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ABSTRACT

We introduce a straightforward yet effective method to empirically mea-
sure and regularize memorization in deep neural networks for classification
tasks. Our approach augments each training sample with auxiliary ran-
dom labels, which are then predicted by a random label prediction head
(RLP-head). RLP-heads can be attached at arbitrary depths of a network,
predicting random labels from the corresponding intermediate representa-
tion and thereby enabling analysis of how memorization capacity evolves
across layers. By interpreting the RLP-head performance as an empirical
estimate of Rademacher complexity, we obtain a direct measure of both
sample-level memorization and model capacity. We leverage this random
label accuracy metric to analyze generalization and overfitting in different
models and datasets. Building on this approach, we further propose a
novel regularization technique based on the output of the RLP-head, which
demonstrably reduces memorization. Interestingly, our experiments reveal
that reducing memorization can either improve or impair generalization,
depending on the dataset and training setup. These findings challenge the
traditional assumption that overfitting is equivalent to memorization and
suggest new hypotheses to reconcile these seemingly contradictory results.

1 INTRODUCTION

Modern deep learning models are prone to overfitting due to their extreme over-
parameterization (Nakkiran et al., [2021)). A wide range of strategies has been proposed to
mitigate this issue, including data augmentation, explicit regularization, and dataset scaling.
Although enlarging training datasets has proven particularly effective, this approach is often
infeasible in domains where data acquisition or annotation is expensive or requires signifi-
cant human expertise. Moreover, existing strategies primarily address practical concerns of
generalization but provide limited insight into the mechanisms by which overfitting arises.
Recent work highlights the striking memorization capacity of state-of-the-art models. For
instance, |Zhang et al.| (2021]) demonstrate that modern architectures can perfectly fit datasets
with randomly assigned labels, thereby achieving 100% training accuracy in the absence of
any learnable structure. In such cases, high accuracy is attainable only through memorization
of individual training samples, underscoring that contemporary artificial neural networks
(ANNs) can encode sample-specific, task-irrelevant information to fit each training sample
individually.

This ability to memorize arbitrary labels is directly connected to the model complexity. In
particular, training with SGD on random labels empirically approximates Rademacher com-
plexity, which plays a central role in deriving generalization bounds within the PAC-learning
framework.

The primary objective of this work is to assess the accuracy of predicting random labels as
a practical metric of memorization. Although direct training on random labels reveals a
model’s ability to memorize, this procedure does not intrinsically inform how memorization
interacts with generalization in real-world tasks and does not allow for mitigation of memo-
rization. To bridge this gap, we propose a hybrid approach: we augment the network with
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an additional Random Label Prediction Head (RLP-head), attached to the feature extractor
(i.e., all layers except the final classification layer) in parallel to the original task head, which
remains unchanged. This design enables the simultaneous measurement and regularization
of memorization during normal training, thereby providing a controlled way to study and
modulate memorization in deep neural networks. In summary our contribution is as follows:

e We propose the use of random label prediction heads (RLP-heads) as a tool for
probing layer-wise memorization in deep neural networks.

e We validate that the random label accuracy derived from RLP-heads is an accurate
measure for complexity and memorization.

e We propose a novel regularizer that explicitly constrains memorization by penalizing
the performance of the RLP-head during training.

e Building on our metric and regularizer, we show how memorization can hinder or,
in certain scenarios, facilitate generalization. We further hypothesize that this dual
role is driven by sampling effects in the training data.

2 RELATED WORK

The phenomenon of data memorization, although not new, gained renewed attention in the
era of modern deep learning with the works of [Zhang et al.| (2021)) and |Arpit et al.|(2017).
Traditionally, memorization was associated with model capacity and overfitting, and hence
viewed primarily as a source of poor generalization. This view of capacity being responsible
for overfitting has been challenged by the discovery of the double descent phenomenon
(Nakkiran et al., [2021]), which reveals a more nuanced relationship between capacity and
generalization.

Feldman| (2019) formalize memorization as the ability of a model to correctly predict a label
only if the sample was present in the training data. Their analysis suggests that the key
obstacle to generalization is not label noise but suboptimal sampling, with many regions of
the data distribution undersampled or represented by only a single example. Even though
these atypical examples in so-called long-tailed data distributions are memorized individually
to reach high training performance, this memorization leads to improved generalization of
the network (cf. [Feldman & Zhang] (2020))).

Building on this perspective, Baldock et al.| (2021]) observe that deep models first capture
simple patterns shared across many examples, before gradually fitting more complex patterns
that may be unique to a small subset of the data or even example-specific. |Bayat et al.
(2024) argue that memorization is not inherently detrimental, but rather depends on factors
such as data quality and learning dynamics. They introduce the notion of an example-
specific feature rate, showing that excessively high rates prevent models from capturing the
underlying distribution, while excessively low rates encourage the learning of overly complex
representations, leading to catastrophic overfitting.

Subsequent work examined memorization, including studies by |Carlini et al.| (2019) and [Yun
et al.| (2019)), with particular attention to the effects of heavy overparameterization (Zhang
et al.| 2020) and minimal overparameterization (Daniely} 2020)). Another line of research
examines where memorization occurs within a network. For instance, Maini et al.| (2023)
demonstrate that memorization is localized across layers and even within specific neurons.
Our approach is closely aligned with this perspective: by attaching RLP-heads at different
layers, we obtain a direct means of localizing memorization.

Memorization effects are particularly pronounced in large-scale language models, where
they raise significant privacy concerns if training data can be extracted from the models,
as highlighted by Tirumala et al| (2022)) and |Carlini et al.| (2021)). Efforts to improve
generalization and mitigate data memorization have largely focused on general-purpose
regularization methods, such as dropout (Srivastava et all 2014) and weight decay (Krogh
& Hertz, 1991). However, to the best of our knowledge, no existing approach explicitly
regularizes memorization itself, as we propose in this work.

Related challenges also arise in the context of fair AI, where the suppression of unwanted
or spurious features is critical to prevent models from encoding biases related to attributes
such as gender, ethnicity, or religion (Mehrabi et al, |2021; Tian et all 2022; Wang et al.,
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2020; [Zhang et al.l [2018). Finally, our interpretation of random label accuracy as a proxy
for information abstraction bears conceptual resemblance to mutual information frameworks,
which have been applied to analyze ANNs (Gabrié et al. 2018).

3 BACKGROUND: RADEMACHER COMPLEXITY

We motivate our empirical measure by Rademacher complexity, a fundamental tool in
statistical learning theory. Rademacher complexity quantifies the expressive power of a
model (or hypothesis class) by measuring its ability to fit random labels. In the case of
binary classification, it can be defined as follows:

(Empirical) Rademacher complexity for Binary Classification (Mohri et al.,
2012)): Given a hypothesis class H and train data & = {(z1,01), ..., (Tm,0m)}, Where
01y ey O € {1} are i.i.d. uniform random variables:

m
R = sup — oih(x; 1
s(H) "Legmz } (1)
In binary classification, the agreement between a model’s prediction and the true label can
be quantified by the product of the label and the model output. While this measure is closely
related to accuracy, it is inherently restricted to the binary setting and does not naturally
extend to multi-class classification. The hypothesis h is chosen as a supremum over the
hypothesis class, which in practice can be approximated via empirical risk minimization (e.g.,
with optimizers such as SGD or Adam). However, the presence of the supremum makes the
exact evaluation of Rademacher complexity intractable in practical settings.

Importantly, Rademacher complexity is model-agnostic: it does not depend explicitly on
architectural details such as depth, width, or number of parameters. Instead, it captures
the capacity of a model through its ability to fit random labels. Within the PAC-learning
framework, this quantity is central to deriving bounds on the generalization error. In
particular, for binary classification, the generalization error can be bounded as:

Theorem 1. Given a hypothesis class H, training data S = {(z1,01), ..., (Tm,0m )}, With
O1y .0y O € {£1}, then for any § > 0, with probability at least 1 — § for any h € H it holds

that

R(h) < Rs(h) + Fs(H) + 3y D).

2m

Where Rs(h) denotes the empirical error on the training dataset (Mohri et al., 2012). This
bound implies that, for fixed training performance, a reduction in Rademacher complexity
directly translates into improved test performance and thus generalization. While Rademacher
complexity provides a theoretically powerful framework for characterizing the capacity
of hypothesis classes, its exact computation for state-of-the-art deep learning models is
infeasible.
Grounded on this theoretical foundation, we will derive an empirical alternative to the
Rademacher complexity, suited for real-world training tasks, thereby enabling the study of
the relation between memorization and generalization in practical deep learning settings.

4 RANDOM LABEL PREDICTIONS AND REGULARIZATION

Rather than training an entire network on random labels, as explored in prior work, we
introduce an auxiliary Random Label Prediction Head (RLP-head) that predicts a randomly
assigned label in parallel with the standard classification task. Concretely, the proposed
architecture outputs both the task prediction vector p € RY and an additional random label
prediction vector p € R™. While the number of task classes N is determined by the dataset,
the number of possible random labels n can be chosen arbitrarily. The RLP-head may be
attached at different locations within the network. Unless otherwise specified, we place it
after the penultimate layer, in parallel with the standard classification head. This choice
is natural since the penultimate activations correspond to the final stage of the feature
extractor, and the RLP-head thereby probes the extent of memorization within the learned
final representation.
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Random labels are generated once at begin-

ning of the training and remain fixed across class
epochs for each sample. Only the RLP-head L
receives gradients from the random label
objective, ensuring that the normal classi-
fication head is unaffected. Consequently, (
our method enables probing memorization
without affecting normal task performance.
In order to train the RLP-head we introduce " |
an auxiliary cross-entropy loss on the ran- "¢ I'nc
dom labels, L™, in addition to the standard ig:ﬁs;ﬁzli E3n: 4 L RND-PRED 4
classification loss, L%*%, where y denotes

the correct class label and g the assigned Figure 1: An additional Random Label Pre-
random label: diction Head (RLP-head) is added after the
N feature extractor of the network. Only the

Letass — _ Z iy log(p;) = —log(py) (2) RLP-head receives L™¢, the random label pre-
i=1 diction loss, whereas the regularizing loss L"¢9

n is calculated on the RLP-head but acts on the

Lt = — Z i log(p;) = —log(py) (3) feature extractor only.
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By default, we implement the RLP-head as a single fully-connected layer followed by a
softmax activation. Nevertheless, the architecture of the RLP-head is flexible, and more
complex variants can be employed (see for results with a two-layer head).
Training the RLP-head on random labels in parallel with the main task enables to directly
regularize memorization during standard training. Since random label prediction can be
interpreted as an empirical proxy for Rademacher complexity, regularizing the random label
predictions provides a means of constraining the effective complexity of the model.

We introduce a regularization loss term that penalizes correct predictions of the random
labels by the RLP-head. Specifically, this loss is derived from the standard cross-entropy
formulation:

1 n
L7es = =N, 1og(1 — p;) = log(1 — pa). 4
- ;&y og(1 — p;) = log(1 — py) (4)

Compared with standard cross-entropy, we invert the sign of the loss, since the regularizer is
designed to prevent the network from learning the random labels. Furthermore, we replace
p; with 1 — p; inside the logarithm, which amplifies the penalty when p; ~ 1. This ensures
that highly confident predictions of random labels are penalized more strongly. The resulting
regularization term is scaled by a tunable hyperparameter A\ and added to the loss of the
feature extractor.

Although the regularization loss is computed using the RLP-head, its gradients are restricted
to the feature extractor. Accordingly, the classification head remains unaffected during
RLP-regularization. A schematic of the proposed architecture is provided in
Conceptually, the RLP-head and the feature extractor form two adversarial components:
the RLP-head attempts to fit the random labels, while the feature extractor is regularized
to prevent this from happening. This adversarial setup encourages the feature extractor to
produce representations that are less example-specific and do not allow memorization of
specific inputs.

5 EXPERIMENTS

Details of our experimental setup can be found in

5.1 LEARNING RANDOM LABELS

Throughout this section, we analyze the training of the RLP-head, such that it serves solely
as a metric and does not influence network performance (i.e., A = 0). [Figure 2A| shows
the test and train accuracy of the classification head alongside the random label accuracy
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extracted from the RLP-head for ViT-B/32 trained on ImageNet. Around epoch 20, test
and train accuracies begin to diverge, indicating the beginning of overfitting. Notably, the
random label accuracy starts to rise slightly earlier, reaching approximately 70% by the end
of training. This shows that, even when trained exclusively on correct class labels, the model
memorizes a substantial portion of the dataset enough for a single fully-connected layer to
correctly predict random labels. The fact that random label accuracy does not approach
100% may reflect that the chosen network architecture does not have sufficient capacity to
fully memorize the dataset, consistent with the training accuracy plateauing at roughly 93%.
Since we train the RLP-head together with the main classifier, we cannot tell whether its
low early-epoch accuracy is due to the RLP-head not having been trained long enough or
because the network has not yet memorized many samples. To disentangle these effects,
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Figure 2: ViT-B/32 on ImageNet. A: The proposed single fully-connected layer as RLP-head
is sufficient to correctly predict approx. 70% of the random labels, indicating that the feature
extractor memorizes a substantial portion of the training set. B: Even when trained offline,
i.e., after freezing the feature extractor, RLP-head attains low accuracy in the early epochs,
confirming that the online trained RLP-head reliably tracks the evolution of memorization
dynamics during training. C: Random label accuracy when attaching the RLP-head at
different network depth. The higher accuracy observed in deeper layers indicates that
increasingly abstract representations still retain sample-specific information allowing for
memorization.

we performed an additional experiment with two different modes of training the RLP-head
shown in Online refers to training the RLP-head in parallel with the main task, as
described previously. Offline refers to freezing the default network at checkpoints saved after
each epoch, and subsequently training the RLP-head from scratch. For all offline runs, the
RLP-head is initialized with the same parameters and trained on the same fixed set of random
labels, while the default network remains frozen at the corresponding checkpoint. This setup
ensures that the RLP-head receives sufficient and equal training capacity at each epoch. At
epoch 0 (random weights), additional offline training fails to fit the random labels, indicating
that the signal measured by online training actually stems from memorization learned by
the feature extractor during training and not from limitations of the RLP-head. Although
this offline training does not allow for regularization and is computationally very demanding,
it is shown here to validate the suitability of our proposed online training method.

We further investigate where memorization occurs within the network by attaching a separate
RLP-head consisting of a normalization layer, a fully-connected layer and a softmax layer
after each transformer block of a ViT-B/32 trained on ImageNet (Figure 2C). The random
label accuracy increases with the network depth: After the first layer nearly 0% of the
random labels can be predicted correctly, while high accuracies are reached in later layers.
Similar to the previous experiment, this dependency shows that the RLP-head does not
itself memorize the input sample but instead reflects the representational properties of the
network. After the first layer, where only minimal processing occurred, the activations retain
a significant amount of sample-specific information. Interestingly, this does not lead to an
increased random label accuracy. Instead, high random label accuracies are reached only
after sufficient abstraction of the features, showing that the abstracted features are still
sample-specific and lead to memorization.
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5.2  RELATION TO OTHER COMPLEXITY REGULARIZERS

We propose to use the accuracy of the RLP-head as a proxy for model complexity, providing
an empirical approximation to Rademacher complexity. To validate this interpretation, we
evaluate our metric under three well-established regularization strategies, namely dropout,
weight decay, and label smoothing. As illustrated in each of these regularizers
consistently suppresses random label accuracy, confirming the correlation of the random
label accuracy with model complexity. We further support this correlation by studying the

impact of the model size on the random label accuracy in
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Figure 3: WRN16-4 on CIFAR100. The effect of common complexity regularizers can be
measured with the proposed metric. A: Dropout. B: Weight decay. C: Label smoothing.

5.3 REGULARIZING RANDOM LABELS

We can use the RLP-head to explicitly regularize the memorization of the network. To
accomplish this, we apply the loss term defined in and search for an optimal
regularization factor A. We report results for ViT-B/32 on ImageNet in and
WideResNet-16-4 on CIFAR100 in We find that RLP-regularization effectively
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Figure 4: ViT-B/32 on ImageNet. Random label, train and test accuracy under RLP-
regularization for different regularization factors A. RLP-regularization effectively reduces
memorization, and leads to better generalization (smaller test-train gap) and test performance.
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Figure 5: WideResNet-16-4 on CIFAR100. Random label, train and test accuracy under
RLP-regularization for different regularization factors A\. Here, RLP-regularization effectively
reduces memorization, but does not improve generalization.

suppresses memorization in both experimental settings reducing the random label accuracy
down to the level expected from random guessing. On ImageNet with ViT, this effect
translates into improved generalization: while training accuracy decreases, test accuracy
increases, reaching a peak of 68.5% at A = 10%, which corresponds to a gain of 1.5% over the
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baseline. The simultaneous drop in training accuracy further narrows the train—test gap,
confirming the effectiveness of RLP-regularization to reduce overfitting. These observations
align with predictions from PAC-learning theory based on Rademacher complexity, as well
as the intuition that memorization causes overfitting and harms generalization.
Interestingly, these findings do not hold for our experiments for WideResNet on CIFAR100.
Instead, the training accuracy remains unaffected, while the test accuracy deteriorates even
for small regularization factors. These deviations from classical theory are consistent with
recent findings, e.g., by (Nakkiran et al |2021), which highlight the distinct dynamics of
modern overparameterized networks. Our results suggest that the relationship between
memorization and generalization is more nuanced than traditional theory predicts, which we
study further in the following sections.

5.4 UNDERSAMPLED DATASETS BENEFIT FROM MEMORIZATION

Based on our findings and drawing on insights from [Feldman| (2019) and Bayat et al.| (2024),
we hypothesize two distinct memorization scenarios that reconcile the apparent contradictions
with the classical view of overfitting.

Memorization corresponds to the adoption of features that are highly specific to individual
samples. Suppressing memorization prevents the learning of sample-specific features, forcing
it instead to focus on features shared across examples of the same class. When sufficient
samples are available, this results in learning features of the underlying true data distribution
leading to increased generalization (cf. . Without memorization, training accuracy
decreases because the network may fail to fit atypical samples, especially those that share
few features with other samples in the same class, such as noisy or mislabeled samples. We
hypothesize that this mechanism explains the observed behavior on ImageNet .
However, when the dataset is undersampled and memorization is suppressed, the shared
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High Memorization Low Memorization High Memorization Low Memorization
(=) .
Qe
L . L
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Data Distribution
B Learned Solution
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Figure 6: Schematic illustration of how memorization can be either detrimental or benign
depending on dataset sampling. Under memorization, the model learns sample-specific solu-
tions (depicted as small isolated regions around individual samples). In contrast, suppressing
memorization encourages the discovery of a single connected solution space that better
captures class-level structure while excluding outliers such as noisy or mislabeled labeled
samples.

features learned across class samples may fail to reflect the true data distribution and instead
capture arbitrary artifacts of the insufficient sampling. In this case, suppressing memorization
forces the network to rely on these spurious shared features, which degrades generalization.
New, unseen samples may still resemble individual memorized training examples but are un-
likely to share the learned spurious features shared by training examples from undersampled
regions of the true data distribution (cf. [Figure 6B)). We hypothesize that this mechanism
explains the behavior observed on CIFAR-100 (Figure 5)). In line with this view, we find
the same effect (reduced random label accuracy, stable training accuracy, and degraded test
accuracy) when applying the RLP-regularizer to ViT trained on CIFAR-100 (Appendix A.3).
To further test this hypothesis, we study the impact of dataset size by training ViT-B/32 on
subsets of ImageNet while keeping the experimental setup fixed. As shown in our
regularizer improves test accuracy only when large fractions of the dataset are available. The
conventional intuition that memorization is always detrimental would suggest that reducing
memorization should be even more beneficial on smaller datasets, where higher memorization
(as observed by higher random label accuracy) occurs. Our experiment thus provides evidence



Under review as a conference paper at ICLR 2026

in support of our hypothesis of beneficial memorization effects for undersampled datasets.
We perform an additional experiment where we inject label noise into the training dataset and
apply the RLP-regularizer. Since noisy labels cannot contribute positively to generalization
and can only be fit through memorization, our regularizer should consistently improve test
performance in this setting. This prediction is confirmed in

Our hypothesis is further supported by related findings by |Feldman| (2019)) who argue that
memorization in badly sampled regions (i.e., long tails of the data distribution) can enhance
generalization.

Taken together, our experiments highlight both detrimental and beneficial aspects of memo-
rization and demonstrate that RLP-heads, along with the derived regularizer, provide an
effective framework for probing and controlling these dynamics.
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Figure 7: ViT-B/32 on ImageNet. A+B: Random label and test accuracy when training
on reduced dataset fractions (DF) of ImageNet. Although smaller training sets lead to
stronger memorization (higher random label accuracy), suppressing memorization on them
does not improve test accuracy. C: Random label and test accuracy with added label noise
under RLP-regularization. Since memorization of noisy labels hinders generalization, our
regularizer yields substantial improvements.

5.5 RLP-REGULARIZATION SHIFTS MEMORIZATION

To further understand the effects of the RLP-regularizer, we analyze memorization across
different layers of the network. We attach additional RLP-heads after each layer of a vision
transformer, as described above. shows the resulting random label accuracy across
layers for varying regularization strengths.
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Figure 8: ViT-B/32 on ImageNet. A: Random label accuracy of RLP-heads at different
layers when only the final (12th) layer is used for RLP-regularization. Memorization shifts
toward earlier layers. B+C: RLP-regularization is calculated based on RLP-heads attached
to all 12 transformer layers. While this effectively suppresses memorization and prevents the
shift, neither test accuracy nor generalization improve.

The RLP-regularization is only applied based on the RLP-head attached to the final (12th)
layer. Consequently, the random label accuracy drops rapidly for this last layer with
increasing regularization. RLP-heads near the regularized final layer, particularly layers 10
and 11, are also affected. In contrast, earlier layers exhibit the opposite effect: RLP-heads
attached to layers 2 to 6 achieve higher random label accuracies under regularization. This
indicates that while memorization is mitigated in the last layer, it is shifted to earlier layers
rather than eliminated. We hypothesize that, in response to the RLP-regularizer, the network
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transforms sample-specific features into class-relevant information in earlier layers, thereby
enabling memorization to persist while being undetected by the regularizing RLP-head
attached to the final layer.

To test this hypothesis, we conduct an additional experiment, adding a classification head to
each transformer layer trained to predict the class label. This setup enables tracking the
transformation from sample-specific features to class information throughout the network.
shows the resulting class, train, and test accuracies under RLP-regularization based
on the final layer. While class accuracy decreases in the last layer and the penultimate
layer (11), we observe increased accuracy in earlier layers for both training and test data.
Remarkably, test accuracies at layers 10 and 11 even surpass those of layer 12 ,
indicating that regularization not only shifts memorization and classification capabilities
but can also improve generalization in earlier layers. This supports the hypothesis that
RLP-regularization shifts the transformation into class-specific information to earlier layers.
Next, we examine the effect of suppressing memorization when using all attached RLP-heads
for our regularization. As shown in [Figure 8B] this effectively reduces random label accuracy
at all layers, even for modest regularization strengths. However, this does not translate into
improved test accuracy . We hypothesize that applying RLP-regularization to
all layers constitutes an overly harsh intervention: Extraction of sample-specific features
in early layers may be useful even when these features do not lead to direct memorization.
Moreover, some degree of memorization may persist within a transformer block itself, being
hidden to the respective RLP-head attached at its end.

Additionally, we study the influence of the regularizer when the loss term is constructed

from a single RLP-head attached to an intermediate layer in
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Figure 9: ViT-B/32 on ImageNet. Similar to the RLP-heads, we attach additional clas-
sification heads to the outputs of all layers in a ViT to track the transformation from
sample-specific features to class predictions throughout the network. When applying RLP-
regularization to the final (12th) layer only, class prediction accuracy increases in the earlier
layers and test performance improves across all layers. A: Train accuracy. B: Test accuracy.
C: Zoomed-in view of test accuracy.

6 CONCLUSION

We have introduced an effective method to measure and regularize memorization in deep
neural networks: random layer prediction heads (RLP-heads), which can be attached to any
(intermediate) network activation. Motivated as an empirical approximation of Rademacher
complexity, we demonstrated that random label accuracy serves as a valid metric for network
complexity and memorization. This metric enables the study of both the temporal (i.e.,
during optimization) and spatial (i.e., across layers) dynamics of memorization within a
network. Based on the RLP-heads, we derived a regularization method to explicitly mitigate
learning of sample-specific features and in consequence stop memorization.

Our experiments show that memorization can be either beneficial or detrimental. We propose
a hypothesis to explain this counterintuitive effect based on dataset sampling and support it
with targeted experiments. Moreover, applying the memorization regularizer to the final
layer shifts both abstraction of class-level representations and memorization into earlier
layers, resulting in a network that achieves better generalization after fewer layers.

Our findings highlight the value of RLP-heads and RLP-regularization for studying memoriza-
tion and suggest their broader potential for empirical analysis of deep learning mechanisms.
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REPRODUCIBILITY STATEMENT

For all experiments, we report complete results, including the outcomes of all hyperparameter
searches. Details on training configurations are provided in The source code
is included in the supplementary material and will be released publicly upon acceptance.

LLM USAGE

Large language models (LLMs) were used exclusively to assist in refining the phrasing of
certain sentences and improving the clarity of formulations in this manuscript. At no point
were LLMs employed for data analysis, generation of scientific content, or drawing conclusions.
All scientific claims, results, and interpretations are the sole work of the authors.
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APPENDIX

A.1 EXPERIMENTAL SETUP

In the main text we focus on two evaluation scenarios:

1. WideResNet-16-4 (Zagoruyko & Komodakis| 2016) on CIFAR100 (Krizhevsky &
Hintonl, 2009)) trained with SGD with momentum g = 0.9, a linear learning rate warm
up in the first epoch followed by a cosine decay with base learning rate of n = 0.5
and a batch size of 256 trained for 200 epochs without additional regularization or
data augmentation. We use n = 10,000 as the number of (different) random labels.

2. ViT-B/32 (Dosovitskiy et al. |2021) on ImageNet-1k (Deng et al.| [2009) trained with
AdamW (Loshchilov & Hutter, 2019)) and learning rate warm up for eight epochs
followed by a cosine decay with base learning rate of n = 0.001 and a batch size of
1024 trained for 90 epochs with flipping augmentation, gradient clipping and weight
decay of 0.1. We use n = 100,000 random labels.

A full implementation comprising all models and configuration files is available at https:
//URL.

A.2 SANITY CHECK: SHUFFLED RANDOM LABELS

To validate that the observed increase of generalization actually stems from the mitigated
memorization and is not a mere artifact, e.g., caused by effects on the scale of the feature
activations, we perform a simple sanity check. We reshuffle all random labels in each epoch.
Thus, the random labels cannot be learned and cannot serve as a metric for memorization.
Consequently, the RLP-regularizer also does not explicitly reduce the memorization, while
all other implicit effects of the regularizer remain. Results compared to our initially proposed
RLP-regularization are shown in|[Figure A.1] As expected, the random label accuracy remains
approximately at the chance of random guessing 1/n. The train accuracy exhibits only a
minor drop for high regularization factors. The test accuracy does not improve and is only
affected by high regularization factors where the performance drops. This validates that the
observed regularization is an effect of the mitigated memorization.
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Figure A.1: ViT-B/32 on ImageNet. As a sanity check we compare the regularization results
for fixed random labels (as before) to random labels shuffled in each epoch.

A.3 VIT oN CIFAR100

In we found opposing effects caused by memorization mitigation for our two
experiments performed with ViT on ImageNet and with WideResNet on CIFAR100. To
clarify if the two observed effects are caused by the different model architectures or datasets,
we perform an additional experiment where we study a ViT-S/4 trained on CIFARI00.
Results are shown in Memorization is effectively stopped for regularization
factors A > 10~!. Similarly to our experiments with WideResNet on CIFAR100, we observe
a detrimental effect of reducing memorization (unaffected training accuracy and reduced test

accuracy) indicating the dataset to be pivotal for the different effects of memorization as we
further examine in
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Figure A.2: ViT-S/4 on CIFAR100 with RLP-regularization.

A.4 NUMBER OF RANDOM LABELS

In we analyze the effect of the number of different random labels n when using a
linear RLP-head. The input to the random prediction head, i.e., the feature dimension, stays
constant and since the output of the linear layer is given by the number of random labels 7,
the capacity of the prediction head is directly tied to the number of random labels. Two
intuitive implications can be directly observed from The probability to reach
high values by chance decreases with increasing n, i.e., the task to predict the random labels
gets harder, and the capacity of the RLP-head grows with increasing n, i.e., the capability
of the RLP-head to solve the given task increases. As a result, the reached random label
accuracy undergoes a minimum before it approaches full memorization and saturates. From
this experiment, we conclude that the number of random labels must be sufficiently large
to ensure that the RLP-head has enough capacity to measure the models memorization.
However, increasing the number of random labels n also substantially raises computational
costs. Balancing these considerations, we set n = 10,000 for WideResNet experiments on
CIFAR-100 and n = 100,000 for ViT experiments on ImageNet.

To further validate our design choice on ImageNet, we additionally study the case where each
training sample is assigned a unique random label (i.e., n = m = 1,281,167), and analyze the

resulting effect of RLP-regularization in
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g o, | = No Memorization g 80% 4 === No Memorization
g
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= 40% = 40% 4
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] £
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Figure A.3: Linear RLP-head. A sufficiently large number of random labels n and thus
head size has to be chosen. A: WRN16-4 on CIFAR100. B: ViT-B/32 on ImageNet. The
minimum is barely observable because the data starts at n = 256.

A.5 TUNIQUE LABEL PER SAMPLE

We compare our proposed random label formulation with the alternative of assigning a unique
label to each sample. While the latter is computationally very expensive, it provides a direct
measure of single-sample memorization. As shown in [Figure A.4] unique labels yield higher
memorization accuracy, due to the increased predictive capacity of the linear RLP-head.
However, we observe no qualitative differences compared to our proposed approach with
n = 100,000 labels. For reasons of computational efficiency, we therefore adopt the latter
approach in our experiments.
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Figure A.4: ViT-B/32 on ImageNet. Using a unique label per sample when applying
RLP-regularization (i.e., n = m = 1,281,167) compared to n = 100,000 used in the main

paper.

A.6 Two-LAYER HEAD

As shown in the last section (Appendix A.4)) the RLP-head capacity and the number of
random labels n are tied together for a linear head. To disentangle these two effects, we

extend the RLP-head by adding a hidden fully-connected layer. We keep the number of
labels constant at a rather small value in the experiment depicted in (n = 10),
and only influence the RLP-head capacity by varying its hidden feature dimension dj. As
can be seen, the RLP-head is now able to recover a much higher amount of random labels
from the output of the corresponding feature extractor for a sufficiently large dj, compared
to the setting without a hidden layer in the RLP-head.

Ao
g
£ 80%
g
Z
g 60%
E]
£ 40% 4
= 20% 4
No izati No M
T T T T — T T T T
10! 102 10° 101 10° 10° 10* 10° 100
Hidden Layer Size d;, Hidden Layer Size d;,

Figure A.5: A: WideResNet-16-4 on CIFAR100. B: ViT-B/32 on ImageNet. RLP-head with
one hidden layer. Number of random labels n = 10. Increasing the capacity of RLP-head
leads to correctly predicted random labels.

Additionally, we do a sensitivity analysis on both the regularization strength controlled by A
and the hidden layer size dj, for WideResNet-16-4 on CIFAR100. As shown in
small hidden layer dimensions have less impact on the test accuracy; however, the RLP-
head is not capable to correctly predict the random labels under these conditions (see
. Larger RLP-heads do predict the random labels correctly and are thus
sufficiently powerful to measure the network’s memorization, but are similarly detrimental
to the models generalization. Adding a hidden layer to the RLP head used for regularization
neither improves generalization nor yields qualitatively new insights. We therefore use a
linear RLP head.
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Figure A.6: WideResNet-16-4 on CIFAR100. RLP-head with one hidden layer, n = 100.
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A.7 DATASET SIZE

Having studied the influence of the RLP-head in previous sections and
, we aim to study the influence of the dataset size while maintaining the
number of random labels and the capacity of the RLP-head constant now. We thereby
ablate the influence of the dataset size on the difficulty of random label prediction task.
We randomly sample subsets from CIFAR100 in order to construct several smaller datasets
and use a small RLP-head with n = 1024. As shown in the RLP-head is only able to
predict the random labels correctly for small dataset sizes. Since we showed before that
a large RLP-head can reach 100% random label accuracy on the full dataset, the reduced
random label accuracy is caused by the limited size of the RLP-head. We conclude from this
experiment, that the needed RLP-head size to obtain adequately measure the memorization
in the network grows with the dataset size.
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Figure A.7: WideResNet-16-4 on CIFAR100. Dependence of random label accuracy on the
dataset size for a small linear RLP-head of size n = 1024. The original dataset size of 50,000
training samples of CIFAR100 is reduced by sampling random subsets.

A.8 Murtl-HEAD RLP

While we aim to measure single-sample memorization, we chose to generate a number of
n random labels for m total training samples, i.e., m/n samples per random label, where
usually n << m. For instance, we chose n = 100,000 for the m = 1,281,167 samples of
ImageNet leading to approx. 12 images which attain the same random label. This results
in the RLP-regularizer to only be able to effectively suppress features which are shared by
parts of these random subsets of input images. While setting n = m (that is, learning an
individual random label per sample) is studied in this is not computationally
feasible in practical scenarios. However, in the setting n << m, it is harder for the RLP-head
to identify sample-specific features (as opposed to those shared in the random groups of
images with the same random labels). This might allow the network to memorize sample-
specific features even though the RLP-regularizer is applied. To circumvent this problem,
we add multiple parallel RLP-heads receiving different sets of random labels. The total
regularization loss is the average of the individual regularization losses per RLP-head. This
way, a Multi-Head-RLP is developed which we hypothesize to be more powerful in identifying
the networks memorization. However, it is computationally more demanding. As shown in
the number of heads in a multi-head setting does not impact the random label
or train accuracy, but interestingly, yields even higher test accuracy, reaching 69.2% for 10
heads and A\ = 10*.
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Figure A.8: ViT-B/32 on ImageNet. RLP-head used for regularization comprised of multiple
parallel linear layers, each receiving a different mapping from random labels to input images.
The multi-head structure results in improved generalization.

A.9 FEATURE EXTRACTOR SIZE

To validate the proposed random label accuracy as a capacity metric, we analyze the impact
of the feature extractor size on this measure. Specifically, we report the random label accuracy
when training WideResNet-16-w models with varying widening factors w on CIFAR-100,
without applying RLP-regularization (see [Figure A.9)). For small values of w, the models
exhibit insufficient capacity to fully memorize the training data, which is directly reflected
in lower random label accuracy. As w increases, the models progressively achieve higher
random label accuracy, until reaching a plateau at 100%, indicating complete memorization
of the dataset. These results support the use of random label accuracy, as measured by the
RLP-head, as a reliable indicator of model capacity and complexity.
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Figure A.9: WideResNet-16-w on CIFAR100, n = 10,000.

A.10 REGULARIZING INTERMEDIATE LAYERS

Our proposed RLP-regularizer enables control over memorization in a layer-selective manner.
To demonstrate this, we attach RLP-heads to all layers of a ViT trained on ImageNet (as in
the main paper’s jsection 5.5)) to be able to monitor memorization across all layers, while
we exclusively use the RLP-head at layer 8 for regularizing the full feature extractor. As
can be seen in the effect of the regularizer is highly localized: the random
label accuracy at layer 8 is strongly suppressed, approaching zero under large regularization
strengths. In contrast, adjacent layers exhibit only minor reductions in random label accuracy,
and quickly recover beyond the regularized layer. Interestingly, despite employing a single
intermediate layer for regularization, the test accuracy improves to a degree comparable to
using RLP-regularization with the final layer, indicating enhanced generalization.
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Figure A.10: ViT-B/32 on ImageNet. Only layer 8 is used for regularization.
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