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ABSTRACT

Training visual reinforcement learning agents in a high-dimensional open world
presents significant challenges. While various model-based methods have im-
proved sample efficiency by learning interactive world models, these agents tend
to be “short-sighted”, as they are typically trained on short snippets of imagined
experiences. We argue that the primary challenge in open-world decision-making
is improving the exploration efficiency across a vast state space, especially for
tasks that demand consideration of long-horizon payoffs. In this paper, we present
LS-Imagine, which extends the imagination horizon within a limited number of
state transition steps, enabling the agent to explore behaviors that potentially lead
to promising long-term feedback. The foundation of our approach is to build a long
short-term world model. To achieve this, we simulate goal-conditioned jumpy state
transitions and compute corresponding affordance maps by zooming in on specific
areas within single images. This facilitates the integration of direct long-term
values into behavior learning. Our method demonstrates significant improvements
over state-of-the-art techniques in MineDojo.

1 INTRODUCTION

Open-world decision-making in the context of reinforcement learning (RL) involves the following
characteristics: (i) The agent operates within an interactive environment that features a vast state
space; (ii) The learned policy presents a high degree of flexibility, allowing interaction with various
objects in the environment; (iii) The agent lacks full visibility of the internal states and physical
dynamics of the external world, meaning that its perception of the environment (e.g., raw images)
carries substantial uncertainty. For example, Minecraft serves as a typical open-world game.

Building upon recent progress in visual control, open-world decision-making aims to train agents to ap-
proach human-level intelligence based solely on high-dimensional visual observations. However, this
presents significant challenges. For example, in Minecraft tasks, existing methods like Voyager (Wang
et al., 2024a) employ specific Minecraft APIs as the high-level controller, which is incompatible with
standard visual control settings. While approaches such as PPO-with-MineCLIP (Fan et al., 2022) and
DECKARD (Nottingham et al., 2023) perform low-level visual control, these model-free RL methods
struggle to grasp the underlying mechanics of the environment. This may result in high trial-and-error
costs, leading to inefficiencies in both exploration and sample usage. Although DreamerV3 (Hafner
et al., 2023) employs a model-based RL (MBRL) approach to improve sample efficiency, it is often
“short-sighted” since the policy is optimized using short-term experiences—typically 15 time steps—
generated by the world model. The absence of long-term guidance significantly hampers an effective
exploration of the vast solution space of the open world.

To improve the behavior learning efficiency of MBRL, in this paper, we introduce a novel method
named Long Short-Term Imagination (LS-Imagine). Our key approach involves enabling the world
model to efficiently simulate the long-term effects of specific behaviors without the need for repeatedly
rolling out one-step predictions. As illustrated in Figure 1, once trained, the world model provides
both instant and jumpy state transitions1 along with corresponding (intrinsic) rewards, facilitating
policy optimization in a joint space of short- and long-term imaginations. This encourages the agent
to explore behaviors that lead to promising long-term outcomes.

1As shown in Figure 1, a jumpy transition allows the agent to bypass intermediate states and directly simulate
a task-relevant future state st+H in one step. This process occurs exclusively during world model imagination.
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Cut a tree

🏆

environment

Short-Term Imagination 
Long-Term Imagination 

Figure 1: The general framework of LS-Imagine, an MBRL agent that operates solely on raw pixels.
The fundamental idea is to extend the imagination horizon within a limited number of state transition
steps, enabling the agent to explore behaviors that potentially lead to promising long-term feedback.

The foundation of LS-Imagine is to train a long short-term world model, which requires integrating
task-specific guidance into the representation learning phase based on off-policy experience replay.
However, this creates a classic “chicken-and-egg” dilemma: without true data showing the agent has
reached the goal, how can we effectively train the model to simulate jumpy transitions from current
states to pivotal future states that suggest a high likelihood of achieving that goal? To address this
issue, we first continuously zoom in on individual images to simulate the consecutive video frames as
the agent approaches the goal. We then generate affordance maps2 by evaluating the relevance of the
pseudo video to task-specific goals presented in textual instructions, using the established MineCLIP
reward model (Fan et al., 2022). Subsequently, we train specific branches of the world model to
capture both instant and jumpy state transitions, using pairs of image observations from adjacent time
steps as well as those across longer intervals. Finally, we optimize the agent’s policy based on a finite
sequence of imagined latent states generated by the world model, integrating a more direct estimate
of long-term values into decision-making.

Let’s use the example in Figure 1 to further elaborate the novel aspects of the behavior learning
process: After receiving the instruction “cut a tree”, the agent simulates near-future states based on
the current real observation. It initially performs several single-step rollouts until it identifies a point
in time for a long-distance state jump that allows it to approach the tree. The agent then executes this
jump and optimizes its policy network to maximize the long-sight value function.

We evaluate our approach in the challenging open-world tasks from MineDojo (Fan et al., 2022).
LS-Imagine demonstrates superior performance compared to existing visual RL methods.

The contributions of this work are summarized as follows:

• We present a novel model-based RL method that captures both instant and jumpy state transitions
and leverages them in behavior learning to improve exploration efficiency in the open world.

• Our approach presents four concrete contributions: (i) a long short-term world model architecture,
(ii) a method for generating affordance maps through image zoom-in, (iii) a novel form of intrinsic
rewards based on the affordance map, and (iv) an improved behavior learning method that integrates
long-term values and operates on a mixed long short-term imagination pathway.

2 PROBLEM FORMULATION AND NOTATIONS

We solve visual reinforcement learning as a partially observable Markov decision process (POMDP),
using MineDojo as the test bench. Specifically, our method manipulates low-dimensional control
signals at while receiving only sequential high-dimensional visual observations o<t and episodic
sparse rewards renv, without access to the internal APIs of the open-world games. In comparison, as
shown in Table 1, existing Minecraft agents present notable distinctions in learning paradigms (i.e.,
controller), observation data, and the use of expert demonstrations.

Since the world model in this paper consists of two main components—a short-term transition branch
and a long-term imagination branch—it involves a complex notation system. We now introduce the
key notations frequently used throughout the paper. Specifically:

2 Affordance maps highlight regions within an observation that are potentially relevant to the task (Qi et al.,
2020; Wang et al., 2022).
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Table 1: Experimental setups of the Minecraft AI agents. IL is short for imitation learning.

Model Controller Observation Video Demos

DECKARD (2023) RL Pixels & Inventory ✓
Auto MC-Reward (2024a) IL + RL Pixels & GPS ✗
Voyager (2024a) GPT-4 Minecraft simulation & Error trace ✗
DEPS (2023) IL Pixels & Yaw/pitch angle & GPS & Voxel ✗
STEVE-1 (2023) Generative model Pixels ✗
VPT (2022) IL + RL Pixels ✓
DreamerV3 (2023) RL Pixels ✗
LS-Imagine RL Pixels ✗

• Mt represents the affordance map.
• ct denotes the episode continuation flag.
• jt is the jumping flag that triggers jumpy state imaginations.
• ∆t represents the number of environmental steps between the jumpy transitions.
• Gt is the cumulative reward over ∆t.

Accordingly, we use (o′t, a
′
t,M′

t, r
′
t, c

′
t, j

′
t,∆

′
t, G

′
t) to represent the simulated environment data that

are used to train the long-term imagination branch of the world model. The policy is learned on
trajectories of mixed long- and short-term imaginations {(ŝt, ât, r̂t, ĉt, ĵt, ∆̂t, Ĝt)} predicted by the
world model, where ŝt denotes the latent state. Variables predicted by the model are denoted using
the superscript (ˆ).

3 METHOD

3.1 OVERVIEW OF LS-IMAGINE

In this section, we present the details of LS-Imagine, which involves the following algorithm steps,
including world model learning, behavior learning, and environment interaction:

1. Affordance map computation (Sec. 3.2.1): We employ a sliding bounding box to scan individual
images and execute continuous zoom-ins inside the bounding box, simulating consecutive video
frames that correspond to long-distance state transitions. We then create affordance maps by
assessing the relevance of the fake video clips to task-specific goals expressed in text using the
established MineCLIP reward model (Fan et al., 2022).

2. Rapid affordance map generation (Sec. 3.2.2): Given that affordance maps will be frequently
used in subsequent Step 5 to evaluate the necessities for jumpy state transitions, we train a U-Net
module to approximate the affordance maps annotated in Step 1 for the sake of efficiency.

3. World model training (Sec. 3.3): We train the world model to capture short- and long-term state
transitions, using replay data with high responses from the affordance map. Each trajectory from
the buffer includes pairs of samples from both adjacent time steps and long-distance intervals.

4. Behavior learning (Sec. 3.4): We perform an actor-critic algorithm to optimize the agent’s policy
based on a finite sequence of long short-term imaginations generated by the world model.

5. Data update: We apply the agent to interact with the environment and gather new data. Next,
we leverage the generated affordance map to efficiently filter sample pairs suitable for long-term
modeling, incorporating both short- and long-term sample pairs to update the replay buffer.

6. Iterate Steps 3–5.

Below, we discuss each training step in detail. The full algorithm can be found in Appendix C.4.

3.2 AFFORDANCE MAP AND INTRINSIC REWARD

We generate affordance maps using visual observations and textual task definitions to improve the
sample efficiency of model-based reinforcement learning in open-world tasks. The core idea is to di-
rect the agent’s attention to task-relevant areas of the visual observation, leading to higher exploration
efficiency. Let Mot,I(w, h) be the affordance map that represents the potential exploration value at
pixel position (w, h) on the image observation ot, given textual instruction I (e.g., “cut a tree”). The
affordance map highlights the relevance between regions of the observation and the task description,
serving as a spatial prior that effectively directs the agent’s exploration toward areas of interest.
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Cut a tree

...

16 frames of video 
to represent the

simulated exploration

Corr = 0.60 Corr = 0.90 Corr = 0.15

 Fusion 

(a) Affordance map calculation

Multimodal U-Net

Zoom
in

Multimodal U-Net Multimodal U-Net

env

agent

(b) Rapid affordance map generation

Figure 2: The two steps for on-the-fly affordance map estimation: (a) Simulate exploration via image
zoom-in and calculate the task-correlation scores of the virtual explorations using MineCLIP. (b)
Learn to generate affordance maps more efficiently using a multimodal U-Net.

3.2.1 AFFORDANCE MAP COMPUTATION VIA VIRTUAL EXPLORATION

To create the affordance map, as shown in Figure 2(a), we simulate and evaluate the agent’s exploration
without relying on real successful trajectories. Concretely, we first adopt a random agent to interact
with task-specific environments for data collection. Starting with the agent’s observation ot at time
step t, we use a sliding bounding box with dimensions scaled to 15% of the observation’s width and
height to traverse the entire observation from left to right and top to bottom. The sliding bounding
box moves horizontally and vertically in 9 steps, respectively, covering every potential region in
both dimensions. For each position on the sliding bounding box of the observation ot, we crop 16
images from ot. These cropped images narrow the field of view to focus on the region and are resized
back to the original image dimensions. These resized images are denoted as xkt (where 0 ≤ k < 16).
The ordered set Xt = [xkt | k = 0, 1, . . . , 15] represents a sequence of 16 frames simulating the
visual transition as the agent moves towards the position specified by the current sliding bounding
box. Subsequently, we employ the MineCLIP model3 to calculate the correlation between the Xt of
images, simulating the virtual exploration process, and the task description I . In this way, we quantify
the affordance value of the sliding bounding box, indicating the potential exploration interest of the
area. After calculating the correlation score for each sliding bounding box, we fuse these values to
obtain a smooth affordance map Mot,I . For pixels that are covered by multiple sliding bounding
boxes due to overlapping regions, the integrated affordance value is obtained by averaging the values
from all the overlapping windows.

3.2.2 MULTIMODAL U-NET FOR RAPID AFFORDANCE MAP GENERATION

The annotation of affordance maps, as previously described, involves extensive window traversal and
computations for each window position using a pre-trained video-text alignment model. This method
is computationally demanding and time-consuming, making real-time applications challenging. To
address this issue, we first use a random agent to interact with the environment for data collection.
Next, we annotate the affordance maps for the collected images using the aforementioned method
based on virtual exploration. We gather a dataset of tuples (ot, I,Mot,I ) and use it to train a
multimodal U-Net based on Swin-Unet (Cao et al., 2022). To handle multimodal inputs, we extract
text features from the language instructions and image features from the downsampling process of
Swin-Unet, and fuse them with multi-head attention. We present architecture details in Figure 9 in the
appendix. In this way, with the pretrained multimodal U-Net, we can efficiently generate affordance
maps at each time step using visual observations and language instructions.

3MineCLIP (Fan et al., 2022) pretrains a video-language representation using Minecraft videos, enabling it
to compute the correlation between a text string and a 16-frame video segment.
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3.2.3 AFFORDANCE-DRIVEN INTRINSIC REWARD

To leverage the task-relevant prior knowledge presented by the affordance map for efficient exploration
in the open world, we introduce the following intrinsic reward function:

rintr
t =

1

WH

W∑
w=1

H∑
h=1

Mot,I(w, h) · G(w, h), (1)

where W and H denote the width and height of the visual observation. G represents a Gaussian
matrix with dimensions matching those of the affordance map. It corresponds to a 2D Gaussian
distribution, with its peak located at the center of the affordance map. The values in the matrix are
determined by standard deviations (σx, σy), while the mean is uniformly set to 1 across the entire
matrix. We present visualizations of G and conduct hyperparameter analyses on (σx, σy) in Appendix
D.6. The intuition behind this design is to encourage the agent to move toward the target.

Overall, the agent receives a composite reward consisting of the episodic sparse reward from the
environment, the reward from MineCLIP (Fan et al., 2022), and the intrinsic reward from the
affordance map: rt = renv

t + rMineCLIP
t + αrintr

t , where α is a hyperparameter. In contrast to the
MineCLIP reward, which relies on the agent’s past performance, our affordance-driven intrinsic
reward emphasizes long-term values derived from future virtual exploration. It encourages the agent
to adjust the policy to pursue task-related targets when they appear in its view, ensuring these targets
are centrally positioned in future visual observations to maximize this reward function.

3.3 LONG SHORT-TERM WORLD MODEL

3.3.1 LEARNING JUMPING FLAGS

In LS-Imagine, the world model is customized for long-term and short-term state transitions. It
decides which type of transition to adopt based on the current state and predicts the next state
with the selected transition branch. To facilitate the switch between long-term and short-term state
transitions, we introduce a jumping flag jt, which indicates whether a jumpy transition or long-term
state transition, should be adopted at time step t. When a distant task-related target appears in the
agent’s observation, which can be reflected by a higher kurtosis in the affordance map, a jumpy
transition allows the agent to imagine the future state of approaching the target. To this end, we
define relative kurtosis Kr which measures whether there are significantly higher target areas than
the surrounding areas in the affordance map, and absolute kurtosis Ka represents the confidence level
of target presence in that area. Formally,

Kr =
1

WH

W∑
w=1

H∑
h=1

[(
Mo,I(w, h)−mean(Mo,I)

std(Mo,I)

)4
]
,

Ka = max(Mo,I)−mean(Mo,I).

(2)

To normalize the relative kurtosis, we apply the sigmoid function to it, and then multiply it by the
absolute kurtosis to calculate the jumping probability:

Pjump = sigmoid(Kr)×Ka. (3)

The jumping probability measures the confidence in the presence of task-relevant targets far from the
agent in the visual observation. To determine whether to employ long-term state transition, we use a
dynamic threshold, which is the mean of the collected jumping probabilities at each time step, plus
one standard deviation. For a detailed explanation, please refer to C.1. If Pjump exceeds this threshold,
the jump flag jt is True and the agent switches to jumpy state transitions in the imagination phase.

3.3.2 LEARNING JUMPY STATE TRANSITIONS

In LS-Imagine, the state transition model includes both short-term and long-term branches. As
shown in Figure 3 (a), the short-term transition model integrates the previous deterministic recurrent
state ht−1, stochastic state zt−1, and action at−1 to adopt the single-step transition. In contrast, the
long-term branch simulates jumpy state transitions toward the target. It is important to clarify that the
index t does not denote the time step during real environmental interactions but instead represents the
positional order of states within the imagination sequence. The overall world model of LS-Imagine is

5
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Figure 3: The overall architecture of the world model and the behavior learning process.

primarily based on DreamerV3 (Hafner et al., 2023), with novel components specifically designed to
capture jumpy state transitions:

Short-term transition model: ht = fϕ(ht−1, zt−1, at−1)

Long-term transition model: h′t = fϕ(ht−1, zt−1)

Encoder: zt ∼ qϕ(zt | ht, ot,Mt)

Dynamics predictor: ẑt ∼ pϕ(ẑt | ht)
Reward predictor: r̂t, ĉt ∼ pϕ(r̂t, ĉt | ht, zt)
Decoder: ôt,M̂t ∼ pϕ(ôt,M̂t | ht, zt)
Jump predictor: ĵt ∼ pϕ(ĵt | ht, zt)
Interval predictor: ∆̂′

t, Ĝ
′
t ∼ pϕ(∆̂

′
t, Ĝ

′
t | ht−1, zt−1, h

′
t, z

′
t)

. (4)

At time step t, we feed the recurrent state ht, the observation ot, and the affordance map Mt into the
encoder to obtain posterior state zt. We also use the affordance map as an input of the encoder, which
serves as the goal-conditioned prior guidance to the agent. Notably, the prediction of prior state ẑt
does not involve the current observation or affordance map, relying solely on historical information.
We use (ht, zt) to reconstruct the visual observation ôt and the affordance map M̂t, and predict the
reward r̂t, episode continuation flag ĉt, and jumping flag ĵt. For long-term state transitions, we use an
interval predictor to estimate the expected number of interaction steps ∆̂′

t required to transition from
the pre-jump state (ht−1, zt−1) to the post-jump state (h′t, z

′
t), along with the expected cumulative

reward Ĝ′
t that the agent may receive during this time interval. We detail the approach to annotate ∆′

t
and G′

t using the real interaction data in Appendix C.1.

We collect short-term tuples Dt = (ot, at,Mt, rt, ct, jt,∆t, Gt) from each interaction with the
environment using the current policy. When observing jt = 1, we additionally construct long-term
tuples D′

t+1 = (o′t+1, a
′
t+1,M′

t+1, r
′
t+1, c

′
t+1, j

′
t+1,∆

′
t+1, G

′
t+1) based on Dt. More details for this

process can be found in Appendix C.1. During representation learning, we sample short-term tuples
{Dt}Tt=1 and the long-term tuples following jumpy transitions {D′

t+1}t∈T from the replay buffer
B, where T denotes the set of time steps at which long-term state transitions are required. The loss
functions for each component of the short-term and long-term world model branch are as follows:

Short-term branch:


Ldyn

.
= max (1,KL [sg (qϕ (zt | ht, ot,Mt)) ∥ pϕ (zt | ht)])

Lenc
.
= max (1,KL [qϕ (zt | ht, ot,Mt) ∥ sg (pϕ (zt | ht))])

Ldec
.
= − ln pϕ (ot,Mt | ht, zt)

Lpred
.
= − ln pϕ (rt, ct | ht, zt)− ln pϕ (jt | ht, zt)

. (5)
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Long-term branch:



L′
dyn

.
= max (1,KL [sg (qϕ (z

′
t | h′t, o′t,M′

t)) ∥ pϕ (z′t | h′t)])
L′

enc
.
= max (1,KL [qϕ (z

′
t | h′t, o′t,M′

t) ∥ sg (pϕ (z
′
t | h′t))])

L′
dec

.
= − ln pϕ (o

′
t,M′

t | h′t, z′t)
L′

pred
.
= − ln pϕ(r

′
t, c

′
t | h′t, z′t)− ln pϕ(j

′
t | h′t, z′t)

L′
int

.
= − ln pϕ (∆

′
t, G

′
t | ht−1, zt−1, h

′
t, z

′
t)

. (6)

We can optimize the world model Wϕ by minimizing over replay buffer B:

L .
= E

[∑
{Dt}T

t=1
(βdynLdyn + βencLenc + βpred (Ldec + Lpred))+

βlong
∑

{D′
t+1}t∈T

(
βdynL′

dyn + βencL′
enc + βpred

(
L′

dec + L′
pred + L′

int

)) ]
.

(7)

3.4 BEHAVIOR LEARNING OVER MIXED LONG SHORT-TERM IMAGINATIONS

As shown in Figure 3 (b), LS-Imagine employs an actor-critic algorithm to learn behavior from the
latent state sequences predicted by the world model. The goal of the actor is to optimize the policy
to maximize the discounted cumulative reward Rt, while the role of the critic is to estimate the
discounted cumulative rewards using the current policy for each state ŝt

.
= {ht, ẑt}:

Actor: ât ∼ πθ (ât | ŝt) , Critic: vψ

(
R̂t | ŝt

)
. (8)

Starting from the initial state encoded from the sampled observation and the affordance map, we
dynamically select either the long-term transition model or the short-term transition model to predict
subsequent states based on the jumping flag ĵt. For the long short-term imagination sequence
{(ŝt, ât)}Lt=1 with an imagination horizon of L, we predict reward sequence r̂1:L and the continuation
flag sequence ĉ1:L through the reward predictor. Similar to Eq. (4), the index t does not represent the
time step in the environment, but rather the positional order of the states in the imagination sequence.
Specifically, starting from state ŝt, any subsequent state obtained via either a short-term transition or
a long-term transition is indexed sequentially as t+ 1.

For jumpy states predicted by long-term imagination, the interval predictor estimates (i) the number of
steps ∆̂t from ŝt−1 to ŝt and (ii) the potential discounted cumulative reward Ĝt over the time interval
of ∆̂t. Otherwise, for states obtained via short-term imagination, which correspond to single-step
transitions in the environment, we set ∆̂t = 1 and Ĝt = r̂t. Consequently, within one imagination
episode, we obtain a sequence of step intervals ∆̂2:L and a sequence of predicted rewards Ĝ2:L

between consecutive imagination states.

We employ a modified bootstrapped λ-returns that considers both long-term and short-term imagina-
tions to calculate the discounted cumulative rewards for each state:

Rλt
.
=

{
ĉt{Ĝt+1 + γ∆̂t+1

[
(1− λ)vψ(ŝt+1) + λRλt+1

]
} if t < L

vψ(ŝL) if t = L
. (9)

The critic uses the maximum likelihood loss to predict the distribution of the return estimates Rλt :

L(ψ) .= −
L∑
t=1

ln pψ
(
Rλt | ŝt

)
. (10)

Following DreamerV3 (Hafner et al., 2023), we train the actor to maximize the return estimates
Rλt . Notably, since long-term imagination does not involve actions, we do not optimize the actor at
time steps when jumpy state transitions are adopted. Therefore, unlike DreamerV3, we apply an
additional factor of (1− ĵt) to ignore updates at long-term imagination steps:

L(θ) .= −
L∑
t=1

sg

[(
1− ĵt

) Rλt − vψ(ŝt)

max(1, S)

]
log πθ(ât | ŝt) + ηH [πθ(ât | ŝt)] . (11)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

Ra
te

(a) Harvest log in plains
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Figure 4: Comparison of LS-Imagine against strong Minecraft agents, including DreamerV3 (Hafner
et al., 2023), VPT (Baker et al., 2022), STEVE-1 (Lifshitz et al., 2023), PTGM (Yuan et al., 2024),
and Director (Hafner et al., 2022). We present the numerical results in Table 3 in the appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Benchmark. We explore LS-Imagine on challenging MineDojo (Fan et al., 2022) benchmark on
top of the popular Minecraft game, which is a comprehensive simulation platform with various
open-ended tasks. We use 5 tasks, i.e., harvest log in plains, harvest water with bucket, harvest
sand, shear sheep, and mine iron ore. These tasks demand numerous steps to complete and present
significant challenges for agent learning. We adopt a binary reward that indicates whether the task was
completed, along with the MineCLIP reward (Fan et al., 2022). Further details of the environmental
setups are provided in Appendix A. Besides, we introduce the compared models in Appendix B.

Implementation details. We conduct our experiments on the MineDojo environment, where both
visual observation and corresponding affordance maps are resized to 64 × 64 pixels. To generate
accurate affordance maps, we collect 2,000 images from the environment using a random agent
under the current task instruction and generate a discrete set of (ot, I,Mot,I ), which are then used
to finetune the multimodal U-Net for 200 epochs. For tasks in the MineDojo benchmark, we train
the agent for 1× 106 environment steps. Each training of LS-Imagine takes approximately 22GB of
VRAM and requires around 1.8 days to complete on a single RTX 4090 GPU.

4.2 MAIN COMPARISON

We evaluate all the Minecraft agents in terms of success rate shown in Figure 4 and per-episode
steps shown in Figure 5. We find that LS-Imagine significantly outperforms the compared models,
particularly in scenarios where sparse targets are distributed in the task. In Figure 4 (f), we showcase
the MineCLIP values achieved by LS-Imagine and DreamerV3. Specifically, a sliding window of
length 16 is used to compute the local MineCLIP values for each segment. The mean value is then
calculated from all sliding windows. We can see that agents trained using our method achieve higher
MineCLIP values within a single episode compared to DreamerV3. This suggests that LS-Imagine
facilitates quicker detection of task-relevant visual targets in open-world environments.

Additionally, we present qualitative results in Figure 6(a). In the top row, we decode the latent
states before and after the jumpy state transitions back to the pixel space. To better understand how
affordance maps facilitate the jumpy state transitions and whether they can provide effective goal-
conditioned guidance, the bottom rows visualize the affordance maps reconstructed from the latent
states. These visualizations demonstrate that the proposed world model can adaptively determine
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Figure 5: The number of steps per episode for task completion.
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Figure 6: (a) Visualization of long short-term imaginations and (b) a further discussion on possible
architecture designs of Series and Parallel connections of these two imagination pathways.

when to utilize long-term imagination based on the current visual observation. Furthermore, the
generated affordance maps align effectively with areas that are highly relevant to the final goal,
thereby enabling the agent to perform more efficient policy exploration.

4.3 MODEL ANALYSES
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Figure 7: Ablation study results.

Ablation studies. We conduct the ablation studies to
validate the effect of the affordance-driven intrinsic re-
ward and long short-term imagination. Figure 7 presents
corresponding results in the challenging MineDojo tasks.
As shown by the blue curve, removing the long-term
imagination of LS-Imagine leads to a performance de-
cline, which indicates the necessity of introducing long-
term imagination and switching between it and short-
term imagination adaptively. For the model represented
by the green curve, we do not employ affordance-driven
intrinsic reward. It shows that the affordance-driven in-
trinsic reward also plays an important role during the
early training state of agents. Additionally, unlike the
MineCLIP reward being calculated based on a series of
states, the affordance-driven intrinsic reward relies solely on a single independent state. This approach
enables a more accurate estimation of the reward for the post-jumpy-transition state.

Alternative pathways of mixed imaginations. It is worth highlighting that the long short-term
imagination is implemented sequentially. In Figure 10(a) in the appendix, we provide a visualization
illustrating how the agent sequentially performs short-term and long-term imaginations within a
single sequence. Alternatively, as illustrated in Figure 10(b), we could structure long- and short-term
imagination pathways in parallel. Specifically, we begin by applying short-term imagination within a
single sequence. For each predicted state, we examine the jumping flag: If ĵt = 1, we initiate a new
imagination sequence starting from the post-jump state, which is predicted by the long-term transition
model and the dynamics predictor. In other words, whenever a long-term state jump occurs, the world
model generates a new sequence from the post-jump state, while the intermediate state transitions
within the sequence are governed exclusively by short-term dynamics. Importantly, we optimize the
actor independently for each sequence, ensuring that there is no gradient or value transfer between
sequences. To evaluate the advantages of using sequential long short-term imagination, we conduct
an experimental comparison between LS-Imagine (series) and LS-Imagine (parallel). Figure 6(b)
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shows that the LS-Imagine (series) outperforms LS-Imagine (parallel) by large margins. This implies
that the parallel imagination sequences are independent of one another, meaning that the sequence
starting with a post-jumping state does not guide the prior-jumping transitions.

In the appendix, we further include (i) experiments on the long-horizon “Tech Tree” task, (ii) analyses
of the long-term imagination frequency and corresponding state jumping intervals ∆̂t predicted by
the model, and (iii) visualization of affordance maps with occluded target objects.

5 RELATED WORK

Visual MBRL. Recently, learning control policies from images, i.e., visual RL has been used widely,
whereas previous RL algorithms learn policies from low-dimensional states. Existing approaches
can be grouped by the use of model-free RL methods (Laskin et al., 2020; Schwarzer et al., 2021;
Stooke et al., 2021; Xiao et al., 2022; Parisi et al., 2022; Yarats et al., 2022; Zheng et al., 2023)
or model-based RL methods (Hafner et al., 2019; 2020; 2021; Seo et al., 2022; Pan et al., 2022;
Zhang et al., 2023a; Mazzaglia et al., 2023; Micheli et al., 2023; Zhang et al., 2023b; Ying et al.,
2023; Seo et al., 2023; Alonso et al., 2024; Hansen et al., 2024; Wang et al., 2024b). The following
methods specifically enhance the modeling of long-term dynamics in visual MBRL. Lee et al. (2024b)
proposed the prediction of temporally smoothed rewards to address long-horizon sparse-reward
tasks. R2I (Samsami et al., 2024) improves long-term memory and long-horizon credit assignment
in MBRL. Unlike existing methods, our work presents a long short-term world model architecture
specifically designed for visual control in open-world environments.

Affordance maps for robot learning. Our work is also related to the affordance map for robot
learning (Mo et al., 2021; Jiang et al., 2021; Yarats et al., 2021; Mo et al., 2022; Geng et al., 2022;
Xu et al., 2022a; Wang et al., 2022; Wu et al., 2022; Ha & Song, 2022; Xu et al., 2022b; Cheng
et al., 2024; Lee et al., 2024a; Li et al., 2024b). Where2Explore (Ning et al., 2023) introduces a
cross-category few-shot affordance learning framework that leverages the similarities in geometries
across different categories. DualAfford (Zhao et al., 2023) learns collaborative actionable affordance
for dual-gripper manipulation tasks over various 3D shapes. VoxPoser (Huang et al., 2023) unleashes
the power of large language models and vision-language models for extracting affordances and
constraints of real-world manipulation tasks, which are grounded in 3D perceptual space. VRB (Bahl
et al., 2023) trains a visual affordance model with videos of human interactions and deploys the
model in real-world robotic tasks directly. Qi et al. (2020) adopts a spatial affordance map that is
trained by interacting with the environment for navigation. However, our approach distinguishes
itself by employing visual observation to generate affordance maps as guidance to mitigate the low
exploration efficiency in open-world environments.

Hierarchical methods. Like our approach, Director (Hafner et al., 2022) learns hierarchical
behaviors in the latent space, which adopts high-level policy (manager) to produce latent goals to
guide low-level policy (worker). Dr. Strategy (Hamed et al., 2024) proposes strategic dreaming
with latent landmarks to learn a highway policy that enables the agent to move to a landmark in the
dream. Gumbsch et al. (2024) presented a hierarchy of world models, which perform high-level and
low-level prediction adaptively, and the high-level predictions depend on the low-level predictions.
Our method distinguishes itself by generating affordance maps through image zoom-in to encourage
the agent to explicitly execute long-term imagination in the world model.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we presented a novel approach to overcoming the challenges of training visual rein-
forcement learning agents in high-dimensional open worlds. By extending the imagination horizon
and leveraging a long short-term world model, our method facilitates efficient off-policy exploration
across expansive state spaces. The incorporation of goal-conditioned jumpy state transitions and
affordance maps allows agents to better grasp long-term value, enhancing their decision-making
abilities. Our results demonstrate substantial improvements over existing state-of-the-art techniques
in MineDojo, highlighting the potential of our approach for open-world reinforcement learning and
inspiring future research in this domain.

A limitation of LS-Imagine is the computational overhead it introduces. Additionally, its effectiveness
has only been validated in 3D navigation environments with embodied agents. We aim to enhance
the generalization of our approach across a wider range of tasks.
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ETHICS STATEMENT

In this work, we are committed to upholding ethical research practices. This work does not involve
human subjects, personal data, or sensitive information. All environments and datasets used are
synthetic and publicly available. We recognize the potential for reinforcement learning models to
be misused, particularly in decision-making scenarios where unintended outcomes could arise. To
mitigate these risks, we emphasize responsible deployment and encourage careful consideration of
the broader impact of such systems, restricting the use of our work strictly to research purposes.

REPRODUCIBILITY STATEMENT

We prioritize the reproducibility of our work. All results can be reproduced on publicly available
RL environments by following the experimental details presented in Sec. 4 and Appendix D.6.
Additionally, we provide the source code in the supplementary materials.
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APPENDIX

A ENVIRONMENT DETAILS

As illustrated in Table 2, language description is employed for calculating the MineCLIP reward (Fan
et al., 2022). Initial tools are the items provided in the inventory at the beginning of each episode.
Initial mobs and distance specifies the types of mobs present at the start of each episode and their
initial distance from the agent. Max steps refers to the maximum allowed steps per episode.

Table 2: Details of the MineDojo tasks.

Task Language description Initial tools Initial mobs and distance Max steps

Harvest log in plains “Cut a tree.” – – 1000
Harvest water with bucket “Obtain water.” bucket – 1000
Harvest sand “Obtain sand.” – – 1000
Shear sheep “Obtain wool.” shear sheep, 15 1000
Mine iron ore “Mine iron ore.” stone pickaxe – 2000

B COMPARED METHODS

We compare LS-Imagine with strong Minecraft agents, including:

• DreamerV3 (Hafner et al., 2023): An MBRL approach that learns directly from the step-by-step
imaginations of future latent states generated by the world model.

• VPT (Baker et al., 2022): A foundation model designed for Minecraft trained through behavior
cloning, on a dataset consisting of 70,000 hours of game playing collected from the Internet.

• STEVE-1 (Lifshitz et al., 2023): An instruction-following Minecraft agent that translates lan-
guage instructions into specific goals. To evaluate its effectiveness, we assess Steve-1’s zero-shot
performance on our tasks by supplying it with task instructions.

• Director (Hafner et al., 2022): An agent learns hierarchical behaviors by leveraging a world model
to plan within its latent space.

• PTGM (Yuan et al., 2024): An RL method that pretrains goal-based policy and adopts temporal
abstractions and behavior regularization.

C MODEL DETAILS

C.1 ENVIRONMENTAL INTERACTION AND DATA COLLECTION

To train LS-Imagine’s world model, we collect both short-term and long-term transition data through
interactions with the environment. As shown in Figure 8, at each time step t, the agent interacts with
the environment following the current policy. At each time step, the data buffer collects a tuple Dt,
which includes (ot, at,Mt, rt, ct, jt,∆t, Gt):

• ot represents the observed image.
• at represents the agent’s action taken given ot.
• Mt is the affordance map generated by a multimodal U-Net given ot and task instructions I .
• rt is defined in Sec. 3.2.3, which is the immediate reward computed as a weighted sum of the sparse

environmental reward renv
t after executing at−1, the MineCLIP reward rMineCLIP

t from a pretrained
scoring model (Fan et al., 2022), and the intrinsic reward rintr

t defined in Eq. (1) and based on Mt.
• ct is the continuation flag received from the environment, which indicates whether further interac-

tion is required after this step.
• jt is the jumping flag, which is used to train the world model to trigger long-term imagination

during model-based behavior learning. We first estimate the jumping probability Pjump using Eq. (3)
based on Mt. To stabilize training, we establish a dynamic threshold Pthresh, which accounts for
the varying guidance strength provided by the affordance map across different tasks, resulting in

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Multimodal U-Net

   ... ...   

   ... ...   

Multimodal U-Net
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Figure 8: Environmental interaction and data collection.

task-specific distributions of Pjump. Specifically, from the beginning of training, we store the Pjump
values for every interaction step in a dedicated buffer. The threshold Pthresh is then dynamically
calculated as the mean of all Pjump values currently in the buffer plus their standard deviation. This
dynamic adjustment ensures that the threshold adapts to the characteristics of the task and remains
robust throughout training. If Pjump > Pthresh, we set jt = 1; otherwise, jt = 0.

• ∆t represents the expected number of step intervals in the jumpy state transitions during long-term
imaginations. Specifically, we set ∆t = 1 by default, corresponding to a short-term transition.

• Gt represents the expected cumulative reward between the pre- and post-jump states when long-
term imagination occurs. Specifically, for a short-term transition, we set Gt = rt by default.

If jt = 0, Dt is defined as the starting point of a short-term transition within the pair (Dt,Dt+1).
During world model training, (Dt,Dt+1) is replayed to train the related modules associated with
short-term dynamics. Once we obtain jt = 1 during interactions, we define the current step as the
starting point of a simulated long-term transition (Dt,D′

t+1). Notably, we use D′
t+1 to differentiate

from its short-term counterparts.

We define D′
t+1 = (o′t+1, a

′
t+1,M′

t+1, r
′
t+1, c

′
t+1, j

′
t+1,∆

′
t+1, G

′
t+1), where r′t+1 and c′t+1 are com-

puted in the same manner as in short-term tuples but with o′t+1 and M′
t+1 as inputs. Similarly, a′t+1

and j′t+1 are also computed in the same way as in short-term tuples. We record them in the data
buffer for better training of the reward predictor and the jump predictor.

The next question is how to annotate ∆′
t+1, G′

t+1, and o′t+1 to train the long-term branch.

• o′t+1 is a simulated image rather than a real-captured image. It is obtained by cropping the original
observation ot based on the high-value regions in the affordance map Mt.

• ∆′
t+1 is an estimation of the number of real interaction steps between the pre-jump state and

the post-jump state. Since the post-jump state is not real data obtained from the environment,
we first identify a real state that closely resembles the post-jump state. We then calculate the
number of steps required to transition from the pre-jump state to this identified real post-jump state.
Specifically, we use the intrinsic reward as a measurement. Starting from the pre-jump state, during
subsequent interactions with the environment, if the agent reaches a real state where the intrinsic
reward satisfies rintr

t+∆′
t+1

≥ rintr ′
t+1 , we take this state as the real post-jump state and take ∆′

t+1 as
the long-term jumping interval.

• G′
t+1 is the cumulative reward within ∆′

t+1 interaction steps, i.e., G′
t+1 =

∑∆′
t+1

i=1 γi−1rt+i.
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Figure 9: The architecture of multimodal U-Net.

C.2 FRAMEWORK OF MULTIMODAL U-NET

As described in Sec. 3.2.2, we train a multimodal U-Net to rapidly generate affordance maps based on
observation images and task instructions. Our enhanced multimodal U-Net architecture, as illustrated
in Figure 9, is based on Swin-Unet (Cao et al., 2022), a U-shaped encoder-decoder architecture built
on Swin Transformer blocks. The enhanced multimodal U-Net consists of an encoder, a decoder, a
bridge layer, and a text processing module. In the Swin-Unet-inspired structure, the basic unit is the
Swin Transformer block. For the encoder, the input image is divided into non-overlapping patches
of size 4× 4 to convert the input into a sequence of patch embeddings. Through this method, each
patch has a feature dimension of 4× 4× 3 = 48. The patch embeddings are then projected through a
linear embedding layer (denoted as C), and the transformed patch tokens are passed through several
Swin Transformer blocks and patch merging layers to produce hierarchical feature representations.
The patch merging layers are responsible for downsampling and increasing the dimensionality, while
the Swin Transformer blocks handle feature representation learning.

For the task instruction, the text description is processed through the text encoder of MineCLIP (Cao
et al., 2022) to obtain text embeddings, which are integrated with the image features extracted at
each layer of the encoder via the Text-Image Attention (TIA) module. The TIA module employs a
multi-head attention mechanism to fuse image features (as keys and values) with text features (as
queries) in a multi-scale attention-based fusion. The resulting fused text-image features are passed
through the bridge layer and are subsequently combined with the corresponding features during the
upsampling process in the decoder.

The decoder comprises Swin Transformer blocks and patch-expanding layers. The extracted context
features are combined through the bridge layer with the multi-scale text-image features from the
encoder to compensate for the spatial information lost during downsampling and to integrate the text
information. Unlike the patch merging layers, the patch expanding layers are specifically designed for
upsampling. They reshape the adjacent feature maps by performing a 2× upsampling of the resolution,
expanding the feature maps into larger ones. Finally, a final patch expanding layer performs a 4×
upsampling to restore the resolution of the feature map to the input resolution W ×H ), followed by
a linear projection layer applied on the upsampled features to produce pixel-level affordance maps.
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...

(a) LS-Imagine (series)

...

...

...

...

(b) LS-Imagine (parallel)

Figure 10: Comparison with series and parallel variants of mixed imaginations.

C.3 VARIANTS OF LONG SHORT-TERM IMAGINATIONS

We compare two alternative pathways of the long short-term imaginations in Figure 10.

C.4 FULL ALGORITHM

We present the training pipeline of LS-Imagine in Algorithm 1.

Algorithm 1 The training pipeline of LS-Imagine.
1: Initialize parameters ϕ, θ, ψ.
2: Compute affordance map with MineCLIP. ▷ Affordance map generation
3: Train multimodal U-Net with annotated data. ▷ To enable real-time interaction with the affordance maps
4: Train the random agent and collect a replay buffer B.
5: while not converged do
6: Sample long short-term transitions from B. ▷ Representation learning
7: Update the world model ϕ using Eq. (7).
8: Generate (s1, â1, ĵ1) using πθ andWϕ.
9: for time step t = 2 · · ·L do ▷ Behavior learning

10: if jump flag ĵt−1 then
11: Generate (s′t, a

′
t, c

′
t, j

′
t,∆

′
t, G

′
t) using πθ and long-term imagination ofWϕ.

12: Update (ŝt, ât, ĉt, ĵt, ∆̂t, Ĝt)← (s′t, a
′
t, c

′
t, j

′
t,∆

′
t, G

′
t).

13: else
14: Generate (s̃t, ãt, r̃t, c̃t, j̃t) using πθ and short-term imagination ofWϕ.
15: Update (ŝt, ât, ĉt, ĵt, ∆̂t, Ĝt)← (s̃t, ãt, c̃t, j̃t, 1, r̃t).
16: end if
17: end for
18: Calculate value estimate using Eq. (9).
19: Optimize actor πθ using Eq. (11) over {(ŝt, ât, ĉt, ĵt, ∆̂t, Ĝt)}Lt=1.
20: Optimize critic vψ using Eq. (10) over {(ŝt, ât, ĉt, ĵt, ∆̂t, Ĝt)}Lt=1.
21: for time step t = 1 · · ·T do ▷ Environment interaction
22: Sample ât ∼ πθ (ât | ŝt)
23: renv

t , ot+1, ct ← env.step(ât)
24: Generate affordance mapMt with multimodal U-Net for each ot.
25: Calculate intrinsic reward rintr

t and jump flag jt based on the affordance map.
26: Collect short-term data (ot, at,Mt, rt, ct, jt,∆t, Gt).
27: if jumpy flag jt then
28: Construct long-term data (o′t+1, a

′
t+1,M′

t+1, r
′
t+1, c

′
t+1, j

′
t+1,∆

′
t+1, G

′
t+1).

29: end if
30: end for
31: Append long short-term transitions to B.
32: end while
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Table 3: The success rate and the number of steps per episode for task completion.

Model Harvest log in plains Harvest water with bucket Harvest sand Shear sheep Mine iron ore
succ. (%) succ. step succ. (%) succ. step succ. (%) succ. step succ. (%) succ. step succ. (%) succ. step

VPT 6.97 963.32 0.61 987.65 12.99 880.54 1.94 987.49 0.00 —
STEVE-1 57.00 752.47 6.00 989.07 37.00 770.40 3.00 992.36 0.00 —

PTGM 41.86 811.19 2.78 977.78 17.71 833.64 21.54 887.03 15.14 1586.03
Director 8.67 968.09 20.90 931.74 36.36 825.35 1.27 995.99 7.82 1906.31

DreamerV3 53.33 711.22 55.72 628.79 59.88 548.76 25.13 841.14 16.79 1789.06
LS-Imagine 80.63 503.35 77.31 502.61 62.68 601.18 54.28 633.78 20.28 1748.55
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Figure 11: Analyses of long-term imaginations throughout training.

C.5 CLARIFICATION ON STOCHASTIC LONG-TERM IMAGINATION

One might argue that long-term imagination could skip essential intermediate steps that gradually
lead to the objective, potentially resulting in a lack of learning for these crucial actions. To address
this issue, we adopt a probabilistic mechanism. Specifically, even when ĵt = True, indicating that a
long-term transition is to be executed, we implement a probability of 0.7 for executing the jump and
0.3 for not jumping. This allocation ensures a 30% chance that the transition will execute the short-
term imagination with gradient feedback attached to the actions. This stochastic decision-making
is based on a uniform distribution, providing a balanced approach between leveraging long-term
imagination and capturing essential short-term behaviors.

D ADDITIONAL RESULTS

D.1 NUMERICAL COMPARISONS

Table 3 compares existing approaches on the challenging MineDojo environment.

D.2 ANALYSES ON LONG-TERM IMAGINATIONS

We use the task harvest log in plains as an example to facilitate the understanding of the long short-
term imagination process. In Figure 11(a), we first track the frequency of long-term imaginations and
the corresponding predicted state intervals ∆̂t throughout the training process. The curve shows the
proportion of imagination sequences involving jumpy state transitions relative to the total number of
imagination sequences. Initially, the jumping frequency is low because the world model has not yet
learned to identify when a jump is necessary based on the state. As the model’s predictions improve
in the early stages of training, the frequency increases, likely due to the agent’s underdeveloped
policies, which result in more observations far from the goal and necessitate long-term exploration.
Over time, as the agent learns policies that bring it closer to the target, the frequency of observations
far from the goal decreases, reducing the need for jumps.

Additionally, we find that among all sequences with jumpy state transitions, the average number of
jumpy transitions per sequence, within a horizon of 15 steps, 1.02. This indicates that, in most cases
of these tasks, a single jumpy transition is sufficient to bring the agent close to the target.

In Figure 11(b), we track the variations of the jumping state intervals, ∆̂t, throughout training. At the
beginning, ∆̂t is high, indicating that the policy requires many steps to reach the target. As the policy
improves, fewer steps are needed to approach the target, leading to a gradual decrease in ∆̂t. Notably,

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Harvest log in plains

Short-term imagination Long-term imagination

(b) Harvest water with bucket

(c) Harvest sand

(d) Shear sheep

(e) Mine iron ore
Figure 12: Visualization of the complete long short-term imagination sequences.

as ∆̂t evolves with the updated policy, it also ensures minimal misalignment in Eq. (9) between the
future cumulative rewards computed with jumpy imaginations and the behavior policy.

Furthermore, in Figure 11(c), we track the variation curves of the dynamic threshold Pthresh during
training in different tasks, and observe that:

• For task such as harvest log in plains, the variance of Pthresh is high during the early stages of training.
Since Pthresh serves as a temporal smoothing of Pjump, this reflects the significant fluctuations of
Pjump at the beginning of training, highlighting the importance of adopting a dynamic threshold.

• Across various tasks, Pthresh consistently converges in the later stages of training, demonstrating its
effectiveness in improving the stability of exploratory imaginations.

• The converged values of Pthresh differ across tasks, indicating that involving an automated computa-
tion of Pthresh enables us to avoid tedious hyperparameter tuning.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Explore for a village (b) Mine ore

Figure 13: Affordance maps when the target is invisible or occluded.
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(b) The number of steps required for task completion

Figure 14: Comparison of LS-Imagine and DreamerV3 on a long-horizon “Tech Tree” task.

D.3 VISUALIZATION OF LONG SHORT-TERM IMAGINATIONS

As illustrated in Figure 12, we visualize the complete long short-term imagination sequences for
the agent across various tasks. This visualization further demonstrates how the affordance map
accurately identifies regions of high exploration potential in the image, and how the long short-term
imagination approach provides reasonable and applicable guidance for the agent’s task execution.
These qualitative results reinforce the effectiveness of our method in guiding the agent toward its
goal with greater precision and efficiency.

D.4 DEPENDENCE ON THE VISIBILITY OF OBJECTS

The long-term transitions of our approach rely on the affordance map to identify high-value ex-
ploration areas. However, it is crucial to note that our affordance map generation method is not
merely an object recognition algorithm that highlights areas only when the target is present. Thanks
to MineCLIP’s pretraining on extensive expert demonstration videos, our approach can generate
affordance maps that provide guidance even when the target is completely occluded.

For instance, as illustrated in Figure 13, throughout the task of locating a village, the affordance map
consistently provides effective guidance to the agent, suggesting exploration of the forest to the right
or the open area on the left hillside, even when the village is not visible in the current observation.
Similarly, in mining tasks where ores are typically underground, the affordance map directs the agent
to dig into the mountain area on the right. As we can see, even when the target is occluded, the
affordance map enables the agent to continue exploring effectively.

Further research direction. Due to the complexity of open-world environments, the affordance
map may fail to provide effective guidance in scenarios that the MineCLIP model has not encountered
before. To address this issue, we plan to progressively finetune the MineCLIP model with the
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Figure 15: Results of hyperparameter sensitivity analyses.
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Figure 16: Visualization of Gaussian matrices with different standard deviations.

collected new data and introduce a new prompt to the agent: “Explore the widest possible area to find
{target}” when the affordance map fails to identify high-value areas. This prompt, combined with
intrinsic rewards generated by MineCLIP, encourages the agent to conduct extensive exploration.

D.5 RESULTS ON LONG-HORIZON TASKS

To demonstrate the potential application of LS-Imagine in more complex tasks, we conduct experi-
ments on a “Tech Tree” task in MineDojo, specifically crafting a stone pickaxe from scratch. This
task involves seven subgoals: log, planks, crafting table, stick, wooden pickaxe, cobblestone, and
stone pickaxe. Since LS-Imagine is primarily designed to focus on environmental interactions and
task execution under fixed objectives, rather than task decomposition and planning, we adopt the
DECKARD method (Nottingham et al., 2023) for task planning. This method provides top-level
guidance, with LS-Imagine executing the corresponding subtasks. Each subtask was trained for
1 million steps and then tested within 1,000 steps per episode. The results are shown in Figure
14, which demonstrate that our LS-Imagine consistently outperforms DreamerV3, achieving higher
success rates and requiring fewer steps to complete each subgoal.

D.6 HYPERPARAMETER ANALYSES

We conduct sensitivity analyses on three hyperparameters:

• The long-term branch loss scale βlong: As shown in Figure 15 (Left), we observe that when βlong
for the long-term branch is too small or too large, it impedes the learning of long-term imagination,
leading to a decline in performance.

• The intrinsic reward weight α: From Figure 15 (Middle), we observe that if the hyperparameter
α for intrinsic reward is excessively small, it may result in insufficient guidance and inaccurate
reward estimation for the post-jumpy-transition state.

• The intrinsic reward Gaussian parameters (σx, σy): As shown in Figure 16, (σx, σy) control the
standard deviations of the Gaussian distribution along the horizontal and vertical axes, respectively.
Intuitively, setting these hyperparameters too low may cause the model to overlook targets located
at the edges of the observed images. Conversely, excessively high (σx, σy) may reduce the reward
discrepancy for targets at different positions within the observation, thereby diminishing the agent’s
incentive to focus on the target precisely. From Figure 15 (Right), we observe that the final
performance is robust to the tested parameters, with all configurations outperforming the baseline
models presented in previous experiments.
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The final hyperparameters of LS-Imagine are shown in Table 4.

Table 4: Hyperparameters of LS-Imagine.

Name Notation Value
Affordance map generation

Sliding window size — 0.15× 0.15
Sliding steps — 9× 9
U-Net train epochs — 500
U-Net initial learning rate — 5× 10−4

U-Net learning rate decay epochs — 50
U-Net learning rate decay rate — 0.10
Text feature dimensions — 512
Gaussian distribution standard deviations (σx, σy) (128, 80)

General

Replay capacity — 1× 106

Batch size B 16
Batch length T 32
Train ratio — 16

World Model

Intrinsic reward weight α 1
Deterministic latent dimensions — 4,096
Stochastic latent dimensions — 32
Discrete latent classes — 32
RSSM number of units — 1,024
World model learning rate — 1× 10−4

Long-term branch loss scale βlong 1
Reconstruction loss scale βpred 1
Dynamics loss scale βdyn 1
Representation loss scale βrep 0.1

Behavior Learning

Imagination horizon L 15
Discount γ 0.997
λ-target λ 0.95
Actor learning rate — 3 · 10−5

Critic learning rate — 3 · 10−5
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