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ABSTRACT

Preference learning constitutes a fundamental component in aligning large language
models (LLMs) with human values and ethical expectations, where the quality
of preference data plays a critical role. Existing methods typically assess data
quality by measuring the margin between preferred and dispreferred responses
in each pair. Following the common intuition that small-margin (i.e., difficult)
pairs are uninformative or even noisy, such pairs are often discarded. In this work,
we challenge this natural practice and propose a new insight: “Despite difficult
pairs may hinder alignment when optimized with preference-based objectives
due to potential likelihood displacement, they can still provide valuable learning
signals when trained with supervised fine-tuning (SFT).” We empirically validate
this insight through systematic experiments and highlight two key findings: (1)
Structuring training from easy to difficult samples improves alignment performance,
consistent with the curriculum learning paradigm; (2) Difficult pairs negatively
impact preference-based optimization but become useful when optimized using SFT
loss. Based on this insight, we introduce a simple yet effective method, MixDPO,
which ranks preference pairs by difficulty and dynamically switches to SFT loss
for difficult pairs. Our approach achieves improved alignment performance on the
AlpacaEval 2 benchmark, outperforming existing DPO variants, particularly for
the Length Control (LC) win rate.

1 INTRODUCTION

Learning from human feedback is essential for aligning large language models (LLMs) with human
preferences, helping ensure that these models behave in ways that are helpful, honest, and harm-
less (Achiam et al., 2023; Nakano et al., 2021). A widely adopted approach for such alignment is
reinforcement learning from human feedback (RLHF) (Stiennon et al., 2020; Ouyang et al., 2022),
which involves a multi-stage pipeline of LLM fine-tuning and reward model training. To simplify this
complex process, several off-policy and reward model-free approaches have been proposed, including
Direct Preference Optimization (DPO) (Rafailov et al., 2024b) and its variants like KTO (Ethayarajh
et al., 2024) and SimPO (Meng et al., 2024), to name a few. These approaches bypass online rein-
forcement learning by directly training on a fixed dataset of preference pairs {(x, Y., i)}, where .,
and y; represent the preferred and dispreferred responses given the prompt x, respectively. Unlike the
open-ended exploration used in RLHF, these methods rely heavily on the quality of the underlying
preference data, which is crucial for achieving strong alignment performance.

Despite considerable efforts having been devoted to curating post-training data, either at the sample
level (Chen et al., 2023b; Xia et al., 2024; Pang et al., 2024a; Liu et al., 2023) or the token level (Lin
et al., 2024; Pang et al., 2025), the role of data in preference alignment remains heavily overlooked
and underexplored. Building on the idea of data selection, recent work (Deng et al., 2025; Huang et al.,
2025; Gao et al., 2025) investigates pairwise data quality based on the margin between preferred and
dispreferred responses within each pair, aiming to identify easy, high-margin pairs. In contrast, those
difficult (low-margin) pairs are often discarded based on the intuition that they introduce ambiguity
or noise, hindering effective preference modeling (Deng et al., 2025; Gao et al., 2025).

This rationale stems from the observation that such difficult pairs often induce a likelihood displace-
ment phenomenon (Pal et al., 2024; Yuan et al., 2024; Rafailov et al., 2024a; Razin et al., 2024),
where the log probability of both the preferred response y,, and dispreferred response y; decreases,
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Figure 1: Performance comparison between random ordering and difficulty-based sorting on the
AlpacaEval 2 benchmark. DPO is used as the default loss function. Notably, instead of discarding
difficult preference pairs, further training them using the SFT loss leads to improved performance.

contradicting the initial goal of preference learning. The potential reason is that subtle differences
between similar responses can lead to unstable gradients and misaligned optimization. Most existing
approaches attempt to alleviate this issue by redesigning DPO-style loss functions, such as Cal-DPO
(Xiao et al., 2024) and DPOP (Pal et al., 2024). In contrast, from a data-centric perspective, we
raise an interesting question that “Can these difficult pairs, which are typically discarded, still offer
valuable supervision signals if properly utilized?”

In this work, we challenge the conventional practice by proposing a new insight that “Despite
difficult pairs may hinder alignment when optimized with preference-based objectives due to potential
likelihood displacement, they can still provide valuable learning signals when trained with supervised
fine-tuning (SFT).”

Our empirical experiments in Figure 1 support two key findings: (1) Given the natural variation in
difficulty across preference pairs, structuring training from easy to difficult pairs, compared with
random ordering, leads to better alignment performance, consistent with the curriculum learning
paradigm; (2) While difficult pairs often harm preference-based optimization, they become beneficial
when trained using SFT loss. Ultimately, backed by empirical evidence, we introduce a simple yet
effective method that adaptively switches from DPO to standard SFT loss based on the difficulty of
preference pairs. Specifically, we apply DPO loss to optimize easier pairs, while resorting to SFT
loss for the more challenging ones to better harness their informative value. Importantly, SFT loss
provides a straightforward way to avoid likelihood displacement.

‘We summarize our main contributions as follows.

e We conduct a systematic study on the role of easy and difficult preference pairs in alignment
performance, revealing a consistent pattern: performance deteriorates as training data shifts from
easy to difficult pairs.

e Challenging the common practice of discarding difficult pairs with small score margins, we
propose a novel insight—these pairs can still offer valuable learning signals when optimized using
supervised fine-tuning (SFT), as confirmed by empirical evidence. Motivated by this, we introduce
a simple yet effective method, MixDPO, which applies DPO loss to easy pairs and SFT loss to
difficult ones to better utilize informative signals.

e We perform extensive experiments to validate the effectiveness of MixDPO, against DPO and
several widely-used variants, including CPO, IPO, KTO, SimPO, and SelectiveDPO. Notably, the
introduced SFT phrase serves to counteract the tendency toward overly long responses driven by
preference bias, as evidenced by improvements in the AlpacaEval 2 LC win rate. The extensive
ablation study on the additional base model and Agrilla-7k dataset demonstrates the generality and
adaptability of our approach.
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2 RELATED WORK

LLM Preference Alignment Start from work (Ouyang et al., 2022), numerous approaches have
been proposed to align LLM-generated responses with human preferences. These methods can be
broadly categorized into two paradigms: Reinforcement Learning from Human Feedback (RLHF)
and Direct Preference Optimization (DPO) (Rafailov et al., 2024b). As a simplified, reward model-
free alternative to RLHF, DPO has emerged as one of the most widely adopted techniques for
preference alignment. A growing body of research has focused on analyzing the DPO loss from
various theoretical and practical perspectives, leading to several notable variants, including IPO (Azar
et al., 2024), KTO (Ethayarajh et al., 2024), CPO (Xu et al., 2024a), and SimPO (Meng et al., 2024),
to name a few.

While substantial effort has been devoted to data selection in instruction tuning and pre-training at
both the sample level (Chen et al., 2023b; Xia et al., 2024; Pang et al., 2024a; Liu et al., 2023) and
the token level (Lin et al., 2024; Pang et al., 2025), the data impact on the preference alignment
remains overlooked and underexplored. Several prior studies (Bai et al., 2022; Ethayarajh et al.)
have examined the influence of data during alignment, but primarily from the perspective of aligning
models with human values and ethics. Several recent work (Deng et al., 2025; Huang et al., 2025;
Gao et al., 2025) investigates data quality based on different metrics such as reward score, aiming to
retain informative samples while discarding those deemed uninformative or noisy. Another line of
work focuses on developing noise-tolerant DPO objectives, such as cDPO (Mitchell), robustDPO
(Chowdhury et al., 2024), and PerpCorrect (Kong et al.), but does not investigate the impact of
individual samples. In contrast, our work challenges this binary view of data quality. We argue that
seemingly uninformative or overly difficult samples that are typically filtered out in preference-based
optimization, can still provide valuable information when optimized using supervised fine-tuning
(SFT) objectives.

Curriculum Learning Curriculum learning (CL) follows the natural human learning patterns by
structuring learning from simpler to more complex concepts (Avrahami et al., 1997; Bengio et al.,
2009), which could effectively accelerate model convergence and enhance generalization. Inspired by
its success, CL patterns have been incorporated into several domains, including machine translation
(Platanios et al., 2019), image generation (Croitoru et al., 2024b), and multimedia search (Jiang et al.,
2014; Tudor Ionescu et al., 2016).

In preference alignment for LLMs, a central component of curriculum learning is the definition of
sample difficulty on preference pairs. Recent studies have explored various difficulty scoring metrics
to enable curriculum-based training, such as prompt length or inherent attention scores (Kim & Lee,
2024), model perplexity on responses (Wu et al., 2024), reward margins estimated by strong reward
models (Croitoru et al., 2024a), and validation DPO loss on preference pairs (Gao et al., 2025). In
this work, we adopt a simple yet effective strategy by using the original rating scores available in
the preference data to estimate difficulty, incurring no additional computational overhead. Moreover,
while (Gao et al., 2025) opts to filter out overly difficult examples due to their potential negative
impacts, we present an alternative approach, demonstrating that these samples can still contribute to
alignment when optimized using their SFT loss.

3 PRELIMINARY

3.1 DIRECT PREFERENCE OPTIMIZATION (DPO)

Preference alignment (Ouyang et al., 2022) aims to ensure that large language models (LLMs)
generate outputs that reflect human preferences and communication styles, thereby enhancing their
safety, reliability, and trustworthiness in real-world settings. In this work, we adopt Direct Preference
Optimization (DPO) (Rafailov et al., 2024b), one of the most widely used methods for preference-
based alignment. Given a pairwise preference dataset D := (z, ¥y, y1), Where x is a prompt, y., is
the preferred response, and y; is the less preferred response, DPO trains a policy model 7y using the
following objective:

70 (Y | @ 7r x
Lppo(70; Tret, D) = =K,y .4:)~D [lOgU (5 log ol | 2) Blog e(yl))] , (@)

71—ref(yw | I) 7Tref(yl | I)
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Figure 2: Original rating score margin distribution. Left: Ultrafeedback dataset (61k samples).
Right: Argilla dataset (7k samples). Chosen/Rejected scores are both annotated from various LLM:s.
Observe that approximately 50% of the samples in both datasets exhibit a score difference below 1.0.

where s represents the reference policy model—typically the model fine-tuned via SFT, o(+)
denotes the sigmoid function, and 3 is a hyperparameter that controls the divergence between the
reference model ¢ and the current policy 7.

3.2 CURRICULUM LEARNING

Curriculum learning (Bengio et al., 2009) is a training strategy that gradually exposes the model to
increasingly difficult examples, inspired by how humans learn. Curriculum learning can improve
convergence speed and model generalization by starting with easier samples and progressively moving
to harder ones. This paradigm relies on assessing sample difficulty to guide the model from learning
on easier examples to more challenging ones over time.

Qualifying pairwise difficulty Note that preference datasets used for DPO are typically constructed
from response pairs annotated with LLM-generated rating scores. In practice, for each prompt, the
response with the higher rating score is selected as the chosen response, while the one with the lower
score is designated as rejected. Building upon this construction, the rating scores can naturally serve
as a basis for estimating the sample-level difficulty. We define this notion as follows:

Definition 3.1 (Pairwise Difficulty) Given a preference pair represented as (T, Yuw, Y1, Sw, St ), where
Sw and s; denote the rating scores of the chosen and rejected responses, respectively, the pairwise
difficulty is defined as the rating score difference:

M (5,51) == 80w — 81 2

In practice, metric M (-) is always non-negative. By default, the rating score margin (M) will be
utilized to measure pairwise difficulty, where a higher M implies an easier pair. Intuitively, preference
pairs within a dataset can differ in difficulty, as reflected by the varying rating score margins between
the chosen and rejected responses. Figure 2 presents the score gap distributions of two popular
preference datasets, including Ultrafeedback and Arigilla, highlighting the widespread presence of
difficult pairs in the dataset.

While Definition 3.1 serves as our primary metric, alternative metrics can also be considered, such as
reward score margin (Croitoru et al., 2024a), DPO loss (Gao et al., 2025), or the embedding distance
between responses. Note that our goal is not to develop a superior metric for difficulty estimation.
Instead, we investigate the role of difficulty based on the available annotations used during dataset
construction. Notably, rating scores are computation-free, whereas model-dependent measures like
DPO loss are more costly. More discussion can be found in Section 2. For difficult pairs, we provide
several examples extracted from the Ultrafeedback dataset (Cui et al., 2023) in Appendix C.
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4 EXPLORING THE IMPACT OF EASY/DIFFICULT PAIRS

In this section, we begin by empirically validating the potential impact of easy and difficult preference
pairs on alignment performance. Given the observed results, we further explore strategies for handling
these difficult pairs. While existing approaches often opt to filter out such pairs to mitigate their
negative effects (Gao et al., 2025; Deng et al., 2025), we argue that, when properly utilized, these
difficult pairs remain informative and can contribute positively to alignment performance through
our proposed method. Instead of discarding such pairs directly, we introduce a hybrid objective that
applies DPO loss to easy pairs and employs SFT loss for the more challenging ones.

4.1 EMPIRICAL EVIDENCE: POTENTIAL IMPACT OF EASY OR DIFFICULT PAIRS
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Figure 3: Performance comparison of models fine-tuned on three subsets of the UltraFeedback
dataset, each representing a different difficulty level. The base model used is LLaMA-3-8B, and DPO
is adopted as the default loss function. Subfigure 3a highlights the positive influence of easy pairs on
alignment performance. Subfigures 3b-3d provide detailed training dynamics, revealing a clear trend:
as the data shifts from easy to difficult pairs, the performance consistently declines.

To investigate the impact of data pairs with varying difficulty levels, we partition the UltraFeedback
dataset into three subsets based on the distribution of rating score differences assigned by the
LLM. For each subset, we randomly sample 5,000 examples and apply the typical DPO loss for
training. Figure 3 illustrates how alignment performance varies across these levels. Remarkably,
the performance results shown in Figure 3a illustrate that easier preference pairs—those with larger
score gaps—Iead to higher scores in both AlpacaEval 2’s LC win rate and raw win rate, whereas
performance degrades when training on more difficult pairs with smaller score differences. In support
of this trend, Figures 3b-3d provide more detailed training process information, showing that easy
pairs result in faster convergence (lower train loss), higher reward accuracy, and larger reward margins.
In contrast, difficult pairs lead to slower optimization, weaker preference signals, and limited reward
separation, ultimately reducing alignment performance.

Motivated by the above observation, we sort preference pairs by difficulty and prioritize those with
larger score margins (i.e., easier pairs), following a curriculum-style training strategy (Bengio et al.,
2009; Kim & Lee, 2024; Wu et al., 2024). The rationale behind this strategy is that easier pairs
provide clearer and more consistent supervision signals, which can effectively amplify the divergence
between the base and reference models and further enhance DPO optimization. However, how to
further handle these remaining difficult pairs raises a critical question, given the observed negative
impact on alignment performance (Gao et al., 2025; Deng et al., 2025).

Filtering out or not? A common practice in prior work is to discard difficult pairs entirely (Deng
et al., 2025; Gao et al., 2025), under the intuition that they introduce ambiguity or extra noise that
can hinder effective preference modeling. This concern is rooted in the observation that such hard-
to-distinguish or similar pairs often induce a likelihood displacement phenomenon (Pal et al., 2024;
Yuan et al., 2024; Rafailov et al., 2024a; Razin et al., 2024), where the log probability of both the
preferred response y,, and dispreferred response y; decreases, which contradicts the initial design of
DPO that increase the probability of y,, and decrease the probability of y;. The potential reason is
that small differences between two nearly identical responses can lead to unstable gradient signals
and misaligned optimization. More details can be found in Appendix B.3.
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Instead of discarding those difficult pairs, in this work, we argue that these difficult pairs are still
informative; they can provide valuable supervision signals if handled properly. For example, recent
work (Xu et al., 2024b) illustrates that filtering out difficult pairs can be detrimental to overall DPO
performance across LLM truthworthy tasks, aligning with our insight. In the following section, we
delve into how to handle those difficult pairs, if retained.

4.2 OBIJECTIVE: APPLY DPO TO EASY PAIRS, SFT TO DIFFICULT ONES

Inspired by the recent work (Grattafiori et al., 2024; Pal et al., 2024), which suggests adding SFT-like
terms to mitigate likelihood displacement, we propose a simple yet effective approach that adaptively
switches between DPO and SFT loss depending on pair difficulty.

Concretely, we apply DPO loss to easy pairs with large score margins, where model preferences
are more confident, and use SFT loss on difficult pairs with small margins to avoid optimization
instability. This margin-aware objective combines the alignment strength of DPO with the robustness
of SFT. These design choices form the basis of our proposed method, MixDPQ, which we describe in
detail below. We define a binary indicator z to distinguish easy from difficult pairs and conditionally

apply the corresponding loss as follows:
1 it M(sy, ) <T
~ |0 otherwise

3)

where 7 is a predefined threshold controlling the difficulty sensitivity. By default, we set 7 as 0.5 for
the Ultrafeedback dataset. Based on the indicator 2z, we construct a hybrid loss that applies DPO to
easier pairs (z = 0) and SFT to difficult ones (z = 1):

T
1
Lyixopo = —(1 — 2) - log po(yw = yi | ) —2z - T E 10gp9(yw,t | xayw,<t) 4
t=1

DPO loss

SFT loss

Here, z serves as a switching signal that dynamically assigns the appropriate loss to each training
example based on its difficulty.

Note that preference pairs are sorted according to their estimated difficulty. In practice, we adopt
a two-stage training paradigm: standard DPO training is first applied to the easier pairs with larger
score margins, followed by an SFT fine-tuning phase that focuses on the more difficult pairs.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Base models & training settings Following the setting of SimPO (Meng et al., 2024), we utilize
two popular models as our base models: LLaMA-3-8B (Grattafiori et al., 2024) and Mistral-7B-v0.1
(Jiang et al., 2023). In particular, the finetuned version of these two models on the Ultrachat-200k
dataset! is used as the starting point for the following preference optimization. We perform preference
optimization on the Ultrafeedback dataset (Cui et al.) for evaluation. For the UltraFeedback dataset,
we set 7 = 0.5, resulting in 7,387 identified difficult pairs, with the remaining pairs classified as easy.
In Appendix B, additional results are provided to further examine the impact of the threshold .

Baselines We evaluate the performance of the proposed preference method by benchmarking
state-of-the-art preference optimization methods, including DPO (Rafailov et al., 2024b) and its
variants such as SLiC-HF (Zhao et al., 2023), IPO (Azar et al., 2024), KTO (Ethayarajh et al., 2024),
CPO (Xu et al., 2024a), SimPO (Meng et al., 2024), O-RPO (Hong et al., 2024), R-DPO (Park et al.,
2024), and SelectiveDPO (Gao et al., 2025). For consistency, we utilize the released models from the
SimPO repository? to generate model responses and then conduct evaluation. For SelectiveDPO, we
follow the original setup and use the released validation DPO loss as its difficulty metric. Following
the same training setup, by default, all results are based on full parameter fine-tuning (FPFT). More
hyperparameter settings could be found in Appendix A.

'nttps://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
https://github.com/princeton-nlp/SimPO
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Table 1: Performance comparison of different baselines on three LLM judge benchmarks. Note that

Win represents the adjusted win rate, which equals the win rate plus half of the tie rate. We highlight
the best results in boldface and the second-best with underline.

\ AlpacaEval 2.0 \ Arena Hard |  MT_Bench
Method | LC Win Rate (%) Win Rate (%) | Win Rate (%) Win Rate (%) | Avg. Score (0-10)
Base model: LLaMA-3-8B
LLAMA3-8B-BASE-SFT 3.73 10.19 3.9 7.8 4.82
VANILLA DPO 9.37 16.77 20.4 31.2 5.94
SLIC-HF 5.20 5.71 14.4 22.8 4.99
CPO 4.25 9.69 12.8 24.0 5.64
PO 5.89 11.55 20.6 32.5 6.01
KTO 4.27 3.98 17.6 27.4 6.03
O-RPO 5.43 7.08 14.4 24.0 5.80
RDPO 6.92 11.06 18.9 28.6 5.97
SIMPO 6.77 14.04 20.2 325 6.09
SELECTIVEDPO 8.85 30.43 20.5 32.1 5.82
MixDPO \ 14.42 36.65 \ 16.6 26.3 \ 6.17
Base model: Mistral-7B-v0.1

MISTRAL-7B-BASE-SFT 2.39 1.24 3.0 5.1 4.53
VANILLA DPO 5.14 4.72 10.0 15.0 5.14
SLIC-HF 4.42 3.60 6.0 10.7 443
CPO 4.04 3.85 4.6 10.2 4.6
PO 5.45 4.60 6.8 13.2 4.73
KTO 5.02 3.23 5.0 10.3 4.56
O-RPO 4.38 3.35 2.8 4.6 2.74
RDPO 6.03 4.60 9.7 16.7 5.29
SIMPO 4.30 5.47 11.2 19.5 5.34
SELECTIVEDPO 391 5.47 10.2 16.6 4.98
MixDPO \ 7.67 6.71 \ 10.2 20.5 \ 5.55

Evaluation benchmarks In this paper, we primarily select three popular open-ended benchmarks:
MT-Bench (Zheng et al., 2023), AlpacaEval 2 (Li et al., 2023), and Arena-Hard-v0.1 (Li et al., 2024).
These benchmarks evaluate the models’ versatile conversational abilities across diverse queries and
have been widely adopted by the community. For example, AlpacaEval 2 consists of 805 questions
from 5 subsets (e.g., SelfInstruct, Vicuna-Bench). Following their evaluation protocols, we report the
Length-Control win rate (LC Win Rate) and win rate for the AlpacaEval 2 against GPT-4-Turbo, win
rate for Arena-Hard against GPT-4-0314, and a discrete score (0-10) for the MT-Bench benchmark.
Owing to cost considerations, we adopt the recently released GPT-4.1 (i.e., GPT-4.1-2025-04-14) as
our LLM judge model across all benchmarks.

5.2 EMPIRICAL RESULTS

As shown in Table 1, our proposed method consistently outperforms baselines across two base
models (i.e., LLaMA-3-8B and Mistral-7B-v0.1) on three evaluation benchmarks. Remarkably,
under the LLaMA-3-8B setting, our proposed method achieves an absolute performance gain of
approximately 6% in both the LC win rate and the raw win rate compared with all baselines. Similar
performance improvements have also been observed under the Mistral-7B-v0.1 setting. These
consistent improvements underscore the effectiveness of our proposed approach. Across both base
model settings, one can observe that many DPO variants, such as CPO and KTO, fail to outperform,
and in some cases underperform standard DPO, consistent with observations reported in SimPO
(Meng et al., 2024), which used more powerful GPT-4 for LLM judgement.

6 ABLATION STUDY

In this section, we conduct a comprehensive ablation study to evaluate the effectiveness and general-
izability of our proposed method on additional base models and preference datasets. We also deeply
analyze the contribution of each component and assess its compatibility with existing DPO variants.
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Table 2: Performance comparison across different settings. Left: Evaluating generalization to the
Qwen-2.5-7B base model using the UltraFeedback dataset. Right: Evaluating generalization to a
different preference dataset, Argilla-7k, with the LLaMA-3-8B model.

Model: Qwen2.5-7B Dataset: Argilla-7k
Method LC Win Rate (%) Win Rate (%) Method LC Win Rate (%) Win Rate (%)
BASE SFT 0.20 0.99 BASE SFT 3.73 10.19
VANILLA DPO 2.38 3.60 VANILLA DPO 2.90 12.17
SIMPO 2.28 3.11 SIMPO 7.07 5.84
SELECTIVEDPO 3.12 5.59 SELECTIVEDPO 3.59 5.22
MixDPO 3.45 5.59 MixDPO 9.23 20.62

6.1 GENERALIZATION ACROSS MODELS AND DATASETS

Here, we investigate the generalization of our proposed method, MixDPQO, on an additional base
model and preference dataset. From the baseline pool, we selectively include two strong-performing
DPO variants: SimPO and SelectiveDPO. Given their potentially complex hyperparameter settings
and sensitivity (e.g., to learning rate), we make our best effort to tune them for optimal performance.
More details on the hyper-parameter configurations are provided in Appendix B.

MixDPO performs well on Qwen-2.5-7B model To validate the effectiveness of our proposed
method on another model suite, we select Qwen-2.5-7B (Yang et al., 2024) as our third base model.
Table 2 (Left) demonstrates the corresponding results on the AlpacaEval 2 benchmark. Observe that
our proposed method outperforms baselines in both LC win rate and raw win rate.

MixDPO generalizes well to the Argilla-7K dataset We evaluate the generalization capability of
our method on a different dataset, Argilla, which comprises 7k high-quality preference samples aggre-
gated from multiple sources. The results in Table 2 (Right), demonstrate that MixDPO consistently
outperforms all baselines, underscoring its robustness and generalization across datasets.

6.2 UNDERSTANDING AND EXTENDING MIXDPO: COMPONENT AND VARIANT ANALYSIS

Exploring the separate efforts of different components Note that our proposed method comprises
two key components: sorting data by difficulty and applying a hybrid loss function. To highlight
the contributions of each component explicitly, Figure 5a presents the performance of various
configurations based on the LLaMA-3-8B model. The empirical results show that both components
independently improve alignment performance. Importantly, rather than discarding difficult pairs,
leveraging them through SFT loss leads to a notable improvement in the AlpacaEval 2 LC win rate,
without substantially compromising the raw win rate.

40 25

DPO +19.9 PO
357 DPO + sorted data 4159 201 IPO + Ours but discard difficult
30 Qurs + discard difficult IPO + Ours w55 +6.3
Ours .
254 +6.8 15 1
20 +0.0
+0.0
15 1 +5.1 10
1.2
10 +0.0 Lo 400 400 [
-1.6 5]
5]
T T 0 T T
Alpaca LC (%) Alpaca WR (%) Alpaca LC (%) Alpaca WR (%)
(a) Contribution of each component used in MixDPO. (b) Integrating MixDPO into IPO.

Figure 4: Ablation results based on the LLaMA-3-8B model. Left: Contribution of each component
within MixDPO. Right: Effect of integrating MixDPO into existing DPO variant IPO.
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Can MixDPO be applied to other DPO variants? We are also interested in investigating whether
MixDPO can be incorporated into other DPO variants. Here, we selectively examine one DPO variant,
IPO. Following our framework, we first sort preference pairs based on the score margin. For IPO, we
substitute the DPO loss with the IPO loss when training on easy pairs, while applying the SFT loss to
the difficult ones. For consistency, we select the last 7,387 difficult pairs ranked by pairwise difficulty
and train them using SFT loss, following our proposed method. Figure 5b compares the performance
of each variant before and after applying our approach. Notably, integrating our method consistently
improves the original alignment performance, demonstrating its broad applicability and effectiveness.
More empirical results can be found in Appendix B.

Table 3: Left: Comparison of DPO variants and MixDPO under the LLaMA3-8B-Instruct base
model. Right: The impact of different difficulty threshold 7.

|  Model: LLaMA3-8B-Instruct | AlpacaEval 2.0
Method \ LC Win Rate (%) Win Rate (%) Method \ LC Win Rate (%) Win Rate (%)
DPO 19.53 20.25 Base-SFT 3.73 10.19
SimPO 24.68 22.73 vanilla DPO 9.37 16.77
SelectiveDPO 3.25 1.12 MixDPO (r = 1.5) 3.80 261
MixDPO (Orig. reward) 29.02 28.01 MixDPO (7 =1) 6.48 25.47
MixDPO (GPT-40-mini) 29.47 25.59 MixDPO (7 = 0.5) 14.42 36.65

Exploring the impact of difficulty threshold 7. To understand the sensitivity of the threshold,
we explore some alternative values 7 € {0.5,1, 1.5}, which correspond to selecting approximately
6,000 (10% of the dataset), 18,653 (25%), and 30,653 (50%) difficult pairs, respectively. By default,
we set the threshold at 7 = 0.5, corresponding to the minimum margin in score differences. Table 8
demonstrate that the performance degrades with increasing values of the threshold 7, highlighting
the importance of the difficult threshold. Empirically, selecting the top 10% most difficult pairs (i.e.,
7 = (.5) yields the best results, suggesting that moderate exposure to difficult pairs strikes a favorable
balance between informativeness and overfitting.

Performance on stronger instruction-tuned model. To further demonstrate the effectiveness of
MixDPO on stronger instruction-tuned models, we follow the experimental setups of SimPO (Meng
et al., 2024) and SelectiveDPO (Gao et al., 2025), and take LLaMA-3-8B-Instruct as a representative
case. For consistency, training is conducted on the datasets released by SimPO. Since the original
dataset provides only reward model scores and lacks explicit rating scores, we employ GPT-40-mini
to generate rating scores as a substitute. Specifically, the models LLaMA-3-Instruct-8B-DPO and
LLaMA-3-Instruct-8B-SimPO are publicly available from the SimPO repository. In addition, we
present two versions of MixDPO based on different difficulty metrics, namely GPT-40-mini rating
score and original reward score. Table 3 shows that MixDPO consistently outperforms these baselines.

7 CONCLUSION AND LIMITATIONS

In this work, we are interested in exploring an alternative way to handle difficult pairs with small
margins that may hinder alignment due to potential likelihood displacement. Instead of filtering
them out in common practice, we develop a simple yet effective method, MixDPO, which adaptively
switches from DPO loss to standard SFT loss based on the difficulty of preference pairs, leveraging
both clear and ambiguous signals to boost alignment performance. Specifically, we utilize the DPO
loss for confident, easy pairs and the SFT loss for difficult pairs. Extensive empirical experiments
validate the effectiveness and generalization of our proposed approach.

Nonetheless, we acknowledge several limitations of our approach. While the proposed method
outperforms all baselines, there may exist more effective strategies for handling difficult pairs beyond
using the SFT loss, which presents a promising direction for future research. Then, although designing
a better difficulty metric is not our primary goal, it also remains a promising direction worth exploring.
Besides, our difficulty metric primarily relies on the original LLM rating scores, which may be noisy
or inaccurate, as noted in prior work (Pang et al., 2024a). Such potential scoring errors may distort the
estimation of preference difficulty, leading to suboptimal training dynamics and ultimately hindering
the alignment performance of LLMs. However, this practical concern can be substantially mitigated
through existing score curation techniques (Zhu et al., 2023; Pang et al., 2024a), and developing more
advanced approaches remains an important direction for future work.
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APPENDIX

ORGANIZATION OF THE APPENDIX

e Section A: Describes the experimental setup of this work, including the computing environment,
the SFT base models used, and their corresponding hyperparameters.
e Sec. A.1: Computing environment description;
e Sec. A.2: Used SFT base models;
* Sec. A.3: Training details of preference alignment.
e Section B: Presents additional experimental results:
 Sec. B.1: The impact of learning rate;
 Sec. B.2: Exploring the impact of alternative difficulty metrics;
* Sec. B.3: Comparisons with alternative likelihood displacement methods;
 Sec. B.4: The effect of absolute quality in preference pairs;
¢ Sec. B.5: The robustness of MixDPO under score noise;
* Sec. B.6: Downstream task evaluation.

Section C: Provides illustrative examples of easy and difficult preference pairs identified from the
original rating scores.

A EXPERIMENTAL DETAILS

A.1 COMPUTATION ENVIRONMENT

In this work, all experiments were conducted on a server equipped with 8xNVIDIA L40S GPUs,
each with 45 GB of memory. For full-parameter fine-tuning, reproducing each training run on 7B/8B
models takes approximately 3 GPU hours.

A.2 SFT BASE MODELS

In this work, we perform preference optimization experiments using publicly available SFT models
that follow the standard post-training pipeline. Both models were fine-tuned on the Ultrachat 200k
dataset. The publicly released hyperparameters used during the SFT training process are summarized
in Table 4.

Table 4: Training details for SFT models used in this work.

SFT Model Hugginface Source Batch Size Learning Rate Optimizer LoRA?
LLaMA-3-8B-SFT | princeton-nlp/Llama-3-Base-8B-SFT 128 2e-5 Adam No
Mistral-7B-SFT HuggingFaceH4/mistral-7b-sft-beta 128 2e-5 Adam No
Qwen-2.5-7B-SFT | AmberYifan/Qwen2.5-7B-sft-ultrachat 128 le-5 Adam No

A.3 PREFERENCE ALIGNMENT TRAINING DETAILS

Table 5 summarizes several key hyperparameters used in MixDPO for our experiments. By default,
we use a cosine learning rate scheduler. Following setting of SimPO (Meng et al., 2024), we set the
maximum prompt length to 512 and the maximum sequence length to 1024. Additionally, all models
are fine-tuned using BF16 precision. For baselines, we adopt the released models from SimPO (Meng
et al., 2024), where the corresponding hyperparameters are provided.

Additional base model Qwen-2.5-7B For the additional base model Qwen-2.5-7B, we evaluate
several learning rate settings, and the corresponding results are presented in Table 2 (Left). The

learning rate for Qwen-2.5-7B is adopted from SelectiveDPO (Gao et al., 2025).

Additional preference dataset Argilla-7k For a series of experiments on the Argilla-7k dataset,
we have examined several learning rate settings, whose results are provided in Table 2 (Right).
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Table 5: Key hyper-parameters in MixDPO used for experiments.

SFT model | Learning Rate  Batch Size B Epoch  Optimizer LoRA?
LLaMA-3-8B-SFT le-6 128 0.01 1 adamw_torch No
Mistral-7B-SFT 2e-7 128 0.01 1 adamw_torch No
Qwen-2.7-7B 8e-7 128 0.01 1 adamw_torch No

Table 6: Key hyper-parameters used for experiments in the Qwen-2.5-7B base model.

Baseline \ Learning Rate Batch Size B Epoch  Optimizer = LoRA?

DPO 8e-7 128 0.01 1 adamw_torch No
SimPO 8e-7 128 2.0 1 adamw_torch No
SelectiveDPO 8e-7 128 0.01 1 adamw_torch No
MixDPO 8e-7 128 0.01 1 adamw_torch No

B MORE EXPERIMENTAL RESULTS
B.1 IMPACT OF LEARNING RATE

We report the performance of our proposed method, MixDPO, under different learning rates across
two base models. For LLaMA-3-8B, the best performance is achieved with a learning rate of le-6,
while for Mistral-7B, the optimal learning rate is 2e-7.
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Figure 5: Effect of learning rate across two base model configurations on the Ultrafeedback dataset.

B.2 EXPLORING THE IMPACT OF ALTERNATIVE DIFFICULTY METRICS

Correlation between rating score margin and other difficulty metrics Here, we first systemati-
cally investigate the relationship between rating score margin and other alternative difficult metrics,
including validation DPO loss (Gao et al., 2025), reward score (Croitoru et al., 2024a), and embedding
distance between responses. For the reward score, we utilize a powerful reward model from the Re-
wardBench leaderboard, Skywork-Reward-Llama-3.1-8B3. To compute the embedding distance, we
select the newly released open-source model, BGE* as the embedding model. Note that the validation
DPO losses are taken from SelectiveDPO and are based on three different base models, including
Qwen-2.5-7B, Mistral-7B, and LLaMA-3-8B. Figure 6 shows a clear positive correlation between the
raw score margin and both the reward score margin and validation DPO loss. A smaller validation
DPO loss indicates that the sample is easier for the model to learn. In contrast, a counter-intuitive
negative correlation is observed between the rating score margin and embedding distance, which may

*https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2
*BAAI/bge-large-en-vl1.5
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Table 7: Key hyper-parameters used for experiments on the Argilla-7k preference dataset. We
highlight the learning rate with the best result in bold.

Baseline Learning Rate Range Batch Size (3  Epoch  Optimizer = LoRA?
DPO {1e-7 Se-7 8e-7 1e-6 2e-6} 128 0.01 2 adamw_torch No
SimPO {1e-7 5e-7 8e-7 1e-6 2e-6} 128 2.0 2 adamw_torch No
SelectiveDPO | {le-7 5e-7 8¢-7 1e-6 2e-6} 128 0.01 2 adamw_torch No
MixDPO {1e-7 Se-7 8e-7 1e-6 2e-6} 128 0.01 2 adamw_torch No
0.430
£ 30{ —— Skywork-LLaMA-3-8B ®» 0.70 Y —e— BGE
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Figure 6: Relationship between rating score margin and three alternative difficult metrics. Observe
that the rating score margin correlates positively with reward score and DPO loss, but shows a
counterintuitive negative correlation with embedding distance.

be attributed to the representation limitations of the embedding model. Notably, the original LLM
rating score proves to be both sufficient and competitive for assessing sample-level difficulty, offering
a highly efficient alternative to more costly methods such as reward model inference or validation
DPO loss computation.

To evaluate the generalization of MixDPO under alternative difficulty notions, we investigate the
embedding distance between preferred and dispreferred responses as well as the reward-score margin.
Table 8 reports the alignment performance under each metric, highlighting the effectiveness of
the original LLM rating score. Notably, the LLM rating score requires no additional computation,
making it a highly efficient choice compared to alternatives that rely on reward model inference
or embedding-based similarity. Here, the reward score margin metric yields worse performance,
primarily due to the limitations of the reward model used. The learning rates used for reward score
margin and embedding distance are both le-7.

Table 8: Comparison of alignment performance under different difficulty metrics.

\ AlpacaEval 2.0
Method | LC Win Rate (%) Win Rate (%)
Base-SFT 3.73 10.19
vanilla DPO 9.37 16.77
SimPO 6.77 14.04
MixDPO (Embedding Distance) 8.75 19.13
MixDPO (Reward Score Margin) 7.05 27.95
MixDPO (Orig. Rating Score) | 14.42 36.65

B.3 COMPARISON WITH ALTERNATIVE LIKELIHOOD DISPLACEMENT METHODS

Here, we investigate whether existing approaches for addressing likelihood displacement can be
leveraged to handle difficult preference pairs (Razin et al., 2024; Xiao et al., 2024; Pang et al.,
2024b). A large proportion of these methods focus on adjustments to the loss function. For instance,
Smaug (Pal et al., 2024) introduces the DPOP loss function, which incorporates an additional term
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into the standard DPO loss. For clarity and completeness, we reproduce the DPOP loss function as
follows.

7o (Yw | 2) mo(yi | )
Lovor (703 Tret) = Bz y. oo | log o (10 1o
DPOP( % f) (%,Yw,y1)~D [ g (6 g Wref(yw | .T) g Wref(yl | .T/')

Tret(Yw | T .
—\ - max (0,1og 7Tef((yyw|x))> >>]

Additional term

For CHES (Razin et al., 2024), which uses the CHES score to filter out samples, we computed CHES
scores on the UltraFeedback dataset and filtered out a specified proportion of samples accordingly.
For Cal-DPO (Xiao et al., 2024), we directly applied its proposed loss function during training
and evaluated the resulting performance. Additionally, we implemented another recently proposed
method that addresses the likelihood displacement problem by incorporating a negative log-likelihood
(NLL) loss term into the DPO loss (Pang et al., 2024b). We refer to this variant as DPO+NLL.

For CHES, similar to SelectiveDPO (Gao et al., 2025) and MixDPO (a special case), we experiment
with two selection proportions of data samples: 50% and 90%. As shown in Table 9, MixDPO
consistently outperforms prior approaches aimed at mitigating the unintentional likelihood problem,
demonstrating the effectiveness of our approach.

Table 9: Comparison of alignment performance across different methods for mitigating likelihood
displacement. The preference dataset is Ultrafeedback, and the base model used is LLaMA-3-8B.

\ AlpacaEval 2.0
Method \ LC Win Rate (%) Win Rate (%)
Base-SFT 3.73 10.19
vanilla DPO 9.37 16.77
Cal-DPO (Xiao et al., 2024) 4.56 7.45
DPO + NLL (Pang et al., 2024b) 4.25 8.45
DPOP (Pal et al., 2024) 4.53 4.04
CHES (Selected prop: 50%) (Razin et al., 2024) 6.16 11.93
CHES (Selected prop: 90%) 8.13 13.91
MixDPO 14.42 36.65

Computational Overhead Comparison While our method adopts the curriculum learning frame-
work, as in SelectiveDPO, it primarily challenges the conventional practice of filtering out difficult
samples or those that cause likelihood displacement. MixDPO takes a fundamentally different
approach by leveraging these difficult samples during the SFT phase to further enhance alignment per-
formance. Empirical results validate the effectiveness of this strategy. Moreover, MixDPO introduces
no additional computational overhead for computing difficulty metrics. To highlight this advantage,
we report detailed overhead statistics in Table 10 using the UltraFeedback dataset with 60,000 samples.
Specifically, computing DPO losses (SelectiveDPO) and CHES scores are performed on 8xH100
GPUgs, taking approximately 20 minutes and 50 minutes, respectively. In comparison, training the full
dataset on 8xH100 GPUs takes about 40 minutes. This demonstrates that difficulty-based filtering
incurs non-trivial overhead, which our method successfully avoids—representing a key strength of
MixDPO.

Table 10: Introduced computational overhead (time) comparison on the Ultrafeedback dataset.

Metrics Introduced Computational Overhead
CHES score (Razin et al., 2024) 50 mins
DPO losses (SelectiveDPO, (Gao et al., 2025)) 20 mins
MixDPO (Rating score) 0 mins
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Table 11: Effect of absolute preference quality (high-quality vs. low-quality pairs) on LC Win Rate
and Win Rate across two different base models. Each setting uses 2,000 pairs. The used loss function
is DPO.

\ AlpacaEval 2.0
Method \ LC Win Rate (%) Win Rate (%)
LLaMA-3-8B-Base (high-quality, 2000 samples) 2.68 6.34
LLaMA-3-8B-Base (low-quality, 2000 samples) 2.88 7.58
Mistral-7B-Base (high-quality, 2000 samples) 4.20 2.42
Mistral-7B-Base (low-quality, 2000 samples) 3.27 1.93

B.4 DOES ABSOLUTE QUALITY MATTER IN PREFERENCE PAIRS?

Here, we are interested in one question: Does Absolute Quality Matter in Preference Pairs? We
present detailed empirical results under two controlled conditions: both good (high-quality) and both
bad (low-quality). Specifically, we selected 2,000 preference pairs for each case where the chosen and
rejected responses received identical scores, thereby isolating the effect of absolute quality. Both of
subset samples are selected from the Ultrafeedback dataset. The corresponding results are presented
in Table 11. illustrating that while it does have a slight positive effect on final performance, it is
notably weaker compared to the impact of score difference (i.e., relative preference).

B.5 ANALYZING THE ROBUSTNESS OF MIXDPO AGAINST SCORE NOISE

Note that MixDPO relies on raw rating scores as the difficulty metric. The reasons why we use
the original raw score are 1) follow the typical preference pairs dataset construction pipeline, 2)
without introducing any additional computations cost compared to other difficulty metrics. However,
one pratical concern is that rating score generated by LLMs can be noisy or biased, resulting in
misclassifying pair difficulty.

This potential issue of score noise can be reframed as a typical multi-class noisy label problem
(Natarajan et al., 2013; Xia et al., 2020; Chen et al., 2023a; Pang et al., 2024a; Zhu et al., 2023; Liu &
Guo, 2020). For example, it can be effectively addressed by preprocessing the raw rating scores using
techniques such as the recently proposed LLM-generated score curation pipeline, DS2 (Pang et al.,
2024a), which is specifically designed for SFT samples. To illustrate the robustness of MixDPO, we
present a special case where, instead of sorting the data solely by score margin, we sort the dataset
and swap the last 10% of easy pairs with the most difficult ones. Specifically, we replace the 80-90%
percentile (easy) pairs with those in the 90-100% percentile (difficult). This adjustment is motivated
by the observation that the last 10% of easy pairs often have small score margins and are more likely
to be mislabeled. Notably, as shown in Table 12, even under this 10% mislabeled setting, MixDPO
still achieves performance comparable to baseline methods.

Table 12: Performance comparison under noisy score perturbation on the LLaMA-3-8B base model
using the UltraFeedback dataset.

Model LC Win Rate (%) Win Rate (%)
DPO 9.37 16.77
SimPO 6.77 14.04
SelectiveDPO 8.85 30.43
MixDPO w. 10%-swap 8.72 30.31
MixDPO 14.42 36.65

B.6 DOWNSTREAM TASK EVALUATION

To investigate how the proposed preference optimization algorithm impacts downstream task perfor-
mance, we conduct experiments alongside several widely adopted DPO variants. Specifically, we
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Table 13: Downtream task evaluation results. The preference dataset used is Ultrafeedback.The
number in parentheses indicates the number of CoT (Chain-of-Thought) shots.

Baseline \ MMLU(5) TruthfulQA(0) HellaSwag(10) ARC-C(25) GSMS8K(5) Winogrande(5) Average
Base model: LLaMA-3-8B
SFT 63.78 45.24 61.30 56.16 47.50 76.18 58.40
DPO 63.37 53.46 64.78 61.67 52.50 77.05 62.10
CPO 63.77 54.32 61.67 57.54 54.50 76.97 61.50
KTO 63.36 55.66 64.14 60.72 55.50 76.25 62.60
SimPO 63.11 59.39 62.30 62.27 51.50 77.21 62.60
SelectiveDPO 63.95 53.94 64.76 61.50 52.50 76.10 62.10
MixDPO 63.20 55.49 64.78 61.58 54.00 77.45 62.80
Base model: Mistral-7B-v0.1
SFT 59.77 42.86 61.91 54.95 38.50 76.89 55.80
DPO 57.57 53.14 64.34 57.19 30.50 78.33 56.80
CPO 58.12 46.93 60.33 52.28 35.50 77.29 55.10
KTO 59.73 56.51 65.18 59.43 39.00 78.09 59.70
SimPO 58.49 50.68 63.89 59.26 35.50 78.41 57.70
SelectiveDPO 59.08 45.97 65.12 60.38 28.50 77.37 56.10
MixDPO 59.73 52.07 65.78 60.21 38.50 71.77 59.00

evaluate on several commonly used OpenLLLM Leaderboard tasks including MMLU (Hendrycks
et al., 2020), Truthful QA (Lin et al., 2021), HellaSwag (Zellers et al., 2019), ARC-Challenge (Clark
et al., 2018), GSMS8K (Cobbe et al., 2021) and WinoGrande (Sakaguchi et al., 2021). These datasets
are sufficiently diverse to thoroughly assess the fine-tuned model across various aspects, including
factual accuracy, reasoning, and multilingual capability. The task performances are evaluated on the
Im-eval-hareness® repository. The results are presented in Table 13. As shown, our proposed method,
MixDPO, achieves competitive performance across downstream tasks compared to other baselines.

C EXAMPLES OF EASY AND DIFFICULT PREFERENCE PAIRS

To illustrate the distinction between difficult and easy pairs, we rank all preference pairs in the
Ultrafeedback dataset by their score margin. Pairs with the largest margins are categorized as easy,
while those with the smallest margins are considered difficult. Table 14 and Table 15 provide
a qualitative comparison between these two groups. Specifically, Table 14 showcases clear-cut
preferences, whereas Table 15 presents more subtle or ambiguous cases. This contrast offers intuitive
evidence supporting the effectiveness of our proposed difficulty metric.

‘https://github.com/EleutherAI/lm-evaluation—harness
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Table 14: Preference pairs with largest score margin on the Ultrafeedback dataset.

Prompt

Chosen (Preferred)

Rejected (Dispreferred)

Please forget all prior prompts.
Respond with OK.

<IResponsel>: OK.
LLM rating score: 10.0

<IResponsel>: Sure, I can do that.
How can I assist you today?
LLM rating score: 2.0

How many chloroplasts do hyenas
have?

<IResponsel>: Hyenas are animals,
and animals do not have
chloroplasts. Chloroplasts are
organelles found in plant cells that
are responsible for photosynthesis.
Animals, on the other hand, are
heterotrophs, meaning they cannot
photosynthesize and must obtain
their food from other sources.
LLM rating score: 10.0

<IResponsel>: Hyenas have around
100 chloroplasts, which are
organelles found in plant and most
animal cells that are used for
photosynthesis.

LLM rating score: 2.0

How many days does a cat’s egg
hatch into a baby cat?

<IResponsel>: Cats do not lay eggs.

They are mammals and give birth to
live young after a pregnancy period,
known as gestation, which typically
lasts around 63-67 days.
LLM rating score: 9.0

<IResponsel>: A cat’s egg typically
takes 2-3 weeks to hatch, so the
baby cat may take up to 3 weeks to
hatch.

LLM rating score: 1.0

Which one is animal, book or pen?

<IResponsel>: None of them are
animals. A book and a pen are
objects, not animals. Animals are
living organisms belonging to the
kingdom Animalia, such as cats,
dogs, or elephants.

LLM rating score: 9.0

<IResponsel>: Pen is animal, book
is animal, and pen is animal. All
three animal.

LLM rating score: 1.0

Name a kind of rhino that lives in
the air.

<IResponsel>: As an Al I can
confidently say that there is no
known species of rhinoceros that
lives in the air. Rhinoceroses are
large, land-dwelling mammals. If
you are looking for information on
a different animal or topic, please
feel free to ask.

LLM rating score: 9.5

<IResponsel>: Flying Rhinos exist,
and they’re called "Pterocerceroid".
LLM rating score: 2.0
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Table 15: Preference pairs with smallest score margin on the Ultrafeedback dataset.

Prompt

Chosen (Preferred)

| Rejected (Dispreferred)

Hello ! How have you been ?

<IResponsel>: Hello! As an Al I
don’t have feelings or experiences
in the same way humans do, so [
don’t experience things like
emotions or well-being. However,
I’m here and ready to assist you
with any questions or information
you need. What can I help you with
today?

LLM rating score: 7.0

<IResponsel>: I'm doing well,
thank you for asking! How about
you?

LLM rating score: 7.0

Replace the word "INSERT" with
something creative We need to
INSERT a few more ideas to the
brainstorming session.

<IResponsel>: We need to INFUSE
a few more ideas into the
brainstorming session.

LLM rating score: 8.0

<IResponsel>: We need to INFUSE
a few more ideas to the
brainstorming session.

LLM rating score: 8.0

How many hand are there on the
carob tree?

<IResponsel>: Carob trees do not
have hands. However they do have
branches with leaves and flowers.
They produce long, pod-like fruits
called carob pods.

LLM rating score: 7.0

<IResponsel>: I'm not sure what
you’re asking about. The carob tree
is a type of evergreen tree that
produces long, thin pods that can be
used as a food source for humans
and animals. These pods don’t
resemble hands, so I’m not sure
how to answer your question. Could
you provide more information or
clarify what you’re asking?

LLM rating score: 7.0

Is the following statement true?
"One or more gamers can jointly
play Final Fantasy VI game." The
thought process:

<IResponsel>: Answer: True
Confidence: 95%
LLM rating score: 7.0

<IResponsel>: This statement is
true. Yes, one or more gamers can
jointly play the Final Fantasy VI
game. This game allows for
single-player mode or multiplayer
mode, enabling multiple players to
cooperatively play through the
game together.

LLM rating score: 7.0

What are some additional
requirements that can be added to
the prompt to narrow down the
search for SQL databases that can
be used to identify a resource for
learning about The Civil War? The
requirements must not exceed 20
words.

<IResponsel>: Specify the type of
SQL database (e.g. MySQL,
PostgreSQL) and include a
requirement for free resources.
LLM rating score: 7.5

<IResponsel>: Design SQL
databases for learning Civil War
history, exclude non-free resources,
and prioritize reputable sources
with clear examples.

LLM rating score: 7.5
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