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ABSTRACT

One of the inherent challenges in deploying transformers on time series is that
reality only happens once; namely, one typically only has access to a single
trajectory of the data-generating process comprised of non-i.i.d. observations. We
derive non-asymptotic statistical guarantees in this setting through bounds on the
generalization of a transformer network at a future-time ¢, given that it has been
trained using N < ¢ observations from a single perturbed trajectory of a bounded
and exponentially ergodic Markov process. We obtain a generalization bound
which effectively converges at the rate of O(1/+/N). Our bound depends explicitly
on the activation function (Swish, GeLU, or tanh are considered), the number
of self-attention heads, depth, width, and norm-bounds defining the transformer
architecture. Our bound consists of three components: (I) The first quantifies the
gap between the stationary distribution of the data-generating Markov process and
its distribution at time ¢, this term converges exponentially to 0. (II) The next
term encodes the complexity of the transformer model and, given enough time,
eventually converges to 0 at the rate O(log(N)"/+/N) for any > 0. (II) The
third term guarantees that the bound holds with probability at least 1 — ¢, and
converges at a rate of O(y/log(1/6)/v/N). Example of (non i.i.d.) data-generating
processes which we can treat are the projection of several SDEs onto a compact
convex set C', and bounded Markov processes satisfying a log-Sobolev inequality.

1 INTRODUCTION

Transformers Vaswani et al. (2017) have become the main architectural building block in deep
learning-based state-of-the-art foundation models Bommasani et al. (2021); Zhao et al. (2023);
Wei et al. (2022). Transformers are primarily deployed on sequential learning tasks which have
complex temporal relationships, and thus, transformers are trained on non-i.i.d. data. The i.i.d.
assumption is typically made (e.g. Neyshabur et al. (2015); Bartlett et al. (2017); Zhang et al. (2024))
to derive theoretical statistical guarantees, but in practice, it is rarely satisfied; e.g. in natural language
processing (NLP) (Zhou et al., 2021), physics Paul and Baschnagel (2013), medical research Beck
and Pauker (1983), reinforcement learning Sutton and Barto (2018), optimal control Touzi (2013),
and in finance Follmer and Schied (2011). This creates a mismatch between available statistical
guarantees in deep learning (which often rely on the i.i.d. assumption or they do not provide explicit
constants for transformers trained on non-i.i.d. data) and how transformers are used in practice.

Thus, this paper fills this gap by guaranteeing that transformers trained on a single time-series
trajectory can generalize at future moments in time, with explicit constants. We, therefore, consider
the learning problem where the user is supplied with N paired samples (X1,Y7),..., (XN, Yn),
where each input Y,, = f*(X,,) for a smooth (unknown) target function f* : R™>*M — RP is
to be learned, depending on a history length M, and where the inputs are generated by a time-
homogeneous Markov process X. £ (X,,)° ;. Note that the assumption Y,, = f*(X,,) results in
only a mild loss of generality since if X. is a discretized solution to a stochastic differential equation
then Y,, ~ signal + additive noise due to stochastic calculus considerations (see Appendix G).

The performance of any transformer model 7 : R¥*™ — RP is quantified via a smooth loss function
¢:RP x RP — R. When M = 1, the generalization of such a 7 is measured by the gap between
its empirical risk R™N), computed from the single-path training data, and its (true) t-future risk R at
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a (possibly infinite) future time N < ¢ < oo (¢ € N ) defined by
R(T) %]E[E(T(Xt),f*(Xt))]

where R (resp. Roo) is computed with respect to the distribution of X (resp. stationary distribution
of X.). The time-t excess-risk R, which is generally unobservable, is estimated by a single-path
estimator known as the empirical risk computed using all the noisy samples observed thus far

N
RT3 UT(X0), (X))

Our objective is to obtain a statistical learning guarantee bounding the gap between the empirical risk
and the ¢-future risk of transformer models trained on a single path.

Contribution. Our main result is a bound on the future-generalization, at any given time ¢t > N, of
a transformer trained from IV samples collected from an unknown transformation (f*) of any suitable
unknown Markov process (X.). For this, fix a class of transformers 7C for respective input and output
dimensions d and D, i.e. determine the number of transformer blocks, the number of attention heads,
channel sizes, and specify a constraints on its weights. Then, the first takeaway of our main result
(Theorem 1) is that with probability at least 1 — §

log(1/6) + 10g(N)1/5>
—_ RWN)
7§1617Ec |RA(T) = RWYI(T)| € (’)< Wii (FutureGen)

where s > 0 can be made arbitrarily large and O hides a dimensional constant depending on s.

Our primary contribution is a full analysis of the constant under the big O in our future-generalization
bound (Theorem 1) via a complete estimation of the higher order sensitivities/derivatives of the trans-
former network (Theorems 6 and 7). Our result provides the first generalization bound applicable to
transformers trained on non-i.i.d. data with explicit constants; all other available statistical guarantees
for models trained on non-i.i.d. data which we are aware of, e.g. Yu (1994); Mohri and Rostamizadeh
(2008; 2010); Kuznetsov and Mohri (2017); Simchowitz et al. (2018); Foster et al. (2020); Ziemann
and Tu (2022), do not yield explicit bounds for transformers since they alone do not yield explicit
constants without appealing to our main technical results: Theorems 6 and 7.

Our secondary contribution is a detailed analysis of the effects of the number of attention heads,
depth, and width of the transformed model, and weight and bias restriction, as well as on the activation
functions used on the generalization of the transformer model. This is because the explicit constants
our main results are clearly expressed in terms of these quantities. We also perform an in-depth
analysis for the Swish Ramachandran et al. (2017), GeLLU Hendrycks and Gimpel (2016), and the
tanh activation functions. We validate the empirical evidence suggesting that the popular activation
functions such as Swish provide superior performance than unconventional choices such as tanh.

Benefit our Optimal Transport-Theoretic Approach. An important feature of our generalization
bound is that it relies on a recently well-studied optimal transport-theoretic notion of exponential
ergodicity, which is easily verified, or already known, for most data-generating processes. Indeed,
there is a large and growing body of literature verifying that a broad range of standard processes
verify this mixing condition (Assumption 2), from classical SDEs to McKean-Vlasov and reflected
SDEs. Several examples are provided in Section 2.

Related Work. The mathematical foundations of transformer networks have recently come into
focus in the deep learning theory community. Most of the available statistical guarantees for trans-
formers either concern: in-context learning for linear transformers Zhang et al. (2024); Garg et al.
(2022), transformers Von Oswald et al. (2023); Akyiirek et al. (2023) trained with gradient descent,
or instance-dependent bounds Trauger and Tewari (2023) for general transformers. These results,
however, do not apply in time series analysis contexts where each training sample is not independent
of the others but is rather generated by some recursive stochastic process, e.g. a Markov process.

Analytic counterparts to the statistical guarantees for transformers have also emerged. These include
universal approximation theorems for transformer networks Yun et al. (2019; 2020); Fang et al.
(2023) and contained universal approximation results for networks leveraging generalized attention
mechanisms Kratsios and Papon (2022), and the identification of function classes which can be
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efficiently approximated by transformers special classes Likhosherstov et al. (2021); Frieder et al.
(2024). From the computability standpoint, transformers are Turing complete Bhattamishra et al.
(2020).

Generalization bounds for multilayer perceptrons (MLPs) have been actively studied for years. For
classification problems, these generalization bounds often rely on bounding the VC-dimension of
classes of MLPs, depending on their depth, width, norm bounds on their parameters and activation
functions Bartlett et al. (1998; 2019), or similar quantities. In regression problems, one instead
controls the Rademacher complexity of similar classes of MLPs Bartlett et al. (2017); Neyshabur
et al. (2019); Yin et al. (2019), due to the results such as Koltchinskii (2001); Bartlett and Mendelson
(2002), or turns to instance-dependent bounds which control the path-norm of the MLP Neyshabur
et al. (2015); Golowich et al. (2020); Galanti et al. (2024) and local variants of these quantities;
e.g. Bartlett et al. (2005) or Hou et al. (2023b). Our generalization bounds also partially borrow ideas
from both of these directions, but instead, we use high-order sensitivities (partial derivatives) of our
transformer networks to obtain tighter bounds for large enough V. This does not yield a faster rate,
since the O(1/+v/N) rate is generally optimal, by the central limit theorem, but it allows us to better
control the constants in the generalization bound and thus yields more precise bounds. Thus, a key
part of our technical contributions is the computation of these higher-order derivatives (C'*-norms,
see Definition 3) both of the transformer and the MLP models using smooth activation functions.

These statistical learning results assume that the data samples are i.i.d. However, time-series data
is rarely i.i.d, they are often generated by Markov process or at least embeddable into a Markovian
setting Cuchiero and Teichmann (2019; 2020a). Though there are generalization bounds for non-i.i.d.
relying on martingale arguments e.g. Kontorovich (2014) and concentration of measure phenomena
for martingale sums e.g. Bercu et al. (2015); Boucheron et al. (2013) those results primarily focus
on Lipschitz functions; thus, they do not consider higher-order derivatives. Our results add to this
literature since we rely on the concentration of measure phenomena for Markov processes with respect
to smooth counterparts of the 1-Wasserstein distance (a tool used in many martingale arguments,
e.g. Kontorovich and Raginsky (2017), for Lipschitz classes).

There are several results in the literature addressing learning with non-i.i.d. data satisfying a mix-
ing/ergodicity condition dating back, at least, to Yu (1994). However, none of these results provide
explicit generalization bounds for transformer classes as they either rely on bounding the Rademacher
complexity of the transformer class, e.g. in applying Mohri and Rostamizadeh (2008), or they rely
on computing the cardinality of delta nets Ziemann and Tu (2022), both of which necessitate the
computation of the worst-case Lipschitz (or C* norm) of any transformer in the hypothesis class
using (van der Vaart and Wellner, 2023, Theorem 2.7.4) and (Lorentz et al., 1996, Equation (15.1.8)).
These highly technical computations of the worst-case C'* norm case of any transformer our hypothe-
sis class was never computed before our Theorems 6 and 7. Alternatively, prior results impose strong
assumptions on the data-generating process Simchowitz et al. (2018); Foster et al. (2020).

We require that the data-generating Markov process has an exponentially contracting Markov kernel
Kloeckner (2020). For Markov chains, i.e. finite-state space Markov processes, this means that the
generator (Q-matrix) of the Markov chain has a spectral gap. These spectral gaps are actively studied
in the Markov chain literature Mufa (1996); Kontoyiannis and Meyn (2012); Atchadé (2021); Paulin
(2015); Kloeckner (2019) since these have a finite mixing time, meaning that the distribution of such
Markov chains approaches their stationary limit after a large finite time has elapsed; i.e. they have
well-behaved (approximate) mixing times Montenegro et al. (2006); Hsu et al. (2015); Wolfer and
Kontorovich (2019); Zamanlooy (2024). We rely on actively-studied optimal transport-theoretic
notions of mixing since it is easily verified, or already known, for most data-generating processes
than more classical notions; e.g. Kuznetsov and Mohri (2017); Mohri and Rostamizadeh (2010).

Our generalization bounds rely on concentration of measure arguments for the “smooth” integral
probability metrics (IPMs) studied in Kloeckner (2020); Riekert (2022), by refining the arguments
of Hou et al. (2023b); Benitez et al. (2023); Kratsios et al. (2024) to the non-i.i.d. and smooth setting.
In the i.i.d. case, our computation of the maximum C*-norm (R > 0) of the class 7C (Theorem 6)
can be used to relate the rate at which measure concentrates to other bounds based on classical
quantities such as the Rademacher complexity of the class of C*-functions on R¢; which is bounded
by R, see e.g. (Sriperumbudur et al., 2012, Theorem 3.3).
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Further Applications of our Secondary Results. The upper bounds, which we compute for the
C” norms of the transformers models, can be used in conjunction with classical VC-dimension
van der Vaart and Wellner (2023), Rademacher complexity Bartlett and Mendelson (2002), or optimal
transport Hou et al. (2023b) type arguments to obtain generalization bounds in the simpler setting
of i.i.d. data where there is no notion of (future) time, not considered here. This can be done using
classical tools, e.g. entropy estimates in (van der Vaart and Wellner, 2023, Theorem 2.7.4) on compact
domains due to the Sobolev embedding theorem, applied to the larger class of C* on R™*M whose
C*®-norms are almost equal to the one we have computed for 7C in Theorems 6 and 7.

2 BACKGROUND AND PRELIMINARIES

This section overviews the necessary background for a self-contained formulation of our main results.
This includes the definition of transformers and examples of data-generating processes treatable
within our framework.

2.1 ADMISSIBLE DATA-GENERATING PROCESSES

Fix dimensions d, D € N, a finite memory M € N, andlet X. = (X,,),,cn, be a stochastic process
taking values in R?, such that the lifted/concatenated process XM (X[j(\)’\/(nfﬂ[),...,()\/n])”GNU is
Markovian on RM?. Let P be a Markov kernel on a non-empty Borel X/ C R"? with initial
distribution Xo ~ pp € P(RM?) given by X ~ pu,, & P g £ P(X 2 € -) and for each z € R4
and n € N, set P"(z, ) £ P(XM € .| X} = z). The process XM is called a Markovian lift of X.
in the literature; see e.g. Cuchiero and Teichmann (2020b).

Examples of processes with finite-dimensional Markovian lifts are ARIMA times-series models, see
e.g. (Cryer and Kellet, 1991), or stochastic delay differential equations; see e.g. Buckwar (2000).

Assumption 1 (Bounded Trajectories). There is a ¢ > 0 such that P(sup,cy || X¢|| < ¢) = 1.

Assumption 2 (Exponential Ergodicity). There is a k € (0,1) such that: for each u,v € P(R"4)
and every t € N one has Wi (P, P'v) < k' Wi (p, v).

2.1.1 EXAMPLES: PROJECTED SDES - FROM LANGEVIN DYNAMICS TO MARTINGALES

A broad class of non-i.i.d. data-generating processes satisfying our assumptions is a broad generaliza-
tion of any Markov processes obtained by “projecting” the strong solution to a stochastic differential
equation (SDE) with overdampened drift onto a compact convex subset of R%. The processes which
we can project are vast generalizations of the forward process used in denoising diffusion models; see
e.g. Song et al. (2020) whose convergence is by now well-understood; see e.g. Chen et al. (2023).

Example 1 (Projected SDEs with Overdampened Drift). Consider a latent dimension d € N,
e R? — R? be Lipschitz and the gradient of a strongly convex function; i.e. there is a K > 0 such
that (p(z) — p(y)) " (x —y) < —K||lz — y||? forall z,y € R Forany x € R? let Z% £ (ZF)>0
be the unique strong solution (which exists by (Da Prato, 2008, Theorem 8.2) since p is Lipschitz)

t t
Zf:m—i—/ ,u(Zf)ds—i—/ W, (1)
0 0

where W. is a d-dimensional Brownian motion. Let f : R? — R4 be a bounded 1-Lipschitz function
and consider the discrete-time Markov process X. £ (X,,)°%, on R? given by

X2 [(Z2).

As shown in Proposition 2, X. satisfies Assumptions 1 and 2. The standard example of SDEs (1) are
Langevin dynamics for a strictly convex potential U : R? — R. As shown in Bolley et al. (2012)

w(z) =-=VU(x)/2. q

Example 2 (Projections of Diffusive Martingales). Letd € N,. Let o : R? — PdJr taking values
in the cone Pj of d x d-dimensional positive definite matrices, be Lipschitz with the Frobenius
norm on R%*? and satisfy the uniform ellipticity condition: there exists a A > 0 such that for
every © € R? holds spin(o(z)a(z)T) > ), where $,,,,(A) denotes the minimal singular values
of a matrix A. Consider the martingale Z. (see (Da Prato, 2008, Proposition 6.15) for a proof of

martingality) defined for each ¢t > 0 by Z; = fg 0(Zs) dWg where W. £ (W});>0 is a d-dimensional
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Brownian motion. Let f : R? — R? be any 1-Lipschitz bounded function. By Proposition 3, the
data-generating Markov process X. £ (X,,)%2 , defined for each n € N by X,, £ f(Z,,) satisfies

both Assumptions 1 and 2. N

We have presented the simplest cases here; which is readily generalizable. By Lemma 1 to any Markov
process exponentially ergodic Z., not necessarily solving the simple dynamics (1), automatically
yields examples of data-generating processes satisfying both Assumptions 1 and 2. We list some
examples of such processes here: McKean-Vlasov type with relatively general, i.e. it can have
non-constant law-dependent drift and diffusion coefficients (Wang, 2023, Corollary 4.4) (possibly
with reflections), several SDEs is driven by a pure-jump Lévy process (Luo and Wang, 2019, Theorem
3.1). Note when considering reflected SDEs (possibly of McKean-Vlasov type), where the reflections
constrain the process to remain in a bounded convex domain, we do not need f to be bounded, as
the processes themselves are already bounded. Further examples of such can be constructed using
compact Riemannian sub-manifolds of R< with suitable curvature bounds Ollivier (2009).

2.1.2 EXAMPLES: MARKOV PROCESSES WITH LOG-SOBOLEV-TYPE KERNEL

Our main result is equally valid under the assumption that the stationary distribution of the Markov
chain and its kernels all satisfy a log-Sobolev inequality (LSI). Since their introduction, LSIs have been
heavily studied Gross (1975); Ledoux et al. (2015); Zimmermann (2013); Inglis and Papageorgiou
(2019); Chen et al. (2021) and have found numerous applications in differential privacy Minami et al.
(2016); Ye and Shokri (2022), optimization Chaudhari et al. (2019), random matrix theory Wigner
(1955; 1957), optimal transport Dolera and Mainini (2023), since they typically imply Gozlan (2010);
Gozlan et al. (2015) and effectively characterizes Gozlan (2009) dimension-free rate for concentration
of measure. We define the entropy functional H,, associated to any Borel probability measure 1 on
R? acts on smooth functions g : R — R by

B (0) £ By o) log (200

The entropy functional can be used to express the log-Sobolev inequalities.
Definition 1 (Log-Sobolev Inequality). A probability measure i on RY is said to satisfy a log-Sobolev
inequality with constant C > 0 (LSI¢) if for every smooth function g : R¢ — R

H,.(9%) < C Ex~p[l[Vg(X)|°]

We require that the Markov process is time-homogeneous to admit a satisfactory measure. Further,
we require that its Markov kernel and its stationary measure all satisfy LSI¢.

Assumption 3 (Satisfactions of the Log-Sobolev Inequality). There exists a C > 0 such that [i, ji,
and P(x,-) all satisfy LSI¢, for each x € X.

Instead of the compact support Assumption | we may consider the following weaker condition.

Assumption 4 (Exponential Moments). There exist \, C > 0and v € (0,1) such that: for each
z € X we have Ex..p(; . [eN¥] < yeMel 4 C.

Note that, Assumption 1 implies 4, but not conversely.

Several examples of Markov processes satisfying LSI inequalities are given in Ledoux (2006) and
Gaussian processes satisfy the Exponential Moments Assumption. If one instead

Proposition 1 (Log-Sobolev Conditions and Exponential Moments Imply Assumption 2). If Assump-
tions 4 and 3 hold then the process X. satisfies Assumption 2.

2.2 THE TRANSFORMER MODEL

The overall structure of transformers is summarized in Figure 1, and we give an in-depth definition of
all components with their respective dimensions in Appendix C, which is relevant for the details of
the bound computation. On a high level, the most important aspects are:

Multi-Head Attention [ MH]. Consists of parallel application of the attention mechanism, described
by the following steps. (i) Inputs are used three-fold, as keys, queries, and values, all are transformed
by distinct linear transformations. (ii) Keys and queries are multiplied, scaled, and transformed by a
softmax application. (iii) This output is combined in a matrix multiplication with the values.
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Figure 1: The transformer architecture.

Transformer Block [TB]. Here, (i) input features are mapped to contexts via multi-head attention
mechanism, (ii) the output of the multi-head attention mechanism and the input features (via a skip
connection) are normalized by a layer-norm [ LN'] (see Appendix C), (iii) the normalized contextual
features are transformed non-linearly by a single-layer perceptron [PL], and (iv) its outputs, together
with the first set of normalized context (via another skip connection), are normalized by a final
layer-norm and returned by the transformer block.

Transformer [T ]. Iteratively feed input features through a series of transformer blocks before pro-
cessing their outputs with a (fully connected affine layer). We denote a class of transformers of a
fixed architecture by 7C, with each parameter bounded to a predefined domain.

2.3 SETTING

We consider smooth loss and target functions that are concentrated on a compact region, along
with their derivatives. The growth rate of the C'°-norm (see Definition 3 in Appendix A) of the
loss function and its derivatives quantifies the degree of concentration. One easily verifies that any
function in the Schwartz class satisfies this former of the following conditions, cf. Treves (2016).

Definition 2 (Polynomial Growth of Derivatives). Let d, D, M € R. A smooth function g : R4 —
RP is in the class Cp3y,.o.. ([0, 1MERPYif C,r = 0 are such that ||g|| o= jo,177ay < C's" for each

(e}
s € N4. Here, || - || is the uniform Sobolev norm on the specified domain.

In Appendix E.2 we show that, in one dimension, any real analytic function whose power series
expansion at 0, has coefficients growing at an O((s + 1)) rate belongs to g € Cp, ([0, 1], R).
One can easily extend this argument to multiple dimensions to obtain further examples.

We consider an realizable PAC learning problem, determined by a smooth 1-Lipschitz target function
f* : R? — RP which we would like to learn using a sequence of random observations ((X £ Yt))

as our training data. That is, for eacht € N
Y= f1(Xy)

We aim to learn f from a single path. The ability of a model to reliably recover the function
f: R4 — RP at time ¢, given the input X, is quantified by the ¢-future risk

Re(f) LE[0(f(Xy), f*(X0))].
The time-t excess-risk R, which is generally unobservable, is estimated by a single-path estimator
known as the empirical risk computed using all the noisy samples to observed thus far

teN

N
ROV 2 5 D P, (X))

Our objective is to obtain a statistical learning guarantee on the quality of our estimate of the target
function given by the time ¢ (€ N ) generalization gap ‘Rt( ) —=RM(f) ‘

We now summarize our setting and all parameters defining it, e.g. dimension, number of attention
heads in the transformer, growth rate of the derivatives of the target and loss functions, etc.

Setting 2.1 (Standing Assumptions). Consider a hypothesis class TC. Fix ry,r¢,Cr,Cy¢ 2 0, as
well as a target function f* and loss function ¢ with

[ € Cooycypr, RMERP) and - e Cp3 (R?P | R);

oly:Cy,ry
and suppose that Assumption I and either of 2 or 3 hold.
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3 MAIN RESULTS

3.1 FUTURE GENERALIZATION

Having formalized our setting, we may now state our first main result, which is a version
of (FutureGen). This version provides insights on the future-generalization of transformers via: 1) ex-
plicit constants and 2) explicit phase transition times above which the convergence rate in (FutureGen)
accelerates by a polylogarithmic factor. We express these times of convergence rate acceleration
using the following convergence rate function

d—2s+s/d . .
% if Md > 2s  (initial phases)

rates(N) £ l‘;g}\(lcl%) if Md=2s (critical phase) (rate)
ldg(c N)¥/ (2s+1)

cN1/2

if Md < 2s (eventual phases)

def.

where ¢ 1 — k, ¢2 “ ¢*/4, and 0 < K < 1 are constants depending only on X..

Theorem 1 (Pathwise Generalization Bounds for Transformers). In Setting 2.1, there exists k € (0, 1),
depending only on X., and to € Ny, such that for eachto < N < t < oo and § € (0, 1] the following
holds with probability at-least 1 — §

Sup | Ruax(t. v} (T) = RO S Y Ineprair) Ce,Tc,K,s< k' + rates(N) +
’ — ’ ~~~
TeTC s=0 0 T

21n(1/9)
N1/2
(IIT)

with I. as indicator function, rates(N) as in (rate), the constant Cy ¢ ks = supreye 16(T, f*)|lc,

def.

and the transition times (7,)32, are given iteratively by 19 = 0 and for each s € N

Ts 2 inf {t > 1s_1: Coe,k,s(K! + rates(N) + Y—=" l(ii(vl/é)) < Cprek.s1(K +rates 1 (N) + \/%W)}'

Furthermore, ¢ 1 — k, ¢ % ¢5/% % “ lim,_, . k' = 0, and < hides an absolute constant.

Phase transition times for Transformer Block

Theorem | implies the order estimate in (FutureGen). This ——
is because Cy 7e ks is constant in N and rates(N) < 10 | T s22
rates_1(IN); thus, for every s > 0 the right-hand side " s=4

our bound is eventually bounded by any Ci7c ks(k' + o

V/2In(1/6)/N'/? 4 rate,(N)) for N large enough. How- “
ever, unlike the order estimate (FutureGen), Theorem 1 pro- 10’
vides an explicit description of the actual size of the future-

generalization gap in terms of three factors which we now input dimension (¢
interpret.

Figure 2: Transition times: (y-axis)

Non-Stationarity Term. Term (I) quantifies the rate at which when the fumre'generahz.anm.l bound
accelerates by a polylogarithmic factor

thq data-generating Markov process X. becomes stationary. (in V) for a single transformer block in
This term only depends on the time ¢ and a constant 0<k < 1 terms of the input dimension d (x axis).
determined only by X.. We use the notational convention See Section 3.2 for details on constants.
KX = tli)m kt = 0 to describe the limiting case.

Model C?)omplexity Term (Phase Transitions). Term (II) captures the complexity of the trans-
former network in terms of the number of self-attention heads, depth, width, and the activation
function used to define the class 7C. Each constant C; < ... < Cs < ... collects the higher-
order sensitivities (s order partial derivatives; where s € N, ) of the transformer model. Each
0=1 <7 <...< 7 <indicates the times at which there is a phase-transition in the convergence
rate of the generalization bound accelerates. Once ¢ > 75, then the convergence rate of Term (II)
accelerates, roughly speaking, by a reciprocal log-factor of 1/log(/N'). Observe that the rate function
is asymptotically equal to the rate function from the central limit theorem, as s tends to infinity;
that is, lim,_,, rates(N) = 1/(cv/N). The rate (rate) is the (optimal) rate at which the empirical
measure generated by observations from a Markov process converges to its stationary distribution in
1-Wasserstein distance Kloeckner (2020); Riekert (2022). The polylogarithmic factor is removable if
the data is i.i.d. Graf and Luschgy (2000); Dereich et al. (2013).
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C#-bound of Activation Functions C=-bound of Transformer Building Blocks C*-bound of Transfomer Block
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Figure 3: Effects of Transformer Components of FutureGen: (left to right.) The first figure shows the C'* bound
of various activation functions according to results in Appendix F.3.3. The second illustrates C* bounds for
Multi-Head Attention (Definition 4), single-layer perceptrons, and the layer norm. The third shows the C*-bound
of a transformer block (Definition 5), distinguishing if the bound was computed level-specific (Corollary 1) or
type specific (Theorem 5). The parameters used for the above plots are the base cases of Tables 1 to 5.

Probabilistic Validity Term. Term (III) captures the cost of the bound being valid with probability
at least 1 —¢. The convergence rate of this term cannot be improved due to the central limit theorem. It
is responsible for the overall convergence rate of our generalization bound being “stuck” at the optimal

rate of O(1/+/N) from the central limit theorem; as the other two terms converge exponentially to 0.

3.2 BOUND OF THE C'*-NORM OF TRANSFORMER CLASSES

Our second main result is the computation of Cy 7¢ ks, which encodes the maximal size of the first
s partial derivatives of any transformer in the class 7C. Thus, it encodes the complexity of the class
TC (e.g. int terms of number of attention heads, depth, width, etc...), the size of the compact set K,
and the smoothness of the loss function and target functions.

We note that, any uniform generalization bound for smooth functions thus necessarily contains
constants of the same order hidden within the big O. See e.g. the entropy bound in (van der Vaart
and Wellner, 2023, Theorem 2.71) which yields VC-dimension bounds via standard Dudley integral
estimates in the i.i.d. case.

Critically, when the function class is defined by function composition, i.e. as in deep learning, then
these maximal partial derivatives tend to grow factorially in s. This is a feature of the derivatives
of composite functions in high dimensions as characterized by the multi-variate chain rule (i.e. the
Faa di Bruno formula Faa di Bruno (1855); Constantine and Savits (1996)). The combinatorics
of these partial derivatives is encoded by the coefficients in the well-studied bell-polynomials Bell
(1934); Mihoubi (2008); Wang and Wang (2009) whose growth rate has been recently understood
in Khorunzhiy (2022) and contains factors of the order of O( (-2 (1 + 0(1)))").

elns

Remark that, in the feedforward case, i.e. when no layernorms or multihead attention are used, then
the s = 1 case is bounded above by the well-studied path-norms; see e.g. Bartlett et al. (2017);
Neyshabur et al. (2015), which are simply the product of the weight matrices of in the network and
serve as a simple upper-bound for the largest Lipschitz constant (i.e. C! norm) of the class 7C. These
constants are included as very specific cases of our constant bounds. This is why we present two
versions: a weaker but simpler bound, as well as a more accurate but detailed bound.

Theorem 2 (7C-bound in terms of O). In the case of a single transformer block Cy rc i s is of the
order of

4

s
0 f* LN s N s* ~PL s? MH s? g2s° s°+s%+st
O( ! Crin(<8)°Criy(<8)” Cr(<s)” (14O (<s) D* d= ey Tt
~——
Loss & Target Layernorms Perceptron Multihead A i 1i i Generic: s-th order Derivative

where the “generic higher-order derivative constant” is cs = —25—(1 + o(1)). Further,

elns
Cé,f* _ O(C; 5”‘+252)7 C}?L(gs) — O(CPE + dff”CT”s&fZ(CPE)SJrl),
Cfgv(gs) = O(s(1+s)/2c§), C?{m(gs) = 0(6_28]\'[2<2dind[( ccs)’(s- cm)23+2).

Here &, sY/2(n/e)*cS; di, is the input-dimension and d is the key-dimension of the multi-head
attention MH (see Definition 4 for details); dg is the width of the neural network PL (see Definition 5
for details); ¢~ as well as ¢ are parameter bounds on PL as well as MH, respectively (see
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Theorem 7 for details); and ||o||s is the C*-bound of the activation function used. If no layer norms,
SLP, or multi head attention mechanisms are included in the class, then their respective terms in our
order estimate should be taken to be 1.

Proof. The result is a direct consequence of Theorems 7 and 9. The order of the bounds C,%N , CPE,
and C%" are given by Corollaries 4, 8 and 9. O

See Appendix F for a full version of this result for deep transformers (Theorem 7).

Explicit bound computation. We further refined this result by deriving formulae that enable
the precise calculation of these bounds. In order to enhance the accuracy of these estimates, we
distinguished not only between different levels of derivatives but also between various types of
derivatives. An exemplary improvement of the bound by this distinction can be seen on the RHS of
Figure 3. Since these results are fairly technical and verbose, we relegate them to Appendix F.3, see
Theorem 6 for the analogue result to Theorem 7 and Lemmata 7, 12 and 13 for tighter bounds on
CIQM ,CFF, and C7. Additionally, we provide software tools to efficiently compute the bounds of
a given transformer architecture.’

3.2.1 IMPLICATIONS OF ARCHITECTURE CHOICES.

Figure 3 illustrates the effect of various building blocks in the
construction of a transformer (e.g. activation choice, multi-
head attention (MHA), layernorms) through their effect on the
constants in our generalization bounds. While Tables 1 to 5
contain more details, highlight here some key implications that
architecture choices have on the bound: n e

RN
SRwNR

I) Choice of Activation Function: We found (see Lemmata 8
to 11) that the C*-bounds of activation function may vary sub-
stantially, framing softplus and swish as the more regular, d o
and tanh resulting in the highest bound. Note that the activa-
tion bound impacts the PL-bound linearly and therefore effects
the transformer-block bound of order s2.

cox

Figure 4: Absolute changes in C*-

II) Effects of Three Different Block-Types: Considering Pound for changes in architecture.
Changes in dimensions (d.) are X2,
the three components — MH, LA, PL — that make up a trans- . .
I while changes in parameter-bounds
former block, we observe that for low s the regularization by (C") are x10, from the base parame-
LN has the highest bound, but becomes less relevant with the (e (see Tables 1 to 5).

exponential increase of the MH, PL-bounds for larger s.

IIT) Weight Size for MLP vs. Multi-Head Attention: As evident in Figure 4 (and Table 4), the
parameter-bounds on PL (denoted by C4+F) seem to have a more substantial impact on the bound
than the parameter bounds of M#H. For the latter, bounds on key- and query-matrices (C%°?) seem
to have bigger impacts for lower s than value- and aggregation-matrices (C'V>"V) (see Definition 4 for
details on notation), however show larger growth rates for larger s, as also shown in Table 5.

IV) Effect of Dimensions (Key, Input, etc...): Eventually, we can examine how various di-
mensions effect the bound. The input dimension (d;,,) has a slightly higher impact than the output
dimension (dyy,¢). When it comes to choosing latent dimensions, scaling the hidden dimension of the
‘PL (dg), has an effect similar to changes in the output dimension, and substantially higher comparing
to the key-dimension dx (see Definitions 4 and 5 in Appendix C for details and notation).

Consequentially, we show the effect on the phase-transition times ()2, defined in Theorem 1,
dictating when the bound accelerates by a polylogarithmic factor in N.

3.3 INTUITION VIA PROOF SKETCH
The first step in deriving our generalization bounds is to quantify the regularity of the transformer
model as a function of its depth, number of attention heads, and norm of its weight matrices. By

'The source code to compute derivative bounds is available at https://anonymous.4open.
science/r/transfomer-bounds—-B476.
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regularity, we mean the number and size of the continuous partial derivatives admitted by the
transformer. To quantify the size of the partial derivatives of the transformer we first remark that it is
smooth; that is, it admits continuous partial derivatives of all orders (see Theorem 6).

We will uniformly bound the generalization capabilities of the class of transformers 7 € TC by
instead uniformly bounding the generalization of any C* functions on R ¢ with C*-norm at most
equal to the largest C*-norm in the class 7C. That is, we control the right-hand side of

SUPpc7e ’Rt(T) — R(N) (T)| < Supfec%(RM.i) ’Rt(f) - R(N)(f)| (2)

where R = Cy 7¢ ks as defined in Theorem 1, describes the higher-order fluctuations of the
“difference” between the target function f* and any transformer 7~ € 7C, as quantified by the loss
function ¢. Our first step is thus to bound R by upper-bounding maximal size of the s partial
derivatives of all transformers 7 € 7C. Explicit bounds are computed in Theorem 6, and their order
estimates (as a function of s) are given in Theorem 7. Combing these estimates with the maximal s**
partial derivatives of the loss and target function, via a Fad di Bruno-type formula (in Theorem 3 or
Lemma 4), which is a multivariant higher-order chain rule, yields our estimate for R in (2).

Now that we have bounded R, appearing in the supremum term in (2), it remains to translate this
into a generalization bound. We can do this by relating it to the so-called smooth Wasserstein
distance dg between the distribution of the Markov chain at time p; and its empirical distribution
pN) L1 /N 25:1 dx, obtained by collecting samples up to time N. The smooth Wasserstein
distance d, studied by Kloeckner (2020); Riekert (2022); Hou et al. (2023a), is the integral probability
metric (IPM)-type distance quantifying the distance between any two Borel probability measures u, v
on R4 as the maximal distance which they can produced when tested on any function in C§ (R"/4)

ds (:U/v V) g sup EXNH[Q(X)] - EYNV[Q(Y)]
gGCf(R”d)

The right-hand side (RHS) of (2) can be expressed as R times the d distance between the (true)
distribution /¢ of the process X. at time ¢ and the (empirical) distribution ;") collected from samples

RHS(2) < sup  [[O(f, f)llcs dslpe, ™). 3)

fGCf%(R”d)

The d, distance between the process X. at time ¢, i.e. 1, and the running empirical distribution z(™)

can be accomplished in two steps. First, we fast-forward time and bound the d-distance between
) and the stationary distribution ji., of the data-generating Markov chain X. (at time ¢ = c0).
We then rewind time and bound the ds-distance between the stationary distribution zi, and the
distribution p; of the Markov process up to time ¢; by setting up the i.i.d. concentration of measure
results of Kloeckner (2019); Riekert (2022). This last step is possible since our assumptions on X.
essentially guarantee that it has a finite (approximate) mixing time.

4 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We provided a theoretical foundation for the future-generalization of transformer trained on a single
perturbed realization of a time-series trajectory (Theorem 1). Our results thus help provide insight on
the reliability of LLMs outside the i.i.d. framework and their principled use in time-series analysis.

We obtain explicit estimates on the constants in these generalization bounds which relied on explicitly
bounding all the higher-order derivatives of transformers; in terms of their number of attention
heads, activation functions, depth, width, and weights constraints (Theorems 6 and 7). These bounds
can equally be used in conjunction with classical tools, e.g. Rademacher or VC-type bounds in the
i.i.d. setting, or other applications where one needs to understand the higher-order sensitivities of
transformers to their inputs.

Several dynamical systems and financial markets have long-term memory and thus are non-Markovian.
In future work, it would be interesting to extend our results to cover such settings as well. It would
be interesting to extend our generalizations bounds to the fully non-Markovian setting, where every
Markovian lift of X. is infinite-dimensional. However, one would have to extend the concentration of
measure result used in Benitez et al. (2024) to allow for non-i.i.d. data or use a local Glivenko-Cantelli
theorem such as Cohen and Kontorovich (2023). One would only need more general concentration
inequalities than Proposition 5, which is already extended well beyond the standard i.i.d. setting.
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A  NOTATION

In this section, we present the notation that will be employed throughout the appendix. This notation
builds upon the framework established in the main body of the text, while incorporating additional
levels of specificity. Given the technical nature of certain results discussed herein, a more detailed
and precise formulation of the notation is necessary to ensure clarity and rigor in the statements that
follow.

Notation 1 (Multi-index Notation). We will fix the following multivariate notation.

* Multi-indices ot (avy, . . ., a) € N¥ k € N are denoted by Greek letters.

Y

o The sum of entries is given by |«
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Its faculty is defined by o! & Hle ayg!,
* We denote the derivative w.r.t. o by D*£01%1 /925" - 923 if |a| > 0 else D* is the
identity operator.
e For a vector x € R*, we write x* & Hle xpk.
* We define the relation o < 3 for 3 € N¥ if one of the three following holds
(i) lof <[
(ii) |o| = |B|, and oy < B1; or
(iii) o] = |B|, and a; = B; fori € {1,...,5 — 1} and a; < B forj € {2,...,k}.
e Unit vectors e; € {0, 1} are defined by (e;); = 0 fori # j and (e;); = 1.

cs of a smooth function f : R¢ — R is defined

s

Definition 3 (C*-norm). For any s > 0, the norm || - |
by

o f

0%, - ..0Tq,

as—lf

0%q, ...0%q,

def.

Ifllee = _max - max

).

y
o e e Lip

We use the following notation to streamline the analytic challenges the tacking of C'*-norms.

Notation 2 (Order operator for multi-indeces). Define the order operator o for multi-indeces by
OZNk—>Nk, Qlyeeny O V2 Op (1)5 -+ 3 O (K)s

where 7o - {1,... k} = {1,... k} s.t. ar (1) = ... = ar (k). Wewrite a ~ (B if o(a) = o(B) for

a, 3 € NF. Further, denote by OF the set {o(t) : a € N¥, |a| = n} and write O% £ {o(a) : a €

N*.|a| < n}. Eventually, define N (o) £ #|{a’ € N* : o(a/) = a}|.

We will use the following notation to tabulate the sizes of a C'*-norm.

Notation 3 (Derivatives). Let k € N, K € R be a set, f : K — R™ a function and o € OF an
ordered multi-index. Then,

e the uniform bound of o-like derivatives on K is given by

C’{{(a) = ie{T.a.b.},(m} I$1~a<)x{ 107 fill e

* we define the bound at / up to derivative level n by

C’If((n) = Iax C’};(a), C{{(gn) = max C’};(oz)7

» we write || K|| £ sup,cg |||, and
* the (°°-matrix norm of any n X m matrix A € R"*"™ is abbreviated as

cA e max | A ;1.
i€{l,...,n},j€{1,....m}

When segmenting, truncating, or manipulating time series we will using the following notation.
Notation 4 (Time Series Notation). The following notation is when indexing paths of any time series.
* Realized Path up to time ¢ is denoted by x<t = (25)scz, s<t-

* Segment of a Path Given a sequence = € R” and integers s < t, we denote x4 £ (z;)i_,.

Lastly, we recorded some additional notations that were required throughout our manuscript.
Notation 5 (Miscellaneous). We define:
* N-Simplex. For N € N we write

N
AvEfue(o,1V: > u =1}

i=1
* Infinite powers: For ¢ € (0, 1), we define
% lim ¢ =0.

t—o00
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* Reshape operator: For any F1, Fo € Ny, the operator is given by reshapep, . r,, mapping
any vector u, € R P2 1o the Fy x Fy matrix

3 o . .
reshapep, . g, ()i = T(i—1)Fotj-

We denote the inverse of the map reshapey, , p, by vecp, p, : RF1*F2 — RFEF2,
* Softmax operator: For each F' € N and each x € RY,

softmax(z) £ smax(x) = (exp(xi)/Zfz_Ol exp(z;))i,t
B EXAMPLES OF DATA-GENERATING PROCESSES SATISFYING
ASSUMPTIONS 1 AND 2

This section provides several examples of stochastic (data-generating) processes which satisfy our
assumptions and are outside the i.i.d. restrictions.

B.1 PROJECTED EXPONENTIALLY ERGODIC LATENT PROCESSES
Proposition 2 (Lipschitz-Transformed SDEs with Overdampened Drift). In the setting of Example 1,
{(P™(,-))5l0}ae0,1)¢ satisfies both Assumptions 1 and 2.

The proof of Proposition 2 uses the following lemma.
Lemma 1 (Enforcing Boundedness via 1-Lipschitz Maps Preserves Exponential Ergodicity). Let
d,d € N and Z. be a Markov process on R? satisfying Assumption 2. Given any bounded Lipschitz

Sfunction f : R — R the Markov process X. 2 (X)) in RY, defined for eachn by X, f(Z,),
satisfies both Assumption 1 and 2.

Proof of Lemma 1. Since f is bounded, then there exists some r > 0 such that f(R?) C BZ% {u €
R? : |lu|| <}. Foreach z € Ny, let P*(z," )£ P(X; € |Xo = z) = P(f(Z) € -|f(Zp) =
f(x)) = faP™(x,-) then the Kantorovich duality, see e.g. (Villani, 2009, Theorem 5.10), implies
that fy : P1(R?) — P1(B?) is 1-Lipschitz; whence (4) imples that: for each = € [0, 1]¢ and every
n € N we have

Wi (P"(x,-), P"(y,-)) < Lip(f)W1(P"(x,-), P"(y,-)) < k|lz —y]|. )

Thus, Assumption 2 holds. Finally, we note that Assumption 1 holds since each P"(x,-) € P;(BY).
O

Proof of Proposition 2. For any p € P1(RP) consider the unique strong solution (which exists by
our Lipschitz assumption) For the following SDE (which is a Markov process)

t ¢
Z{‘:Z{)‘—F/O /,L(Zg‘)ds—&—/o Wi

where W. £ (W,,)22, is a d-dimensional Brownian motion and Z{ is distributed according to x. For
every n € Ny let P"puP(Z* € -) and, for each z € R, let P"(x,-) £ P"6,. Then (Luo and
Wang, 2016, Theorem 1.1) implies that: for all n € N and each u, v € P;(R?) we have

Wi (ﬁ”,u,ﬁ"u) < kWh(p,v) (5)

where k = exp(—K); note that & € (0,1) since K > 0. That is, (P")2, satisfies Assumption 2
upon taking u = &, and v = §,, for any given z,y € R% since Wi (6,,6,) = ||z — y| , see
e.g. (Villani, 2009, page 99 point 5) or note that the only coupling between ¢, and J,, is the product
measure d; @ dy).

Wi (Pn(xa ')a Pn(x7 )) <K ||'r - y”

Applying Lemma 1 yields the conclusion. O

Proposition 3. Consider the setting of Example 2. Then, the process X. satisfies both Assumptions |
and 2.

21



Under review as a conference paper at ICLR 2025

Proof of Proposition 3. Under our assumptions o satisfies (Wang, 2023, Assumption (A8) (1) and
(A8) (3)). Therefore, the stochastic process Z. = (Z;),>o defined by

t
Z, / o(Z) AW, (©)
0

where W. is a d-dimensional Brownian motion, satisfies the conditions of (Wang, 2023, Corollary 4.4)
from which we deduce that Z. satisfies Assumption 2. Applying Lemma 1 yields the conclusion. [

B.2 MARKOV PROCESSES SATISFYING A LOG-SOBOLEV INEQUALITIES

Proof of Proposition 1. Under the log-Sobolev Assumption 3, (Bobkov and Gotze, 1999, Theorem
1.3) can be applied to i and P(x, -) for each x € X, implying that the transport inequalities hold: for
each v € P(X) and each i € {fi, o} U {P(z,") }rex

Wi(fi, v)* < 2C% KL(v|f1) )

where we recall the definition of the Kullback-Leibler divergence KL(v|u) £ Ex ., [log(g—; (X))

Thus, (7) implies that the following exponential contractility property of the Markov kernel: there
exists some £ € (0, 1) such that for each 2,7 € X and every t € N,

Wi (PH(z,-), PY(2,-)) < k' |lz — Z|. (8)
This completes the proof. O

C TRANSFORMER DEFINITION DETAILS

For any F' € N, we will consider a weighted (parametric) variant of the layer normalization function
of Ba et al. (2016), which permits a variable level of regularization. Our weighted layer normalization
is defined by LayerNorm : RF — R defined for any u € RY by

def. (’U, — :uw)
LN (u;y, B, w) &y ———
(u;7, B,w) =y 1+(a;f)2+

where p2 % S°F Wy, and (0)2 2 Y8 8wy — py]|%, splus 2 In(1 4 exp(-)), parameters
B € RF and v € R, and the normalization strength parameter w € [0, 1] with w = 1 being the
default choice. Here, we prohibit the layer norm from magnifying the size of its outputs when the
layer-wise weighted variance o is small.”

Definition 4 (Multi-Head Self-Attention). Fix d;,, € N. For x € RM*dn Q. K ¢ R4 X4 and
V e R Xdin ywhere we have key-dimension di € N and value-dimension dy € N; we define

M M
(Quy, Kai) \M Mxd
Att(z; Q, K,V 2( softmax( —_ Va; € RY>xav,
( ) g () V)

For H € N, set Q= (QU)[L K= (KM)L, C Réxdn vt (VI - C RIWv>¥din, and
W WY C Rénxdv For g € RM*din e define

H M
MH(z;Q, K, V, W) & <Z W Att(z; QM) K, V<h>)m) e RMxdin,

h=1 m=1

Each transformer block takes a set of inputs and intersperses normalization via layer norms, contextual
comparisons via multi-head attention mechanisms, and non-linear transformations via a single layer
perceptron (SLP). We also allow the transformer block to extend or contract the length of the generated
sequence.

Definition 5 (Transformer Block). Fix a non-affine activation function o € C*°(R). Fix a di-
mensional multi-index d = (din,dg,dv,dg,dowt) € N°, a sequence length M € N, and a

Note that this formulation of the layer norm avoids division by 0 when the entries of u are identical.
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number of self-attention heads H € N.. A transformer block is a permutation equivariant map
TB : RMXdin _ RMXdou pepresented for each x € RM X din

M
TB(x) & (c/v (BWa!, + BP (0 e (Axl, +a)); va,ﬁz,wz))
M m (9)

8
|

1 (LN (2 + M QK VW) B ) )

m=
for 1,72 € R, wi,wy € [0,1], By € Rin, By € Riout, 4 € R¥txdin g ¢ Rt B1) ¢ RboueXdin,
B®) g RiowXdic qnd Q, K, V,W as in Definition 4. Above, we write o for a pointwise application.

The class of transformer blocks with representation (9) and bounds on
1,72, b1, B2, a, A, B B@ Q. K, V,W is denoted by TIZ.

A transformer concatenates several transformer blocks before passing their outputs to an affine layer
and ultimately outputting its prediction.

Definition 6 (Transformers). Fix depth L € N, memory M € N, width W € N5, number of
heads H € N, and input-output dimensions D,d € Ny. A transformer (network) is a map
T : RM*D 5 R with representation

T(x) = A(vecyppqr, 0 TBro---o TBi(z)) +b (10)

where multi-indices d' = (d,, d%, d.,,db, d’ ) < W are such that d. = D, d'* = d. . for each
l=1,...,L—1, and where H* (H")L_, are the number of self-attention heads, C' £ (CY)E_, the
parameter bounds, and for 1 = 1,..., L we have TB; € TIX;, where TI, is a transformer block

class with di, = d', M = M, and H = H'. Furthermore, A € RIMdiue and b € RY.

The set of transformer networks with representation (10) and bounds on A, b is denoted by TC.

D ELUCIDATION OF CONSTANTS IN THEOREM 1

The aim of this section is to elucidate the magnitude of the constants appearing in Theorem 1. We
aim of to make each of these concrete by numerically estimating them, which we report in a series of
tables. Importantly, we see how subtle choices of the activation function used to define the transformer
model can have dramatic consequences on the size of these constants, which could otherwise be
hidden in big O notation.

Interestingly, in Tables 1 and 2, we see that the softplus activation function produces significantly
tighter bounds than the tanh activation function through much smaller constants, and the GeLU and
SWISH activation functions are a relatively comparable second-place.

The bounds depicted in Table 2 exhibits a notable trait of independence from both input dimension
and the compactum they are defined on. Notably, the selection of latent dimensionality demonstrates
a relatively minor influence in contrast to the pronounced impact of parameter bounds. This suggests
that while adjusting the latent dimension may have some effect, the primary driver of the derivative
bound lies within the constraints imposed on the parameters. Despite the seemingly conservative
nature of the chosen parameter-bounds, it is important to acknowledge their alignment with the
parameter ranges observed in trained transformer-models.

Note that the latter can be observed as well for Multi-Head attention (Table 5), however, we see
that here the input dimension (composed of d;,, and M) is of greater importance with respect to the
derivative bound.
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Table 1: C*-bounds of activation functions based on numerical maximization of analytic derivatives in Ap-
pendix F.3.3.

Bound softplus GeLU tanh Swish
ct 0.25 1.12 4.00 1.10
c? 0.10 0.48 8.00 0.50
c? 0.12 0.75 16.00 0.31
ct 0.13 1.66 32.00 0.50
c’ 0.25 4.34 156.65 0.66
c* 0.41 12.95 1651.32 1.50
ol 1.06 42.77 20405.43 2.91
c® 2.39 153.76 292561.95 8.50
c? 7.75 594.17 4769038.09 21.76
Cc'® 22,25 2445.69 87148321.71 77.50

The bound of the layer-norm (see Table 3) seems to be particularly effected by the domain it is
defined on, which can be problematic if it appears in later layers. An immediate solution is the usage
of its parameter -y, a more drastic approach would be applications in combination with an upstream
sigmoid activation.

Eventually, as also shown in Figure 3, we included in Tables 4 and 5 a comparison of using type-
specific bounds (see Theorem 5) or level-specific bounds (Theorem 4) in the computation of the
constants. This effect seems to become more evident with higher number of function compositions.

Table 2: Derivative Bounds of the Perceptron Layer by derivative level according to Lemma 13.

Parameters Derivative Level

o dg CABYBY) 1 2 3 4 5
softmax 64 1.0 17.00 50.47 236.94 1.34E+03 1.33E+04
tanh 129.00 1.02E+03 8.96E+03 9.83E+04 1.34E+06
GeLU 73.25 237.41 1.25E+03 1.16E+04 1.81E+05
SWISH 71.39 236.78 870.75 5.33E+03 4.13E+04
16 5.00 12.62 59.23 334.15 3.31E+03
32 9.00 25.24 118.47 668.30 6.63E+03
128 33.00 100.95 473.87 2.67E+03 2.65E+04
256 65.00 201.90 947.75 5.35E+03 5.30E+04
0.01 17.00 44 .32 180.94 919.87 6.52E+03
0.1 17.00 44,38 181.00 919.92 6.52E+03
10.0 17.00 660.15 5.62E+04 4.17E+06 6.73E+08
100.0 17.00 6.16E+04 5.60E+07 4.17E+10 6.73E+13
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Table 3: Layer Norm

Parameters Derivative Level
k K| 0% 1 2 3 4 5
5 10.0 0.1 18.67 28.56 104.49 1.49E+03 4.93E+03
3 18.67 28.56 104.49 945.21 4.93E+03
10 18.67 28.56 104.49 1.49E+03 4.93E+03
20 18.67 28.56 104.49 1.49E+03 4.93E+03
0.1 0.17 3.61 5.37 7.05 8.87
1.0 1.73 5.20 6.95 8.71 10.64
100.0 321.71 7.68E+03 7.88E+05 1.42E+08 4.39E+09
1000.0 321.71 7.68E+03 7.88E+05 1.42E+08 4.39E+09
0.01 1.73 2.07 2.24 2.42 2.59
1.0 321.71 7.75E+03 7.91E+05 1.42E+08 4.44E+09

Table 4: Derivative Bounds of Transformer Block by derivative level according to Theorem 7.

Parameters Derivative Level

din ctEQVWY  ofas®2y 1 2 3 4 5
5 0.01 0.001 0.01 21.15 1.13E+04 4.81E+06 2.59E+09 2.22E+11
— using derivative level — 212.70 1.53E+06 7.47E+09 4.55E+13 3.75E+16
10 111.32 4.51E+05 1.71E+09 1.45E+13 8.70E+16
20 1.29E+03 1.25E+08 3.47E+13 1.85E+19 2.20E+24
0.001 21.15 1.13E+04 4.81E+06 2.59E+09 2.22E+11
0.1 21.16 1.13E+04 4.83E+06 2.61E+09 2.32E+11
1.0 22.30 4.64E+04 6.96E+08 1.70E+13 1.95E+17
0.0001 5.05 126.27 1.12E+04 4.94E+06 6.87E+08
0.01 182.17 1.12E+06 4.66E+09 2.43E+13 1.71E+16
0.1 1.79E+03 1.12E+08 4.65E+12 2.42E+17 1.70E+21
0.0001 0.21 108.21 4.44E+04 2.27E+07 1.58E+09
0.001 2.09 1.09E+03 4.46E+05 2.29E+08 1.60E+10
0.1 240.09 2.45E+05 7.31E+08 4.96E+12 8.79E+15
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E SUPPORTING TECHNICAL RESULTS ON THE C*-NORMS OF SMOOTH
FUNCTIONS

This section contains many of the technical tools on which we build our analysis. Most results
concern smooth functions, especially their derivatives and those of compositions thereof. However,
the first set of results concerns the integral probability metric d.

E.1 INTEGRAL PROBABILITY METRICS AND RESTRICTION TO COMPACT SETS

Fix d € N, and a non-empty compact subset &' C R?. Observe that any Borel probability measure
1 on K can be canonically extended to a compactly supported Borel probability measure x4 on all
of R? via

i+ (B) £ u(BNK),
for any Borel subset B of R%; noting only that B N K is Borel.

Let P(K) denote the set of Borel probability measures on K. Suppose that K is a regular compact
set, i.e. the closure of its interior is itself. As usual, see Evans (2022), for any s € N, we denote
the set of functions from the interior of K to R with s continuous partial derivatives thereon and
with a continuous extension to K by C*(K). This space, is a Banach space when equipped with the
(semi-)norm

ok
| flls:rc & maxg=1,. -1 MaXqe(1,.. 44+ SUDyex ’ ﬁ%(“)

1

+ maxaeq1,...,dps—1 Lip(%) .
We may define an associated integral probability metric ds.x on P(K) via

dex(p,v) = sup |[Ex~u[f(X)] = Ex~[f(X)]]

fEC*(K)

for any i, v € P(K). The main purpose of this technical subsection is simply to reassure ourselves,
and the reader, that quantities d. g (11, ) and ds(u™, v™) are equal for any p, v € P(K). Therefore,
we may use them interchangeably.
Lemma 2 (Consistency of Smooth IMP Extension - Beyond Regular Compact Sets). Fix d,s € N
and let K be a non-empty regular compact subset of R%. For any p,v € P(K) the following holds

de:xc (p1,v) = dS(N+v V+)~

Proof. Let int(K) denote the interior of K, By the Whitney extension theorem, as formulated in
(Fefferman, 2005, Theorem A), for any f € CS(KG) there exists a C*-extension F' : R? — R of
flint(k) to all of R% i.e. Flint(xy = f and € C*(R?). Since any continuous function is uniformly
continuous on a compact set, int(K) is dense in K, and since uniformly continuous functions are
uniquely determined by their values on compact sets, then f coincides with F' on all of K (not only
on int(K)).

For any ;1 € P(K), by definition of u™ we have that

Ex o+ [F(X)] = Exopt [F(X)Ixex]| = Exopt [f(X) Ixer] = Ex~ulf(X)].
Therefore, for any p, v € P(K) we conclude that and each f € C*(K) there exists some F €
C*(R%) such that

Eyulf (V)] = Ey oo [f (V)] = Ex eyt [F(X)] = Ex v+ [F(X))].
Consequentially, dg.x (11, ) < ds(u™,vF). Conversely, since the restriction of any g € C*(R?) to
K belongs to C*(K) then the reverse inequality holds; namely, dg. rc (1, v) > ds(u™, vT). O
By Lemma 2 we henceforth may interpret any such y as its extension p+, without loss of generality.
E.2  EXAMPLES OF FUNCTIONS IN THE CLASSES C, .. ([0, 1]4,R) AND Cerpor ([0, 1]4,R)
In several learning theory papers, especially in the kernel ridge regression literature e.g. Simon
et al. (2023); Barzilai and Shamir (2023); Tsigler and Bartlett (2023); Simon et al. (2023); Cheng
et al. (2024a;b), one often quantifies the learnability of a target function in terms of some sort of
decay/growth rates of its coefficients in an appropriate expansion; e.g. the decay of its coefficients in

an eigenbasis associated to a kernel. These decay/growth rates are often equivalent to the smoothness
of a function®. Therefore, in a like spirit, we unpack the meaning of the smoothness condition in

3See e.g. (Atkinson and Han, 2012, page 120-121) for an example between the decay rate of the Laplacian
eigenspectrum characterize the smoothness of the functions in the RKHS of radially symmetric kernels.
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Assumption 2 which impacts the learning rates in Theorem 1 by giving examples of functions in the

classes C5 . ,([0,1]%,R) and C3, . ,.([0,1]%, R).

For brevity and transparency in our illustration, we consider the one-dimensional case. In particular,
this shows that the class is far from being void.

Proposition 4 (Functions with Polynomially/Exponentially Growing C*-Norms on [0, 1]). Fix
d € N, and let K be a non-empty regular compact subset of R%. If f : R — R is real-analytic with
power-series expansion at 0 given by

and if there are C,r > 0 such that

(i) Polynomial Growth: |3;| < Ce'" (Vi € N), then f € C ([0,1],R); or

poly c,r

(ii) Exponential Growth: |3;| < C(1+1i)" (Vi € N), then f € Cp5;, o ,.([0,1], R).

Proof. Since f is real-analytic we may consider its Maclaurin-Taylor series expansion which, co-

incides with >~ % B iif”l; meaning that for each i € N we have 3; = 9 f(0). Therefore, standard
analytic estimates and manipulations of the Maclaurin-Taylor series—see e.g. (Rudin, 1976, page
173)—yield

ﬁz . S+1 s
0<a:<1 ‘ _f ( ! 0221 ’ Z ! of +1($)’
=0 (11)
1
<m Bs(s+ 1)L

If (i) holds, then the right-hand side of (11) is bounded from above by C (s + 1)" and f €
C;;gly C. ~([0,1],R). If instead (ii) holds, then the right-hand side of (11) is bounded from above by
([0,1],R). O

Ce’" 1mply1ngf €Corpon

F PROOF OF THEOREM 1

Section 3.3, the proof will be largely broken down into two steps. First, we derive our concentration
of measure result for the empirical mean compared to the true mean general of an arbitrary C*
function applied to a random input, where the C*-norm of the C* function is at most R > 0 (in
Subsection F.2).

Next, (in Subsection F.2), we use the Faa di Bruno-type results in Section F.1 to bound the maximal
C® norm over the relevant class of transformer networks. We do this by first individually bounding
each of the C*-norms of its constituent pieces, namely the multi-head attention layers, the SLP blocks
with smooth activation functions, and then ultimately, we bound the C'*-norms of the composition of
transformer blocks using the earlier Faa di Bruno-type results.

Get: General Bounds on
Derivatives of Compositions
of Smooth Functions

A 4
Compute: Uniform Upper-
 Bound on Partial Derivatives » |
of Transformers of Order s
Generalization

.
o .' .-
For each integer s . K lq Bound of "order s"

4Ge:l Concentration of Measure .~'
Result for Integral Probability *
Metric With Non-i.i.d. Data

Figure 5: Workflow of the proof technique used to derive Theorem 1.
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Our main result (Theorem 1) is then then obtained upon merging these two sets of estimates. The
workflow which we use can be applied to derive generalization bounds for other machine learning,
and is summarized in Figure 5.

F.1 STEP O - BOUNDS ON THE C® REGULARITY OF MULTIVARIATE COMPOSITE FUNCTIONS
In this section, we will derive a bound for the Sobolev norm of multivariate composite functions.

F.1.1 MULTIVARIATE FAA DI BRUNO FORMULA REVISITED

We begin by establishing notation and stating the multivariate Faa di Bruno formula from Constantine
and Savits (1996).

Theorem 3 (Multivariate Faa di Bruno Formula, Constantine and Savits (1996)). Let n,m,k € N,
a € N* with |a| = n, and define

B, o) 2 FO gD (2, k), g™ (1, ).
Then, using the multivariate notation from Notation 1,
. 5 n 4(])9(:1:)] (J)
D%h(z) = Z (D" f)(g(z)) Z 'HW
nDI(C@I)
1<|B|<n 1, EP(a,8) J=
where
Pla, B) = {772( M, ™) e (WY, ¢ (¢, M) e Nk
3j<m:n® =0, =0fori<j,|n?|>0fori>;

0= ¢ << ¢, S0 9 = Band Ty InDICD = a}.

Proof. See Constantine and Savits (1996). O

F.1.2 UNIVERSAL BOUNDS

Theorem 4. In the notation of Theorem 3, we have for a compact set K C R* and an multi-index
a € =n,

, . 1
h g nevf n |
Cr(a) < ) ma.).cwn} Cg[K] (n")C(<n) Z Z a! H FOTREDL

n’e€{1, _
1|8l n,(eP(a,8)  J=1

where C(-), ct

K] (+), C%(-) are defined as in Notation 3.

Proof. Using Theorem 3,

o

)
IT%, (DS g)s
Cila)< X 1D fllgr) D 'H <1a>|(<<m o
1</Bl<n nCeP(a,8) =1
f [€2)
g Hz 1CK(< )
Z Cg[K](WD Z H n(])l (4) )W”\
1<|8I<n nCEP(a,f)  J=1
L 1
£ \IB] N S
> CoBNCh(<n) > Al G
1<|BI<n n¢eP(af)  g=1" M)

n

/ 1
< g nef n ! )
= 6?11 x n} Cg[K] (n')Cx (<n) Z Z a J n(j)!(c(j)!)m(j)‘
1<1Blsnn,(eP(a,B)  J=1
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Next, we refine the strategy used in Hou et al. (2023b) to convert our uniform risk-bound to a
concentration of measure problem. Once done, the remainder of the proof will be to obtain bounds
on the rate at which this measure concentrates.

Lemma 3. For o € {1,--- ,k}", it satisfies that

_ [2m]a] ||
Z Z Hn(])l C(J NIn@| eln|oz|<1+0(1))}

1<|Blsn n,CeP(a,p) J=1

where P(c, ) is as defined in Theorem 3.

Proof. Consider functions

9 D(@) = gD (a1, 24) % exp Zx] R, i=1,..2m,

f(g(l), .. ,g(Qm)) “ exp (Zg(i)) : R S R,
Since
ﬁf(g(l)"" 7g(2m)) _ f(g(l),m )g(2m)),

it follows that

(D) gV (@), g% ™ (@) = FlgW (@), g® ™ (@), VB E (L, 2m}".

Since 3
@f(g(l)<xla axk)7"' 7g(2m)(x17"' ,l’k))
2m .
0 - gD (zq, -,
:Z Gg(i)f(g(l)(’l‘la"' 7xk)7"' ’9(2 )($1,"- ,.I‘k)) i ( (;:E k)
i J
_Zf xlv' 5 k);"' 79(2177/)(‘%17_._ 7mk))g(7l)(x17 7xk)
2m .
99D (x)
FlgPD (@), g% (2))
Z ag() oz
=f(gV(x), -, g% (x Zg()
and

69(1) (3317 ) ﬂfk)
3x]—
we can show by the Faa di Bruno formula that

D“f(g(l)(m), .. 79(2771)(3;))

zg(i)(xl,--- L T),

2m
= D%exp (Z g(i)(x))
i=1
_ Z ! (Dvit exp)(inig(i)(x)) ﬁ [mj(inig(i)(x))rj
'71!(1!)71 ~-~’y‘a|!(‘a|!)7\°‘\ i—1 j=1 i=1 ’
where the summation on the right side of the last equality is over all |a|-tuples (y1,- -+ ,7Y|a|) = 0

suchthatl-’yl+2"yz+~-~+|04\"Y\a|:|O“~
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By the multivariate Faa di Bruno formula. For each n = 1, ..., s — 1 fixed, and for each o €
{1,---,k}", we have

D f(gW(x),- -, g*™ (x)) |
= Y DO HEV@), gt @) Y 12[ (DS (¢ (), - -.’g(%.m)(m))]n(ﬂ'

NN
1<IBlsn n,CEP(a,B) j=1 nN(CW)
Taking = (x1,- -+ ,x) = 0, we have

(g D(0). . g™ (0)) = |a\' ” 0 m
DGO, g*O) = 3 S iy e 11 @m
(M H(gD(0), - g™ (0)) = F(gD(0), - , g™ (0)) = exp(2m),

DC(j)(g(l)(x)7~-~ Lg% (2)) = (1,--- ,1).
Substituting the above derivatives into the Faa di Bruno formula, we obtain

||

!
Z Z H n@I(¢ nm\ _Z (A7 - (e H(2m)

1<[Bl<n n,¢eP(a,B)  i=1 A R e
|
Z 1! . .mall(m“)mm
o
—(2m)!( ‘al ) 1+ o(1))
em) (21 oy

where the last equality follows from (Khorunzhiy, 2022, Theorem 2.1),

af! [a] el N
Z’Yl HADY -y (1) e - (eln|a|> (1+O(1))| .

O

Corollary 1 (Level Specific C*-Norm Bounds for Transformer Blocks). In the notation of Theorem 4,
it holds for n € N,n > 1 that

On(<n) < , Jnax " Cg[K] (n’)C’{((gn)n/ {

and lfC{((gn) =1,

Cle(<n) < Clppq (sm)Ch(<n)" |

Proof. Follows directly from Theorem 4 and Lemma 3. O

F.1.3 BOUNDS IN DERIVATIVE TYPE

The goal of this section is to bound the derivative of composite functions by grouping with respect to
~, defined in Notation 2.

Theorem 5. In the notation of Theorem 3, we have for a compact set K C R* and an ordered
multi-index o € OF

) ; 2 (o (0(¢@)))m?]
Cl(a)<al Y N@ECYqB) Y. Hm’
pev™, n,¢EP! (@, ) J=1

where C.(+), C! (), CY-(-) are defined as in Notation 3; and

g[K
P, 8) = {n2(®,....n™) € ()", ¢ (¢, (™) e ()"
3j <m:n® =0, =0fori<j|n®|>0fori=j
0< ¢V g g™, 0 = Band I, i@l = a},
where o <1 B for o, 8 € NF if |a| < |B| and o # B.
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Proof. We have for a € OF

e

C(J)
8 T L (D6 g)illg
Ok(@) Smax > Dl D, o H DO
1<IBl<n n,CEP(v,8)  J=1
nC9( (J)))\n‘”\
f Ck(
> Clugle®max >, o] ()T
1<[Bl<n n,CEP(v,B)  J=1
Then
{1.(6(¢), . 0(c™))]|n,¢) € P'(a,m}
is invariant in « with respect to ~ and thus
@)yl
i CicloC))" 1
Z CQ[K](O(B)) Z H NG
1<IBILn n,¢EP (a,8)  J=1
Further, notice that
{DLn D), (0 ™0), ¢ ,0) € Pl B)}
is invariant in 3 with respect to ~ and the assertion follows. O
Corollary 2. In the notation of Theorem 5, if f is affine-linear,
CK( ) < mal C’f[K](el)C'f((oz),
where Cg (K] (e1) is the maximum weight of the matrix representing f.
Proof. Theorem 5 yields
(€]
(0(¢W@)Y))lm™l
| KA 7
Cic(e) SmalCgler) H 770 COHYmIT
n,¢EP! (v, 8) I=1
and since P’ (o, e1) = {(0,...,0,e1), (0, ...,0, )} the result follows. O

F.2 STEP 1 - CONCENTRATION OF MEASURE - BOUNDING THE RIGHT-HAND SIDE OF (2)
We are now ready to derive our main concentration of measure results used to derive our risk-bound.
This corresponds to bounding term (2) by controlling the integral probability term ds (g, uv )) in (3),
with high probability, where the randomness is due to the randomness of the empirical measure (™)

We state the next bound in the case where the input space if R%. Note that the results hold for any
other input dimension, such as Md, simply by relabeling d <— Md. Thus, it applies to the finite-
dimensional Markovian lifts X of data-generating processes X., where M € N, by relabeling.
Therefore, for notational minimality, we chose to label the input dimension d and not dM .
Proposition 5 (Excess Risk-Bound). Under Assumption 1 and either 2 or 3, let f* : R4 — RP,
¢:R*P — R, and R,r > 0 be a such that the composite map R? > x +— ((f*(z), f(z)) belongs
10 C4(RY) for all f € C2(RY). Then, there exists some r € (0,1) depending only on the Markov
chain X. and some ty € Ny such that for eachty < N < t < oo, each “rate-to-constant-tradeoff
parameter” s € Ny, and every “confidence level” § € (0, 1] the following

log (c N)d/(%_H)
" ) : ifd < 2s
. - 21n(1
sup ax{t,N} (.2 (g)| S Iit + an(/Q/ ) + logNilif\S lfd — 92
geCH(RY) ¢ d—2s+(s/d)
log (c N) .
N ifd =2s

holds with probability at least 1 — §; where 0 < k < 1, and we use the notation k°° = (.
Proof of Proposition 5. By hypothesis, f € C3(R?) the induced map
f:R*=R

] 12
v f(2) £0(f* (), f(2)) -

belongs to C'5(RY).
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Conversion to a Concentration of Measure Problem. Denote the empirical (random) measure
associated with the samples {(X,,, Y,,) 12 by ™) = LS™ 5 ¢+ ). Note that the generaliza-
tion bound is 0 for any constant function; therefore, we consider the bound over C3,(R) \ Lip, where
Lip, denotes the set of constant functions from R? to R. Note the bijection between C3,(R?) \ Lip,

s (mod : : 1
and C5(R*) \ Lip, given by f — mex (LT o) f. Therefore, we compute

R(f) —RM(g)] < sup  |Ru(f) = RN (9)]
gEC;’%(Rd)
<R sup  |Re(g) —RWM(g)|
g€Cs (RY)
<Rd05(ﬂmax{t,N}7M(N))
<R (des (e, 1) + dos (i, 1) ). (13)
av) ™)

Next, we bound terms (I) and (II).

Bounding Term (IV). If Assumption 2 holds then: for every ¢t € N each z,Z € X we have
Wi (P (z,-), PY(Z,-)) < ' Wi (04, 05) = k' ||z — 2.
If, instead, we operate under the log-Sobolev Assumption 3, then (Bobkov and Gétze, 1999, Theorem
1.3) can be applied to i and P(z, -) for each z € X, implying that the transport inequalities hold: for
eachv € P(X) and each i € {fi, o} U{P(x,") }zex
Wi (i, v)? < 2C? KL(v|j1) (14)

where we recall the definition of the Kullback—Leibler divergence KL(v|u) £ Ex ., [log(g—; (X))
Thus, (14) implies that the following exponential contractility property of the Markov kernel: there
exists some k € (0, 1) such that for each 2,7 € X and every t € N,

Wi (PY(z,-), PY(Z,)) < k' ||z — Z||. (15)
Furthermore, (15) implies that the conditions for (Riekert, 2022, Theorem 1.5) are met; whence, for
2 2
every € > 0 and each N € N the following holds with probability at-least 1 — exp (W)
(V) = dy (i, p™) < E[dy (1, u™)] + ¢, (16)

. w C\/21n(1/8) L _
for some C' > 0. Upon setting £ = Nk (16) implies that: for every N € N and each
d € (0, 1] the following holds with probability at-least 1 — &

+C\/2ln(1/6)

(V) = dq(, n™) < E[ds(/(zv,num)] N (17)
It remains to bound the expectation term (VI) in (17) to bound term (IV).
Under the exponential moment assumption 4, we have that

Exp(enle?™ =1 <7 (7 = 1) + (C 1+ 7). (18)
Therefore (Riekert, 2022, Proposition 1.3), implies that sup,cy, E[e®I¥| — 1] < co. Whence,
(Riekert, 2022, Assumption 2) holds with Young function ®(x) = L (ePI1Xel -

max{l,supteN+} ElefIXt —1]
1); namely, sup, ¢y, E[®(|X¢|)] < 1. Consequentially, (Riekert, 2022, Theorem 1.1) applies from
which we conclude that there is some ¢y € N such that for all N > ¢,

d/(2s)+1
log ((1—k) N .
- (él_m)1/2)1v1/2 ifl=d<2s
(VD) = E[dy (5, p™)] < log (1 = ) N)® if_(f%ff) cd—9e . (9
tog (A= N)"

(1,,€)s/d Ns/d

33



Under review as a conference paper at ICLR 2025

Combining the order estimate of (VI) in (19) with the estimate in (17) implies that: for every N > ¢
and each d € (0, 1] we have

log (c N) 4@t
B £/2In(1/6 oe (o
(V) = dy (1, 1) 5 Y222 4 osle) fd=2 (20)
d—2s+s/d
e <N])V/ if d = 2
where ¢ £ (1 — k), co £ ¢%/4 € (0,1), and < suppresses the absolute constant max{1, C’} > 0.
Bounding Term (V). Next, we bound (V) by computing
(V) =dcs(ue, 1) = sup  pelgl — alg]
geC; (RY)
< suppufg] — alg] @21
g€Lip; (RY)
=W (i, 1) (22)
=Wi(P' o, 1) (23)
=Wi(P* o, P i) (24)
<kEWh (o, i) £ k1 C (25)

where (21) held by definition of the MMD dc- and by the inclusion of C§(R?) C Lip, (R%), (22)
held by Kantorovich duality (see (Villani, 2009, Theorem 5.10)), (24) held since f is the stationary
probability measure for the Markov chain X, it is invariant to the action of the Markov kernel,
and (25) followed from (Olivera and Tudor, 2019, Corollary 21) since we deduced the exponential
contractility property (15) of the Markov kernel. Note that C' = W (i, [i) is a constant depending
only on the initial and stationary distributions of the Markov chain.

Conclusion. Incorporating the estimates for (V) and (IV) into the right-hand side of (13) implies
that: for every t, N > to, s € N, and each ¢ € (0, 1] the following holds

log (CN) /et )
max{t,N g) — g 21In(1 g | ¢
sup {t.N} R §[t<oo k' + W l(gNl/JZ ifd =2s
geCE (RY) ¢ d—2s4(s/d)
log (CN) .
N7 ifd=2s

with probability at-least 1 — §; where ¢ = (1 — k) and k € (0,1); where i« ok £0ift = co. O

F.3 STEP 2 (A) - BOUNDING THE C'°* REGULARITY OF TRANSFORMER BUILDING BLOCKS
We begin by the following simple remark, that if the activation function used to defined the transformer
is smooth, then so must the entire transformer model.

Proposition 6 (Transformers with Smooth Activation Functions are Smooth). Fix TC, as in Defini-
tion 6, then every transformer T € TC is smooth.

Theorem 6. The smoothness of Att follows directly from the smoothness of softmax, which immedi-
ately implies smoothness of MH since the operators used for its definition are smooth. Furthermore,
the LN is smooth due to its smooth and lower-bounded denominator and the activation function
o is smooth by definition, therefore we conclude that 7B € TI is smooth for every TI as in
Definition 5 and we obtain smoothness of 7~ € TC as a consequence. O

F.3.1 THE SOFTMAX FUNCTION

Lemma 4 (Representation of higher-order softmax derivatives). For F' € N and

F
smax : RF -5 RF, 2+ (eXp(afi)/Zfz_o1 eXlD(’JJj)Lﬁ1 -
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there exists for any multi-index o € N and m € {1,..., F} indicators (aﬁj)ifg(’&)"al!} c{o,1}
such that
Ja|!
smax(®) (z,,) = Zsmax(xm) H (aﬁj — smax(x;)), (26)
k=1 i,j€I(a)

where I(a) = {(i,j) :i=1,...,F,j=1,...,a;}.

Proof. For |a| =0, wehaven € {1,..., F} s.t. a,, = 1, therfore

J smax

smax(®) (z,,) = 3 () = smax(zy,) (mn — smax(x,)),
Ty
which is of the form (26). Now, let a € N*" arbitrary, therefore, by defining o/ € N¥ by o £ «; for
i #Znand o) £ a, — 1 (wlo.g. a, > 0). We have
& smax (@)
() 2
smax'* (x,,) oz, (Tm)
o la/|!
= 50 Z smax(Z, ) H (af; — smax(z;)).
™ k=1 i,jel(a’)
Since for any &
92 smax(T,, ) H (alF; — smax(z;))
Oy, - " !
i,jel(a’)
= smax(Z,) (mn — smax(x,)) H (ayfj — smax(z;))
i,jel(a’)
+smax(z,) Y —smax(zy) (65, —smax(z,))  [[ (0 — smax(a;)),
i'.j'el(a) i.jel(a)

(00)#33")

ke{l,...,|a/|+1
we can define (aﬁj)i’jél(a)la 1 {0,1} such that

||

8(2 smax () H (a;]fj —smax(x;)) = Zsmax(xm) H (aﬁj — smax(x;)).
" k=1

i,j€I(a’) ijel(a)

Since |a|! = |a] - |@|!, this concludes the proof. O

Lemma 5 (Bound of higher-order softmax derivatives). With Notation 3, it holds for any set
K € R¥ k € Nand any o € O _ that

C*"* () < ol

Proof. This is a direct consequence of the representation in Lemma 4 together with || smax || = 1. O

F.3.2 THE MULTI-HEAD SELF-ATTENTION MECHANISM
Lemma 6 (Bound of Dot product). In the notation of Definition 4 and for m € {1,..., M}
dp,, (-5 Q, K) : RM%n — RM 3 v (Qup, Kaj)JL,

we have using Notation 3

1. C?(pm(eﬂ < 2dindk | K||CRCK, where C9% max; yeq1, . dietx{1,...dn} |Qiirl CF

analogously, and | K || £ max,ck ||x||. Additionally,

2. 9P (a) < 2dx CRCK, for |a| = 2, and
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3. C}i{p"‘ (o) =0 for |a| > 2.
Since all bounds are not dependent on m we write C® short for CPm.

Proof. 1. Letl = (I1,l2) € {1,..., M} x {1,...,din}. Assume l; = m. If j # m, then

di din din
D dp,, (2;Q, K); = DY (Ka;)i > Qiit(wm)ir = Z ( > Kiir(x;)i )Qi,b,

i=1 /=1 = =1

implying

1D dp,, (z; Q, K)|| HKHZQWZK” dind || K[|CPCK. 27)

i'=1

Ifj=m

in din
D*! dpm(vaaK)j = D Z (Z Kzz xm i’ ) (Z Qi,i’(xm)i’)

=1 Nir=1 =1
dg din din
= Z (Ki,lQ Z Qiir (Tm)ir + Qity Z K i (xm)i')
i=1 ir=1 i'=1

therefore implying
1D dp,, (23 Q, K)|| < 2dind i || K[| COCH.

If Iy # mthen for j # I, D dp,,(z; Q, K); =0,forj =14

dr din di
D= dpm(x7QaK)]:DelZ(me>lZKz i’ Z(Zsz Tm z) i,la

i=1 =1 i=1 /=1
and we obtain (27) analogously.

2. Ifly =mand j #m

D* (-Tm l2z<ikl" 377 )qi,lg):Ov

i=1 i'=1

implying || D?¢ dp,, (x; Q, K)|| < 0, what analogously holds for /; # m. However, for [; = m and
Jg=m

(ZKzlginz xmz +Qzl22m:Kzz $m1> ZKzl2Q1l2+Qzl2 i,

=1 i'=1 i=1
we have
1D dp,, (23 Q, K)|| < 2 COC*.
3. Let I’ = (I3,l5) € {1,...,M} x {1,...,din}. Assume l; = m, j # m. If I} # j,
Deter dp, (2;Q,K); = 0. For lj = j follows D+ dp,. (z;Q, K); de K Qi

If [y = m, j # m, we have D¢ dp, (x;Q, K); = 0 in the case that [{ # m, and for I] # m we
obtain

Deter dp, (7;Q, K); ZKz 1 Qi + Qi K1y
=1

This means, we can use the bound

|Deter dp, (2;Q, K)|| < 2dx CRCK.
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Lemma 7 (Bound of Self-Attention for Derivative Type). Using the notation of Notation 3, Defini-
tion 4 and Lemma 6, it holds that

Mdin
Cﬁ-tt(a) < dinMOV (HK”O;(maxodp(a) + Z OélC;maXOdp(oz o 61))
1=1
where

ap (o))l
e <al Y N@Cmme) Y [[ECCDT o

D@19
BeOM ncerrap =1 17ME

Proof. Fix a € NF, and note that

D Att(z;Q, K, V)| < D™ Att(z;Q, K,V
I (z;Q )i me?ff’fM}ie{B?%v}” (z;Q )

and
D% Att(z; Q, K, V)i
M din
<D D D smaxodp(w; Q, K); Vi () |
j=1i'=0
<dinM  max |D% smaxodp(z; @, K),; Vi (x;)i]|.

je{l,...,M}i e{o
Due to the extended Leibnitz rule Hardy (2006), we have

| D% smax odp(z; Q, K); Vi i (z;)il

Mdlll
< [|D* smax o dp(x; Q, K); Viir(;)w || + Y Viwren|| D** smax o dp(a; Q, K); .
=1
Equation (28) follows directly from Theorem 5. O

Corollary 3 (Bound of Self-Attention for Derivative Level). Using the setting of Lemma 7, for
n €N,

CRM(n) < diwMCY O™ (<n) (| K| + ndin M) (29)
where ol
smax o smax n "
O3 (en) < O ()R (<) | S (14 0(1)] (30)

Proof. Equation (29) follows directly from Lemma 7; and (30) is a consequence of Corollary 1. [

Corollary 4 (Bound of Multi-head Self-Attention). In the notation of Definition 4, Theorem 5 and
Lemma 6 it holds that
O™ (a) < aldy C" O™ (a)
where .
Cat e max C’}?t( QK )), cWeE  max W,
he{l,....H} he{l,....H}

In particular, we have the following order estimate

n\ 2n
Ci%(< ) € O (M IRIIW IV Iea an IENIQUED 2(2) " 1),

Proof. From Corollary 2 and Lemma 7 we directly obtain
CM (o) <nldy CY diy MCV 0! (2did i | K| CYCHE)™

2nM n (€2
K| + ndinM 1+o(1)] .
< (1 + M) [ 2201y o)
Applying Stirling’s approximation, we have that
n n\ 2n -
cﬁt’*(a)eO<M2||K|||W||||V||<cdin,dk|K|||Q||||K|> n?(2) c) (32)
where C, £ 200 (1 4 o(1)) and ca,,, a4, £ 2dindk- O
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F.3.3 THE ACTIVATION FUNCTIONS

Lemma 8 (Derivatives of splus). For
splus: R - R, z+ In(1+exp(+))
it holds

splust) () = sig(x) £ 1/(1 + exp(—z))
and forn € N

(=1)"*FELS, o sig(z) (1 — sig(z))F,

NE

splus™ ) () = sig™ (z) =

x>~
Il

0

where Sy, i, are the Stirling numbers of the second kind, Sy, j, £ Z?:()(_Dk_j (f)]n

Proof. We start with Faa di Bruno’s formula,
LR
datn 8 T e T2

n

= (0RO (@)B, (@)

k=0

where f(z) 21+ exp(—x) and B, 1 (f(z)) denotes the Bell polynomials evaluated on f(z). Next,
we know the k-th derivative of f(z) is given by

d* .
Wf(x) =(1—-k),+ke ™.

Now, using the definition of the Bell polynomials B,, 1 (f(¢)), we have

By i(f(x)) = (=1)"Snre ™,
where S), ;; represents the Stirling numbers of the second kind. Substituting the expression for
B, 1(f(z)) into the derivative of sig(x), we obtain

dCZLn sig(z) = Z(_l)n+kklsn,k sig(z) (1 — sig(x))F.
k=0

O
Corollary 5. In the setting of Lemma 8, for n € N,
"L kFELS,
C*S(n) < 2k + 1)k’if-
Proof. For k € Nand z € [0, 1], we have
Py el —o)f,  (ff) (@) =1~ (k+1Dz)(1—2)
which amounts to (f*)/(z) = 0at 1/(k + 1), i.e
max f(x) = ! ( i )k— Gl
z€[0,1] E+1\k+1 (k+1)k+1°
O
Lemma 9 (Derivatives of GELU). For
GELU:R =R, z— zd(z),
it holds
GELU'(z) = ( )+ zo(z),
GELU™ (w) =2 () + 2o D(z), n>2, (33)
with p(x) = ﬁ e=v"/2, O(x fmoo p(u)du. The n-th derivative ofcp(:c) is given by
L SR L T AW LG o
o P = 5=e [kz_o <2k:>2 ey b
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Proof. By induction we can show that (33) holds. And the representation of the n-th derivative of
() follows from de Oliveira and Tkeda (2012). O

Corollary 6. Forn > 2, it holds in the setting of Lemma 9

1
COPLU () < ——— (nap—_obp—2 + an_1¢n_1) ,
( ) \/ﬂf(%) ( 2 2 1 1)
where
[n/2] [n/2] [n/2]
ef. n k Qk + 1 def. _z2 n—=k def. _22 n—k
Ay = ];:0 <2k)2 r ( > ) , b= Teaﬂéce 2 kEZO T . Cp= Tgﬁ(e T kgzo T .

Lemma 10 (Derivatives of tanh). For tanh : R — R, the n-th derivatives have the representation

mn

A tanhz = Oy (tanh ),

dx™
C(z):(—z)”(z:Jrl)zn:E " (z—1F n>1
n 2k: k 9 = .
k=0
Proof. See Boyadzhiev (2007). O

Corollary 7. In the setting of Lemma 10, for n € N, C**™*(n) = max,¢[_1,1) Cn(2).
Lemma 11 (Derivatives of SWISH). For

SWISH:R - R, s ——
1+e®
it holds forn > 1
dn n n+1
_ k—1 sk k—1 .k
—— SWISH(z) = n;(q) (k — 1)1, sigh(z) + = ;(4) (k — 1)!1S,, 411 sigh (),

where Sy, i, are Stirling numbers of the second kind, i.e.,
k
1 Ak
Snk = — —1) kE—ji)".
XD (H)w-s

Proof. By induction, we can show that
dn
deL

By (Minai and Williams, 1993, Theorem 2), the derivatives of the sigmod function can be represented
as

SWISH(z) = nsig" Y (z) 4+ zsig™ (), n>1.

n+1
sig™ (2) = 3 (=P (k — )1S,41 4 sigh(2), n > 1.
k=1
Combining the above two equations, we obtain the general form of the n-th derivative of the SWISH
function. O

F.3.4 THE LAYER NORM

Lemma 12 (Bound of the Layer Norm for Derivative Type). Fix k € N, 3 € R*, v € R, and
w € [0,1]. For the layer norm, given by

LN :RF 5 R*, z s y f(x)go X(z) + B

X ) 1
f:RF S RY g o — M(z); g:R—=R, uw~— ;
1+u
k k
M:RF SR, oo =Y a2 T:RESR, 2o DY (2 - M(2)%
ki ko
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holds for a compact symmetric set K (using Notation 3)

2m + 1 ]
CI%M(O‘)éa!’YZ( 92m ( Z Z Hn(J)l))n(”

m=1 o’'<a n,CEP (a’;m)j=1

|a’|=n—1
r CRlo(cO)™!
> I Gycomme )
where C3(a) = 2w|| K || for |a] = 1, C%(a) = 2w for |a| = 2, and CE (a) = 0 otherwise.

Proof. Note that

s = (" i,

implying C% (n) < (2n+1)!11272", 11 denoting the double factorial. We have further C’If( (@) < 1jg=1
and a direct computation yields
2w||K| for|al=1
C¥(a) <4 2w for |a] =2
0 else.
By Theorem 5,

N
CE Z S (M) D HC—))W\

77(]
n,EP’ (a,;m) j=1
According to the general multlvarlate Leibnitz rule, 1t holds that
DY(f-(go X)) Zﬁl Dﬂf D> F(gox)
BLa
which implies

|
CEV(0) SOFP @K+ Y. e CE (o - ).
B<a,|pl=1 (a=pB)!
O

Corollary 8 (Bound of the Layer Norm for Derivative Level). In the setting of Lemma 12, it holds
that

R (em) < 20 K| 20+ D12 (1K + k) |2 (1 4+ 0(1))]

Furthermore, we have the asymptotic estimate

1/2 n®/? n
C9°% (<n) € O(w||K||n/ (W(l—ko(l))) )

Proof. Analogue to the proof of Lemma 12,
CRY (<n) < | K[CE™ (<n) + knCFE™ (<n = 1) < (|K || + kn)CF™ (<n),
where we can use Corollary 1 to bound

o n 2 n
O (en) € Oy (sm)CR(<n)" | = (1 + 0(1))]
< 2w K| (2n + 1)112~2" [(ann(lnLo(l))]n. (34)

Since 2n + 1 is odd, for each n € N, then sterling approximation for double factorial yields the
asymptotic

n/2
(2n + 1)l € (9(\/271 (%) ) (35)
Merging (35) with the right-hand side of (34) yields

. nd/2 N
cF (sn)€O<w||K||n1/2(m(l+o(l))) ).
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F.3.5 THE MULTILAYER PERCEPTRON (FEEDFORWARD NEURAL NETWORK) WITH SKIP
CONNECTION

Definition 7 (Single-Layer Feedforward Neural Network with Skip Connection). Fix a non-affine
activation function o € C*(R) and dimensions di,, dg, dout € N. A feedforward neural network is
a map PL : R%n — Rout represented for each x € R%» by

PL(x) £ Bz + BP (0 e (Az + a)) (36)

for A c RdffXdin’ a € Rdff’ B(l) c Rdouthin’ and B(Q) c Rduutxdf‘f‘

Lemma 13 (Bound of Neural Networks for Derivative Type). In the notation of Notation 3, Lemma 6,
and Definition 7, it holds that

) @ m Licw <t
Cif(a) < CP 1 g2 + dg(a!)?CP Zch[K] )-(CY) > H ‘C ‘

n,(EP (a,m) j=1
where h|K] is defined as the image of h(x) < Az + a on K.

Proof. Write PL(z) = BMx + B®((g;(z)),), where fori € {1,...,dg}
9i(x) = o((Azr + a)i).
If we define h;(z) £ h(x);, we follow with Theorem 5

m Licw) <L e
Ck(a a'ZChK] REOLED S || — o £ Ck(@),
n,EP’ (a,m) j=1

and due to the component wise application of the activation function it holds that

D ; - C%(a) < CL(a).
| ie{lg,{?gfd“}g(x)llK ephax, % (@) < O (a)

Using Corollary 2, we obtain
CPE(a) < OB 1 jgmy + dgalCP O (a).

Corollary 9 (Bound of Neural Networks for Derivative Level). In the setting of Lemma 13,
CFE(<n) < OB 4 dgnlCB™ OF ey (<) (CH)" eann(l + 0(1))}".

If, moreover, K = [— My, Ms]%» then

CRE(n) € O(IBD oo + 1B scl AN N0, o iy Width(PE) /2 (2) ")

Proof. Arguing analogously to the proof of Lemma 13, barring the usage of Corollary 1, we obtain

the estimate

1 2 2 n
CFE(<n) < P 4 dgnlCP™ Oy (<n)(CH) [ﬁ(l + 0(1))] . 37)

Let Cp £ ~ 2o —(1+ o(1)) Using Stirling’s approximation and the definition of the component-wise
|| - [|]oo norm of a matrix, (37) becomes

CRE(<n) € O(IBD oo + | B o | A% Ot (sl 2 (2) ). 38)

If, there is some My, M < 0, such that K = [0, 3]? then using the estimate between the || - ||2 and
|| - [|so norms on R%= and the linearity of A we estimate

CZ[K](QI) < Cgall(a,\/W)(gn) < ||‘7||n:3311(a_,\/mr
Upon Width(PL) £ max{diy, dout, dst }, the estimate (37) implies that CR (<n) is of the order of

1 2 n
O(HB( Moo + 1| B¢ )”00HAHOOHJHn:[fHaHoofw/din|M1+M2|,HaHoo+\/d;n\M1+M2H 39)
x Width(PL)n'/2(2)" ).
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F.4 STEP 2 (B) - TRANSFORMERS

We may now merge the computations in Subsection F.3, with the Fa‘a di Bruno-type from Section F.1
to uniformly bound the C®-norms of the relevant class transformer networks. Our results are
derived in two verions: the first is of “derivative type” (which is much smaller and more precise but
consequentially more complicated) and the second is in “derivative level” form (cruder but simpler
but also looser).

Theorem 6 (By Derivative Type). Let K be a compact set, T a transformer block as in Definition 5,
and o € D,]l”di“, n € N. Then,

(3) (& ||
O () < of Z N SO I | . U

DO [n@] 2
peolom nceram =1 17ME

Mdy, |
where for all v € O™

0(2 UC )) |n()|
Z N(B K<2)(5) Z H (@) DT 7

peoln n,CEP (7,8) 5=1
(1) (j)|
(2) der Ck (0 § ))
Ci (v) £4! Z NB)CRLB) H DT
569 din T]CGPI’YB)J 1

C00) £ 1yes + R
In the above, KO = JM_ MH,,,[K], K@ = cNKD), and K® = PLIK?)].

For respective multi-indices, a bound for CK@) , Cﬁ’}fn is given by Lemma 12, CT%, (2 s bounded in

Lemma 13, and a bound for Cf}’m is given in Corollary 4.

m=0

Proof. This is a direct consequence of Theorem 5. O

Theorem 7 (By Derivative Level). Let K be a compact set, TB a transformer block as in Definition 5,
andn € N. Then,

CiE(<n) < OFy (<n) (dow CRG (<n)) " (R, CFY (<n)
(1 o) |
where, K(1) = UM_O MH, K], K& = N[KD), and K©®) = PLIK )]

A bound for CK(?,) , CKu) is given by Corollary 8, CK<2) is bounded in Corollary 9, and a bound for
CpH

is given in Corollary 4.

2
n

2n n+n2+n3
(1+0(1))

elnn

Proof. Corollary 1 yields

OB (n) < O, (am) O (en) [ 222 1 4 o]
where
Of2 (em) = 0P8, (em)O2 (en)” [2227 (1 4 o(1))] ",
O (en) 2 O, (em) O (en)" [ 2222 1 4 o1))] "
Cid («n) 214 Cx™ (<n),
which concludes the proof. O

Theorem 8 (C'*-Norm Bound of Transformers). Fixn, L, H,C,D,d, M € N for a transformer
class TC. For any T € TC, any compact Ko C RM*P and any o € NM*P | |a| £ n we have

Ch (o) <db Mal-C* - CH(a), (40)
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where C* (o) & C;;l:l (o) andforl € {2,...,L},

(J (J)I
Clla)e <al SO NECE () S H I (1)

(J)l @D1)n9|
peot ncePatans =1 171E

where K; = TB[ K1), dy & M,d.,, and a bound for C’Z;LB_ll (B) is given by Theorem 6, only depend-
ing on the transformer block class TIRC,.

Proof of Theorem 8. The bounds (40) are a direct consequence of Theorem 5 and (41) follows directly
from Corollary 2. O

F.5 STEP 2 (C) - MERGING THE C*-NORM BOUNDS FOR TRANSFORMERS WITH THE LOSS
FuNCTION

In this section, we consider the following generalization of the class in Definition 2. As before, each

result holds for input dimensions d just as much as any other input dimension, e.g. M d, with the only

change being relabeling d <— M d. Therefore, for notational minimality, we chose to label the input

dimension d and not d M.

Definition 8 (Smoothness Growth Rate). Let d, D € R. A smooth function g : R — RP is said to
belong to the class Cpoy, (R, RP) (resp. Cexp 0. (RERD)) if there exist C,r > 0 such that: for
each s € Ny

(i) Polynomial Growth - C>° (R4, RP):

poly:C,r C < CST’

(ii) Exponential Growth - (RE,RP): |lgllos < CesT,

e:np C,r
The next lemma will help us relate the C*-regularity of a model, a target function, and a loss function
to their composition and product. We use it to relate the C°-regularity of a transformed model
T : R* — RP, the target function f* : R — RP, and the loss function ¢ : R?? — R to their
composition

(7 :RY SR
T E(T(:E), f*(x))

One we computed have the C*-regularity of /7, we can apply a concentration of measure-type
argument based on an optimal transport-type duality, as in Amit et al. (2022); Hou et al. (2023b);
Benitez et al. (2023); Kratsios et al. (2024), to obtain our generalization bounds. A key technical
point where our analysis largely deviates from the mentioned derivations, is that we are not relying
on any i.i.d. assumptions.

(42)

More generally, the next lemma allows us to bound the size of ||¢(f, f*)||c- using bounds on C**
norms of 7C computed in Theorem 8, the target function f*, and on the loss function ¢. Naturally, to
use this result, we must assume a given level of regularity of the target function, as in Definition 2.
Lemma 14 (C*-Norm of loss of between two functions). Letd, D,s € N, f1, fo : R? — RP be
of class C* and ¢ : R*P — R be smooth. If there are constants C1, Cs, 61, ceey 5’3 > 0 such that:
lfillcs < Cifori=1,2andforj =1,...,s we have ||f||c; < éj then for all s > 0 large it
satisfies

(’)[(621253 (1+ 0(1)))3]7 if max g Ciu(CLCo)* is bounded,
[eCfr, - - 43)
O[Cs(C1C2 222 (1 + 0(1)))S]> if max; < Ci(C1C2)* is unbounded.
Particularly, if { € ggly:C’T(RQD, R), i.e < Cj", then
|£Cf1, f2)]| o = O[Cs™ (0102 (1+ o(1)))°]; (44)
ifl e expcr(RzD,]R),ie < CelT, then
2Ds s
e f, - O[Ce”(clczelnsa +0(1)))]. (45)
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Lemma 14 allows us to obtain a bound on the term SUPfecs (ma) 1¢(f, f*)|lc= in (3), using Theo-
rem 8 and our assumptions on ¢ and on f*.

Proof of Lemma 14. We first derive the general bound; which we then specialize to the case where
the growth rate of £ is known. We first observe that

lehs, max | amax D). fa(o)]

k=1, ,s—1«

PR

(VID)

max  Lip (DU f1(2), f2(z))) .

ae{l,-,d}s—

(VIII)

General Case - Term Term (VII): By Corollary 1, we have

[( 2Dk

|0, | <[ max Gcrcnt]-o[ (222 avo)], 6o

1<k<s—1

From (46) we have for all large s > 0 that

p x| max ||D (f1(x), fa(2)) |l o
O[(%(l_Fo( )))1, if maxi<p 5k(ClC2)k is bounded,

(@) [65 (0102 2Ds (1 + 0(1))) S:| y if maxigk 6k(0102)k is unbounded.

elns

General Case - Term Term (VIII): Foreach a € {1,---,d}*~!, by the multivariate Faa di Bruno
formula, we have

s—1 C(]) . S (z n(j)
DU(fi(x), f2(2)) = > (DPO)(fi(x), fa(x)) D> O"H[D (f@), 2]

L<lfl<s—1 nCEP(a,B) =1 D¢ ]

The Lipschitz constants of the derivatives satisfy

Lip (DU(f1(z), fa(x)))

I Lip (1D (f1(2), fa ()7
= > Lip((D°)(fi(2), f(x) Y. o] bl n(j)f{é((j)!))lfi()l))] !

1<|B8I<s—1 n,¢EP(a,B) j=1
s—1
~ (C1Cy) ()]
S Z Clal+ Z H HDICO) OO TP
1<|B1<s—1 n,{€P (e, B) .7:1
_ ~ 181 1
B Z C|ﬂ|+1(C1C'2) Z H n(y C(])l OGN G|
1<|B|<s~1 n,(€P(a,8)  J=1

<[1<r1?3§— Ck—H(ClCQ) } Z Z OAH C(J)l (G Nn@ ]
L<lhstncerlap =11

=[ max Gen(@iC2)]-0[ (2220 +o(1) ], @)

1<k<s—1

where the last equality is due to Lemma 3.

From (47) we have for all s > 0 large that

max Lip (Dag(f1($)7f2($)))

ae{l,,d}s—1

(9[( 2Ds (1 4 0(1)))5}, if max;<g ék(Clcg)’“ is bounded,

elns

0[55 (0102 2Ds (1 + 0(1)))8}, if maxi gk ék(Cng)k is unbounded.

elns
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Completing the General Case: Combining our estimates for terms Term (VII) and Term (VIII)
respectively obtained in (46) and (47), we obtain an upper-bound for ||¢( f1, f2)| c= via

O[(222(1+0(1)))°], if max; <, Cy(C1Cy)F is bounded,
el =1 )
@ [Cs (0102 fﬁi (1+ 0(1)))5} , if maxigy C(C1Co)¥ is unbounded.
Special Cases of Interest: In particular, if ¢ belongs either to Cpy o L(RERP) or to

foe CT(Rd RP), , as in Definition (2), then: there exists constants Cy,7, > 0 s.t. for each
j=1,...,5wehave

(i) Polynomial Growth - C>%, - (R*” R) Case:
[)lci < CjmeCy,

(ii) Exponential Growth - C22 - .(R*”,R) Case:
[jcs < Cel™C;.
Consequentially, in cases (i) and (ii), the bound in (43) respectively becomes

(i) Polynomial Growth - C>o, - (R*P R) Case:
2Ds

16C1, f2)| . <O[CS"(C1Ca——(1+0(1)))7],

(i) Exponential Growth - C22 - .(R*”,R) Case:

222 (14 o(1))’].

[|¢(f1,

[C@w (Cl CQ

F.6 STEP 3 - COMBINING STEPS 1 AND 2 AND COMPLETING THE PROOF OF THEOREM 1
We are now ready to complete the proof of our main result, namely Theorem 1. Before doing so, we
state a more technical and general version, which we instead prove and which directly implies the
simpler version found in the main body of our manuscript.

We operate under the following more general, but more technical set of assumptions than those
considered in the main body of our text (in Setting 2.1).

Setting F.1 (Generalized Setting). Let D,d,L,H,xC’,C*,C* € N,, set M0, and
CE (xC',CA,C°), ry,70,Cy, Cy = 0. Suppose that Assumptions 3 and 4 hold.

Fix a target function f* : R — RP and a loss function £ : RP x RP — R. Assume either that:

(i) Polynomial Growth: f* € Cp5y o . (RE.RP)and L € Cpy o, . (R*P,R),

(i) Exponential Growth: f* € CZ o . (RY,RP)and l € C3, ¢, ,,(R*P|R),

(iii) No Growth: There is a constant C > 0 such that for all s > 0 we have || f*| [)|cs < C.
Example 3 (Example of Generalized Setting (iii)). For every d € R?, the function f : R? 5 2+
cos er = (cos(:ci))jzl satisfies ||%fHoo < 1foreachs € Nandeachi =1,...,d. Thus, itis an

Csy

example of a function satisfying Assumption F.1. N

We are now ready to prove our main theorem, which is a combination of Theorems 1 and 2.
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Table 6: Bounds on the terms in defining the constant C,7¢, ks, in Theorem 9, for a single attention block.

Term Bound (O)

co, fr C}; Sre+252cf
oV 0920

PL B IBONAIa, [y ) Width(PL) G

M WIVIEIRIIK D (s2(2) )

Here C £ -22(1 4 0(1)), Cs £ s/2(2)°Cs, ca 2 2max{din, dx, dv, dgt, dout }, Width(PL) is the width

elns

of the neural network PL, where || - || denotes the componentwise max matrix/vector norm.

Theorem 9 (Pathwise Generalization Bounds for Transformers). In Setting F.1, there is a k € (
depending only on X., and a tg € Ng such that: for eachto < N <t < ocoandé € (0,1
following holds with probability at-least 1 — ¢

0,1),
| the

2In(1/6
SUpreTe |Rmax{t,N} (T) — R<N)(T)| S Yot Inepry o) Core Kos—1 (It<oo Kb+ % + rates(N))

where rates(N) is defined in (rate), the constant Cy e ks = supyere (T, f*)|lcs, is of order

4

s
0, f* LN s LN 3 ~PL s2 MH s? 52° s5 48344
O( " CRY (<o) CRY (<) Oy (<) (14 CP(<s)) D7 d &
Loss & Target Layernorms Perceptron Multihead Attention dimensions Generic: s-th order Derivative

with terms according to Table 6 and the transition phases (7,)32, are given iteratively by 7o = 0 and
foreach s € Ny

7o = inf {t 2 7511 Cp e,k s (K" + rateg(N) + %) < Gy 7e,Kk,5—1 (k" + rates_1 (N) + 7‘10\%(\;/6))}.

Furthermore, ¢ 1 — k, ¢ & ¢5/% k> < lim k' = 0, and < hides an absolute constant.
t ~Y
— 00

Proof of Theorem 1. Since N is given, we may pick s € N to ensure that N € [75, Ts+1); where
these are defined as in the statement of Theorem 9.

Since we are in Setting 2.1, then ¢ € Cpo, o, . (R*P R) (resp. £ € O, ,,(R*P,R)) and

f*: R¢ = RP is smooth. Therefore, Lemma 14 implies that there is an absolute constant c,ps > 0
such that for any transformer network 7 € TC, the following bound holds

(i) No Growth Case: Using (43) we find that
2Ds

16T ) Seans (S (@4 0(W) I T 113 (48)
(ii) Polynomial Growth Case - ¢ € C;%), ., ., (R*P,R) Case:
* T 2Ds S *||S s
16T £ e Seans 8™ (= (L4 0(W) 1418 1T Nl (49)

(iii) Exponential Growth - C>° (R%2P R) Case:

exp:Cy,ryp
., 2Ds s s ;
AT £l Seams €™ (= (L 0() Il I T & (50)
Since we have assumed that f* € Cp5y . . (R%,RP) (resp. O3, o, ., (RY, R or the “no growth

condition” in Setting F.1 (iii)) then the bounds in (48), (49), and (50), respectively, imply that
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(i) No Growth Case:

N 2Ds s s
||£(7-vf )Hc KCabs (m(l +0(1))) CE(s) (5D
(ii) Polynomial Growth Case - ( € Cp5), ., ., (R*P,R) Case:
2 C¢2D S
* < To+2s f TC s
16T )l Seans 542 (T2 04+ 01)) CFE(9) (52

(iii) Exponential Growth - C>° (R2P R) Case:

exp:Cy,ry

2 2D S
16T, 7)o Scaps €™ ’“f(—sa +0(1))) C5 CE(s)*, (53)

elns

where we have used the definition of the constant C7° (s) as a uniform upper bound of sups¢c-
Using Theorem 6 for the “derivative type estimate” (resp.7 for the “derivative level estimate”)
concludes the implies yields a uniform upper bound (of “derivative type” or “derivative level”
respectively) on C](—g (s), i.e. independent of the particular transformer instance 7 € 7C. In either
case, we respectively define R > 0 to be the right-hand side of (52) or (53) depending on the
respective assumptions made on £ and on f*.

The conclusion now follows upon applying Proposition 5 due to the inequality in (2). O

G EXAMPLE OF ADDITIVE NOISE USING STOCHASTIC CALCULUS

In this appendix, we briefly discuss why the seemingly realizable learning setting which we have
placed ourselves in, i.e. Y,, = f*(X,,), does not preclude additive noise. Our illustration considers
the class of following Markov processes.

Assumption 5 (Structure on X.). Let g : R? — [0, 1]% be a twice continuously differentiable function.
Let W. £ (W})y>0 be d-dimensional Brownian motion and, for each n € N, define

Xn = g(Why).

By construction, the boundedness of the change of variables-type function g in Assumption 5, implies
that the process X. = (X,,)nen is bounded (and can easily be seen to be Markovian since Brownian
motion has the strong Markov property). However, we can say more, indeed under Assumption 5,
the Itd Lemma (see e.g. (Cohen and Elliott, 2015, Theorem 14.2.4)) implies that X, is given as the
following stochastic differential equation (SDE) evaluated at integer times n € N

X, = g(0) +/ s ds +/ o, dW, (54)
0 0
where p. = (pt)e>0 and 0. = (0y)>0 are given by
1 i
oy 5 tr (H(g)(W,)) and oy £ Vg(W;)

and H (g) is the Hessian of ¢ and tr is the trace of a matrix.
Example 4. Setd = 1 and g(z) = (sin(x) 4+ 1)/2. Then, for each n € N we have

n t
Xn:/ fsin(Ws)/4d5+/ cos(Wy)/2 dWs.
0 0
N

In particular, the expression (54) shows that the input process X. is also defined for all intermediate
times between non-negative integer times; i.e. for each ¢ > 0 the process

t t
X, = g(0) + / s ds + / o7 AW, (55)
0 0
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is well-defined and coincides with X, whenever ¢ = n € N. We may, therefore, also consider the
“continuous-time extension” Y. £ (Y});>¢ of the target process defined for all intermediate times
using (55) by

Vi f1(X).

Note that Y; coincides with the target process on non-negative integer times, as defined in our main
text, by definition.

The convenience of these continuous-time extensions, of the discrete versions considered in our
main text, is that now Y. is the transformation of a continuous-time (Itd) process of satisfying the
SDE (55) by a smooth function*, namely f*. Therefore, we may again apply the It Lemma (again
see e.g. (Cohen and Elliott, 2015, Theorem 14.2.4)) this time to the process X. to obtain the desired
signal and noise decomposition of the target process Y. (both in discrete and continuous time). Doing
so yields the following decomposition

t

Vo= o)+ [ (V5000 it 5o 0] HUP)(X)0)) ds

0

Signal (Target)
(56)

t
VT o, dW,.
+/0<f> oy dIV,

Additive Noise

This shows that even if it a priori seemed that we are in the realizable PAC setting due to the
structural assumption that Y,, = f*(X,,) made when defining the target process, we are actually in
the standard setting where the target data (Y;,)52, can be written as a signal plus an additive noise
term. Indeed, when X is simply a transformation of a Brownian motion by a bounded C?-function,
as in Assumption 5, then Assumption 1 held and Y,, admitted the signal-noise decomposition in (56).

“Note that f* was assumed to be smooth in our main result (Theorem 1).
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