
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PLATONIC TRANSFORMERS:
A SOLID CHOICE FOR EQUIVARIANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

While widespread, Transformers lack inductive biases for geometric symmetries
common in science and computer vision. Existing equivariant methods often sac-
rifice the efficiency and flexibility that make Transformers so effective through
complex, computationally intensive designs. We introduce the Platonic Trans-
former to resolve this trade-off. By defining attention relative to reference frames
from the Platonic solid symmetry groups, our method induces a principled weight-
sharing scheme. This enables combined equivariance to continuous translations
and Platonic symmetries, while preserving the exact architecture and computa-
tional cost of a standard Transformer. Furthermore, we show that this attention is
formally equivalent to a dynamic group convolution, which reveals that the model
learns adaptive geometric filters and enables a highly scalable, linear-time convo-
lutional variant. Across diverse benchmarks in computer vision (CIFAR-10), 3D
point clouds (ScanObjectNN), and molecular property prediction (QM9, OMol25),
the Platonic Transformer achieves competitive performance by leveraging these
geometric constraints at no additional cost.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become widespread in deep learning, demonstrating
unprecedented success on a massive scale (Dosovitskiy et al., 2021; Jumper et al., 2021; Devlin et al.,
2019). Their power lies in simple, general-purpose mechanisms that have matured over the years
and continue to offer remarkable gains in speed and flexibility, benefiting from vast datasets and
computational resources. Yet, this very generality implies they are not inherently equipped to handle
specific symmetries present in many scientific domains. For problems with geometric structure, such
as those in physics, molecular chemistry, and 3D computer vision, performance can be significantly
enhanced by incorporating such inductive bias (Fuchs et al., 2020; Ying et al., 2021; Zhao et al.,
2021; Bekkers et al., 2024; Balla et al., 2024; Liao et al., 2024; Romero & Cordonnier, 2021; Wessels
et al., 2024; Bose et al., 2024; Zhdanov et al., 2024; Nyholm et al., 2025). The principle of symmetry,
for example, has given rise to highly data-efficient and robust group equivariant networks (Cohen &
Welling, 2016; 2017; Cesa et al., 2022). However, scaling these symmetry-aware networks has been
difficult, as their reliance on operations like group convolutions or Clebsch-Gordan tensor products
introduces significant computational overhead compared to standard architectures (He et al., 2021a;
Luo et al., 2024). This raises the question: how can we leverage powerful geometric inductive biases
within the transformer architecture without sacrificing the speed and flexibility integral to its success?

A central challenge in addressing this problem lies in designing an attention mechanism that inher-
ently respects geometric transformations. Such a mechanism would expand on the inductive bias
of Transformers, which is typically limited to position embeddings. While widely-used, absolute
positional encodings provide location information, but they enforce no explicit relational structure
(Shaw et al., 2018; He et al., 2021b). A significant step towards this goal has been the adoption
of Rotary Position Embeddings (RoPE) (Su et al., 2024), which endows attention with translation
equivariance. Yet, extending this to roto-translation equivariance within the standard Transformer
framework remains challenging. Existing approaches often achieve this by making complex architec-
tural changes to equivariant networks that poorly scale or settle for invariant attention mechanisms
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which sacrifice feature representations for simplicity and computational efficiency (Masters et al.,
2022; Assaad et al., 2023; Thölke & Fabritiis, 2022; Brehmer et al., 2023; Kundu & Kondor, 2025;
Joshi et al., 2025). Recent efforts have also explored hybrid architectures that resort to symmetry
breaking (Qu & Krishnapriyan, 2024; Lawrence et al., 2025) to improve scalability but require a
careful mix of modules to maximize downstream performance.

Our main contribution is the Platonic Transformer, a framework that achieves equivariance to
continuous translations and discrete roto-reflections in Transformers without changing the underlying
attention mechanism or computation graph. To achieve this, our method processes features relative to
a collection of reference frames that form a Platonic symmetry group (G ⊂ O(3)) and constrains all
linear layers to be equivariant with respect to this choice of frame. This principled scheme allows the
standard attention block, including its unmodified Rotary Position Embeddings (RoPE), to operate in
parallel across these frames, and effectively associates each reference frame with a distinct attention
head. As a result, the model incorporates a geometric inductive bias without altering the architecture
or computational footprint of a standard Transformer. This enables flexible usage across domains at
no additional cost, resolving the long-standing symmetry-awareness vs. scaling dilemma.

Additionally, we analyze the formal connection between RoPE-based attention and convolution to
highlight its underlying inductive bias. We show that when the softmax operation is omitted, the
attention becomes mathematically equivalent to a dynamic, content-aware convolution. Moreover,
in this convolutional setting, the attention operator’s complexity scales linearly with the number
of tokens, akin to methods like Performer (Choromanski et al., 2020). This result reframes RoPE-
attention as a mechanism that explicitly learns and applies dynamic, content-aware geometric filters.

2 BACKGROUND: TRANSFORMERS WITH POSITION EMBEDDINGS

The core of a Transformer is its self-attention mechanism, which computes outputs for a sequence
of input features {fi ∈ RC} based on pairwise interactions. To perform spatial tasks, this operation
must incorporate the position pi ∈ Rn associated with each feature fi. This positional information,
often added via absolute or relative encodings, allows the model to learn relationships that respect
geometric symmetries.

2.1 VANILLA ATTENTION AND ABSOLUTE POSITIONING

Given a sequence of input features fi ∈ RC , the self-attention layer first computes query, key, and
value vectors via linear projections: qi = WQfi, kj = WKfj , vj = WV fj . Here, the learnable
weight matrices are WQ,WK ∈ RC×d and WV ∈ RC×C′

. The output for the i-th feature,
yi ∈ RC′

, is a weighted sum of the value vectors, with weights determined by softmax-normalized
dot products of queries and keys:

yi =

N∑
j=1

attn(qi,kj)vj , where attn(qi,kj) = softmax
j

(
q⊤
i kj

)
. (1)

As this operation is permutation-equivariant, it is insensitive to the order of the inputs and must
be modified to incorporate positional information for spatial tasks. A common approach is to use
Absolute Positional Encodings (APE), where a unique vector E(pi) is added to each input feature,
f ′i = fi +E(pi), before the linear projections are applied. The attention score is then computed from
these position-aware features. However, since this interaction depends on absolute coordinates rather
than relative positions, APE is not translation-equivariant.

2.2 ROTARY POSITION EMBEDDINGS (ROPE)

RoPE achieves a more structured approach to position encoding (Su et al., 2024). Instead of adding a
positional vector, RoPE modifies the query and key vectors with a position-dependent transformation,
making the attention score explicitly dependent on relative positions.

This transformation is constructed by stacking 2D rotation matrices, giving RoPE its name. To
apply RoPE with positions p in dimension n > 1, we use a set of n-dimensional frequency vectors

2
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Figure 1: Visualization of Weight-Shared RoPE within the N -layer Platonic Transformer. Scalar and
vector inputs are lifted to become functions on the platonic solid symmetry group of choice (here, the
Tetrahedral group). The same multi-head self-attention mechanism is applied in parallel, with each
instance rotating the features according to a different reference frame Ri ∈ G. Choosing the trivial
group as G reduces this framework to a standard Transformer.

Ω = {ωk}d/2k=1, each defining a direction used to project p to 1D and a frequency used to apply
1D-RoPE in this direction. We obtain d/2 blocks,

ρωk
(p) =

(
cos(ω⊤

k p) − sin(ω⊤
k p)

sin(ω⊤
k p) cos(ω⊤

k p)

)
, (2)

which are stacked in a block-diagonal manner to form a single transformation matrix, ρΩ(p):

ρΩ(p) = diag(ρω1(p), . . . , ρωd/2
(p)) . (3)

Note that while ρΩ(p) is a high-dimensional rotation, this rotation is not related to rotations of the
position p. In fact, ρΩ is instead connected to translations of p, formally discussed in Appendix A.

For a query qi at position pi and a key kj at position pj , ρΩ is applied before the dot product. As the
operator ρΩ is orthogonal and satisfies the homomorphism property1 for translations, the interaction
simplifies to depend only on relative positions:

(ρΩ(pi)qi)
⊤
(ρΩ(pj)kj) = q⊤

i ρΩ(pi)
⊤ρΩ(pj)kj = q⊤

i ρΩ(pj − pi)kj . (4)

This final form reveals the core property of RoPE. Although widely adopted for its empirical success,
the mechanism’s effectiveness is not coincidental; it directly embeds translation equivariance into
the attention mechanism by making the score a function of content and relative positions. This
powerful geometric inductive bias, often hidden within the standard Transformer framework, provides
a principled reason for RoPE’s strong performance (Chen et al., 2023; Dai et al., 2019). The formal
construction of this operator from the first principles of group theory is detailed in Appendix A.

3 THE PLATONIC TRANSFORMER

We generalize the principle of RoPE to obtain equivariance not only under continuous translations,
but also discrete roto-reflections. We obtain roto-reflection equivariance by redefining the positional
encoding relative to a set of reference frames defined as elements in a discrete subgroup G ⊂ O(n).
Traditional RoPE-attention operates on a single global reference frame. Instead, we perform attention
on multiple frames in parallel. A key advantage of our method is that it leaves the rope-attention
mechanism and the overall computation graph unchanged from the traditional transformer.

3.1 FEATURES RELATIVE TO REFERENCE FRAMES

Throughout the architecture, features are represented and processed relative to the reference frames
defined by the elements of a discrete group G ⊂ O(n). Since input features are typically defined in a

1The operator ρΩ(p) being orthogonal means its inverse is its transpose: ρΩ(p)
−1 = ρΩ(p)

⊤. The homomor-
phism property for the translation group satisfies ρΩ(pi + pj) = ρΩ(pi)ρΩ(pj).
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global frame of reference, they must first be lifted to become functions on the group G. Specifically,
each feature becomes a map fi(·) : G → RC , where fi(R) is the feature vector at point i viewed from
frame R ∈ G. For the finite groups we consider, this map is represented as a tensor of shape [|G|, C].
We denote this tensor simply as a flattened vector fi ∈ R|G|·C and use the functional notation fi(·) to
emphasize its role as a feature map. As we will see, the flattened vector viewpoint is key to preserving
the standard Transformer computation graph.

The lifting process depends on the geometric type of the input feature. Scalar features, being invariant
to viewpoint, are lifted to constant functions by copying them across all frames. Vector features, in
contrast, are expressed relative to each frame; for example, a single 3D vector feature u ∈ R3 is
lifted to a three-channel signal on the group via the transformation f(R) = R−1u. All such lifted
components can be concatenated, after which they are processed by the subsequent equivariant,
frame-dependent attention layers.

3.2 WEIGHT-SHARING ACROSS ROPE EMBEDDINGS

The key step for achieving equivariance to G as well as translations is making the RoPE operator itself
dependent on the reference frames. This is achieved by projecting the position pi of each input token
i onto R, which yields views pi(R) = R−1pi relative to each frame. As the queries qi, keys kj , and
values vj are obtained by applying equivariant linear projections (cf. Section 3.3) to the feature maps
fi, they are also functions on the group. We can then compute the unnormalized attention scores from
the perspective of frame R, which we denote as sij(R):

sij(R) = qi(R)⊤ρΩ(pj(R)− pi(R))kj(R) (5)

= qi(R)⊤ρΩ((pj − pi)(R))kj(R) . (6)
Scores for each frame are computed in parallel as their own independent attention head. Note that we
can also obtain sij(R) by steering the base set of frequencies Ω instead of the positions pi, which we
show in Appendix D. However, from our current perspective, the RoPE-attention mechanism itself
remains completely unchanged from its traditional formulation in Eq. 4; only the relative positions
pi − pj are now defined relative to each reference frame R. The attention coefficients are obtained
by applying the softmax to the scores sij(R). The output yi(R) for each token i is then given as

yi(R) =

N∑
j=1

attnij(R)vj(R) , where attnij(R) = softmax
j

(sij(R)) . (7)

This process naturally results in an output tensor yi ∈ R|G|·C , where the features are defined relative
to each frame. Notably, the base frequencies Ω of RoPE are shared across frames and this leads to
the operator being equivariant to the roto-reflections in G, as we detailed in Appendix B.

3.3 EQUIVARIANT LINEAR LAYERS AND FIXED COMPUTATION GRAPH

All linear transformations, including the query, key, and value projections (WQ,WK ,WV ), and
any MLP blocks, must be equivariant. As our features can be viewed either as functions on the group,
fi(·), or as flattened vectors, fi ∈ R|G|·C , we can describe the action of an equivariant linear layer Φ
from both perspectives. From the flattened vector viewpoint, the layer is a standard matrix-vector
multiplication, yi = Wfi. However, for this transformation to be equivariant, the weight matrix W
cannot be arbitrary; it must have a specific, constrained structure.

The equivariance constraint is defined from the functional viewpoint: for any group element R ∈ G,
the transformation must satisfy Φ(LRfi) = LR(Φ(fi)), where LR is the action of rotating the
reference frames, i.e., (LRfi)(R̃) = fi(R

−1R̃). This constraint is satisfied if and only if the layer’s
operation is a group convolution (Cohen et al., 2019, Thm. 3.1). This gives the layer a dual
identity: it is a convolution over the group axis, which is mathematically equivalent to a matrix-vector
multiplication with a structured, weight-shared matrix:

(Φ(fi))(R) :=
∑
R̃∈G

Wgroup(R
−1R̃) fi(R̃) ⇐⇒ Φ(fi) := Wfi . (8)

Here, Wgroup : G → RC′×C is a learnable kernel defined on the group. The large matrix W ∈
R(|G|·C′)×(|G|·C) is a block matrix whose blocks are determined by the kernel values: [W]R,R̃ =

4
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Wgroup(R
−1R̃). This structure imposes a weight-sharing scheme where the interaction between input

and output frames depends only on their relative pose, R−1R̃. The layer is thus constrained to learn
patterns from the geometric arrangement of features, rather than their absolute pose.

While the group convolution formulation makes the geometric inductive bias explicit, the matrix-
vector viewpoint clarifies that this is in essence a principled weight-sharing scheme that preserves
the computation graph of a standard linear layer (we’re still doing matrix-vector multiplication). A
favorable side-effect, however, is that this structure reduces the parameter count from the (|G| ·C ′)×
(|G| · C) of an unconstrained layer to just |G| · C ′ · C—a reduction by a factor of |G|.
Crucially, by choosing the number of channels C such that the effective feature dimension C · |G| is
held constant, the overall matrix dimensions are identical regardless of the group size. The trivial
group G = {e} illustrates the base case, where the operation collapses to a standard linear layer with
a weight matrix Wgroup(e) of size C ′ × C. The geometric inductive bias is therefore not introduced
by adding new, complex modules, but by imposing a structure on the weights of existing ones.2

With all components of the architecture now defined as equivariant operations, we can formally state
the key property of the full model, namely equivariance under the discrete group G ⊂ O(n).
Proposition 1 (End-to-End Equivariance). Our proposed Transformer architecture is an equivariant
model. A global roto-reflection R ∈ G applied to the input point cloud results in a corresponding
transformation LR of the final output feature maps.

The proof is given in Appendix B.

3.4 FRAME SELECTION VIA PLATONIC SOLIDS

The final step is to select a suitable subgroup G ⊂ O(n) to serve as the reference frames. We
select them from the discrete symmetry groups of regular polygons and polyhedra, with different
considerations for 2D and 3D as illustrated in Figure 2.

In 3D, we restrict our frames to the finite rotational symmetry groups (G ⊂ SO(3)) of the Platonic
solids: the tetrahedral (12 rotations), octahedral (24 rotations), and icosahedral (60 rotations) groups.
While these solids have larger full symmetry groups that include reflections (e.g., 24 total symmetries
for the tetrahedron), we focus on the purely rotational subgroups for a more tractable structure.

Tetrahedron Rotation Group 

Cyclic Permutation Group

Order: 12

Order: 8

Figure 2: Elements of the symme-
try groups of platonic solids form
a subgroup of SO(3).

In 2D, we consider discrete subgroups of O(2), which corre-
spond to the symmetries of regular polygons. This includes both
the rotation-only cyclic groups (Cn) and the dihedral groups
(Dn), which contain both rotations and reflections. Here n de-
notes the group’s order. This discrete subgroup approach is
advantageous for two reasons. First, it provides a finite set of
frames that forms a structured and approximately uniform dis-
cretization of the underlying continuous spaces of orientations
(SO(3) in 3D and O(2) in 2D). Second, and more critically,
these frames form a group. This is essential for maintaining a
meaningful geometric structure, as it ensures that layers can op-
erate equivariantly, keeping features coherently defined relative
to our chosen frames throughout the network.

The advantage of working with a finite group G is that its op-
erations can be handled discretely and efficiently using Cayley
tables. We assign a unique index i ∈ {0, . . . , |G| − 1} to each
rotation Ri ∈ G. The group product RiRj = Rk can then be
precomputed and stored in the Cayley table, a simple look-up table where Cayley[i, j] = k. This
discrete formalism makes the group action on our feature maps, which are functions on the group
f : G → RC , extremely efficient. A rotation of this feature map by an element Ri, defined by the
action (LRif)(Rj) = f(R−1

i Rj), simplifies to a permutation of the feature tensor’s entries. With
2This structure can even give computational benefits, by implementing the linear layers in the Fourier domain
of G (Bökman et al., 2025). In Appendix N, we find that at marginally higher channel counts than used in
this paper, a Fourier implementation leads to greatly improved training throughput, indicating that this is a
promising direction for future research.
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the Cayley table, the new feature at position j is simply copied from the old feature at position
k = Cayley[inverse[i], j].

4 INDUCTIVE BIAS OF PLATONIC TRANSFORMERS

This section examines the Platonic Transformer’s structural inductive biases. We highlight its
interpretation as a dynamic group convolution and its equivariant attention, contrasting these with
approaches based on invariant attention.

4.1 PLATONIC TRANSFORMER AS DYNAMIC GROUP CONVOLUTION

The use of RoPE in a linear attention setting establishes a deep connection to convolution. Specifically,
the mechanism implements an adaptive convolution where the kernel is synthesized on-the-fly.
This dynamic kernel is expressed as an expansion in a sparse Fourier basis, defined by the RoPE
frequencies, and the coefficients for this basis expansion are provided by the query vectors. This
makes the convolution content-aware. We formalize this as follows (proof in Appendix C.1).

Proposition 2 (Linear RoPE Attention as Dynamic Convolution). Consider a standard linear atten-
tion layer using RoPE with constant key vectors (kj = 1). The layer’s output yi is mathematically
equivalent to a dynamic convolution:

yi =

N∑
j=1

ϕqi
(pj − pi)vj , (9)

where the dynamic kernel ϕqi is given by the inverse sparse Fourier transform:

ϕqi(∆p) =

d/2∑
k=1

[
ak(qi) cos(ω

⊤
k ∆p) + bk(qi) sin(ω

⊤
k ∆p)

]
. (10)

The Fourier coefficients are given by the linear projections ak(qi) = qi,2k−1 + qi,2k and bk(qi) =
qi,2k − qi,2k−1, where qi,m is the m-th element of the query vector qi.

Remark 1 (Purely Geometric vs. Mixed Kernels). This result recasts the query’s role: rather than
simply probing for content, qi enables the parameters to construct a unique geometric filter. The
formulation of the key vector is a design choice. The constant-key formulation (kj = 1) forces the
model to learn purely geometric, content-adaptive convolution operators. In contrast, a learned key
(kj = WKfj) results in a mixed kernel whose coefficients depend on both query and key features,
and thus entangles geometry and signal.

Our choice of the purely geometric formulation was motivated by a key experimental observation:
training with a mixed kernel from learned keys was highly unstable on the QM9 and OMol25
datasets (cf. Appendix L). We hypothesize this instability arises because these tasks require learning
universal physical principles that are purely functions of geometry, whereas computer vision tasks like
ScanObjectNN involve learning statistical correlations between local appearance and global shape. A
mixed kernel entangles these universal principles with instance-specific features, creating an unstable
optimization problem with conflicting gradients as the model attempts to learn a general physical
law while simultaneously fitting unique local chemical environments. In computer vision, this same
entanglement is beneficial, as learning the statistical interplay between features and geometry is the
primary objective. Fixing the keys thus acts as a crucial regularizer for physical systems by forcing
the model to prioritize the disentangled geometric principles, and thus stabilizing the training process.
The convolution perspective further leads to a key practical advantage.

Corollary 1 (Linear-Time Complexity). The dynamic convolution in Proposition 2 can be computed
in O(N) time, where N is the number of tokens or points in the point cloud. This offers a scalable
alternative to standard attention, which has a quadratic complexity of O(N2).

Within our Platonic Transformer, this entire mechanism is lifted to operate over the reference frames
defined by a group G. Consequently, the operator becomes an adaptive group convolution (proof in
Appendix C.3), where the kernel is steered by the group elements/reference frames.

6
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4.2 INVARIANT VS. EQUIVARIANT ATTENTION SCORE

Our approach implements an equivariant attention mechanism, where the attention pattern is
orientation-dependent. This contrasts with methods using an invariant attention score, which applies
the same pattern from all orientations (Fuchs et al., 2020; Chen & Villar, 2022; Assaad et al., 2023;
Frank et al., 2024; Knigge et al., 2024; Kundu & Kondor, 2025; Nordström et al., 2025).

For multi-head attention with H heads, let qi(R, h), kj(R, h), and vj(R, h) denote the projected
query, key, and value vectors for head h from the perspective of frame R. In our equivariant approach,
the raw scores sij(R, h) are passed directly to the softmax. This allows the model to learn orientation-
dependent attention patterns, making it a more expressive formulation that retains the rich geometric
information in the features. The output is an equivariant feature map on the group:

yi(R, h) =

N∑
j=1

softmax
j

( sij(R, h)︸ ︷︷ ︸
R−dependent

)vj(R, h), sij(R, h) = qi(R, h)⊤ρΩh
((pj−pi)(R))kj(R, h) .

(11)
In practice, this is efficiently implemented by treating the |G| perspectives as an independent set of
attention heads. Tensors are reshaped so that the group and head dimensions are merged, e.g., to a
shape of [B,N, |G| ·H,Ch], before the dot product calculation.

In an invariant attention score, a single attention pattern is created by pooling the raw scores over the
group axis before the softmax, akin to the symmetrization in the RoPE-based approach of Frank et al.
(2024). These invariant attention scores are then applied to the original equivariant value vectors. The
resulting output is still equivariant, but it is derived from an orientation-agnostic attention pattern:

yi(R, h) =

N∑
j=1

softmax
j

( sinv
ij (h)︸ ︷︷ ︸

R−agnostic

)vj(R, h) , where sinv
ij (h) =

∑
R∈G

sij(R, h) . (12)

Although simpler, this formulation sacrifices the model’s ability to attend to features in an orientation-
dependent manner. Implementing Eq. 12 can be done by reshaping tensors so that the group and
channel dimensions are merged, to shape [B,N,H, |G| · Ch], as then the dot-product in sij and the
sum in sinv

ij are simultaneously computed when taking the dot-product between queries and keys. For
a fully invariant output, one could additionally average the value vectors vj(R, h) over the group to
further collapse the geometric representation.

5 EXPERIMENTS

To validate our proposed architecture, we conduct a series of experiments across a number of different
tasks and datasets. Our evaluation is structured to analyze the role of the equivariance inductive bias
by categorizing tasks into two distinct settings based on their inherent geometric properties.

First, for tasks with inherent symmetry, such as those in QM9 (Ramakrishnan et al., 2014) and
OMol25 (Levine et al., 2025), the underlying molecular systems have no canonical orientation.
Their properties are determined by the relative positions of atoms and are independent of the global
coordinate system. Since the physical laws governing these molecular properties are E(3)-symmetric,
equivariance becomes a fundamental requirement for a model to generalize efficiently (Fuchs et al.,
2020; Bronstein et al., 2021; Batzner et al., 2022; Pacini et al., 2025; Vadgama et al., 2025). We refer
to this category of problems as Equivariant Tasks.

Second, for tasks involving datasets with a canonical orientation, like CIFAR-10 (Krizhevsky,
2009) and ScanObjectNN (Uy et al., 2019), strict end-to-end equivariance is not required (the
images/objects are aligned w.r.t. a canonical up-direction). These problems nevertheless provide
a testbed to investigate if the geometric inductive bias of our model, enforced by weight-sharing,
improves performance on its own merits. We refer to these as Non-Equivariant Tasks.

5.1 EXPERIMENTAL SETUP

All Platonic Transformer variants are built upon RoPE, making them inherently translation-
equivariant. The degree of rotational equivariance is then determined by the choice of a discrete
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symmetry group G ⊂ O(n) that defines the set of reference frames. For instance, selecting the trivial
group (G = ∅) results in a purely translation-equivariant model (T (n)); it uses only the identity frame.
Choosing the rotational symmetry group of the Tetrahedron provides 12 reference frames, making
the model approximately SE(n)-equivariant, or E(n)-equivariant when including reflections too.

For fair comparison, we match the computational cost between SE(n) and T (n) models by equating
our group-based parallelism with standard multi-head attention. For instance, an SE(n) model using
the 12-element tetrahedral group with one head per frame is benchmarked against a T (n) baseline
with 12 total heads (details in App. G). For certain tasks, symmetries can be conditionally broken by
using APE or providing an external reference frame, yet internal layers critically retain principled
weight-sharing. Using external frames to break symmetry and APE to provide geometric information
are effective strategies, allowing a model to benefit from geometric inputs without being end-to-end
constrained by full equivariance (Vadgama et al., 2025).

For CIFAR-10 and ScanObjectNN, we conducted a comprehensive sweep to find the optimal configu-
ration. In contrast, for QM9 and OMol25, we used a sequential process: first, we identified the best
architecture via an extensive sweep on QM9, then transferred these hyperparameters to OMol25 for
further refinement with a one-million subset before full training (see Appendix H-K).

5.2 NON-EQUIVARIANT TASKS Table 1: CIFAR-10 Accuracy (%).

Group Attention Conv # Params
Acc. (↑) Acc. (↑)

∅∗ 91.49 88.56 85.1M
C4 92.73 88.70 21.3M
C6 92.16 88.44 14.2M
D4 92.53 88.10 21.3M
D6 92.07 88.58 14.2M
Flop 91.49 87.86 42.6M

Table 2: ScanObjectNN Overall Acc. (%).

Group Attention Conv
Acc. (↑) Acc. (↑)

∅* 80.5 79.8
Tetrahedron 81.3 80.1
Flop 82.0 80.6
∗Platonic Transf. w group ∅ is a ViT w RoPE

Figure 3: The Platonic Transformer, when
configured in its convolutional mode, exhibits
a linear computational complexity relative
to the input sequence length, a complexity
shared with its attention mode. It is notewor-
thy that the model’s specific equivariance type
does not alter this computational scaling.

Cifar10 The results of our ablation study on
CIFAR-10 are presented in Table 1. The findings
indicate that incorporating 2D rotational symmetries
provides a tangible benefit over the translation-only
baseline (the ∅∗ model, which is equivalent to a stan-
dard Vision Transformer). This suggests that even for
general-purpose vision tasks without an end-to-end
equivariance requirement, equivariance proves to be
an important inductive bias. This may be explained
by the fact that even though images have a canonical
pose (e.g. with the sky at the top), equivariance al-
lows for internal weight-sharing and thus the reuse of
patterns (edges, parts, objects) that may appear at ar-
bitrary orientations within an image. The comparison
between the full attention and linear-convolutional
shows a significant impact of attention over the lin-
ear complexity dynamic convolution counterpart (in
which the softmax is omitted, cf. Prop. 2).

ScanObjectNN On the ScanObjectNN point cloud
classification task, we test the effectiveness of 3D
symmetry groups (trivial vs tetrahedron vs horizontal
flips) in a realistic setting with occlusions and signif-
icant orientation variability. The results, shown in
Table 2 again highlight the impact of equivariance
and weightsharing. While the quadratic-cost atten-
tion mechanism offers greater expressive power, the
linear-time convolutional variant provides a signif-
icant speed-up, which is critical for efficiently pro-
cessing large point clouds. This demonstrates the
versatility of our approach in adapting to different
computational and modeling requirements in 3D com-
puter vision, as demonstrated in Figure 3. Also note
that the computational cost is independent of the cho-
sen symmetry group.
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Table 3: QM9 Property Prediction MAE (↓).
Platonic Transformer (end-to-end)

Attention Convolution
Group µ α µ α
∅ 0.028 0.064 0.030 0.061
Tetrahedron 0.012 0.049 0.014 0.047
Octahedron 0.010 0.048 0.012 0.047

Platonic Transformer with PCA-based frames
Method
8-Refl + 1 frame 0.039 0.155 – –

Reference methods
Method ∗(re)produced in this work
EquiformerV2 [38] 0.010 0.050 – –
FAFormer [28]∗ 0.122 0.252 – –
G-Hyena [42]∗ – – 0.018 0.066
Rapidash [62] – – 0.010 0.040

Table 4: Inference wall-clock times on QM9.
Platonic Transformer

Group Avg. Time (ms) (↓)
∅ 2.87 ± 0.29
Tetrahedron 2.79 ± 0.21
Octahedron 2.85 ± 0.25

Reference methods
Method
Standard Transformer 2.01 ± 3.74
G-Hyena [42] 44.06 ± 60.05
TFN [58] 590.45 ± 269.25

Table 5: OMol25 Energy/Force MAE (↓).
Our own (re)produced results, (4 GPUs - 120 hrs)

Method Force Energy E/Atom
Platonic Transformer 24.25 74.00 2.63
eSEN [36] 23.92 120.0 3.37

From literature, (estimated 4 GPUs - 475 hrs)

eSEN [36] 10.11 29.80 0.88
MACE [36] 16.83 54.09 1.55

5.3 EQUIVARIANT TASKS

QM9 Our results on the QM9 benchmark are summarized in Table 7. The first group of results
identifies the most effective Platonic group and model variant for this task, showing a performance
gain from incorporating Platonic symmetries over the translation-only (∅ group) baseline. Both
the Tetrahedron and Octahedron groups achieve strong performance, delivering results on par with
state-of-the-art methods like EquiformerV2 (Liao et al., 2024). Our linear-convolutional models are
similarly effective, outperforming other convolution-based baselines such as G-Hyena (Moskalev
et al., 2025), a state-space model for long-context geometric modeling. Our end-to-end SE(3)-
equivariant model is superior to existing baselines, demonstrating that a directly learned geometric
representation is fundamentally more effective compared to external symmetrization.

Our use of reference frames relates to the popular class of “frame-based methods,” which are a popular
approach for building equivariant networks Du et al. (2023); Yin et al. (2025); Puny et al. (2022).
One such prominent framework is Frame Averaging (FA), which incorporates group equivariance via
symmetrization (detailed introduction in Appendix E) of non-equivariant neural network backbones.
FA can be extended to full E(3) by including roto-reflections (e.g., roto-reflecting PCA axes) but
comes at a cost, requiring a separate forward pass for each frame element. Our Platonic Transformer
offers a more scalable drop-in replacement. For instance, using just a single orthogonal matrix from
PCA (i.e., just one frame element) along with an axis-aligned roto-reflection group (here, we use
C2 × C2 × C2, a subgroup of the octahedral group) achieves native E(3) equivariance at an ∼ 8x
lower cost. We evaluate the effectiveness of FA by comparing to FAFormer (Huang et al., 2024),
which applies FA to a standard Transformer backbone with 8 frame elements. Our single-frame
variant with only octahedral reflections (8-Refl + 1 frame) outperforms FAFormer with a
smaller compute cost. This underscores the need for a geometrically expressive backbone, such as
the Platonic Transformer.

OMol25 To validate the scalability and performance of our proposed architecture, we evaluate
our model with the best hyperparameters on the large-scale OMol25 dataset. For a fair comparison
under a constrained computational budget, we compare the Platonic Transformer with eSEN (Levine
et al., 2025), the current state-of-the-art method on OMol25, for 120 hours on a node with 4 NVIDIA
6000Ada GPUs; note that we use the hyperparameters for eSEN indicated in the original work. The
results are presented in Table 5, demonstrating that our model significantly outperforms the baseline
under these identical conditions for energy prediction and achieves highly competitive performance
in force prediction. This performance is noteworthy when contextualized against current literature
benchmarks, which we estimate from Levine et al. (2025), utilized a computational budget nearly
four times larger. Achieving strong results under such constraints indicates the architectural efficiency
of our model, suggesting that the Platonic Transformer could likely achieve state-of-the-art accuracy
with a comparable computational budget which we leave for future work.
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Inference times Given that the Platonic Transformer does not alter the computation graph of the
standard Transformer, our method benefits from similarly fast inference speeds. A single Platonic
Transformer layer runs at the same order of magnitude as a standard Transformer layer (implemented
using a single TransformerEncoderLayer module in PyTorch) on a batch size of 64 molecules
from QM9 on a single H200 GPU, averaged over 10 batches, as shown in Table 4. We also show
superior inference times, by 2-3 orders of magnitude, against a single G-Hyena and Tensor Field
Network (Thomas et al., 2018) layer under the same setup while still retaining E(3) equivariance.

6 CONCLUSION

We introduce the Platonic Transformer, a framework that achieves approximate E(n) equivariance
without compromising the flexibility and scalability of the standard Transformer architecture. By
combining Rotary Position Embeddings (RoPE) with a new frame-dependent attention mechanism—
where attention is computed relative to reference frames from Platonic solid symmetry groups—we
integrate a powerful geometric inductive bias while preserving the original computation graph and
cost. This approach demonstrates that principled equivariance and modern scalability are not mutually
exclusive. Furthermore, our analysis reveals a formal equivalence to dynamic group convolution
with linear complexity, enabling a highly scalable, linear-time variant for large-scale tasks. In many
scientific domains, equivariance represents a "Platonic ideal" — an essential physical principle a
model should respect. By eliminating the trade-off between this principled design and computational
efficiency, the Platonic Transformer makes this ideal a practical and scalable reality.
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REPRODUCIBILITY STATEMENT

We make several strides towards reproducibility of our work. We back our theoretical results with
proofs in Appendix C, and with rough intuitions in the main text. We have attached a .zip folder as
supplementary material with source code to train our Platonic Transformer models (and baselines)
across different tasks and datasets; we also provide adequate comments and documentation. Details
required to reproduce the results in our tables and figures are provided in Appendices H-K. We
also provide information on hyperparameter-tuning efforts in Appendices F and G. We intend to
open-source the code on public platforms like GitHub once the review period has formally ended.

ETHICS STATEMENT

Our work addresses fundamental challenges in building scalable methods for deep learning and
AI for Science. We believe there is potential for our methods to be used in scientific domains like
biotechnology as well as energy and sustainability. As our work is in its early stages, we posit that it
introduces dedicated computational methods rather than focusing on particular applications that may
warrant closer oversight and caution.
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A ROTARY POSITION EMBEDDINGS FROM A GROUP THEORETICAL
PERSPECTIVE

A fundamental challenge in geometric deep learning is creating position representations that respect
underlying symmetries. For data in Rd, our goal is to define a high-dimensional position embedding,
E : Rd → Rd′

, that is equivariant to translations. This requires that for any translation vector p, the
embedding transforms predictably: E(p0 + p) = ρ(p)E(p0), where ρ(p) is a linear transformation.
Group representation theory provides the formal tools to construct such embeddings.

A.1 THE THEORETICAL TOOLKIT

To proceed, we first define the essential concepts required for our construction.

Definition 1 (Representation). A linear representation of a group G on a vector space V is a group
homomorphism ρ : G → GL(V ), where GL(V ) is the general linear group of invertible linear
transformations on V .

To ensure that the positional encoding does not arbitrarily amplify or diminish feature magnitudes,
which would destabilize learning, we require the representations to be length-preserving. This leads
to the concept of a unitary representation.

Definition 2 (Unitary Representation). A representation ρ is unitary if it maps group elements
to unitary operators, i.e., ρ : G → U(V ). For real-valued representations, this corresponds to
orthogonality, ρ(g)−1 = ρ(g)⊤.

Just as a complex signal can be decomposed into pure frequencies, a general representation can be
broken down into fundamental building blocks known as irreducible representations (irreps).

Definition 3 (Irreducible Representation). An irreducible representation (irrep) is a representation
acting on a vector space V that has no non-trivial invariant subspaces.

A.2 CONSTRUCTING THE ROPE OPERATOR

With these formal tools, we can now build the RoPE operator. The irreps of the translation group
(Rd,+) are indexed by a frequency vector ω ∈ Rd and are given by one-dimensional, unitary
representations:

ρω(p) = eiω
⊤p. (13)

This exponential form is the unique continuous solution to the group’s homomorphism property,
ρ(p1 + p2) = ρ(p1)ρ(p2), where the imaginary exponent ensures unitarity.

However, neural networks typically operate on real numbers. We can obtain a real-valued irrep by
combining pairs of conjugate frequencies, ωk and −ωk. This yields a 2D irreducible representation
that takes the familiar form of a rotation matrix:

ρωk
(p) =

(
cos(ω⊤

k p) − sin(ω⊤
k p)

sin(ω⊤
k p) cos(ω⊤

k p)

)
. (14)

To create a high-dimensional embedding, we simply select a set of frequencies Ω = {ωk}d
′/2

k=1
and stack these 2D rotation blocks along the diagonal of a larger matrix. This results in a single,
block-diagonal transformation that correctly and equivariantly updates the entire embedding for a
given translation p:

ρΩ(p) = diag(ρω1(p), . . . , ρωd′/2(p)). (15)

This is the core mechanism behind Rotary Position Embeddings. Its structure guarantees both
equivariance and computational efficiency, as each 2D component can be rotated independently.

Definition 4 (Rotary Position Embedding (RoPE) Operator). The RoPE operator ρΩ(p) for a
position p ∈ Rd is the block-diagonal rotation matrix defined above (Equation 15), constructed
from a set of frequencies Ω. The application of RoPE to a feature vector f ∈ Rd′

is defined as the
matrix-vector product: ρΩ(p)f . For this operation to be well-defined, the feature dimension d′ must
be even.
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A.3 TRANSLATION INVARIANCE IN ATTENTION

While the RoPE operator provides an equivariant transformation for feature vectors, its crucial benefit
within the Transformer architecture is that it makes the attention score invariant to global translations.
This property ensures that the attention mechanism only considers the relative positions of tokens,
which is the inductive bias we seek. We formalize this key result below.

Proposition 3 (Translation Invariance of the RoPE Attention Score). The attention score computed
using RoPE, attn(q,k,∆p) = q⊤ρΩ(∆p)k, where ∆p = pj − pi, is invariant to a global
translation of the coordinate system.

Proof. Let the positions pi and pj be translated by an arbitrary vector t ∈ Rd, resulting in new
positions p′

i = pi + t and p′
j = pj + t. The new relative displacement vector, ∆p′, is:

∆p′ = p′
j − p′

i = (pj + t)− (pi + t) = pj − pi = ∆p. (16)

Since the relative displacement vector is unchanged by the global translation, the RoPE operator
applied to it also remains unchanged: ρΩ(∆p′) = ρΩ(∆p). Consequently, the attention score, which
depends only on the content vectors and this operator, is invariant to the translation:

q⊤ρΩ(∆p′)k = q⊤ρΩ(∆p)k. (17)

This formally demonstrates that RoPE imparts translation invariance to the attention mechanism.

A.4 A FOURIER PERSPECTIVE

The principle of constructing equivariant functions from irreducible representations is deeply con-
nected to Fourier analysis. The Fourier transform provides a way to decompose any function on a
group into a weighted sum (or integral) over its irreps. For the translation group on Rd, these irreps
are precisely the complex exponentials we used as our building blocks. Therefore, RoPE can be
understood as a practical application of Fourier theory, using a discrete basis of Fourier modes (the
chosen frequencies Ω) to represent the positional signal.

Definition 5 (Fourier Transform on Rd). The forward Fourier transform F : L2(Rd) → L2(Rd)

maps a function f to its frequency-space representation f̂ . The coefficient for a frequency ω is the
projection of f onto the corresponding irrep ρω:

f̂(ω) = F{f}(ω) =

∫
Rd

f(p)ρω(p) dp =

∫
Rd

f(p)e−iω⊤p dp. (18)

The inverse transform reconstructs the function by integrating over all irreps:

f(p) = F−1{f̂}(p) = 1

(2π)d

∫
Rd

f̂(ω)ρω(p) dω =
1

(2π)d

∫
Rd

f̂(ω)eiω
⊤p dω. (19)

B EQUIVARIANCE PROPERTIES OF PLATONIC TRANSFORMERS

We formally establish the equivariance of our proposed architecture. We consider a point cloud
{pi,vi, si}Ni=1 consisting of positions, vectors, and scalars. A global rotation R ∈ G acts on these
inputs as pi 7→ Rpi, vi 7→ Rvi, and si 7→ si.

Equivariant Feature Lifting. Input features are first lifted to functions on the group G. The
lifting operator, Lift, maps the input point cloud to a set of feature maps {fi : G → RC}Ni=1. Scalar
components are copied to each frame, while vector components (from pi,vi) are lifted by projecting
them onto each reference frame. This projection means expressing the vector’s coordinates in the
local basis of a given frame R̃ ∈ G, which is achieved by the transformation R̃−1v. This lifting
procedure is equivariant by construction: a global rotation R of the input point cloud results in the
lifted feature maps transforming via the left regular representation, LR. That is:

(Lift(R · cloud))i(R̃) = (Lift(cloud))i(R−1R̃) ≜ (LRfi)(R̃). (20)
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Equivariant Linear Layers. All linear layers Φ in our network are implemented as point-wise
group convolutions, as shown in Eq. 8. These layers are equivariant to the action of the group by
construction (Cohen et al., 2019, Thm. 3.1), satisfying Φ(LRfi) = LR(Φ(fi)).

This leads to our main proposition regarding the attention mechanism.
Proposition 4 (Equivariant Attention). Let the queries Qi, keys Ki, and values Vi be equivariant
feature maps produced by the equivariant linear layers. The RoPE-enhanced attention mechanism
(Eq. 7), which computes outputs yi, is an equivariant operation. That is, if the inputs transform as
fi 7→ LRfi, the outputs transform as yi 7→ LRyi.

Proof. Let the inputs to the attention layer (Qi,Ki, Vi) transform under a global rotation R as
Q′

i = LRQi, K ′
i = LRKi, and V ′

i = LRVi. We analyze the transformation of each component of
the attention calculation.

The score function sij(R̃), which depends on Qi(R̃) and Kj(R̃) (and potentially RoPE terms derived
from lifted positions), will transform as:

s′ij(R̃) = score(Q′
i(R̃),K ′

i(R̃), . . . ) = score(Qi(R
−1R̃),Kj(R

−1R̃), . . . ) = sij(R
−1R̃).

This means the score function itself is equivariant, s′ij = LRsij . Since the softmax operator is applied
point-wise for each frame R̃ over the index j, the attention weights also transform equivariantly:

attn′ij(R̃) = softmax
j

(s′ij(R̃)) = softmax
j

(sij(R
−1R̃)) = attnij(R

−1R̃).

Finally, the output feature map yi transforms as:

y′
i(R̃) =

N∑
j=1

attn′ij(R̃)V ′
j (R̃)

=

N∑
j=1

attnij(R
−1R̃)Vj(R

−1R̃) = yi(R
−1R̃).

Thus, the output transforms as y′
i = LRyi, proving the attention mechanism is equivariant.

C PROOFS

C.1 PROOF OF PROPOSITION 2

We seek to show that the unnormalized attention score, which defines the kernel ϕqi(∆p), takes the
form of a sparse Fourier series whose coefficients are linear projections of the query qi.

Let the relative position be ∆p = pj − pi. With a constant key vector kj = 1, the kernel is defined
by the attention score:

ϕqi
(∆p) = (ρ(pi)qi)

⊤(ρ(pj)1)

Using the properties of the RoPE operator ρ, this simplifies to:

ϕqi
(∆p) = q⊤

i ρ(pi)
⊤ρ(pj)1 = q⊤

i ρ(∆p)1

The RoPE matrix ρ(∆p) is block-diagonal, consisting of d/2 independent 2D rotation blocks. We
can therefore analyze the contribution from a single block k and sum the results. Let θk = ω⊤

k ∆p.
The contribution from block k is:

ϕk = (q2k−1 q2k)

(
cos(θk) − sin(θk)
sin(θk) cos(θk)

)(
1
1

)
Performing the matrix-vector multiplications, we get:

ϕk = (q2k−1 q2k)

(
cos(θk)− sin(θk)
sin(θk) + cos(θk)

)
= q2k−1(cos(θk)− sin(θk)) + q2k(sin(θk) + cos(θk))
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Grouping terms by cos(θk) and sin(θk) reveals the linear projections:
ϕk = (q2k−1 + q2k)︸ ︷︷ ︸

ak(qi)

cos(θk) + (q2k − q2k−1)︸ ︷︷ ︸
bk(qi)

sin(θk)

The Fourier coefficients ak(qi) and bk(qi) are thus simple linear combinations of the query vector’s
elements. Summing over all k = 1, . . . , d/2 yields the complete kernel ϕqi

(∆p), which has the
exact form stated in the proposition.

C.2 PROOF OF COROLLARY 1

The linear-time complexity is achieved by expressing the operation in matrix form and re-ordering
the computation. Let q′

i = ρΩ(pi)qi and k′
j = ρΩ(pj)1. Let Q′ ∈ RN×d′

be the matrix with rows
(q′

i)
⊤, K′ ∈ RN×d′

be the matrix with rows (k′
j)

⊤, and V ∈ RN×dv be the matrix of value vectors.
The output matrix Y ∈ RN×dv is given by:

Y = (Q′(K′)⊤)V.

By the associativity of matrix multiplication, this can be computed as Y = Q′((K′)⊤V). The term
(K′)⊤V costs O(Nd′dv) to compute, resulting in a d′ × dv matrix. Multiplying this by Q′ costs an
additional O(Nd′dv). The total complexity is therefore O(Nd′dv), linear in the sequence length N .

C.3 PROOF OF PLATONIC TRANSFORMERS IMPLEMENTING GROUP CONVOLUTIONS

The dynamic convolution from Proposition 2 becomes a dynamic group convolution within the
Platonic Transformer. This is a direct consequence of applying the operation to lifted coordinates
pi(R) = R−1pi for each reference frame R ∈ G. Since the relative position vector becomes
R−1(pj − pi), the kernel’s input is transformed accordingly. The resulting output for each frame
takes the form of a group cross-correlation3:

yi(R) =

N∑
j=1

ϕqi(R)

(
R−1(pj − pi)

)
vj(R). (21)

Here, the kernel ϕqi(R) is steered by the group element R, defining an equivariant dynamic group
convolution.

D EQUIVALENT ATTENTION VIA ROPE BASE FREQUENCY STEERING

We achieve full equivariance to Euclidean transformations by making the RoPE operator dependent
on a local reference frame R by projecting positions pi on R to obtain positions pi(R) := R−1pi.
The attention scores sij(R) for a query q(R)i and key k(R)j are computed as:

sij(R) = qi(R)⊤ρΩ((pj − pi)(R))kj(R), (22)
An equivalent approach is to steer the set of base RoPE frequencies Ω for each frame, creating a
frame-specific set ΩR = {Rωk | ωk ∈ Ω} (Reddy & Chatterji, 1996). The attention scores are then
computed as:

ŝij(R) = qi(R)⊤ρΩR
(pj − pi)kj(R). (23)

Proof. For sij(R) and ŝij(R) to be equivalent, we require that ρΩ((pj − pi)(R)) = ρΩR
(pj − pi).

For this, we need to show that ω⊤
k ∆p(R) = (Rω)⊤k ∆p, where ∆p = pj − pi. Let R be the

orthogonal matrix corresponding to R. Then we have:
ω⊤

k ∆p(R) = ω⊤
k R

−1∆p (24)

= ω⊤
k R

⊤∆p (25)

= (Rωk)
⊤∆p (26)

= (Rωk)
⊤∆p (27)

Thus, projecting global positions or steering the base frequencies are equivalent.
3Following common convention, we refer to this operation as a group convolution, though it is technically a
cross-correlation Cohen & Welling (2016); Bekkers (2020).
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By projecting the global positions, the RoPE attention mechanism remains identical to its traditional
formulation. Steering the base frequencies, however, is often more computationally efficient, since
the number of base frequencies is typically much smaller than the input sequence length.

E FRAME AVERAGING

Frame Averaging (Puny et al., 2022) (FA) imbues symmetry awareness to arbitrary neural networks.
A backbone model Φ : V → W on normed spaces can be made equivariant (or invariant) to a group
G. Specifically, for two group representations ρ1(g) and ρ2(g) that g ∈ G induces on V and W ,
Φ(ρ1(g) · x) = ρ2(g) · Φ(x), where x ∈ V and · is the group action on elements from V and W .

FA first constructs a frame F(x) : V → 2G with the following properties:

• A frame is G-equivariant if F(ρ1(g)x) = gF(x), where gF(x) = {gh|h ∈ F(x)}, and
• A frame is bounded over a domain K ⊂ V if ∃c > 0 such that the operator norm
∥ρ2(g)∥op ≤ c, ∀g ∈ F(x),∀x ∈ K.

To make the backbone Φ G-equivariant, symmetrization is applied on x via the group averaging
operator:

⟨Φ⟩F (x) =
1

|F(x)|
∑

g∈F(x)

ρ2(g)Φ(ρ1(g)
−1(x)). (28)

For equivariance to 3-dimensional Euclidean rigid-body transformations (translations, rotations,
reflections), i.e., G := E(3) and V = R3, F(x) is constructed using PCA on x; this involves
computing the centroid t = 1

nx
⊤1 ∈ R3 and covariance matrix C = (x− 1t⊤)⊤(x− 1t⊤) for a

point cloud x ∈ Rn×3 with n points. Suppose we obtain eigenvectors u1,u2,u3 ∈ R3 of C, we
construct 3× 3 orthogonal matrices by concatenating them together. Depending on the collection of
these matrices, we achieve equivariance to different motion groups: for E(3) equivariance, we use
U = [±u1,±u2,±u3] ⊂ E(3), and if we restrict this collection to contain only orthogonal, positive
orientation matrices, we achieve SE(3) equivariance. The frame then looks like,

F(x) = {(U, t) : U = [±u1,±u2,±u3])} ⊂ E(3).

For equivariant predictions on atomistic point clouds, we set ρ1(g)x = xU⊤ + 1t⊤ and ρ2(g)x =
xU⊤ for each frame element, followed by the application of the averaging operator in Eq. 28.
Furthermore, Puny et al. (2022) show that if F(x) is bounded, FA preserves the expressiveness of the
underlying backbone, making ⟨Φ⟩F maximally expressive even for non-compact groups like E(n).

F DETAILS OF ARCHITECTURE

In this section, we provide additional details about the architecture of the Platonic Transformer
and the various model configurations used in our experiments. Our framework is designed to be
equivariant to roto-translation groups, primarily SE(n) and, through specific configurations, the full
Euclidean group E(n).

We denote the core embedding dimension per group element as dhidden. Since our features are
functions on a group G of order |G|, the total feature dimension of a layer is dmodel = |G| × dhidden.
The specific group is determined by the solid_name parameter.

For the initial feature processing, input scalars and vectors are first embedded and then lifted into
a group-equivariant feature space using an initial lifting operation. This creates a tensor where the
channel dimension is expanded by a factor of |G|. An initial group-equivariant linear layer then
projects these lifted features to the model’s working dimension, dmodel. Optionally, an equivariant
Absolute Positional Encoding (APE), parameterized by ape_sigma, can be added at this stage.

The main body of the network consists of a stack of equivariant transformer blocks. Each block
contains two main sub-modules: a group-equivariant interaction layer and a feed-forward network
(FFN), connected with residual connections. Normalization is applied either before each sub-module
or after.
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For the group-equivariant interaction layer, we denote the number of attention heads per group
element as nhead. The total number of effective parallel heads is therefore |G| × nhead. The dimension
of each head, dhead, is calculated as dhidden/nhead. The input features are first projected to query,
key, and value representations using group-equivariant linear layers. To encode relative spatial
information, group-equivariant Rotary Position Embeddings, parameterized by rope_sigma and
learned_freqs, are applied to the query and key vectors. The interaction can then be performed
either as a full softmax-based attention mechanism or as a linear-time dynamic group convolution
via the attention flag. For the Feed Forward Networks (FFNs), we denote the hidden feature
dimension as dffn = dmodel × ffactor. The FFN consists of two group-equivariant linear layers with a
GELU activation function in between.

For the final output, two separate readout heads project the features to the desired scalar and vector
output dimensions. For graph-level tasks, a pooling operation performs a mean aggregation over the
node and group dimensions to produce a final invariant prediction. For node-level tasks, an averaging
operation over the group axis projects the features back to standard invariant scalar and equivariant
vector representations. Following standard Transformer practices, we apply dropout to the attention
weights and FFN activations, and stochastic depth to the outputs of the equivariant transformer blocks.

Particular values for all the important hyperparameters used for the experiments are in the Table.8

G HYPERPARAMETER TUNING AND MODEL SELECTION STRATEGY

This section outlines the full procedure used to configure and train our models.

Baseline Optimization To establish a fair point of comparison, we first optimized the general
training protocol using only the translation-only equivariant (T (n)) models. This initial phase
involved tuning the optimizer, learning rate schedule, weight decay, and data augmentations to ensure
the baseline models were as competitive as possible. This fixed protocol was then used for all
subsequent experiments.

Hyperparameter Sweep for Model Selection With the training protocol fixed, we performed an
extensive hyperparameter sweep for both SE(n) and T (n) model classes. This sweep was designed
to find the optimal architectural parameters while maintaining an equal computational budget between
model families. The parameters and their swept values are summarized in Table 6.

Table 6: Hyperparameter Sweep Configurations.

Parameter Configuration Values
Hidden Dim - [384, 576, 768, 1152]

Number of Heads

T (n) model (HS=16) [24, 36, 48, 72]
T (n) model (HS=32) [12, 18, 24, 36]
SE(n) model (HS=16) [2, 3, 4, 6] heads per group element
SE(n) model (HS=32) [1, 2, 3] heads per group element

Rope Sigma (σrope) RoPE frequency scaling [0.5− 2.0]

Attention Full Attention / Linear Conv [True,False]

Solid Group (G) Symmetry group [Octahedron,Tetrahedron, C2−8, D4−8]

Lambda F (λF ) OMol Force loss weight [1.0− 25.0]

Batch Size Samples per batch [64− 512]

Weight Decay [1e−3 − 1e−7]

The hyperparameter sweep was conducted across multiple layers and three random seeds for a
moderate number of epochs to efficiently explore the configuration space. It should be noted that
some configurations are not applicable for the Octahedral group, as its 24 symmetry elements require
a minimum of 24 total effective heads (i.e., at least one head per group element). After identifying the
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best-performing hyperparameters for both the SE(n) and T (n) model families from this sweep, we
proceeded to a final, full-length training run. These selected models were trained for a large number
of epochs to ensure convergence again with fixed compute budget, producing the final results reported
in the main paper.

H DETAILS OF EXPERIMENTS ON CIFAR10

H.1 DESCRIPTION OF THE DATASET

The CIFAR-10 dataset (Krizhevsky, 2009) is a standard benchmark for image classification, consisting
of 60,000 32x32 color images across 10 classes. The dataset is divided into a training set of 50,000
images and a test set of 10,000 images.

H.2 TRAINING DETAILS

For the CIFAR-10 classification task, our experimental setup is closely adapted from the supervised
training recipe for Vision Transformers presented in DeiT-III (Touvron et al., 2022). We tokenize
each image into a sequence of non-overlapping patches using a patch size of 4 × 4 pixels, a key
deviation from the ImageNet configurations to suit the lower resolution of the dataset.

The model is trained using the LAMB optimizer, which is subject to a cosine decay schedule following
a 5-epoch warm-up period. A comprehensive suite of regularization techniques is employed, including
a weight decay of 0.02, Mixup with an alpha value of 0.8, and CutMix with an alpha of 1.0, in
addition to model-size-dependent Stochastic Depth. The data augmentation pipeline is built upon
the ‘3-Augment‘ strategy, incorporating standard Random Resized Crop (RRC), horizontal flips,
ColorJitter with a factor of 0.3, and a single, randomly selected transformation from a pool of three:
Grayscale, Solarization, or Gaussian Blur.

The training objective is optimized using a Binary Cross-Entropy (BCE) loss, and positional infor-
mation is supplied to the transformer blocks through a combination of both Absolute Positional
Encodings (APE) and Rotary Position Embeddings (RoPE). Further hyperparameter details are
available in Table 8.

I DETAILS OF EXPERIMENTS ON SCANOBJECTNN

I.1 DESCRIPTION OF THE DATASET

ScanObjectNN(Uy et al., 2019) dataset is a real-world 3D point cloud dataset. It contains 15,000
objects divided into 15 categories with 2902 unique object instances. It contains background, parts
missing, and object deformation elements, which makes the classification task a challenge. The
dataset consists of three variants OBJ_BG, OBJ_ONLY and PB_T50_RS, for now the latter is only
examined.

I.2 TRAINING DETAILS

In order to prepare the input point cloud P ∈ RN×3 for processing by the Platonic Transformer,
we follow a preprocessing procedure. Similar to established methods Pang et al. (2023); Yu et al.
(2022), we first use Farthest Point Sampling (FPS) to select a set of L=2048 central points, denoted
as PC ∈ RL×3 with L = 2048. Subsequently, for each central point P i

C , we define a local patch
xi
p ∈ RK×3 by identifying its K-Nearest Neighbors (KNN) within the original point cloud P. These

local patches serve as the primary input vectors to the Platonic Transformer.

Additionally, to account for the axis-aligned nature of the dataset and to provide the model with a
global reference frame, we incorporate rotation augmentation. For each input vector, a rotation matrix
is applied. This matrix is either a random rotation or the 3×3 identity matrix, which is concatenated
with the input vector to provide the model with information about the global orientation.
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J DETAILS OF EXPERIMENTS ON QM9

J.1 DESCRIPTION OF THE DATASET

The QM9 dataset (Ramakrishnan et al., 2014) contains up to 9 heavy atoms and 29 atoms, including
hydrogens. We use the train/val/test partitions introduced in Gilmer et al. (2017), which consist of
100K/18K/13K samples, respectively, for each partition.

J.2 TRAINING DETAILS FOR THE REGRESSION EXPERIMENT

For the QM9 regression task, we train the Platonic Transformer to predict molecular properties.
Before being fed to the model, the input molecular geometries are centered by subtracting the mean
coordinate of each molecule. To stabilize training, we normalize the target property values by
subtracting their mean and dividing by their standard deviation, with these statistics computed over
the training set. We employ data augmentation in the form of random SO(3) rotations applied to the
coordinates during training.

The model is trained for a total of 1000 epochs using a batch size of 96. We utilize the Adam
optimizer with a learning rate of 5× 10−4 and a weight decay of 10−8. A cosine annealing schedule
with a 10-epoch linear warmup adjusts the learning rate throughout training. To prevent exploding
gradients, we apply gradient clipping with a maximum norm of 0.5. The training objective is
the Mean Absolute Error (MAE) on the normalized target values, while validation and testing are
performed by calculating the MAE on the original, unnormalized scale. Our experiments explore
different Platonic Transformer configurations, specifically by varying the symmetry group among
trivial_3, tetrahedron, and octahedron. Further hyperparameter details are available in
Table 8.

We choose FAFormer (Huang et al., 2024) to compare the contribution of Frame Averaging (with
a standard Transformer backbone) with our end-to-end trained Platonic Transformer with different
platonic solid symmetry groups. Recent efforts in long-context sequence modeling have also pit
Transformer-based methods with state-space methods. To provide a similar analysis here, we choose
G-Hyena (Moskalev et al., 2025), a recent state-space model that relies on long convolutions for 3D
molecular point clouds. We hyperparameter-tune FAFormer4 and G-Hyena to have similar parameter
counts and representational capacity as our best-performing Platonic Transformer on QM9. The
baselines are also trained over 500 epochs with a batch size of 96 on a single H200 GPU.

J.3 ADDITIONAL DETAILS ON WALL-CLOCK TIMINGS

To produce the wall-clock timing for the standard Transformer in Table 4, node features from B = 64
QM9 molecules were projected from din = 11 to dmodel = 512 using a Linear layer and fed as tokens
into a TransformerEncoderLayer module provided by PyTorch with 16 heads. We measure
wall-clock timings for a forward pass over 10 batches on a single H200 GPU. This offers a reference
timing to compare the inference speed of the Platonic Transformer and other geometric baselines like
G-Hyena (Moskalev et al., 2025) and the Tensor Field Network (Thomas et al., 2018).

J.4 EXTENDED EXPERIMENTS ON QM9

We extend our evaluation on the QM9 dataset to include all property targets. Table 3 summarizes these
results. We observe that the relative performance hierarchy remains consistent with our main findings:
models with higher-order symmetry groups (Octahedron) generally outperform those with lower
symmetry (Tetrahedron) and the non-equivariant baseline (Trivial). This confirms that the benefits of
the Platonic Transformer’s geometric inductive bias generalize across different properties. Crucially,
unlike baselines such as EquiformerV2 which rely on target-specific hyperparameter tuning, we
employ a single fixed set of hyperparameters across all targets. Despite this constraint, the Platonic
Transformer achieves competitive results, suggesting that further performance gains could be realized
with target-specific optimization.

4We use the open-source implementation of FAFormer provided at https://github.com/
Graph-and-Geometric-Learning/Frame-Averaging-Transformer. We obtain the source
code for G-Hyena through private correspondence with the authors.
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Table 7: Mean absolute error results on QM9 test set. † denotes using different data partitions.
Missing entries will be completed before the camera ready.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE
Model Units a30 meV meV meV D cal/mol K meV meV a20 meV meV meV

DimeNet++ (Gasteiger et al., 2020) .044 33 25 20 .030 .023 8 7 .331 6 6 1.21
EGNN (Satorras et al., 2021)† .071 48 29 25 .029 .031 12 12 .106 12 11 1.55
PaiNN (Schütt et al., 2021) .045 46 28 20 .012 .024 7.35 5.98 .066 5.83 5.85 1.28
TorchMD-NET (Thölke & Fabritiis, 2022) .059 36 20 18 .011 .026 7.62 6.16 .033 6.38 6.15 1.84
SphereNet (Liu et al., 2022) .046 32 23 18 .026 .021 8 6 .292 7 6 1.12
SEGNN (Brandstetter et al., 2022)† .060 42 24 21 .023 .031 15 16 .660 13 15 1.62
EQGAT (Le et al., 2022) .053 32 20 16 .011 .024 23 24 .382 25 25 2.00
Equiformer (Liao & Smidt, 2023) .046 30 15 14 .011 .023 7.63 6.63 .251 6.74 6.59 1.26
EquiformerV2 (Liao et al., 2024) .050 29 14 13 .010 .023 7.57 6.22 .186 6.49 6.17 1.47
PΘNITA (Bekkers et al., 2024) .038 30.4 16.0 14.5 .012 .024 8.63 8.04 .235 8.67 8.31 1.29

Platonic Transformer (Trivial, Attn) .064 45.9±0.18 29.4±0.50 24.4±0.35 .028 - - - - - - -
Platonic Transformer (Trivial, Conv) .061 43.8±0.65 26.6±0.03 24.0±0.29 .030 .033±.0006 - - .256±.0044 - - -
Platonic Transformer (Tetra, Attn) .049 - - - .012 - - - - - - -
Platonic Transformer (Tetra, Conv) .047 - - - .014 - - - - - - -
Platonic Transformer (Octa, Attn) .049±.0007 37.4±1.36 22.2±1.21 16.7±0.42 .010±.0002 .024±.0001 12.0±1.00 12.0±0.26 .222±.0062 11.9±1.73 13.0±0.00 1.3±0.01

Platonic Transformer (Octa, Conv) .048±.0013 33.8±1.00 17.7±0.51 15.7±0.25 .012±.0001 .026±.0001 11.0±0.45 11.7±0.20 .184±.0110 13.9±0.85 10.9±0.36 1.4±0.03

Table 8: Hyperparameter for all datasets

Hyperparameter QM9 OMol25 CIFAR10 ScanNetNN

Architecture

hidden_dim 1152 1152 768 576
layers 14 14 12 12
num_heads 72 72 12 12
Positional encoding

freq_sigma 0.5 0.5 1 18
ape_sigma 0.5 None 10 10
learned_freqs True True True True

Attention / readout

dropout 0.0 0.0 0.0 0.1
drop_path_rate 0.0 0.0 0.1 0.0
mean_aggregation False False False False

Training

lr 5e-4 2e-4 8e-4 8e-4
batch_size 96 64 256 128
epochs 1000 22 500 500
warmup 10 5 20 10
weight_decay 1e-8 1e-6 0.05 1e-6
lambda_F - 12.0 - -
cosine_scheduler True True True True
precision 32 32 32 32
gpus 1 4 1 1

K DETAILS OF EXPERIMENTS ON OMOL25

K.1 DESCRIPTION OF THE DATASET

For large-scale molecular experiments, we use the Open Molecules 2025 (OMol25) dataset (Levine
et al., 2025), a comprehensive collection of over 100 million Density Functional Theory (DFT)
calculations performed at the wB97M-V/def2-TZVPD level of theory. This dataset is notable for its
vast chemical and structural diversity, encompassing 83 elements and systems up to 350 atoms. The
structures are drawn from a wide range of chemical domains, including small molecules, biomolecules,
metal complexes, and electrolytes, and feature varied charges, spin states, conformers, and reactive
geometries.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The OMol25 dataset is organized into several training sets and splits for validation and testing
to ensure consistent and robust model evaluation. The full training set, "All," contains over 100
million DFT calculations. For more computationally efficient training and development, a smaller,
uniformly sampled "4M" split is provided, containing approximately 4 million structures. Our work
primarily utilizes the "Neutral" split, which consists of approximately 34 million charge-neutral,
singlet structures drawn from established community datasets like ANI-2X, GEOM, and SPICE2.
This split is designed to benchmark model performance on familiar organic chemistry space without
the added complexity of variable charge and spin.

For validation and testing, OMol25 provides several out-of-distribution (OOD) splits designed to
evaluate model generalizability. The primary validation set ("Val Comp") consists of structures with
compositions held out from the training set. Further specialized test sets include held-out organic and
metal-complex reactions ("Test Reactivity"), experimental crystal structures from the Crystallography
Open Database ("Test COD"), and unique anion structures ("Test Anions"), among others. The core
task is Structure to Energy and Forces (S2EF), where models are evaluated on their ability to predict
the total energy of a structure and the per-atom forces, with Mean Absolute Error (MAE) being the
primary metric.

K.2 TRAINING DETAILS

We partition the "Neutral" split of the OMol25 dataset into an 80% training set and a 20% validation
set, and report the final results on the official test set. The model is trained using an AdamW optimizer
with a learning rate of 2 × 10−4 and a weight decay of 10−6. The learning rate is managed by a
cosine decay schedule, which includes a linear warmup period over the first 5 epochs. Training is
conducted for a total of 22 epochs using a batch size of 64.

The training objective is a weighted sum of two components: a Mean Squared Error (MSE) loss
for the total energy and a Mean Absolute Error (MAE) on the force vectors. The force loss is
calculated as the average L2 norm (Euclidean distance) of the error between the predicted and target
force vectors for each atom. To balance these two targets, the force loss component is weighted by a
factor of λF = 12.0.

To ensure stable training on this large-scale task, we normalize the target energies. We apply a linear
referencing scheme to the raw DFT energies. This method normalizes the total energy by subtracting
the pre-computed DFT energies of the constituent isolated atoms:

Eref = EDFT −
N∑
i=1

Eatom
i (29)

where Eref is the target value for the model, EDFT is the system’s total energy, N is the number of
atoms, and Eatom

i is the pre-computed DFT energy of an isolated atom of the same species as atom i.
This procedure is consistent with the methodology used for the OC22 dataset (Tran et al., 2023) and
helps maintain comparability with other large-scale models.

Given the significant computational requirements for training on OMol25, we established a fixed
compute budget to ensure a fair comparison between models. Each model was trained for a max-
imum duration of 5 days on a node equipped with 4x NVIDIA 6000Ada GPUs. The detailed
hyperparameters for our model configuration on this dataset are summarized in Table 8.

L EXPERIMENTS ON LEARNED KEY PROJECTIONS

In Section 4.1 and Remark 1 of the main text, we motivate our design choice of using fixed key vectors
(kj = 1)—as opposed to learned linear projections (kj = WKfj)—by citing training instabilities
observed on molecular datasets. In this section, we report an empirical analysis of this observation.

L.1 INSTABILITY OF LEARNED KEYS

To investigate the impact of learned keys, we conducted experiments on the QM9 dataset using
the standard hyperparameters defined in Appendix J. We compared the standard model (fixed keys)
against a variant with learned key projections. We performed this comparison for both the full
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Attention mechanism and the linear Convolutional variant, training for 300 epochs across two random
seeds.

The results are illustrated in Figure 4. As shown in Figure 4a, when using the full Attention
mechanism, the introduction of learned keys (‘use_key=True‘) leads to severe training instability.
Both runs utilizing learned keys exhibit divergence around epoch 10, with one run failing to complete.
In contrast, the fixed key formulation (‘use_key=False‘) trains smoothly.

In the linear Convolutional mode (Figure 4b), training remains stable for both configurations. How-
ever, as shown in Figure 4c, the learned keys provide no performance benefit; in fact, the model with
fixed keys achieves a lower Test MAE. This suggests that even when stability is maintained, the
entanglement of content and geometry introduced by learned keys does not improve generalization
for this physical task.

(a) Attention Mode: Learning
Curves

(b) Convolution Mode: Learning
Curves (c) Final Test MAE Comparison

Figure 4: Impact of Learned Key Projections on Stability and Performance. (a) When using full
attention, learned keys cause rapid divergence/instability around epoch 10. (b) In convolutional mode,
training is stable, but (c) fixed keys consistently outperform learned keys in final accuracy.

L.2 MITIGATING INSTABILITY VIA REGULARIZATION

We further hypothesized that the instability in the Attention setting might be mitigated by stronger
regularization. We performed a sweep of weight decay values ranging from 10−1 to 10−8 for the
model with learned keys.

Figure 5 presents these results. Figure 5a shows that while high weight decay values (10−1 to
10−4) can stabilize the training, reducing the weight decay below 10−4 immediately reintroduces the
instability observed in the previous experiment. Figure 5b shows that the the weight decay should
be as small as possible while still leading to stable training, however, still the best performance is
lagging considerably behind the results of our default weight decay setting of 10−8 for the constant
key scenario (Figure 4).

(a) Learning Curves across Weight Decay Sweep (b) Test MAE vs. Weight Decay

Figure 5: Can Weight Decay Fix Learned Keys? (a) Strong weight decay stabilizes training, while
values < 10−4 lead to divergence. (b) The final test MAEs of each model.
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(a) Original input (b) Input rotated 180 degrees about the up-direction

Figure 6: We visualize the attention score between the orange node and all others, where an increased
color intensity indicates an increased attention score. The subplots correspond to 12 different
frames in the same head of an octahedral Platonic Transformer layer (there are 12 more frames not
visualized here). The attention is broadly focused on locality but with distinct directional biases. The
equivariance of the model can be observed by comparing the attention scores in the sub-figures. For
instance, the attention pattern in the top-left frame in Figure 6a is the same as the one in the top-right
frame in Figure 6b, but rotated 180 degrees.

Conclusion: These experimnets confirm that for physical tasks like QM9, using fixed keys (k = 1)
is not merely a simplification but an important design choice that ensures training stability and
solid performance. While we report results over 300 epochs here (compared to 1000 in the main
experiments), the early onset of instability and the consistent performance gap makes it implausible
that heavy regularized learned-key platonic transformers could match the constant-key performance.

M VISUALIZATIONS OF LEARNED ATTENTION SCORES

To show the directional attention learned in the attention head, we visualize examples over attention
patterns in different frames g ∈ G in Figure 6.

N IMPLEMENTING PLATONIC TRANSFORMERS IN THE FOURIER DOMAIN OF
FINITE GROUPS

With increasing hidden dimension (while not increasing sequence length), transformer blocks spend
more and more of their total compute time in the pointwise linear layers. To improve speed it can
then be worthwhile to implement the pointwise equivariant linear layers in the Fourier domain of
the rotation group, a technique that has recently been successfully employed in computer vision
(Bökman et al., 2025; Nordström et al., 2025). Considering the Fourier domain also sheds light on the
connections between Platonic Transformers and equivariant networks with general steerable feature
spaces (Cesa et al., 2022).

In this section we demonstrate how a Fourier domain implementation can improve computational
efficiency in Platonic Transformers. In the Fourier domain, equivariant linear layers are block-
diagonal, drastically reducing the required number of FLOPs for both forward and backward passes.
We will see that with the number of hidden dimensions considered in this paper, a naive PyTorch
implementation is not efficient enough to realize the reduction in FLOPs in terms of a substantial
reduction in training throughput, but at a moderately higher number of hidden dimensions, there are
throughput gains. This suggests that future scaling of Platonic Transformers will benefit from being
implemented in the Fourier domain, and that more efficient implementations than our current one
would be able to improve throughput even at smaller number of hidden dimensions.

We will use the tetrahedral symmetry group as a running example in this section. The reader is
cautioned that the representations discussed in this section are representations of the rotation group,
in contrast to the representations of the translation group discussed in Appendix A.
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N.1 INTRODUCTION TO THE FOURIER THEORY OF FINITE GROUPS

The representation theory of finite groups is a well studied topic with many good text books. We
recommend (Serre, 1977) for more detailed background than given here. Note that we consider vector
spaces over the real numbers, which leads to a slightly more involved representation theory than
complex numbers, see (Serre, 1977, Section II.12).

Recall from Appendix A.1 that a representation of a group G is a group homomorphism ρ : G →
GL(V ), where V is a vector space. We will here consider finite real vector spaces V = Rn so that
ρ(g) can be considered real-valued invertible matrices. An irreducible representation is one where the
matrices {ρ(g)}g∈G can not be simultaneously block-diagonalized. Any finite group G has a finite
number (up to ismorphisms) of irreducible representations (irreps) {ρi} and they can be computed
given the multiplication table of the group. Irreps are important because we can decompose any finite
representation ρ into a direct sum of irreps by performing a change of basis, so statements about
general representations often reduce to statements about irreps.

The features in Platonic Transformers are functions from G to RC , that transform under the left
regular representation as explained in Appendix B. In order words, the representation that acts on
them is a direct sum of C copies of the regular representation of G. Let this representation be denoted
ρ̃. Decomposing ρ̃ into irreps, we obtain

ρ̃(g) = Q

(⊕
i

ρi(g)
⊕mi

)
Q−1 (30)

for some multiplicities mi of each irrep and a change of basis matrix Q that can be taken to be
orthogonal.

Now, Schur’s lemma says that any equivariant linear map between non-isomorphic irreps ρi ̸= ρj
must be constant zero. Further, the space of equivariant linear maps between ρi and itself is 1-, 2-, or
4-dimensional and isomorphic (as a division algebra over R) to the real numbers, complex numbers,
or quaternions depending on whether ρi is of so-called real, complex or quaternion type. (The type
of ρi can be computed.) This means that any linear map that is equivariant from ρ̃ to ρ̃ is actually
block diagonal after having performed the change of basis in (30), in particular so are the group
convolutions used in Platonic Transformers.

For cyclic groups, the block-diagonalization corresponds to the fact that convolutions are pointwise
multiplications in the Fourier domain5.

N.2 FOURIER THEORY OF THE TETRAHEDRAL GROUP

Let us now consider the Tetrahedral rotation group as G, consisting of the twelve rotational symmetries
of a regular tetrahedron. This group is isomorphic to the alternating group A4 and has three real
irreps. The real irreps of the tetrahedral group are given by the one-dimensional trivial representation

ρ1(R) = 1, (31)

the three-dimensional standard representation

ρ3(R) = R (32)

and a two-dimensional representation ρ2 that is defined as follows. Note that any element in G is
either the identity, a rotation by 2π/3 radians (there are 8 of these) or a rotation by π radians (there
are 3 of these). For the identity and rotations by π,

ρ2(R) =

(
1 0
0 1

)
. (33)

The rotations by 2π/3 fall into two conjugacy classes of four elements each, where one conjugacy
class contains the inverses of the second. We can arbitrarily choose one of the conjugacy classes and
define

ρ2(R) =

(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
(34)

5This requires working over the complex numbers, over the real numbers the pointwise multiplications turn into
2× 2 matrix multiplications, again a block-diagonal structure.
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(a) The block-diagonal structure of an equivariant
weight matrix in the Fourier domain.

(b) We can implement the linear layer as a batched
matrix-vector multiplication with four batches.

Figure 7: We visualize the weight matrices for linear layers that are equivariant under the tetrahedral
rotation group, implemented in the Fourier domain. Each subfigure shows weights to the left and
features to the right. Purple features transform according to ρ1 (or technically ρ1 ⊗ IC since there
are C copies of ρ1), red features according to ρ2 (by multiplication by ρ2(g)⊗ IC from the left) and
green features according to ρ3 (by multiplication by ρ3(g)

⊤ from the right (if we flattened the green
features, they would transform by ρ3(g)⊗ I3C from the left)). The weight matrix is parameterized by
the C × C matrices W1,W21,W22 and the 3C × 3C matrix W3, yielding a total of 12C2 learnable
parameters. The total number of multiplications to compute the linear layer implemented as a batched
matrix-multiplication in 7b is 4 · (3C)2 = 36C2, yielding a 4× FLOP reduction versus an ordinary
layer from 12C to 12C dimensions (144C2 multiplications).

there, which implicitly defines the values for the second conjugacy class to be the inverse of the
above.

It can be computed that ρ1 and ρ3 are both of real type, while ρ2 is of complex type. Hence, equivariant
linear maps from ρ1 to ρ1 are parameterized by one value, and the same for ρ3. Equivariant linear
maps from ρ2 to ρ2 are instead parameterized by two values (this is because ρ2 splits into two irreps
over the complex numbers).

It can also be computed (or recovered from general facts of the Fourier transform over finite groups)
that the representation ρ̃ acting on features with C channels in a tetrahedral Platonic Transformer
splits into C copies of ρ1, C copies of ρ2 and 3C copies of ρ3 (as a sanity check, we recover all
C + C · 2 + 3C · 3 = 12C dimensions).

As mentioned, Schur’s lemma now implies that equivariant linear maps from ρ̃ to itself are block-
diagonal. The map from copies of ρ1 to copies of ρ1 is parameterized by a C × C matrix, the map
from copies of ρ2 to copies of ρ2 is parameterized by two C × C matrices (because ρ2 is of complex
type) and the map from copies of ρ3 to copies of ρ3 is parameterized by a 3C × 3C matrix. Again, a
sanity check gives that the full equivariant layer is then parameterized by C2+2C2+(3C)2 = 12C2

values, which is the same as the group convolution discussed in Section 3.3.

We visualize the weight structure in Figure 7a.

N.3 IMPLEMENTATION

We implement a version of the Platonic Transformer with tetrahedral equivariance and all linear
layers (i.e. in the MLP and projections in multi-head attention) in the Fourier domain. We transform
back to the spatial domain at each non-linearity and at the RoPE-attention layers and to the Fourier
domain after these layers. This transforming back-and-forth incurs an overhead that goes to zero
as the hidden dimension increases (since it is just the 12 × 12 matrix Q applied to each channel
C), however it is non-negligible at low–medium number of hidden dimensions, because it involves
non-contiguous reshapes.
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The maximum FLOP saving that can be obtained from changing a linear layer to be in the Fourier
domain is going from (12C)2 = 144C2 operations to C2 + (2C)2 +3 · (3C)2 = 32C2, i.e. a saving
of 4.5 times. However, in order to make the implementation more efficient in pure PyTorch, we opt
to implement the mappings for ρ1 and ρ2 as one single 3C × 3C matrix, enabling the whole linear
layer to be implemented as a batched matrix multiplication with four 3C × 3C weight matrices, as
illustrated in Figure 7b. This batched implementation uses 4 · (3C)2 = 36C2 operations, yielding a
maximum potential compute saving of 4 times.

N.4 THROUGHPUT BENCHMARKING

We benchmark the training time per epoch on a subset of 20k molecules on the OMol25 task, using
PyTorch’s torch.compile. These timing runs are on a single NVIDIA RTX6000 GPU. We
keep all hyperparameters constant as in the main experiments, except for varying the number of
hidden dimensions. The results are presented in Table 9. It is clear that as we increase the number
of hidden dimensions, a Fourier implementation starts paying off more and more. Notably, since
the standard spatial implementation is equal to non-equivariant Transformers in computational cost,
the efficiency improvement of the Fourier implementation is a benefit of equivariant architectures
over non-equivariant ones. We emphasize that our Fourier implementation is not well-optimized, so
further throughput improvements should be available.

Table 9: Training times per epoch (seconds) on a subset of OMol25 with 20k examples. We compare
a tetrahedral Platonic Transformer implemented in the spatial domain with one implemented in the
Fourier domain.

Hidden dimension
Implementation 576 864 1152 1440 1728 2016

Spatial (standard) 18 23 29 40 49 63
Fourier 19 22 27 32 38 45

O DISCLOSURE OF LLM USAGE

We declare that the use of LLMs for writing this paper was limited to general-purpose writing
assistance. Specifically, we used them only to polish the wording of text sections and in no way to
generate the research ideas or technical results and proofs presented in this paper.
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