

2nM
e lnn (1 + o(1)) and cdin,dK

def.
=2dindK .
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F.3.3 THE ACTIVATION FUNCTIONS

Lemma 8 (Derivatives of splus). For

splus : R→ R, x 7→ ln(1 + exp(·))
it holds

splus(1)(x) = sig(x) def.
=1/(1 + exp(−x))

and for n ∈ N

splus(n+1)(x) = sig(n)(x) =

n∑
k=0

(−1)n+kk!Sn,k sig(x)(1− sig(x))k,

where Sn,k are the Stirling numbers of the second kind, Sn,k
def.
=

1
k!

∑k
j=0(−1)k−j

(
k
j

)
jn.

Proof. We start with Faà di Bruno’s formula,

dn

dtn
sig(x) =

dn

dxn

1

f(x)
=

n∑
k=0

(−1)kk!f−(k+1)(x)Bn,k(f(x)),

where f(x) def.
=1 + exp(−x) and Bn,k(f(x)) denotes the Bell polynomials evaluated on f(x). Next,

we know the k-th derivative of f(x) is given by

dk

dtk
f(x) = (1− k)k + ke−x.

Now, using the definition of the Bell polynomials Bn,k(f(t)), we have

Bn,k(f(x)) = (−1)nSn,ke
−kx,

where Sn,k represents the Stirling numbers of the second kind. Substituting the expression for
Bn,k(f(x)) into the derivative of sig(x), we obtain

dn

dxn
sig(x) =

n∑
k=0

(−1)n+kk!Sn,k sig(x)(1− sig(x))k.

Corollary 5. In the setting of Lemma 8, for n ∈ N,

Csplus(n) ⩽
n∑

k=0

kkk!Sn,k

(k + 1)k+1
.

Proof. For k ∈ N and x ∈ [0, 1], we have

fk(x) def.
=x(1− x)k, (fk)′(x) = (1− (k + 1)x)(1− x)k−1;

which amounts to (fk)′(x) = 0 at 1/(k + 1), i.e.

max
x∈[0,1]

f(x) =
1

k + 1

(
k

k + 1

)k

=
kk

(k + 1)k+1
.

Lemma 9 (Derivatives of GELU). For

GELU : R→ R, x 7→ xΦ(x),

it holds
GELU′(x) = Φ(x) + xφ(x),

GELU(n)(x) = nφ(n−2)(x) + xφ(n−1)(x), n ⩾ 2, (33)

with φ(x) = 1√
2π

e−x2/2, Φ(x) =
∫ x

−∞ φ(u)du. The n-th derivative of φ(x) is given by

dn

dxn
φ(x) =

1√
2π

e−x2/2
[ ⌊n/2⌋∑

k=0

(
n

2k

)
2k

Γ( 2k+1
2 )

Γ( 12 )
xn−2k

]
.
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Proof. By induction we can show that (33) holds. And the representation of the n-th derivative of
φ(x) follows from de Oliveira and Ikeda (2012).

Corollary 6. For n ⩾ 2, it holds in the setting of Lemma 9

CGELU(n) ⩽
1√

2πΓ( 12 )
(nan−2bn−2 + an−1cn−1) ,

where

an
def.
=

⌊n/2⌋∑
k=0

(
n

2k

)
2kΓ

(
2k + 1

2

)
, bn

def.
= max

x∈R
e−

x2

2

⌊n/2⌋∑
k=0

xn−k, cn
def.
= max

x∈R
e−

x2

2 x

⌊n/2⌋∑
k=0

xn−k.

Lemma 10 (Derivatives of tanh). For tanh : R 7→ R, the n-th derivatives have the representation

dn

dxn
tanhx = Cn(tanhx),

Cn(z) = (−2)n(z + 1)

n∑
k=0

k!

2k

(
n

k

)
(z − 1)k, n ⩾ 1.

Proof. See Boyadzhiev (2007).

Corollary 7. In the setting of Lemma 10, for n ∈ N, Ctanh(n) = maxz∈[−1,1] Cn(z).
Lemma 11 (Derivatives of SWISH). For

SWISH : R→ R, x 7→ x

1 + e−x

it holds for n ⩾ 1

dn

dxn
SWISH(x) = n

n∑
k=1

(−1)k−1(k − 1)!Sn,k sig
k(x) + x

n+1∑
k=1

(−1)k−1(k − 1)!Sn+1,k sig
k(x),

where Sn,k are Stirling numbers of the second kind, i.e.,

Sn,k =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

Proof. By induction, we can show that

dn

dxn
SWISH(x) = n sig(n−1)(x) + x sig(n)(x), n ⩾ 1.

By (Minai and Williams, 1993, Theorem 2), the derivatives of the sigmod function can be represented
as

sig(n)(x) =

n+1∑
k=1

(−1)k−1(k − 1)!Sn+1,k sig
k(x), n ⩾ 1.

Combining the above two equations, we obtain the general form of the n-th derivative of the SWISH
function.

F.3.4 THE LAYER NORM

Lemma 12 (Bound of the Layer Norm for Derivative Type). Fix k ∈ N, β ∈ Rk, γ ∈ R, and
w ∈ [0, 1]. For the layer norm, given by

LN : Rk → Rk, x 7→ γ f(x)g ◦ Σ(x) + β;

f : Rk → Rk, x 7→ x−M(x); g : R→ R, u 7→ 1√
1 + u

;

M : Rk → R, x 7→ w

k

k∑
i=1

xi; Σ : Rk → R, x 7→ w

k

k∑
i=1

(xi −M(x))2;
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holds for a compact symmetric set K (using Notation 3)

CLN
K (α) ⩽ α!γ

n=1∑
m=1

(2m+ 1)!!

22m

( ∑
α′⩽α

|α′|=n−1

∑
η,ζ∈P′(α′,m)

n∏
j=1

CΣ
K(o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)|

+
∑

η,ζ∈P′(α,m)

n∏
j=1

CΣ
K(o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)|

)
,

where CΣ
K(α) = 2w∥K∥ for |α| = 1, CΣ

K(α) = 2w for |α| = 2, and CΣ
K(α) = 0 otherwise.

Proof. Note that

g(n)(x) = (−1)n (2n+ 1)!

n!22n
(1 + x)−

1
2−n,

implying Cg
K(n) ⩽ (2n+1)!!2−2n, !! denoting the double factorial. We have further Cf

K(α) ⩽ 1|α|=1

and a direct computation yields

CΣ
K(α) ⩽


2w∥K∥ for |α| = 1

2w for |α| = 2

0 else.
By Theorem 5,

Cg◦Σ
K (α) ⩽ α!

n∑
m=1

Cg
Σ[K](m)

∑
η,ζ∈P′(α,m)

n∏
j=1

CΣ
K(o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| .

According to the general multivariate Leibnitz rule, it holds that

Dα(f · (g ◦ Σ)) =
∑
β⩽α

α!

β!(α− β)!
Dβf ·Dα−β(g ◦ Σ)

which implies

CLN
K (α) ⩽ Cg◦Σ

K (α)∥K∥+
∑

β⩽α,|β|=1

α!

(α− β)!
Cg◦Σ

K (α− β).

Corollary 8 (Bound of the Layer Norm for Derivative Level). In the setting of Lemma 12, it holds
that

CLN
K (⩽n) ⩽ 2w∥K∥(2n+ 1)!!2−2n(∥K∥+ kn)

[ 2n

e lnn
(1 + o(1))

]n
.

Furthermore, we have the asymptotic estimate

Cg◦Σ
K (⩽n) ∈ O

(
w∥K∥n1/2

( n5/2

e3/4 ln(n)
(1 + o(1))

)n)
.

Proof. Analogue to the proof of Lemma 12,
CLN

K (⩽n) ⩽ ∥K∥Cg◦Σ
K (⩽n) + knCg◦Σ

K (⩽n− 1) ⩽ (∥K∥+ kn)Cg◦Σ
K (⩽n),

where we can use Corollary 1 to bound

Cg◦Σ
K (⩽n) ⩽ Cg

Σ[K](⩽n)C
Σ
K(⩽n)n

[ 2n

e lnn
(1 + o(1))

]n
⩽ 2w∥K∥(2n+ 1)!!2−2n

[ 2n

e lnn
(1 + o(1))

]n
. (34)

Since 2n+ 1 is odd, for each n ∈ N+, then sterling approximation for double factorial yields the
asymptotic

(2n+ 1)!! ∈ O
(√

2n
(n
e

)n/2 )
. (35)

Merging (35) with the right-hand side of (34) yields

Cg◦Σ
K (⩽n) ∈ O

(
w∥K∥n1/2

( n5/2

e3/4 ln(n)
(1 + o(1))

)n)
.
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F.3.5 THE MULTILAYER PERCEPTRON (FEEDFORWARD NEURAL NETWORK) WITH SKIP
CONNECTION

Definition 7 (Single-Layer Feedforward Neural Network with Skip Connection). Fix a non-affine
activation function σ ∈ C∞(R) and dimensions din, dff , dout ∈ N. A feedforward neural network is
a map PL : Rdin → Rdout represented for each x ∈ Rdin by

PL(x) def.
=B(1)x+B(2)

(
σ • (Ax+ a)

)
(36)

for A ∈ Rdff×din , a ∈ Rdff , B(1) ∈ Rdout×din , and B(2) ∈ Rdout×dff .
Lemma 13 (Bound of Neural Networks for Derivative Type). In the notation of Notation 3, Lemma 6,
and Definition 7, it holds that

CPL
K (α) ⩽ CB(1)

1|α|=1 + dff(α!)
2CB(2)

n∑
m=1

Cσ
h[K](m) · (CA)m

∑
η,ζ∈P′(α,m)

n∏
j=1

1|ζ(j)|⩽1

η(j)!
,

where h[K] is defined as the image of h(x) def.
=Ax+ a on K.

Proof. Write PL(x) = B(1)x+B(2)((gi(x))
dff
i=1), where for i ∈ {1, . . . , dff}

gi(x)
def.
=σ((Ax+ a)i).

If we define hi(x)
def.
=h(x)i, we follow with Theorem 5

Cgi
K (α) ⩽ α!

n∑
m=1

Cσ
h[K](m) · (CA)m

∑
η,ζ∈P′(α,m)

n∏
j=1

1|ζ(j)|⩽1

η(j)!
def.
=Cg

K(α),

and due to the component wise application of the activation function it holds that
∥Dα max

i∈{1,...,dff}
gi(x)∥K = max

i∈{1,...,dff}
Cgi

K (α) ⩽ Cg
K(α).

Using Corollary 2, we obtain

CPL
K (α) ⩽ CB(1)

1|α|=1 + dffα!C
B(2)

Cg
K(α).

Corollary 9 (Bound of Neural Networks for Derivative Level). In the setting of Lemma 13,

CPL
K (⩽n) ⩽ CB(1)

+ dffn!C
B(2)

Cσ
h[K](⩽n)(C

A)n
[ 2n

e lnn
(1 + o(1))

]n
.

If, moreover, K = [−M1,M2]
din then

CPL
K (⩽n) ∈ O

(
∥B(1)∥∞ + ∥B(2)∥∞∥A∥n∞∥σ∥n:Ball(a,

√
din|M1+M2|)

Width(PL)n1/2
(n
e

)n
Cn

n

)
Proof. Arguing analogously to the proof of Lemma 13, barring the usage of Corollary 1, we obtain
the estimate

CPL
K (⩽n) ⩽ CB(1)

+ dffn!C
B(2)

Cσ
h[K](⩽n)(C

A)n
[ 2n

e lnn
(1 + o(1))

]n
. (37)

Let Cn
def.
=

2n
e lnn (1 + o(1)) Using Stirling’s approximation and the definition of the component-wise

∥ · ∥∞ norm of a matrix, (37) becomes

CPL
K (⩽n) ∈ O

(
∥B(1)∥∞ + ∥B(2)∥∞∥A∥n∞Cσ

h[K](⩽n)dff n1/2
(n
e

)n
Cn

n

)
. (38)

If, there is some M1,M2 ⩽ 0, such that K = [0, β]d then using the estimate between the ∥ · ∥2 and
∥ · ∥∞ norms on Rdin and the linearity of A we estimate

Cσ
h[K](⩽n) ⩽ Cσ

Ball(a,
√

din|M1+M2|)
(⩽n) ⩽ ∥σ∥

n:Ball(a,
√

din|M1+M2|)
.

Upon Width(PL) def.
= max{din, dout, dff}, the estimate (37) implies that CPL

K (⩽n) is of the order of

O
(
∥B(1)∥∞ + ∥B(2)∥∞∥A∥n∞∥σ∥n:[−∥a∥∞−

√
din|M1+M2|,∥a∥∞+

√
din|M1+M2|]

×Width(PL)n1/2
(n
e

)n
Cn

n

)
.

(39)
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F.4 STEP 2 (B) - TRANSFORMERS
We may now merge the computations in Subsection F.3, with the Fa‘a di Bruno-type from Section F.1
to uniformly bound the Cs-norms of the relevant class transformer networks. Our results are
derived in two verions: the first is of “derivative type” (which is much smaller and more precise but
consequentially more complicated) and the second is in “derivative level” form (cruder but simpler
but also looser).
Theorem 6 (By Derivative Type). Let K be a compact set, TB a transformer block as in Definition 5,
and α ∈ OMdin

n , n ∈ N. Then,

CTB
K (α) ⩽ α!

∑
β∈O

dout
⩽n

N(β)CLN
K(3)(β)

∑
η,ζ∈P′(α,β)

n∏
j=1

C
(3)
K (o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| ,

where for all γ ∈ OMdin

⩽n :

C
(3)
K (γ) def.

= γ!
∑

β∈O
din
⩽n

N(β)CPL
K(2)(β)

∑
η,ζ∈P′(γ,β)

n∏
j=1

C
(2)
K (o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| ,

C
(2)
K (γ) def.

= γ!
∑

β∈O
din
⩽n

N(β)CLN
K(1)(β)

∑
η,ζ∈P′(γ,β)

n∏
j=1

C
(1)
K (o(ζ(j)))|η

(j)|

η(j)!(ζ(j)!)|η(j)| ,

C
(1)
K (γ) def.

=1|γ|=1 + CMH
K (γ).

In the above, K(1) =
⋃M

m=0MHm[K], K(2) = LN [K(1)], and K(3) = PL[K(2)].

For respective multi-indices, a bound for CLN
K(3) , C

LN
K(1) is given by Lemma 12, CPL

K(2) is bounded in
Lemma 13, and a bound for CMH

K is given in Corollary 4.

Proof. This is a direct consequence of Theorem 5.

Theorem 7 (By Derivative Level). Let K be a compact set, TB a transformer block as in Definition 5,
and n ∈ N. Then,

CTB
K (⩽n) ⩽ CLN

K(3)(⩽n)
(
doutC

PL
K(2)(⩽n)

)n (
d2inC

LN
K(1)(⩽n)

)n2

·
(
1 + CMH

K (⩽n)
)n3 [ 2n

e lnn
(1 + o(1))

]n+n2+n3

where, K(1) =
⋃M

m=0MHm[K], K(2) = LN [K(1)], and K(3) = PL[K(2)].

A bound for CLN
K(3) , C

LN
K(1) is given by Corollary 8, CPL

K(2) is bounded in Corollary 9, and a bound for
CMH

K is given in Corollary 4.

Proof. Corollary 1 yields

CTB
K (⩽n) ⩽ CLN

K(3)(⩽n)C
(3)
K (⩽n)n

[2doutn
e lnn

(1 + o(1))
]n

.

where
C

(3)
K (⩽n) def.

=CPL
K(2)(⩽n)C

(2)
K (⩽n)n

[2dinn
e lnn

(1 + o(1))
]n

,

C
(2)
K (⩽n) def.

=CLN
K(1)(⩽n)C

(1)
K (⩽n)n

[2dinn
e lnn

(1 + o(1))
]n

,

C
(1)
K (⩽n) def.

=1 + CMH
K (⩽n),

which concludes the proof.

Theorem 8 (Cs-Norm Bound of Transformers). Fix n,L,H,C,D, d,M ∈ N+ for a transformer
class TC. For any T ∈ TC, any compact K0 ⊂ RM×D, and any α ∈ NM×D, |α| def.

=n we have

CT
K0

(α) ⩽ dLoutMα! · CA · CL(α), (40)
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where C1(α) def.
=CTB1

K0
(α) and for l ∈ {2, . . . , L},

Cl(α) def.
= ⩽ α!

∑
β∈O

d̃l
⩽n

N(β)CTBl

Kl−1
(β)

∑
η,ζ∈P′(o(α),β)

n∏
j=1

Cl(o(ζ(j)))|η
(j)|

η(j)!(ζ(j)!)|η(j)| (41)

where Kl
def.
= TBl[Kl−1], d̃l def.

=Mld
l
in, and a bound for CTBl

Kl−1
(β) is given by Theorem 6, only depend-

ing on the transformer block class TBCl.

Proof of Theorem 8. The bounds (40) are a direct consequence of Theorem 5 and (41) follows directly
from Corollary 2.

F.5 STEP 2 (C) - MERGING THE Cs-NORM BOUNDS FOR TRANSFORMERS WITH THE LOSS
FUNCTION

In this section, we consider the following generalization of the class in Definition 2. As before, each
result holds for input dimensions d just as much as any other input dimension, e.g. Md, with the only
change being relabeling d←Md. Therefore, for notational minimality, we chose to label the input
dimension d and not dM .
Definition 8 (Smoothness Growth Rate). Let d,D ∈ R. A smooth function g : Rd → RD is said to
belong to the class C∞

poly:C,r(Rd,RD) (resp. C∞
exp:C,r(Rd,RD)) if there exist C, r ⩾ 0 such that: for

each s ∈ N+

(i) Polynomial Growth - C∞
poly:C,r(Rd,RD): ∥g∥Cs ⩽ C sr,

(ii) Exponential Growth - C∞
exp:C,r(Rd,RD): ∥g∥Cs ⩽ C es r,

The next lemma will help us relate the Cs-regularity of a model, a target function, and a loss function
to their composition and product. We use it to relate the Cs-regularity of a transformed model
T : Rd → RD, the target function f⋆ : Rd → RD, and the loss function ℓ : R2D → R to their
composition

ℓT : Rd → R
x 7→ ℓ

(
T (x), f⋆(x)

)
.

(42)

One we computed have the Cs-regularity of ℓT , we can apply a concentration of measure-type
argument based on an optimal transport-type duality, as in Amit et al. (2022); Hou et al. (2023b);
Benitez et al. (2023); Kratsios et al. (2024), to obtain our generalization bounds. A key technical
point where our analysis largely deviates from the mentioned derivations, is that we are not relying
on any i.i.d. assumptions.

More generally, the next lemma allows us to bound the size of ∥ℓ(f̂ , f⋆)∥Cs using bounds on Cs

norms of TC computed in Theorem 8, the target function f⋆, and on the loss function ℓ. Naturally, to
use this result, we must assume a given level of regularity of the target function, as in Definition 2.
Lemma 14 (Cs-Norm of loss of between two functions). Let d,D, s ∈ N+, f1, f2 : Rd → RD be
of class Cs and ℓ : R2D → R be smooth. If there are constants C1, C2, C̃1, . . . , C̃s ⩾ 0 such that:
∥fi∥Cs ⩽ Ci for i = 1, 2 and for j = 1, . . . , s we have ∥ℓ∥Cj ⩽ C̃j then for all s > 0 large it
satisfies

∥∥ℓ(f1, f2)∥∥Cs =


O
[(

2Ds
e ln s (1 + o(1))

)s]
, if max1⩽k C̃k(C1C2)

k is bounded,

O
[
C̃s

(
C1C2

2Ds
e ln s (1 + o(1))

)s]
, if max1⩽k C̃k(C1C2)

k is unbounded.
(43)

Particularly, if ℓ ∈ C∞
poly:C,r(R2D,R), i.e., ∥ℓ∥Cj ⩽ C jr , then∥∥ℓ(f1, f2)∥∥Cs = O

[
Csr

(
C1C2

2Ds

e ln s
(1 + o(1))

)s]
; (44)

if ℓ ∈ C∞
exp:C,r(R2D,R), i.e., ∥ℓ∥Cj ⩽ C ej r, then∥∥ℓ(f1, f2)∥∥Cs = O

[
Cesr

(
C1C2

2Ds

e ln s
(1 + o(1))

)s]
. (45)
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Lemma 14 allows us to obtain a bound on the term supf̂∈Cs
R(Rd) ∥ℓ(f̂ , f

⋆)∥Cs in (3), using Theo-
rem 8 and our assumptions on ℓ and on f⋆.

Proof of Lemma 14. We first derive the general bound; which we then specialize to the case where
the growth rate of ℓ is known. We first observe that∥∥ℓ(f1, f2)∥∥Cs = max

k=1,··· ,s−1
max

α∈{1,··· ,d}k
∥Dαℓ(f1(x), f2(x))∥∞︸ ︷︷ ︸

(VII)

+ max
α∈{1,··· ,d}s−1

Lip
(
Dαℓ(f1(x), f2(x))

)
︸ ︷︷ ︸

(VIII)

.

General Case - Term Term (VII): By Corollary 1, we have∥∥∥(Dαℓ)(f1(x), f2(x))
∥∥∥
∞

⩽
[

max
1⩽k⩽s−1

C̃k(C1C2)
k
]
· O
[( 2Dk

e ln k
(1 + o(1))

)k]
, (46)

From (46) we have for all large s > 0 that
max

k=1,··· ,s−1
max

α∈{1,··· ,d}k
∥Dαℓ(f1(x), f2(x))∥∞

=


O
[(

2Ds
e ln s (1 + o(1))

)s]
, if max1⩽k C̃k(C1C2)

k is bounded,

O
[
C̃s

(
C1C2

2Ds
e ln s (1 + o(1))

)s]
, if max1⩽k C̃k(C1C2)

k is unbounded.

General Case - Term Term (VIII): For each α ∈ {1, · · · , d}s−1, by the multivariate Faà di Bruno
formula, we have

Dαℓ(f1(x), f2(x)) =
∑

1⩽|β|⩽s−1

(Dβℓ)(f1(x), f2(x))
∑

η,ζ∈P(α,β)

α!

s−1∏
j=1

[Dζ(j)

(f1(x), f2(x))]
η(j)

η(j)!(ζ(j)!)|η(j)| .

The Lipschitz constants of the derivatives satisfy

Lip
(
Dαℓ(f1(x), f2(x))

)
=

∑
1⩽|β|⩽s−1

Lip
(
(Dβℓ)(f1(x), f2(x))

) ∑
η,ζ∈P(α,β)

α!

s−1∏
j=1

Lip
(
[Dζ(j)

(f1(x), f2(x))]
η(j))

η(j)!(ζ(j)!)|η(j)|

⩽
∑

1⩽|β|⩽s−1

C̃|β|+1

∑
η,ζ∈P(α,β)

α!

s−1∏
j=1

(C1C2)
|η(j)|

η(j)!(ζ(j)!)|η(j)|

=
∑

1⩽|β|⩽s−1

C̃|β|+1(C1C2)
|β|

∑
η,ζ∈P(α,β)

α!

s−1∏
j=1

1

η(j)!(ζ(j)!)|η(j)|

⩽
[

max
1⩽k⩽s−1

C̃k+1(C1C2)
k
] ∑
1⩽|β|⩽s−1

∑
η,ζ∈P(α,β)

α!

s−1∏
j=1

1

η(j)!(ζ(j)!)|η(j)|

=
[

max
1⩽k⩽s−1

C̃k+1(C1C2)
k
]
· O
[( 2Ds

e ln s
(1 + o(1))

)s]
, (47)

where the last equality is due to Lemma 3.

From (47) we have for all s > 0 large that

max
α∈{1,··· ,d}s−1

Lip
(
Dαℓ(f1(x), f2(x))

)
=


O
[(

2Ds
e ln s (1 + o(1))

)s]
, if max1⩽k C̃k(C1C2)

k is bounded,

O
[
C̃s

(
C1C2

2Ds
e ln s (1 + o(1))

)s]
, if max1⩽k C̃k(C1C2)

k is unbounded.
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Completing the General Case: Combining our estimates for terms Term (VII) and Term (VIII)
respectively obtained in (46) and (47), we obtain an upper-bound for ∥ℓ(f1, f2)∥Cs via

∥∥ℓ(f1, f2)∥∥Cs =


O
[(

2Ds
e ln s (1 + o(1))

)s]
, if max1⩽k C̃k(C1C2)

k is bounded,

O
[
C̃s

(
C1C2

2Ds
e ln s (1 + o(1))

)s]
, if max1⩽k C̃k(C1C2)

k is unbounded.

Special Cases of Interest: In particular, if ℓ belongs either to C∞
poly:C,r(Rd,RD) or to

C∞
exp:C,r(Rd,RD), , as in Definition (2), then: there exists constants Cℓ, rℓ > 0 s.t. for each

j = 1, . . . , s we have

(i) Polynomial Growth - C∞
poly:C,r(R2D,R) Case:

∥ℓ∥Cj ⩽ C jr def.
= C̃j ,

(ii) Exponential Growth - C∞
exp:C,r(R2D,R) Case:

∥ℓ∥Cj ⩽ C ej r def.
= C̃j .

Consequentially, in cases (i) and (ii), the bound in (43) respectively becomes

(i) Polynomial Growth - C∞
poly:C,r(R2D,R) Case:∥∥ℓ(f1, f2)∥∥Cs ⩽O

[
Csr

(
C1C2

2Ds

e ln s
(1 + o(1))

)s]
,

(ii) Exponential Growth - C∞
exp:C,r(R2D,R) Case:∥∥ℓ(f1, f2)∥∥Cs ⩽O

[
Cesr

(
C1C2

2Ds

e ln s
(1 + o(1))

)s]
.

F.6 STEP 3 - COMBINING STEPS 1 AND 2 AND COMPLETING THE PROOF OF THEOREM 1
We are now ready to complete the proof of our main result, namely Theorem 1. Before doing so, we
state a more technical and general version, which we instead prove and which directly implies the
simpler version found in the main body of our manuscript.

We operate under the following more general, but more technical set of assumptions than those
considered in the main body of our text (in Setting 2.1).
Setting F.1 (Generalized Setting). Let D, d, L,H, ∗C ′, CA, Cb ∈ N+, set M def.

=0, and
C def.
=(∗C ′, CA, Cb), rf , rℓ, Cf , Cℓ ⩾ 0. Suppose that Assumptions 3 and 4 hold.

Fix a target function f⋆ : Rd → RD and a loss function ℓ : RD × RD → R. Assume either that:

(i) Polynomial Growth: f⋆ ∈ C∞
poly:Cf ,rf

(Rd,RD) and ℓ ∈ C∞
poly:Cℓ,rℓ

(R2D,R),

(ii) Exponential Growth: f⋆ ∈ C∞
exp:Cf ,rf

(Rd,RD) and ℓ ∈ C∞
exp:Cℓ,rℓ

(R2D,R) ,

(iii) No Growth: There is a constant C̄ ⩾ 0 such that for all s > 0 we have ∥f⋆∥Cs , ∥ℓ∥Cs ⩽ C̄.

Example 3 (Example of Generalized Setting (iii)). For every d ∈ Rd, the function f : Rd ∋ x 7→
cos •x =

(
cos(xi)

)d
i=1

satisfies ∥ ∂s

∂xs
i
f∥∞ ⩽ 1 for each s ∈ N and each i = 1, . . . , d. Thus, it is an

example of a function satisfying Assumption F.1. ◁

We are now ready to prove our main theorem, which is a combination of Theorems 1 and 2.
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Table 6: Bounds on the terms in defining the constant Cℓ,TC,K,s, in Theorem 9, for a single attention block.

Term Bound (O)

cℓ,f⋆ Cs
f s

rℓ+2s2Cs
s

LN s(1+s)/2Cs
s

PL ∥B(1)∥+ ∥B(2)∥∥A∥s∥σ∥
s:
[
±∥a∥∞±

√
din

]Width(PL) C̃s
s

MH ∥W∥∥V ∥(d̃∥Q∥∥K∥)s
(
s2
(
s
e

)2s
Cs

s

)
Here Cs

def.
=

2s
e ln s

(1 + o(1)), C̃s
def.
= s1/2

(
n
e

)s
Cs

s , cd def.
=2max{din, dK , dV , dff , dout}, Width(PL) is the width

of the neural network PL, where ∥ · ∥ denotes the componentwise max matrix/vector norm.

Theorem 9 (Pathwise Generalization Bounds for Transformers). In Setting F.1, there is a κ ∈ (0, 1),
depending only on X·, and a t0 ∈ N0 such that: for each t0 ⩽ N ⩽ t ⩽ ∞ and δ ∈ (0, 1] the
following holds with probability at-least 1− δ

supT ∈TC
∣∣Rmax{t,N}(T )−R(N)(T )

∣∣ ≲∑∞
s=1 IN∈[τs,τs+1) Cℓ,TC,K,s−1

(
It<∞ κt +

√
2 ln(1/δ)

N1/2 + rates(N)

)
where rates(N) is defined in (rate), the constant Cℓ,TC,K,s

def.
= supT ∈TC ∥ℓ(T , f∗)∥Cs , is of order

O
(

Cℓ,f⋆

︸ ︷︷ ︸
Loss & Target

CLN
K(3)(⩽s)

sCLN
K(1)(⩽s)

s3︸ ︷︷ ︸
Layernorms

CPL
K(2)(⩽s)

s2︸ ︷︷ ︸
Perceptron

(
1 + CMH

K (⩽s)

)s4

︸ ︷︷ ︸
Multihead Attention

Ds2 d2s
3

︸ ︷︷ ︸
dimensions

cs
s+s3+s4

s︸ ︷︷ ︸
Generic: s-th order Derivative

)

with terms according to Table 6 and the transition phases (τs)∞s=0 are given iteratively by τ0
def.
=0 and

for each s ∈ N+

τs
def.
= inf

{
t ⩾ τs−1 : Cℓ,TC,K,s(κ

t + rates(N) +

√
log(1/δ)√

N
) ⩽ Cℓ,TC,K,s−1(κ

t + rates−1(N) +

√
log(1/δ)√

N
)

}
.

Furthermore, c def.
=1− κ, c2 def.

= cs/d, κ∞ def.
= lim

t→∞
κt = 0, and ≲ hides an absolute constant.

Proof of Theorem 1. Since N is given, we may pick s ∈ N+ to ensure that N ∈ [τs, τs+1); where
these are defined as in the statement of Theorem 9.

Since we are in Setting 2.1, then ℓ ∈ C∞
poly:Cℓ,rℓ

(R2D,R) (resp. ℓ ∈ C∞
exp:Cℓ,rℓ

(R2D,R)) and
f⋆ : Rd → RD is smooth. Therefore, Lemma 14 implies that there is an absolute constant cabs > 0
such that for any transformer network T ∈ TC, the following bound holds

(i) No Growth Case: Using (43) we find that∥∥ℓ(T , f⋆)
∥∥
Cs ⩽cabs

( 2Ds

e ln s
(1 + o(1))

)s ∥ T ∥sCs (48)

(ii) Polynomial Growth Case - ℓ ∈ C∞
poly:Cℓ,rℓ

(R2D,R) Case:∥∥ℓ(T , f⋆)
∥∥
Cs ⩽cabs s

rℓ
( 2Ds

e ln s
(1 + o(1))

)s ∥f⋆∥sCs ∥ T ∥sCs (49)

(iii) Exponential Growth - C∞
exp:Cℓ,rℓ

(R2D,R) Case:∥∥ℓ(T , f⋆)
∥∥
Cs ⩽cabs e

s rℓ
( 2Ds

e ln s
(1 + o(1))

)s ∥f⋆∥sCs ∥ T ∥sCs . (50)

Since we have assumed that f⋆ ∈ C∞
poly:Cf ,rf

(Rd,RD) (resp. C∞
exp:Cf ,rf

(Rd,RD) or the “no growth
condition” in Setting F.1 (iii)) then the bounds in (48), (49), and (50), respectively, imply that
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(i) No Growth Case: ∥∥ℓ(T , f⋆)
∥∥
Cs ⩽cabs

( 2Ds

e ln s
(1 + o(1))

)s
CTC

K (s)s (51)

(ii) Polynomial Growth Case - ℓ ∈ C∞
poly:Cℓ,rℓ

(R2D,R) Case:∥∥ℓ(T , f⋆)
∥∥
Cs ⩽cabs s

rℓ+2s2
(Cf 2D

e ln s
(1 + o(1))

)s
CTC

K (s)s (52)

(iii) Exponential Growth - C∞
exp:Cℓ,rℓ

(R2D,R) Case:∥∥ℓ(T , f⋆)
∥∥
Cs ⩽cabs e

s rℓ+s2rf
( 2Ds

e ln s
(1 + o(1))

)s
Cs

f C
TC
K0

(s)s, (53)

where we have used the definition of the constant CTC
K (s) as a uniform upper bound of supT ∈TC .

Using Theorem 6 for the “derivative type estimate” (resp.7 for the “derivative level estimate”)
concludes the implies yields a uniform upper bound (of “derivative type” or “derivative level”
respectively) on CTC

K0
(s), i.e. independent of the particular transformer instance T ∈ TC. In either

case, we respectively define R > 0 to be the right-hand side of (52) or (53) depending on the
respective assumptions made on ℓ and on f⋆.

The conclusion now follows upon applying Proposition 5 due to the inequality in (2).

G EXAMPLE OF ADDITIVE NOISE USING STOCHASTIC CALCULUS

In this appendix, we briefly discuss why the seemingly realizable learning setting which we have
placed ourselves in, i.e. Yn = f⋆(Xn), does not preclude additive noise. Our illustration considers
the class of following Markov processes.
Assumption 5 (Structure on X·). Let g : Rd → [0, 1]d be a twice continuously differentiable function.
Let W·

def.
=(Wt)t⩾0 be d-dimensional Brownian motion and, for each n ∈ N, define

Xn
def.
= g(Wn).

By construction, the boundedness of the change of variables-type function g in Assumption 5, implies
that the process X· = (Xn)n∈N is bounded (and can easily be seen to be Markovian since Brownian
motion has the strong Markov property). However, we can say more, indeed under Assumption 5,
the Itô Lemma (see e.g. (Cohen and Elliott, 2015, Theorem 14.2.4)) implies that Xn is given as the
following stochastic differential equation (SDE) evaluated at integer times n ∈ N

Xn = g(0) +

∫ n

0

µs ds+

∫ n

0

σ⊤
t dWs (54)

where µ· = (µt)t⩾0 and σ· = (σt)t⩾0 are given by

µt
def.
=

1

2
tr
(
H(g)(Ws)

)
and σt

def.
=∇g(Wt)

and H(g) is the Hessian of g and tr is the trace of a matrix.
Example 4. Set d = 1 and g(x) = (sin(x) + 1)/2. Then, for each n ∈ N we have

Xn =

∫ n

0

− sin(Ws)/4ds+

∫ t

0

cos(Ws)/2 dWs.

◁

In particular, the expression (54) shows that the input process X· is also defined for all intermediate
times between non-negative integer times; i.e. for each t ⩾ 0 the process

Xt = g(0) +

∫ t

0

µs ds+

∫ t

0

σ⊤
t dWs (55)
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is well-defined and coincides with Xn whenever t = n ∈ N. We may, therefore, also consider the
“continuous-time extension” Y·

def.
=(Yt)t⩾0 of the target process defined for all intermediate times

using (55) by
Yt

def.
= f⋆(Xt).

Note that Yt coincides with the target process on non-negative integer times, as defined in our main
text, by definition.

The convenience of these continuous-time extensions, of the discrete versions considered in our
main text, is that now Y· is the transformation of a continuous-time (Itô) process of satisfying the
SDE (55) by a smooth function4, namely f⋆. Therefore, we may again apply the Itô Lemma (again
see e.g. (Cohen and Elliott, 2015, Theorem 14.2.4)) this time to the process X· to obtain the desired
signal and noise decomposition of the target process Y· (both in discrete and continuous time). Doing
so yields the following decomposition

Yt = f⋆(X0) +

∫ t

0

(
(∇f⋆(Xs))

⊤
µt +

1

2
tr
(
σ⊤
s H(f⋆)(Xs)σs

))
ds︸ ︷︷ ︸

Signal (Target)

+

∫ t

0

(∇f⋆)
⊤
σs dWs︸ ︷︷ ︸

Additive Noise

.

(56)

This shows that even if it a priori seemed that we are in the realizable PAC setting due to the
structural assumption that Yn = f⋆(Xn) made when defining the target process, we are actually in
the standard setting where the target data (Yn)

∞
n=0 can be written as a signal plus an additive noise

term. Indeed, when X· is simply a transformation of a Brownian motion by a bounded C2-function,
as in Assumption 5, then Assumption 1 held and Yn admitted the signal-noise decomposition in (56).

4Note that f⋆ was assumed to be smooth in our main result (Theorem 1).
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