
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPEN-WORLD REINFORCEMENT LEARNING OVER
LONG SHORT-TERM IMAGINATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training visual reinforcement learning agents in a high-dimensional open world
presents significant challenges. While various model-based methods have im-
proved sample efficiency by learning interactive world models, these agents tend
to be “short-sighted”, as they are typically trained on short snippets of imagined
experiences. We argue that the primary challenge in open-world decision-making
is improving the exploration efficiency across a vast state space, especially for
tasks that demand consideration of long-horizon payoffs. In this paper, we present
LS-Imagine, which extends the imagination horizon within a limited number of
state transition steps, enabling the agent to explore behaviors that potentially lead
to promising long-term feedback. The foundation of our approach is to build a long
short-term world model. To achieve this, we simulate goal-conditioned jumpy state
transitions and compute corresponding affordance maps by zooming in on specific
areas within single images. This facilitates the integration of direct long-term
values into behavior learning. Our method demonstrates significant improvements
over state-of-the-art techniques in MineDojo.

1 INTRODUCTION

Open-world decision-making in the context of reinforcement learning (RL) involves the following
characteristics: (i) The agent operates within an interactive environment that features a vast state
space; (ii) The learned policy presents a high degree of flexibility, allowing interaction with various
objects in the environment; (iii) The agent lacks full visibility of the internal states and physical
dynamics of the external world, meaning that its perception of the environment (e.g., raw images)
carries substantial uncertainty. For example, Minecraft serves as a typical open-world game.

Building upon recent progress in visual control, open-world decision-making aims to train agents to ap-
proach human-level intelligence based solely on high-dimensional visual observations. However, this
presents significant challenges. For example, in Minecraft tasks, existing methods like Voyager (Wang
et al., 2024a) employ specific Minecraft APIs as the high-level controller, which is incompatible with
standard visual control settings. While approaches such as PPO-with-MineCLIP (Fan et al., 2022) and
DECKARD (Nottingham et al., 2023) perform low-level visual control, these model-free RL methods
struggle to grasp the underlying mechanics of the environment. This may result in high trial-and-error
costs, leading to inefficiencies in both exploration and sample usage. Although DreamerV3 (Hafner
et al., 2023) employs a model-based RL (MBRL) approach to improve sample efficiency, it is often
“short-sighted” since the policy is optimized using short-term experiences—typically 15 time steps—
generated by the world model. The absence of long-term guidance significantly hampers an effective
exploration of the vast solution space of the open world.

To improve the behavior learning efficiency of MBRL, in this paper, we introduce a novel method
named Long Short-Term Imagination (LS-Imagine). Our key approach involves enabling the world
model to efficiently simulate the long-term effects of specific behaviors without the need for repeatedly
rolling out one-step predictions. As illustrated in Figure 1, once trained, the world model provides
both instant and jumpy state transitions1 along with corresponding (intrinsic) rewards, facilitating
policy optimization in a joint space of short- and long-term imaginations. This encourages the agent
to explore behaviors that lead to promising long-term outcomes.

1As shown in Figure 1, a jumpy transition allows the agent to bypass intermediate states and directly simulate
a task-relevant future state st+H in one step. This process occurs exclusively during world model imagination.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Cut a tree

🏆

environment

Short-Term Imagination
Long-Term Imagination

Figure 1: The general framework of LS-Imagine, an MBRL agent that operates solely on raw pixels.
The fundamental idea is to extend the imagination horizon within a limited number of state transition
steps, enabling the agent to explore behaviors that potentially lead to promising long-term feedback.

The foundation of LS-Imagine is to train a long short-term world model, which requires integrating
task-specific guidance into the representation learning phase based on off-policy experience replay.
However, this creates a classic “chicken-and-egg” dilemma: without true data showing the agent has
reached the goal, how can we effectively train the model to simulate jumpy transitions from current
states to pivotal future states that suggest a high likelihood of achieving that goal? To address this
issue, we first continuously zoom in on individual images to simulate the consecutive video frames as
the agent approaches the goal. We then generate affordance maps2 by evaluating the relevance of the
pseudo video to task-specific goals presented in textual instructions, using the established MineCLIP
reward model (Fan et al., 2022). Subsequently, we train specific branches of the world model to
capture both instant and jumpy state transitions, using pairs of image observations from adjacent time
steps as well as those across longer intervals. Finally, we optimize the agent’s policy based on a finite
sequence of imagined latent states generated by the world model, integrating a more direct estimate
of long-term values into decision-making.

Let’s use the example in Figure 1 to further elaborate the novel aspects of the behavior learning
process: After receiving the instruction “cut a tree”, the agent simulates near-future states based on
the current real observation. It initially performs several single-step rollouts until it identifies a point
in time for a long-distance state jump that allows it to approach the tree. The agent then executes this
jump and optimizes its policy network to maximize the long-sight value function.

We evaluate our approach in the challenging open-world tasks from MineDojo (Fan et al., 2022).
LS-Imagine demonstrates superior performance compared to existing visual RL methods.

The contributions of this work are summarized as follows:

• We present a novel model-based RL method that captures both instant and jumpy state transitions
and leverages them in behavior learning to improve exploration efficiency in the open world.

• Our approach presents four concrete contributions: (i) a long short-term world model architecture,
(ii) a method for generating affordance maps through image zoom-in, (iii) a novel form of intrinsic
rewards based on the affordance map, and (iv) an improved behavior learning method that integrates
long-term values and operates on a mixed long short-term imagination pathway.

2 PROBLEM FORMULATION AND NOTATIONS

We solve visual reinforcement learning as a partially observable Markov decision process (POMDP),
using MineDojo as the test bench. Specifically, our method manipulates low-dimensional control
signals at while receiving only sequential high-dimensional visual observations o<t and episodic
sparse rewards renv, without access to the internal APIs of the open-world games. In comparison, as
shown in Table 1, existing Minecraft agents present notable distinctions in learning paradigms (i.e.,
controller), observation data, and the use of expert demonstrations.

Since the world model in this paper consists of two main components—a short-term transition branch
and a long-term imagination branch—it involves a complex notation system. We now introduce the
key notations frequently used throughout the paper. Specifically:

2 Affordance maps highlight regions within an observation that are potentially relevant to the task (Qi et al.,
2020; Wang et al., 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Experimental setups of the Minecraft AI agents. IL is short for imitation learning.

Model Controller Observation Video Demos

DECKARD (2023) RL Pixels & Inventory ✓
Auto MC-Reward (2024a) IL + RL Pixels & GPS ✗
Voyager (2024a) GPT-4 Minecraft simulation & Error trace ✗
DEPS (2023) IL Pixels & Yaw/pitch angle & GPS & Voxel ✗
STEVE-1 (2023) Generative model Pixels ✗
VPT (2022) IL + RL Pixels ✓
DreamerV3 (2023) RL Pixels ✗
LS-Imagine RL Pixels ✗

• Mt represents the affordance map.
• ct denotes the episode continuation flag.
• jt is the jumping flag that triggers jumpy state imaginations.
• ∆t represents the number of environmental steps between the jumpy transitions.
• Gt is the cumulative reward over ∆t.

Accordingly, we use (o′t, a
′
t,M′

t, r
′
t, c

′
t, j

′
t,∆

′
t, G

′
t) to represent the simulated environment data that

are used to train the long-term imagination branch of the world model. The policy is learned on
trajectories of mixed long- and short-term imaginations {(ŝt, ât, r̂t, ĉt, ĵt, ∆̂t, Ĝt)} predicted by the
world model, where ŝt denotes the latent state. Variables predicted by the model are denoted using
the superscript (ˆ).

3 METHOD

3.1 OVERVIEW OF LS-IMAGINE

In this section, we present the details of LS-Imagine, which involves the following algorithm steps,
including world model learning, behavior learning, and environment interaction:

1. Affordance map computation (Sec. 3.2.1): We employ a sliding bounding box to scan individual
images and execute continuous zoom-ins inside the bounding box, simulating consecutive video
frames that correspond to long-distance state transitions. We then create affordance maps by
assessing the relevance of the fake video clips to task-specific goals expressed in text using the
established MineCLIP reward model (Fan et al., 2022).

2. Rapid affordance map generation (Sec. 3.2.2): Given that affordance maps will be frequently
used in subsequent Step 5 to evaluate the necessities for jumpy state transitions, we train a U-Net
module to approximate the affordance maps annotated in Step 1 for the sake of efficiency.

3. World model training (Sec. 3.3): We train the world model to capture short- and long-term state
transitions, using replay data with high responses from the affordance map. Each trajectory from
the buffer includes pairs of samples from both adjacent time steps and long-distance intervals.

4. Behavior learning (Sec. 3.4): We perform an actor-critic algorithm to optimize the agent’s policy
based on a finite sequence of long short-term imaginations generated by the world model.

5. Data update: We apply the agent to interact with the environment and gather new data. Next,
we leverage the generated affordance map to efficiently filter sample pairs suitable for long-term
modeling, incorporating both short- and long-term sample pairs to update the replay buffer.

6. Iterate Steps 3–5.

Below, we discuss each training step in detail. The full algorithm can be found in Appendix C.4.

3.2 AFFORDANCE MAP AND INTRINSIC REWARD

We generate affordance maps using visual observations and textual task definitions to improve the
sample efficiency of model-based reinforcement learning in open-world tasks. The core idea is to di-
rect the agent’s attention to task-relevant areas of the visual observation, leading to higher exploration
efficiency. Let Mot,I(w, h) be the affordance map that represents the potential exploration value at
pixel position (w, h) on the image observation ot, given textual instruction I (e.g., “cut a tree”). The
affordance map highlights the relevance between regions of the observation and the task description,
serving as a spatial prior that effectively directs the agent’s exploration toward areas of interest.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

...

MineCLIP

Cut a tree

...

16 frames of video
to represent the

simulated exploration

Corr = 0.60 Corr = 0.90 Corr = 0.15

 Fusion

(a) Affordance map calculation

Multimodal U-Net

Zoom
in

Multimodal U-Net Multimodal U-Net

env

agent

(b) Rapid affordance map generation

Figure 2: The two steps for on-the-fly affordance map estimation: (a) Simulate exploration via image
zoom-in and calculate the task-correlation scores of the virtual explorations using MineCLIP. (b)
Learn to generate affordance maps more efficiently using a multimodal U-Net.

3.2.1 AFFORDANCE MAP COMPUTATION VIA VIRTUAL EXPLORATION

To create the affordance map, as shown in Figure 2(a), we simulate and evaluate the agent’s exploration
without relying on real successful trajectories. Concretely, we first adopt a random agent to interact
with task-specific environments for data collection. Starting with the agent’s observation ot at time
step t, we use a sliding bounding box with dimensions scaled to 15% of the observation’s width and
height to traverse the entire observation from left to right and top to bottom. The sliding bounding
box moves horizontally and vertically in 9 steps, respectively, covering every potential region in
both dimensions. For each position on the sliding bounding box of the observation ot, we crop 16
images from ot. These cropped images narrow the field of view to focus on the region and are resized
back to the original image dimensions. These resized images are denoted as xkt (where 0 ≤ k < 16).
The ordered set Xt = [xkt | k = 0, 1, . . . , 15] represents a sequence of 16 frames simulating the
visual transition as the agent moves towards the position specified by the current sliding bounding
box. Subsequently, we employ the MineCLIP model3 to calculate the correlation between the Xt of
images, simulating the virtual exploration process, and the task description I . In this way, we quantify
the affordance value of the sliding bounding box, indicating the potential exploration interest of the
area. After calculating the correlation score for each sliding bounding box, we fuse these values to
obtain a smooth affordance map Mot,I . For pixels that are covered by multiple sliding bounding
boxes due to overlapping regions, the integrated affordance value is obtained by averaging the values
from all the overlapping windows.

3.2.2 MULTIMODAL U-NET FOR RAPID AFFORDANCE MAP GENERATION

The annotation of affordance maps, as previously described, involves extensive window traversal and
computations for each window position using a pre-trained video-text alignment model. This method
is computationally demanding and time-consuming, making real-time applications challenging. To
address this issue, we first use a random agent to interact with the environment for data collection.
Next, we annotate the affordance maps for the collected images using the aforementioned method
based on virtual exploration. We gather a dataset of tuples (ot, I,Mot,I) and use it to train a
multimodal U-Net based on Swin-Unet (Cao et al., 2022). To handle multimodal inputs, we extract
text features from the language instructions and image features from the downsampling process of
Swin-Unet, and fuse them with multi-head attention. We present architecture details in Figure 9 in the
appendix. In this way, with the pretrained multimodal U-Net, we can efficiently generate affordance
maps at each time step using visual observations and language instructions.

3MineCLIP (Fan et al., 2022) pretrains a video-language representation using Minecraft videos, enabling it
to compute the correlation between a text string and a 16-frame video segment.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.3 AFFORDANCE-DRIVEN INTRINSIC REWARD

To leverage the task-relevant prior knowledge presented by the affordance map for efficient exploration
in the open world, we introduce the following intrinsic reward function:

rintr
t =

1

WH

W∑
w=1

H∑
h=1

Mot,I(w, h) · G(w, h), (1)

where W and H denote the width and height of the visual observation. G represents a Gaussian
matrix with dimensions matching those of the affordance map. It corresponds to a 2D Gaussian
distribution, with its peak located at the center of the affordance map. The values in the matrix are
determined by standard deviations (σx, σy), while the mean is uniformly set to 1 across the entire
matrix. We present visualizations of G and conduct hyperparameter analyses on (σx, σy) in Appendix
D.6. The intuition behind this design is to encourage the agent to move toward the target.

Overall, the agent receives a composite reward consisting of the episodic sparse reward from the
environment, the reward from MineCLIP (Fan et al., 2022), and the intrinsic reward from the
affordance map: rt = renv

t + rMineCLIP
t + αrintr

t , where α is a hyperparameter. In contrast to the
MineCLIP reward, which relies on the agent’s past performance, our affordance-driven intrinsic
reward emphasizes long-term values derived from future virtual exploration. It encourages the agent
to adjust the policy to pursue task-related targets when they appear in its view, ensuring these targets
are centrally positioned in future visual observations to maximize this reward function.

3.3 LONG SHORT-TERM WORLD MODEL

3.3.1 LEARNING JUMPING FLAGS

In LS-Imagine, the world model is customized for long-term and short-term state transitions. It
decides which type of transition to adopt based on the current state and predicts the next state
with the selected transition branch. To facilitate the switch between long-term and short-term state
transitions, we introduce a jumping flag jt, which indicates whether a jumpy transition or long-term
state transition, should be adopted at time step t. When a distant task-related target appears in the
agent’s observation, which can be reflected by a higher kurtosis in the affordance map, a jumpy
transition allows the agent to imagine the future state of approaching the target. To this end, we
define relative kurtosis Kr which measures whether there are significantly higher target areas than
the surrounding areas in the affordance map, and absolute kurtosis Ka represents the confidence level
of target presence in that area. Formally,

Kr =
1

WH

W∑
w=1

H∑
h=1

[(
Mo,I(w, h)−mean(Mo,I)

std(Mo,I)

)4
]
,

Ka = max(Mo,I)−mean(Mo,I).

(2)

To normalize the relative kurtosis, we apply the sigmoid function to it, and then multiply it by the
absolute kurtosis to calculate the jumping probability:

Pjump = sigmoid(Kr)×Ka. (3)

The jumping probability measures the confidence in the presence of task-relevant targets far from the
agent in the visual observation. To determine whether to employ long-term state transition, we use a
dynamic threshold, which is the mean of the collected jumping probabilities at each time step, plus
one standard deviation. For a detailed explanation, please refer to C.1. If Pjump exceeds this threshold,
the jump flag jt is True and the agent switches to jumpy state transitions in the imagination phase.

3.3.2 LEARNING JUMPY STATE TRANSITIONS

In LS-Imagine, the state transition model includes both short-term and long-term branches. As
shown in Figure 3 (a), the short-term transition model integrates the previous deterministic recurrent
state ht−1, stochastic state zt−1, and action at−1 to adopt the single-step transition. In contrast, the
long-term branch simulates jumpy state transitions toward the target. It is important to clarify that the
index t does not denote the time step during real environmental interactions but instead represents the
positional order of states within the imagination sequence. The overall world model of LS-Imagine is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

enc dec

enc dec

Short-Term Branch

Critic

Actor

Critic

Critic

Actor Critic

Short-Term Imagination

Long-Term Imagination

Transition model Reward predictor Jumping predictor Interval predictor

Long-Term Branch

Figure 3: The overall architecture of the world model and the behavior learning process.

primarily based on DreamerV3 (Hafner et al., 2023), with novel components specifically designed to
capture jumpy state transitions:

Short-term transition model: ht = fϕ(ht−1, zt−1, at−1)

Long-term transition model: h′t = fϕ(ht−1, zt−1)

Encoder: zt ∼ qϕ(zt | ht, ot,Mt)

Dynamics predictor: ẑt ∼ pϕ(ẑt | ht)
Reward predictor: r̂t, ĉt ∼ pϕ(r̂t, ĉt | ht, zt)
Decoder: ôt,M̂t ∼ pϕ(ôt,M̂t | ht, zt)
Jump predictor: ĵt ∼ pϕ(ĵt | ht, zt)
Interval predictor: ∆̂′

t, Ĝ
′
t ∼ pϕ(∆̂

′
t, Ĝ

′
t | ht−1, zt−1, h

′
t, z

′
t)

. (4)

At time step t, we feed the recurrent state ht, the observation ot, and the affordance map Mt into the
encoder to obtain posterior state zt. We also use the affordance map as an input of the encoder, which
serves as the goal-conditioned prior guidance to the agent. Notably, the prediction of prior state ẑt
does not involve the current observation or affordance map, relying solely on historical information.
We use (ht, zt) to reconstruct the visual observation ôt and the affordance map M̂t, and predict the
reward r̂t, episode continuation flag ĉt, and jumping flag ĵt. For long-term state transitions, we use an
interval predictor to estimate the expected number of interaction steps ∆̂′

t required to transition from
the pre-jump state (ht−1, zt−1) to the post-jump state (h′t, z

′
t), along with the expected cumulative

reward Ĝ′
t that the agent may receive during this time interval. We detail the approach to annotate ∆′

t
and G′

t using the real interaction data in Appendix C.1.

We collect short-term tuples Dt = (ot, at,Mt, rt, ct, jt,∆t, Gt) from each interaction with the
environment using the current policy. When observing jt = 1, we additionally construct long-term
tuples D′

t+1 = (o′t+1, a
′
t+1,M′

t+1, r
′
t+1, c

′
t+1, j

′
t+1,∆

′
t+1, G

′
t+1) based on Dt. More details for this

process can be found in Appendix C.1. During representation learning, we sample short-term tuples
{Dt}Tt=1 and the long-term tuples following jumpy transitions {D′

t+1}t∈T from the replay buffer
B, where T denotes the set of time steps at which long-term state transitions are required. The loss
functions for each component of the short-term and long-term world model branch are as follows:

Short-term branch:


Ldyn

.
= max (1,KL [sg (qϕ (zt | ht, ot,Mt)) ∥ pϕ (zt | ht)])

Lenc
.
= max (1,KL [qϕ (zt | ht, ot,Mt) ∥ sg (pϕ (zt | ht))])

Ldec
.
= − ln pϕ (ot,Mt | ht, zt)

Lpred
.
= − ln pϕ (rt, ct | ht, zt)− ln pϕ (jt | ht, zt)

. (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Long-term branch:



L′
dyn

.
= max (1,KL [sg (qϕ (z

′
t | h′t, o′t,M′

t)) ∥ pϕ (z′t | h′t)])
L′

enc
.
= max (1,KL [qϕ (z

′
t | h′t, o′t,M′

t) ∥ sg (pϕ (z
′
t | h′t))])

L′
dec

.
= − ln pϕ (o

′
t,M′

t | h′t, z′t)
L′

pred
.
= − ln pϕ(r

′
t, c

′
t | h′t, z′t)− ln pϕ(j

′
t | h′t, z′t)

L′
int

.
= − ln pϕ (∆

′
t, G

′
t | ht−1, zt−1, h

′
t, z

′
t)

. (6)

We can optimize the world model Wϕ by minimizing over replay buffer B:

L .
= E

[∑
{Dt}T

t=1
(βdynLdyn + βencLenc + βpred (Ldec + Lpred))+

βlong
∑

{D′
t+1}t∈T

(
βdynL′

dyn + βencL′
enc + βpred

(
L′

dec + L′
pred + L′

int

))]
.

(7)

3.4 BEHAVIOR LEARNING OVER MIXED LONG SHORT-TERM IMAGINATIONS

As shown in Figure 3 (b), LS-Imagine employs an actor-critic algorithm to learn behavior from the
latent state sequences predicted by the world model. The goal of the actor is to optimize the policy
to maximize the discounted cumulative reward Rt, while the role of the critic is to estimate the
discounted cumulative rewards using the current policy for each state ŝt

.
= {ht, ẑt}:

Actor: ât ∼ πθ (ât | ŝt) , Critic: vψ

(
R̂t | ŝt

)
. (8)

Starting from the initial state encoded from the sampled observation and the affordance map, we
dynamically select either the long-term transition model or the short-term transition model to predict
subsequent states based on the jumping flag ĵt. For the long short-term imagination sequence
{(ŝt, ât)}Lt=1 with an imagination horizon of L, we predict reward sequence r̂1:L and the continuation
flag sequence ĉ1:L through the reward predictor. Similar to Eq. (4), the index t does not represent the
time step in the environment, but rather the positional order of the states in the imagination sequence.
Specifically, starting from state ŝt, any subsequent state obtained via either a short-term transition or
a long-term transition is indexed sequentially as t+ 1.

For jumpy states predicted by long-term imagination, the interval predictor estimates (i) the number of
steps ∆̂t from ŝt−1 to ŝt and (ii) the potential discounted cumulative reward Ĝt over the time interval
of ∆̂t. Otherwise, for states obtained via short-term imagination, which correspond to single-step
transitions in the environment, we set ∆̂t = 1 and Ĝt = r̂t. Consequently, within one imagination
episode, we obtain a sequence of step intervals ∆̂2:L and a sequence of predicted rewards Ĝ2:L

between consecutive imagination states.

We employ a modified bootstrapped λ-returns that considers both long-term and short-term imagina-
tions to calculate the discounted cumulative rewards for each state:

Rλt
.
=

{
ĉt{Ĝt+1 + γ∆̂t+1

[
(1− λ)vψ(ŝt+1) + λRλt+1

]
} if t < L

vψ(ŝL) if t = L
. (9)

The critic uses the maximum likelihood loss to predict the distribution of the return estimates Rλt :

L(ψ) .= −
L∑
t=1

ln pψ
(
Rλt | ŝt

)
. (10)

Following DreamerV3 (Hafner et al., 2023), we train the actor to maximize the return estimates
Rλt . Notably, since long-term imagination does not involve actions, we do not optimize the actor at
time steps when jumpy state transitions are adopted. Therefore, unlike DreamerV3, we apply an
additional factor of (1− ĵt) to ignore updates at long-term imagination steps:

L(θ) .= −
L∑
t=1

sg

[(
1− ĵt

) Rλt − vψ(ŝt)

max(1, S)

]
log πθ(ât | ŝt) + ηH [πθ(ât | ŝt)] . (11)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

(a) Harvest log in plains

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

(b) Harvest water with bucket

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

Ra
te

(c) Harvest sand

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

Su
cc

es
s

Ra
te

(d) Shear sheep

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s

Ra
te

(e) Mine iron ore

log water sand wool iron_ore
0.0

0.2

0.4

0.6

0.8

1.0

M
in

eC
LI

P
Sc

or
e

(f) Comparison in MineCLIP reward

VPT STEVE-1 PTGM Director DreamerV3 LS-Imagine

Figure 4: Comparison of LS-Imagine against strong Minecraft agents, including DreamerV3 (Hafner
et al., 2023), VPT (Baker et al., 2022), STEVE-1 (Lifshitz et al., 2023), PTGM (Yuan et al., 2024),
and Director (Hafner et al., 2022). We present the numerical results in Table 3 in the appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Benchmark. We explore LS-Imagine on challenging MineDojo (Fan et al., 2022) benchmark on
top of the popular Minecraft game, which is a comprehensive simulation platform with various
open-ended tasks. We use 5 tasks, i.e., harvest log in plains, harvest water with bucket, harvest
sand, shear sheep, and mine iron ore. These tasks demand numerous steps to complete and present
significant challenges for agent learning. We adopt a binary reward that indicates whether the task was
completed, along with the MineCLIP reward (Fan et al., 2022). Further details of the environmental
setups are provided in Appendix A. Besides, we introduce the compared models in Appendix B.

Implementation details. We conduct our experiments on the MineDojo environment, where both
visual observation and corresponding affordance maps are resized to 64 × 64 pixels. To generate
accurate affordance maps, we collect 2,000 images from the environment using a random agent
under the current task instruction and generate a discrete set of (ot, I,Mot,I), which are then used
to finetune the multimodal U-Net for 200 epochs. For tasks in the MineDojo benchmark, we train
the agent for 1× 106 environment steps. Each training of LS-Imagine takes approximately 22GB of
VRAM and requires around 1.8 days to complete on a single RTX 4090 GPU.

4.2 MAIN COMPARISON

We evaluate all the Minecraft agents in terms of success rate shown in Figure 4 and per-episode
steps shown in Figure 5. We find that LS-Imagine significantly outperforms the compared models,
particularly in scenarios where sparse targets are distributed in the task. In Figure 4 (f), we showcase
the MineCLIP values achieved by LS-Imagine and DreamerV3. Specifically, a sliding window of
length 16 is used to compute the local MineCLIP values for each segment. The mean value is then
calculated from all sliding windows. We can see that agents trained using our method achieve higher
MineCLIP values within a single episode compared to DreamerV3. This suggests that LS-Imagine
facilitates quicker detection of task-relevant visual targets in open-world environments.

Additionally, we present qualitative results in Figure 6(a). In the top row, we decode the latent
states before and after the jumpy state transitions back to the pixel space. To better understand how
affordance maps facilitate the jumpy state transitions and whether they can provide effective goal-
conditioned guidance, the bottom rows visualize the affordance maps reconstructed from the latent
states. These visualizations demonstrate that the proposed world model can adaptively determine

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

400

600

800

1000

St
ep

s
pe

r
ep

is
od

e

(a) Harvest log in plains

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

400

600

800

1000

(b) Harvest water with bucket

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

500

600

700

800

900

1000

(c) Harvest sand

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

500

600

700

800

900

1000

(d) Shear sheep

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

1500

1600

1700

1800

1900

2000

(e) Mine iron ore

VPT STEVE-1 PTGM Director DreamerV3 LS-Imagine

Figure 5: The number of steps per episode for task completion.

Long-term imaginationShort-term imagination

(a) Visualization of long short-term imaginations

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

LS-Imagine (series)
LS-Imagine (parallel)

(b) Series vs. parallel connections

Figure 6: (a) Visualization of long short-term imaginations and (b) a further discussion on possible
architecture designs of Series and Parallel connections of these two imagination pathways.

when to utilize long-term imagination based on the current visual observation. Furthermore, the
generated affordance maps align effectively with areas that are highly relevant to the final goal,
thereby enabling the agent to perform more efficient policy exploration.

4.3 MODEL ANALYSES

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

LS-Imagine
w/o long-term imagination
w/o intrinsic reward

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Long-term branch loss scale

long = 0.1
long = 0.5
long = 1.0
long = 5.0
long = 10.0

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Intrinsic reward weight

= 0.1
= 0.5
= 1.0
= 5.0
= 10.0

Figure 7: Ablation study results.

Ablation studies. We conduct the ablation studies to
validate the effect of the affordance-driven intrinsic re-
ward and long short-term imagination. Figure 7 presents
corresponding results in the challenging MineDojo tasks.
As shown by the blue curve, removing the long-term
imagination of LS-Imagine leads to a performance de-
cline, which indicates the necessity of introducing long-
term imagination and switching between it and short-
term imagination adaptively. For the model represented
by the green curve, we do not employ affordance-driven
intrinsic reward. It shows that the affordance-driven in-
trinsic reward also plays an important role during the
early training state of agents. Additionally, unlike the
MineCLIP reward being calculated based on a series of
states, the affordance-driven intrinsic reward relies solely on a single independent state. This approach
enables a more accurate estimation of the reward for the post-jumpy-transition state.

Alternative pathways of mixed imaginations. It is worth highlighting that the long short-term
imagination is implemented sequentially. In Figure 10(a) in the appendix, we provide a visualization
illustrating how the agent sequentially performs short-term and long-term imaginations within a
single sequence. Alternatively, as illustrated in Figure 10(b), we could structure long- and short-term
imagination pathways in parallel. Specifically, we begin by applying short-term imagination within a
single sequence. For each predicted state, we examine the jumping flag: If ĵt = 1, we initiate a new
imagination sequence starting from the post-jump state, which is predicted by the long-term transition
model and the dynamics predictor. In other words, whenever a long-term state jump occurs, the world
model generates a new sequence from the post-jump state, while the intermediate state transitions
within the sequence are governed exclusively by short-term dynamics. Importantly, we optimize the
actor independently for each sequence, ensuring that there is no gradient or value transfer between
sequences. To evaluate the advantages of using sequential long short-term imagination, we conduct
an experimental comparison between LS-Imagine (series) and LS-Imagine (parallel). Figure 6(b)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

shows that the LS-Imagine (series) outperforms LS-Imagine (parallel) by large margins. This implies
that the parallel imagination sequences are independent of one another, meaning that the sequence
starting with a post-jumping state does not guide the prior-jumping transitions.

In the appendix, we further include (i) experiments on the long-horizon “Tech Tree” task, (ii) analyses
of the long-term imagination frequency and corresponding state jumping intervals ∆̂t predicted by
the model, and (iii) visualization of affordance maps with occluded target objects.

5 RELATED WORK

Visual MBRL. Recently, learning control policies from images, i.e., visual RL has been used widely,
whereas previous RL algorithms learn policies from low-dimensional states. Existing approaches
can be grouped by the use of model-free RL methods (Laskin et al., 2020; Schwarzer et al., 2021;
Stooke et al., 2021; Xiao et al., 2022; Parisi et al., 2022; Yarats et al., 2022; Zheng et al., 2023)
or model-based RL methods (Hafner et al., 2019; 2020; 2021; Seo et al., 2022; Pan et al., 2022;
Zhang et al., 2023a; Mazzaglia et al., 2023; Micheli et al., 2023; Zhang et al., 2023b; Ying et al.,
2023; Seo et al., 2023; Alonso et al., 2024; Hansen et al., 2024; Wang et al., 2024b). The following
methods specifically enhance the modeling of long-term dynamics in visual MBRL. Lee et al. (2024b)
proposed the prediction of temporally smoothed rewards to address long-horizon sparse-reward
tasks. R2I (Samsami et al., 2024) improves long-term memory and long-horizon credit assignment
in MBRL. Unlike existing methods, our work presents a long short-term world model architecture
specifically designed for visual control in open-world environments.

Affordance maps for robot learning. Our work is also related to the affordance map for robot
learning (Mo et al., 2021; Jiang et al., 2021; Yarats et al., 2021; Mo et al., 2022; Geng et al., 2022;
Xu et al., 2022a; Wang et al., 2022; Wu et al., 2022; Ha & Song, 2022; Xu et al., 2022b; Cheng
et al., 2024; Lee et al., 2024a; Li et al., 2024b). Where2Explore (Ning et al., 2023) introduces a
cross-category few-shot affordance learning framework that leverages the similarities in geometries
across different categories. DualAfford (Zhao et al., 2023) learns collaborative actionable affordance
for dual-gripper manipulation tasks over various 3D shapes. VoxPoser (Huang et al., 2023) unleashes
the power of large language models and vision-language models for extracting affordances and
constraints of real-world manipulation tasks, which are grounded in 3D perceptual space. VRB (Bahl
et al., 2023) trains a visual affordance model with videos of human interactions and deploys the
model in real-world robotic tasks directly. Qi et al. (2020) adopts a spatial affordance map that is
trained by interacting with the environment for navigation. However, our approach distinguishes
itself by employing visual observation to generate affordance maps as guidance to mitigate the low
exploration efficiency in open-world environments.

Hierarchical methods. Like our approach, Director (Hafner et al., 2022) learns hierarchical
behaviors in the latent space, which adopts high-level policy (manager) to produce latent goals to
guide low-level policy (worker). Dr. Strategy (Hamed et al., 2024) proposes strategic dreaming
with latent landmarks to learn a highway policy that enables the agent to move to a landmark in the
dream. Gumbsch et al. (2024) presented a hierarchy of world models, which perform high-level and
low-level prediction adaptively, and the high-level predictions depend on the low-level predictions.
Our method distinguishes itself by generating affordance maps through image zoom-in to encourage
the agent to explicitly execute long-term imagination in the world model.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we presented a novel approach to overcoming the challenges of training visual rein-
forcement learning agents in high-dimensional open worlds. By extending the imagination horizon
and leveraging a long short-term world model, our method facilitates efficient off-policy exploration
across expansive state spaces. The incorporation of goal-conditioned jumpy state transitions and
affordance maps allows agents to better grasp long-term value, enhancing their decision-making
abilities. Our results demonstrate substantial improvements over existing state-of-the-art techniques
in MineDojo, highlighting the potential of our approach for open-world reinforcement learning and
inspiring future research in this domain.

A limitation of LS-Imagine is the computational overhead it introduces. Additionally, its effectiveness
has only been validated in 3D navigation environments with embodied agents. We aim to enhance
the generalization of our approach across a wider range of tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In this work, we are committed to upholding ethical research practices. This work does not involve
human subjects, personal data, or sensitive information. All environments and datasets used are
synthetic and publicly available. We recognize the potential for reinforcement learning models to
be misused, particularly in decision-making scenarios where unintended outcomes could arise. To
mitigate these risks, we emphasize responsible deployment and encourage careful consideration of
the broader impact of such systems, restricting the use of our work strictly to research purposes.

REPRODUCIBILITY STATEMENT

We prioritize the reproducibility of our work. All results can be reproduced on publicly available
RL environments by following the experimental details presented in Sec. 4 and Appendix D.6.
Additionally, we provide the source code in the supplementary materials.

REFERENCES

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos Storkey, Tim Pearce, and
François Fleuret. Diffusion for world modeling: Visual details matter in atari. In NeurIPS, 2024.

Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from
human videos as a versatile representation for robotics. In CVPR, pp. 13778–13790, 2023.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. In NeurIPS, 2022.

Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang.
Swin-unet: Unet-like pure transformer for medical image segmentation. In ECCVW, 2022.

Guangran Cheng, Chuheng Zhang, Wenzhe Cai, Li Zhao, Changyin Sun, and Jiang Bian. Empow-
ering large language models on robotic manipulation with affordance prompting. arXiv preprint
arXiv:2404.11027, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In NeurIPS, volume 35, pp. 18343–18362, 2022.

Yiran Geng, Boshi An, Haoran Geng, Yuanpei Chen, Yaodong Yang, and Hao Dong. End-to-end
affordance learning for robotic manipulation. arXiv preprint arXiv:2209.12941, 2022.

Christian Gumbsch, Noor Sajid, Georg Martius, and Martin V Butz. Learning hierarchical world
models with adaptive temporal abstractions from discrete latent dynamics. In ICLR, 2024.

Huy Ha and Shuran Song. Flingbot: The unreasonable effectiveness of dynamic manipulation for
cloth unfolding. In CoRL, pp. 24–33, 2022.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In ICML, pp. 2555–2565, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2020.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. In ICLR, 2021.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels. In NeurIPS, 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hany Hamed, Subin Kim, Dongyeong Kim, Jaesik Yoon, and Sungjin Ahn. Dr. strategy: Model-based
generalist agents with strategic dreaming. In ICML, 2024.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. In ICLR, 2024.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. In CoRL, 2023.

Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, and Yuke Zhu. Synergies between affordance
and geometry: 6-dof grasp detection via implicit representations. Robotics: science and systems,
2021.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In ICML, pp. 5639–5650, 2020.

Olivia Y Lee, Annie Xie, Kuan Fang, Karl Pertsch, and Chelsea Finn. Affordance-guided reinforce-
ment learning via visual prompting. arXiv preprint arXiv:2407.10341, 2024a.

Vint Lee, Pieter Abbeel, and Youngwoon Lee. Dreamsmooth: Improving model-based reinforcement
learning via reward smoothing. In ICLR, 2024b.

Hao Li, Xue Yang, Zhaokai Wang, Xizhou Zhu, Jie Zhou, Yu Qiao, Xiaogang Wang, Hongsheng Li,
Lewei Lu, and Jifeng Dai. Auto mc-reward: Automated dense reward design with large language
models for minecraft. In CVPR, pp. 16426–16435, 2024a.

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang, Jiaming
Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-centric
robotic manipulation. In CVPR, pp. 18061–18070, 2024b.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A generative
model for text-to-behavior in minecraft. In NeurIPS, 2023.

Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, and Sai Rajeswar. Choreographer:
Learning and adapting skills in imagination. In ICLR, 2023.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world models.
In ICLR, 2023.

Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhinav Gupta, and Shubham Tulsiani.
Where2act: From pixels to actions for articulated 3d objects. In ICCV, pp. 6813–6823, 2021.

Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2o-afford: Annotation-free
large-scale object-object affordance learning. In CoRL, pp. 1666–1677, 2022.

Chuanruo Ning, Ruihai Wu, Haoran Lu, Kaichun Mo, and Hao Dong. Where2explore: Few-shot
affordance learning for unseen novel categories of articulated objects. NeurIPS, 2023.

Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. Do embodied agents dream of pixelated sheep: Embodied decision making
using language guided world modelling. In ICML, pp. 26311–26325, 2023.

Minting Pan, Xiangming Zhu, Yunbo Wang, and Xiaokang Yang. Iso-dream: Isolating and leveraging
noncontrollable visual dynamics in world models. In NeurIPS, volume 35, pp. 23178–23191,
2022.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In ICML, pp. 17359–17371, 2022.

William Qi, Ravi Teja Mullapudi, Saurabh Gupta, and Deva Ramanan. Learning to move with
affordance maps. In ICLR, 2020.

Mohammad Reza Samsami, Artem Zholus, Janarthanan Rajendran, and Sarath Chandar. Mastering
memory tasks with world models. In ICLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. In NeurIPS, volume 34, pp. 12686–12699, 2021.

Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with
action-free pre-training from videos. In ICML, pp. 19561–19579, 2022.

Younggyo Seo, Junsu Kim, Stephen James, Kimin Lee, Jinwoo Shin, and Pieter Abbeel. Multi-view
masked world models for visual robotic manipulation. In ICML, pp. 30613–30632, 2023.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In ICML, pp. 9870–9879, 2021.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
TMLR, 2024a.

Qi Wang, Junming Yang, Yunbo Wang, Xin Jin, Wenjun Zeng, and Xiaokang Yang. Making offline rl
online: Collaborative world models for offline visual reinforcement learning. In NeurIPS, 2024b.

Yian Wang, Ruihai Wu, Kaichun Mo, Jiaqi Ke, Qingnan Fan, Leonidas J Guibas, and Hao Dong.
Adaafford: Learning to adapt manipulation affordance for 3d articulated objects via few-shot
interactions. In ECCV, pp. 90–107, 2022.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. In NeurIPS, 2023.

Ruihai Wu, Yan Zhao, Kaichun Mo, Zizheng Guo, Yian Wang, Tianhao Wu, Qingnan Fan, Xuelin
Chen, Leonidas Guibas, and Hao Dong. Vat-mart: Learning visual action trajectory proposals for
manipulating 3d articulated objects. ICLR, 2022.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Chao Xu, Yixin Chen, He Wang, Song-Chun Zhu, Yixin Zhu, and Siyuan Huang. Partafford:
Part-level affordance discovery from 3d objects. arXiv preprint arXiv:2202.13519, 2022a.

Zhenjia Xu, Zhanpeng He, and Shuran Song. Universal manipulation policy network for articulated
objects. IEEE robotics and automation letters, 7(2):2447–2454, 2022b.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In ICLR, 2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. In ICLR, 2022.

Chengyang Ying, Zhongkai Hao, Xinning Zhou, Hang Su, Songming Liu, Jialian Li, Dong Yan,
and Jun Zhu. Reward informed dreamer for task generalization in reinforcement learning. arXiv
preprint arXiv:2303.05092, 2023.

Haoqi Yuan, Zhancun Mu, Feiyang Xie, and Zongqing Lu. Pre-training goal-based models for
sample-efficient reinforcement learning. In ICLR, 2024.

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient stochastic
transformer based world models for reinforcement learning. In NeurIPS, 2023a.

Wendong Zhang, Geng Chen, Xiangming Zhu, Siyu Gao, Yunbo Wang, and Xiaokang Yang.
Predictive experience replay for continual visual control and forecasting. arXiv preprint
arXiv:2303.06572, 2023b.

Yan Zhao, Ruihai Wu, Zhehuan Chen, Yourong Zhang, Qingnan Fan, Kaichun Mo, and Hao Dong.
Dualafford: Learning collaborative visual affordance for dual-gripper manipulation. ICLR, 2023.

Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III,
and Furong Huang. Taco: Temporal latent action-driven contrastive loss for visual reinforcement
learning. In NeurIPS, volume 36, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A ENVIRONMENT DETAILS

As illustrated in Table 2, language description is employed for calculating the MineCLIP reward (Fan
et al., 2022). Initial tools are the items provided in the inventory at the beginning of each episode.
Initial mobs and distance specifies the types of mobs present at the start of each episode and their
initial distance from the agent. Max steps refers to the maximum allowed steps per episode.

Table 2: Details of the MineDojo tasks.

Task Language description Initial tools Initial mobs and distance Max steps

Harvest log in plains “Cut a tree.” – – 1000
Harvest water with bucket “Obtain water.” bucket – 1000
Harvest sand “Obtain sand.” – – 1000
Shear sheep “Obtain wool.” shear sheep, 15 1000
Mine iron ore “Mine iron ore.” stone pickaxe – 2000

B COMPARED METHODS

We compare LS-Imagine with strong Minecraft agents, including:

• DreamerV3 (Hafner et al., 2023): An MBRL approach that learns directly from the step-by-step
imaginations of future latent states generated by the world model.

• VPT (Baker et al., 2022): A foundation model designed for Minecraft trained through behavior
cloning, on a dataset consisting of 70,000 hours of game playing collected from the Internet.

• STEVE-1 (Lifshitz et al., 2023): An instruction-following Minecraft agent that translates lan-
guage instructions into specific goals. To evaluate its effectiveness, we assess Steve-1’s zero-shot
performance on our tasks by supplying it with task instructions.

• Director (Hafner et al., 2022): An agent learns hierarchical behaviors by leveraging a world model
to plan within its latent space.

• PTGM (Yuan et al., 2024): An RL method that pretrains goal-based policy and adopts temporal
abstractions and behavior regularization.

C MODEL DETAILS

C.1 ENVIRONMENTAL INTERACTION AND DATA COLLECTION

To train LS-Imagine’s world model, we collect both short-term and long-term transition data through
interactions with the environment. As shown in Figure 8, at each time step t, the agent interacts with
the environment following the current policy. At each time step, the data buffer collects a tuple Dt,
which includes (ot, at,Mt, rt, ct, jt,∆t, Gt):

• ot represents the observed image.
• at represents the agent’s action taken given ot.
• Mt is the affordance map generated by a multimodal U-Net given ot and task instructions I .
• rt is defined in Sec. 3.2.3, which is the immediate reward computed as a weighted sum of the sparse

environmental reward renv
t after executing at−1, the MineCLIP reward rMineCLIP

t from a pretrained
scoring model (Fan et al., 2022), and the intrinsic reward rintr

t defined in Eq. (1) and based on Mt.
• ct is the continuation flag received from the environment, which indicates whether further interac-

tion is required after this step.
• jt is the jumping flag, which is used to train the world model to trigger long-term imagination

during model-based behavior learning. We first estimate the jumping probability Pjump using Eq. (3)
based on Mt. To stabilize training, we establish a dynamic threshold Pthresh, which accounts for
the varying guidance strength provided by the affordance map across different tasks, resulting in

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Multimodal U-Net

Multimodal U-Net

env

 Zoom
 in

agent

Multimodal U-Net

...

Figure 8: Environmental interaction and data collection.

task-specific distributions of Pjump. Specifically, from the beginning of training, we store the Pjump
values for every interaction step in a dedicated buffer. The threshold Pthresh is then dynamically
calculated as the mean of all Pjump values currently in the buffer plus their standard deviation. This
dynamic adjustment ensures that the threshold adapts to the characteristics of the task and remains
robust throughout training. If Pjump > Pthresh, we set jt = 1; otherwise, jt = 0.

• ∆t represents the expected number of step intervals in the jumpy state transitions during long-term
imaginations. Specifically, we set ∆t = 1 by default, corresponding to a short-term transition.

• Gt represents the expected cumulative reward between the pre- and post-jump states when long-
term imagination occurs. Specifically, for a short-term transition, we set Gt = rt by default.

If jt = 0, Dt is defined as the starting point of a short-term transition within the pair (Dt,Dt+1).
During world model training, (Dt,Dt+1) is replayed to train the related modules associated with
short-term dynamics. Once we obtain jt = 1 during interactions, we define the current step as the
starting point of a simulated long-term transition (Dt,D′

t+1). Notably, we use D′
t+1 to differentiate

from its short-term counterparts.

We define D′
t+1 = (o′t+1, a

′
t+1,M′

t+1, r
′
t+1, c

′
t+1, j

′
t+1,∆

′
t+1, G

′
t+1), where r′t+1 and c′t+1 are com-

puted in the same manner as in short-term tuples but with o′t+1 and M′
t+1 as inputs. Similarly, a′t+1

and j′t+1 are also computed in the same way as in short-term tuples. We record them in the data
buffer for better training of the reward predictor and the jump predictor.

The next question is how to annotate ∆′
t+1, G′

t+1, and o′t+1 to train the long-term branch.

• o′t+1 is a simulated image rather than a real-captured image. It is obtained by cropping the original
observation ot based on the high-value regions in the affordance map Mt.

• ∆′
t+1 is an estimation of the number of real interaction steps between the pre-jump state and

the post-jump state. Since the post-jump state is not real data obtained from the environment,
we first identify a real state that closely resembles the post-jump state. We then calculate the
number of steps required to transition from the pre-jump state to this identified real post-jump state.
Specifically, we use the intrinsic reward as a measurement. Starting from the pre-jump state, during
subsequent interactions with the environment, if the agent reaches a real state where the intrinsic
reward satisfies rintr

t+∆′
t+1

≥ rintr ′
t+1 , we take this state as the real post-jump state and take ∆′

t+1 as
the long-term jumping interval.

• G′
t+1 is the cumulative reward within ∆′

t+1 interaction steps, i.e., G′
t+1 =

∑∆′
t+1

i=1 γi−1rt+i.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Patch Partition

 Linear Embedding

Swin Transformer
Block × 2

Patch Merging

Swin Transformer
Block × 2

Patch Merging

Swin Transformer
Block × 2

Patch Merging

Swin Transformer
Block × 2

Swin Transformer
Block × 2

Swin Transformer
Block × 2

Patch Expanding

Swin Transformer
Block × 2

Patch Expanding

Swin Transformer
Block × 2

Patch Expanding

Patch Expanding

Linear Projection

Cut a tree

Compute affordance
map with MineCLIP

Text
Encoder

TIA

TIA

TIA

TIA

Figure 9: The architecture of multimodal U-Net.

C.2 FRAMEWORK OF MULTIMODAL U-NET

As described in Sec. 3.2.2, we train a multimodal U-Net to rapidly generate affordance maps based on
observation images and task instructions. Our enhanced multimodal U-Net architecture, as illustrated
in Figure 9, is based on Swin-Unet (Cao et al., 2022), a U-shaped encoder-decoder architecture built
on Swin Transformer blocks. The enhanced multimodal U-Net consists of an encoder, a decoder, a
bridge layer, and a text processing module. In the Swin-Unet-inspired structure, the basic unit is the
Swin Transformer block. For the encoder, the input image is divided into non-overlapping patches
of size 4× 4 to convert the input into a sequence of patch embeddings. Through this method, each
patch has a feature dimension of 4× 4× 3 = 48. The patch embeddings are then projected through a
linear embedding layer (denoted as C), and the transformed patch tokens are passed through several
Swin Transformer blocks and patch merging layers to produce hierarchical feature representations.
The patch merging layers are responsible for downsampling and increasing the dimensionality, while
the Swin Transformer blocks handle feature representation learning.

For the task instruction, the text description is processed through the text encoder of MineCLIP (Cao
et al., 2022) to obtain text embeddings, which are integrated with the image features extracted at
each layer of the encoder via the Text-Image Attention (TIA) module. The TIA module employs a
multi-head attention mechanism to fuse image features (as keys and values) with text features (as
queries) in a multi-scale attention-based fusion. The resulting fused text-image features are passed
through the bridge layer and are subsequently combined with the corresponding features during the
upsampling process in the decoder.

The decoder comprises Swin Transformer blocks and patch-expanding layers. The extracted context
features are combined through the bridge layer with the multi-scale text-image features from the
encoder to compensate for the spatial information lost during downsampling and to integrate the text
information. Unlike the patch merging layers, the patch expanding layers are specifically designed for
upsampling. They reshape the adjacent feature maps by performing a 2× upsampling of the resolution,
expanding the feature maps into larger ones. Finally, a final patch expanding layer performs a 4×
upsampling to restore the resolution of the feature map to the input resolution W ×H), followed by
a linear projection layer applied on the upsampled features to produce pixel-level affordance maps.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

...

(a) LS-Imagine (series)

...

...

...

...

(b) LS-Imagine (parallel)

Figure 10: Comparison with series and parallel variants of mixed imaginations.

C.3 VARIANTS OF LONG SHORT-TERM IMAGINATIONS

We compare two alternative pathways of the long short-term imaginations in Figure 10.

C.4 FULL ALGORITHM

We present the training pipeline of LS-Imagine in Algorithm 1.

Algorithm 1 The training pipeline of LS-Imagine.
1: Initialize parameters ϕ, θ, ψ.
2: Compute affordance map with MineCLIP. ▷ Affordance map generation
3: Train multimodal U-Net with annotated data. ▷ To enable real-time interaction with the affordance maps
4: Train the random agent and collect a replay buffer B.
5: while not converged do
6: Sample long short-term transitions from B. ▷ Representation learning
7: Update the world model ϕ using Eq. (7).
8: Generate (s1, â1, ĵ1) using πθ andWϕ.
9: for time step t = 2 · · ·L do ▷ Behavior learning

10: if jump flag ĵt−1 then
11: Generate (s′t, a

′
t, c

′
t, j

′
t,∆

′
t, G

′
t) using πθ and long-term imagination ofWϕ.

12: Update (ŝt, ât, ĉt, ĵt, ∆̂t, Ĝt)← (s′t, a
′
t, c

′
t, j

′
t,∆

′
t, G

′
t).

13: else
14: Generate (s̃t, ãt, r̃t, c̃t, j̃t) using πθ and short-term imagination ofWϕ.
15: Update (ŝt, ât, ĉt, ĵt, ∆̂t, Ĝt)← (s̃t, ãt, c̃t, j̃t, 1, r̃t).
16: end if
17: end for
18: Calculate value estimate using Eq. (9).
19: Optimize actor πθ using Eq. (11) over {(ŝt, ât, ĉt, ĵt, ∆̂t, Ĝt)}Lt=1.
20: Optimize critic vψ using Eq. (10) over {(ŝt, ât, ĉt, ĵt, ∆̂t, Ĝt)}Lt=1.
21: for time step t = 1 · · ·T do ▷ Environment interaction
22: Sample ât ∼ πθ (ât | ŝt)
23: renv

t , ot+1, ct ← env.step(ât)
24: Generate affordance mapMt with multimodal U-Net for each ot.
25: Calculate intrinsic reward rintr

t and jump flag jt based on the affordance map.
26: Collect short-term data (ot, at,Mt, rt, ct, jt,∆t, Gt).
27: if jumpy flag jt then
28: Construct long-term data (o′t+1, a

′
t+1,M′

t+1, r
′
t+1, c

′
t+1, j

′
t+1,∆

′
t+1, G

′
t+1).

29: end if
30: end for
31: Append long short-term transitions to B.
32: end while

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: The success rate and the number of steps per episode for task completion.

Model Harvest log in plains Harvest water with bucket Harvest sand Shear sheep Mine iron ore
succ. (%) succ. step succ. (%) succ. step succ. (%) succ. step succ. (%) succ. step succ. (%) succ. step

VPT 6.97 963.32 0.61 987.65 12.99 880.54 1.94 987.49 0.00 —
STEVE-1 57.00 752.47 6.00 989.07 37.00 770.40 3.00 992.36 0.00 —

PTGM 41.86 811.19 2.78 977.78 17.71 833.64 21.54 887.03 15.14 1586.03
Director 8.67 968.09 20.90 931.74 36.36 825.35 1.27 995.99 7.82 1906.31

DreamerV3 53.33 711.22 55.72 628.79 59.88 548.76 25.13 841.14 16.79 1789.06
LS-Imagine 80.63 503.35 77.31 502.61 62.68 601.18 54.28 633.78 20.28 1748.55

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0

100

200

300

400

500

(a) Jumping frequency

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0

100

200

300

400

500

(b) Interval ∆̂t

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.00

0.05

0.10

0.15

0.20

Th
re

sh
ol

d

Harvest log in plains
Harvest water with bucket

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Dynamic threshold Pthresh

Figure 11: Analyses of long-term imaginations throughout training.

C.5 CLARIFICATION ON STOCHASTIC LONG-TERM IMAGINATION

One might argue that long-term imagination could skip essential intermediate steps that gradually
lead to the objective, potentially resulting in a lack of learning for these crucial actions. To address
this issue, we adopt a probabilistic mechanism. Specifically, even when ĵt = True, indicating that a
long-term transition is to be executed, we implement a probability of 0.7 for executing the jump and
0.3 for not jumping. This allocation ensures a 30% chance that the transition will execute the short-
term imagination with gradient feedback attached to the actions. This stochastic decision-making
is based on a uniform distribution, providing a balanced approach between leveraging long-term
imagination and capturing essential short-term behaviors.

D ADDITIONAL RESULTS

D.1 NUMERICAL COMPARISONS

Table 3 compares existing approaches on the challenging MineDojo environment.

D.2 ANALYSES ON LONG-TERM IMAGINATIONS

We use the task harvest log in plains as an example to facilitate the understanding of the long short-
term imagination process. In Figure 11(a), we first track the frequency of long-term imaginations and
the corresponding predicted state intervals ∆̂t throughout the training process. The curve shows the
proportion of imagination sequences involving jumpy state transitions relative to the total number of
imagination sequences. Initially, the jumping frequency is low because the world model has not yet
learned to identify when a jump is necessary based on the state. As the model’s predictions improve
in the early stages of training, the frequency increases, likely due to the agent’s underdeveloped
policies, which result in more observations far from the goal and necessitate long-term exploration.
Over time, as the agent learns policies that bring it closer to the target, the frequency of observations
far from the goal decreases, reducing the need for jumps.

Additionally, we find that among all sequences with jumpy state transitions, the average number of
jumpy transitions per sequence, within a horizon of 15 steps, 1.02. This indicates that, in most cases
of these tasks, a single jumpy transition is sufficient to bring the agent close to the target.

In Figure 11(b), we track the variations of the jumping state intervals, ∆̂t, throughout training. At the
beginning, ∆̂t is high, indicating that the policy requires many steps to reach the target. As the policy
improves, fewer steps are needed to approach the target, leading to a gradual decrease in ∆̂t. Notably,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Harvest log in plains

Short-term imagination Long-term imagination

(b) Harvest water with bucket

(c) Harvest sand

(d) Shear sheep

(e) Mine iron ore
Figure 12: Visualization of the complete long short-term imagination sequences.

as ∆̂t evolves with the updated policy, it also ensures minimal misalignment in Eq. (9) between the
future cumulative rewards computed with jumpy imaginations and the behavior policy.

Furthermore, in Figure 11(c), we track the variation curves of the dynamic threshold Pthresh during
training in different tasks, and observe that:

• For task such as harvest log in plains, the variance of Pthresh is high during the early stages of training.
Since Pthresh serves as a temporal smoothing of Pjump, this reflects the significant fluctuations of
Pjump at the beginning of training, highlighting the importance of adopting a dynamic threshold.

• Across various tasks, Pthresh consistently converges in the later stages of training, demonstrating its
effectiveness in improving the stability of exploratory imaginations.

• The converged values of Pthresh differ across tasks, indicating that involving an automated computa-
tion of Pthresh enables us to avoid tedious hyperparameter tuning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Explore for a village (b) Mine ore

Figure 13: Affordance maps when the target is invisible or occluded.

log planks crafting
table

stick wooden
pickaxe

cobblestone stone
pickaxe

20

30

40

50

60

70

80

90

100

Su
cc

es
s r

at
e

(%
)

83 83 83 83
80

44

32

91 91
88 88

84
80

69

DreamerV3 LS-Imagine

(a) Success rate

log planks crafting
table

stick wooden
pickaxe

cobblestone stone
pickaxe

200

300

400

500

600

700

800

900

1000

St
ep

s p
er

 e
pi

so
de

437 454 465 481

552

854

923

320 329
363 381

447

613

684

DreamerV3 LS-Imagine

(b) The number of steps required for task completion

Figure 14: Comparison of LS-Imagine and DreamerV3 on a long-horizon “Tech Tree” task.

D.3 VISUALIZATION OF LONG SHORT-TERM IMAGINATIONS

As illustrated in Figure 12, we visualize the complete long short-term imagination sequences for
the agent across various tasks. This visualization further demonstrates how the affordance map
accurately identifies regions of high exploration potential in the image, and how the long short-term
imagination approach provides reasonable and applicable guidance for the agent’s task execution.
These qualitative results reinforce the effectiveness of our method in guiding the agent toward its
goal with greater precision and efficiency.

D.4 DEPENDENCE ON THE VISIBILITY OF OBJECTS

The long-term transitions of our approach rely on the affordance map to identify high-value ex-
ploration areas. However, it is crucial to note that our affordance map generation method is not
merely an object recognition algorithm that highlights areas only when the target is present. Thanks
to MineCLIP’s pretraining on extensive expert demonstration videos, our approach can generate
affordance maps that provide guidance even when the target is completely occluded.

For instance, as illustrated in Figure 13, throughout the task of locating a village, the affordance map
consistently provides effective guidance to the agent, suggesting exploration of the forest to the right
or the open area on the left hillside, even when the village is not visible in the current observation.
Similarly, in mining tasks where ores are typically underground, the affordance map directs the agent
to dig into the mountain area on the right. As we can see, even when the target is occluded, the
affordance map enables the agent to continue exploring effectively.

Further research direction. Due to the complexity of open-world environments, the affordance
map may fail to provide effective guidance in scenarios that the MineCLIP model has not encountered
before. To address this issue, we plan to progressively finetune the MineCLIP model with the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Long-term branch loss scale

long = 0.1
long = 0.5
long = 1.0
long = 5.0
long = 10.0

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Intrinsic reward weight

= 0.1
= 0.5
= 1.0
= 5.0
= 10.0

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Gaussian distribution std

(x, y) = (64, 40)
(x, y) = (128, 80)
(x, y) = (256, 160)

Figure 15: Results of hyperparameter sensitivity analyses.

0 64 128 192 256

0

40

80

120

160

(x, y) = (64, 40)

0 64 128 192 256

0

40

80

120

160

(x, y) = (128, 80)

0 64 128 192 256

0

40

80

120

160

(x, y) = (256, 160)

0.5

1.0

1.5

2.0

2.5

Figure 16: Visualization of Gaussian matrices with different standard deviations.

collected new data and introduce a new prompt to the agent: “Explore the widest possible area to find
{target}” when the affordance map fails to identify high-value areas. This prompt, combined with
intrinsic rewards generated by MineCLIP, encourages the agent to conduct extensive exploration.

D.5 RESULTS ON LONG-HORIZON TASKS

To demonstrate the potential application of LS-Imagine in more complex tasks, we conduct experi-
ments on a “Tech Tree” task in MineDojo, specifically crafting a stone pickaxe from scratch. This
task involves seven subgoals: log, planks, crafting table, stick, wooden pickaxe, cobblestone, and
stone pickaxe. Since LS-Imagine is primarily designed to focus on environmental interactions and
task execution under fixed objectives, rather than task decomposition and planning, we adopt the
DECKARD method (Nottingham et al., 2023) for task planning. This method provides top-level
guidance, with LS-Imagine executing the corresponding subtasks. Each subtask was trained for
1 million steps and then tested within 1,000 steps per episode. The results are shown in Figure
14, which demonstrate that our LS-Imagine consistently outperforms DreamerV3, achieving higher
success rates and requiring fewer steps to complete each subgoal.

D.6 HYPERPARAMETER ANALYSES

We conduct sensitivity analyses on three hyperparameters:

• The long-term branch loss scale βlong: As shown in Figure 15 (Left), we observe that when βlong
for the long-term branch is too small or too large, it impedes the learning of long-term imagination,
leading to a decline in performance.

• The intrinsic reward weight α: From Figure 15 (Middle), we observe that if the hyperparameter
α for intrinsic reward is excessively small, it may result in insufficient guidance and inaccurate
reward estimation for the post-jumpy-transition state.

• The intrinsic reward Gaussian parameters (σx, σy): As shown in Figure 16, (σx, σy) control the
standard deviations of the Gaussian distribution along the horizontal and vertical axes, respectively.
Intuitively, setting these hyperparameters too low may cause the model to overlook targets located
at the edges of the observed images. Conversely, excessively high (σx, σy) may reduce the reward
discrepancy for targets at different positions within the observation, thereby diminishing the agent’s
incentive to focus on the target precisely. From Figure 15 (Right), we observe that the final
performance is robust to the tested parameters, with all configurations outperforming the baseline
models presented in previous experiments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The final hyperparameters of LS-Imagine are shown in Table 4.

Table 4: Hyperparameters of LS-Imagine.

Name Notation Value
Affordance map generation

Sliding window size — 0.15× 0.15
Sliding steps — 9× 9
U-Net train epochs — 500
U-Net initial learning rate — 5× 10−4

U-Net learning rate decay epochs — 50
U-Net learning rate decay rate — 0.10
Text feature dimensions — 512
Gaussian distribution standard deviations (σx, σy) (128, 80)

General

Replay capacity — 1× 106

Batch size B 16
Batch length T 32
Train ratio — 16

World Model

Intrinsic reward weight α 1
Deterministic latent dimensions — 4,096
Stochastic latent dimensions — 32
Discrete latent classes — 32
RSSM number of units — 1,024
World model learning rate — 1× 10−4

Long-term branch loss scale βlong 1
Reconstruction loss scale βpred 1
Dynamics loss scale βdyn 1
Representation loss scale βrep 0.1

Behavior Learning

Imagination horizon L 15
Discount γ 0.997
λ-target λ 0.95
Actor learning rate — 3 · 10−5

Critic learning rate — 3 · 10−5

22

	Introduction
	Problem Formulation and Notations
	Method
	Overview of LS-Imagine
	Affordance Map and Intrinsic Reward
	Affordance Map Computation via Virtual Exploration
	Multimodal U-Net for Rapid Affordance Map Generation
	Affordance-Driven Intrinsic Reward

	Long Short-Term World Model
	Learning Jumping Flags
	Learning Jumpy State Transitions

	Behavior Learning over Mixed Long Short-Term Imaginations

	Experiments
	Experimental Setups
	Main Comparison
	Model Analyses

	Related Work
	Conclusions and Limitations
	Environment Details
	Compared Methods
	Model Details
	Environmental Interaction and Data Collection
	Framework of Multimodal U-Net
	Variants of Long Short-Term Imaginations
	Full Algorithm
	Clarification on Stochastic Long-Term Imagination

	Additional Results
	Numerical Comparisons
	Analyses on Long-Term Imaginations
	Visualization of long short-term imaginations
	Dependence on The Visibility of Objects
	Results on Long-Horizon Tasks
	Hyperparameter Analyses

