
Published as a conference paper at ICLR 2024

DEEPZERO: SCALING UP ZEROTH-ORDER OPTIMIZA-
TION FOR DEEP MODEL TRAINING

Aochuan Chen†,⋆ Yimeng Zhang†,⋆ Jinghan Jia† James Diffenderfer‡ Jiancheng Liu†

Konstantinos Parasyris‡ Yihua Zhang† Zheng Zhang§ Bhavya Kailkhura‡ Sijia Liu†
†Michigan State University, ‡Lawrence Livermore National Laboratory, §UC Santa Barbara

∗Equal contributions

ABSTRACT

Zeroth-order (ZO) optimization has become a popular technique for solving ma-
chine learning (ML) problems when first-order (FO) information is difficult or im-
possible to obtain. However, the scalability of ZO optimization remains an open
problem: Its use has primarily been limited to relatively small-scale ML problems,
such as sample-wise adversarial attack generation. To our best knowledge, no
prior work has demonstrated the effectiveness of ZO optimization in training deep
neural networks (DNNs) without a significant decrease in performance. To over-
come this roadblock, we develop DeepZero, a principled ZO deep learning (DL)
framework that can scale ZO optimization to DNN training from scratch through
three primary innovations. First, we demonstrate the advantages of coordinate-
wise gradient estimation (CGE) over randomized vector-wise gradient estimation
in training accuracy and computational efficiency. Second, we propose a sparsity-
induced ZO training protocol that extends the model pruning methodology using
only finite differences to explore and exploit the sparse DL prior in CGE. Third,
we develop the methods of feature reuse and forward parallelization to advance
the practical implementations of ZO training. Our extensive experiments show
that DeepZero achieves state-of-the-art (SOTA) accuracy on ResNet-20 trained on
CIFAR-10, approaching FO training performance for the first time. Furthermore,
we show the practical utility of DeepZero in applications of certified adversarial
defense and DL-based partial differential equation error correction, achieving 10-
20% improvement over SOTA. We believe our results will inspire future research
on scalable ZO optimization and contribute to advancing DL with black box.
Codes are available at https://github.com/OPTML-Group/DeepZero.

1 INTRODUCTION

In the realm of machine learning (ML), optimization algorithms have played a crucial role in en-
abling the training of complex models, yielding unprecedented insights and predictive capabilities
across diverse domains. Over the years, first-order (FO) gradient-based methods, such as stochastic
gradient descent (SGD) and its variants (Gardner, 1984; Amari, 1993; Bottou, 2010; 2012), have be-
come the default choice for model training. These methods rely on gradient information to iteratively
update model parameters, aiming to minimize a given loss function. Nonetheless, several practical
settings exist where FO gradient information is either unavailable or infeasible to compute, call-
ing for alternative strategies. Zeroth-order (ZO) optimization (Flaxman et al., 2005; Shamir, 2013;
Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2015; Duchi et al., 2015; Liu et al., 2018b; Ilyas et al.,
2018b; Zhang et al., 2024) has emerged as a promising approach to address these challenges, as it
leverages finite differences of function values to estimate gradients, rather than requesting explicit
gradient information. Therefore, with minor modifications to FO algorithms, ZO optimization can
be applied to various real-world circumstances where FO gradients are difficult to obtain. For ex-
ample, in disciplines like physics and chemistry, ML models may interact with intricate simulators
or experiments where the underlying systems are non-differentiable (Thelen et al., 2022; Tsaknakis
et al., 2022; Louppe et al., 2019; Abreu de Souza et al., 2023; Baydin et al., 2020). Addition-
ally, black-box learning scenarios often arise when deep learning (DL) models are integrated with
third-party APIs, such as adversarial attack and defense against black-box DL models (Chen et al.,
2017; Ilyas et al., 2018a; Zhang et al., 2022c; Verma et al., 2023) and black-box prompt learning
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Figure 1: Overview of our DeepZero framework. A: ZO gradient estimation via model queries (Sec. 3). B:
Model pruning guides gradient sparsity (Sec. 4). C: Acceleration by parallelization and feature reuse (Sec. 5).
D: DeepZero comparison with the computational graph free baseline Pattern Search (Chiang et al., 2023) and
computational graph dependent methods without BP, Align-Ada (Boopathy & Fiete, 2022), LG-FG-A and FG-
W (Ren et al., 2022), on CIFAR-10.

for language-model-as-a-service (Diao et al., 2022; Sun et al., 2022). Furthermore, the principled
backpropagation (BP) mechanism (Amari, 1993; Rumelhart et al., 1995) for calculating FO gradi-
ents may also not be supported when implementing DL models on hardware systems (Gu et al.,
2021b; Tavanaei et al., 2019; Greengard, 2020; Jabri & Flower, 1992; Gu et al., 2021c). In addition
to ZO optimization, another relevant research direction in the field of DL focuses on developing
biologically-plausible, BP-free methods. Examples include forward gradient-based methods (Ren
et al., 2022; Baydin et al., 2022; Silver et al., 2021; Belouze, 2022), greedy layer-wise learning
(Nøkland & Eidnes, 2019), and Hebbian learning (Isomura & Toyoizumi, 2018; Moraitis et al.,
2022). However, these techniques require access to computational graphs and are highly dependent
on the used DL software frameworks and/or model architectures. In contrast, ZO optimization solely
relies on model queries and is free of computational graphs utilized. As a result, ZO optimization
has broad applicability to DL problems that involve black-box query-only components. Despite the
promise of ZO optimization, scalability bottlenecks hinder its application in medium or large-scale
DNN training (Wang et al., 2017; Liu et al., 2018b; Ohta et al., 2020; Cai et al., 2021; Zhang et al.,
2022c). As problem dimensionality increases, the accuracy and efficiency of traditional ZO meth-
ods deteriorate. This is because ZO finite difference-based gradient estimates are biased estimators
of FO gradients, and the bias becomes more pronounced in higher-dimensional spaces (Liu et al.,
2018b; Cai et al., 2021; Balasubramanian & Ghadimi, 2018).

These challenges motivate the central question addressed in this work: (Q) How to scale up ZO
optimization for training deep models? To address (Q), we propose a novel framework, ‘DeepZero’,
which infuses novel model pruning and parallel computing techniques to scale up ZO DNN training
(see Fig. 1 for a schematic overview). Our main contributions are summarized below.

❶ We show that deterministic coordinate-wise gradient estimation (CGE) outperforms vector-wise
randomized gradient estimation (RGE) in both accuracy and computation efficiency when scaling to
deep model training. Further, CGE becomes increasingly advantageous as model depth increases.

❷ We show that sparsity is crucial for realizing model training via CGE with finite differences. In
contrast to prior work, we find that sparsity for black-box models can be obtained for ‘free’ by ex-
tending the current pruning-at-initialization technique to the ZO learning paradigm. The established
synergy between pruning and CGE presents a promising avenue for efficient ZO training of DNNs.

❸ We identify the parallelization-fit property inherent to CGE-based ZO optimization and propose a
novel forward parallelization method based on this property. Our framework enables feature reuse
in deep learning, which further accelerates parallel training by eliminating redundant computations.

❹ We introduce our proposed ZO deep model training framework, ‘DeepZero’. To demonstrate
the empirical superiority of DeepZero, we conduct extensive experiments on both standard image
classification benchmarks and real-world black-box DL applications. For example, when employing
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DeepZero to train a ResNet20 on CIFAR-10, we obtain 86.94% testing accuracy, the best reported
in the literature of gradient-free model training. We also exemplify the vast potential and practi-
cal impact of DeepZero in two real-world DL tasks: black-box defense for adversarial robustness
(Zhang et al., 2022c) and physics-informed DL with solver-in-the-loop (Um et al., 2020).

To clarify, our work aims to extend the scalability of ZO optimization for DL applications, address-
ing cases where FO optimization becomes challenging or infeasible. Yet, it is essential to note that
the proposed advancements in ZO training are not intended to overcome the ultimate scalability
challenges to train deep networks at any scale.

2 RELATED WORK
Classical gradient-free optimization. Early research efforts can be broadly categorized into two
groups: direct search-based methods (DSMs) and model-based methods (MBMs) (Wright et al.,
1999; Conn et al., 2009; Rios & Sahinidis, 2013; Larson et al., 2019). DSMs include techniques like
coordinate (Fermi, 1952) and pattern search (Torczon, 1991) methods and the Nelder-Mead simplex
method (Nelder & Mead, 1965). MBMs consist of model-based descent (Bortz & Kelley, 1998)
and trust region (Conn et al., 2000) methods. Evolutionary optimization offers a generic population-
based gradient-free computational framework including genetic algorithms (Grefenstette, 1993) and
particle swarm optimization (Vaz & Vicente, 2009). Bayesian optimization (Shahriari et al., 2015;
Eriksson et al., 2019) has garnered recent attention by using a Gaussian process (GP) to fit a black-
box objective function and estimate an optimization solution. However, acquiring an accurate GP is
computationally intensive.
Zeroth-order optimization. In contrast to classical gradient-free methods, ZO optimization ap-
proximates gradients using finite differences, simplifying implementation by minimizing modifica-
tions of FO gradient-based algorithms. Like FO methods, ZO enjoys provable convergence guar-
antees (Nesterov & Spokoiny, 2017; Duchi et al., 2015; Liu et al., 2020a). ZO optimization has
gained significant attention for its success in solving various emerging ML problems (Ghadimi &
Lan, 2013; Nesterov & Spokoiny, 2015; Flaxman et al., 2005; Duchi et al., 2015). Examples in-
clude adversarial attack and defense (Chen et al., 2017; Tu et al., 2019; Ye et al., 2018; Ilyas et al.,
2018a; Zhang et al., 2022c; Verma et al., 2023; Zhao et al., 2019; Hogan & Kailkhura, 2018; Shu
et al., 2022), model-agnostic contrastive explanation (Dhurandhar et al., 2019), visual prompting for
transfer learning (Tsai et al., 2020), computational graph unrolling (Vicol et al., 2023), automated
ML (Gu et al., 2021a; Wang et al., 2022), policy search in reinforcement learning (Vemula et al.,
2019), network resource management (Liu et al., 2018b), ML-based scientific workflow optimiza-
tion (Tsaknakis et al., 2022), and on-chip learning (Gu et al., 2021b). Despite ZO’s successes in
solving ML problems, its application has been limited to relatively small scales. For instance, ZO
optimizers used for generating adversarial attacks, contrastive explanations, and visual prompts only
operate in the input parameter space, which has the dimension of a single input example. Some ac-
celeration techniques have been developed to improve ZO performance in larger problems, such as
using historical information to enhance a ZO gradient estimator (Meier et al., 2019; Cheng et al.,
2021), and exploiting gradient sparsity to reduce ZO dependence on problem size (Wang et al., 2017;
Cai et al., 2022; 2021; Balasubramanian & Ghadimi, 2018; Ohta et al., 2020; Gu et al., 2021b).
While gradient sparsity has been used to improve scalability (Bartoldson et al., 2023), we propose
an advanced strategy that leverages model pruning techniques to identify and exploit sparsity in neu-
ral network parameters effectively. Our approach is less restrictive than traditional gradient sparsity
assumptions and allows for greater flexibility in selecting what to prune. To the best of our knowl-
edge, no prior work has demonstrated the practicality of scalable ZO optimization for deep model
training without significant performance loss compared to the FO counterpart.
DL without backpropagation. Forward gradient learning (Baydin et al., 2022; Ren et al., 2022; Sil-
ver et al., 2021; Belouze, 2022), which builds upon the forward-mode automatic differentiation (AD)
capabilities of current DL software frameworks, does not rely on finite differences to approximate
FO gradients like ZO optimization. Instead, it relies on forward-mode AD to calculate a forward
(directional) gradient. This gradient is obtained by projecting the FO gradient onto a direction vec-
tor and is an unbiased estimator of the FO gradient (Baydin et al., 2022). In contrast, ZO gradient
estimation based on finite differences is biased (Duchi et al., 2015; Liu et al., 2020a). However, one
main limitation of forward gradient learning is that it requires full access to AD software and the
deep model, making it impractical for solving black-box DL problems. Recent advances in (Ren
et al., 2022) further improved the scalability of forward gradient learning by using finer-level model
information to design architecture-specific local objective functions. Other BP-free DL methods are
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motivated by seeking a biological interpretation of DL but share similar limitations with forward
gradient learning. Some examples include greedy layer-wise learning (Nøkland & Eidnes, 2019),
input-weight alignment for wide neural networks in the neural tangent kernel (NTK) regime (Boopa-
thy & Fiete, 2022), the Forward-Forward algorithm (Hinton, 2022), Hebbian Learning (Isomura &
Toyoizumi, 2018; Moraitis et al., 2022), and synthetic gradients (Jaderberg et al., 2017).

3 ZO OPTIMIZATION THROUGH FUNCTION VALUE-BASED GRADIENT
ESTIMATION: RANDOMIZED OR COORDINATE-WISE?

We now introduce the ZO optimization setup and discuss two ZO gradient estimation schemes:
deterministic coordinate-wise gradient estimation (CGE) and randomized vector-wise gradient es-
timation (RGE). We will demonstrate the advantage of CGE over RGE for DNN training. This
inspires further improvements for scaling CGE-based ZO optimization.

ZO optimization and gradient estimation. Let ℓ(θ) denote a loss function that we want to mini-
mize over the optimization variables θ ∈ Rd (e.g., model parameters of a neural network). The ZO
optimizer interacts with the objective function ℓ only by submitting inputs (i.e., realizations of θ)
and receiving the corresponding function values. It slightly modifies the commonly-used first-order
(FO) gradient-based algorithm by approximating the FO gradient through function value-based gra-
dient estimates (Liu et al., 2020a). This is essential when explicit differentiation is difficult due to
the black-box nature of the loss function (Zhang et al., 2022c; Liu et al., 2020b; Chen et al., 2017), or
when explicit differentiation is undesired due to concerns about energy efficiency (Gu et al., 2021b;
Liu et al., 2018a). RGE (Nesterov & Spokoiny, 2017; Ghadimi & Lan, 2013; Duchi et al., 2015;
Spall, 1992) and CGE (Kiefer & Wolfowitz, 1952; Lian et al., 2016; Berahas et al., 2022) are two
commonly-used gradient estimators based on finite differences of ℓ. RGE acquires finite differences
via random perturbations of θ while CGE uses deterministic coordinate-wise perturbations of θ (Liu
et al., 2020a). Their formal definitions are given by

(RGE) ∇̂θℓ(θ) =
1

q

q∑
i=1

[
ℓ(θ + µui)− ℓ(θ)

µ
ui

]
; (CGE) ∇̂θℓ(θ) =

d∑
i=1

[
ℓ(θ + µei)− ℓ(θ)

µ
ei

]
, (1)
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Figure 2: Performance comparison
of training a simple CNN with vary-
ing numbers of parameters on CIFAR-
10 using different training methods.

where ∇̂θℓ denotes an estimation of the FO gradient∇θℓ with
respect to θ. In (RGE), ui denotes a randomized perturbation
vector, e.g., drawn from the standard Gaussian distribution
N (0, I), µ > 0 is a perturbation size (a.k.a. smoothing pa-
rameter), and q is the number of random directions used to ac-
quire finite differences. In (CGE), ei denotes a standard basis
vector, and ℓ(θ+µei)−ℓ(θ)

µ provides the finite-difference esti-
mation of the partial derivative of ℓ(θ) at the ith coordinate θi.
Finite difference approximations in (1) are motivated by di-
rectional derivatives. Take RGE (with q = 1) as an example.
As µ → 0, finite difference in RGE converges to directional
derivative ℓ′(θ) := uT∇θℓ(θ) = limµ→0

ℓ(θ+µui)−ℓ(θ)
µ of

the function ℓ at the point θ in the direction u (Urruty &
Lemaréchal, 1993). As a result, the expression ℓ′(θ)u yields E[ℓ′(θ)u] = E[(uuT )∇θℓ(θ)] =
∇θℓ(θ) (recall that E[uuT ] = I). This implies that ℓ′(θ)u is an unbiased gradient estimator of
∇θℓ(θ) and its biased finite difference approximation is given by (1) (Duchi et al., 2015).

RGE or CGE? First, the function query costs for RGE and CGE differ, with RGE taking O(q)
queries and CGE taking O(d) queries based on (1). Compared to CGE, RGE has the flexibility to
specify q < d to reduce the number of function evaluations. Despite the query efficiency, it remains
uncertain whether RGE can deliver satisfactory accuracy when training a deep model from scratch.
To this end, we undertake a preliminary investigation wherein we train a basic convolutional neural
network (CNN) of different sizes on CIFAR-10, employing both RGE and CGE. To ensure a fair
comparison in query complexity, we set the query number q in RGE equal to the problem size d
used in CGE. Fig. 2 presents the test accuracy of the learned CNN against the number of model
parameters (equivalent to the number of model queries). Here the training recipe is specified by
the FO SGD, the ZO RGE-based SGD, and the ZO CGE-based SGD. We observe that CGE can
achieve test accuracy comparable to FO training and significantly outperforms RGE. This experi-
ment highlights the superiority of CGE over RGE in terms of optimization accuracy even when the
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latter uses q = d. This accuracy merit of CGE is particularly valuable when training more com-
plex neural networks. In Appx. C, we provide a detailed analysis of the computational costs using
CGE vs. RGE. The time cost relative to model depth is shown in Fig. A2. And Tab. A1 assesses
gradient estimation time costs. We find that CGE demonstrates greater time efficiency than RGE.
The computation efficiency loss of RGE is in that it needs to generate and integrate a d-dimension
perturbation vector into the entire model at once every query. It is worth noting that the recent work
(Malladi et al., 2024) suggested reducing the memory cost of RGE by storing only the random seed
and regenerating the random vector when required. Yet, we argue that this may further hamper the
computation efficiency of RGE due to the need for repeated generation. Based on the advantages of
CGE over RGE in terms of both accuracy and computation efficiency, we choose CGE as the pre-
ferred ZO gradient estimator. However, query complexity of CGE is still a bottleneck, as it scales
with model size d.

4 SPARSITY-ASSISTED ZO TRAINING: A PRUNING LENS AND BEYOND

One valuable property of CGE is the disentanglement of finite differences across coordinates, which
suggests that reducing CGE’s query complexity is aligned with pruning the model weights that are
being optimized. With this in mind, we propose integrating ZO optimization with pruned gradients
to design a more effective inductive bias for ZO deep model training. It is worth noting that the spar-
sity has been explored in several existing ZO optimization methods to improve the query efficiency
of gradient estimation (Wang et al., 2017; Cai et al., 2022; 2021; Balasubramanian & Ghadimi,
2018; Ohta et al., 2020; Gu et al., 2021b). However, prior work suffered from two main limita-
tions. Firstly, exact sparsity was assumed in the original FO gradients, which required an additional
sparse learning method (such as LASSO (Wang et al., 2017)) to recover these sparse gradients from
function queries. Secondly, it remains unclear how to optimize the sparsity pattern via a ZO oracle,
as the existing method calls for overly heuristics-based pruning methods (e.g., random (Gu et al.,
2021b) or magnitude (Ohta et al., 2020; Zhang et al., 2022b) pruning). Overly increasing sparsity
ultimately limits optimization performance. In what follows, we propose a new pruning approach
that relies only on model queries, enjoys computation efficiency, and can improve ZO optimization
accuracy by inducing an appropriate gradient sparsity.
ZO-GraSP: Model pruning via ZO oracle. The compressibility of model weights for DL has
been extensively studied (Han et al., 2015; Frankle & Carbin, 2018; Ma et al., 2021; Zhang et al.,
2022a;b; Blalock et al., 2020; Tanaka et al., 2020; Lee et al., 2018; Wang et al., 2020; Su et al.,
2020; Diffenderfer et al., 2021). For instance, the lottery ticket hypothesis (Frankle & Carbin, 2018)
demonstrated that a randomly initialized, dense neural network contains a high-quality sparse sub-
network. However, current effective pruning methods incorporate model training as an intermediate
step (Frankle & Carbin, 2018; Ma et al., 2021; Zhang et al., 2022a; Diffenderfer & Kailkhura, 2021).
Thus, they are not well-suited for finding sparsity via a ZO oracle.
To address the above challenge, we draw inspiration from training-free pruning methods, known as
pruning-at-initialization (Tanaka et al., 2020; Lee et al., 2018; Wang et al., 2020). Within this family,
gradient signal preservation (GraSP) (Wang et al., 2020) is a method to identify the sparsity prior
of DL through the gradient flows of a randomly-initialized network. While GraSP still requires the
FO and second-order derivative information, we can estimate these derivatives using only function
queries to design the ZO version of GraSP (termed ZO-GraSP). Specifically, GraSP (Wang et al.,
2020) assigns pruning scores (denoted by S) to model initialization θ. These scores reflect the
change in gradient flow after pruning the weights:

S = −θ ⊙ (Hg), H = ∇2
θ,θℓ(θ), g = ∇θℓ(θ), (2)

where recall that ℓ is the loss function of model training,⊙ denotes the entry-wise multiplication, and
Hg represents the Hessian-gradient product. Using the ZO learning paradigm, we can first approxi-
mate the Hessian-gradient product as the finite difference between two gradients (i.e.,∇θℓ(θ+µg)
and∇θℓ(θ)), in the direction g with the smoothing parameter µ. Second, we replace the FO gradient
∇θℓ with the ZO gradient estimate ∇̂θℓ given in (1). Combining this yields ZO-GraSP:

Ŝ := −θ ⊙ ∇̂θℓ(θ + µĝ)− ∇̂θℓ(θ)

µ
. (3)

In practice, we found that the pruning mask determined by ranking the entries in Ŝ is resilient to
the ZO gradient estimation error. Therefore, we utilize RGE with a relatively small number of
queries (q < d) to implement ZO-GraSP. This reduces the function query cost without compromis-
ing pruning performance; see Tab. A2 and Tab. A3 for empirical justifications. Our results show
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that ZO-GraSP significantly outperforms random pruning and yields pruned models with accuracy
comparable to FO-GraSP.
Integrating sparsity with CGE. As finite differences in CGE (1) are decomposable over weights,
it is easy to incorporate sparsity into CGE. To retain the accuracy benefits of training dense models,
we incorporate gradient sparsity (in CGE) rather than weight sparsity. This ensures that we train a
dense model in the weight space, rather than training a sparse model where the sparsity determined
by ZO-GraSP is directly applied. Let SZO-GraSP be the coordinate set of unpruned model weights
found by ZO-GraSP. The sparsity-induced CGE is given by

∇̂θℓ(θ) =
∑

i∈SZO-GraSP

[
ℓ(θ + µei)− ℓ(θ)

µ
ei

]
. (Sparse-CGE)

It is clear that (Sparse-CGE) reduces the query complexity of the original CGE from O(d) to
O(|SZO-GraSP|), where |SZO-GraSP| denotes the cardinality of the coordinate set SZO-GraSP. There
may exist two direct methods for integrating (Sparse-CGE) into ZO optimization. M1: This
method involves alternating between ZO-GraSP and CGE-based ZO optimization. At each iter-
ation, SZO-GraSP is updated based on the model weights from the previous iteration and then used to
construct (Sparse-CGE) for updating θ at the current iteration.M2: This method involves perform-
ing pruning before ZO training. That is, ZO-GraSP is conducted at model initialization, and the
resulting SZO-GraSP is applied to (Sparse-CGE) and kept fixed during training. BothM1 andM2

have limitations. M1 requires repeated calls to ZO-GraSP to update SZO-GraSP, leading to a higher
query cost for ZO model training.M2 addresses the query complexity by performing ZO-GraSP be-
fore training, but it can only produce a smaller model after training. It is known that heavily-pruned
models suffers from performance degradation (e.g., 95% sparse model in Tab. A2 in Appx. D). Thus,
it is nontrivial to integrate ZO-GraSP with ZO training due to the requirement of balancing query
efficiency and training effectiveness. To address this, we propose ZO-GraSP-oriented dynamic
sparsity pattern, which leverages ZO-GraSP to determine layer-wise pruning ratios (LPRs) that
can capture DNN compressibility. This approach shares a similar essence with smart ratio intro-
duced in (Su et al., 2020). Specifically, we acquire LPRs from ZO-GraSP at randomly initialized
weights prior to ZO training, which is query-efficient likeM2. However, unlikeM2, LPRs allow
for random shuffling of sparse gradient positions in θ only if these LPRs are obeyed. This allows
us to mimic M1 to alternate between model weight updates and SZO-GraSP updates, with the lat-
ter achieved by LPR-guided randomly updated sparsity patterns. Thus, ZO optimization can train
the dense model using iteratively-updated (Sparse-CGE) with LPRs-guided dynamic sparsity pat-
terns. Overall, our proposal has the query efficiency ofM2 with the training effectiveness ofM1,
resulting in a balanced integration of ZO-GraSP into ZO training. We summarize the algorithmic
pipeline in Algorithm 1 in Appx. E, where CGE and ZO-GraSP-oriented dynamic sparsity pattern
are clearly described in a unified framework. We also refer readers to Appx. E for more explanation
and comparisons withM1 andM2. We provide a convergence rate analysis in Appx. A.

5 IMPROVING SCALABILITY: FEATURE REUSE & FORWARD PARALLEL
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We investigate two characteristics of ZO training that can further
enhance implementation scalability: feature reuse and forward par-
allelization. The former disentangles intermediate features from
weight perturbations, while the latter uses the finite-difference na-
ture in CGE to enable scalable distributed implementation.

Reusing intermediate features. As shown in (1), CGE perturbs
each parameter element-wise. Thus, one can reuse the feature im-
mediately preceding the perturbed layer and carry out the remaining
forward pass operations instead of starting from the input layer, as
illustrated in Fig. 1. The above characteristic of CGE-based model
training is referred to as ‘feature reuse’. More concretely, let fθ(x)
be a deep model with parameters θ and input x. We can express fθ(x) as a multi-layer composite
function

fθ(x) = fθ>l(zl) = fθL ◦ fθL−1 ◦ · · · ◦ fθl+1︸ ︷︷ ︸
fθ>l(·)

◦ fθl ◦ · · · ◦ fθ1(x)︸ ︷︷ ︸
zl = fθ1:l

(x)

, (4)

where fθl
denotes the model’s lth layer, L is the total number of model layers, and ◦ is the function

composition operation. Based on (4), if coordinate-wise weight perturbations are applied to the
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(l + 1)th layer and its subsequent layers (i.e., θ>l), the model’s outputs corresponding to these
perturbed weights can be efficiently obtained by keeping the intermediate features up to the lth layer
(i.e., zl) intact. This efficiency becomes more pronounced when perturbing the parameters of deeper
layers (i.e., for a larger l). Fig. 3 compares the runtime of CGE-based ZO training with and without
feature reuse. Empirically, CGE with feature reuse exhibits a 2× reduction in training time.

Parallelization of coordinate-wise finite differences. CGE enables parallelization of model train-
ing due to its alignment of parameter perturbations with forward passes. If there exist M processes
(across multiple GPUs), we can decompose CGE (1) based on its parameter coordinates yielding

∇̂θℓ(θ) =

M∑
i=1

ĝi, ĝi :=
∑
j∈Si

[
ℓ(θ + µej)− ℓ(θ)

µ
ej

]
, (5)

where Si is the set of active parameters assigned to process 1 ≤ i ≤ M . Hence, each process can
take |Si| forward passes. This decoupling property enables scaling forward passes via distributed
machines, which can significantly improve training speed. We refer to this parallelization for finite
differences as ‘forward parallelization’. It is worth noting that forward parallelization is different
from the conventional data parallelization used for FO distributed training (Goyal et al., 2017; You
et al., 2018). Our method avoids any performance loss that may result from data parallelization using
an overly large batch size, which can cause the optimizer to get stuck in suboptimal local minima
due to a lack of stochasticity.

6 EXPERIMENTS

In this section, we first train ResNet-20 for standard image classification on CIFAR-10, demonstrat-
ing scalability and generalization capability over existing gradient-free learning methods. Second,
we apply DeepZero to enhance the robustness of a black-box DNN against adversarial attacks, where
limited access to the model is available on the defender’s end. Lastly, we leverage DeepZero to de-
sign a physics-informed ML system by incorporating a scientific PDE solver into the training loop
for reducing numerical errors, highlighting its capability to address complex scientific problems.
6.1 IMAGE CLASSIFICATION TASK
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Figure 4: Comparison between
DeepZero and FO training baselines on a
ResNet-20 for CIFAR-10. We report the
mean and standard deviation of 3 inde-
pendent runs for each experiment.

Experiment setup. This study focuses on training ResNet-
20 (with 270K parameters) on CIFAR-10 for image classi-
fication. We adopt SGD (stochastic gradient descent) as the
FO training recipe, with a weight decay of 5 × 10−4 and
a momentum of 0.9. The learning rate is 0.1, governed by
a cosine decay scheduler. In the ZO training scenario, we
replace the FO gradient by (Sparse-CGE) with a smoothing
parameter µ = 5 × 10−3. When implementing ZO-GraSP
(3), we set the query budget q = 192 and use the same µ
as CGE. Unless specified otherwise, the weight sparsity ra-
tio is chosen to be 90% and the specific sparsity patterns
are determined by SR (Smart Ratio). When implementing
DeepZero (Algorithm 2), we choose the number of epochs
T = 50. Experiments are run on 4 NVIDIA V100 GPUs
if not specified otherwise. We compare DeepZero with FO
training and two SOTA BP-free training: Pattern Search (Chiang et al., 2023) and Input-Weight
Alignment (Align-ada) (Boopathy & Fiete, 2022).
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Figure 5: Comparison of DeepZero and Pat-
tern Search on ResNet-20 for CIFAR-10 with
varying dataset sizes. All experiments are done
on a single NVIDIA A6000 GPU.

Comparison with FO training. In Fig. 4, we compare
the accuracy of DeepZero-trained ResNet-20 with two
variants trained by FO recipes: (1) a dense ResNet-20
acquired through FO training and (2) a sparse ResNet-
20 acquired through FO training under FO-GraSP spar-
sity pattern. As we can see, the accuracy gap still exists
between (1) and the model trained with DeepZero in
the sparsity regime of 80% to 99%. This highlights the
challenge of ZO optimization for deep model training,
where achieving high sparsity is desired to reduce the
number of model queries in (Sparse-CGE) for scaling
to ResNet-20. Notably, in the sparsity regime of 90%
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to 99%, DeepZero outperforms (2), showcasing the superiority of gradient sparsity in DeepZero
compared to weight sparsity (i.e., directly training a sparse model). In Appx. F, we provide the
DeepZero training trajectory (Fig. A4), performance vs. data batch setup (Fig. A5) and training time
vs. GPU count (Fig. A6).
Comparison with pattern search (Chiang et al., 2023). In Fig. 5, we compare the accuracy and
runtime cost of DeepZero with Pattern Search (Chiang et al., 2023) for deep model training. Pattern
Search has been shown to achieve comparable test accuracy to SGD in low sample regimes, how-
ever, effectiveness as the number of data samples increases remains unclear. To investigate this, we
conducted experiments using DeepZero (with 90% gradient sparsity) and pattern search on ResNet-
20 with CIFAR-10, with varying dataset sizes from 100 to 32K. We maintained a fixed total epoch
number of 40 for both methods to ensure a fair comparison. The results demonstrate DeepZero out-
performs Pattern Search in all data regimes, except in the case of 100. Further, the improvement of
DeepZero over pattern search (in both accuracy and efficiency) expands dramatically with increasing
dataset sizes, indicating the superior scalability of DeepZero.

Table 1: Performance of DeepZero vs. BP-free
methods on a 8-layer CNN w/ different widths
(Boopathy & Fiete, 2022).

Method DeepZero FA DFA Align-ada

Width 32 64 64 512 64 512 64 512

Accuracy 57.7 64.1 46.5 45.4 49.9 54.1 49.9 58.0

Time (h) 4.34 28.15 0.36 3.79 0.42 3.52 0.48 4.59

Comparison with input-weight alignment
(Boopathy & Fiete, 2022). In Tab. 1, we present a
comparison between DeepZero and the Align-ada
approach (Boopathy & Fiete, 2022) for training
neural networks without BP on CIFAR-10. While
other BP-free training methods (Lillicrap et al.,
2014; Nøkland, 2016; Baydin et al., 2022) exist,
Align-ada stands out as it applies to training wide
neural networks and achieves state-of-the-art performance on CIFAR-10, e.g., surpassing methods
such as feedback alignment (FA) (Lillicrap et al., 2014) and direct feedback alignment (DFA)
(Nøkland, 2016). To ensure fairness, we apply DeepZero to the 8-layer CNN architecture from
(Boopathy & Fiete, 2022) and compare performance with Align-ada at varying model widths.
We note that the 512-width network was the widest model trained using Align-ada. In contrast,
the largest width network we train with DeepZero is 64. Our results clearly show that DeepZero
achieves significantly higher testing accuracy compared to Align-ada, even when training with
narrower networks. This demonstrates that the improved performance of DeepZero is attributed to
its inherent optimization advantages, rather than relying solely on the use of wider networks. Lastly,
it is worth noting that Align-ada and other BP-free methods rely on access to computational graphs,
making them efficient but unsuitable for black-box applications.

6.2 OTHER BLACK-BOX APPLICATIONS

Table 2: CA (%) vs. ℓ2-norm based per-
turbation radius on ImageNet-10 using FO
DS-based defense (FO-DS) (Salman et al.,
2020), ZO-AE-DS (Zhang et al., 2022c),
and our proposed DeepZero.

ImageNet (10 classes)

Radius r FO-DS ZO-AE-DS DeepZero

0.0 89.33 63.60 86.02
0.25 81.67 52.80 76.61
0.5 68.87 43.13 61.80

0.75 49.80 32.73 43.05

Black-box defense against adversarial attacks. The
black-box defense problem arises when the owner of an
ML model is unwilling to share the model details with the
defender against adversarial attacks (Zhang et al., 2022c;
Verma et al., 2023). This poses a challenge for existing ro-
bustness enhancement algorithms (Madry et al., 2017; Co-
hen et al., 2019; Salman et al., 2020) that directly robus-
tify white-box ML models using FO training. To overcome
this challenge, ZO optimization was introduced in (Zhang
et al., 2022c) to design a white-box defense operation given
a query-based black-box image classifier. To address di-
mensionality challenges with ZO, ZO-AE-DS (Zhang et al.,
2022c) introduces an autoencoder (AE) between the white-box denoised smoothing (DS) defense op-
eration (to be learned) and the black-box image classifier. By merging AE’s encoder with the black-
box module, the dimension of ZO optimization is reduced; see Fig. A7 in Appx. G for a schematic
overview and (Zhang et al., 2022c) for details. The downside of ZO-AE-DS is poor scaling to high-
resolution datasets (e.g., ImageNet) due to the use of AE, which compromises the fidelity of the
image input to the black-box image classifier and leads to inferior defense performance. In contrast,
DeepZero can directly learn the defense operation integrated with the black-box classifier, without
needing AE. Tab. 2 compares the defense performance of DeepZero with FO defense (DS (Salman
et al., 2020)) and ZO-AE-DS (Zhang et al., 2022c). To ensure a fair comparison, we used the same
number of queries (1152) per gradient estimation. Following (Zhang et al., 2022c), we selected a 10-
class subset of ImageNet as the training set. The AE is given by DnCNN (Zhang et al., 2017) and the
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black-box classifier is specified by ResNet-50. Defense performance is evaluated by certified accu-
racy (CA), following the setup of (Salman et al., 2020; Zhang et al., 2022c). CA is defined using the
ℓ2 norm-based input perturbation radius r, where a larger r indicates a stronger adversarial threat.
We refer readers to Appx. G for more experiment details. Tab. 2 highlights that DeepZero consis-
tently outperforms ZO-AE-DS in terms of CA for all values of r > 0. It is important to note that
when r = 0, CA is equivalent to the standard testing accuracy. This indicates that DeepZero excels
over ZO-AE-DS not only in adversarial robustness but also in overall generalization performance.
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Figure 6: Average MAE of cor-
rected low-fidelity simulations com-
pared to high-fidelity simulations over
5 test simulations using different cor-
rection methods. Error bar is variance
of MAE across 5 test simulations.

Simulation-coupled DL for discretized PDE error correc-
tion. Numerical methods, while instrumental in providing
physics-informed simulations, come with their own challenge:
the discretization unavoidably produces numerical errors. DL
has gained significant attention for addressing this error cor-
rection problem. The feasibility of training a corrective neural
network through looping interactions with the iterative partial
differential equation (PDE) solver, coined ‘solver-in-the-loop’
(SOL), has been demonstrated in (Um et al., 2020). While
existing work focused on using or developing differentiable
simulators for model training, we extend SOL by leveraging
DeepZero, enabling its use with non-differentiable or black-
box simulators. We name our method ZO-SOL and refer read-
ers to Fig. A8 in Appx. H for a schematic overview. In this
experimental framework, the goal is to correct the output of a low fidelity (i.e., coarse mesh) sim-
ulation using a learned DNN so that the corrected simulation more closely aligns with output of a
high fidelity (i.e., fine mesh) simulation. In an effort to reduce the amount of correction required
by DNN, this correction is applied at each simulation timestep and the corrected simulation state
is provided to the simulator to compute the next timestep. For our experiments, we consider 2D
unsteady wake flow fluid dynamics benchmark from (Um et al., 2020), in which there is a static rod
around which fluid is flowing, and utilize PhiFlow (Holl et al., 2020) as the simulator. Additional de-
tails on the PDE, the solver-in-the-loop loss, and the DNN architecture are given in Appx. H. Fig. 6
compares the test error correction performance of ZO-SOL (via DeepZero) with three differentiable
approaches methods considered in (Um et al., 2020): SRC (low fidelity simulation without error
correction), NON (non-interactive training out of the simulation loop using pre-generated low and
high fidelity simulation data), and FO-SOL (FO training for SOL given a differentiable simulator).
The simulation error for each method in Fig. 6 is measured as the average across the five test simula-
tions (with varying Reynold’s numbers that were not utilized in the training set of simulation data).
The error for each test simulation is computed as the mean absolute error (MAE) of the corrected
simulation compared to the high fidelity simulation averaged across all simulation timesteps. We
implement DeepZero for ZO-SOL following the setup used in the image classification task, except
for choosing a 95% gradient sparsity. The ZO-SOL and FO-SOL use 16 unrolling steps in the loss
function to allow the correction function to interact with the simulator during training. The results
demonstrate that ZO-SOL achieved by DeepZero outperforms the SRC and NON baselines, and
narrows the performance gap with FO-SOL, despite only having query-based access to the simula-
tor. Comparing ZO-SOL with NON highlights the promise of ZO-SOL even when integrated with
black-box simulators.

7 CONCLUSION
This paper introduces DeepZero, a framework designed to enhance the scalability of ZO optimiza-
tion for deep network training. Specifically, DeepZero integrates coordinate-wise gradient estima-
tion, ZO pruning-enabled gradient sparsity, feature reuse, and forward parallelization into a unified
training pipeline. Leveraging these innovations, DeepZero showcases both efficiency and effec-
tiveness in a wide range of applications, including image classification tasks and various practical
black-box DL scenarios. While DeepZero has made remarkable progress in training DL models
on datasets like ResNet-20 and CIFAR-10, it is important to acknowledge that scalability remains
a significant challenge when dealing with even larger models and more extensive datasets. Future
studies to accelerate ZO optimization for DL are necessary. Additionally, it is worthwhile to ex-
plore the applicability of DeepZero in other domains, such as digital twin applications that involve
non-differentiable physical entities, and on-device training where the computational overhead of
establishing computational graphs and backpropagation is not feasible. Lastly, we refer readers to
Appx. I for a discussion of the broader impact of this paper.
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APPENDIX

A REMARK ON CONVERGENCE RATE.

For a rigorous convergence analysis, we can perceive the sparsity-enhanced ZO training method in-
troduced above as a specific instantiation within the broader framework of ZO stochastic coordinate
descent (Lian et al., 2016). Thus, under necessary theoretical assumptions regarding Lipschitz con-
tinuity, gradient smoothness, and bounded gradient variance, we can obtain an upper bound for the
convergence rate of our proposal in terms of the the gradient norm, serving as a stationarity-based
convergence measure for non-convex optimization:∑K

k=0 E|∇f(θk)|2

K
≤ O

(
1

K(1− p)
+

√
1

K(1− p)
σ

)
, (A1)

where k represents the iteration index, K signifies the total number of iterations, O is used in the
context of big O notation, p denotes the gradient sparsity ratio, and σ stands for the upper bound on
the variance of the stochastic gradients. The above highlights that as p increases, the convergence
error of the proposed approach also grows. However, it’s important to note that increased sparsity
leads to a reduced number of function queries. Consequently, we can see a provable tradeoff between
the convergence error and the query efficiency, aligning well with our understanding.

B THE SIMPLE CNN ARCHITECTURE CONSIDERED FOR TRAINING W/ CGE
VS. RGE
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Figure A1: Illustration of the simple CNN considered with different depths.

As illustrated in Fig. A1, the depth-adjustable simple CNN architecture comprises multiple conv
blocks, an average pooling layer, and a fully-connected layer. Each conv block consists of four
distinct layers, including ① convolutional layer, ② batch normalization layer, ③ ReLU layer, ④ max
pooling layer. In our experiments, the simple CNN networks are trained over a course of 50 epochs
utilizing three distinct optimization strategies: FO (first-order) SGD (stochastic gradient descent)
training, ZO RGE-based SGD training, and ZO CGE-based SGD training, together with a cosine
learning rate scheduler is used.

C COMPUTATION TIME COMPARISON BETWEEN RGE AND CGE
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Figure A2: The computation cost of
using CGE and RGE to train the sim-
ple CNN in Fig. 2 over 50 epochs on
CIFAR-10 against parameter size.

We find that CGE also has a computatoin efficiency merit over
RGE when training CNNs in Fig. 2. Fig. A2 presents the com-
putation time of different training methods against the model
size and highlights that CGE is more computationally effi-
cient than RGE. To examine the efficiency merit of CGE in
detail, we dissect the computation of a single ZO gradient es-
timate into four stages: ① generation of directional vectors,
i.e., ui or ei in (1), ② perturbation of model weights, i.e.,
θ + µui or θ + µei, ③ model inference for calculating fi-
nite differences, and ④ other arithmetic operations for gradi-
ent estimation. Our results show that RGE takes much longer
than CGE in stages ① and ②. This is because, at each model
query, RGE needs to generate a directional perturbation vec-
tor with the same dimension as θ and apply this perturbation
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to θ. By contrast, CGE can generate the basis vector for ‘free’ and perturb the model weights using
a coordinate-wise indexing operation. Tab. A1 shows a comparison of RGE and CGE in ①-④. It
is also worth noting that a concurrent study (Malladi et al., 2023) argues that language model fine-
tuning using RGE only necessitates the query budget q = 1. However, it is important to highlight
that their approach has certain restrictions, as it relies on having a high-quality pretraining model
and a meticulously crafted prompt.

Table A1: Average per-iteration computation
time comparison (seconds) between RGE and CGE.
Here the gradient estimation process is dissected
into 4 stages: ① generation of directional vectors
(DV), ② model weights perturbation (WP), ③
model inference (MI) for calculating finite differ-
ences, and ④ other arithmetic operations (AO) for
gradient estimation.

Parameter # RGE (q = d) / CGE

(d) ① DV ② WP ③ MI ④ AO

730 0.173 / 0 0.152 / 0.026 0.202 / 0.21 0.149 / 0.0312
3700 1.43 / 0 1.2 / 0.0907 2.11 / 1.98 1.1 / 0.124
6670 3.49 / 0 2.93 / 0.159 4.84 / 4.53 2.68 / 0.225
9640 6.74 / 0 5.47 / 0.246 8.3 / 8.09 4.97 / 0.336
12610 10.2 / 0 8.86 / 0.457 13.1 / 14.6 8.05 / 0.566

Tab. A1 provides a comparison of the average
computation time per iteration for RGE and CGE-
based ZO training across four stages: ① genera-
tion of directional vectors, i.e., ui or ei in (1), ②
perturbation of model weights, i.e., θ + µui or
θ + µei, ③ model inference for calculating finite
differences, and ④ other arithmetic operations for
gradient estimation. The comparison is conducted
for training models of different numbers of param-
eters (d), ranging from 730 to 12610. In stage ①,
RGE incurs computation time due to the genera-
tion of random Gaussian vectors, whereas CGE is
free of this step since it estimates gradients in a
coordinate-wise manner. In stage ②, RGE requires
more computation time compared to CGE across
all parameter sizes. This is because RGE perturbs
all model weights in a single query, while CGE only perturbs a single model weight coordinate per
query. In stage ③, the computation times for both ZO algorithms increase with the number of param-
eters, with similar time consumption. In stage ④, RGE continues to require more computation time
than CGE for all parameter sizes. This is because RGE needs to perform extra arithmetic operations
(such as the sum operation) to aggregate multiple queries, whereas CGE handles multiple queries
coordinate-wise, resulting in a more efficient computation.

D PERFORMANCE OF MODEL PRUNING VIA ZO-GRASP

We implement ZO-GraSP using RGE with the query number q = 192 (smaller than the model
size d) and compare its performance with random pruning and FO-GraSP. All GraSP variants
are performed over randomly initialized model parameters (θ). Tab. A2 and Tab. A3 present the
pruning performance vs. model pruning ratios in the data-model setup of (CIFAR-10, ResNet-20)
and (CIFAR-10, ResNet-18), respectively. Here the pruning performance is evaluated by measuring
the testing accuracy of a sparse model on CIFAR-10. To assess the impact of model pruning, we
utilize FO SGD as the optimizing method for sparse model training. As we can see, our proposed
ZO-GraSP method demonstrates comparable testing accuracy to FO-GraSP across various pruning
ratios and significantly outperforms random pruning.

Table A2: Performance comparison of different model pruning methods on (CIFAR-10, ResNet-20).

(CIFAR-10, ResNet-20)
Pruning ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

Random 92.71 ± 0.18 92.63 ± 0.04 92.40 ± 0.14 91.94 ± 0.03 91.77 ± 0.16 91.41 ± 0.20 90.57 ± 0.05 89.35 ± 0.19 86.55 ± 0.15 82.51 ± 0.16

FO-GraSP 92.64 ± 0.10 92.44 ± 0.06 92.34 ± 0.11 92.35 ± 0.14 92.07 ± 0.11 92.00 ± 0.03 91.63 ± 0.16 90.75 ± 0.07 88.55 ± 0.09 85.48 ± 0.26

ZO-GraSP 92.74 ± 0.07 92.56 ± 0.10 92.58 ± 0.20 92.46 ± 0.05 92.09 ± 0.10 91.61 ± 0.13 91.48 ± 0.23 90.21 ± 0.16 88.08 ± 0.09 84.80 ± 0.10

Table A3: Performance comparison of different model pruning methods on (CIFAR-10, ResNet-18).

(CIFAR-10, ResNet-18)
Pruning ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

Random 95.45±0.06 95.51±0.11 95.32±0.15 95.34±0.10 95.40±0.20 95.09±0.13 94.92±0.14 94.58±0.06 93.53±0.10 92.13±0.26

FO-GraSP 95.44±0.07 95.46±0.30 95.53±0.06 95.49±0.05 95.44±0.08 95.86±0.09 95.99±0.17 95.97±0.05 95.91±0.03 96.19±0.10

ZO-GraSP 95.43±0.05 95.53±0.03 95.53±0.14 95.56±0.18 95.50±0.06 95.24±0.09 95.36±0.05 95.28±0.05 94.94±0.08 94.39±0.13
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E ALGORITHM DETAILS

Algorithm 1 ZO-GraSP-oriented-LPR-guided ZO training

1: Get SZO-GraSP through ZO-GraSP (3)
2: Obtain layer-wise pruning ratio Slayer based on SZO-GraSP
3: for Epoch t = 0, 1, 2, . . . , T − 1 do
4: Randomly generate a sparse coordinate set St according to Slayer
5: for Iterations per epoch do
6: Obtain (Sparse-CGE) ∇̂θℓ(θ) based on St
7: Update model weights: θ ← θ − α∇̂θℓ(θ)
8: end for
9: end for

ZO-GraSP-oriented-LPR-guided ZO training Algorithm 1 shows the algorithmic steps to ful-
fill the ZO-GraSP-oriented-LPR-guided ZO training. At initialization, the algorithm acquires the
coordinate set of unpruned model weights SZO-GraSP by applying our proposed ZO-GraSP as shown
in (3). Subsequently, it computes the layer-wise pruning ratios, denoted as Slayer, derived from
SZO-GraSP. The (Sparse-CGE) ∇̂θℓ(θ) is then estimated using Slayer. The model weights are then up-
dated by subtracting the estimated sparse gradient to the current weight θ. This process iteratively
refines the weights for optimizing the model’s performance.

Figure A3: Performance (test-
ing accuracy) of SR-guided training
vs. pruning ratios on (CIFAR-10,
ResNet20).

Fig. A3 demonstrates the superiority of SR-guided training to
another two alternative methods, M1 built on alternative op-
timization between ZO-GraSP and sparse training, and M2

based on pruning before model training. To examine the ef-
fectiveness of SR in integrating ZO-GraSP with model train-
ing, we compare the pruning performance in the FO train-
ing regime (i.e., the resulting sparse model is trained using
FO methods). As we can see, SR-guided training consis-
tently outperforms methods M1 and M2, with the accuracy
improvement becoming more pronounced as the pruning ra-
tio increases. As the pruning ratio increases, the performance
gap with the original dense model also widens. However, our
method achieves the smallest performance gap compared to
the FO baseline.

DeepZero framework. We introduce the DeepZero frame-
work, a novel approach designed to train models using ZO optimization. This framework assimilates
three key features: the implementation of ZO-GraSP-oriented-LPR-guided ZO training, the reuse of
features, and the adoption of parallel computation techniques. These components of the DeepZero
framework are expounded in Algorithm 2.

Algorithm 2 DeepZero Framework

1: Initialize: Total epochs T , sparsity update interval Ksparse, LPRsR via ZO-GraSP (3)
2: for Epoch t = 0, 1, 2, . . . , T − 1 do
3: if t modKsparse == 0 then ▷ Sparsity inducing
4: Update sparse coordinate index set St according toR
5: end if
6: for Process i = 1, 2, . . . ,M do ▷ M processes
7: Based on St, parallelized forward evaluations with feature reuse (4)-(5)
8: end for
9: (Sparse-CGE) estimation using above model evaluations

10: Model weights updating and synchronization
11: end for
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F ADDITIONAL EXPERIMENTS OF IMAGE CLASSIFICATION

Fig. A4 presents the training trajectory comparison between DeepZero and the dense FO training
baseline. We observe that despite the marginal performance drop, DeepZero achieves a competitive
convergence rate as the FO counterpart. Besides, it is important to highlight that due to the small
variance of CGE on a reduced dimension (parameters after pruning), DeepZero achieves competi-
tively stable training as the FO baseline, as indicated by similar standard deviations.

Fig. A5 presents the performance and the time consumption of DeepZero in various batch size set-
tings. The impact of batch size on model performance has been well-documented in FO training,
with larger batch sizes often leading to decreased performance. We sought to examine the effect of
batch size selection on ZO training and determine whether increasing the size could reduce training
time. As depicted in Fig. A5, we observed a marked decline in performance when the batch size
exceeded 2048. Additionally, when the batch size was set to 512, it reached a constant time con-
sumption of 60 minutes per epoch, rendering any further reduction in training time infeasible due to
the limitations of GPU computational capacity. We stress that reaching this constant time consump-
tion signs the full utilization of each GPU, which is easily achieved by forward parallelization.

Fig. A6 presents DeepZero’s training speed (iterations per hour) on CIFAR-10 and ResNet-20 when
using different counts of GPUs. We observe training speed scaling linearly with regard to the GPU
counts, which justifies the efficiency of acceleration by forward pass and feature reuse.
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Figure A4: Training trajec-
tory of DeepZero and FO train-
ing on (CIFAR-10, ResNet-20).
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90% sparsity. The mean and stan-
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runs are reported.
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Figure A6: The training speed
of DeepZero on (CIFAR-10,
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Experiments are conducted under
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G ADDITIONAL ILLUSTRATION OF BLACK-BOX DEFENSE AGAINST
ADVERSARIAL ATTACKS
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Figure A7: Schematic overview of base-
line ZO-AE-DS (Zhang et al., 2022c) and
DeepZero-enabled black-box defense.

In Fig. A7, we compare our method, DeepZero, with the
baseline method ZO-AE-DS (Zhang et al., 2022c). ZO-AE-
DS utilizes an autoencoder (AE) to reduce the dimensional-
ity of the ZO gradient estimation by merging the AE’s de-
coder with the black-box classifier and integrating the AE’s
encoder with the white-box defense operation. However,
ZO-AE-DS suffers from poor scalability to high-resolution
datasets like ImageNet due to the use of AE, which compro-
mises the fidelity of the image input to the black-box classi-
fier. In contrast, DeepZero directly optimizes the white-box
defense operation without the need for an AE, as demon-
strated in Fig. A7.

Following (Salman et al., 2020; Zhang et al., 2022c), we
model the defense operation as a denoiser given by DnCNN
(Zhang et al., 2017). To optimize it for black-box defense,
we adopt the ‘pretraining + fine-tuning’ approach, as de-
tailed in (Zhang et al., 2022c). We first employ the Adam
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optimizer (Kingma & Ba, 2014) to pretrain the denoiser over 90 epochs, based on the mean squared
error (MSE) loss function. The pre-training stage excludes the optimization with the black-box im-
age classifier. After the pretraining phase, we apply ZO-GraSP to the pretrained denoiser, with the
pruning ratio of 95%. Notably, the percentage of unpruned parameters of the denoiser tends to be
almost zero for all layers, except the first and the last layers. With this insight in mind, we specify the
finetuning strategy as partial finetuning, which targets only the last layer of the denoiser. However,
we still need to address the black-box optimization challenge, provided by the black-box classifier
f(x). Let θ represent the denoiser to be finetuned, DeepZero then solves the following black-box
optimization problem:

minimize
θ

Eδ,x[ℓCE(f(Dθ(x+ δ)), f(x))], (A2)

where x signifies the input, ℓCE refers to the Cross-Entropy (CE) loss, and δ ∈ N (0, σ2I) represents
the standard Gaussian noise with variance σ2. We apply DeepZero to solve problem (A2) under 20
training epochs, and use a learning rate of 10−5, which is reduced by a factor of 10 every four
epochs.

H SIMULATION-COUPLED DL FOR DISCRETIZED PDE ERROR CORRECTION

ZO-SOL: Solver-in-the-loop training via DeepZero
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Figure A8: Schematic overview of the base-
line approach NON given by training over pre-
generated simulation data and ZO-SOL by lever-
aging DeepZero to address the solver-in-the-loop
training challenge.

The feasibility of training a corrective NN through
looping interactions with the iterative partial differ-
ential equation (PDE) solver, coined ‘solver-in-the-
loop’ (SOL), has been demonstrated in (Um et al.,
2020). By leveraging DeepZero, we can enable the
use of SOL with non-differentiable, or black-box,
simulators Hu et al. (2019); Fang et al. (2022). We
name our method ZO-SOL. Fig. A8 presents a com-
parison with the baseline method NON, given by
non-interactive training out of the simulation loop
using pre-generated low and high-fidelity simulation
data.

In our experiments, we consider an unsteady wake
flow simulation—a standard benchmark case for
fluid dynamics (Um et al., 2020)—to assess the effi-
cacy of our method. The corrective neural network,
adopted from (Um et al., 2020), is a sequential con-
volutional network consisting of two convolutional layers with 5×5 kernels, totaling 56,898 param-
eters. The SOL problem can then be formulated as the optimization problem

argmin
θ

∑T−n
t=0

∑n−1
i=0 ∥Ps(s̃t+i) + Cθ(Ps(s̃t+i))− yt+i+1∥2 , (A3)

where Ps denotes the PDE solver used for the low-fidelity simulation, Cθ signifies the corrective
neural network parameterized by θ, yt+i stands for the high-precision simulation state (regarded as
the ground truth) at time t + i, T is the number of timesteps for the ground truth simulation, n is
the number of unrolling steps used in SOL, and s̃t+i signifies the output from SOL at the ith step,
namely,

s̃t+i = [(1+ Cθ) ◦ Ps] ◦ [(1+ Cθ) ◦ Ps] ◦ · · · ◦ [(1+ Cθ) ◦ Ps]︸ ︷︷ ︸
i times

(yt),

where ◦ is the function composition operation, 1 is an identity function and (1 + Cθ) stands for a
function expressed as (1(·) + Cθ(·)). Note that in our experiments, we take n = 16 during training,
that is we have 16 unrolling steps.

For the unsteady wake flow simulation, we follow the details outlined in (Um et al., 2020) which
we include here for completeness. Namely, the unsteady wake flow simulation solves a discretized
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version the the incompressible Navier-Stokes equations given by:

∂ux

∂t
+ u∇ux = −1

ρ
∇p+ ν∇ · ∇ux (A4)

∂uy

∂t
+ u∇uy = −1

ρ
∇p+ ν∇ · ∇uy (A5)

∇ · u = 0, (A6)

where t is time, ρ is density, ν is viscosity, p is pressure, u = (ux, uy)
T is velocity (x and y direc-

tions), and∇· denotes the divergence operator. The domain is Ω = [0, 1]×[0, 2] with open boundary
conditions and an initial state of u = (0, 1)T along x ∈ [0, 1] and y = 0. Additionally, there is a
circular rod of diameter 0.1 at position (0.5, 0.5)T ∈ Ω. The domain Ω for the low and high fidelity
simulations is discretized using a staggered grid of dimensions [32, 64] and [64, 128], respectively.
Additionally, we take T = 500 timesteps. We utilized the PhiFlow (Holl et al., 2020) simulation
code as the solver for our experiments and we based our implementation off of the solver in the loop
training process from the code https://github.com/tum-pbs/Solver-in-the-Loop.

For simplicity, the loss in (A3) is only expressed for a single simulation with T timesteps. In our
experiments, we utilize 6 different simulations in the training dataset each of which have different
Reynolds numbers (which affects fluid flow turbulence and can be altered by varying ν in (A4)
and (A5)) in the set {97.7, 195.3, 390.6, 781.3, 1562.5, 3125.0}, consistent with (Um et al., 2020).
Hence, during training the loss function has an additional outer summation to account for the 6
different training simulations. The test set consists of five different simulations computed using
Reynolds numbers in the set {146.5, 293.0, 585.9, 1171.9, 2343.8}, also consistent with (Um et al.,
2020).

To solve problem (A3), DeepZero under the Adam optimization framework is used with a learning
rate of 10−4 over ten training epochs.

I BROADER IMPACTS AND LIMITATIONS

Broader Impacts. Our proposed ZO learning for deep model training offers a valuable solution
for various ML problems that involve interactions with black-box APIs, such as language models as
a service, and on-chip learning problems where gradient calculation is infeasible on resource-limited
hardware. The applications of DeepZero and its black-box approaches explored in this work can also
contribute to advancements in optimization theory and model pruning in other fields. The insights
gained from studying DeepZero’s scalability, efficiency, and effectiveness can have far-reaching
implications beyond the realm of deep learning.

Limitations. One limitation of our approaches is the high number of model queries required,
which is inherent to ZO optimization in general. Improving query efficiency is an important area
for future research and compute-efficient techniques from (Bartoldson et al., 2023) likely will be
helpful. Additionally, the infusion of sparse deep priors in ZO training may not be suitable for non-
deep learning models. Therefore, it remains crucial to develop more generic and model-agnostic ZO
training methods that can handle large-scale and extreme-scale problems effectively.
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