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Abstract
3D point cloud based object recognition becomes increasingly important in the last few
years, as the widely use of point cloud over the low-cost 3D sensors have developed rapidly.
However, the obtained 3D point cloud is inevitably contaminated with noise due to physical
and environmental factors, which has a negative impact on recognition task. To address this
problem, a complete object recognition framework for 3D noisy point cloud is presented
into which a pre-processing step of filtering is integrated for the first time. In the filtering
phase, our two proposed approaches, named Guided 3D Point Cloud Filter (G3DF) and Iter-
ative Guidance Normal Filter (IGNF), are taken into account to produce high-quality point
cloud model. Then, on the basis of advantages of local-based and global-based descriptors,
a new type of feature descriptor, called Local-to-Global Histogram (LGH), is proposed,
which contains Local Viewpoint Feature Histogram (LVFH) and Local Ensemble of Shape
Function (LESF). Experimental results show that the comprehensive classification perfor-
mance yielded by using proposed filters and descriptors is competitive compared to other
state-of-the-art combinations. In particularly, the composition of G3DF and LVFH is more
suited for real-time applications.

Keywords 3D point cloud · Object recognition · Noise reduction · G3DF · IGNF · LVFH ·
LESF

� Xian-Feng Han
xianfenghan@swu.edu.cn

Xin-Yu Yan
xinyuyan@tju.edu.cn

Shi-Jie Sun
shijiesun@chd.edu.cn

1 College of Computer and Information Science, Southwest University, Chongqing, 400715, China
2 Tianjin University, Tianjin, 300072, China
3 Chang’an University, Xi’an, ShaanXi, 710064, China

Published online: 28 April 2021

Multimedia Tools and Applications (2021) 80:26121–26143

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-10794-3&domain=pdf
http://orcid.org/0000-0002-4869-4537
mailto: xianfenghan@swu.edu.cn
mailto: xinyuyan@tju.edu.cn
mailto: shijiesun@chd.edu.cn


1 Introduction

Object recognition [28] based on 3D point cloud is arguably a fundamental component of
numerous real-world applications, such as multimedia [30, 33], autonomous driving [7],
augmented/virtual reality [37] and robotics [11]. The aim of this field is to identify the object
in the point cloud model correctly, which has been drawn increasing attention recently. The
booming development of this research field is mainly put down to the following factors: 1)
The advent of new-generation 3D data acquisition sensors (e.g. Microsoft Kinect [6], Time
of Flight [14]) makes 3D point cloud become increasingly popular [21]. 2) The development
of high-performance computing devices accelerates the running speed of computationally
intensive 3D object recognition system. 3) Compared to 2D images, 3D point cloud pro-
vides much richer geometric information which contributes to improving the representation
ability for characterizing objects [9]. 4) Furthermore, features are extracted from 3D data
can address many issues encountered by that from 2D image due to the characteristic [8] of
3D point cloud.

In [1], the authors showed pipelines for local-based and global-based 3D object recog-
nition in scenes, where local-based pipeline is mainly composed of keypoint extraction,
description, matching, correspondence grouping and hypothesis verification. While the
global-based pipeline includes four steps: segmentation, description, matching and hypoth-
esis verification. Guo et al. [35] gave a review of methods used in each stage of local-based
object recognition pipeline. Alexandre [5] used another type of pipeline for both local and
global-based object recognition, which consists of keypoint detection, descriptor extrac-
tion and matching process. Different from these previous works, 1) we categorize both
local-based and global-based object recognition pipeline into two stages: training and test-
ing phase. 2) We introduce the machine learning algorithm to accomplish learning and
prediction tasks. 3) It is worth noting that we integrate pre-processing (filtering) into our
framework. 4) In terms of application, we use our framework to implement single object
recognition task instead of scene-based object recognition.

For filtering, Han et al. [14] classified the existing filtering methods into seven
groups, namely, statistical-based, neighborhood-based, projection-based PDEs-based, sig-
nal processing-based, hybrid methods and others. However, it can be seen from the
discussion that most of these works are time-consuming. About 3D descriptor [34, 36]
gave a comprehensively insightful investigation of the existing 3D point cloud descriptors,
which are divided into two categories: hand-crafted based and deep-learning based methods.
Although the deep-learning approaches currently achieve far better performance compared
to hand-crafted ways, lack of large-scale training dataset and the sparsity of 3D point cloud
challenged deep learning strategies .

In this paper, a complete framework is devised for noisy 3D point cloud based object
recognition, which takes the pre-processing into account, as shown in Fig. 1. And two
of our proposed filters, called Guided 3D Point Cloud Filter and Iterative Guidance
Normal Filter, will be considered as the major pre-processing algorithms. Furthermore,
motivated by the advantages of local-based and global-based descriptors, a new kind of
point cloud based descriptor, named Local-to-Global Histogram is proposed. Experimental
results demonstrate that the designed descriptors achieve high-level performance in terms
of descriptiveness, robustness and efficiency. And the integration of filter algorithms into
our framework actually contribute to improving the recognition performance.

The main contributions of our work are as follows:
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Fig. 1 Block diagrams of general framework for noisy 3D point cloud based object recognition

1. To the best of our knowledge, this is the first paper that takes the pre-processing step
into account to formulate a complete noisy 3D point cloud based object recognition
framework.

2. This paper proposes the Local-to-Global Histogram descriptor (LGH), including Local
Viewpoint Feature Histogram (LVFH) and Local Ensemble of Shape Function (LESF).

3. Comprehensive experiments are carried out to verify the roles of our filters and
descriptors in the noisy 3D point cloud based object recognition framework.

The remainder of this paper is organized as follows. Section 2 simply introduce the
background of our work. Section 3 briefly outlines our proposed filters G3DF and IGNF.
Section 4 describes the Local-to-Global Histogram descriptors. Comparative and compre-
hensive experiments are conducted in Section 5. Section 6 gives the demonstration of
proposed algorithms in our 3D object recognition pipeline. Section 7 draws the conclusion
of this paper.

2 Background

Without loss of generality, the noisy 3D point cloud based recognition processing pipeline is
distinctly divided into two broad categories: local-based and global-based framework on the
grounds of the type of features used (local based or global based descriptor[10]). Figures 2
and 3 show local-based and global-based pipeline, respectively.

At the conceptual level, the critical blocks of local-based pipeline include 3D keypoint
detection, local-based descriptor and matching. The input 3D point cloud model is fed
into the 3D keypoints detection [31] phase first to identify points which are distinctive
and repeatable enough to highly characterize surface. Then, local-based descriptor [22] is
constructed by resorting to the geometrical information of the local neighborhood associ-
ated with each keypoint. During the matching stage, a kind of classifier is used to classify

Fig. 2 Block diagrams of local-based methods for noisy 3D point cloud based object recognition
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Fig. 3 Block diagrams of global-based framework for noisy 3D point cloud based object recognition

features depending on the patterns learned from training step. In the case of global-based
pipeline, since the global-based descriptor [19] generally estimates a single descriptor vec-
tor encoding the entire geometry of input point cloud, this pipeline therefore only contains
global-based descriptor extraction and matching phases.

3 Pre-processing

The raw 3D point cloud models are inevitably contaminated by noise due to physical fac-
tors, limitations of sensors. Therefore, in order to obtain high-quality and high-accuracy
point cloud model, it is necessary to incorporate the pre-processing operations into the 3D
point cloud based object recognition framework. In this section, two of our proposed fil-
ters, namely, Guided 3D Point Cloud Filter and Iterative Guidance Normal Filter, will be
introduced here.

3.1 Guided 3D point cloud filtering

To reduce the computational cost when filtering point cloud model with huge numbers
of points, inspired by Guided Image Filtering [15], the Guided 3D Point Cloud Filtering
(G3DF) is proposed in [12], which will be sketched out in this section.

Given a raw input point cloud P = {
pi ∈ R3

}
, a kdtree structure is constructed to help

search the corresponding neighborhood N(pi ) = {
pij ∈ P

}
for each point pi . And an

assumption that there exists a linear relationship between filtered output and guidance point
cloud (Here, the input point cloud is considered as guidance) is made in each neighborhood.
To be specific, the resulting point is achieved by performing a linear transformation with
respect to the corresponding point pij in N(pi ).

p′
ij = aipij + bi (1)

Where p′
ij refers to the filtered point. ai and bi are the coefficients of linear model.

Then, a new cost function measuring the difference between the guidance point and
filtered point is defined as follows:

J (ai, bi ) =
∑

pij ∈N(pi )

((aipij + bi − pij )
2 + εa2i ) (2)
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Where ε is a regularization parameter to control the filtering effect by preventing ai from
being too large. These coefficients can be got by minimizing (2).

ai =
( 1|N(pi )|

∑
pij · pij − p̄i · p̄i )

( 1|N(pi )|
∑

pij · pij − p̄i · p̄i ) + ε
(3)

bi = p̄i − ai · p̄i (4)

Where

p̄i = 1
∣∣N(pi )

∣∣
∑

pij ∈N(pi )

pij (5)

Once estimated ai and bi , the filtered point p′
i corresponding to the present query point

pi in its own neighborhood N(pi ) can be computed.

p′
i = aipi + bi (6)

Finally, the resulting point cloud model is obtained by performing the linear transforma-
tion for every point. This algorithm is discussed in more detail in [12]

3.2 Iterative guidance normal filter

Since the traditional Bilateral filter and its variations usually cannot achieve satisfactory
results by performing simply one single iteration, especially when working with point
clouds with different noise levels. Therefore, motivated by [32] and [23], the Iterative Guid-
ance Normal Filter (IGNF for short) is proposed, which consists of three crucial steps:
normal estimation, iterative guidance normal filtering and point updating.

3.2.1 Normal estimation

Similar to G3DF algorithm, a kdtree structure is used to find out the local neighborhood
N(pi ) = {

pij ∈ P
}
for each point pi . Depending on this neighborhood, a covariance matrix

of size 3×3 is calculated for pi :

Ci =
∑

pij ∈Npi

e
‖pij −p̄i‖2

σ2 (pij − p̄i )(pij − p̄i )
T (7)
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Where p̄i is computed in the same way as (5). Here, Gaussian weight instead of uniform
weight is adopted to guarantee sharp features.

Due to the fact that Ci is a symmetric positive semi-definite matrix, the eigenvalues
{λ1, λ2, λ3} corresponding to the eigenvectors {ν1, ν2, ν3} are estimated by using (8). Here,
assuming that λ1 < λ2 < λ3, the eigenvector ν1 corresponding to the smallest eigenvalue is
taken as the normal ni of pi .

Ci · νk = λk · νk (8)

3.2.2 Iterative guidance normal filter

Here, according to the normals and spatial positions of query point pi and its neighbors pij ,
a normal-based Bilateral filter is defined in the following form,

n′
i = 1

Ki

∑

pij ∈Npi

exp(−
∥∥pi − pij

∥∥

2σ 2
s

−
∥∥ni − nij

∥∥

2σ 2
r

) · ni (9)

Where,

Ki =
∑

pij ∈Npi

exp(−
∥∥pi − pij

∥∥

2σ 2
s

−
∥∥ni − nij

∥∥

2σ 2
r

) (10)

To handle different level noise well, the iterative idea is introduced to (9) to form the
iterative guidance normal filter as follows:

nk+1
i = 1

Kk
i

∑

pij ∈Npi

exp(−
∥∥pi − pij

∥∥

2σ 2
s

−
∥∥∥nk

i − nk
ij

∥∥∥

2σ 2
r

) · nk
i (11)

Where,

Kk
i =

∑

pij ∈Npi

exp(−
∥∥pi − pij

∥
∥

2σ 2
s

−
∥∥∥nk

i − nk
ij

∥∥∥

2σ 2
r

) (12)

3.2.3 Point updating

After performing normal filtering operation, the point positions should be updated to match
the filtered normals accordingly. The updating scheme proposed by Sun et al. [29] is
modified to obtain the new point positions by iteratively operating the following equation,

p̂
k+1
i = p̂

k
i + 1

∣∣Npi

∣∣
∑

n̂i

[
n̂ij

(
p̂

k
ij − p̂

k
i

)]
(13)

See paper [13] for more information about this algorithm.
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4 Local-to-global histogram

How to design suitable feature descriptors for 3D point cloud based object recognition is
another considerably important issue. In this section, a new kind of descriptor, named Local-
to-Global Histogram (LGH), is put forward, which is on the basis of analysis of advantages
of local-based and global-based features. The basic idea behind LGH is that a global-based
descriptor is built over the sub point cloud determined by the keypoint and its neighbors. In
the following, Local Viewpoint Feature Histogram and Local Ensemble of Shape Function
will be depicted respectively.

4.1 Local viewpoint feature histogram

For 3D point cloud, surface normal and curvature are two fundamental attributes of point.
However, they are difficult to capture much richer geometric information [25]. On the other
hand, the relationships among neighboring points play an important role in getting better
surface variation. Therefore, the Local Viewpoint Feature Histogram is based on sub point
cloud and relationships determined by one keypoint and its corresponding neighbors. Given
an input point cloud P = {

pi ∈ R3
}
, the process of building LVFH descriptor consists of

the following steps:
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In the first stage, a 3D keypoint detection algorithm (e.g. SIFT, Harris3D) is used to select
keypoints from the input point cloud. For each keypoint pi , the r-ball strategy is adopted
to search p′

i s corresponding neighbors pj ∈ P which lies within the sphere support region
defined by r. These neighboring points together with keypoint can be thought of as a sub
point cloud Pi from the entire model.

The second stage is the construction of global-based feature on the sub point cloud men-
tioned above. First, for each neighboring point pj , a local reference frame (LRF) shown in
Fig. 4 is built grounded on the present keypoint pi and its corresponding surface normal ni .
The specific definition of the LRF is as follows:

x = npi
, (14)

y = (
pj − pi

) × x, (15)

z = x × y (16)

The reason why this kind of reference frame is employed is that 1) inspiration of the success-
ful employment of LRF for Point Feature Histograms descriptor to depict the relationship
between point pairs, 2) the introduction of this LRF can transform the relationship between
points into quantitatively angles to reduce the number of features. (See Fig. 5)

Once the reference frame is accomplished, three angular features α, β, θ and a distance
d between keypoint pi and its neighbor pj are subsequently estimated using the following
equations.

α = y · nj (17)

β = (
x · (

pj − pi

))
/
∥∥pj − pi

∥∥ (18)

θ = arctan(z · nj , x · nj ) (19)

d = ‖pi − pj‖ (20)

Where the first three features α, β and θ are utilized to measure the difference between
normals for points. The fourth feature d is a measurement of the distance between points.
These four features are translation and rotation invariant [24, 26].

This procedure will be performed for every pair of point ni’s neighbors and ni in this
sub point cloud. These four features are then constructed into four corresponding 45-bin
histograms, respectively.

The fifth angular feature of Local Viewpoint Feature Histogram is a viewpoint-dependent
component similar to the viewpoint feature histogram (VFH). In our approach, we calculate
the angle ϕ between the keypoint pi (as viewpoint direction vector) and its neighbor pj ’s

Fig. 4 The local reference frame
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Fig. 5 The features for local viewpoint feature histograms

normal nj . And this feature is subsequently divided into a 128-bin histogram.

ϕ = arccos
(
nj · pi/

∥∥pi

∥∥)
(21)

The final form of the local viewpoint feature histogram is the concatenation of these five
histograms, i.e. a five tuple {α, β, θ, d, ϕ}. Figure 6 gives an example of the LVFH feature
extracted from one support region on an apple’s point cloud model.

4.2 Local ensemble of shape function

The second histogram descriptor based on the Local-to-Global strategy is the Local Ensem-
ble of Shape Function (LESF). The principal idea behind the LESF is that we extract the
global-based feature descriptor Ensemble of Shape Function from sub point cloud defined
by the spherical neighborhood of each keypoint. The establishment of LESF descriptor
consists of the following stages.

The first phase is similar to the construction of LVFH, where 3D keypoint detector is
chosen to define keypoints from point cloud model and determine the corresponding sub
point clouds.

The second phase is to build global ensemble of shape function features on each sub
point cloud based on the shape function distributions, which contains ten 64-bin histograms.
The major steps are summarized as follows:

First, for each sub point cloud Pi , a computationally efficient method is used to create
a voxel grid of size 64 × 64 × 64 which can be treated as a rough approximation of the

Fig. 6 Example of LVFH defined on the spherical neighborhood around one keypoint on an apple’s point
cloud model
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surface of the sub point cloud. This operation aims to assist in helping complete the task of
classification of attributes involved in the subsequent processing.

Second, three points pi1, pi2, pi3 are randomly selected from the sub point cloud Pi . And
three important shape functions are estimated using corresponding equations. The first one
is D2 function which is capable of describing the entire geometry of the sub point cloud and
distinguishing rough shapes. However, it does not work well with incomplete point cloud
because of the fact that D2 function has limited expressive ability.

di12 = ∥∥pi1 − pi2

∥∥ (22)

di13 = ∥∥pi1 − pi3

∥∥ (23)

di23 = ∥∥pi2 − pi3

∥∥ (24)

The second one is A3 function that is defined as the angle between two lines determined
by three points. A3 function encapsulates the features of sub point cloud from a different
aspect to enhance the expression ability of descriptor, which is scale invariant. The definition
of A3 function is yielded as follows:

cosθ1 =
∣∣∣∣∣
(pi1 − pi2) · (pi1 − pi3)∥∥pi1 − pi2

∥∥ ∥∥pi1 − pi3

∥∥

∣∣∣∣∣
(25)

cosθ2 =
∣∣∣∣∣
(pi1 − pi2) · (pi2 − pi3)∥∥pi1 − pi2

∥∥ ∥∥pi2 − pi3

∥∥

∣∣∣∣∣
(26)

cosθ3 =
∣∣∣∣∣
(pi1 − pi3) · (pi2 − pi3)∥∥pi1 − pi3

∥∥ ∥∥pi2 − pi3

∥∥

∣∣∣∣∣
(27)

The third one is D3 function, which is defined as area of the region enclosed by three
points as follow:

p = di12 + di13 + di23 (28)

S = 1

2
p ∗ (p − di12) ∗ (p − di13) ∗ (p − di23) (29)

These three functions are selected due to the fact that they have simple form and are easy
to compute. More importantly, they are invariant to small perturbation caused by noise.

Third, 3D Bresenham line generation algorithm is put into use to trace three lines deter-
mined by points pi1, pi2, pi3. These lines are then classified into three categories: On the
surface of sub point cloud, OFF the surface of sub point cloud, part on and part off the
surface of sub point cloud (MIXED).

Fourth, according to the locations of lines, the values of D2 function, A3 function and D3
function are divided into ON, OFF and MIXED cases. The corresponding values are placed
into associated histograms respectively, totally nine histograms. Particularly, the ratio of
values of D2 function belonging to the MIXED type is employed to construct one more
shape histogram.

Fifth, the concatenation of these ten histograms formulates the final LESF descriptor for
the sub point cloud Pi

Figure 7 is an example of LESF histogram feature extracted from one sub point cloud
defined on a banana’s point cloud model.
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Fig. 7 Example of LESF extracted from sub point cloud defined around one keypoint on a banana’s point
cloud model

5 Experimental setup and performance evaluation

After introduction of proposed filters and descriptors, comprehensive experiments and com-
parisons are made to illustrate their performance in terms of descriptiveness, robustness and
efficiency.

5.1 Dataset

The experimental results on the publicly available dataset, named Washington RGB-
D Objects Dataset [20], are shown. This dataset comes from http://rgbd-dataset.
cs.washington.edu/dataset/rgbd-dataset pcd ascii/, involving 207,621 3D point clouds (in
PCD format) of view of 300 objects which fall into 51 categories. And Fig. 8 shows exam-
ples of point cloud models of 10 different categories from this dataset. It is especially
important to note that these models are partial object rather than complete one. 400 point
cloud models and 200 models from 10 categories of dataset are selected as the training set
and testing set [5] (the views of same models in training dataset are different from that in
testing dataset), respectively. In addition, 100 point cloud models of each object of the 10
categories are chosen.

Fig. 8 Examples of point cloud models. Top row, left to right: apple, ball, banana, pepper, binder. Bottom
row, left to right: calculator, camera, cap, cellphone, battery
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5.2 Implementation details

The recognition pipeline shown in Fig. 1 are used to guide experiments. As for learn-
ing strategy, the classic and famous supervised learning algorithm, named Support Vector
Machine (SVM), is adopted. And in the case of local-based process, Harris3D is employed
as the major keypoint detection strategy for most of our experiments. Furthermore, all exper-
iments were carried out on a computer with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
and 16GB memory.

5.2.1 Selected filters

To demonstrate the effect of filters on the performance of object recognition, four more
state-of-the-art filters are chosen for comparison, including normal-based Bilateral Filter
(NBF), Moving Least Square (MLS) [4], Weighted Locally Projection (WLOP) [17] and
Edge Aware Resample (EAR) [16].

5.2.2 Selected descriptors

Here, six different descriptors (shown in Table 1) are selected, including Spin Image (SI)
[18], Signature of Histogram of Orientation (SHOT) [27], Fast Point Feature Histogram
(FPFH) [26], Viewpoint Feature Histogram (VFH) [24], Cluttered Viewpoint Feature His-
togram (CVFH) [3], Oriented, Unique and Repeatable CVFH (OURCVFH) [2], to conduct
comparison.

The reason for choosing these filters and descriptors aforementioned is that they have a
relatively high citation rate and are commonly used as comparable approaches with state-of-
the-art performance. All methods, together with our proposed ones, are implemented using
C++ and Point Cloud Library (PCL version 1.8).

5.2.3 Parameters

Particularly, it is necessary to notice that default parameters from the original papers or PCL
implementations are used for the selected filters and descriptors.

For Guided 3D Point Cloud Filtering, the parameters ε and K or r should be specified.
And the Iterative Guidance Normal Filter requires K of KNN, the number of normal fil-
tering iterations niter , the standard variance parameter σs for spatial kernel, σr relating to
signal weighting term, and the number of point updating piter to be adjusted. The selection
of optimal values and effect of these parameters on performance are discussed in [12] and
[13]

Table 1 Recognition accuracy obtained by our proposed descriptors with different radius

No. Descriptors Type Length

1 SI Local 225

2 SHOT Local 352

3 FPFH Local 33

4 VFH Global 08

5 CVFH Global 308

6 OURCVFH Global 308
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With respect to Local-to-Global Histogram, r is the key parameter, which will be
discussed in the following section.

5.3 Descriptiveness

Two metrics are utilized to test the descriptiveness of proposed descriptors and demonstrate
the recognition results of combination of different descriptors with different filters. The
first metric is recognition accuracy which is evaluated as the ratio of correctly identified
objects in the testing dataset. The second one is the confusion matrix, a well-suited tool
of visualization of recognition performance on all 10 categories, with row representing the
predicted classes while column indicating the actual classes. Given 100 models of each
object of 10 categories, the prediction distribution percentage are calculated. Then filling
out this specific table forms the confusion matrix of size 10×10.

5.4 Robustness

The robustness of LGH descriptors are evaluated from the perspective of different level of
Gaussian noise and support radius.

5.4.1 Support radius

The setting of support radius has great influence on descriptiveness, robustness and effi-
ciency of descriptors. Therefore, different support radius are adopted to determine the
neighborhood of each keypoint which constitute the sub point cloud. The performance
of LVFH and LESF with respect to different support radius are shown in Table 2 and
corresponding confusion matrices are shown in Fig. 9.

Five support radii are selected to carry out experiments. The following conclusions can
be reached: First, the overall trend of the performance of proposed descriptors is incremental
when the support radius increasing. This implies that large support radius determines a sub
point cloud encapsulating more geometrical information and the corresponding descriptors
have much higher descriptiveness. Second, LVFH and LESF produce the best performance
with radius taking values of 0.05 and 0.15, respectively. Third, it can be reported from
confusion matrices that LESF is able to attain much better performance on some object
classes (such as banana and cellphone) where LVFH is not.

5.4.2 Gaussian noise

To evaluate the robustness of proposed features to noise, three different levels of Gaus-
sian noise with standard deviations of 0.0005,0.0008 and 0.001 are added to each test point
cloud, respectively. The experimental results are demonstrated in the first row of Tables 4,
5 and 6. The following summarisations can be got: First, the robustness of all descriptors
tends to descend rapidly as the noise level increases. Second, the proposed LVFH and LESF

Table 2 Recognition accuracy obtained by our proposed descriptors with different radius

Radius 0.03 0.05 0.08 0.1 0.15

LVFH 58.5% 75.0% 73.0% 72.5% 74.5%

LESF 40.5% 69.5% 73.0% 73.5% 75.0%
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Fig. 9 Confusion matrices on ten object classes of LVFH and LESF using different support radii

descriptors achieve the best performance in most cases, closely followed by FPFH. Specifi-
cally, under the noise with standard deviation of 0.0005, FPFH is slightly better than LVFH
from the recognition accuracy view of point, while LESF simply gives a ranking fourth
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Fig. 10 Recognition accuracy of LVFH and LESF on each type of object

result. In the case of noise with standard deviation of 0.0008, LVFH becomes the descrip-
tor with the best robustness, outperforming the other descriptors. And LESF comes second
with a relatively high accuracy. As the standard deviation of noise increased to 0.001, LVFH
obtains a considerably close performance compared to FPFH. However, LESF only achieves
a moderate robustness with a medium accuracy result. It can be, therefore, inferred that
LVFH is greatly robust to noise while LESF is less well-behaved dealing with noisy data.
On the other hand, it is also indicated that noise reduction operations are completely neces-
sary in the pipeline of 3D object recognition. And the influence of filters on the recognition
performance will be discussed in later sections.

Figure 10 is an example of the histogram of recognition accuracy of LVFH and LESF
on each of ten object classes under the noise with standard deviation of 0.0008. It can be
reported that LVFH and LESF can achieve an acceptable result on most classes.

5.5 Combination with 3D keypoint detectors

Actually, the selection of keypoints plays an important role in feature extraction. Hence
in order to demonstrate the effect of different keypoint detectors on the performance of
proposed descriptors, Scale Invariant Feature Transform (extension of 2D SIFT to 3D point
cloud), Harris3D, Uniform Sampling (US) and Voxel Grid (VG) algorithms are chosen. The
overall performance of each detector-descriptor combination is presented in Table 3 and
confusion matrices are shown in Fig. 11. Several major observations can be made as follows.

First, the overall performance of combination of proposed descriptors with Uniform
Sampling is much better than other combinations.

Table 3 Recognition accuracy obtained by our proposed descriptors with different 3D keypoint detectors

Detectors SIFT HARRIS3D US VG

LVFH 73.0% 74.5% 80.0% 76.5%

LESF 78.0% 75.0% 81.0% 85.5%
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Fig. 11 Confusion matrices on ten object classes of combinations of LVFH and LESF with SIFT, Uniform
Sampling and Voxel Grid
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Table 4 Recognition accuracy obtained by combination of different filters with different descriptors tested
on dataset with Gaussion noise(σ=0.0005)

Filters SI SHOT FPFH VFH CVFH OURCVFH LVFH LESF

- 70.0% 64.5% 73.5% 56.0% 53.5% 46.5% 71.0% 68.5%

NBF 68.5% 65.0% 69.0% 50.0% 53.5% 44.0% 70.5% 69.0%

MLS 32.5% 48.0% 42.0% 32.5% 61.0% 49.0% 44.0% 34.5%

WLOP 55.0% 58.0% 63.5% 61.5% 63.0% 54.5% 60.5% 62.0%

EAR 60.5% 65.0% 68.0% 66.5% 66.0% 52.5% 69.0% 63.5%

G3DF 62.0% 66.0% 71.5% 67.5% 64.5% 53.0% 71.5% 68.5%

IGNF 67.0% 74.0% 72.0% 48.5% 61.5% 55.5% 72.5% 66.0%

Second, specifically, the combination of LVFH with Uniform Sampling and combina-
tion of LESF with Voxel Grid achieve the best performance in their respective comparison
experiments. And the overall performance of LVFH and LESF are almost the same when
combined with SIFT and Harris3D algorithms.

Third, from the confusion matrices, it can be stated that all these combinations can get
acceptable recognition accuracy on most of ten classes. In particular, the overall perfor-
mance of LESF combining with Uniform Sampling and Voxel Grid is a little higher than
the combination of LVFH with these two detectors.

Fourth, these experimental results also reveal the fact that the selection of suitable 3D
keypoint detectors can boost the performance of object recognition.

6 Noisy 3D point cloud based object recognition

Up to now, the G3DF, IGNF and the Local-to-Global Histogram descriptors have been
introduced. In order to further demonstrate the functionalities, properties and performance
of these proposed filters and descriptors, the complete noisy 3D point cloud based object
recognition pipeline proposed in Section 2 is used to carry out the experiments.

G3DF and IGNF are used together with the other four filters as pre-processing algo-
rithms. And LGH descriptors with the other six descriptors are integrated as feature
extraction algorithms. These different combinations of filters and descriptors are evaluated

Table 5 Recognition accuracy obtained by combination of different filters with different descriptors tested
on dataset with Gaussion noise(σ=0.0008)

Filters SI SHOT FPFH VFH CVFH OURCVFH LVFH LESF

- 61.5% 59.5% 61.5% 33.5% 52.5% 44.0% 64.5% 62.0%

NBF 65.5% 65.0% 63.0% 32.5% 10.05% 45.5% 61.5% 56.0%

MLS 37.0% 50.0% 37.5% 33.0% 60.5% 49.5% 44.0% 37.0%

WLOP 58.0% 60.0% 63.0% 60.5% 62.0% 54.5% 63.5% 23.0%

EAR 62.0% 69.5% 74.5% 70.0% 64.0% 52.0% 74.5% 72.0%

G3DF 64.0% 69.5% 69.5% 68.5% 64.0% 52.5% 71.0% 72.0%

IGNF 65.5% 73.5% 72.5% 50.0% 61.5% 58.0% 75.0% 72.0%
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Table 6 Recognition accuracy obtained by combination of different filters with different descriptors tested
on dataset with Gaussion noise(σ=0.001)

Filters SI SHOT FPFH VFH CVFH OURCVFH LVFH LESF

- 53.0% 54.5% 55.5% 14.0% 29.0% 39.0% 54.5% 47.0%

NBF 57.0% 60.0% 55.5% 13.5% 28.0% 38.0% 53.5% 48.0%

MLS 33.5% 49.0% 41.0% 33.0% 60.5% 48.5% 42.0% 34.0%

WLOP 58.0% 62.0% 64.5% 59.5% 61.0% 53.0% 65.5% 25.0%

EAR 63.0% 71.0% 73.5% 63.5% 61.5% 52.5% 73.5% 72.0%

G3DF 65.5% 68.5% 73.5% 64.0% 61.5% 53.5% 74.5% 70.5%

IGNF 69.5% 73.0% 74.0% 50.0% 61.5% 58.0% 76.0% 75.5%

on the testing date with three different levels of Gaussian noise mentioned in the previous
section.

6.1 Performance and Discussion

The recognition results of these different combinations under different levels of Gaussian
noise are shown in Tables 4, 5 and 6. Figure 12 gives the corresponding histogram rep-
resentation. Specifically, Figs. 13 and 14 show the confusion matrices of combinations of
G3DF, IGNF with LVFH, LESF on each object of ten classes, respectively. Several major
observations can be made from these results.

First, generally, the incorporation of pre-processing operations (filtering) can help
improve the quality and accuracy of 3D point cloud, which contributes to the amelioration
of descriptiveness. The overall performance of object recognition produced by combina-
tions of filters and descriptors is much higher than these without filters, although these exists
some exceptions, such as combinations of MLS with SI, IGNF with LESF in Table 4. In par-
ticular, it is worth noting that as the noise level increases, the margins of the improvement
of recognition accuracy brought by these combinations become much more significant.

Second, it is clear that in most cases, LVFH and LESF generally show a much better
performance compared to other descriptors when combined with different filters. While

Fig. 12 Histograms of combinations of different filters with different feature descriptors in the cases of three
different level of noise
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Fig. 13 Confusion Matrices of combination of our G3DF with LVFH and LESF in the presence of noise
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Fig. 14 Confusion Matrices of combination of our IGNF with LVFH and LESF in the presence of noise
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G3DF and IGNF are the top filters outperforming other filters in terms of combination with
different descriptors.

Third, specifically, under low-level Gaussian noise with standard deviation of 0.0005,
the assembly of LVFH with IGNF acquires the best performance in terms of recognition
accuracy, followed by that with G3DF. And the performance of combinations of LESF with
G3DF and IGNF comes with the second and third places under the same conditions, respec-
tively. As the standard deviation increases to 0.0008, the integration of LVFH with IGNF
behaves best, while LESF gives the highest values of recognition accuracy when com-
bined with G3DF and IGNF. It can be further concluded that in the case of models with
low-level or medium-level noise, G3DF produces almost the same response as IGNF from
the perspective of improving the representation ability of LVFH and LESF. Under noise
with standard deviation of 0.001, both LVFH and LESF obtain the top performance when
combined with IGNF. And they come in the ranking second and third places respectively,
when combined with G3DF. It can be indicated that with respect to high-level noise, IGNF
performs much better than G3DF for improvement of descriptiveness of LVFH and LESF.

Fourth, it can be further found from the confusion matrices that four combinations G3DF
with LVFH, G3DF with LESF, IGNF with LVFH and IGNF with LESF are able to yield
satisfyingly acceptable recognition result on most of objects of ten classes. It can be fur-
ther concluded that G3DF and IGNF actually play a positive role in helping improve the
expression ability of descriptors, especially LVFH and LESF. And these four combinations
become combinations with high-level performance, which outperforms the other cases.

6.2 Efficiency

Computational efficiency is another important metric for noisy 3D object recognition per-
formance. Therefore, in order to give a thorough evaluation, the average time will be
evaluated on testing dataset with three different level of noise by using the aforementioned
combinations for object recognition.

It can be concluded from Table 7 that 1) under the same conditions, G3DF combin-
ing with different descriptors computationally outperforms other groups by a large margin,
while IGNF is relatively time-consuming, only faster than EAR. 2) In the context of object
recognition, the combination of LVFH with G3DF provides a trade-off between efficiency
and recognition accuracy. Therefore, it is suitable for real-time applications. 3) On the other
hand, although the combinations of LESF with G3DF and IGNF, LVFH with IGNF run
a little slower, they achieve the best recognition performance. Consequently, they can be
applied to applications that require high-quality or high-accuracy point cloud models.

Table 7 Average computational time by using combination of different filters with different descriptors

Filters SI SHOT FPFH VFH CVFH OURCVFH LVFH LESF

NBF 525.71 1,243.38 1,009.39 392.58 1,361.98 1,401.18 799.01 1,500.26

MLS 473.22 1,191.20 965.22 336.60 1,316.61 1,340.82 973.44 1,396.75

WLOP 833.49 1,550.18 1,310.42 698.23 1,671.55 1,714.30 1,115.98 1,812.21

EAR 2,525.14 3,240.44 3,014.64 2,390.80 3,360.72 3,487.30 2,894.50 3,391.49

G3DF 267.59 984.36 759.55 135.64 1,143.16 1,150.96 503.36 1,022.47

IGNF 1,077.24 1,796.80 1,572.93 944.12 1,954.60 1,964.48 1,301.71 2,079.14
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7 Conclusion

In this paper, the filtering operation is assembled into the 3D point cloud based object
recognition framework. To demonstrate the effectiveness of this pipeline, an overview of
proposed filters: Guided 3D Point Cloud Filter and Iterative Guidance Normal Filter were
first outlined. Then, a new kind of descriptor, named Local-to-Global Histogram was pro-
posed, which includes Local Viewpoint Feature Histogram and Local Ensemble of Shape
Function. Experimental results showed the effectiveness of proposed descriptors in terms
of descriptiveness, robustness and combination with different keypoint detectors. Finally,
many filters and descriptors combinations were integrated into this framework to conduct
experiments which stated the feasibility of designed framework and further verified the per-
formance of these proposed algorithms. In the future, deep learning strategies will be taken
into account in the designed recognition framework to use its powerful learning ability.
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