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ABSTRACT

We introduce a straightforward yet effective method to empirically measure and
regularize memorization in deep neural networks for classification tasks. Our
approach augments each training sample with auxiliary random labels, which
are then predicted by a random label prediction head (RLP-head). RLP-heads
can be attached at arbitrary depths of a network, predicting random labels from
the corresponding intermediate representation and thereby enabling analysis of
how memorization capacity evolves across layers. By interpreting the RLP-head
performance as an empirical estimate of Rademacher complexity, we obtain a direct
measure of both sample-level memorization and model capacity. We leverage
this random label accuracy metric to analyze generalization and overfitting in
different models and datasets. Building on this approach, we further propose
a novel regularization technique based on the output of the RLP-head, which
demonstrably reduces memorization. Interestingly, our experiments reveal that
reducing memorization can either improve or impair generalization, depending on
the dataset and training setup. These findings challenge the traditional assumption
that overfitting is equivalent to memorization and suggest new hypotheses to
reconcile these seemingly contradictory results.

1 INTRODUCTION

Modern deep learning models are prone to overfitting due to their extreme over-parameterization
(Nakkiran et al., 2021). A wide range of strategies have been proposed to mitigate this issue, including
data augmentation, explicit regularization, and dataset scaling. Although enlarging training datasets
has proven particularly effective, this approach is often infeasible in domains where data acquisition
or annotation is expensive or requires significant human expertise. Moreover, existing strategies
primarily address practical concerns of generalization but provide limited insight into the mechanisms
by which overfitting arises.
Recent work highlights the striking memorization capacity of state-of-the-art models. For instance,
Zhang et al. (2021) demonstrate that modern architectures can perfectly fit datasets with randomly
assigned labels, thereby achieving 100 % training accuracy in the absence of any learnable structure.
In such cases, high accuracy is attainable only through memorization of individual training samples,
underscoring that contemporary artificial neural networks (ANNs) can encode sample-specific and
task-irrelevant information to fit each training sample individually.
This ability to memorize arbitrary labels is directly connected to the model complexity. In particular,
training with SGD on random labels empirically approximates Rademacher complexity, which plays
a central role in deriving generalization bounds within the PAC-learning framework.
The primary objective of this work is to assess the accuracy of predicting random labels as a practical
metric of memorization. Although direct training on random labels reveals a model’s ability to
memorize, this procedure does not intrinsically inform how memorization interacts with generalization
in real-world tasks and does not allow memorization mitigation. To bridge this gap, we propose a
hybrid approach: we augment the network with an additional Random Label Prediction Head (RLP-
head), attached to the feature extractor (i.e., all layers except the final classification layer) in parallel to
the original task head, which remains unchanged. This design enables simultaneous measurement and
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regularization of memorization during normal training, thereby providing a controlled way to study
and modulate memorization in deep neural networks. In summary, our contribution is as follows:

• We propose the use of random label prediction heads (RLP-heads) as a tool for probing
layer-wise memorization in deep neural networks.

• We validate that the random label accuracy derived from RLP-heads is an accurate measure
for complexity and memorization.

• We propose a novel regularizer that explicitly constrains memorization by penalizing the
performance of the RLP-head during training.

• Building on our metric and regularizer, we show how memorization can hinder or, in certain
scenarios, facilitate generalization. We further hypothesize that this dual role is driven by
sampling effects in the training data.

2 RELATED WORK

The phenomenon of data memorization, although not new, gained renewed attention in the era of
modern deep learning with the works of Zhang et al. (2021) and Arpit et al. (2017). Traditionally,
memorization was associated with model capacity and overfitting, and hence viewed primarily as
a source of poor generalization. This view of capacity being responsible for overfitting has been
challenged by the discovery of the double descent phenomenon (Nakkiran et al., 2021), which reveals
a more nuanced relationship between capacity and generalization.
Feldman (2019) formalize memorization as the ability of a model to correctly predict a label only
if the sample was present in the training data. Their analysis suggests that the key obstacle to
generalization is not label noise but suboptimal sampling, with many regions of the data distribution
undersampled or represented by only a single example. We compare our proposed memorization
metric in detail to the work of Feldman & Zhang (2020) in Appendix A.12. Even though these
atypical examples in so-called long-tailed data distributions are memorized individually to reach
high training performance, this memorization leads to improved generalization of the network (cf.
Feldman & Zhang (2020)).
Building on this perspective, Baldock et al. (2021) observe that deep models first capture simple
patterns shared across many examples, before gradually fitting more complex patterns that may be
unique to a small subset of the data or even example-specific. A similar observation can be found in
Liu et al. (2020), where the authors develop a framework to leverage that property to be able to learn
in noisy scenarios. Bayat et al. (2024) argue that memorization is not inherently detrimental, but
rather depends on factors such as data quality and learning dynamics. They introduce the notion of
an example-specific feature rate, showing that excessively high rates prevent models from capturing
the underlying distribution, while excessively low rates encourage the learning of overly complex
representations, leading to catastrophic overfitting.
Subsequent work examined memorization, including studies by Carlini et al. (2019) and Yun et al.
(2019), with particular attention to the effects of heavy overparameterization (Zhang et al., 2020)
and minimal overparameterization (Daniely, 2020). Another line of research examines where memo-
rization occurs within a network. For instance, Maini et al. (2023) demonstrate that memorization
is localized across layers and even within specific neurons. Our approach is closely aligned with
this perspective: by attaching RLP-heads at different layers, we obtain a direct means of localizing
memorization.
Memorization effects are particularly pronounced in large-scale language models, where they raise
significant privacy concerns if training data can be extracted from the models, as highlighted by
Tirumala et al. (2022) and Carlini et al. (2021). Efforts to improve generalization and mitigate data
memorization have largely focused on general-purpose regularization methods, such as dropout
(Srivastava et al., 2014) and weight decay (Krogh & Hertz, 1991). However, to the best of our
knowledge, no existing approach explicitly regularizes memorization itself, as we propose in this
work.
Close related challenges arise in the context of fair AI, where suppression of unwanted or spurious
features is critical to prevent models from encoding biases related to attributes such as gender, ethnic-
ity, or religion (Mehrabi et al., 2021; Tian et al., 2022; Wang et al., 2020; Zhang et al., 2018a). We
take technical inspiration from this field to develop our memorization suppressing regularizer. Finally,
our interpretation of random label accuracy as a proxy for information abstraction bears conceptual
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resemblance to mutual information frameworks, which have been applied to analyze ANNs (Gabrié
et al., 2018).

3 BACKGROUND: RADEMACHER COMPLEXITY

We take inspiration from the Rademacher complexity measure to motivate our empirical metric.
Rademacher complexity is a fundamental tool in statistical learning theory, quantifying the expressive
power of a model (or hypothesis class) by measuring its ability to fit random labels. In the case of
binary classification, it can be defined as follows:
(Empirical) Rademacher complexity for Binary Classification (Mohri et al., 2012): Given a
hypothesis class H and train data S = {(x1, σ1), ..., (xm, σm)}, where σ1, ..., σm ∈ {±1} are i.i.d.
uniform random variables:

R̂S(H) = Eσ

[
sup
h∈H

1

m

m∑
i=1

σih(xi)

]
(1)

In binary classification, the agreement between a model’s prediction and the true label can be quan-
tified by the product of the label and the model output. While this measure is closely related to
accuracy, it is inherently restricted to the binary setting and does not naturally extend to multi-class
classification. The hypothesis h is chosen as a supremum over the hypothesis class, which in practice
can be approximated via empirical risk minimization (e.g., with optimizers such as SGD or Adam).
However, the presence of the supremum makes the exact evaluation of Rademacher complexity
intractable in practical settings.
Importantly, it is model-agnostic, and therefore explicitly independent of architectural details includ-
ing depth, width, and the total number of parameters. Instead, it captures the capacity of a model
through its ability to fit random labels. Within the PAC-learning framework, this quantity is central to
deriving bounds on the generalization error. In particular, for binary classification, the generalization
error can be bounded as:
Theorem 1. Given a hypothesis class H, training data S = {(x1, σ1), ..., (xm, σm)}, with
σ1, ..., σm ∈ {±1}, then for any δ > 0, with probability at least 1 − δ for any h ∈ H it holds
that

R(h) ≤ R̂S(h) + R̂S(H) + 3

√
log(2/δ)

2m
.

Where R̂S(h) denotes the empirical error on the training dataset (Mohri et al., 2012). This bound
implies that, for fixed training performance, a reduction in Rademacher complexity directly translates
into improved test performance bounds and thus tightens limits on the generalization error. While
Rademacher complexity provides a theoretically powerful framework for characterizing the capacity
of hypothesis classes, its exact computation for state-of-the-art deep learning models is infeasible.
Inspired by this theoretical foundation, we will derive an empirical alternative to Rademacher
complexity, suited for real-world training tasks, thereby enabling the study of the relation between
memorization and generalization in practical deep learning settings.

4 RANDOM LABEL PREDICTIONS AND REGULARIZATION

Rather than training an entire network on random labels, as explored in prior work, we introduce
an auxiliary Random Label Prediction Head (RLP-head) that predicts a randomly assigned label
in parallel with the standard classification task. Concretely, the proposed architecture outputs both
the task prediction vector p ∈ RN and an additional random label prediction vector p̂ ∈ Rn. While
the number of task classes N is determined by the dataset, the number of possible random labels n
can be chosen arbitrarily. The RLP-head may be attached at different locations within the network.
Unless otherwise specified, we place it after the penultimate layer, in parallel with the standard
classification head. This choice is natural since the penultimate activations correspond to the final
stage of the feature extractor, and the RLP-head thereby probes the extent of memorization within the
learned final representation.
Random labels are generated once at the beginning of the training and remain fixed across epochs for
each sample. Only the RLP-head receives gradients from the random label objective, ensuring that
the normal classification head is unaffected. Consequently, our method enables probing memorization
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without affecting normal task performance.
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Figure 1: An additional Random Label Prediction
Head (RLP-head) is added after the feature extrac-
tor of the network. Only the RLP-head receives
Lrnd, the random label prediction loss, whereas
the regularizing loss Lreg is calculated on the RLP-
head but acts on the feature extractor only.

In order to train the RLP-head we introduce
an auxiliary cross-entropy loss on the random
labels, Lrnd, in addition to the standard classifi-
cation loss, Lclass, where y denotes the correct
class label and ŷ the assigned random label:

Lclass = −
N∑
i=1

δiy log(pi) = − log(py) (2)

Lrnd = −
n∑

i=1

δiŷ log(p̂i) = − log(p̂ŷ) (3)

By default, we implement the RLP-head as a
single fully-connected layer followed by a soft-
max activation. Nevertheless, the architecture
of the RLP-head is flexible, and more complex
variants can be used (see Appendix A.6 for re-
sults with a two-layer head).
Training the RLP-head on random labels in par-
allel with the main task enables to directly regu-
larize memorization during standard training. Since we interpret the accuracy of the random label
prediction head as an empirical proxy of the Rademacher complexity, regularizing the random label
predictions provides a means of constraining the effective complexity of the model.
Therefore, we introduce a regularization loss term that penalizes correct predictions of the random
labels by the RLP-head. Specifically, this loss is derived from the standard cross-entropy formulation:

Lreg =

n∑
i=1

δiŷ log(1− p̂i) = log(1− p̂ŷ). (4)

Compared with standard cross-entropy, we invert the sign of the loss, since the regularizer is designed
to prevent the network from learning the random labels. Furthermore, we replace p̂i with 1 − p̂i
inside the logarithm, which amplifies the penalty when p̂i ≈ 1. This ensures that highly confident
predictions of random labels are penalized more strongly. The resulting regularization term is scaled
by a tunable hyperparameter λ and added to the loss of the feature extractor.
Although the regularization loss is computed using the RLP-head, its gradients are restricted to the
feature extractor. Accordingly, the classification head remains unaffected during RLP-regularization.
A schematic of the proposed architecture is provided in Figure 1. Conceptually, the RLP-head and
the feature extractor form two adversarial components: the RLP-head attempts to fit the random
labels, while the feature extractor is regularized to prevent this from happening. This adversarial
setup encourages the feature extractor to produce representations that are less example-specific and
do not allow memorization of specific inputs. The proposed regularizer is, therefore, used here as a
tool to investigate the effects of memorization in different parts of the network.

5 EXPERIMENTS

Details of our experimental setup can be found in Appendix A.1.

5.1 LEARNING RANDOM LABELS

Throughout this section, we analyze the training of the RLP-head, such that it serves solely as a
metric and does not influence network performance (i.e., λ = 0). Figure 2A shows the test and train
accuracy of the classification head alongside the random label accuracy extracted from the RLP-head
for ViT-B/32 trained on ImageNet. Around epoch 20, test and train accuracies begin to diverge,
indicating the beginning of overfitting. Notably, the random label accuracy starts to rise slightly
earlier, reaching approximately 70 % by the end of training. This shows that, even when trained
exclusively on correct class labels, the model memorizes a substantial portion of the dataset enough
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for a single fully-connected layer to correctly predict random labels. The fact that random label
accuracy does not approach 100 % may reflect that the chosen network architecture does not have
sufficient capacity to fully memorize the dataset, consistent with the training accuracy plateauing at
roughly 93 %.
Since we train the RLP-head together with the main classifier, we cannot tell whether its low
early-epoch accuracy is due to the RLP-head not having been trained long enough or because the
network has not yet memorized many samples. To disentangle these effects, we performed an
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Figure 2: ViT-B/32 on ImageNet. A: The proposed single fully-connected layer as RLP-head is
sufficient to correctly predict approx. 70 % of the random labels, indicating that the feature extractor
memorizes a substantial portion of the training set. B: Even after freezing the feature extractor,
RLP-head attains low accuracy in the early epochs, confirming that the default RLP-head approach
reliably tracks the evolution of memorization dynamics during training. C: Random label accuracy
when attaching the RLP-head at various network depths. The higher accuracy observed in deeper
layers indicates that increasingly abstract representations still retain sample-specific information
allowing for memorization.

additional experiment with two different modes of training the RLP-head shown in Figure 2B. Default
refers to training the RLP-head in parallel with the main task, as described previously. Frozen refers
to freezing all layers except the RLP-head at checkpoints saved after each epoch, and subsequently
training (only) the RLP-head from scratch. For all frozen runs, the RLP-head is initialized with the
same parameters and trained on the same fixed set of random labels. This setup ensures that the
RLP-head receives sufficient and equal training capacity at each epoch. At epoch 0 (random weights),
the frozen training fails to fit the random labels, indicating that the signal measured by the default
training actually stems from memorization learned by the feature extractor during training and not
from limitations of the RLP-head. Although this frozen training does not allow for regularization
and is computationally very demanding, it is shown here to validate the suitability of our proposed
default training method.
We further investigate where memorization occurs within the network by attaching a separate
RLP-head consisting of a normalization layer, a fully-connected layer and a softmax layer after
each transformer block of a ViT-B/32 trained on ImageNet (Figure 2C). The random label accuracy
increases with the network depth: After the first layer nearly 0 % of the random labels can be predicted
correctly, while high accuracies are reached in later layers. Similar to the previous experiment, this
dependency shows that the RLP-head does not itself memorize the input sample but instead reflects
the representational properties of the network. After the first layer, where only minimal processing
occurred, the activations retain a significant amount of sample-specific information. Interestingly,
this does not lead to an increased random label accuracy. Instead, high random label accuracies are
reached only after sufficient abstraction of the features, showing that the abstracted features are still
sample-specific and lead to memorization.

5.2 RELATION TO OTHER COMPLEXITY REGULARIZERS

We propose to use the accuracy of the RLP-head as a proxy for model complexity, providing an
empirical approximation to Rademacher complexity. To validate this interpretation, we evaluate our
metric under three well-established regularization strategies, namely dropout, weight decay, and label
smoothing. As illustrated in Figure 3, each of these regularizers consistently suppresses random label
accuracy, confirming the correlation of the random label accuracy with model complexity.
We further support this correlation by studying the impact of the model size on the random label
accuracy in Appendix A.9. We also use the random label accuracy to demonstrate that mixup reduces -
but does not fully eliminate - memorization in Appendix A.16. Additional experiments with ViT-S/32
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on ImageNet comparing the proposed random label accuracy against measuring memorization via
noisy labels for different regularizers can be found in Appendix A.14.
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Figure 3: WRN16-4 on CIFAR-100. The effect of common complexity regularizers can be measured
with the proposed metric. A: Dropout. B: Weight decay. C: Label smoothing.

5.3 REGULARIZING RANDOM LABELS

We can use the RLP-head to explicitly regularize the memorization of the network. To accomplish
this, we apply the loss term defined in Equation 4 and search for an optimal regularization factor λ.
We report results for ViT-B/32 on ImageNet in Figure 4 and WideResNet-16-4 on CIFAR-100 in
Figure 5. We find that RLP-regularization effectively suppresses memorization in both experimental
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Figure 4: ViT-B/32 on ImageNet. Random label, train and test accuracy under RLP-regularization for
different regularization factors λ. RLP-regularization effectively reduces memorization, and leads to
better generalization (smaller test-train gap) and test performance.
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Figure 5: WideResNet-16-4 on CIFAR-100. Random label, train and test accuracy under RLP-
regularization for different regularization factors λ. Here, RLP-regularization effectively reduces
memorization, but does not improve generalization.

settings reducing the random label accuracy down to the level expected from random guessing.
On ImageNet with ViT, this effect translates into improved generalization: while training accuracy
decreases, test accuracy increases, reaching a peak of 68.5 % at λ = 104, which corresponds to a gain
of 1.5 % over the baseline. The simultaneous drop in training accuracy further narrows the train–test
gap, confirming the effectiveness of RLP-regularization to reduce overfitting. These observations
align with predictions from PAC-learning theory based on Rademacher complexity, as well as the
intuition that memorization causes overfitting and harms generalization.
Interestingly, these findings do not hold for our experiments for WideResNet-16-4 on CIFAR-100.
Instead, the training accuracy remains unaffected, while the test accuracy deteriorates even for small
regularization factors. These deviations from classical theory are consistent with recent findings,
e.g., by (Nakkiran et al., 2021), which highlight the distinct dynamics of modern overparameterized
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networks. Our results suggest that the relationship between memorization and generalization is more
nuanced than traditional theory predicts, which we study further in the following sections.

5.4 UNDERSAMPLED DATASETS BENEFIT FROM MEMORIZATION

Based on our findings and drawing on insights from Feldman (2019) and Bayat et al. (2024), we
hypothesize two distinct memorization scenarios that reconcile the apparent contradictions with the
classical view of overfitting.
Memorization corresponds to the adoption of features that are highly specific to individual samples.
Suppressing memorization prevents the learning of sample-specific features, forcing it instead to focus
on features shared across examples of the same class. When sufficient samples are available, this
results in learning features of the underlying true data distribution leading to increased generalization
(cf. Figure 6A). Without memorization, training accuracy decreases because the network may fail to
fit atypical samples, especially those that share few features with other samples in the same class, such
as noisy or mislabeled samples. We hypothesize that this mechanism explains the observed behavior
on ImageNet (Figure 4). However, when the dataset is undersampled and memorization is suppressed,

Undersampled

Reduced
Generalization

Sufficiently Sampled
High Memorization Low Memorization

Improved
GeneralizationData Distribution

Learned Solution

Data Samples

High Memorization Low Memorization

Figure 6: Schematic illustration of how memorization can be either detrimental or benign depending
on dataset sampling. Under memorization, the model learns sample-specific solutions (depicted as
small isolated regions around individual samples). In contrast, suppressing memorization encourages
the discovery of a single connected solution space that better captures class-level structure while
excluding outliers such as noisy or mislabeled labeled samples.

the shared features learned across class samples may fail to reflect the true data distribution and
instead capture arbitrary artifacts of the insufficient sampling. In this case, suppressing memorization
forces the network to rely on these spurious shared features, which degrades generalization. New,
unseen samples may still resemble individual memorized training examples but are unlikely to share
the learned spurious features shared by training examples from undersampled regions of the true data
distribution (cf. Figure 6B). We hypothesize that this mechanism explains the behavior observed
on CIFAR-100 (Figure 5). In line with this view, we find the same effect (reduced random label
accuracy, stable training accuracy, and degraded test accuracy) when applying the RLP-regularizer to
ViT trained on CIFAR-100 (Appendix A.3).
To further test this hypothesis, we study the impact of dataset size by training ViT-B/32 on subsets of
ImageNet while keeping the experimental setup fixed. As shown in Figure 7, our regularizer improves
test accuracy only when large fractions of the dataset are available. The conventional intuition that
memorization is always detrimental would suggest that reducing memorization should be even more
beneficial on smaller datasets, where higher memorization (as observed by higher random label
accuracy) occurs. Our experiment thus provides evidence in support of our hypothesis of beneficial
memorization effects for undersampled datasets.
We perform an additional experiment where we inject label noise into the training dataset and apply
the RLP-regularizer. Since noisy labels cannot contribute positively to generalization and can only be
fit through memorization, our regularizer should consistently improve test performance in this setting.
This prediction is confirmed in Figure 7C.
Related findings were also reported by Feldman (2019), who argue that memorization in sparsely
sampled regions of the data distribution (i.e., the long tail) can actually enhance generalization.
Because the proposed RLP-regularizer directly suppresses memorization, we apply it to the ImageNet-
LT dataset (Liu et al., 2019b) to demonstrate in Appendix A.19 that classes in the long tail (i.e., those
with few training samples) can no longer be predicted correctly when memorization is inhibited.
Taken together, our experiments highlight both detrimental and beneficial aspects of memorization
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and demonstrate that RLP-heads, along with the derived regularizer, provide an effective framework
for probing and controlling these dynamics.
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Figure 7: ViT-B/32 on ImageNet. A+B: Random label and test accuracy when training on reduced
dataset fractions (DF) of ImageNet. Although smaller training sets lead to stronger memorization
(higher random label accuracy), suppressing memorization on them does not improve test accuracy.
C: Test accuracy with added label noise under RLP-regularization. Since memorization of noisy
labels hinders generalization, our regularizer yields substantial improvements.

5.5 RLP-REGULARIZATION SHIFTS MEMORIZATION

To further understand the effects of the RLP-regularizer, we analyze memorization across different
layers of the network. We attach additional RLP-heads after each layer of a vision transformer, as
described above. Figure 8A shows the resulting random label accuracy across layers for varying
regularization strengths.

1 2 3 4 5 6 7 8 9 10 11 12

Layer

0%

20%

40%

60%

80%

R
an

do
m

La
be

lA
cc
ur
ac
y

A

1 2 3 4 5 6 7 8 9 10 11 12

Layer

0%

20%

40%

60%

80%

R
an

do
m

La
be

lA
cc
ur
ac
y

B

010−3 10−2 10−1 100 101 102 103 104 105

Reg Factor λ

58%

60%

62%

64%

66%

T
es
t
A
cc
ur
ac
y

C

λ = 0
λ = 1e4

λ = 1e-2
λ = 1e5

λ = 1e-1
λ = 2e5

λ = 1e0
λ = 5e5

λ = 1e2λ = 0
λ = 1e4

λ = 1e-2
λ = 1e5

λ = 1e-1
λ = 2e5

λ = 1e0
λ = 5e5

λ = 1e2

Figure 8: ViT-B/32 on ImageNet. A: Random label accuracy of RLP-heads at different layers when
only the final (12th) layer is used for RLP-regularization. Memorization shifts toward earlier layers.
B+C: RLP-regularization is calculated based on RLP-heads attached to all 12 transformer layers.
While this effectively suppresses memorization and prevents the shift, neither test accuracy nor
generalization improve.

The RLP-regularization is only applied based on the RLP-head attached to the final (12th) layer.
Consequently, the random label accuracy drops rapidly for this last layer with increasing regularization.
RLP-heads near the regularized final layer, particularly layers 10 and 11, are also affected. In contrast,
earlier layers exhibit the opposite effect: RLP-heads attached to layers 2 to 6 achieve higher random
label accuracies under regularization. This indicates that while memorization is mitigated in the last
layer, it is shifted to earlier layers rather than eliminated. We hypothesize that, in response to the
RLP-regularizer, the network transforms sample-specific features into class-relevant information in
earlier layers, thereby enabling memorization to persist while being undetected by the regularizing
RLP-head attached to the final layer.
To test this hypothesis, we conduct an additional experiment, adding a classification head to each
transformer layer trained to predict the class label. This setup enables tracking the transformation
from sample-specific features to class information throughout the network. Figure 9 shows the
resulting class, train, and test accuracies under RLP-regularization based on the final layer. While
class accuracy decreases in the last layer and the penultimate layer (11), we observe increased
accuracy in earlier layers for both training and test data. Remarkably, test accuracies at layers 10
and 11 even surpass those of layer 12 (Figure 9C), indicating that regularization not only shifts
memorization and classification capabilities but can also improve generalization in earlier layers.
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This supports the hypothesis that RLP-regularization shifts the transformation into class-specific
information to earlier layers.
Next, we examine the effect of suppressing memorization when using all attached RLP-heads for our
regularization. As shown in Figure 8B, this effectively reduces random label accuracy at all layers,
even for modest regularization strengths. However, this does not translate into improved test accuracy
(Figure 8C). We hypothesize that applying RLP-regularization to all layers constitutes an overly harsh
intervention: Extraction of sample-specific features in early layers may be useful even when these
features do not lead to direct memorization. Moreover, some degree of memorization may persist
within a transformer block itself, being hidden to the respective RLP-head attached at its end. We
further study this hypothesis in Appendix A.20.
Additionally, we study the influence of the regularizer when the loss term is constructed from a single
RLP-head attached to an intermediate layer in Appendix A.10.

0 103 104 105

Reg Factor λ

20%

40%

60%

80%

A
dd

.
C
la
ss

T
ra
in

A
cc
ur
ac
y

A

0 103 104 105

Reg Factor λ

10%

20%

30%

40%

50%

60%

70%

A
dd

.
C
la
ss

T
es
t
A
cc
ur
ac
y

B

0 103 104 105

Reg Factor λ

67.0%

67.5%

68.0%

68.5%

A
dd

.
C
la
ss

T
es
t
A
cc
ur
ac
y

C

layer = 1
layer = 7

layer = 2
layer = 8

layer = 3
layer = 9

layer = 4
layer = 10

layer = 5
layer = 11

layer = 6
layer = 12

layer = 1
layer = 7

layer = 2
layer = 8

layer = 3
layer = 9

layer = 4
layer = 10

layer = 5
layer = 11

layer = 6
layer = 12

Figure 9: ViT-B/32 on ImageNet. Similar to the RLP-heads, we attach additional classification heads
to the outputs of all layers in a ViT to track the transformation from sample-specific features to class
predictions throughout the network. When applying RLP-regularization to the final (12th) layer only,
class prediction accuracy increases in the earlier layers and test performance improves across all
layers. A: Train accuracy. B: Test accuracy. C: Zoomed-in view of test accuracy.

6 CONCLUSION

We have introduced an effective method to measure and regularize memorization in deep neural
networks: random layer prediction heads (RLP-heads), which can be attached to any (intermediate)
network activation. Motivated as an empirical approximation of Rademacher complexity, we demon-
strated that random label accuracy serves as a valid metric for network complexity and memorization.
This metric enables the study of both the temporal (i.e., during optimization) and spatial (i.e., across
layers) dynamics of memorization within a network. Based on the RLP-heads, we derived a regular-
ization method to explicitly mitigate learning of sample-specific features and in consequence stop
memorization.
Our experiments show that memorization can be either beneficial or detrimental for generalization
deep neural networks. We propose a hypothesis to explain this counterintuitive effect based on dataset
sampling and support it with targeted experiments. Moreover, applying the memorization regularizer
to the final layer shifts both abstraction of class-level representations and memorization into earlier
layers, resulting in a network that achieves better generalization after fewer layers.
Our findings highlight the value of RLP-heads and RLP-regularization for studying memorization
and suggest their broader potential for empirical analysis of deep learning mechanisms.
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REPRODUCIBILITY STATEMENT

For all experiments, we report complete results, including the outcomes of all hyperparameter
searches. Details on training configurations are provided in Appendix A.1. The source code is
included in the supplementary material and will be released publicly upon acceptance.

LLM USAGE

Large language models (LLMs) were used exclusively to assist in refining the phrasing of certain
sentences and improving the clarity of formulations in this manuscript. At no point were LLMs
employed for data analysis, generation of scientific content, or drawing conclusions. All scientific
claims, results, and interpretations are the sole work of the authors.
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APPENDIX

A.1 EXPERIMENTAL SETUP

In the main text we focus on two evaluation scenarios:

1. WideResNet-16-4 (Zagoruyko & Komodakis, 2016) on CIFAR-100 (Krizhevsky & Hinton,
2009) trained with SGD with momentum µ = 0.9, a linear learning rate warm up in the first
epoch followed by a cosine decay with base learning rate of η = 0.5 and a batch size of
256 trained for 200 epochs without additional regularization or data augmentation. We use
n = 10,000 as the number of (different) random labels.

2. ViT-B/32 (Dosovitskiy et al., 2021) on ImageNet-1k (Deng et al., 2009) trained with AdamW
(Loshchilov & Hutter, 2019) and learning rate warm up for eight epochs followed by a
cosine decay with base learning rate of η = 0.001 and a batch size of 1024 trained for 90
epochs with flipping augmentation, gradient clipping (ℓ2max = 1.0) and weight decay of 0.1.
We use n = 100,000 random labels.

A full implementation comprising all models and configuration files is available at https://URL.

A.2 SANITY CHECK: SHUFFLED RANDOM LABELS

To validate that the observed increase of generalization actually stems from the mitigated memo-
rization and is not a mere artifact, e.g., caused by effects on the scale of the feature activations, we
perform a simple sanity check. We reshuffle all random labels in each epoch. Thus, the random labels
cannot be learned and cannot serve as a metric for memorization. Consequently, the RLP-regularizer
also does not explicitly reduce the memorization, while all other implicit effects of the regularizer
remain. Results compared to our initially proposed RLP-regularization are shown in Figure A.1. As
expected, the random label accuracy remains approximately at the chance of random guessing 1/n.
The train accuracy exhibits only a minor drop for high regularization factors. The test accuracy does
not improve and is only affected by high regularization factors where the performance drops. This
validates that the observed regularization is an effect of the mitigated memorization.
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Figure A.1: ViT-B/32 on ImageNet. As a sanity check we compare the regularization results for fixed
random labels (as before) to random labels shuffled in each epoch.

A.3 VIT ON CIFAR-100

In section 5.3, we found opposing effects caused by memorization mitigation for our two experiments
performed with ViT on ImageNet and with WideResNet on CIFAR-100. To clarify if the two ob-
served effects are caused by the different model architectures or datasets, we perform an additional
experiment where we study a ViT-S/4 trained on CIFAR-100. Results are shown in Figure A.2. Mem-
orization is effectively stopped for regularization factors λ > 10−1. Similarly to our experiments with
WideResNet on CIFAR-100, we observe a detrimental effect of reducing memorization (unaffected
training accuracy and reduced test accuracy) indicating the dataset to be pivotal for the different
effects of memorization as we further examine in section 5.4.
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Figure A.2: ViT-S/4 on CIFAR-100 with RLP-regularization.

A.4 NUMBER OF RANDOM LABELS

In Figure A.3 we analyze the effect of the number of different random labels n when using a linear
RLP-head. The input to the random prediction head, i.e., the feature dimension, stays constant
and since the output of the linear layer is given by the number of random labels n, the capacity of
the prediction head is directly tied to the number of random labels. Two intuitive implications can
be directly observed from Figure A.3: The probability to reach high values by chance decreases
with increasing n, i.e., the task to predict the random labels gets harder, and the capacity of the
RLP-head grows with increasing n, i.e., the capability of the RLP-head to solve the given task
increases. As a result, the reached random label accuracy undergoes a minimum before it approaches
full memorization and saturates. From this experiment, we conclude that the number of random
labels must be sufficiently large to ensure that the RLP-head has enough capacity to measure the
models memorization. However, increasing the number of random labels n also substantially raises
computational costs. Balancing these considerations, we set n = 10,000 for WideResNet experiments
on CIFAR-100 and n = 100,000 for ViT experiments on ImageNet.
To further validate our design choice on ImageNet, we additionally study the case where each training
sample is assigned a unique random label (i.e., n = m = 1,281,167), and analyze the resulting effect
of RLP-regularization in Appendix A.5.
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Figure A.3: Linear RLP-head. A sufficiently large number of random labels n and thus head size
has to be chosen. A: WRN16-4 on CIFAR-100. B: ViT-B/32 on ImageNet. The minimum is barely
observable because the data starts at n = 256.

A.5 UNIQUE LABEL PER SAMPLE

We compare our proposed random label formulation with the alternative of assigning a unique label to
each sample. While the latter is computationally very expensive, it provides a direct measure of single-
sample memorization. As shown in Figure A.4, unique labels yield higher memorization accuracy,
due to the increased predictive capacity of the linear RLP-head. However, we observe no qualitative
differences compared to our proposed approach with n = 100,000 labels. For computational
efficiency, we adopt the latter approach in our experiments.
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Figure A.4: ViT-B/32 on ImageNet. Using a unique label per sample when applying RLP-
regularization (i.e., n = m = 1,281,167) compared to n = 100,000 used in the main paper.

A.6 TWO-LAYER HEAD

As shown in the last section (Appendix A.4) the RLP-head capacity and the number of random labels
n are tied together for a linear head. To disentangle these two effects, we extend the RLP-head by
adding a hidden fully-connected layer. We keep the number of labels constant at a rather small value
in the experiment depicted in Figure A.5 (n = 10), and only influence the RLP-head capacity by
varying its hidden feature dimension dh. As can be seen, the RLP-head is now able to recover a
much higher amount of random labels from the output of the corresponding feature extractor for a
sufficiently large dh, compared to the setting without a hidden layer in the RLP-head.
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Figure A.5: A: WideResNet-16-4 on CIFAR-100. B: ViT-B/32 on ImageNet. RLP-head with one
hidden layer. Number of random labels n = 10. Increasing the capacity of RLP-head leads to
correctly predicted random labels.

Additionally, we do a sensitivity analysis on both the regularization strength controlled by λ and the
hidden layer size dh for WideResNet-16-4 on CIFAR-100. As shown in Figure A.6C small hidden
layer dimensions have less impact on the test accuracy; however, the RLP-head is not capable to
correctly predict the random labels under these conditions (see Figure A.6A). Larger RLP-heads
do predict the random labels correctly and are thus sufficiently powerful to measure the network’s
memorization, but are similarly detrimental to the models generalization. Adding a hidden layer to
the RLP-head used for regularization neither improves generalization nor yields qualitatively new
insights. We therefore use a linear RLP-head.
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Figure A.6: WideResNet-16-4 on CIFAR-100. RLP-head with one hidden layer, n = 100.
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A.7 DATASET SIZE

Having studied the influence of the RLP-head in previous sections (Appendix A.4 and Appendix A.6),
we aim to study the influence of the dataset size while maintaining the number of random labels and
the capacity of the RLP-head constant now. We thereby ablate the influence of the dataset size on the
difficulty of random label prediction task. We randomly sample subsets from CIFAR-100 in order
to construct several smaller datasets and use a small RLP-head with n = 1024. As shown in A.7,
the RLP-head is only able to predict the random labels correctly for small dataset sizes. Since we
showed before that a large RLP-head can reach 100 % random label accuracy on the full dataset, the
reduced random label accuracy is caused by the limited size of the RLP-head. We conclude from this
experiment, that the needed RLP-head size to obtain adequately measure the memorization in the
network grows with the dataset size.
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Figure A.7: WideResNet-16-4 on CIFAR-100. Dependence of random label accuracy on the dataset
size for a small linear RLP-head of size n = 1024. The original dataset size of 50,000 training
samples of CIFAR-100 is reduced by sampling random subsets.

A.8 MULTI-HEAD RLP

While we aim to measure single-sample memorization, we chose to generate a number of n random
labels for m total training samples, i.e., m/n samples per random label, where usually n ≪ m.
For instance, we chose n = 100,000 for the m = 1, 281, 167 samples of ImageNet leading to
approx. 12 images which attain the same random label. This results in the RLP-regularizer to only
be able to effectively suppress features which are shared by parts of these random subsets of input
images. While setting n = m (that is, learning an individual random label per sample) is studied in
Appendix A.5, this is not computationally feasible in practical scenarios. However, in the setting
n ≪ m, it is harder for the RLP-head to identify sample-specific features (as opposed to those shared
in the random groups of images with the same random labels). This might allow the network to
memorize sample-specific features even though the RLP-regularizer is applied. To circumvent this
problem, we add multiple parallel RLP-heads receiving different sets of random labels. The total
regularization loss is the average of the individual regularization losses per RLP-head. This way, a
Multi-Head-RLP is developed which we hypothesize to be more powerful in identifying the networks
memorization. However, it is computationally more demanding. As shown in Figure A.8, the number
of heads in a multi-head setting does not impact the random label or train accuracy, but interestingly,
yields even higher test accuracy, reaching 69.2 % for 10 heads and λ = 104.
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Figure A.8: ViT-B/32 on ImageNet. RLP-head used for regularization comprised of multiple parallel
linear layers, each receiving a different mapping from random labels to input images. The multi-head
structure results in improved generalization.
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A.9 FEATURE EXTRACTOR SIZE

To validate the proposed random label accuracy as a capacity metric, we analyze the impact of
the feature extractor size on this measure. Specifically, we report the random label accuracy when
training WideResNet-16-w models with varying widening factors w on CIFAR-100, without applying
RLP-regularization (see Figure A.9). For small values of w, the models exhibit insufficient capacity
to fully memorize the training data, which is directly reflected in lower random label accuracy. As w
increases, the models progressively achieve higher random label accuracy, until reaching a plateau at
100 %, indicating complete memorization of the dataset. These results support the use of random label
accuracy, as measured by the RLP-head, as a reliable indicator of model capacity and complexity.
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Figure A.9: WideResNet-16-w on CIFAR-100, n = 10,000.

A.10 REGULARIZING INTERMEDIATE LAYERS

Our proposed RLP-regularizer enables control over memorization in a layer-selective manner. To
demonstrate this, we attach RLP-heads to all layers of a ViT trained on ImageNet (as in the main
paper’s section 5.5) to be able to monitor memorization across all layers, while we exclusively use the
RLP-head at layer 8 for regularizing the full feature extractor. As can be seen in Figure A.10, the effect
of the regularizer is highly localized: the random label accuracy at layer 8 is strongly suppressed,
approaching zero under large regularization strengths. In contrast, adjacent layers exhibit only minor
reductions in random label accuracy, and quickly recover beyond the regularized layer. Interestingly,
despite employing a single intermediate layer for regularization, the test accuracy improves to a degree
comparable to using RLP-regularization with the final layer, indicating enhanced generalization.
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Figure A.10: ViT-B/32 on ImageNet. Only layer 8 is used for regularization.

A.11 TEST-TRAIN DUPLICATES

Barz & Denzler (2020) show that CIFAR-100 contains numerous duplicates between the training
and test sets. This phenomenon provides a plausible explanation for the negative effect of the
RLP-regularizer’s memorization reduction on test performance: duplicated test samples implicitly
reward memorization of the training set. To address this issue, Barz & Denzler (2020) introduce a
de-duplicated variant, ciFAIR-100, in which all duplicated test images are replaced by newly sampled
datapoints.
We evaluate the RLP-regularizer in CIFAR-100 vs ciFAIR100 in Figure A.11. While the random label
accuracy and training accuracy remain similar across the two datasets, the reduction in memorization
induced by the RLP-regularizer is less detrimental on the train accuracy on ciFAIR-100 than on
CIFAR-100. This indicates that the degraded generalization performance observed on CIFAR-100 is,
at least in part, driven by train-test duplicates. Overall, this experiment further demonstrates that the
proposed RLP metric and regularizer are effective tools for analyzing memorization phenomena.
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Figure A.11: WideResNet-16-4 on CIFAR-100 and ciFAIR100 (Barz & Denzler, 2020). Random
label (A) train (B) and test (C) accuracy under RLP-regularization for different regularization factors
λ.

A.12 FELDMAN SCORES

We compare the random label accuracy as a measure of memorization to the memorization score
proposed by Feldman & Zhang (2020).
Feldman & Zhang (2020) define memorization per sample by testing whether a model needs to be
trained on a specific sample in order to correctly classify it. Concretely, they consider the change
in a model’s accuracy on each training dataset when the sample is either included in or excluded
from the training set. Since an exact evaluation of this metric necessitates a full training run for each
sample, the authors approximate it by removing 30 % of the training data at once and averaging results
over multiple subsampled training runs to obtain a per-sample score. Even with this approximation,
hundreds to thousands of full training runs are required. The resulting scores for ResNet-50 trained
on CIFAR-100 are publicly available.
To compare against this method, we compute the random-label prediction accuracy per sample by
averaging over 50 independently initialized training runs. Figure A.12 shows the distributions of
the original Feldman scores, our reimplementation of their method, and random-label accuracy on
CIFAR-100. The distributions differ clearly: the Feldman scores are bimodal, whereas the random-
label accuracy is approximately Gaussian. Moreover, we find low correlation between the two
measures (Pearson’s r = 0.08 with p < 10−8).
Despite this, we validate that the random label accuracy is highly sample-specific. We performed an
Anderson–Darling test to reject the hypothesis that all samples share the same underlying distribution,
and repeated independent estimates of random-label accuracy per sample exhibit high correlation
(Pearson’s r ≈ 0.9). This confirms that random-label accuracy is indeed a stable property of each
sample.
Although the lack of correlation between the two measures is counterintuitive, we argue that it is
consistent with the previously observed lack of correlation between memorization and generalization
for CIFAR-100.
Rather than directly measuring memorization, the Feldman score effectively measures whether the
model can correctly classify a sample without having seen it, i.e., whether the model can generalize
from the rest of the training set to that sample. It can be interpreted as constructing a one-sample
validation set and comparing the model’s performance on this sample to its performance on the
training set. In this sense, the Feldman score directly measures generalization. It can also be viewed
as quantifying the uniqueness of a sample within the dataset. For example, two very similar samples
of the same class that are distinct from the rest of the dataset (similar to duplicates found between
test and train sets by Barz & Denzler (2020) discussed in Appendix A.11) will not receive a high
Feldman score even if these samples are memorized.
In contrast, generalization does not affect the random label accuracy due to the non-existent correlation
between label and sample, thus providing a measure of memorization independent of a possible
link between memorization and generalization. The random label accuracy measures whether
memorization occurs, irrespective of whether that memorization is beneficial.
Thus, the initially surprising lack of correlation between random label accuracy and the Feldman
scores in fact supports the hypothesis that reduced memorization and improved generalization are not
directly coupled.
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Figure A.12: Distribution of memorization scores proposed by Feldman & Zhang (2020) and
distribution of per-sample random label accuracy on CIFAR-100. The original data from Feldman
& Zhang (2020) were computed for ResNet-50, whereas our recomputed scores and random-label
accuracy were derived using WideResNet-16-4.

A.13 NOISY LABELS

To further analyze the effects of RLP-regulalization on memorization, we examine the training
accuracy on randomly labeled samples within the training dataset. These datapoints can only be
predicted correctly through memorization. As shown in Figure A.13, the RLP-regularizer reduces
the training accuracy on samples with noisy labels, while the accuracy on samples with intact labels
remains high even for large regularization strengths. The proposed regularizer thus targets memorized
samples specifically. This is particularly true for λ = 105, where at the same time the test accuracy
simultaneously reaches its maximum. By limiting the memorization of incorrectly labeled examples,
the generalization gap is reduced. This experiment highlights the strong connection between the
random label accuracy of the RLP-head and training performance on noisy labels, as well as the
effectiveness of the RLP-regularizer in mitigating memorization of noisy labels.
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Figure A.13: ViT-B/32 on ImageNet with 10 % label noise. Random label accuracy (A), train
accuracy (B), and test accuracy (C) for increasing regularization factors λ.

A.14 MEMORIZATION UNDER OTHER REGULARIZERS

We compare the effectiveness of the random label accuracy as a measure of memorization against
the more direct approach of measuring memorization via training accuracy on noisy labels. We
conduct this comparison under several common regularizers: label smoothing (Figure A.14), dropout
(Figure A.15), and weight decay (Figure A.16). Consistent with our observations in section 5.2,
all regularizers lead to reduced random label accuracy, supporting the validity of this metric as an
indicator of network complexity. At the same time, the random label accuracy proves to be a reliable
measure of memorization when compared with the training accuracy on noisy-labeled datapoints.
Our proposed memorization measure is fully non-intrusive and can be applied without altering the
training data, unlike noisy label injection.
Comparing these results with those obtained when the RLP-regularizer is applied (shown for the
same training setup in Figure A.13), we observe similar improvements in test performance. However,
the primary purpose of the RLP-regularizer is not to specifically improve generalization, but to
explicitly control memorization in order to study and better understand its underlying mechanisms
and identify when and where reducing memorization leads to improved generalization. While other
regularizers also reduce memorization effectively (e.g., weight decay, which drives both random label
accuracy and noisy label training accuracy close to 0%, as seen in Figure A.16), the RLP-regularizer
allows targeted application to arbitrary layers. This makes it particularly well-suited for studying the
evolution of memorization within the network, as e.g. explored in section 5.5.
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Figure A.14: ViT-B/32 on ImageNet with 10 % label noise and varying label smoothing strength.
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Figure A.15: ViT-B/32 on ImageNet with 10 % label noise and varying dropout strength.
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Figure A.16: ViT-B/32 on ImageNet with 10 % label noise and varying weight decay strength.

A.15 FULL NETWORK RANDOM TRAINING

To further support the connection between the random label accuracy as an empirical memorization
measure and Rademacher complexity, we compare the random label accuracy of the proposed RLP-
head with the training accuracy achieved when training an entire network on random labels across
varying network widths.
The training accuracy obtained under fully random labels closely resembles the Rademacher com-
plexity. The only approximations involved include using SGD to obtain an approximately optimal
model instead of taking the supremum over all models, extending the binary-label definition to a
multi-class accuracy setting, and estimating the expectation over random labelings via a finite number
of independent training runs.
When varying the width of a WideResNet-16-w, we observe a strong correlation between the perfor-
mance on random labels when the full network is trained end-to-end on these labels and the random
label accuracy measured using the RLP-head only while the main network is trained on correctly
labeled data as done in the rest of this manuscript.
This comparison also demonstrates that the random-label accuracy of the RLP-head is primarily
determined by the capacity of the feature extraction network, rather than by the capacity of the head
itself as long as the RLP-head is chosen to be sufficiently large.
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Figure A.17: WideResNet-16-w on CIFAR-100, n = 10,000. Training the RLP-head only on random
labels while the rest of the network is trained on class labels as performed in the rest of this manuscript
compared against training the full network on random labels. Each datapoint represents a varying
width factor w similar to Figure A.9.

A.16 MEMORIZATION WITH MIXUP

We evaluate the effect of mixup (Zhang et al., 2018b) on the random label accuracy. To do so, we
apply mixup to the input images, class labels, and random labels during training, and then perform
an additional epoch on the training set without mixup and without updating the weights in order to
measure both the training accuracy and the random label accuracy. Since mixup is intended to reduce
memorization, increasing the mixup strength (i.e., larger α) indeed lowers the random-label accuracy.
However, we still observe substantial memorization even at α = 10.
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Figure A.18: WideResNet-16-4 trained on CIFAR-100 with varying mixup strength α.

A.17 ADVERSARIAL ROBUSTNESS

We evaluated the adversarial robustness of a ViT-B/32 trained on ImageNet with the RLP-regularizer
under attacks by PGD (Madry et al., 2018), FGSM Goodfellow et al. (2018) and APGDT Croce &
Hein (2020). We used default hyperparameters and σ = 0.1 for gaussian noise and ϵ = 1/255 for
the other attack methods. We report results for the difference of the accuracy under attack to the
baseline (i.e., no RLP-regularizer; λ = 0) for various regularization factors λ in Figure A.19 and the
exact accuracies under attack for optimal λ = 104 in Table A.1. The RLP-regularizer improves the
adversarial robustness in all scenarios.

Table A.1: Accuracy under adversarial attack of RLP-regularized models.

Gaussian Noise PGD FGSM APGDT
baseline (λ = 0) 25.1±0.3 16.6±0.2 23.4±0.3 17.6±0.2

RLP-regularized (λ = 104) 26.2±0.8 18.0±0.4 24.9±0.5 18.5±0.4
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Figure A.19: Accuracy difference of RLP-regularized models to unregularized models under adver-
sarial attacks.

A.18 MEMBERSHIP INFERENCE ATTACKS

We perform membership inference attacks on our ViT-B/32 trained on ImageNet to assess if the
RLP-regularizer leads to improved membership robustness. We use an MLP with 2 hidden layers
(dimensions 512 and 256) to perform binary classification on the sorted logits of the models to
determine if a sample was part of the training data or not. We train our attack model on the
logits of the original model and create a balanced test dataset to evaluate the accuracy of the
membership prediction. The attack model is trained for 10 epochs using the Adam optimizer with
a learning rate of 104 and a batch size of 256. We evaluate three independently initialized ViT
models attacked by five independently initialized attack models each. While the model is not very
vulnerable to membership inference attacks without RLP-regularization (64.27% ± 0.05%), the
RLP-regularizer further increases the robustness of the model reducing the membership accuracy to
62.27% ± 0.06% for the regularization factor of optimal generalization λ = 104. Full results are
reported in Figure A.20.
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Figure A.20: Membership Inference Accuracy for ViT-B/32 models trained under RLP-regularization.

A.19 MEMORIZATION OF LONG-TAIL SAMPLES

To test our hypothesis that memorization is beneficial for undersampled data distributions but not
for sufficiently sampled ones, we conduct an additional experiment using a ViT-B/32 model trained
on the ImageNet-LT (long-tail) dataset Liu et al. (2019b). ImageNet-LT is a subset of the original
ImageNet dataset in which certain classes are deliberately undersampled in the training set, while the
test set remains unchanged.
We compare test performance as a function of the number of training samples per class, evaluating
models trained with and without RLP-regularization in Figure A.21. Under RLP-regularization,
where memorization is stopped, lower test performance is reached for classes with low sample counts,
i.e. classes with fewer than 80 training samples are not learned. For classes with higher sample
counts, performance sometimes improves and sometimes does not.
These results support our hypothesis that memorization is useful in undersampled regimes and may
or may not be in oversampled regimes.
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Figure A.21: ViT-B/32 trained for 300 epochs on ImageNet-LT without RLP-regularizer and with
regularizer (λ = 105). Average test accuracy per class count.

A.20 RLP-HEADS INSIDE TRANSFORMER LAYERS

To test our hypothesis that memorization is shifted into the transformer blocks under RLP-
regularization applied to the output of all transformer blocks, we insert additional RLP-heads inside
the transformer blocks: after the attention mechanism, after the first fully connected layer, and after
the second fully connected layer of each transformer block. The corresponding results are shown in
Figure A.22.
Although all additional heads detect memorization within the network, the largest values still appear
at the output of each transformer block as measured in the rest of this manuscript. When applying
RLP-regularization only to the final block head, memorization is reduced in the components of later
transformer blocks, as illustrated in Figure A.22A.
However, when regularizing based on all RLP-heads, as in Figure 8B, we observe non-zero memoriza-
tion in the last four transformer blocks after the attention mechanism and after the first fully connected
layer (see Figure A.22B). Additional memorization may also be encoded within the representations
inside the attention mechanism itself.
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Figure A.22: Random label accuracy inside transformer blocks. A: Regularization based on the
RLP-head attached after block 12 only. B: Regularization based on the RLP-heads attached after all
blocks.

A.21 FROZEN FEATURE EXTRACTOR AFTER REGULARIZATION

To verify that memorization is genuinely mitigated by the RLP regularizer—and not merely concealed
from the specific RLP-head trained alongside it, we conducted an additional experiment using our
ViT-B/32 setup on ImageNet. We train a new RLP-head as before, but keep the feature extractor
frozen using the weights obtained from a previous training run with RLP-regularization (in the default
setup). This setup tests whether a newly trained RLP-head can recover the random labels using the
representations learned under regularization. Importantly, the random-label mapping between samples
remains unchanged across the two runs. With a regularization strength of λ = 10−4 applied during
training of the feature extractor, the newly trained RLP-head achieves a random label accuracy of only
2.9%. This provides further evidence that the RLP-regularizer effectively mitigates memorization
rather than merely obscuring it.

A.22 TEXT CLASSIFICATION

We use the RLP-heads to study memorization in language tasks. Our experiments are conducted on
Yahoo! Answers (Zhang & LeCun, 2016) using RoBERTa-base (Liu et al., 2019a) trained with Adam
and a learning rate of 2 · 105 with cosine scheduling for 50 epochs. Results are shown in Figure A.23.
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Interestingly, without regularization we observe pronounced memorization in the early layers, peaking
at layer 7 and decreasing in later layers. This suggests that the model may be oversized for the given
dataset.
While RLP-regularization applied via the RLP-head on the final (12th) transformer layer reduces
memorization across all layers, we do not observe a shift of memorization towards later layers unlike
the ViT results on ImageNet shown in Figure 8.
Furthermore, test accuracy does not improve with RLP-regularization, indicating that memorization
may actually benefit generalization for the studied model and dataset.
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Figure A.23: RoBERTa-base trained on Yahoo! Answers with RLP-regularization based on the
RLP-head attached to the final (12th) transformer layer only. A: Random label accuracy of RLP-heads
at different layers. Memorization ocurrs in early layers and is reduced in later layers. B: The test
accuracy does not improve when memorization is suppressed.
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