RANDOM LABEL PREDICTION HEADS FOR STUDY-ING AND CONTROLLING MEMORIZATION IN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

Abstract

We introduce a straightforward yet effective method to empirically measure and regularize memorization in deep neural networks for classification tasks. Our approach augments each training sample with auxiliary random labels, which are then predicted by a random label prediction head (RLP-head). RLP-heads can be attached at arbitrary depths of a network. predicting random labels from the corresponding intermediate representation and thereby enabling analysis of how memorization capacity evolves across layers. By interpreting the RLP-head performance as an empirical estimate of Rademacher complexity, we obtain a direct measure of both sample-level memorization and model capacity. We leverage this random label accuracy metric to analyze generalization and overfitting in different models and datasets. Building on this approach, we further propose a novel regularization technique based on the output of the RLP-head, which demonstrably reduces memorization. Interestingly, our experiments reveal that reducing memorization can either improve or impair generalization, depending on the dataset and training setup. These findings challenge the traditional assumption that overfitting is equivalent to memorization and suggest new hypotheses to reconcile these seemingly contradictory results.

1 Introduction

Modern deep learning models are prone to overfitting due to their extreme overparameterization (Nakkiran et al., 2021). A wide range of strategies has been proposed to mitigate this issue, including data augmentation, explicit regularization, and dataset scaling. Although enlarging training datasets has proven particularly effective, this approach is often infeasible in domains where data acquisition or annotation is expensive or requires significant human expertise. Moreover, existing strategies primarily address practical concerns of generalization but provide limited insight into the mechanisms by which overfitting arises. Recent work highlights the striking memorization capacity of state-of-the-art models. For instance, Zhang et al. (2021) demonstrate that modern architectures can perfectly fit datasets with randomly assigned labels, thereby achieving 100% training accuracy in the absence of any learnable structure. In such cases, high accuracy is attainable only through memorization of individual training samples, underscoring that contemporary artificial neural networks (ANNs) can encode sample-specific, task-irrelevant information to fit each training sample individually.

This ability to memorize arbitrary labels is directly connected to the model complexity. In particular, training with SGD on random labels empirically approximates Rademacher complexity, which plays a central role in deriving generalization bounds within the PAC-learning framework.

The primary objective of this work is to assess the accuracy of predicting random labels as a practical metric of memorization. Although direct training on random labels reveals a model's ability to memorize, this procedure does not intrinsically inform how memorization interacts with generalization in real-world tasks and does not allow for mitigation of memorization. To bridge this gap, we propose a hybrid approach: we augment the network with

an additional Random Label Prediction Head (RLP-head), attached to the feature extractor (i.e., all layers except the final classification layer) in parallel to the original task head, which remains unchanged. This design enables the simultaneous measurement and regularization of memorization during normal training, thereby providing a controlled way to study and modulate memorization in deep neural networks. In summary our contribution is as follows:

- We propose the use of random label prediction heads (RLP-heads) as a tool for probing layer-wise memorization in deep neural networks.
- We validate that the random label accuracy derived from RLP-heads is an accurate measure for complexity and memorization.
- We propose a novel regularizer that explicitly constrains memorization by penalizing the performance of the RLP-head during training.
- Building on our metric and regularizer, we show how memorization can hinder or, in certain scenarios, facilitate generalization. We further hypothesize that this dual role is driven by sampling effects in the training data.

2 Related Work

The phenomenon of data memorization, although not new, gained renewed attention in the era of modern deep learning with the works of Zhang et al. (2021) and Arpit et al. (2017). Traditionally, memorization was associated with model capacity and overfitting, and hence viewed primarily as a source of poor generalization. This view of capacity being responsible for overfitting has been challenged by the discovery of the double descent phenomenon (Nakkiran et al., 2021), which reveals a more nuanced relationship between capacity and generalization.

Feldman (2019) formalize memorization as the ability of a model to correctly predict a label only if the sample was present in the training data. Their analysis suggests that the key obstacle to generalization is not label noise but suboptimal sampling, with many regions of the data distribution undersampled or represented by only a single example. Even though these atypical examples in so-called long-tailed data distributions are memorized individually to reach high training performance, this memorization leads to improved generalization of the network (cf. Feldman & Zhang (2020)).

Building on this perspective, Baldock et al. (2021) observe that deep models first capture simple patterns shared across many examples, before gradually fitting more complex patterns that may be unique to a small subset of the data or even example-specific. Bayat et al. (2024) argue that memorization is not inherently detrimental, but rather depends on factors such as data quality and learning dynamics. They introduce the notion of an example-specific feature rate, showing that excessively high rates prevent models from capturing the underlying distribution, while excessively low rates encourage the learning of overly complex representations, leading to catastrophic overfitting.

Subsequent work examined memorization, including studies by Carlini et al. (2019) and Yun et al. (2019), with particular attention to the effects of heavy overparameterization (Zhang et al., 2020) and minimal overparameterization (Daniely, 2020). Another line of research examines where memorization occurs within a network. For instance, Maini et al. (2023) demonstrate that memorization is localized across layers and even within specific neurons. Our approach is closely aligned with this perspective: by attaching RLP-heads at different layers, we obtain a direct means of localizing memorization.

Memorization effects are particularly pronounced in large-scale language models, where they raise significant privacy concerns if training data can be extracted from the models, as highlighted by Tirumala et al. (2022) and Carlini et al. (2021). Efforts to improve generalization and mitigate data memorization have largely focused on general-purpose regularization methods, such as dropout (Srivastava et al., 2014) and weight decay (Krogh & Hertz, 1991). However, to the best of our knowledge, no existing approach explicitly regularizes memorization itself, as we propose in this work.

Related challenges also arise in the context of fair AI, where the suppression of unwanted or spurious features is critical to prevent models from encoding biases related to attributes such as gender, ethnicity, or religion (Mehrabi et al., 2021; Tian et al., 2022; Wang et al.,

2020; Zhang et al., 2018). Finally, our interpretation of random label accuracy as a proxy for information abstraction bears conceptual resemblance to mutual information frameworks, which have been applied to analyze ANNs (Gabrié et al., 2018).

3 BACKGROUND: RADEMACHER COMPLEXITY

We motivate our empirical measure by Rademacher complexity, a fundamental tool in statistical learning theory. Rademacher complexity quantifies the expressive power of a model (or hypothesis class) by measuring its ability to fit random labels. In the case of binary classification, it can be defined as follows:

(Empirical) Rademacher complexity for Binary Classification (Mohri et al., 2012): Given a hypothesis class \mathcal{H} and train data $\mathcal{S} = \{(x_1, \sigma_1), ..., (x_m, \sigma_m)\}$, where $\sigma_1, ..., \sigma_m \in \{\pm 1\}$ are i.i.d. uniform random variables:

$$\hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{H}) = \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h(x_{i}) \right]$$
 (1)

In binary classification, the agreement between a model's prediction and the true label can be quantified by the product of the label and the model output. While this measure is closely related to accuracy, it is inherently restricted to the binary setting and does not naturally extend to multi-class classification. The hypothesis h is chosen as a supremum over the hypothesis class, which in practice can be approximated via empirical risk minimization (e.g., with optimizers such as SGD or Adam). However, the presence of the supremum makes the exact evaluation of Rademacher complexity intractable in practical settings.

Importantly, Rademacher complexity is model-agnostic: it does not depend explicitly on architectural details such as depth, width, or number of parameters. Instead, it captures the capacity of a model through its ability to fit random labels. Within the PAC-learning framework, this quantity is central to deriving bounds on the generalization error. In particular, for binary classification, the generalization error can be bounded as:

Theorem 1. Given a hypothesis class \mathcal{H} , training data $\mathcal{S} = \{(x_1, \sigma_1), ..., (x_m, \sigma_m)\}$, with $\sigma_1, ..., \sigma_m \in \{\pm 1\}$, then for any $\delta > 0$, with probability at least $1 - \delta$ for any $h \in \mathcal{H}$ it holds that

$$R(h) \le \hat{R}_{\mathcal{S}}(h) + \hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{H}) + 3\sqrt{\frac{\log(2/\delta)}{2m}}.$$

Where $\hat{R}_{\mathcal{S}}(h)$ denotes the empirical error on the training dataset (Mohri et al., 2012). This bound implies that, for fixed training performance, a reduction in Rademacher complexity directly translates into improved test performance and thus generalization. While Rademacher complexity provides a theoretically powerful framework for characterizing the capacity of hypothesis classes, its exact computation for state-of-the-art deep learning models is infeasible.

Grounded on this theoretical foundation, we will derive an empirical alternative to the Rademacher complexity, suited for real-world training tasks, thereby enabling the study of the relation between memorization and generalization in practical deep learning settings.

4 RANDOM LABEL PREDICTIONS AND REGULARIZATION

Rather than training an entire network on random labels, as explored in prior work, we introduce an auxiliary Random Label Prediction Head (RLP-head) that predicts a randomly assigned label in parallel with the standard classification task. Concretely, the proposed architecture outputs both the task prediction vector $p \in \mathbb{R}^N$ and an additional random label prediction vector $\hat{p} \in \mathbb{R}^n$. While the number of task classes N is determined by the dataset, the number of possible random labels n can be chosen arbitrarily. The RLP-head may be attached at different locations within the network. Unless otherwise specified, we place it after the penultimate layer, in parallel with the standard classification head. This choice is natural since the penultimate activations correspond to the final stage of the feature extractor, and the RLP-head thereby probes the extent of memorization within the learned final representation.

Random labels are generated once at beginning of the training and remain fixed across epochs for each sample. Only the RLP-head receives gradients from the random label objective, ensuring that the normal classification head is unaffected. Consequently, our method enables probing memorization without affecting normal task performance. In order to train the RLP-head we introduce an auxiliary cross-entropy loss on the random labels, L^{rnd} , in addition to the standard classification loss, L^{class} , where y denotes the correct class label and \hat{y} the assigned random label:

163

164

165

166

167

168

169

170

171

172

173

174

175

181

182

183

184

185

187

188

189

190

191

192 193

194

195

196

197

199

200

201

202

203

204

205

206 207 208

209 210

211 212

213

214

215

$$L^{class} = -\sum_{i=1}^{N} \delta_{iy} \log(p_i) = -\log(p_y) \quad (2)$$

$$L^{rnd} = -\sum_{i=1}^{n} \delta_{i\hat{y}} \log(\hat{p}_i) = -\log(\hat{p}_{\hat{y}}) \quad (3)$$

Figure 1: An additional Random Label Prediction Head (RLP-head) is added after the $L^{class} = -\sum_{i=1}^{N} \delta_{iy} \log(p_i) = -\log(p_y) \quad (2) \quad \begin{array}{c} \text{feature extractor of the network. Only the} \\ \text{RLP-head receives } L^{rnd}, \text{ the random label prediction loss, whereas the regularizing loss } L^{reg} \\ \text{is calculated on the RLP-head but acts on the} \\ L^{rnd} = -\sum_{i=1}^{n} \delta_{i\hat{y}} \log(\hat{p}_i) = -\log(\hat{p}_{\hat{y}}) \quad (3) \quad \text{feature extractor only.} \end{array}$ feature extractor of the network. Only the

By default, we implement the RLP-head as a single fully-connected layer followed by a softmax activation. Nevertheless, the architecture of the RLP-head is flexible, and more complex variants can be employed (see Appendix A.6 for results with a two-layer head). Training the RLP-head on random labels in parallel with the main task enables to directly regularize memorization during standard training. Since random label prediction can be interpreted as an empirical proxy for Rademacher complexity, regularizing the random label predictions provides a means of constraining the effective complexity of the model. We introduce a regularization loss term that penalizes correct predictions of the random

labels by the RLP-head. Specifically, this loss is derived from the standard cross-entropy formulation:

$$L^{reg} = \frac{1}{n} \sum_{i=1}^{n} \delta_{i\hat{y}} \log(1 - \hat{p}_i) = \log(1 - \hat{p}_{\hat{y}}). \tag{4}$$

Compared with standard cross-entropy, we invert the sign of the loss, since the regularizer is designed to prevent the network from learning the random labels. Furthermore, we replace \hat{p}_i with $1-\hat{p}_i$ inside the logarithm, which amplifies the penalty when $\hat{p}_i \approx 1$. This ensures that highly confident predictions of random labels are penalized more strongly. The resulting regularization term is scaled by a tunable hyperparameter λ and added to the loss of the feature extractor.

Although the regularization loss is computed using the RLP-head, its gradients are restricted to the feature extractor. Accordingly, the classification head remains unaffected during RLP-regularization. A schematic of the proposed architecture is provided in Figure 1. Conceptually, the RLP-head and the feature extractor form two adversarial components: the RLP-head attempts to fit the random labels, while the feature extractor is regularized to prevent this from happening. This adversarial setup encourages the feature extractor to produce representations that are less example-specific and do not allow memorization of specific inputs.

EXPERIMENTS

Details of our experimental setup can be found in Appendix A.1.

5.1 Learning Random Labels

Throughout this section, we analyze the training of the RLP-head, such that it serves solely as a metric and does not influence network performance (i.e., $\lambda = 0$). Figure 2A shows the test and train accuracy of the classification head alongside the random label accuracy

extracted from the RLP-head for ViT-B/32 trained on ImageNet. Around epoch 20, test and train accuracies begin to diverge, indicating the beginning of overfitting. Notably, the random label accuracy starts to rise slightly earlier, reaching approximately 70% by the end of training. This shows that, even when trained exclusively on correct class labels, the model memorizes a substantial portion of the dataset enough for a single fully-connected layer to correctly predict random labels. The fact that random label accuracy does not approach 100% may reflect that the chosen network architecture does not have sufficient capacity to fully memorize the dataset, consistent with the training accuracy plateauing at roughly 93%. Since we train the RLP-head together with the main classifier, we cannot tell whether its low early-epoch accuracy is due to the RLP-head not having been trained long enough or because the network has not yet memorized many samples. To disentangle these effects,

Figure 2: ViT-B/32 on ImageNet. A: The proposed single fully-connected layer as RLP-head is sufficient to correctly predict approx. 70% of the random labels, indicating that the feature extractor memorizes a substantial portion of the training set. B: Even when trained offline, i.e., after freezing the feature extractor, RLP-head attains low accuracy in the early epochs, confirming that the online trained RLP-head reliably tracks the evolution of memorization dynamics during training. C: Random label accuracy when attaching the RLP-head at different network depth. The higher accuracy observed in deeper layers indicates that increasingly abstract representations still retain sample-specific information allowing for memorization.

we performed an additional experiment with two different modes of training the RLP-head shown in Figure 2B. Online refers to training the RLP-head in parallel with the main task, as described previously. Offline refers to freezing the default network at checkpoints saved after each epoch, and subsequently training the RLP-head from scratch. For all offline runs, the RLP-head is initialized with the same parameters and trained on the same fixed set of random labels, while the default network remains frozen at the corresponding checkpoint. This setup ensures that the RLP-head receives sufficient and equal training capacity at each epoch. At epoch 0 (random weights), additional offline training fails to fit the random labels, indicating that the signal measured by online training actually stems from memorization learned by the feature extractor during training and not from limitations of the RLP-head. Although this offline training does not allow for regularization and is computationally very demanding, it is shown here to validate the suitability of our proposed online training method.

We further investigate where memorization occurs within the network by attaching a separate RLP-head consisting of a normalization layer, a fully-connected layer and a softmax layer after each transformer block of a ViT-B/32 trained on ImageNet (Figure 2C). The random label accuracy increases with the network depth: After the first layer nearly 0% of the random labels can be predicted correctly, while high accuracies are reached in later layers. Similar to the previous experiment, this dependency shows that the RLP-head does not itself memorize the input sample but instead reflects the representational properties of the network. After the first layer, where only minimal processing occurred, the activations retain a significant amount of sample-specific information. Interestingly, this does not lead to an increased random label accuracy. Instead, high random label accuracies are reached only after sufficient abstraction of the features, showing that the abstracted features are still sample-specific and lead to memorization.

5.2 Relation to Other Complexity Regularizers

We propose to use the accuracy of the RLP-head as a proxy for model complexity, providing an empirical approximation to Rademacher complexity. To validate this interpretation, we evaluate our metric under three well-established regularization strategies, namely dropout, weight decay, and label smoothing. As illustrated in Figure 3, each of these regularizers consistently suppresses random label accuracy, confirming the correlation of the random label accuracy with model complexity. We further support this correlation by studying the impact of the model size on the random label accuracy in Appendix A.9.

Figure 3: WRN16-4 on CIFAR100. The effect of common complexity regularizers can be measured with the proposed metric. A: Dropout. B: Weight decay. C: Label smoothing.

5.3 REGULARIZING RANDOM LABELS

We can use the RLP-head to explicitly regularize the memorization of the network. To accomplish this, we apply the loss term defined in Equation 4 and search for an optimal regularization factor λ . We report results for ViT-B/32 on ImageNet in Figure 4 and WideResNet-16-4 on CIFAR100 in Figure 5. We find that RLP-regularization effectively

Figure 4: ViT-B/32 on ImageNet. Random label, train and test accuracy under RLP-regularization for different regularization factors λ . RLP-regularization effectively reduces memorization, and leads to better generalization (smaller test-train gap) and test performance.

Figure 5: WideResNet-16-4 on CIFAR100. Random label, train and test accuracy under RLP-regularization for different regularization factors λ . Here, RLP-regularization effectively reduces memorization, but does not improve generalization.

suppresses memorization in both experimental settings reducing the random label accuracy down to the level expected from random guessing. On ImageNet with ViT, this effect translates into improved generalization: while training accuracy decreases, test accuracy increases, reaching a peak of 68.5% at $\lambda = 10^4$, which corresponds to a gain of 1.5% over the

baseline. The simultaneous drop in training accuracy further narrows the train—test gap, confirming the effectiveness of RLP-regularization to reduce overfitting. These observations align with predictions from PAC-learning theory based on Rademacher complexity, as well as the intuition that memorization causes overfitting and harms generalization.

Interestingly, these findings do not hold for our experiments for WideResNet on CIFAR100. Instead, the training accuracy remains unaffected, while the test accuracy deteriorates even for small regularization factors. These deviations from classical theory are consistent with recent findings, e.g., by (Nakkiran et al., 2021), which highlight the distinct dynamics of modern overparameterized networks. Our results suggest that the relationship between memorization and generalization is more nuanced than traditional theory predicts, which we study further in the following sections.

5.4 Undersampled Datasets Benefit from Memorization

Based on our findings and drawing on insights from Feldman (2019) and Bayat et al. (2024), we hypothesize two distinct memorization scenarios that reconcile the apparent contradictions with the classical view of overfitting.

Memorization corresponds to the adoption of features that are highly specific to individual samples. Suppressing memorization prevents the learning of sample-specific features, forcing it instead to focus on features shared across examples of the same class. When sufficient samples are available, this results in learning features of the underlying true data distribution leading to increased generalization (cf. Figure 6A). Without memorization, training accuracy decreases because the network may fail to fit atypical samples, especially those that share few features with other samples in the same class, such as noisy or mislabeled samples. We hypothesize that this mechanism explains the observed behavior on ImageNet (Figure 4). However, when the dataset is undersampled and memorization is suppressed, the shared

Figure 6: Schematic illustration of how memorization can be either detrimental or benign depending on dataset sampling. Under memorization, the model learns sample-specific solutions (depicted as small isolated regions around individual samples). In contrast, suppressing memorization encourages the discovery of a single connected solution space that better captures class-level structure while excluding outliers such as noisy or mislabeled labeled samples.

features learned across class samples may fail to reflect the true data distribution and instead capture arbitrary artifacts of the insufficient sampling. In this case, suppressing memorization forces the network to rely on these spurious shared features, which degrades generalization. New, unseen samples may still resemble individual memorized training examples but are unlikely to share the learned spurious features shared by training examples from undersampled regions of the true data distribution (cf. Figure 6B). We hypothesize that this mechanism explains the behavior observed on CIFAR-100 (Figure 5). In line with this view, we find the same effect (reduced random label accuracy, stable training accuracy, and degraded test accuracy) when applying the RLP-regularizer to ViT trained on CIFAR-100 (Appendix A.3). To further test this hypothesis, we study the impact of dataset size by training ViT-B/32 on subsets of ImageNet while keeping the experimental setup fixed. As shown in Figure 7, our regularizer improves test accuracy only when large fractions of the dataset are available. The conventional intuition that memorization is always detrimental would suggest that reducing memorization should be even more beneficial on smaller datasets, where higher memorization (as observed by higher random label accuracy) occurs. Our experiment thus provides evidence

in support of our hypothesis of beneficial memorization effects for undersampled datasets. We perform an additional experiment where we inject label noise into the training dataset and apply the RLP-regularizer. Since noisy labels cannot contribute positively to generalization and can only be fit through memorization, our regularizer should consistently improve test performance in this setting. This prediction is confirmed in Figure 7C.

Our hypothesis is further supported by related findings by Feldman (2019) who argue that memorization in badly sampled regions (i.e., long tails of the data distribution) can enhance generalization.

Taken together, our experiments highlight both detrimental and beneficial aspects of memorization and demonstrate that RLP-heads, along with the derived regularizer, provide an effective framework for probing and controlling these dynamics.

Figure 7: ViT-B/32 on ImageNet. **A+B**: Random label and test accuracy when training on reduced dataset fractions (DF) of ImageNet. Although smaller training sets lead to stronger memorization (higher random label accuracy), suppressing memorization on them does not improve test accuracy. **C**: Random label and test accuracy with added label noise under RLP-regularization. Since memorization of noisy labels hinders generalization, our regularizer yields substantial improvements.

5.5 RLP-REGULARIZATION SHIFTS MEMORIZATION

To further understand the effects of the RLP-regularizer, we analyze memorization across different layers of the network. We attach additional RLP-heads after each layer of a vision transformer, as described above. Figure 8A shows the resulting random label accuracy across layers for varying regularization strengths.

Figure 8: ViT-B/32 on ImageNet. A: Random label accuracy of RLP-heads at different layers when only the final (12th) layer is used for RLP-regularization. Memorization shifts toward earlier layers. B+C: RLP-regularization is calculated based on RLP-heads attached to all 12 transformer layers. While this effectively suppresses memorization and prevents the shift, neither test accuracy nor generalization improve.

The RLP-regularization is only applied based on the RLP-head attached to the final (12th) layer. Consequently, the random label accuracy drops rapidly for this last layer with increasing regularization. RLP-heads near the regularized final layer, particularly layers 10 and 11, are also affected. In contrast, earlier layers exhibit the opposite effect: RLP-heads attached to layers 2 to 6 achieve higher random label accuracies under regularization. This indicates that while memorization is mitigated in the last layer, it is shifted to earlier layers rather than eliminated. We hypothesize that, in response to the RLP-regularizer, the network

transforms sample-specific features into class-relevant information in earlier layers, thereby enabling memorization to persist while being undetected by the regularizing RLP-head attached to the final layer.

To test this hypothesis, we conduct an additional experiment, adding a classification head to each transformer layer trained to predict the class label. This setup enables tracking the transformation from sample-specific features to class information throughout the network. Figure 9 shows the resulting class, train, and test accuracies under RLP-regularization based on the final layer. While class accuracy decreases in the last layer and the penultimate layer (11), we observe increased accuracy in earlier layers for both training and test data. Remarkably, test accuracies at layers 10 and 11 even surpass those of layer 12 (Figure 9C), indicating that regularization not only shifts memorization and classification capabilities but can also improve generalization in earlier layers. This supports the hypothesis that RLP-regularization shifts the transformation into class-specific information to earlier layers. Next, we examine the effect of suppressing memorization when using all attached RLP-heads for our regularization. As shown in Figure 8B, this effectively reduces random label accuracy at all layers, even for modest regularization strengths. However, this does not translate into improved test accuracy (Figure 8C). We hypothesize that applying RLP-regularization to all layers constitutes an overly harsh intervention: Extraction of sample-specific features in early layers may be useful even when these features do not lead to direct memorization. Moreover, some degree of memorization may persist within a transformer block itself, being hidden to the respective RLP-head attached at its end.

Additionally, we study the influence of the regularizer when the loss term is constructed from a single RLP-head attached to an intermediate layer in Appendix A.10.

Figure 9: ViT-B/32 on ImageNet. Similar to the RLP-heads, we attach additional classification heads to the outputs of all layers in a ViT to track the transformation from sample-specific features to class predictions throughout the network. When applying RLP-regularization to the final (12th) layer only, class prediction accuracy increases in the earlier layers and test performance improves across all layers. **A**: Train accuracy. **B**: Test accuracy. **C**: Zoomed-in view of test accuracy.

6 Conclusion

We have introduced an effective method to measure and regularize memorization in deep neural networks: random layer prediction heads (RLP-heads), which can be attached to any (intermediate) network activation. Motivated as an empirical approximation of Rademacher complexity, we demonstrated that random label accuracy serves as a valid metric for network complexity and memorization. This metric enables the study of both the temporal (i.e., during optimization) and spatial (i.e., across layers) dynamics of memorization within a network. Based on the RLP-heads, we derived a regularization method to explicitly mitigate learning of sample-specific features and in consequence stop memorization.

Our experiments show that memorization can be either beneficial or detrimental. We propose a hypothesis to explain this counterintuitive effect based on dataset sampling and support it with targeted experiments. Moreover, applying the memorization regularizer to the final layer shifts both abstraction of class-level representations and memorization into earlier layers, resulting in a network that achieves better generalization after fewer layers.

Our findings highlight the value of RLP-heads and RLP-regularization for studying memorization and suggest their broader potential for empirical analysis of deep learning mechanisms.

REPRODUCIBILITY STATEMENT

For all experiments, we report complete results, including the outcomes of all hyperparameter searches. Details on training configurations are provided in Appendix A.1. The source code is included in the supplementary material and will be released publicly upon acceptance.

LLM USAGE

Large language models (LLMs) were used exclusively to assist in refining the phrasing of certain sentences and improving the clarity of formulations in this manuscript. At no point were LLMs employed for data analysis, generation of scientific content, or drawing conclusions. All scientific claims, results, and interpretations are the sole work of the authors.

References

- Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville, A., Bengio, Y., and Lacoste-Julien, S. A Closer Look at Memorization in Deep Networks. *International Conference on Machine Learning*, 2017.
- Baldock, R. J. N., Maennel, H., and Neyshabur, B. Deep learning through the lens of example difficulty. *Advances in Neural Information Processing Systems*, 2021.
- Bayat, R., Pezeshki, M., Dohmatob, E., Lopez-Paz, D., and Vincent, P. The pitfalls of memorization: When memorization hurts generalization. arXiv:2412.07684 [cs], 2024.
 - Carlini, N., Liu, C., Erlingsson, U., Kos, J., and Song, D. The secret sharer: evaluating and testing unintended memorization in neural networks. In *USENIX Conference on Security Symposium*, pp. 267–284, 2019.
 - Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, Ú., Oprea, A., and Raffel, C. Extracting training data from large language models. In *USENIX Conference on Security Symposium*, pp. 2633–2650, 2021.
 - Daniely, A. Neural networks learning and memorization with (almost) no overparameterization. Advances in Neural Information Processing Systems, 2020.
 - Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. *Conference on Computer Vision and Pattern Recognition*, 2009.
 - Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth 16x16 words: Transformers for image recognition at scale. *International Conference on Learning Representations*, 2021.
 - Feldman, V. Does learning require memorization? A short tale about a long tail. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing*, volume abs/1906.05271, 2019.
- Feldman, V. and Zhang, C. What neural networks memorize and why: Discovering the long tail via influence estimation. Advances in Neural Information Processing Systems, 2020.
- Gabrié, M., Manoel, A., Luneau, C., Barbier, J., Macris, N., Krzakala, F., and Zdeborová, L.
 Entropy and mutual information in models of deep neural networks. Advances in Neural Information Processing Systems, 2018.
- Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images.
 Technical report, University of Toronto, 2009.
 - Krogh, A. and Hertz, J. A simple weight decay can improve generalization. Advances in Neural Information Processing Systems, 1991.

- Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. *International Conference on Learning Representations*, 2019.
- Maini, P., Mozer, M. C., Sedghi, H., Lipton, Z. C., Kolter, J. Z., and Zhang, C. Can neural network memorization be localized? *International Conference on Machine Learning*, 2023.
 - Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. A survey on bias and fairness in machine learning. *ACM Comput. Surv.*, 54(6):35, 2021.
- Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of machine learning. Adaptive Computation and Machine Learning series. MIT Press, 2012.
 - Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. Deep double descent: Where bigger models and more data hurt. *Journal of Statistical Mechanics: Theory and Experiment*, 2021(12):124003, 2021.
 - Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15(56):1929–1958, 2014.
 - Tian, H., Zhu, T., Liu, W., and Zhou, W. Image fairness in deep learning: problems, models, and challenges. *Neural Computing and Applications*, 34:12875–12893, 2022.
 - Tirumala, K., Markosyan, A., Zettlemoyer, L., and Aghajanyan, A. Memorization without overfitting: Analyzing the training dynamics of large language models. *Advances in Neural Information Processing Systems*, 2022.
 - Wang, Z., Qinami, K., Karakozis, I. C., Genova, K., Nair, P., Hata, K., and Russakovsky, O. Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation. In Conference on Computer Vision and Pattern Recognition, 2020.
 - Yun, C., Sra, S., and Jadbabaie, A. Small relu networks are powerful memorizers: a tight analysis of memorization capacity. *Advances in Neural Information Processing Systems*, 2019.
- Zagoruyko, S. and Komodakis, N. Wide residual networks. British Machine Vision Conference,
 2016.
 - Zhang, B. H., Lemoine, B., and Mitchell, M. Mitigating unwanted biases with adversarial learning. In *Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society*, pp. 335–340. ACM, 2018.
 - Zhang, C., Bengio, S., Hardt, M., Mozer, M. C., and Singer, Y. Identity crisis: Memorization and generalization under extreme overparameterization. *International Conference on Learning Representations*, 2020.
 - Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning (still) requires rethinking generalization. *Commun. ACM*, 64(3):107–115, 2021.

APPENDIX

A.1 Experimental Setup

In the main text we focus on two evaluation scenarios:

- 1. WideResNet-16-4 (Zagoruyko & Komodakis, 2016) on CIFAR100 (Krizhevsky & Hinton, 2009) trained with SGD with momentum $\mu=0.9$, a linear learning rate warm up in the first epoch followed by a cosine decay with base learning rate of $\eta=0.5$ and a batch size of 256 trained for 200 epochs without additional regularization or data augmentation. We use n=10,000 as the number of (different) random labels.
- 2. ViT-B/32 (Dosovitskiy et al., 2021) on ImageNet-1k (Deng et al., 2009) trained with AdamW (Loshchilov & Hutter, 2019) and learning rate warm up for eight epochs followed by a cosine decay with base learning rate of $\eta=0.001$ and a batch size of 1024 trained for 90 epochs with flipping augmentation, gradient clipping and weight decay of 0.1. We use n=100,000 random labels.

A full implementation comprising all models and configuration files is available at https://URL.

A.2 SANITY CHECK: SHUFFLED RANDOM LABELS

To validate that the observed increase of generalization actually stems from the mitigated memorization and is not a mere artifact, e.g., caused by effects on the scale of the feature activations, we perform a simple sanity check. We reshuffle all random labels in each epoch. Thus, the random labels cannot be learned and cannot serve as a metric for memorization. Consequently, the RLP-regularizer also does not explicitly reduce the memorization, while all other implicit effects of the regularizer remain. Results compared to our initially proposed RLP-regularization are shown in Figure A.1. As expected, the random label accuracy remains approximately at the chance of random guessing 1/n. The train accuracy exhibits only a minor drop for high regularization factors. The test accuracy does not improve and is only affected by high regularization factors where the performance drops. This validates that the observed regularization is an effect of the mitigated memorization.

Figure A.1: ViT-B/32 on ImageNet. As a sanity check we compare the regularization results for fixed random labels (as before) to random labels shuffled in each epoch.

A.3 VIT ON CIFAR100

In section 5.3, we found opposing effects caused by memorization mitigation for our two experiments performed with ViT on ImageNet and with WideResNet on CIFAR100. To clarify if the two observed effects are caused by the different model architectures or datasets, we perform an additional experiment where we study a ViT-S/4 trained on CIFAR100. Results are shown in Figure A.2. Memorization is effectively stopped for regularization factors $\lambda > 10^{-1}$. Similarly to our experiments with WideResNet on CIFAR100, we observe a detrimental effect of reducing memorization (unaffected training accuracy and reduced test accuracy) indicating the dataset to be pivotal for the different effects of memorization as we further examine in section 5.4.

Figure A.2: ViT-S/4 on CIFAR100 with RLP-regularization.

A.4 Number of Random Labels

In Figure A.3 we analyze the effect of the number of different random labels n when using a linear RLP-head. The input to the random prediction head, i.e., the feature dimension, stays constant and since the output of the linear layer is given by the number of random labels n, the capacity of the prediction head is directly tied to the number of random labels. Two intuitive implications can be directly observed from Figure A.3: The probability to reach high values by chance decreases with increasing n, i.e., the task to predict the random labels gets harder, and the capacity of the RLP-head grows with increasing n, i.e., the capability of the RLP-head to solve the given task increases. As a result, the reached random label accuracy undergoes a minimum before it approaches full memorization and saturates. From this experiment, we conclude that the number of random labels must be sufficiently large to ensure that the RLP-head has enough capacity to measure the models memorization. However, increasing the number of random labels n also substantially raises computational costs. Balancing these considerations, we set n = 10,000 for WideResNet experiments on CIFAR-100 and n = 100,000 for ViT experiments on ImageNet.

To further validate our design choice on ImageNet, we additionally study the case where each training sample is assigned a unique random label (i.e., n = m = 1,281,167), and analyze the resulting effect of RLP-regularization in Appendix A.5.

Figure A.3: Linear RLP-head. A sufficiently large number of random labels n and thus head size has to be chosen. A: WRN16-4 on CIFAR100. B: ViT-B/32 on ImageNet. The minimum is barely observable because the data starts at n=256.

A.5 Unique Label per Sample

We compare our proposed random label formulation with the alternative of assigning a unique label to each sample. While the latter is computationally very expensive, it provides a direct measure of single-sample memorization. As shown in Figure A.4, unique labels yield higher memorization accuracy, due to the increased predictive capacity of the linear RLP-head. However, we observe no qualitative differences compared to our proposed approach with n=100,000 labels. For reasons of computational efficiency, we therefore adopt the latter approach in our experiments.

Figure A.4: ViT-B/32 on ImageNet. Using a unique label per sample when applying RLP-regularization (i.e., n=m=1,281,167) compared to n=100,000 used in the main paper.

A.6 Two-layer Head

As shown in the last section (Appendix A.4) the RLP-head capacity and the number of random labels n are tied together for a linear head. To disentangle these two effects, we extend the RLP-head by adding a hidden fully-connected layer. We keep the number of labels constant at a rather small value in the experiment depicted in Figure A.5 (n = 10), and only influence the RLP-head capacity by varying its hidden feature dimension d_h . As can be seen, the RLP-head is now able to recover a much higher amount of random labels from the output of the corresponding feature extractor for a sufficiently large d_h , compared to the setting without a hidden layer in the RLP-head.

Figure A.5: A: WideResNet-16-4 on CIFAR100. B: ViT-B/32 on ImageNet. RLP-head with one hidden layer. Number of random labels n=10. Increasing the capacity of RLP-head leads to correctly predicted random labels.

Additionally, we do a sensitivity analysis on both the regularization strength controlled by λ and the hidden layer size d_h for WideResNet-16-4 on CIFAR100. As shown in Figure A.6C small hidden layer dimensions have less impact on the test accuracy; however, the RLP-head is not capable to correctly predict the random labels under these conditions (see Figure A.6A). Larger RLP-heads do predict the random labels correctly and are thus sufficiently powerful to measure the network's memorization, but are similarly detrimental to the models generalization. Adding a hidden layer to the RLP head used for regularization neither improves generalization nor yields qualitatively new insights. We therefore use a linear RLP head.

Figure A.6: WideResNet-16-4 on CIFAR100. RLP-head with one hidden layer, n = 100.

A.7 Dataset Size

Having studied the influence of the RLP-head in previous sections (Appendix A.4 and Appendix A.6), we aim to study the influence of the dataset size while maintaining the number of random labels and the capacity of the RLP-head constant now. We thereby ablate the influence of the dataset size on the difficulty of random label prediction task. We randomly sample subsets from CIFAR100 in order to construct several smaller datasets and use a small RLP-head with n=1024. As shown in A.7, the RLP-head is only able to predict the random labels correctly for small dataset sizes. Since we showed before that a large RLP-head can reach 100% random label accuracy on the full dataset, the reduced random label accuracy is caused by the limited size of the RLP-head. We conclude from this experiment, that the needed RLP-head size to obtain adequately measure the memorization in the network grows with the dataset size.

Figure A.7: WideResNet-16-4 on CIFAR100. Dependence of random label accuracy on the dataset size for a small linear RLP-head of size n=1024. The original dataset size of 50,000 training samples of CIFAR100 is reduced by sampling random subsets.

A.8 Multi-Head RLP

While we aim to measure single-sample memorization, we chose to generate a number of n random labels for m total training samples, i.e., m/n samples per random label, where usually $n \ll m$. For instance, we chose n = 100,000 for the m = 1,281,167 samples of ImageNet leading to approx. 12 images which attain the same random label. This results in the RLP-regularizer to only be able to effectively suppress features which are shared by parts of these random subsets of input images. While setting n=m (that is, learning an individual random label per sample) is studied in Appendix A.5, this is not computationally feasible in practical scenarios. However, in the setting $n \ll m$, it is harder for the RLP-head to identify sample-specific features (as opposed to those shared in the random groups of images with the same random labels). This might allow the network to memorize samplespecific features even though the RLP-regularizer is applied. To circumvent this problem, we add multiple parallel RLP-heads receiving different sets of random labels. The total regularization loss is the average of the individual regularization losses per RLP-head. This way, a Multi-Head-RLP is developed which we hypothesize to be more powerful in identifying the networks memorization. However, it is computationally more demanding. As shown in Figure A.8, the number of heads in a multi-head setting does not impact the random label or train accuracy, but interestingly, yields even higher test accuracy, reaching 69.2% for 10 heads and $\lambda = 10^4$.

Figure A.8: ViT-B/32 on ImageNet. RLP-head used for regularization comprised of multiple parallel linear layers, each receiving a different mapping from random labels to input images. The multi-head structure results in improved generalization.

A.9 Feature Extractor Size

 To validate the proposed random label accuracy as a capacity metric, we analyze the impact of the feature extractor size on this measure. Specifically, we report the random label accuracy when training WideResNet-16-w models with varying widening factors w on CIFAR-100, without applying RLP-regularization (see Figure A.9). For small values of w, the models exhibit insufficient capacity to fully memorize the training data, which is directly reflected in lower random label accuracy. As w increases, the models progressively achieve higher random label accuracy, until reaching a plateau at 100%, indicating complete memorization of the dataset. These results support the use of random label accuracy, as measured by the RLP-head, as a reliable indicator of model capacity and complexity.

Figure A.9: WideResNet-16-w on CIFAR100, n = 10,000.

A.10 Regularizing Intermediate Layers

Our proposed RLP-regularizer enables control over memorization in a layer-selective manner. To demonstrate this, we attach RLP-heads to all layers of a ViT trained on ImageNet (as in the main paper's section 5.5) to be able to monitor memorization across all layers, while we exclusively use the RLP-head at layer 8 for regularizing the full feature extractor. As can be seen in Figure A.10, the effect of the regularizer is highly localized: the random label accuracy at layer 8 is strongly suppressed, approaching zero under large regularization strengths. In contrast, adjacent layers exhibit only minor reductions in random label accuracy, and quickly recover beyond the regularized layer. Interestingly, despite employing a single intermediate layer for regularization, the test accuracy improves to a degree comparable to using RLP-regularization with the final layer, indicating enhanced generalization.

Figure A.10: ViT-B/32 on ImageNet. Only layer 8 is used for regularization.