
Published in Transactions on Machine Learning Research (02/2024)

Series of Hessian-Vector Products for Tractable Saddle-Free
Newton Optimisation of Neural Networks

Elre T. Oldewage* etv21@cam.ac.uk
Department of Engineering
University of Cambridge

Ross M. Clarke* rmc78@cam.ac.uk
Department of Engineering
University of Cambridge

José Miguel Hernández-Lobato jmh233@cam.ac.uk
Department of Engineering
University of Cambridge

(*Equal contribution; randomly ordered)

Reviewed on OpenReview: https://openreview.net/forum?id=qBZeQBEDIW

Abstract

Despite their popularity in the field of continuous optimisation, second-order quasi-Newton
methods are challenging to apply in machine learning, as the Hessian matrix is intractably
large. This computational burden is exacerbated by the need to address non-convexity,
for instance by modifying the Hessian’s eigenvalues as in Saddle-Free Newton methods.
We propose an optimisation algorithm which addresses both of these concerns — to our
knowledge, the first efficiently-scalable optimisation algorithm to asymptotically use the exact
inverse Hessian with absolute-value eigenvalues. Our method frames the problem as a series
which principally square-roots and inverts the squared Hessian, then uses it to precondition
a gradient vector, all without explicitly computing or eigendecomposing the Hessian. A
truncation of this infinite series provides a new optimisation algorithm which is scalable
and comparable to other first- and second-order optimisation methods in both runtime
and optimisation performance. We demonstrate this in a variety of settings, including a
ResNet-18 trained on CIFAR-10.

1 Introduction
At the heart of many machine learning systems is an optimisation problem over some loss surface. In the field
of continuous optimisation, second-order Newton methods are often preferred for their rapid convergence
and curvature-aware updates. However, their implicit assumption of a (locally) convex space restricts their
usability, requiring the use of mechanisms like damping (Martens, 2010; Dauphin et al., 2014; O’Leary-
Roseberry et al., 2021) to avoid degenerate behaviour. In machine learning applications, which are invariably
non-convex, high dimensionality further plagues this class of optimiser by creating intractably large Hessian
(second-derivative) matrices and a proliferation of saddle points in the search space (Pascanu et al., 2014).
These difficulties constrain most practical systems to first-order optimisation methods, such as stochastic
gradient descent (SGD) and Adam.

Pascanu et al. (2014) and Dauphin et al. (2014) tackled some of these challenges by proposing Saddle-Free
Newton (SFN) methods. In essence, they transform the Hessian by taking absolute values of each eigenvalue,
which makes non-degenerate saddle points repel second-order optimisers where typically they would be
attractive. Because this transformation would otherwise require an intractable eigendecomposition of the
Hessian, they work with a low-rank Hessian approximation, on which this process is achievable, albeit at the
cost of introducing an additional source of error.

1

https://openreview.net/forum?id=qBZeQBEDIW

Published in Transactions on Machine Learning Research (02/2024)

In this paper, we propose a new route towards SFN optimisation which exploits Hessian-vector products to
avoid explicitly handling the Hessian. We use a squaring and square-rooting procedure to take the absolute
value of the eigenvalues without eigendecomposing the Hessian and deploy an infinite series to tractably
approximate the expensive square-root and inverse operations. The resulting algorithm is comparable to
existing methods in both runtime and optimisation performance, while tractably scaling to larger problems,
even though it does not consistently outperform the widely-known Adam (Kingma & Ba, 2015) and KFAC
(Martens & Grosse, 2015). To our knowledge, this is the first approximate second-order approach to (implicitly)
take the absolute value of the full Hessian matrix’s eigenvalues and be exact in its untruncated form. After
summarising previous work in Section 2, we mathematically justify the asymptotic exactness of our algorithm
in Section 3 and show its practical use in a range of applications in Section 4. Section 5 concludes the paper.

2 Related Work

Although stochastic first-order optimisation methods are the bread and butter of deep learning optimisation,
considerable effort has been dedicated to preconditioned gradient methods – methods that compute a matrix
which scales the gradient before performing an update step. Newton’s method and quasi-Newton methods,
which multiply the gradient by the Hessian or an approximation thereof, fall into this category. Other
examples include AdaGrad (Duchi et al., 2011) which calculates a preconditioner using the outer product of
accumulated gradients, and SHAMPOO (Gupta et al., 2018) which is similar to Adagrad but maintains a
separate, full preconditioner matrix for each dimension of the gradient tensor.

Martens (2010) proposes using Hessian-Free (HF) or truncated Newton (Nocedal & Wright, 2006) optimisation
for deep learning. The algorithm uses finite differences to approximate the Hessian in combination with the
linear conjugate gradient algorithm (CG) to compute the search direction. Like our method, HF implicitly
works with the full Hessian matrix and is exact when CG converges.

Pascanu et al. (2014) and Dauphin et al. (2014) present the proliferation of saddle points in high-dimensional
optimisation spaces as an explanation for poor convergence of first-order optimisation methods. Various
approaches to escaping these saddle points have been proposed. Jin et al. (2017) observe that saddle points
are easy to escape by adding noise to the gradient step when near a saddle point, as indicated by a small
gradient. Another idea is to normalise the gradient so that progress is not inhibited near critical points due
to diminishing gradients (Levy, 2016; Murray et al., 2019).

Saddle points also present a hurdle to second order optimisation, since they become attractive when applying
Newton’s method. Nevertheless, some work leverages second order information in sophisticated ways to
avoid saddle points. For example, Curtis & Robinson (2019) exploit negative curvature information by
alternating between classical gradient descent steps and steps in the most extreme direction of negative
curvature. Adolphs (2018) builds on this to propose “extreme curvature exploitation”, where the eigenvectors
corresponding to the most extreme positive and negative eigenvalues are added to the vanilla gradient update
step. Anandkumar & Ge (2016) develop an algorithm which finds stationary points with first, second and
third derivatives equal to zero, and show that progressing to a fourth-order optimality condition is NP-hard.
Truong et al. (2021) project the Newton update step onto subspaces constructed using the positive- and
negative-curvature components of the Hessian, allowing them to negate the updates proposed by the latter.

Nesterov & Polyak (2006) show that regularising Newton’s method with the cubed update norm secures
convergence to second-order stationary points, with further developments improving robustness to approximate
Hessians (Tripuraneni et al., 2018); considering approximate (Cartis et al., 2011) or efficient (Carmon &
Duchi, 2019) solutions to the cubic-regularised sub-problem; introducing momentum (Wang et al., 2020); or
extending the analysis to apply to mini-batched settings (Wang et al., 2019). Limiting the parameter updates
to some trust region in which the Newton approximation can be relied upon provides an additional analytical
perspective (Nocedal & Wright, 2006), with sub-solvers such as that of Curtis et al. (2021) having appealing
convergence behaviour. However, the latter note “these methods have often been designed primarily with
complexity guarantees in mind and, as a result, represent a departure from the algorithms that have proved
to be the most effective in practice”.

2

Published in Transactions on Machine Learning Research (02/2024)

Pascanu et al. (2014) propose the Nonconvex Newton Method, which constructs a preconditioner by decom-
posing the Hessian and altering it so that all eigenvalues are replaced with their absolute values and very small
eigenvalues are replaced by a constant. Unfortunately, explicit decomposition of the Hessian is expensive and
does not scale well to machine learning applications. Dauphin et al. (2014) extend this work by proposing
the Saddle-Free Newton (SFN) method, which avoids computing and decomposing the exact Hessian by an
approach similar to Krylov subspace descent (Vinyals & Povey, 2012), which finds k vectors spanning the k
most dominant eigenvectors of the Hessian. However, this approach relies on the Lanczos algorithm, which
has historically been unstable (Cahill et al., 2000; Scott, 1979) and requires careful implementation to avoid
these issues (Saad, 2011). O’Leary-Roseberry et al. (2021) instead invert a low-rank approximation to the
Hessian for improved stability. However, their method is susceptible to poor conditioning at initalisation and
is limited to very small step sizes in settings with high stochasticity. Consequently, it is unclear how well the
algorithm extends beyond the transfer learning settings illustrated.

Other saddle-avoiding approaches include detecting non-convexity by comparing optimisation performance
to that which would be expected if the function were convex. Carmon et al. (2017) do this by analysing
the convergence of Nesterov-accelerated gradient descent, while Royer et al. (2020) combine the Conjugate
Gradient method with damping to leverage non-convex update steps to the extent allowed by a trust region
and (Liu & Roosta, 2023) follows non-convex directions identified by the Minimum-Residual method to escape
indefinite regions.

Instead, our work writes the inverse of the squared and principal square-rooted Hessian as a series, of which
we can compute a truncation without explicitly computing or eigendecomposing the Hessian, thereby avoiding
certain instabilities faced by Dauphin et al. (2014) and O’Leary-Roseberry et al. (2021). This can be seen as
an extension of Agarwal et al. (2017)’s use of a Neumann series to approximate the product of the inverse
Hessian and a gradient vector.

There are other examples in machine learning where infinite series are used to motivate approximations to
the inverse Hessian (Lorraine et al., 2020; Clarke et al., 2022); we exploit the same construction as Song et al.
(2021) to compute the square root of a matrix.

An alternative approach is to precondition the gradient with a curvature matrix that is positive semi-definite
by definition, thereby circumventing concerns surrounding saddle points. Notably, the natural gradient
method (Amari, 1998) preconditions the gradient with the inverse Fisher information matrix, rather than the
inverse Hessian. Whereas the Hessian measures curvature in the model parameters, the Fisher quantifies
curvature in terms of the KL-divergence between model and data probability distributions. The natural
gradient can be approximated by methods like Factorized Natural Gradient (Grosse & Salakhudinov, 2015)
and Kronecker-Factored Approximate Curvature (KFAC) (Martens & Grosse, 2015). In particular, KFAC
approximates the Fisher with a block diagonal matrix, which significantly reduces the memory footprint
and reduces the cost of inversion. KFAC also leverages several other “tricks”, which are relevant for later
discussion. We provide a brief overview below and further details in Appendix A.4:

Moving average of curvature matrix KFAC maintains an online, exponentially-decaying average of the
approximate curvature matrix, which improves its approximation thereof and makes the method
more robust to stochasticity in mini-batches.

Adaptive learning rate and momentum factor KFAC’s update rule incorporates a learning rate and a
momentum factor which are both computed adaptively by assuming a locally quadratic model and
solving for the local model’s optimal learning rate and momentum factor at every iteration.

Tikhonov damping with Levenberg-Marquardt style adaptation. KFAC incorporates two damping
terms: η for weight regularisation, and λ which is adapted throughout training using Levenberg-
Marquardt style updates (Moré, 1978). The damping constant λ can be interpreted as defining a
trust region for the update step. When the curvature matrix matches the observed landscape, the
trust region is grown by shrinking λ; otherwise damping is increased so that optimisation becomes
more SGD-like.

3

Published in Transactions on Machine Learning Research (02/2024)

KFAC is arguably the most popular second-order method enjoying widespread use in practice, so we include
it as an important baseline in Section 4. Section 4.1 describes our studies incorporating similar adaptive
mechanisms into our method, which we now proceed to derive.

3 Derivations

Suppose we wish to minimise some scalar function f(x) over the vector quantities x, which have some optimal
value x∗. Denote by g = ∇xf = ∇f(x) and H = ∇x(∇xf)T the gradient vector and Hessian matrix of f ,
respectively, with both quantities evaluated at the present solution x. We make no assumptions about the
convexity of f(x).

3.1 Preliminaries

Under a classical Newton framework, we can approximate a stationary point x∗ by writing a second-order
Taylor series for perturbations around some x. Assuming H is invertible, this recovers

x∗ ≈ x−H−1g, (1)

where the RHS is the Newton update to x. In effect, we have locally approximated f about x by a quadratic
function, then set x to the stationary point of this quadratic. The invertibility of H guarantees that this
stationary point is unique. However, if H is not positive definite — for instance, if the function is locally
non-convex — that stationary point may be a maximum or saddle point of the approximated space, rather
than a minimum.

To address this limitation, we might consider the eigendecomposition of H. Since H is real and symmetric for
non-degenerate loss functions, its eigenvalues are real and its eigenvectors may be chosen to be orthonormal.
We can interpret the eigenvectors as the ‘principal directions of convexity’, and the eigenvalues as the
corresponding magnitudes of convexity in each direction (where negative eigenvalues encode concavity).
As H−1 has equal eigenvectors to H and reciprocal eigenvalues, we may interpret the product H−1g as a
transformation of the gradient vector, with anisotropic scaling governed by the directions and magnitudes of
convexity in H. Moreover, this product gives exactly the updates necessary to move along each principal
direction of convexity to the stationary value in that direction, according to the locally quadratic approximation
implied by H. This is illustrated in Figure 1.

As positive eigenvalues are associated with directions of convex curvature, H−1 selects updates in these
directions which decrease the loss function. Conversely, H−1 selects updates which increase the loss function in
the directions associated with negative eigenvalues — directly opposing our goal of minimising f . Intuitively,
we would like to reverse the direction of the latter updates, such that they are decreasing f . This is equivalent
to changing the sign of the corresponding eigenvalues.

This intuitive idea was presented by Pascanu et al. (2014), and Dauphin et al. (2014) establish a more direct
derivation using a trust region framework, which motivates taking the absolute value of every eigenvalue in a
Saddle-Free Newton (SFN) method (Figure 1). However, its implementation in deep learning is challenged
by the intractably large Hessian matrices of non-trivial neural networks. Previous work (Dauphin et al.,
2014; O’Leary-Roseberry et al., 2021) tackles this by computing a low-rank approximate Hessian, whose
eigendecomposition may be calculated directly, changed as required and approximately inverted. While such
an approach secures tractability, the cascade of approximations threatens overall accuracy.

3.2 Absolute Values as Square-Rooted Squares

Our proposed method seeks to transform the eigenvalues of H without computing its full eigendecomposition.
This approach is inspired by the observation that, for scalar x, |x| = +

√
x2, where we specifically take the

positive square root. In the matrix case, we may define S as a square root of a square matrix A iff A = SS.
For a square, positive semi-definite A, there is a unique positive semi-definite square root B, which we term
the principal square root of A; we will write B = +

√
A.

4

Published in Transactions on Machine Learning Research (02/2024)

Parameter 1

Pa
ram

ete
r 2

Lo
ss

x*
Ours

x < 0
> 0

x*
SGD

x*
Newton

x*
Exact SFN

Parameter 1

Pa
ra

m
et

er
 2

x*
Ours

x*
SGD

x*
Newton

x*
Exact SFN

x

< 0

> 0

Figure 1: Motivation for Saddle-Free Newton methods. This locally quadratic surface has a saddle point
() and its Hessian gives two principal directions of curvature (,). From any initial point (), SGD
will give an update neglecting curvature () and Newton’s method converges immediately to the saddle
point (). Exact Saddle-Free Newton () takes absolute values of the Hessian eigenvalues, negating the
components of the Newton update in concave directions () and thus changing the saddle point from an
attractor to a repeller. Our series-based method () is an approximate Saddle-Free Newton algorithm
which converges to the exact Saddle-Free Newton result.

If A is real and symmetric, we may eigendecompose it as QΛQT, where Q is the orthonormal matrix
whose columns are the eigenvectors of A and Λ the diagonal matrix whose elements are the corresponding
eigenvalues of A. Then, we have B = QΛ 1

2 QT. Since raising the diagonal matrix Λ to the kth power is
equivalent to raising each diagonal element to the kth power, B has the same eigenvectors as A, but the
eigenvalues of B are the square roots of those of A. By taking the principal square root, we guarantee that
all the eigenvalues of B are non-negative, hence we have taken the positive square root of each eigenvalue in
turn.

This reveals a route to transforming our Hessian H by taking the absolute value of its eigenvalues. Consider
the eigendecomposition H = QΛQT, noting that H2 = QΛ2QT is positive semi-definite by construction, as
its eigenvalues are squares of real numbers. But then +

√
H2 is the unique positive semi-definite square root of

H2, and each eigenvalue of +
√

H2 is the positive square root of the square of the corresponding eigenvalue
of H — equivalently, its absolute value. Thus, we may take the absolute value of each eigenvalue of H by
computing the square and then taking the principal square root of H, i.e. by computing +

√
H2.

3.3 Inverse Square Root Series

To use this transformed H as a second-order preconditioner, we must also invert it, so the matrix of interest
is

(
+
√

H2
)−1

. We now develop a series approximation to this quantity. For scalars z, we may exploit the
generalised binomial theorem to write

(1− z)− 1
2 =

∞∑
k=0

1
22k

(
2k

k

)
zk (2)

Applying the root test for convergence, a sufficient condition for the convergence of this series is
lim supn→∞ |zn| 1

n < 1. We generalise this series to the matrix case by replacing the absolute value | · | with
any compatible sub-multiplicative matrix norm ∥·∥ and writing I− Z in place of 1− z. Ideally, we would set

5

Published in Transactions on Machine Learning Research (02/2024)

Z = I−H2 and recover a power series directly, but to ensure convergence we will require a scaling factor V
such that Z = I− 1

V H2. With this addition, we have

(H2)− 1
2 = 1√

V

∞∑
k=0

1
22k

(
2k

k

) (
I− 1

V
H2

)k

. (3)

For this matrix series to converge, we require lim supn→∞∥
(
I− 1

V H2)n∥ 1
n < 1. By Gelfand’s formula, this

limit superior is simply the spectral radius of I− 1
V H2 which, this being a real symmetric matrix, is exactly

the largest of the absolute value of its eigenvalues. Denoting the largest-magnitude eigenvalue of H2 by λmax,
our convergence condition is thus equivalent to V > 1

2 λmax. Further, if we strengthen the bound to V > λmax,
we have that

(
I− 1

V H2)k is positive semi-definite for k = 0, 1, 2, · · · , so our series, regardless of where it is
truncated, produces a positive semi-definite matrix. We are thus guaranteed to be asymptotically targeting
the principal square root. Since

∥∥H2
∥∥ ≥ λmax for any sub-multiplicative norm ∥·∥, a more practical bound

is V >
∥∥H2

∥∥. See Appendix D for further analysis of the correctness, convergence and behaviour around
critical points of this series.

3.4 Hessian Products, Choice of V and Series Acceleration

Although we have avoided directly inverting or square-rooting a Hessian-sized matrix, explicitly computing
this series remains intractable. Instead, recall that our quantity of interest for second-order optimisation is(

+
√

H2
)−1

g, and consider the series obtained by multiplying (3) by g:

(H2)− 1
2 g = 1√

V

∞∑
k=0

1
22k

(
2k

k

) (
I− 1

V
H2

)k

g. (4)

Denoting by ak the kth term of this summation, we have a0 = 1√
V

g and ak = 2k(2k−1)
4k2

(
ak−1 − 1

V HHak−1
)
.

With two applications of the Hessian-vector product trick (Pearlmutter, 1994), we can compute HHak−1 at
the cost of two additional forward and backward passes through the model — a cost vastly smaller than that
of storing, manipulating and inverting the full Hessian. By unrolling this recursion, we can thus efficiently
compute the summation of a finite number of the ak.

Under this framework, we have ready access to the product H2g, so can use the loose adaptive heuristic
V ≥ ∥H2g∥

∥g∥ , which we found to be the most performant strategy for adapting V .

In practice, we found (4) to converge slowly, and thus benefit from series acceleration. From a variety of
strategies, we found the most successful to be a modification due to Sablonnière (1991) of Wynn’s ϵ-algorithm
(Wynn, 1956a). Letting sm be the mth partial sum of (4), the algorithm defines the following recursion:

ϵ(−1)
m = 0, ϵ(0)

m = sm, ϵ(c)
m = ϵ

(c−2)
m+1 +

(⌊ c

2

⌋
+ 1

) (
ϵ

(c−1)
m+1 − ϵ(c−1)

m

)−1
. (5)

We employ the Samelson vector inverse a−1 = a
aTa as suggested by Wynn (1962). Using these definitions,

the sequence ϵ
(2l)
m for m = 0, 1, 2, · · · is the sequence of partial sums of the series ak accelerated l times.

Thus, we expect the most accurate approximation of (4) to be given by maximising l and m, acknowledging
there is a corresponding increase in computational cost. Pseudo-code for series acceleration is provided in
Appendix A.5.

Algorithm 1 incorporates all these elements to form a complete neural network optimisation algorithm. While
expanding the series of (4) to a large number of terms may be arbitrarily expensive, we show in the next
Section that useful progress can be made on tractable timescales.

4 Experiments

We now move on to empirical evaluation of our algorithm. For all experiments, we use ASHA (Li et al., 2020)
to tune each algorithm and dataset combination on the validation loss, sampling 100 random hyperparameter

6

Published in Transactions on Machine Learning Research (02/2024)

Algorithm 1 Series of Hessian-Vector Products for Tractable Saddle-Free Newton Optimisation
while training continues do

Compute training loss, gradient g, Hessian H

V ← max
{

V,
∥H2g∥

∥g∥

}
a0, s0 ← g
for k ← 1 to K − 1 do

ak ← 2k(2k−1)
4k2

(
ak−1 − 1

V HHak−1
)

sk ← sk−1 + ak

end for
Compute final term ŝ∞ after N accelerations of the series sK−1−2N , sK−2N , · · · , sK−1

(See Algorithm 2 in Appendix A.5)
w← w− η√

V
ŝ∞

end while

configurations and setting the maximum available budget based on the model and data combination. Further
experimental details and the final hyperparameter settings for all experiments can be found in Appendix A.3,
with code available at https://github.com/rmclarke/SeriesOfHessianVectorProducts.

We will begin by considering UCI Energy (Tsanas & Xifara, 2012), which is small enough to allow an exact
implementation of our algorithm (using eigendecompositions instead of the Neumann series approximation) as
a proof of concept, and lends itself to the full-batch setting — the best case scenario for second-order methods.
We then move to a setting without these conveniences, namely Fashion-MNIST (Xiao et al., 2017), which is
large enough to require require mini-batching and has too many parameters to allow for exact computation
of the Hessian. We go on to increasingly difficult scenarios, in terms of both model and dataset size, by
considering SVHN (Netzer et al., 2011) and CIFAR-10 (Krizhevsky, 2009) using ResNet-18 architectures.

For UCI Energy, we generate a random dataset split using the same sizes as Gal & Ghahramani (2016); for
Fashion-MNIST, SVHN and CIFAR-10 we separate the standard test set and randomly choose 1

6 , 1
6 and 1

10
(respectively) of the remaining data to form the validation set. The numerical data for all experiments can
be found in Appendix B.1. While we will usually present wall-clock time on the x-axis, plots with iteration
steps on the x-axis are available in Appendix B.2.

For all experiments, we present both training and test loss. The optimisation literature often focuses only
on the objective function at hand, i.e. the training loss, since a strong optimiser should be able to solve the
function it is given. However, in machine learning our target is always to generalise, i.e. to do well on the
unseen test set as a measure of generalisation, and the training loss is only a means toward this end. Since we
hope to apply our method to deep learning methods, we consider it important to present both these metrics
together.

4.1 UCI Energy

We begin with a small-scale experiment on UCI Energy as a proof of concept, training for 6 000 full-batch
training epochs. We compare our algorithm to a number of baselines1:

Exact SFN Full-Hessian implementation of the absolute-value eigenvalue strategy of Pascanu et al. (2014),
where we compute the eigenvalue decomposition and take the absolute value of the eigenvalues. We
additionally replace eigenvalues near zero with a small constant and then compute the exact inverse
of the resulting saddle-free Hessian. For this method, we tune the learning rate, momentum, the
threshold for replacing small eigenvalues, and constant which replaces the small eigenvalues.

Ours Our implementation of Algorithm 1, using tuned learning rate, momentum, series length K and order
of acceleration N . As described in Section 3.4, we adapt V using the loose bound V ≥ ∥H2g∥

∥g∥ starting

1We also include an L-BFGS (Liu & Nocedal, 1989) baseline in Appendix B.3

7

https://github.com/rmclarke/SeriesOfHessianVectorProducts

Published in Transactions on Machine Learning Research (02/2024)

with an initial value of 100, as we found minimal benefit to explicitly tuning V . Noting the inherent
instability of attempting to invert near-zero eigenvalues, we add a fixed damping coefficient to the
Hessian at each use, which we treat as another hyperparameter to optimise. We also considered
more accurate approximations to V that would attain a tighter bound (such as computing the largest
eigenvalue using power iteration), but found these held little to no benefit.

SGD Classical stochastic gradient descent, with a tuned learning rate.
Adam (Kingma & Ba, 2015) We tune all the parameters, i.e. learning rate, ϵ, β1 and β2.
KFAC (DeepMind) (Martens & Grosse, 2015) We use the implementation of Botev & Martens (2022)

which includes adaptive learning rates, momentum, and damping; we tune the initial damping.

The first algorithm above is an exact version of our algorithm, which is tractable in this particular setting.
We also considered including an exact implementation of the Newton second-order update but this diverged
rapidly, presumably due to the non-convexity of the optimisation task, so we do not include it here.

10 2 10 1 100 101 102 103

Runtime (s)

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s

Ours
SGD
Adam
KFAC (DeepMind)
Exact SFN

10 2 10 1 100 101 102 103

Runtime (s)

10 3

10 2

10 1

100

101

Te
st

 L
os

s

Ours
SGD
Adam
KFAC (DeepMind)
Exact SFN

100 101 102 103

step

10 6

10 4

10 2

100

Tr
ai

ni
ng

 L
os

s

Ours
SGD
Adam
KFAC (DeepMind)
Exact SFN

100 101 102 103

step

10 3

10 2

10 1

100

101

Te
st

 L
os

s

Ours
SGD
Adam
KFAC (DeepMind)
Exact SFN

Figure 2: Median training (left) and test (right) MSEs achieved over wall-clock time (top) and training
iterations (bottom) on UCI Energy by various optimisers in the full-batch setting, bootstrap-sampled from 50
random seeds. Optimal hyperparameters were tuned with ASHA. Note the logarithmic horizontal axes.

Figure 2 shows the training and test losses both in terms of wall-clock time and as a function of the number
of optimisation steps. Exact SFN achieves the best training loss, as we may hope from it being an exact SFN
method. This is encouraging, since it provides proof of concept that our approach is generally sensible in the
exact setting. However, it does not converge as quickly as may be desired — in comparison, KFAC (DeepMind)
and Adam make much faster progress, even when considering the change in loss per iteration, rather than
wall-time. Our algorithm deflects from the Exact SFN trend, as its approximate nature would suggest, but
does not approach the performance exhibited by KFAC DeepMind.

8

Published in Transactions on Machine Learning Research (02/2024)

KFAC DeepMind includes clever adaptation mechanisms and smoothing of the curvature matrix which may
give it an advantage over the other algorithms. To investigate this, we include additional variants on the
baselines:

Exact SFN (Adaptive) Same as Exact SFN, but with adaptive learning rate, momentum and damping
strategies as used by KFAC (DeepMind) (see Section 2 and Appendix A.4 for details), as well as
an exponential moving average of the curvature matrix. We tune only the initial damping, which
subsumes the need for manually replacing small eigenvalues with a constant.

Ours (Adaptive) Our implementation of Algorithm 1, incorporating the adaptive learning rate, momentum
and damping used by KFAC (DeepMind). We tune the initial damping, number of update steps and
order of acceleration.

KFAC (Kazuki) (Martens & Grosse, 2015) This corresponds to the default settings for KFAC in Osawa.
This version of KFAC is not adaptive and does not smooth the curvature matrix by means of
averaging. We tune the damping, learning rate and momentum.

Figure 3 shows the training and test loss profiles in wall-clock time. The best test and training losses are now
achieved by Exact SFN (Adaptive). We note that this adaptive version of Exact SFN converges considerably
faster than the non-adaptive version, reinforcing our and Martens & Grosse’s views on the importance of
adapting the learning rate, momentum and damping.

In all cases (KFAC, Exact SFN and Ours), the adaptive version of the algorithm performs significantly better
than the non-adaptive version. Although our adaptive algorithm matches Exact SFN and beats SGD and
both KFAC versions in terms of final test loss, it is still surpassed by Adam and SFN Exact (Adaptive).
Notably, our non-adaptive algorithm does not match the performance of SFN Exact, neither does our adaptive
algorithm match SFN Exact (Adaptive). Clearly, we sacrifice training performance by using an approximation
to Exact SFN and by not smoothing the curvature matrix.

KFAC (DeepMind) achieves the second best training loss, though not test loss. KFAC (Kazuki) diverges
quickly at the start of training, which is also unexpected given that its hyperparameters were tuned and that
it behaves reasonably on the later, more difficult problems. We hypothesise that adaptive parameters are
an important component of its behaviour and that this setting does not lend itself well to fixed parameters
(which is supported by the observation that all the adaptive versions performed better than their non-adaptive
counterparts).

In this setting, it seems that short of using exact Hessians, Adam is the best choice of optimiser, displaying
the second-best training and test losses and completing faster (in wall-clock time) than the second-order
methods. However, we are encouraged that our adaptive algorithm’s performance is not far off the exact
version and continue to more realistic settings in the sections that follow.

4.2 Larger Scale Experiments

Most practical applications are too large to permit full-batch training and so the remainder of our experiments
incorporate mini-batching. Since second-order methods may benefit from larger batch sizes, we tune for batch
size, choosing from the set {50, 100, 200, 400, 800, 1600, 3200}.

We show the best (lowest) losses achieved by each algorithm in each problem setting in Figure 5 as well as
the training and test loss profiles in Figure 4. Although KFAC (DeepMind) usually attains the best training
loss, there is no clear consistent winner in terms of the best test loss achieved across all problems, despite
each algorithm having been tuned specifically for each problem.

Surprisingly, KFAC (DeepMind) performs poorly on Fashion-MNIST, where KFAC (Kazuki) and Adam
perform well. First-order optimisers seem well-suited to SVHN, where SGD and Adam achieve the best test
losses. On CIFAR-10, Adam and the two KFAC variants perform about the same in terms of training loss,
but KFAC (DeepMind) performs significantly better in terms of test loss.

9

Published in Transactions on Machine Learning Research (02/2024)

10 2 10 1 100 101 102 103

Runtime (s)

10 2

101

104

107

1010

1013

1016

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)
Exact SFN
Adaptive Exact SFN

10 2 10 1 100 101 102 103

Runtime (s)

10 2

101

104

107

1010

1013

1016

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)
Exact SFN
Adaptive Exact SFN

10 2 10 1 100 101 102 103

Runtime (s)

10 5

10 4

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (DeepMind)
Exact SFN
Exact SFN (Adaptive)

10 2 10 1 100 101 102 103

Runtime (s)

10 3

10 2

10 1

100

101

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (DeepMind)
Exact SFN
Exact SFN (Adaptive)

Figure 3: Median training (left) and test (right) MSEs plotted against the log of wall-clock time. The
top row includes all additional optimisers; the bottom row excludes KFAC (Kazuki) for clarity. Results
are on UCI Energy in the full-batch setting and are bootstrap-sampled from 50 random seeds. Optimal
hyperparameters were tuned with ASHA.

10

Published in Transactions on Machine Learning Research (02/2024)

10 2 10 1 100 101 102

Runtime (s)

10 1

100

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

10 2 10 1 100 101 102

Runtime (s)

100

4 × 10 1

6 × 10 1

2 × 100

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

10 2 10 1 100 101 102 103

Runtime (s)

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

10 2 10 1 100 101 102 103

Runtime (s)

100

101

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

10 2 10 1 100 101 102 103 104

Runtime (s)

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

10 2 10 1 100 101 102 103 104

Runtime (s)

2 × 100

3 × 100

4 × 100

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Figure 4: Median training (left) and test (right) loss achieved on Fashion-MNIST (top), SVHN (centre) and
CIFAR-10 (bottom) by various optimisers using the optimal hyperparameters chosen by ASHA. Values are
bootstrap-sampled from 50 random seeds.

11

Published in Transactions on Machine Learning Research (02/2024)

Our findings seem to validate the widespread use of Adam in practice, given its simplicity as compared to
KFAC (DeepMind). However, the performance of KFAC (DeepMind) on CIFAR-10 does indicate that there
may be benefit to considering second-order optimisers more seriously.

Although our method is not the best on any of the datasets, its performance is not far from that of the
other methods. Where the KFAC variants and Adam occasionally diverge during training (see Figure 4), our
method is reasonably stable. Moreover, by leveraging large batch sizes, we converge in fewer epochs and less
time than the first-order methods in some settings (e.g. Ours (Adaptive) on Fashion-MNIST is faster than
both SGD and Adam), despite the additional complexity of our algorithm.

4.3 Discussion

We posit that the gap between our performance and expected gains is due to error in our series approximation,
of which there are two sources. The first is truncation error, which can be reduced to some extent by increasing
the number of terms in the series, though the potency of this will depend on how slow the series is to converge.
The second is numerical error: if the Hessian is poorly conditioned, then the repeated multiplications required
to compute more terms may cause the series to diverge — even if we have chosen V appropriately, so that
the series should converge in theory.

By increasing the number of terms in the series, we can test whether the error is due to truncating the series
or numerical error. From our experiment in Appendix B.4 examining the effect of truncation length, we find
that for UCI Energy, increasing the number of terms in the series improves performance. However, for the
larger-scale problems, we found that increasing the number of steps in the series to be arbitrarily large did
not necessarily lead to improved performance. There is thus a trade-off between choosing a sufficiently high
number of steps to approximate the desired matrix and choosing sufficiently few to avoid numerical issues.
Strategies to improve conditioning of the Hessian may also help to improve this trade-off.

We consider KFAC, which also approximates the curvature, yet proves quite successful on the benchmark suite.2
KFAC’s Kronecker factorisation supports smoothing the curvature estimate with a moving average, which
reduces the impact of occasional, poor-quality approximations. Unfortunately, our full-Hessian approximation
cannot support such smoothing due to storage requirements. Moreover, KFAC’s approximation (which
discards the off-diagonal blocks) can be understood intuitively as ignoring the correlations between weights of
different layers. In contrast, the rate of convergence of our series varies throughout optimisation, and the
impact of truncating the series on the resulting curvature matrix is more difficult to intuit. It may prove
fruitful to leverage the same block-diagonal approximation in our method, but with smaller matrices at less
risk of ill-conditioning. This would also allow the use of smoothing, which may further improve performance.

There are links between our series approximation and the conjugate gradient (CG) method (Hestenes &
Stiefel, 1952). CG solves a linear system of the form Ax = b iteratively. At the k-th iteration, CG finds the
best x in the k-th Krylov subspace (where the k-th Krylov subspace is the subspace generated by repeated
applications of A to the residual r, i.e. Kk = span{r, Ar, ..., Ak−1r}) where r = b − Ax0. The inverse
Neumann approximation truncated at the k-th term also finds a vector in the k-th Krylov subspace, but it
is not guaranteed to be the optimal one, and so we may expect the Neumann approximation to be worse
than CG.3 Although the series we present in (3) is slightly different, since it is computing the square and
square-root at the same time as the inverse, we note that this may provide a clue as to the poor convergence
behaviour of the series in general. Future work may consider leveraging insights from the conjugate gradient
method to better approximate the inverted saddle-free Hessian.

5 Conclusions

In this work, we have motivated, derived and justified an approach to implementing Saddle-Free Newton
optimisation of neural networks. By development of an infinite series, we are able to take the absolute

2In fact, based on KFAC’s performance in all our experiments, we found it surprising that KFAC is not more widely utilised in
practice. That said, we also found its performance to vary widely between implementations, which may explain this observation.

3However, there is literature showing that Neumann series are more stable than CG in neural networks (Shaban et al., 2019;
Liao et al., 2018)

12

Published in Transactions on Machine Learning Research (02/2024)

Ours Ours
(Adaptive)

SGD Adam KFAC
(Kazuki)

KFAC
(DeepMind)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Lo
we

st
 Tr

ai
ni

ng
 L

os
s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Ours Ours
(Adaptive)

SGD Adam KFAC
(Kazuki)

KFAC
(DeepMind)

0.355

0.360

0.365

0.370

0.375

0.380

Lo
we

st
 Te

st
 L

os
s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Ours Ours
(Adaptive)

SGD Adam KFAC
(Kazuki)

KFAC
(DeepMind)

0.0

0.1

0.2

0.3

0.4

0.5

Lo
we

st
 Tr

ai
ni

ng
 L

os
s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Ours Ours
(Adaptive)

SGD Adam KFAC
(Kazuki)

KFAC
(DeepMind)

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675
Lo

we
st

 Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Ours Ours
(Adaptive)

SGD Adam KFAC
(Kazuki)

KFAC
(DeepMind)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
we

st
 Tr

ai
ni

ng
 L

os
s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Ours Ours
(Adaptive)

SGD Adam KFAC
(Kazuki)

KFAC
(DeepMind)

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Lo
we

st
 Te

st
 L

os
s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Figure 5: Ranking of optimisers according to lowest training (left) and test (right) losses achieved on
Fashion-MNIST (top), SVHN (centre) and CIFAR-10 (bottom). Error bars show standard error in the mean.
Values are the minimum of the loss profile across time, generated by bootstrap sampling from 50 random
seeds.

13

Published in Transactions on Machine Learning Research (02/2024)

values of Hessian eigenvalues without any explicit decomposition. With the additional aid of Hessian-vector
products, we further avoid any explicit representation of the Hessian. To our knowledge, this is the first
approximate second-order method to take the absolute value of Hessian eigenvalues with an asymptotic
exactness guarantee, and whose convergence is limited by compute time rather than available memory. Our
algorithm tractably scales to larger networks and datasets, and although it does not consistently outperform
Adam or a well-engineered KFAC implementation, its behaviour is comparable to these baselines, in terms of
test loss and run time.

Improvements to the inverse approximation such as leveraging Kronecker factorisation or ideas from the
conjugate gradient method may provide fruitful avenues of research for future saddle-free Hessian-based
optimisation algorithms such as ours. Strategies to reduce numerical error, such as methods to improve the
condition number of the Hessian, should also be investigated. Our findings generally support the widespread
use of Adam, which performed well on most benchmarks, often beating KFAC despite being a much simpler
algorithm. However, the strong performance of KFAC on CIFAR-10, our most complex benchmark, indicates
that there may yet be significant gains by applying second-order methods to deep learning.

Acknowledgements

We are grateful to Richard E. Turner for valuable discussions about this work and its presentation.

We acknowledge computation provided by the CSD3 operated by the University of Cambridge Research
Computing Service (www.csd3.cam.ac.uk), provided by Dell EMC and Intel using Tier-2 funding from the
Engineering and Physical Sciences Research Countil (capital grant EP/P020259/1), and DiRAC funding from
the Science and Technology Facilities Council (www.dirac.ac.uk).

Ross Clarke acknowledges funding from the Engineering and Physical Sciences Research Council (project
reference 2107369, grant EP/S515334/1).

References
Adolphs, L. Non Convex-Concave Saddle Point Optimization. Master’s thesis, ETH Zürich, April 2018.

URL https://www.research-collection.ethz.ch/handle/20.500.11850/258242. Accepted: 2018-04-
18T07:38:55Z Publisher: ETH Zurich.

Agarwal, N., Bullins, B., and Hazan, E. Second-Order Stochastic Optimization for Machine Learning in
Linear Time. Journal of Machine Learning Research, 18(116):1–40, 2017.

Amari, S.-i. Natural Gradient Works Efficiently in Learning. Neural Computation, 10(2):251–276, February
1998.

Anandkumar, A. and Ge, R. Efficient approaches for escaping higher order saddle points in non-convex
optimization. In Conference on Learning Theory, pp. 81–102. PMLR, June 2016. ISSN: 1938-7228.

Botev, A. and Martens, J. KFAC-JAX, 2022. URL http://github.com/deepmind/kfac-jax.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/google/jax.

Cahill, E., Irving, A., Johnston, C., and Sexton, J. Numerical stability of Lanczos methods. Nuclear Physics
B - Proceedings Supplements, 83-84:825–827, April 2000.

Carmon, Y. and Duchi, J. Gradient Descent Finds the Cubic-Regularized Nonconvex Newton Step. SIAM
Journal on Optimization, 29(3):2146–2178, January 2019. Publisher: Society for Industrial and Applied
Mathematics.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. “Convex Until Proven Guilty”: Dimension-Free
Acceleration of Gradient Descent on Non-Convex Functions. In Proceedings of the 34th International
Conference on Machine Learning, pp. 654–663. PMLR, July 2017. ISSN: 2640-3498.

14

www.csd3.cam.ac.uk
www.dirac.ac.uk
https://www.research-collection.ethz.ch/handle/20.500.11850/258242
http://github.com/deepmind/kfac-jax
http://github.com/google/jax

Published in Transactions on Machine Learning Research (02/2024)

Cartis, C., Gould, N. I. M., and Toint, P. L. Adaptive cubic regularisation methods for unconstrained
optimization. Part I: motivation, convergence and numerical results. Mathematical Programming, 127(2):
245–295, April 2011.

Clarke, R. M., Oldewage, E. T., and Hernández-Lobato, J. M. Scalable One-Pass Optimisation of High-
Dimensional Weight-Update Hyperparameters by Implicit Differentiation. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 2022.

Curtis, F. E. and Robinson, D. P. Exploiting negative curvature in deterministic and stochastic optimization.
Mathematical Programming: Series A and B, 176(1-2):69–94, July 2019.

Curtis, F. E., Robinson, D. P., Royer, C. W., and Wright, S. J. Trust-Region Newton-CG with Strong
Second-Order Complexity Guarantees for Nonconvex Optimization. SIAM Journal on Optimization, 31(1):
518–544, January 2021. Publisher: Society for Industrial and Applied Mathematics.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y. Identifying and attacking
the saddle point problem in high-dimensional non-convex optimization. In Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc., 2014.

Duchi, J., Hazan, E., and Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep
Learning. In International Conference on Machine Learning, pp. 1050–1059, June 2016. ISSN: 1938-7228
Section: Machine Learning.

Graves-Morris, P. R. A review of Padé methods for the acceleration of convergence of a sequence of vectors.
Applied Numerical Mathematics, 15(2):153–174, September 1994.

Grosse, R. and Salakhudinov, R. Scaling up Natural Gradient by Sparsely Factorizing the Inverse Fisher
Matrix. In Proceedings of the 32nd International Conference on Machine Learning, pp. 2304–2313. PMLR,
June 2015. ISSN: 1938-7228.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Preconditioned Stochastic Tensor Optimization. In
Proceedings of the 35th International Conference on Machine Learning, pp. 1842–1850. PMLR, July 2018.
ISSN: 2640-3498.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image Recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. ISSN: 1063-6919.

Hestenes, M. R. and Stiefel, E. Methods of Conjugate Gradients for Solving Linear Systems. Journal of
Research of the National Bureau of Standards, 49(6):409–436, December 1952.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan, M. I. How to Escape Saddle Points Efficiently. In
Proceedings of the 34th International Conference on Machine Learning, pp. 1724–1732. PMLR, July 2017.
ISSN: 2640-3498.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Representations, ICLR 2015, 2015.

Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, University of Toronto,
April 2009. URL https://cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Levin, D. Development of non-linear transformations for improving convergence of sequences. International
Journal of Computer Mathematics, 3(1-4):371–388, January 1972. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/00207167308803075.

Levin, D. and Sidi, A. Two New Classes of Nonlinear Transformations for Accelerating the Convergence of
Infinite Integrals and Series. Applied Mathematics and Computation, 9(3):175–215, October 1981.

15

https://cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Published in Transactions on Machine Learning Research (02/2024)

Levy, K. Y. The Power of Normalization: Faster Evasion of Saddle Points, November 2016. URL http:
//arxiv.org/abs/1611.04831. arXiv:1611.04831 [cs, math, stat].

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-tzur, J., Hardt, M., Recht, B., and Talwalkar, A. A
System for Massively Parallel Hyperparameter Tuning. Proceedings of Machine Learning and Systems, 2:
230–246, March 2020.

Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow, X., Urtasun, R., and Zemel, R. Reviving and
Improving Recurrent Back-Propagation. In International Conference on Machine Learning, pp. 3082–3091.
PMLR, July 2018.

Liu, D. C. and Nocedal, J. On the limited memory BFGS method for large scale optimization. Mathematical
Programming, 45(1):503–528, August 1989.

Liu, Y. and Roosta, F. A Newton-MR algorithm with complexity guarantees for nonconvex smooth
unconstrained optimization, September 2023. URL http://arxiv.org/abs/2208.07095. arXiv:2208.07095
[math].

Lorraine, J., Vicol, P., and Duvenaud, D. Optimizing Millions of Hyperparameters by Implicit Differentiation.
In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, pp.
1540–1552. PMLR, June 2020. ISSN: 2640-3498.

Martens, J. Deep learning via Hessian-free optimization. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, pp. 735–742, Madison, WI, USA, June 2010.
Omnipress.

Martens, J. and Grosse, R. Optimizing Neural Networks with Kronecker-factored Approximate Curvature.
In International Conference on Machine Learning, pp. 2408–2417, June 2015.

Moré, J. J. The Levenberg-Marquardt algorithm: Implementation and theory. In Watson, G. A. (ed.),
Numerical Analysis, Lecture Notes in Mathematics, pp. 105–116, Berlin, Heidelberg, 1978. Springer.

Murray, R., Swenson, B., and Kar, S. Revisiting Normalized Gradient Descent: Fast Evasion of Saddle Points.
IEEE Transactions on Automatic Control, 64(11):4818–4824, November 2019. Conference Name: IEEE
Transactions on Automatic Control.

Nesterov, Y. and Polyak, B. Cubic regularization of Newton method and its global performance. Mathematical
Programming, 108(1):177–205, August 2006.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading Digits in Natural Images with
Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

Nocedal, J. and Wright, S. J. Numerical Optimization. Springer, 2006.

O’Leary-Roseberry, T., Alger, N., and Ghattas, O. Low Rank Saddle Free Newton: A Scalable
Method for Stochastic Nonconvex Optimization, August 2021. URL http://arxiv.org/abs/2002.02881.
arXiv:2002.02881 [cs, math].

Osada, N. Acceleration methods for vector sequences. Journal of Computational and Applied Mathematics,
38(1):361–371, December 1991.

Osada, N. Vector sequence transformations for the acceleration of logarithmic convergence. Journal of
Computational and Applied Mathematics, 66(1):391–400, January 1996.

Osawa, K. ASD(FGHJK)L : Automatic Second-order Differentiation (for Fisher, Gradient covariance, Hessian,
Jacobian and Kernel) Library. URL https://github.com/kazukiosawa/asdfghjkl.

Pascanu, R., Dauphin, Y. N., Ganguli, S., and Bengio, Y. On the saddle point problem for non-convex
optimization, May 2014. URL http://arxiv.org/abs/1405.4604. arXiv:1405.4604 [cs].

16

http://arxiv.org/abs/1611.04831
http://arxiv.org/abs/1611.04831
http://arxiv.org/abs/2208.07095
http://arxiv.org/abs/2002.02881
https://github.com/kazukiosawa/asdfghjkl
http://arxiv.org/abs/1405.4604

Published in Transactions on Machine Learning Research (02/2024)

Paternain, S., Mokhtari, A., and Ribeiro, A. A Newton-Based Method for Nonconvex Optimization with
Fast Evasion of Saddle Points. SIAM Journal on Optimization, 29(1):343–368, January 2019. Publisher:
Society for Industrial and Applied Mathematics.

Pearlmutter, B. A. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147–160, January
1994.

Royer, C. W., O’Neill, M., and Wright, S. J. A Newton-CG algorithm with complexity guarantees for smooth
unconstrained optimization. Mathematical Programming, 180(1):451–488, March 2020.

Saad, Y. Numerical Methods for Large Eigenvalue Problems. Classics in Applied Mathematics. Society for
Industrial and Applied Mathematics, January 2011.

Sablonnière, P. Comparison of four algorithms accelerating the convergence of a subset of logarithmic fixed
point sequences. Numerical Algorithms, 1(2):177–197, June 1991.

Schmidt, R. XXXII. On the numerical solution of linear simultaneous equations by an iterative method. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32(214):369–383, November
1941. Publisher: Taylor & Francis.

Scott, D. S. How to Make the Lanczos Algorithm Converge Slowly. Mathematics of Computation, 33(145):
239–247, 1979. Publisher: American Mathematical Society.

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. Truncated Back-propagation for Bilevel Optimization.
In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1723–1732, April 2019.
ISSN: 2640-3498 Section: Machine Learning.

Shanks, D. Non-linear Transformations of Divergent and Slowly Convergent Sequences. Journal of Mathematics
and Physics, 34(1-4):1–42, 1955. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm19553411.

Song, Y., Sebe, N., and Wang, W. Fast Differentiable Matrix Square Root. In International Conference on
Learning Representations, September 2021.

Tripuraneni, N., Stern, M., Jin, C., Regier, J., and Jordan, M. I. Stochastic Cubic Regularization for Fast
Nonconvex Optimization. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Truong, T. T., To, T. D., Nguyen, T. H., Nguyen, T. H., Nguyen, H. P., and Helmy, M. A fast and
simple modification of Newton’s method helping to avoid saddle points, September 2021. URL http:
//arxiv.org/abs/2006.01512. arXiv:2006.01512 [cs, math, stat].

Tsanas, A. and Xifara, A. Accurate quantitative estimation of energy performance of residential buildings
using statistical machine learning tools. Energy and Buildings, 49:560–567, June 2012.

Vinyals, O. and Povey, D. Krylov Subspace Descent for Deep Learning. In Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, pp. 1261–1268. PMLR, March 2012. ISSN:
1938-7228.

Wang, Z., Zhou, Y., Liang, Y., and Lan, G. Stochastic Variance-Reduced Cubic Regularization for Nonconvex
Optimization. In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, pp. 2731–2740. PMLR, April 2019. ISSN: 2640-3498.

Wang, Z., Zhou, Y., Liang, Y., and Lan, G. Cubic Regularization with Momentum for Nonconvex Optimization.
In Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, pp. 313–322. PMLR, August
2020. ISSN: 2640-3498.

Wynn, P. On a Device for Computing the em(Sn) Transformation. Mathematical Tables and Other Aids to
Computation, 10(54):91–96, 1956a. Publisher: American Mathematical Society.

17

http://arxiv.org/abs/2006.01512
http://arxiv.org/abs/2006.01512

Published in Transactions on Machine Learning Research (02/2024)

Wynn, P. On a Procrustean technique for the numerical transformation of slowly convergent sequences and
series. Mathematical Proceedings of the Cambridge Philosophical Society, 52(4):663–671, October 1956b.
Publisher: Cambridge University Press.

Wynn, P. Acceleration Techniques for Iterated Vector and Matrix Problems. Mathematics of Computation,
16(79):301–322, 1962. Publisher: American Mathematical Society.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine
Learning Algorithms, September 2017. URL http://arxiv.org/abs/1708.07747. arXiv:1708.07747 [cs,
stat].

18

http://arxiv.org/abs/1708.07747

Published in Transactions on Machine Learning Research (02/2024)

A Empirical Notes

A.1 Datasets Used

The datasets we use are all standard in the ML literature; we outline their usage conditions in Table 1.

Table 1: Licences under which we use datasets in this work.

Dataset Licence Source Input Output Total Size

UCI Energy Creative Commons Attribution 4.0
International (CC BY 4.0)

Tsanas & Xifara (2012);
Gal & Ghahramani (2016) 8-Vector Scalar 692

Fashion-MNIST MIT Xiao et al. (2017) 28× 28 Image Class (from 10) 60 000
CIFAR-10 None specified Krizhevsky (2009) 32× 32 Image Class (from 10) 60 000

SVHN None specified Netzer et al. (2011) 32× 32 Image Class (from 10) 99 289

A.2 Computing Resources Used

The experiments presented were performed using hardware shown in Table 2. All runtime comparisons
were thus performed on like-for-like hardware. We make use of GPU acceleration throughout, using
the JAX library (Bradbury et al., 2018). Our own code is available at https://github.com/rmclarke/
SeriesOfHessianVectorProducts.

Table 2: System configurations used to run our experiments.

Type CPU GPU (NVIDIA) Python JAX CUDA
Cambridge Service for Data Driven Discovery (CSD3)* AMD EPYC 7763 Ampere A100 3.9.6 0.3.25 11.1

* www.csd3.cam.ac.uk

A.3 Experimental Hyperparameters

We outline in Tables 3 and 4 the search ranges chosen for our hyperparameter optimisation using ASHA, as
well as the best hyperparameters chosen for each setting and the corresponding final losses. Our network
architectures and corresponding time budgets are enumerated below:

UCI Energy (Tsanas & Xifara, 2012): MLP with 7 hidden layers, each of 12 units (budget 5 minutes). A
full training run is 6 000 epochs.

Fashion-MNIST (Xiao et al., 2017): MLP with one hidden layer of 50, units (budget 5 minutes). A full
training run is 10 epochs.

SVHN (Netzer et al., 2011): ResNet-18 (He et al., 2016) (budget 45 minutes). A full training run is 10
epochs.

CIFAR-10 (Krizhevsky, 2009): ResNet-18 (He et al., 2016) (budget 2 hours). A full training run is 72
epochs.

For KFAC (DeepMind), we set the curvature EMA to 0.95 and did not tune it on advice from the library’s
author. KFAC allows computational savings by using the same damping parameter and inverse curvature
estimate for multiple weight updates, but we set both of these to update at every iteration to match the
setting of Ours and Ours (Adaptive). For KFAC Kazuki we set the curvature EMA to zero to turn off the
moving average. For KFAC Kazuki, the learning rate, momentum and initial damping were tuned and then
fixed (i.e. not adapted).

Since the SFN Exact variants were only applied to UCI Energy, we enumerate those settings here rather
than in the tables. For SFN Exact, the optimal settings of tuned parameters were a learning rate of 0.0049
and momentum of 0.0638. The threshold for replacing small eigenvalues was 0.00052 and the replacement
constant was 1.54e−4. For SFN Exact (Adaptive), we only need to tune the initial damping, for which the

19

https://github.com/rmclarke/SeriesOfHessianVectorProducts
https://github.com/rmclarke/SeriesOfHessianVectorProducts
www.csd3.cam.ac.uk

Published in Transactions on Machine Learning Research (02/2024)

Table 3: Details of our hyperparameter search strategy (Part 1). Ranges shows the search spaces considered
for each hyperparameter as a uniform range, except those marked log, which are sampled from a log-uniform
range. Other rows show the optimal hyperparameters chosen to minimise validation loss and the corresponding
losses obtained. Note that initial random seeds during tuning were not controlled, so comparisons of the
losses achieved by each method must be made with care. All values are rounded to three significant figures.

Ours

Setting Batch
Size

Learning
rate Momentum Damping

Number of
Series Terms
K

Order of
Acceleration

Training
Loss

Test
Loss

Validation
Loss

Range 50 × 2[1,7] log[10−3, 5] log[10−3, 0.95] log[10−8, 1] [1, 20] [0, K−1
2]

UCI Energy — 1.79 0.717 2.44e-2 18 8 4.55e-4 8.62e-4 1.29e-3
Fashion-MNIST 400 0.305 0.428 5.77e-2 13 5 2.15e-1 3.72e-1 3.38e-1

SVHN 200 0.108 0.327 1.87e-4 1 0 9.01e-2 5.95e-1 5.20e-1
CIFAR-10 3200 0.562 0.115 2.44e-3 2 0 1.37 1.51 1.52

Ours (Adaptive)

Setting Batch
Size

Initial
Damping

Number of
Series Terms
(K)

Order of
Acceleration

Training
Loss

Test
Loss

Validation
Loss

Range 50 × 2[1,7] log[10−8, 10] [1, 20] [0, K−1
2]

UCI Energy — 1.46e-6 9 4 7.15e-3 8.17e-3 8.45e-3
Fashion-MNIST 800 9.33e-2 14 2 2.45e-1 3.65e-1 3.35e-1

SVHN 100 4.14e-7 5 2 4.48e-1 7.10e-1 6.49e-1
CIFAR-10 3200 1.04e-4 5 2 8.91e-1 1.56 1.55

SGD

Setting Batch
Size

Learning
Rate

Training
Loss

Test
Loss

Validation
Loss

Range 50 × 2[1,7] log[10−6, 10−1]
UCI Energy — 9.45e-2 7.15e-3 8.17e-3 8.45e-3

Fashion-MNIST 50 1.88e-2 3.81e-1 3.69e-1 3.42e-1
SVHN 50 1.33e-2 2.30e-1 4.87e-1 4.47e-1

CIFAR-10 3200 4.11e-3 1.01 1.57 1.56

Adam

Setting Batch
Size

Learning
Rate ϵ 1 − β1 1 − β2

Training
Loss

Test
Loss

Validation
Loss

Range 50 × 2[1,7] log[10−6, 100] log[10−10, 101] log[10−3, 100] log[10−4, 100]
UCI Energy — 1.74e-2 2.73e-10 0.255 0.0156 3.99e-4 8.01e-4 7.83e-4

Fashion-MNIST 200 6.55e-4 5.99e-5 0.475 0.0195 2.33e-1 3.61e-1 3.31e-1
SVHN 1600 1.84e-3 3.35e-6 0.126 0.0253 1.84e-1 5.50e-1 5.11e-1

CIFAR-10 800 7.70e-5 3.61e-4 0.002 66 0.000 100 1.40 1.44 1.45

optimal value was 0.0125. We set the decay rate of the exponential moving average to 0.95, as for KFAC
(DeepMind).

In the tables below, Ranges shows the search spaces considered for each hyperparameter as a uniform range,
except those marked log, which are sampled from a log-uniform range. We sampled 100 random configurations
for each algorithm and dataset combination. For Adam, we tuned 1− β1 and 1− β2 using the ranges below
and then computed the corresponding values for β1 and β2. We show the optimal hyperparameters chosen
to minimise validation loss and the corresponding losses obtained. Note that initial random seeds during
tuning were not controlled, so comparisons of the losses achieved by each method must be made with care.
All values are rounded to three significant figures.

A.4 KFAC Adaptive Heuristics

Here, we give a more technically specific overview of the key adaptive heuristics deployed by KFAC Martens
& Grosse (2015), which we presented in Section 2 and employ in our Adaptive experimental settings.

20

Published in Transactions on Machine Learning Research (02/2024)

Table 4: Details of our hyperparameter search strategy (Part 2), comments as for Table 3

KFAC (DeepMind)

Setting Batch
Size

Initial
Damping

Training
Loss

Test
Loss

Validation
Loss

Range 50 × 2[1,7] log[10−8, 100]
UCI Energy — 6.97e-5 2.44e-4 1.19e-3 8.41e-4

Fashion-MNIST 3200 5.27e-1 9.98e-2 4.47e-1 4.20e-1
SVHN 1600 5.76e-1 2.35e-2 6.72e-1 6.10e-1

CIFAR-10 800 2.17e-1 1.19 1.34 1.30

KFAC (Kazuki)

Setting Batch
Size

Learning
rate Momentum Damping Training

Loss
Test
Loss

Validation
Loss

Range 50 × 2[1,7] log[10−6, 101] log[10−3, 0.95] log[10−8, 100]
UCI Energy — 9.09e-2 2.64e-1 5.63e-6 2.19e-4 7.58e-4 9.79e-4

Fashion-MNIST 800 8.68e-2 4.06e-1 2.20e-1 2.50e-1 3.57e-1 3.27e-1
SVHN 800 8.83e-3 2.22e-1 3.79e-4 1.38e-1 7.25e-1 6.65e-1

CIFAR-10 3200 2.29e-2 6.70e-3 2.21e-3 9.01e-1 1.61 1.57

Moving average of curvature matrix KFAC maintains an online, exponentially-decaying average of the
approximate curvature matrix, which improves its approximation thereof and makes the method
more robust to stochasticity in mini-batches. For a curvature matrix C and decay factor β ∈ (0, 1),
we have

Ct ← βCt + (1− β)Ct−1. (6)

Adaptive learning rate and momentum factor KFAC’s update rule incorporates a learning rate and a
momentum factor which are both computed adaptively by assuming a locally quadratic model and
solving for the local model’s optimal learning rate and momentum factor at every iteration. When
the local approximate model has curvature matrix C, gradient g and our proposed update direction
is ∆, we compute the learning rate η and momentum µ by

[
ηt

µt

]
= −

[
∆T

t C∆t ∆T
t C(xt − xt−1)

∆T
t C(xt − xt−1) (xt − xt−1)TC(xt − xt−1)

]−1 [
gT

t ∆t

gT
t (xt − xt−1)

]
(7)

.

Tikhonov damping with Levenberg-Marquardt style adaptation. KFAC incorporates two damping
terms: η for weight regularisation, and λ which is adapted throughout training using Levenberg-
Marquardt style updates (Moré, 1978). The damping constant λ can be interpreted as defining a
trust region for the update step. When the curvature matrix matches the observed landscape, the
trust region is grown by shrinking λ and vice versa. This level of “mismatch” is captured by the ratio
of the actual change in loss to the change predicted by the locally quadratic model. If the ratio is near
one and thus the local quadratic model matches the observed losses well, then the curvature matrix
is a useful approximation to the local landscape and damping is decreased (i.e. the trust region is
increased). Conversely, if the ratio is far from one (implying the local model is not accurate), the
damping is increased so that optimisation becomes more SGD-like (i.e. the trust region is reduced).

In notation, if the objective function is f(x), f̂(x) is our local quadratic estimate of f(x) and we
have some adjustment factor ω ∈ (0, 1), KFAC updates the damping λ by the following rule:

ρt = f(xt)− f(xt−1)
f̂(xt)− f̂(xt−1)

λt+1 =


1
ω λt ρt < 1

4
ωλt ρt > 3

4
λt otherwise

. (8)

21

Published in Transactions on Machine Learning Research (02/2024)

A.5 Series Acceleration

Recall the Sablonnière (1991)-accelerated Wynn ϵ-algorithm (Wynn, 1956a) applied to the series of mth
partial sums sm gives the recursion

ϵ(−1)
m = 0, ϵ(0)

m = sm, ϵ(c)
m = ϵ

(c−2)
m+1 +

(⌊ c

2

⌋
+ 1

) (
ϵ

(c−1)
m+1 − ϵ(c−1)

m

)−1
. (9)

This definition is sufficient to compute the accelerated series, but a naïve implementation requires all the ϵ
terms to be stored in memory, which rapidly becomes problematic for larger networks. By carefully defining
the order in which these terms are computed, we may substantially reduce the intermediate memory storage
required. Such a strategy was outlined by Wynn (1962), but a combination of changing conventions and
unclear formatting make it difficult to interpret; we present our own derivation of the same process in
Algorithm 2.

Algorithm 2 Sablonnière-Modified Wynn ϵ-Algorithm with Samelson Inverse
Require: Sequence p0, p1, · · · , p2N and acceleration order N

for m← 0 to 2N do
ϵ

(0)
m ← pm, ϵ

(−1)
m+1 ← 0

end for
m← 0, c← 1
while m ≤ 2N do

while m ≥ 0 do
ϵ

(c)
m = ϵ

(c+2)
m+1 +

(
⌊ c

2⌋+ 1
) (

ϵ
(c−1)
m+1 − ϵ

(c−1)
m

)−1

Delete ϵ
(c−2)
m+1

m← m− 1, c← c + 1
end while
Delete ϵ

(c−2)
m+1

m← c− 1, c← 1
end while
return ϵ

(2N)
0

22

Published in Transactions on Machine Learning Research (02/2024)

Table 5: We provide the median of the training loss, test loss and validation loss for bootstrap-samples from
50 random seeds. Medians values are rounded to four significant figures; errors are rounded to two significant
figures.

Setting Algorithm Training Loss Test Loss Validation Loss

UCI Energy

Ours 0.006459 ± 0.005 0.007087 ± 0.0066 0.0104 ± 0.0083
Ours (Adaptive) 0.001029 ± 4e-05 0.001678 ± 9.5e-05 0.002165 ± 0.00012

SGD 0.001947 ± 0.0002 0.002361 ± 0.00025 0.003191 ± 0.00038
Adam 0.000657 ± 4e-05 0.00113 ± 8.9e-05 0.001571 ± 0.00011

KFAC (Kazuki) 0.5018 ± 0.00056 881.8 ± 6.2e+02 904.1 ± 8.1e+02
KFAC (DeepMind) 0.000714 ± 0.00012 0.006663 ± 0.0024 0.008849 ± 0.0031

Exact SFN 0.0005019 ± 2.4e-05 0.0015 ± 9.2e-05 0.001994 ± 9.7e-05
Exact SFN (Adaptive) 0.0004941 ± 1.4e-05 0.001045 ± 3.7e-05 0.001407 ± 3.4e-05

LBFGS 0.002619 ± 0.00051 0.002929 ± 0.00081 0.004161 ± 0.00069

Fashion-MNIST
Ours 0.237 ± 0.0061 0.3691 ± 0.00081 0.3423 ± 0.00065

Ours (Adaptive) 0.233 ± 0.0054 0.3684 ± 0.0009 0.3429 ± 0.0011
SGD 0.2762 ± 0.0024 0.3693 ± 0.00062 0.3436 ± 0.00053

Adam 0.2425 ± 0.0054 0.3582 ± 0.00086 0.3312 ± 0.00036
KFAC (Kazuki) 0.2375 ± 0.0019 0.3566 ± 0.0006 0.3328 ± 0.00078

KFAC (DeepMind) 0.09567 ± 0.0027 0.4423 ± 0.0023 0.4222 ± 0.0022

SVHN
Ours 0.1573 ± 0.0049 0.583 ± 0.0033 0.5205 ± 0.0021

Ours (Adaptive) 0.4757 ± 0.014 0.6901 ± 0.0041 0.6335 ± 0.0036
SGD 0.1979 ± 0.0036 0.5113 ± 0.0024 0.4503 ± 0.0024

Adam 0.2082 ± 0.0042 0.5029 ± 0.0045 0.4514 ± 0.004
KFAC (Kazuki) 0.09535 ± 0.006 0.7036 ± 0.0047 0.6288 ± 0.0048

KFAC (DeepMind) 0.007294 ± 0.00078 0.6854 ± 0.0026 0.6288 ± 0.0035

CIFAR-10
Ours 1.275 ± 0.009 1.497 ± 0.00098 1.504 ± 0.0019

Ours (Adaptive) 0.7614 ± 0.02 1.595 ± 0.0084 1.596 ± 0.0076
SGD 0.9871 ± 0.0027 1.597 ± 0.017 1.617 ± 0.014

Adam 0.01125 ± 0.0012 3.803 ± 0.0091 3.761 ± 0.012
KFAC (Kazuki) 0.03947 ± 0.0011 3.29 ± 0.0075 3.226 ± 0.013

KFAC (DeepMind) 0.01466 ± 0.0012 1.727 ± 0.019 1.683 ± 0.019

B Additional Results

B.1 Tabulated Results

We present the results from Section 4 in tabular form in Table 5.

B.2 Test and Training Trajectories Per Iteration

In Figures 6 and 7, we present complementary plots for the experiments in Section 4, showing the median
training and test losses plotted as a function of weight update steps rather than time.

B.3 L-BFGS Baseline

In this section, we include plots for UCI Energy with L-BFGS (Liu & Nocedal, 1989) included as an additional
baseline. Numerical results for L-BFGS are included in Table 5 as well.

We used the version of L-BFGS in the JAX library (version 0.3.14). We set the number of optimisation steps
in the main loop to 20, the maximum number of function evaluations to 25 and the maximum number of
Jacobian evaluations to 100. Since larger values are almost always better for all these parameters, we set
them to the largest values within our hardware constraints that allowed for a comparable runtime.

B.4 Effect of Truncation Length

In practice, we wish to avoid computing many terms from the series approximation to the inverse saddle-free
Hessian in Equation (4). We may then ask: how many terms are sufficient? Here, we investigate that question

23

Published in Transactions on Machine Learning Research (02/2024)

100 101 102 103

step

10 3

10 1

101

103

105

107

109

1011

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)
Exact SFN
Adaptive Exact SFN

100 101 102 103

step

10 2

100

102

104

106

108

1010

1012

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)
Exact SFN
Adaptive Exact SFN

100 101 102 103 104

step

10 1

100

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

100 101 102 103 104

step

100

4 × 10 1

6 × 10 1

2 × 100

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Figure 6: Median training (left) and test (right) loss achieved on UCI Energy (top) and Fashion-MNIST
(bottom) plotted per iteration of training. Values are bootstrap-sampled from 50 random seeds. Optimal
hyperparameters were tuned with ASHA.

24

Published in Transactions on Machine Learning Research (02/2024)

100 101 102 103 104

step

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

100 101 102 103 104

step

100

101

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

100 101 102 103

step

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

100 101 102 103

step

2 × 100

3 × 100

4 × 100

Te
st

 L
os

s

Ours
Ours (Adaptive)
SGD
Adam
KFAC (Kazuki)
KFAC (DeepMind)

Figure 7: Median training (left) and test (right) loss achieved on SVHN (top) and CIFAR-10 (bottom) plotted
per iteration of training. Values are bootstrap-sampled from 50 random seeds. Optimal hyperparameters
were tuned with ASHA.

25

Published in Transactions on Machine Learning Research (02/2024)

10 2 10 1 100 101 102 103

Runtime (s)

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s

Ours
SGD
Adam
KFAC (DeepMind)
Exact SFN
LBFGS

10 2 10 1 100 101 102 103

Runtime (s)

10 4

10 3

10 2

10 1

100

101

Te
st

 L
os

s

Ours
SGD
Adam
KFAC (DeepMind)
Exact SFN
LBFGS

Ours SGD Adam KFAC
(DeepMind)

Exact SFN LBFGS
0.000

0.002

0.004

0.006

0.008

0.010

Lo
we

st
 Tr

ai
ni

ng
 L

os
s

Ours
SGD
Adam
KFAC (DeepMind)
Exact SFN
LBFGS

Ours SGD Adam KFAC
(DeepMind)

Exact SFN LBFGS
0.000

0.002

0.004

0.006

0.008

0.010

Lo
we

st
 Tr

ai
ni

ng
 L

os
s

Ours
SGD
Adam
KFAC (DeepMind)
Exact SFN
LBFGS

Figure 8: Median training (left) and test (right) MSEs achieved on UCI Energy by various optimisers including
L-BFGS in the full-batch setting, bootstrap-sampled from 50 random seeds. Optimal hyperparameters were
tuned with ASHA. The x-axes are wall-clock time in the top row, and training iteration in the bottom row;
note the log-scaling in both cases.

empirically by applying our method to UCI Energy, but varying the number of terms, K used to approximate
the series. As shown in Figure 9, we see clear improvement as the number of computed terms is increased,
but even computing only three terms provides a sufficiently close approximation to the saddle-free Hessian
for us to reach reasonable loss values. We consider further theoretical justification for this in Appendix D.2.

B.5 Comparison of Series Accelerators

While developing our algorithm, we considered a range of series accelerators:

• Shanks transformation (Schmidt, 1941; Shanks, 1955), which is implemented by Wynn’s ϵ-algorithm
(Wynn, 1956a)

• Sablonnière (1991) modification of the Wynn ϵ-algorithm
• Levin-t transform (Levin, 1972), which we found more stable than the related u and v transforms
• Padé approximants (Graves-Morris, 1994)

We also investigated the vector- and topological-ρ accelerators (Wynn, 1956b; Osada, 1991) and the d(2)

transformation (Levin & Sidi, 1981; Osada, 1996), but found these to be markedly less robust, so do not
show results here.

To investigate the relative merits of these accelerators, we randomly populate a 100-dimensional Hessian
matrix H with independent draws from a standard normal distribution, from which we compute the exact

26

Published in Transactions on Machine Learning Research (02/2024)

Figure 9: We consider the effect of varying the number of series terms K used to approximate the saddle-free
Hessian in (4). The number of steps varies from three to ten. All other settings are as in Section 4.1, including
the acceleration order N = 1. The results above are bootstrap sampled from 50 different random seeds.

0 200 400 600 800 1000
Series Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Target
Original
1×Shanks
2×Shanks
1×Levin
2×Levin
1×Padé
2×Padé
1×Shanks (Sablonnière)
2×Shanks (Sablonnière)

0 200 400 600 800 1000
Series Steps

0

2

4

6

8

10

12

14

2-
No

rm

Target
Original
1×Shanks
2×Shanks
1×Levin
2×Levin
1×Padé
2×Padé
1×Shanks (Sablonnière)
2×Shanks (Sablonnière)

Figure 10: Comparison of series acceleration techniques. From a randomly-initialised Hessian, we compute an
exact saddle-free update vector (), then compare its direction (by cosine similarity; left) and magnitude
(by 2-norm; right) with those vectors found by our unmodified series () and a variety of accelerators
applied to that series, as the latter vary when progressively more series terms are considered.

27

Published in Transactions on Machine Learning Research (02/2024)

vector
(

+
√

H2
)−1

g at some random starting point. With this exact target in mind, we compute 1 000 steps
of our approximating series, then apply each acceleration algorithm in turn up to four times, comparing
the resulting directional error (by cosine magnitude) and magnitude error (by 2-norm) of our update step.
Since the differences between accelerators dwarfed those between different acceleration orders of the same
accelerator, we show only the acceleration orders N = 1, 2 in our results (Figure 10). Note that Shanks
acceleration and its Sablonnière modification are indistinguishable at the scale of these plots.

From these plots, we observe Shanks acceleration, and its Sablonnière modification, to reliably converge faster
towards the correct update direction than the other accelerators, although Padé acceleration marginally beats
these when we compare update magnitudes. Every accelerator makes progress faster than the original series,
though Levin-t acceleration seems insufficiently robust for our purposes.

As no accelerator comes particularly close to our target vector, there clearly remains some improvement to be
made at managing this series’ convergence. Noting that the greatest acceleration benefit is seen for early series
steps, we choose to focus on this window. Further, since the update magnitude is generally underestimated,
we prioritise the update direction through the cosine similarity metric, as we expect too-short steps in the
correct direction to retain stable optimisation behaviour. Subjectively, Sablonnière’s modification of Shanks’
algorithm was slightly more stable in our experiments, so we select this accelerator to use in this paper.

28

Published in Transactions on Machine Learning Research (02/2024)

C Detailed Derivations

In this Section, we provide a more verbose derivation of the key results of Section 3.

C.1 Scalar Inverse Square-Root Series

The generalised binomial theorem provides a means of writing the quantity (x + y)r as the infinite series

(x + y)r =
∞∑

k=0

(
r

k

)
xr−kyk, (10)

where the generalisation admits any complex r using the definition(
r

k

)
= r(r − 1)(r − 2) · · · (r − k + 1)

k! . (11)

In particular, we have

(1− z)− 1
2 =

∞∑
k=0

(
− 1

2
k

)
(−z)k (12)

=
∞∑

k=0

(− 1
2)(− 1

2 − 1)(− 1
2 − 2) · · · (− 1

2 − k + 1)
k! (−1)kzk (13)

=
∞∑

k=0

(1
2)(1

2 + 1)(1
2 + 2) · · · (1

2 + k − 1)
k! (−1)2kzk (14)

=
∞∑

k=0

(1
2)(1

2 + 1)(1
2 + 2) · · · (1

2 + k − 1)
k! zk (15)

=
∞∑

k=0

(1)(1 + 2)(1 + 4) · · · (2k − 1)
k!

1
2k

zk (16)

=
∞∑

k=0

(2k − 1)!
k!(2k − 2)(2k − 4)(2k − 6) · · · (2)

1
2k

zk (17)

=
∞∑

k=0

(2k − 1)!
k!(k − 1)(k − 2)(k − 3) · · · (1)

1
2k−12k

zk (18)

=
∞∑

k=0

(2k − 1)!
k!(k − 1)!

1
22k−1 zk (19)

=
∞∑

k=0

(2k)!
k!k!

k

2k

1
22k−1 zk (20)

=
∞∑

k=0

1
22k

(
2k

k

)
zk (21)

C.2 Series Convergence

Denote by ak the kth term of the summation of (21). For this series to be convergent, it suffices that

lim sup
n→∞

|an|
1
n < 1 (22)

29

Published in Transactions on Machine Learning Research (02/2024)

by the root test. Applying this test to our series yields

lim sup
n→∞

|an|
1
n = lim sup

n→∞

∣∣∣∣ 1
22n

(
2n

n

)
zn

∣∣∣∣ 1
n

(23)

= lim sup
n→∞

1
22

(
(2n)!
n!n!

) 1
n

|zn|
1
n (24)

= 1
4 lim sup

n→∞

(
(2n)!
n!n!

) 1
n

|zn|
1
n (25)

≤ 1
4 lim sup

n→∞

(
(2n)2n

n2n

) 1
n

|zn|
1
n (26)

= 1
4 lim sup

n→∞

4n2

n2 |z
n|

1
n (27)

= lim sup
n→∞

|zn|
1
n < 1 (28)

Thus, for the series to converge, it is sufficient that lim supn→∞ |zn|
1
n < 1.

C.3 Matrix Extension and Scaling

This series extends naturally to the matrix case by choosing a square matrix to substitute for z and replacing
1 with the appropriately-sized identity matrix I. Ideally, we would choose z = I−H2 and immediately recover
a series expression for

(
H2)− 1

2 . However, as we will observe, such a z will not allow the series to converge for
arbitrary H, so we will instead introduce a scaling factor V and write z = I− 1

V H2.

The scalar convergence condition lim supn→∞ |zn|
1
n < 1 generalises naturally to the matrix case. Let ∥·∥

denote any compatible sub-multiplicative matrix norm — that is, one which satisfies ∥AB∥ ≤ ∥A∥ ∥B∥ and
∥Ax∥ ≤ ∥A∥ ∥x∥ for all dimensionally-compatible matrices A, B and vectors x. This definition includes all
matrix norms induced by vector norms. Then, the convergence condition becomes lim supn→∞ ∥zn∥

1
n < 1.

Collecting these extensions, we recover the series

(H2)− 1
2 = V − 1

2

∞∑
k=0

1
22k

(
2k

k

) (
I− 1

V
H2

)k

(29)

and the convergence condition

lim sup
n→∞

∥zn∥
1
n = lim sup

n→∞

∥∥∥∥(
I− 1

V
H2

)n∥∥∥∥
1
n

< 1. (30)

Gelfand’s formula gives that, for any matrix norm, lim supn→∞
∥∥(

I− 1
V H2)n∥∥ 1

n is equal to the spectral
radius of I− 1

V H2. Since we are working with real, symmetric matrices, their eigenvalues are all real, whence
the spectral radius is simply the largest of the absolute values of the eigenvalues of I− 1

V H2.

Let λ be an arbitrary eigenvalue of H2. By reference to the eigendecomposition of H2, the corresponding
eigenvalue of I− 1

V H2 is 1− 1
V λ. Thus, for the spectral radius of I− 1

V H2 to be less than unity, we require
for all eigenvalues λ of H2 that

−1 < 1− 1
V

λ < 1 (31)

=⇒ 0 < λ < 2V. (32)

Now, since H2 is positive semi-definite by construction, we have λ ≥ 0, and our implicit assumption of the
invertibility of H (and hence H2) gives λ ̸= 0, whence we recover λ > 0 as required. For the upper bound, it

30

Published in Transactions on Machine Learning Research (02/2024)

suffices to consider only the largest eigenvalue of H2, which we denote by λmax. We thus secure convergence
by the condition

V >
1
2λmax. (33)

We would prefer to compute this bound on V without explicit reference to the largest eigenvalue of H2, which
may be expensive to compute in general. Instead, let umax be the corresponding eigenvector of λmax. Then,
by sub-multiplicativity of the matrix norm, we have∥∥H2∥∥ ∥umax∥ ≥

∥∥H2umax
∥∥ (34)

= ∥λmaxumax∥ (35)
= λmax ∥umax∥ (36)

=⇒
∥∥H2∥∥ ≥ λmax. (37)

So for convergence of the series, it is sufficient that, for any sub-multiplicative norm ∥·∥:

V >
1
2

∥∥H2∥∥ . (38)

C.4 Principality of Square Root

Recall that the principal square root of H2 is positive semi-definite by construction. The inverse of the
principal square root, where it exists, must also then be positive semi-definite. So if the result of our series is
positive semi-definite, it must have computed the principal square root.

Consider again our series from (29):

(H2)− 1
2 = V − 1

2

∞∑
k=0

1
22k

(
2k

k

) (
I− 1

V
H2

)k

. (39)

Under our convergence condition V > 1
2 λmax ≤ 1

2
∥∥H2

∥∥, we have that the eigenvalues of I − 1
V H2 all fall

within (−1, 1). However, if we strengthen the bound on V to V > λmax, reprising the argument of the
previous section gives that the eigenvalues of I − 1

V H2 must fall within [0, 1], making I − 1
V H2 positive

semi-definite. But then
(
I− 1

V H2)k is also positive semi-definite for k = 0, 1, 2, · · · . This means our series is
a linear combination of positive semi-definite matrices with positive coefficients, so the summation — even
when truncated to a finite number of terms — must be positive semi-definite. Thus, our construction has
computed the inverse of the principal square root of H2, as required, when we use the stronger condition

V > λmax (40)
⇐= V >

∥∥H2∥∥ . (41)

31

Published in Transactions on Machine Learning Research (02/2024)

D Algorithm Analysis

D.1 Choice of Scaling Factor

Since V exists only to suitably scale the matrix H2, we have some freedom in its choice of value. We
hypothesise that a smaller V (representing a tighter fit of our convergence bound) would best mitigate
any issues with numerical precision, as this avoids rescaling values more than necessary. Although we also
hypothesise, based on results for the scalar series, that a larger V would ensure more rapid convergence of
the series, our subsequent rescaling outside the summation most likely eliminates any gains here. Thus, we
seek a V which satisfies our bound V > λmax ≤

∥∥H2
∥∥ as tightly as possible, but which may be calculated

without excessive computational cost.

A naïve approach is to note that tr(H2) is the sum of the (guaranteed non-negative) eigenvalues of H2, so is
certainly an upper bound on the largest. Denoting the dimensionality of H by m×m, we then have

tr(H2) tr
(
I2)
≤ (tr H)2(tr I)2 (42)

m tr(H2) ≤ m2(tr H)2 (43)
=⇒ tr(H2) ≤ m(tr H)2, (44)

so it suffices to set V = m(tr H)2. Since the diagonal elements of H are the unmixed second derivatives, we
can compute them efficiently by differentiating every element of the gradient vector g with respect to its
corresponding weight parameter, and thus compute tr H without explicitly computing H. However, we find
this bound to be extremely loose in practice, and thus detrimental to performance.

Another approach to a lower bound is to note that sub-multiplicativity of the matrix norm gives∥∥H2g
∥∥ ≤ ∥∥H2∥∥ ∥g∥ (45)

=⇒
∥∥H2∥∥ ≥ ∥∥H2g

∥∥
∥g∥ . (46)

Since our algorithm already computes H2g, this allows us to efficiently compute a lower bound on V based
on our condition:

V ≥
∥∥H2g

∥∥
∥g∥ . (47)

In practice, the algorithm is initialised with some initial value of V (specifically V = 100 in our experiments)
which is then increased to ∥H2g∥

∥g∥ whenever the bound in (47) is violated.

D.2 Justification of the Truncated Series

We have shown that our infinite series (29) converges to the required transformed Hessian, but clearly we will
be forced to truncate the series to K terms in practical implementation. In this subsection, we informally
justify the appropriateness of this truncation.

Restating (4),

(H2)− 1
2 g = 1√

V

∞∑
k=0

1
22k

(
2k

k

) (
I− 1

V
H2

)k

g, (48)

and recalling we denote the kth term of the summation by ak, we have from Algorithm 1 that

a0 = g, ak+1 = 4k2 − 2k

4k2

(
I− 1

V
H2

)
ak. (49)

Now, for k = 0, 1, 2, · · · , we have 4k2−2k
4k2 < 1, and we have

∥∥I− 1
V H2

∥∥ < 1 by construction in order to secure
convergence. It follows that ∥∥∥∥∥

(
I− 1

V
H2

)k
∥∥∥∥∥ < 1 (50)

32

Published in Transactions on Machine Learning Research (02/2024)

for k = 0, 1, 2, · · · . Thus, we have ∥ak+1∥ < ∥ak∥ for such k, as suggested by the convergence property of
our series, and we can describe the sequence of terms of the summation to be monotonically decreasing in
magnitude. It is thus justifiable to suppose that, if we wish to take finitely many terms of the series, we
should prioritise the earlier terms (smaller k), since these will have the greatest impact on the summation.

To develop further insight into this behaviour, recall we exploited the real, symmetric nature of H to
eigendecompose it as H = QΛQT. Substituting this decomposition into our series gives

(H2)− 1
2 g = 1√

V

∞∑
k=0

1
22k

(
2k

k

) (
I− 1

V
H2

)k

g (51)

= 1√
V

∞∑
k=0

1
22k

(
2k

k

) (
I− 1

V
(QΛQT)2

)k

g (52)

= 1√
V

∞∑
k=0

1
22k

(
2k

k

) (
QQT − 1

V
QΛ2QT

)k

g (53)

= 1√
V

∞∑
k=0

1
22k

(
2k

k

) (
Q

(
I− 1

V
Λ2

)
QT

)k

g (54)

= 1√
V

Q
∞∑

k=0

1
22k

(
2k

k

) (
I− 1

V
Λ2

)k

QTg. (55)

Since I and Λ are diagonal matrices, this series is actually a parallel combination of independent scalar series,
and we can consider each diagonal component individually. For an arbitrary eigenvalue λ, this gives

∞∑
k=0

1
22k

(
2k

k

) (
1− 1

V
λ2

)k

(56)

Now, we specifically chose V to be larger than the greatest eigenvalue magnitude of H2. Since we also
assumed H2 has only positive eigenvalues, we can say 0 < 1− 1

V λ < 1. This common ratio will be near zero
for the largest eigenvalues λ, so we will see the most rapid convergence of these components of the series.
Similarly, the common ratio will be near unity when λ is near zero, so we will see the slowest convergence in
these components.

This result allows us to consider the high- and low-eigenvalue components of the transformed Hessian
independently. High-curvature directions in the space, indicated by large eigenvalues, will converge relatively
quickly, so we expect the earlier terms of the series to be of most use in approximating these curvatures. As
k increases, the main contribution of each term is towards progressively smaller eigenvalues, representing
lower-curvature regions of the space. Thus, the more-impactful higher-curvature information is addressed
predominantly towards the start of the series, so even if we only consider finitely many terms, we can be sure
none of the first K terms could more optimally be replaced by a later term.

D.3 Convergence and Escape

We follow the proof of Paternain et al. (2019) to prove that in the neighbourhood of a critical point, our
method will converge to the critical point in locally convex directions and move away from the critical point
in locally concave directions. Let xC be any critical point, and define the immediate vicinity of xC by the
closed β′-ball Q = {x ∈ RP | ∥x− xC∥ ≤ β′} for some β′. We require the following assumptions:
Assumption 1. Over Q, the loss function f(x) is twice continuously differentiable, and further the gradient
g(x) and Hessian H(x) are Lipschitz continuous. Specifically, there exist constants M, L > 0 such that for
any x, y ∈ Q ⊂ RP

∥g(x)− g(y)∥ ≤M ∥x− y∥ (57)
∥H(x)−H(y)∥ ≤ L ∥x− y∥ (58)

33

Published in Transactions on Machine Learning Research (02/2024)

Assumption 2. The hessian H(x) is invertible over Q. Specifically, there exists a δ > 0 such that
|λi(H(x))| > δ for all x ∈ Q ⊂ RP and i = 1, 2, ..., P . This additionally implies non-degeneracy of the saddle
point.

We note that Paternain et al. (2019) also require Assumption 1, though they assume a weaker form of
Assumption 2, namely that the |λi(H(x))| > δ must hold at all local minima and saddle points, rather than
in a β′-ball around local minima and saddle points. In practice, applying damping to the Hessian ensures
that this assumption holds.

We also assume that our series approximation to the inverted saddle-free Hessian in Equation (4) has
converged. We use the notation A to denote the matrix obtained by taking the absolute value of each
eigenvalue of A and note that the saddle-free Hessian, H is thus written as H(x)−1 =

(
QΛQT)−1, where

QΛQT is the eigendecomposition of H(x). Without loss of generality, we shall assume the eigenvalues to
be arranged in ascending order, such that λ1 ≤ λ2 ≤ · · · ≤ λP and the ith column of Q is the eigenvector
associated with eigenvalue λi.

Recall the critical point of interest is xC . We let g+(x) denote the gradient at x projected onto the subspace
of H(xC)’s eigenvectors associated with the positive eigenvalues of H(xC). Similarly, let g−(x) denote the
projection of g(x) onto the subspace defined by the eigenvectors of H(xC) associated with negative eigenvalues.
We now go on to prove that given the assumptions above, for a point xt that is in the neighbourhood Q of
a critical point xC , our method will converge in the subspace corresponding to the positive eigenvalues of
H(xC) and escape in the subspace corresponding to the negative eigenvalues of H(xC). In other words, we
show that ∥g+(xt+1)∥ converges to zero and that ∥g−(xt+1)∥ will grow.
Theorem 1. Given Assumptions 1 and 2, suppose that ∥xt − xC∥ < β ∥g(xt)∥ where xC is a critical point
and let H(x), g+(x) and g−(x) be defined as above. Let ∥·∥ denote a sub-multiplicative norm. Then both the
following inequalities hold:

∥g+(xt+1)∥ ≤ D ∥g(xt)∥2 (59)
∥g−(xt+1)∥ ≥ 2 ∥g−(xt)∥ −D ∥g(xt)∥2 (60)

where D = LC2
δ +4LCδβ

2 .

Proof. We split the the proof into two cases, one for positive eigenvalues, corresponding to (59) and one for
negative eigenvalues, corresponding to (60). We start with the negative case.

Case 1: Negative Eigenvalues

Noting that g(xt + θ∆x) is an anti-derivative of H(xt + θ∆x)∆x with respect to θ, we can write

g(xt+1) = g(xt) +
∫ 1

0
H(xt + θ∆x)∆x dθ, (61)

where ∆x = xt+1 − xt. Now, the update rule of our method is given by

xt+1 = xt −H(xt)−1g(xt), (62)

so that −H(xt)−1g(xt) = ∆x. Using this fact, we note that g(xt) = H(xt)H(xt)−1g(xt) = −H(xt)∆x. We
add and subtract g(xt) from (61) as follows:

g(xt+1) = g(xt) + g(xt)− g(xt) +
∫ 1

0
H(xt + θ∆x)∆x dθ

= 2g(xt) + H(xt)∆x +
∫ 1

0
H(xt + θ∆x)∆x dθ

= 2g(xt) +
∫ 1

0

(
H(xt + θ∆x) + H(xt)

)
∆x dθ. (63)

34

Published in Transactions on Machine Learning Research (02/2024)

We continue in the manner of Paternain et al. (2019) to add and subtract H(xC), H(xt), and H(xC) inside
the integral and shuffle the terms to arrive at:

g(xt+1) = 2g(xt) +
∫ 1

0
(H(xt + θ∆x)−H(xt)) ∆x dθ

+
∫ 1

0
(H(xt)−H(xC)) ∆x dθ +

∫ 1

0

(
H(xt)−H(xC)

)
∆x dθ

+
∫ 1

0

(
H(xC) + H(xC)

)
∆x dθ

= 2g(xt) +
∫ 1

0
(H(xt + θ∆x)−H(xt)) ∆x dθ

+
(
H(xt)−H(xC)

)
∆x +

(
H(xt)−H(xC)

)
∆x +

(
H(xC) + H(xC

)
∆x. (64)

Let Q− denote the matrix of eigenvectors corresponding to negative eigenvalues of H(xC). We pre-multiply
the left and right of Equation (64) by QT

− and consider each of the last four terms separately.

For the integrand, we note that
∥∥QT

−
∥∥ ≤ 1 since the columns are normalised eigenvectors. Moreover, since

H(x) is Lipschitz by Assumption 1, we have that ∥H(xt + θ∆x)−H(xt)∥ ≤ L ∥xt + θ∆x− xt∥ = Lθ ∥∆x∥
so that ∥∥QT

−
(
H(xt + θ∆x)−H(xt)

)
∆x

∥∥ ≤ ∥H(xt + θ∆x)−H(xt)∥ ∥∆x∥ ≤ θL ∥∆x∥2
. (65)

We handle the next two terms in a similar way, applying the Lipschitz assumption:∥∥QT
−

(
H(xt)−H(xC)

)
∆x

∥∥ ≤ ∥H(xt)−H(xC)∥ ∥∆x∥ ≤ L ∥xt − xC∥ ∥∆x∥ , (66)∥∥QT
−

(
H(xt)−H(xC)

)
∆x

∥∥ ≤ ∥∥H(xt)−H(xC)
∥∥ ∥∆x∥ ≤ L ∥xt − xC∥ ∥∆x∥ . (67)

Finally, we show that the last term in (64) becomes zero. Using the eigendecomposition of H(xC), we observe
that

QT
−

(
H(xC) + H(xC)

)
= QT

−
(
QΛ(xC)QT + QΛ(xC)QT)

= QT
−Q

(
Λ(xC) + Λ(xC)

)
QT

Suppose there are d negative eigenvalues. Then QT
−Q = [Id, 0d×m−d] , i.e. the eigenvectors of Q corresponding

to positive eigenvalues are mapped to zero, and those corresponding to negative eigenvalues are mapped to
a unit basis vector. This is because the columns of Q are orthonormal, so the inner product of columns is
unity if the columns are equal and zero otherwise. Furthermore, Λ(xC) + Λ(xC) is diagonal where the first d
elements are zero and the remaining elements double (due to negative eigenvalues cancelling out with their
positive counterparts in Λ(xC) and positive eigenvalues being added to their positive counterparts in Λ(xC)).
But then the product QT

−Q
(
Λ(xC) + Λ(xC)

)
= 0, because the zero components of each term complement

each other.

We recall the following identity from the reverse triangle inequality: ∥a + b∥ = ∥a− (−b)∥ ≥ | ∥a∥ − ∥b∥ | ≥
∥a∥ − ∥b∥ and combine it with (65), (66) and (67) to lower bound Equation (64) as follows:

∥g−(xt+1)∥ ≥ 2 ∥g−(xt)∥ − L ∥∆x∥2
∫ 1

0
θ dθ − 2L ∥xt − xC∥ ∥∆x∥ . (68)

We use the definition of the update step to bound ∥∆x∥ as follows:

xt+1 − xt = −H(xt)−1g(xt) so that
∥∆x∥ ≤

∥∥H(xt)−1∥∥ ∥g(xt)∥
=

∥∥(QΛQT)−1∥∥ ∥g(xt)∥

≤
∥∥∥Λ−1

∥∥∥ ∥g(xt)∥ (69)

35

Published in Transactions on Machine Learning Research (02/2024)

Now,
∥∥∥Λ−1

∥∥∥ is bounded because maxi=1..P λ(Λ−1) ≤ 1
δ by Assumption 24. For ∥·∥2, this bound is

∥∥∥Λ−1
∥∥∥ ≤ 1

δ .
In the general case, we denote the bound by Cδ (where Cδ may also depend on the dimensionality of the
problem for some choices of ∥·∥). This, along with our assumption that xt is near xC gives us the final bound:

∥g−(xt+1)∥ ≥ 2 ∥g−(xt)∥ −
LC2

δ

2 ∥g(xt)∥2 − 2LCδβ ∥g(xt)∥2

≥ 2 ∥g−(xt)∥ −
(

LC2
δ + 4LCδβ

2

)
∥g(xt)∥2

. (70)

Case 2: Positive Eigenvalues

As in the negative case, we start with

g(xt+1) = g(xt) +
∫ 1

0
H(xt + θ∆x)∆x dθ. (71)

This time, we substitute g(xt) = H(xt)H(xt)−1g(xt) = −H(xt)∆x directly to obtain

g(xt+1) =
∫ 1

0

(
H(xt + θ∆x)−H(xt)

)
∆x dθ. (72)

We proceed as in the negative case, adding and subtracting H(xC), H(xt), and H(xC) to obtain

g(xt+1) =
∫ 1

0
(H(xt + θ∆x)−H(xt)) ∆x dθ +

(
H(xt)−H(xC)

)
∆x

+
(
H(xC)−H(xt)

)
∆x +

(
H(xC)−H(xC

)
∆x., (73)

noting that the last two terms are different to the negative case. Let Q+ denote the matrix of eigenvectors
corresponding to positive eigenvalues of H(xC). Multiply the left and the right hand side of Equation (73)
by QT

+ and apply the triangle equality to obtain

∥g+(xt+1)∥ ≤
∥∥∥∥∫ 1

0
(H(xt + θ∆x)−H(xt)) ∆x dθ

∥∥∥∥ +
∥∥(

H(xt)−H(xC)
)
∆x

∥∥
+

∥∥(
H(xC)−H(xt)

)
∆x

∥∥ +
∥∥(

H(xC)−H(xC

)
∆x

∥∥ . (74)

Using Equations (65), (66) and (67) as in the negative case, we can bound the first three terms. The bound
on the last term follows similar reasoning as before:

QT
+

(
H(xC)−H(xC)

)
= QT

+Q
(
Λ(xC)−Λ(xC)

)
QT (75)

where QT
+Q

(
Λ(xC)−Λ(xC)

)
= 0 because QT

+Q maps the eigenvectors of Q that correspond to negative
eigenvalues to zero and Λ(xC)−Λ(xC) produces a diagonal matrix where the positive eigenvalues cancel out
and the negative eigenvalues double.

We thus arrive at the bound

∥g+(xt+1)∥ ≤ LC2
δ

2 ∥g(xt)∥2 + 2LCδβ ∥g(xt)∥2

≤
(

LC2
δ + 4LCδβ

2

)
∥g(xt)∥2

. (76)

4While we do not consider it in this work, we note that the use of canonical second-order damping methods, which replace a
curvature matrix A by A + λI and thus increase every eigenvalue of A by λ, allows us to relax Assumption 2 to hold for the
damped (saddle-free) Hessian, and thus admit arbitrary Hessians by suitable choice of λ.

36

Published in Transactions on Machine Learning Research (02/2024)

Reprising the arguments in Corollary 3.3 and Proposition 3.4 of Paternain et al. (2019), (59) gives that
∥g+(xt+1)∥ converges quadratically to zero if the greatest contribution to ∥g(xt)∥ = ∥g+(xt) + g−(xt)∥ is
from the g+(xt) term (as for a local minimum), and (60) gives that ∥g−(xt)∥ grows by a multiplicative factor
2−D (where we may choose the free parameter D such that 0 < D < 1) if ∥g(xt)∥2 is negligible compared to
∥g−(xt)∥. In combination, these results justify our claim to converge to local minima and repel saddle points.

D.4 Rate of Convergence

In this subsection, we provide a brief analysis of the rate of convergence of our algorithm to critical points,
following a similar proof pattern to that of classical Newton methods. Throughout, we will assume every
term of our modified-Hessian summation is used, such that our Hessian transformation is exact.

For brevity, denote by H the matrix obtained by taking the absolute value of every eigenvalue of H. With
this shorthand, recall the exact version of our update rule is

xt+1 = u(xt) = xt −H(xt)−1g(xt), (77)

where we will now explicitly denote the points at which the Hessian H and gradient g are calculated.

Let xC be an arbitrary critical point of the objective function f , such that g(xC) = 0. The latter fact gives
u(xC) = xC , and thus xt − xC = u(xt−1)− u(xC).

Consider taking a Taylor expansion of our update rule u(x) about xC :

u(xt) = u(xC) +∇u(xC)T (xt − xC)︸ ︷︷ ︸
ϵt

+1
2(xt − xC)T∇∇u(xC)(xt − xC) + · · · . (78)

Denote by ϵt = xt − xC the error between our critical point and xt. Note this is unrelated to any discussion
of Wynn’s ϵ-algorithm (Wynn, 1956a); we have chosen to reflect standard notation by overloading ϵ here.

Now, by direct differentiation of (77), we have

∇u(xC) = I−∇H(xC)−1 g(xC)︸ ︷︷ ︸
0

−H(xC)−1H(xC). (79)

Noting that H and H have the same eigenvectors, we may gain insight into the final product by eigendecom-
posing it:

H(xC)−1H(xC) = QΛ−1QTQΛQT (80)

= QΛ−1ΛQT. (81)

Since |λ| and λ are corresponding eigenvalues of H and H, the result of this product is a matrix with the
same eigenvectors as H, but with eigenvalues λ

|λ| = sign λ. Consequently, we recover different dynamics for
positive and negative eigenvalues — equivalently, positive and negative curvatures — in the space (recall our
assumption of invertibility of H provides λ ̸= 0).

We proceed to analyse each case individually, effectively creating two complementary subspaces of the
optimisation space. We will use the subscripts + and − to denote the positive- and negative-curvature
subspaces, respectively. Note that the orthogonality of these subspaces (ensured by the real, symmetric
nature of H giving orthogonal eigenvectors) justifies our independent analysis.

For the positive-curvature subspace, Λ+ = Λ+, whence H+(xC)−1H+(xC) = I. This gives

∇u+(xC) = I− I = 0, (82)

which collapses our Taylor series to

u+(xt) = u+(xC) + 1
2ϵT

t,+∇∇u+(xC)ϵt,+ + · · · (83)

=⇒ u+(xt)− u+(xC) = ϵt+1,+ = O(ϵ2
t,+), (84)

37

Published in Transactions on Machine Learning Research (02/2024)

where by O(ϵ2
t,+) we mean to indicate that the positive-subspace error between our current point and a

critical point varies quadratically with time, as the truncated terms are in higher-order products of ϵt,+.

We go on to repeat this argument for the negative-curvature subspace where Λ− = −Λ−, so that
H−(xC)−1H−(xC) = −I. Then, we recover

∇u−(xC) = I + I = 2I, (85)

which collapses our Taylor series in a different way:

u−(xt) = u−(xC) + 2ϵt,− + 1
2ϵT

t,−∇∇u−(xC)ϵt,− + · · · (86)

=⇒ u−(xt)− u−(xC) = ϵt+1,− = 2ϵt +O(ϵ2
t,−); (87)

that is, that the negative-subspace error between our current point and a critical point diverges exponentially
with time.

This derivation proves that, over time, our algorithm will converge to some critical point xC . But our
derivation in Appendix D.3 shows that our algorithm escapes from non-degenerate saddle points and local
maxima, and is attracted to local minima. Thus, any convergence to a critical point must be to a local
minimum; the results of these two sections combine to give that our algorithm converges quadratically along
positive-curvature directions and escapes exponentially from negative-curvature directions.

38

	Introduction
	Related Work
	Derivations
	Preliminaries
	Absolute Values as Square-Rooted Squares
	Inverse Square Root Series
	Hessian Products, Choice of V and Series Acceleration

	Experiments
	UCI Energy
	Larger Scale Experiments
	Discussion

	Conclusions
	Empirical Notes
	Datasets Used
	Computing Resources Used
	Experimental Hyperparameters
	KFAC Adaptive Heuristics
	Series Acceleration

	Additional Results
	Tabulated Results
	Test and Training Trajectories Per Iteration
	L-BFGS Baseline
	Effect of Truncation Length
	Comparison of Series Accelerators

	Detailed Derivations
	Scalar Inverse Square-Root Series
	Series Convergence
	Matrix Extension and Scaling
	Principality of Square Root

	Algorithm Analysis
	Choice of Scaling Factor
	Justification of the Truncated Series
	Convergence and Escape
	Rate of Convergence

