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ABSTRACT

Transformer-based Large Language Models (LLMs) have become increasingly
important. However, due to the quadratic time complexity of attention computa-
tion, scaling LLMs to longer contexts incurs extremely slow inference speed and
high GPU memory consumption for caching key-value (KV) vectors. This paper
proposes RetrievalAttention, a training-free approach to both accelerate attention
computation and reduce GPU memory consumption. By leveraging the dynamic
sparsity of attention mechanism, RetrievalAttention proposes to build approximate
nearest neighbor search (ANNS) indexes for KV vectors in CPU memory and
retrieve the most relevant ones through vector search during generation. Unfortu-
nately, we observe that the off-the-shelf ANNS indexes are often ineffective for
such retrieval tasks due to the out-of-distribution (OOD) between query vectors
and key vectors in the attention mechanism. RetrievalAttention addresses the OOD
challenge by designing an attention-aware vector search algorithm that can adapt to
the distribution of query vectors. Our evaluation demonstrates that RetrievalAtten-
tion achieves near full attention accuracy while only requiring access to 1–3% of
the data. This leads to a significant reduction in the inference cost of long-context
LLMs, with a much lower GPU memory footprint. In particular, RetrievalAttention
only needs a single NVIDIA RTX4090 (24GB) to serve 128K tokens for LLMs
with 8B parameters, which is capable of generating one token in 0.188 seconds.

1 INTRODUCTION

Recent transformer-based Large Language Models (Vaswani et al., 2017) have shown remarkable
capabilities in processing long contexts. For instance, Gemini 1.5 Pro (Team, 2024) has supported
the context window of up to 10 million tokens. While this is promising for analyzing extensive data,
supporting longer context windows also introduces challenges for inference efficiency due to the
quadratic complexity of attention computation. To enhance efficiency, KV caching, a technique that
retains past key and value vectors, has been widely adopted to prevent redundant computations. How-
ever, KV caching-based systems face two primary issues: (a) substantial GPU memory requirements,
particularly for long contexts, e.g., the Llama-3-8B model requires approximately 125GB per million
tokens; and (b) inference latency increases linearly to the context size, primarily due to the time
needed to access cached tokens — a common issue across various computing devices, including
GPUs. Therefore, reducing storage costs and token access is vital for enhancing inference efficiency.

The solution lies in leveraging the dynamic sparsity inherent in the attention mechanism (Deng
et al., 2024). This refers to the phenomenon where each query vector significantly interacts with
only a limited subset of key and value vectors, with the selection of these critical vectors varying
dynamically based on individual queries. Prior work (Tang et al., 2024; Xiao et al., 2024a; Ribar
et al., 2024; Lee et al., 2024; Singhania et al., 2024) has proposed various techniques to capitalize on
this observation to improve the efficiency of attention computation. However, most of these methods
identify important tokens either statically (Xiao et al., 2024b; Li et al., 2024) or heuristically (Xiao
et al., 2024a; Ribar et al., 2024; Tang et al., 2024), leading to imprecise approximations that often
result in a significant performance drop.

We observe that the Approximate Nearest Neighbor Search (ANNS) index, such as proximity
graph (Malkov & Yashunin, 2018), is particularly effective in this context. ANNS index is used
to efficiently find the most similar vectors to the query and is widely adopted in various domains
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Figure 1: RetrievalAttention achieves similar
task accuracy as full attention but exhibits
extremely low decoding latency.

Prompt Length 128K 256K 512K 1M

Total Latency (s) 32.8 111 465 1,765
FFN (s) 7.6 15 31 70

Attention (s) 25.2 96 434 1,695

GPU Memory
KV Cache (GB) 15.6 31.2 62.5 125

Table 1: Decoding latency and memory required
for KV cache of Llama-3-8B across different con-
text lengths on one A100 GPU.

like information retrieval (Xiong et al., 2021) and recommendation systems (Cost & Salzberg, 1993;
Covington et al., 2016; Pal et al., 2020). When using the inner product as the similarity measurement
to build the index for key vectors, searching over the index with the query vector exactly aligns with
the attention mechanism.1 It can directly identify the most critical key vectors with the maximum inner
product to the query vector in sub-linear time complexity, yielding a higher accuracy compared to
previous static or heuristic methods (as illustrated in Figure 1). Furthermore, most ANNS algorithms
are compatible with CPU implementation, which enables strategic allocation of GPU and CPU
memory resources and thus facilitates the handling of longer context inference on devices with
limited GPU memory.

Leveraging ANNS for attention mechanism presents a unique challenge: the out-of-distribution
(OOD) problem between query and key vectors. Most ANNS engines operate under the assumption
that both query and key vectors are drawn from the same data distribution. However, this assumption
does not hold in this context due to the different projection weights for query and key vectors in
attention mechanism. The Mahalanobis distance (Mahalanobis, 2018) shows that query vectors
deviate more than 10× farther from key vectors compared to that between in-distribution query and
key vectors. Unfortunately, the effectiveness of ANNS degrades significantly under OOD problem. In
particular, our empirical analysis indicates that maintaining an acceptable level of inference accuracy
requires conventional ANNS scanning 30–50% of all key vectors to identify the critical ones, which
fails to fully leverage the inherent sparsity of the attention mechanism and impairs the inference
latency. To the best of our knowledge, we are the first to identify the challenge of OOD in using
ANNS index for attention computation, a factor that is crucial for inference efficiency and accuracy.

In this work, we present RetrievalAttention, an efficient method for accelerating long-context LLM
generation. RetrievalAttention employs dynamic sparse attention during token generation, allowing
the most critical tokens to emerge from the extensive context data. To address the challenge of
OOD, RetrievalAttention proposes a vector index tailored for the attention mechanism, focusing
on the distribution of queries rather than keys. This approach allows for the traversal of only a
small subset of key vectors (1–3%) to identify the most relevant tokens, yielding accurate attention
scores and inference accuracy. In addition, RetrievalAttention reduces GPU memory consumption by
retaining a small number of KV vectors in GPU memory following static patterns (e.g., similar to
StreamingLLM (Xiao et al., 2024b)) and offloading the majority of KV vectors to CPU memory for
index construction. During token generation, RetrievalAttention efficiently retrieves critical tokens
using ANNS index on the CPU and merges the partial attention results from both the CPU and GPU.
This strategy enables RetrievalAttention to perform attention computation with reduced latency and
minimal GPU memory footprint.

We evaluate the accuracy and efficiency of RetrievalAttention on both commodity GPUs (RTX4090)
and high-end GPUs (A100) on three long-context LLMs across various long-context benchmarks
like∞-Bench (Zhang et al., 2024b) and RULER (Hsieh et al., 2024). For the 128K context on the
RTX4090 GPU, RetrievalAttention achieves 4.9× and 1.98× decoding-latency reduction compared to
the retrieval method based on exact KNN and traditional ANNS index, respectively, while maintaining

1Maximum inner product search can be viewed as similarity search and efficiently solved by ANNS
indexes (Morozov & Babenko, 2018).
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Figure 2: The dynamic sparsity of each layer and head in Llama-3-8B model in the KV retrieval test
of 100,000 tokens. The blue curve shows that using dynamically selected top-1000 critical tokens
achieves an average recovery ratio of 89%, indicating high attention sparsity. In contrast, the orange
curve reveals that statically using the initially determined top-1000 critical tokens from the generation
of the first token to generate subsequent tokens drops the average recovery ratio to 71%.

the same accuracy as full attention. To the best of our knowledge, RetrievalAttention is the first
solution that supports running 8B-level models on a single RTX4090 GPU (24GB) with acceptable
latency and almost no accuracy degradation.

2 BACKGROUND AND MOTIVATION

2.1 LLM AND ATTENTION OPERATION

In the generation process of the t-th token, the attention operation computes the dot product between
the query vector qt ∈ R1×d (where d is the hidden dimension) and the key vectors of all preceding
tokens ki ∈ R1×d (for i ≤ t). This product is scaled by d−

1
2 and normalized via a Softmax

function to yield the attention score at,i. These scores then weight the values vi, resulting in the
output ot.

zi =
qt · kT

i√
d

, at,i =
ezi∑

j=1..t e
zj
, ot =

∑
i=1..t

at,i · vi (1)

LLM inference contains two stages: the prefill phase and decoding phase. The prefill phase, which
only happens once, takes all tokens of the prompt as input and performs attention with a time-
complexity O(n2). In the decoding (token generation) phase, the newly generated token is added to
the input and computes attention scores with same complexity. One common optimization to avoid
repetitive calculation is caching past KV states, thereby reducing the complexity to O(n).

2.2 EXPENSIVE LONG-CONTEXT SERVING

Due to the quadratic time complexity of attention operation, serving long-sequence input incurs
extremely high costs. Table 1 shows the inference latency of Llama-3-8B without KV cache. When
the prompt length reaches 1 million tokens, generating every token requires 1,765 seconds with
over 96% of latency spent on attention operations. Although KV cache can reduce the decoding
latency, it demands a huge amount of GPU memory for long contexts. As shown in Table 1, 125 GB
memory is necessary for storing the KV cache when the context length reaches 1 million tokens,
which is far beyond the GPU memory capacity of commodity GPUs such as the RTX4090 (24GB)
or even high-end GPUs like A100 (40GB or 80GB). This necessitates either scaling to more GPUs
to accommodate the large KV cache (Liu et al., 2024a) or repetitively offloading and reloading
the entire KV cache between CPU and GPU memory over PCIe (Sheng et al., 2023), resulting in
excessive communication overhead. Neither approach provides an efficient and cost-effective solution
for long-context inference on commodity GPUs.

2.3 DYNAMIC AND SPARSE ATTENTION

Corroborating recent work (Xiao et al., 2024b; Li et al., 2024), we observe that attention computation
in LLMs exhibits significant sparsity. Despite the large context length, only a small fraction of tokens
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Figure 3: (a) Query vectors (Q) and key vectors (K) are dumped from Yi-9B and Llama-3-8B with a
prompt length of 128,000 tokens. Off-the-shelf ANNS indexes perform poorly on Q to K searches
while work well for K to K searches. (b) Query vectors are distant from key vectors, while key
vectors themselves are close.

with the highest attention scores (i.e., at,i in Equation 1), also known as critical tokens, contribute
significantly to the attention output.

We quantify the attention sparsity by calculating the cumulative sum of attention scores of top-k
critical tokens. This cumulative sum, called recovery ratio, represents how much of the full attention
can be recovered using a small number of critical tokens, with a higher recovery ratio indicating
greater sparsity. When generating 20 tokens consecutively based on a prompt of 100,000 tokens, we
profile the average recovery ratio of decoding tokens using top-1000 critical tokens in different layers
and heads of the model. As shown in the blue curve of Figure 2, by accurately selecting top-1000
critical tokens based on full attention, most attention heads can recover over 90% of the attention
scores from the full attention, with an average of 89% across all heads and layers.

Furthermore, we observe that as the LLM continues generating new tokens, the critical key vectors
change dynamically, highly depending on the current query vector. To verify this, we first collect the
top-1000 critical key vectors to generate the first token in each attention head and statically apply
them for the subsequent token generation. The results shown in the orange curve of Figure 2 indicate
a significant drop in the average recovery rate, from 89% to 71%. This demonstrates that tokens
considered important in previous queries may not be critical in subsequent queries, and vice versa.
Therefore, it is necessary to dynamically select important tokens for each query vector.

The dynamic sparsity shows a promising path to approximately compute attention with greatly
reduced cost and without sacrificing the model accuracy. For each query, if we can accurately identify
the relevant key-value vectors with higher importance, minimum GPU memory and a much lower
time complexity can be achieved for attention computation.

2.4 CHALLENGES OF OFF-THE-SHELF VECTOR SEARCH

To reduce the latency of long contexts inference while maintaining performance, we require a
method to accurately identify the critical tokens to the current query in sub-linear time complexity.
Additionally, given the constrained GPU memory, it would be beneficial if such a method could
efficiently utilize CPU memory to manage the KV vectors. Based on Equation 1, one key vector is
critical for a query vector if they have a large inner product. With the inner product as a similarity
function, performing searches on ANNS indexes aligns well with the goal of the attention mechanism
to efficiently find critical key vectors for a query vector.

Traditional ANNS indexes generally cluster similar (close) vectors and select the representative vector
for each cluster (Sivic & Zisserman, 2003) or directly build connections between similar vectors to
form a proximity graph (Wang et al.).2 For cluster-based indexes, the query first compares with all
representative vectors and then only accesses the most similar clusters, whereas, in the proximity
graph, the query performs a greedy search, moving closer to the most similar vectors at each hop.
Both methods typically require scanning a limited subset of all vectors (e.g., 1%) to identify the most
similar vectors to the query, achieving high search efficiency and accuracy. However, we find that

2In this context, we use “similar” and “close” to indicate vectors with larger inner product interchangeably.
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(a) Overall design of RetrievalAttention.
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Figure 4: (a) RetrievalAttention offloads most KV tokens to vector databases in CPU, which are
retrieved during the decoding phase to find the most relevant KV tokens with queries. (b) During the
index construction, we link each query to its exact top-k nearest key vectors (KNN).

naively applying off-the-shelf vector indexes fails to provide good performance because of the OOD
issue between query (Q) and key vectors (K).

In conventional vector databases, the distribution of vectors between content and query is often
well-aligned because they are derived from the same embedding model. However, naively using
traditional vector indexes for attention computation suffers from an inherent distribution gap between
queries and keys, which are projected by different weights as 2.1. Figure 3a (focus on Q to K for
now) demonstrates the performance of widely-used vector indexes supported by Faiss (Douze et al.,
2024) using a query vector to retrieve the most similar key vectors. It compares the percentage of
keys scanned and the corresponding recall achieved (i.e., the overlapping ratio between the retrieved
top-100 results and the ground truth). Cluster-based IVF (Sivic & Zisserman, 2003) requires scanning
∼30–50% data for a recall rate higher than 0.95, and graph-based HNSW (Malkov & Yashunin,
2018) falls into a local optimum. The results show that traditional vector indexes require scanning a
large number of vectors to achieve a high recall, highlighting the challenge of performing efficient
vector searches for attention.

Fundamentally, the difficulty is due to the OOD between query and key vectors. We quantify this
using Mahanobis distance (Mahalanobis, 2018), which measures the distance from a vector to a
distribution. We sample 5,000 vectors from Q and K respectively as the query set and compute the
the Mahanobis distance from the query set to the remaining vectors in K. Figure 3b shows that the
queries from Q are significantly distant from the K vectors (OOD) while K themselves are very
close. Therefore, traditional index building based solely on the closeness between key vectors does
not align with the attention mechanism, which requires to retrieve critical tokens as nearest neighbors
from the query vectors’ viewpoint. In contrast, Figure 3a shows that using sampled K as the queries
(K to K) can easily achieve a high recall by only scanning 1–5% vectors because they are in the
same distribution. Similarly, query vectors in each attention head also follow the same distribution as
they are projected by the same model weight. For efficient vector search, the index must consider the
OOD characteristic of the attention computation by design.

3 RETRIEVALATTENTION DESIGN

In this work, we focus on the acceleration of token generation and assume the prefill of the long-
context prompt is done in advance, which is widely supported by existing LLM service providers
(e.g., context caching (Google Cloud, 2024) or separation of prefill and decoding (Patel et al., 2024;
Qin et al., 2024)).

We propose RetrievalAttention that leverages attention-aware vector search to approximate atten-
tion computation by CPU-GPU co-execution accurately. Figure 4a shows the overall design of
RetrievalAttention. Based on our observation in §2.3, We derive an approximated attention by
selectively retrieving relevant key-value vectors while discarding those that are negligible(§3.1).
To efficiently support long context, we offload most KV vectors to the CPU memory, build vector
indexes, and use attention-aware vector search to find critical tokens. (§3.2). To better exploit the
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GPU devices, we leverage the attention scores obtained in the prefill phase to select a proportion of
KV cache that is consistently important during the decoding phase and persist them on GPU devices.
RetrievalAttention computes partial attention with dynamically retrieved from CPU memory and
persistent key-value vectors in GPU memory in parallel and finally combines them together(§3.3).

3.1 APPROXIMATED ATTENTION

Based on the Equation 1, RetrievalAttention approximates the full attention output ot by selectively
utilizing the KV vectors associated with high attention scores (i.e., at,i). Specifically, we define It,ϵ
as a subset of token indices for which the attention score surpasses ϵ. Consequently, a sparse attention
mechanism, which only considers tokens located in It,ϵ, can be defined as follows:

ot =
∑
i∈It,ϵ

at,i · vi +

��
����H

HHH
HH

∑
i ̸∈It,ϵ

at,i · vi ≈
∑
i∈It,ϵ

ãt,i · vi where ãt,i =
ezi∑

j∈It,ϵ
ezj

(2)

Based on the above approximation, we build RetrievalAttention to only consider important key-value
vectors (i.e., It,ϵ) that are persistent in GPU cache and dynamically retrieved by vector indexes.

3.2 ATTENTION-AWARE VECTOR SEARCH

For each pair of key and value vectors, we first decide whether to hold them in CPU or GPU memory
(the decision method is elaborated in §3.3). The KV vectors offloaded to CPU memory will be
indexed by ki ∈ Rd and queried by qt to find the most relevant ones.

To accelerate the vector search during token generation, RetrievalAttention diverges from traditional
indexes that only consider the closeness between key vectors for index building. Instead, it leverages
the existing query vectors in the prefill phase to guide the index building for key vectors, efficiently
mitigating the distribution gap. As shown in Figure 4b, during the index construction, RetrievalAt-
tention explicitly establishes connections from the query vector to its nearest key vectors (i.e., exact
k-nearest neighbors, or KNN). The KNN results can be efficiently computed via GPU, forming a
mapping from query vector distribution to key vector distribution. Using this structure, the decoding
query vector can first search its nearest query vectors and then obtain the most relevant key vectors
through the distribution mapping.

Therefore, the KNN connections from query vectors to key vectors serve as a bridge to reconcile their
distribution differences. However, this structure still has imperfections in both memory overhead and
search efficiency because we need to store and access query vectors besides key vectors. To address
this problem, we leverage the projection technique from the state-of-the-art cross-modal ANNS index
RoarGraph (Chen et al., 2024a) to eliminate all query vectors. Specifically, we project the KNN
connections into key vectors by linking key vectors that are connected to the same query vectors,
which efficiently streamlines the search. This process connects key vectors that are perceived as close
from the query vectors’ perspective, allowing efficient index traversal for future query vectors.

Our evaluation shows that, by effectively modeling the proximity relationship between the query
and key vectors, the vector database only requires scanning 1–3% key vectors to reach a high
recall, significantly reducing the index search latency by 74% compared with IVF indexes (Sivic &
Zisserman, 2003).

3.3 CPU-GPU CO-EXECUTION

To exploit GPU parallelism and accelerate attention computation, RetrievalAttention decomposes the
attention computation into two disjoint sets of KV cache vectors, the predictable ones on GPU and
the dynamic ones on CPU, and then combines the partial attention outputs together.

We leverage the patterns observed in the prefill phase to predict KV vectors that are consistently
activated during token generation. Similar to StreamingLLM (Xiao et al., 2024b), our current
implementation uses fixed initial tokens and the last sliding window of the context as the static pattern
and persists them in the GPU cache. RetrievalAttention can be adapted to utilize more complex static
patterns (Li et al., 2024; Jiang et al., 2024), achieving the best trade-off between low inference cost
and high accuracy. During the prefill phase, we physically separate the static tokens in the GPU
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memory with the remaining tokens, which are offloaded to the CPU memory indexed by the ANNS.
To minimize data transfer over the slow PCIe interface, RetrievalAttention independently computes
the attention results for the CPU and GPU components and then combines them, inspired by the
FastAttention (Dao et al., 2022).

4 EVALUATION

In this section, we compare the performance of RetrievalAttention in long-context LLM inference
against full attention and other state-of-the-art methods. Through experiments, we mainly explore
the following questions: (1) How does RetrievalAttention affect the model’s inference accu-
racy? Specifically, we assess the generation accuracy of RetrievalAttention and other methods
across various downstream tasks (§4.2) (2) Can RetrievalAttention efficiently reduce the token
generation latency of long-context LLM inference? We compare the end-to-end decoding latency
of RetrievalAttention with that of other baselines (§4.3).

4.1 EXPERIMENTAL SETUP

Testbed, Models, and Configurations. We conduct experiments on a server equipped with one
NVIDIA RTX4090 GPU (24GB memory) and an Intel i9-10900X CPU with 10 physical cores (20
logical cores) and 128GB DRAM. The experiment results using NVIDIA A100 GPU can be found
in §A.4. We implement RetrievalAttention on three state-of-the-art long-context LLMs, including
Llama-3-8B-Instruct-262k (Gradient AI, 2024), Yi-6B-200K (01-ai, 2024a), and Yi-9B-200K (01-ai,
2024b). To show a practical speedup of RetrievalAttention and ensure the CPU memory consumption
in long contexts does not exceed the DRAM capacity, we follow previous work (Tang et al., 2024) to
run the benchmark in real-world single-batch scenarios.

Baselines. We compare RetrievalAttention with the following training-free baselines. (1) Full
attention without KV cache as well as the version with KV cache using vLLM (Kwon et al., 2023).
(2) StreamingLLM (Xiao et al., 2024b): it retains initial tokens along with fixed-length recent tokens
in the GPU memory and discards remaining tokens. (3) SnapKV (Li et al., 2024): it only caches
the critical tokens observed from the last window of the prompt. (4) InfLLM (Xiao et al., 2024a):
it separates the KV cache of continuous token sequences into blocks and selects representative
vectors for each block. In the decoding phase, the current query scans all representative vectors and
retrieves top-k blocks with the highest similarity. (5) Quest (Tang et al., 2024): it keeps track of the
minimal and maximal key values in KV cache pages and estimates the criticality of a page using the
query vector. (6) InfiniGen (Lee et al., 2024): it prefetches only the essential KV cache entries by
speculating important tokens required for subsequent attention layers.

To better assess the effectiveness of our method, we introduce two additional baselines using tradi-
tional vector search methods from Faiss (Douze et al., 2024). Specifically, Flat is an exact KNN
method that performs a linear scan of all key-value vectors, whereas IVF indexes key vectors through
clustering. By default, all indexing-based methods retrieve the top-100 nearest key vectors.

Benchmarks. We adopt three representative long-context benchmarks for evaluation.

• ∞-Bench (Zhang et al., 2024b): this benchmark consists of 7 tasks, including three retrieval tasks
(passKey retrieval, number retrieval, KV retrieval) and four realistic tasks (code debugging, math
find, dialogue and multiple-choices questions). The average context length of∞-Bench is over
100K tokens.

• RULER (Hsieh et al., 2024): a comprehensive long-context benchmark consisting of 4 categories
and 13 tasks, including retrieval, multi-hop tracing, aggregation, and QA tasks. The prompt length
ranges from 4K to 128K, allowing us to determine the actual context window size of models.

• Needle-in-a-haystack (Greg Kamradt, 2023): it challenges the models to accurately retrieve
information (the “needle”) hidden within a lengthy document (the “haystack”).

4.2 ACCURACY ON LONG CONTEXT TASKS

∞-Bench. As shown in Table 2, RetrievalAttention achieves comparable accuracy to the full
attention, benefiting from its efficient dynamic retrieval of important tokens. Static methods, such
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Table 2: Performance (%) of different methods and models on ∞-Bench. The size of the static
pattern is consistently 640 (128 initial tokens + 512 tokens in the local window). All indexing-based
methods, including Flat, IVF, and RetrievalAttention retrieve top-100 key vectors by default. In the
relatively complicated task KV Retrieval, we include the results of retrieving top-2000 key vectors.

Methods Act. Tokens Retr.N Retr.P Retr.KV Code.D Math.F En.QA En.MC Avg.

L
la

m
a-

3-
8B

FullAttention 128K 100.0 100.0 17.5 19.0 39.5 9.1 68.0 50.4
StreamingLLM 2K 5.0 5.0 1.0 18.5 40.0 6.0 66.0 20.2 (-30.2)
SnapKV 2K 100.0 100.0 0.5 18.0 40.0 11.8 67.0 48.2 (-2.2)
InfLLM 640+2K 100.0 100.0 0.5 20.5 48.0 7.0 37.0 44.7 (-5.7)
InfiniGen 2K 99.5 100.0 0.0 17.5 39.0 7.3 57.5 45.8 (-4.6)
Quest 2K 100.0 100.0 0.0 18.0 40.0 8.2 67.0 47.6 (-2.8)
Flat 640+100/2K 100.0 100.0 8.5/14.5 19.0 40.0 7.5 67.0 48.9 (-1.5) / 49.7 (-0.7)
IVF 640+100/2K 94.0 100.0 9.5/14.0 19.0 40.0 7.8 67.0 48.2 (-2.2) / 48.8 (-1.6)
RetrievalAttention 640+100/2K 100.0 100.0 9.0/14.0 19.0 40.0 7.5 67.0 48.9 (-1.5) / 49.6 (-0.8)

Y
i-

9B

FullAttention 128K 100.0 100.0 30.5 25.5 36.5 9.8 67.0 52.8
StreamingLLM 2K 5.0 5.0 0.5 24.0 33.5 6.4 72.0 20.9 (-31.9)
SnapKV 2K 63.0 100.0 0.5 23.0 33.0 10.3 68.5 42.6 (-10.2)
InfLLM 640+2K 100.0 100.0 0.5 20.5 43.0 9.4 44.0 45.3 (-7.5)
Quest 2K 99.0 100.0 0.0 22.5 34.5 10.4 68.5 47.8 (-5.0)
Flat 640+100/2K 100.0 100.0 21.0/30.0 23.0 35.0 10.8 68.5 51.2 (-1.6) / 52.5 (-0.3)
IVF 640+100/2K 99.0 100.0 19.5/29.5 23.0 35.0 10.7 69.0 50.9 (-1.9) / 52.3 (-0.5)
RetrievalAttention 640+100/2K 99.5 100.0 20.0/30.0 23.0 35.0 9.5 68.5 50.8 (-2.0) / 52.2(-0.6)

Y
i-

6B

FullAttention 128K 98.0 100.0 3.5 31.0 11.0 19.2 55.5 45.5
StreamingLLM 2K 5.0 5.0 0.5 27.5 11.0 12.2 54.0 16.5 (-29.0)
SnapKV 2K 39.0 100.0 0.0 30.5 8.5 17.1 55.0 35.7 (-9.8)
InfLLM 640+2K 99.0 100.0 0.5 27.5 18.0 12.7 40.5 42.6 (-2.9)
Quest 2K 98.5 100.0 0.0 30.5 8.5 17.3 54.5 44.2 (-1.3)
Flat 640+100/2K 98.5 100.0 2.5/3.0 30.5 16.0 17.7 54.5 45.7 (+0.2) / 45.7 (+0.2)
IVF 640+100/2K 98.0 100.0 2.5/3.5 29.5 16.0 17.5 54.5 45.4 (-0.1) / 45.6 (+0.1)
RetrievalAttention 640+100/2K 95.0 99.0 3.0/3.0 30.0 16.0 17.6 54.5 45.0 (-0.5) / 45.0 (-0.5)

as StreamingLLM and SnapKV, lack this capability and, therefore, achieve sub-optimal accuracy.
During token generation, the critical tokens change dynamically according to the current query,
invalidating the previously captured static patterns. InfiniGen exhibits a noticeable drop in model
accuracy compared to full attention due to inaccurate speculation of important tokens from previous
layers. Although InfLLM and Quest supports dynamic retrieval of relevant blocks, it achieves nearly
zero accuracy in complex tasks (i.e., KV retrieval) due to the low accuracy of representative vectors.
Since RetrievalAttention can accurately identify the most relevant key vectors, it achieves the best
accuracy in KV retrieval. Moreover, by retrieving more tokens (i.e., top-2000 shown in the column
of Retr.KV) in KV retrieval, RetrievalAttention achieves nearly the same accuracy as full attention,
which demonstrates the effectiveness of our method in complex and dynamic tasks.

It is worth noting that Flat and IVF need to scan 100% and 30% of the past key vectors to achieve the
same task accuracy as RetrievalAttention. In contrast, RetrievalAttention only requires scan 1–3%
vectors, resulting in much lower decoding latency.

RULER. Table 3 demonstrates that models utilizing RetrievalAttention achieve nearly the same
task accuracy as full attention in different context lengths. In contrast, other training-free methods
experience a noticeable reduction in accuracy, particularly for longer context sizes like 128K, as they
fail to capture dynamically changed important tokens.

Needle-in-a-haystack. As shown in Figure 5, RetrievalAttention can effectively focus on information
at various positions across different context windows, ranging from 4K to 128K. In contrast, other
methods like StreamingLLM encounter difficulties when critical information lies beyond the range of
the static patterns, whose results are shown in §A.2.

4.3 DECODING LATENCY

As the context length increases, the decoding latency of full attention significantly increases due to its
quadratic time complexity. Enabling the KV cache (vLLM) incurs out-of-memory (OOM) issues due
to limited GPU memory. The latency of StreamingLLM, SnapKV, and InfLLM remains relatively
stable because of constant tokens involved in the attention computation, but they suffer significant
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Table 3: Performance (%) of different methods and models on RULER.

Methods Act. Tokens Claimed Effective 4K 8K 16K 32K 64K 128K Avg.
L

la
m

a-
3-

8B
FullAttention 128K 262K 32K 93.13 90.49 89.27 85.11 82.51 78.74 86.54
StreamingLLM 2K - <4K 60.10 28.77 20.99 16.36 12.52 11.34 25.01 (-61.53)
SnapKV 2K - 4K 91.51 80.70 75.53 70.84 65.44 58.68 73.78 (-12.76)
InfLLM 640+2K - 4K 85.20 52.86 38.29 32.44 27.94 25.71 43.74 (-42.81)
Flat 640+100 - 16K 92.71 87.93 87.01 84.97 80.99 74.34 84.66 (-1.89)
IVF 640+100 - 16K 92.73 87.86 87.22 84.74 78.46 68.21 83.20 (-3.34)
RetrievalAttention 640+100 - 16K 92.64 88.46 86.80 84.78 80.50 74.70 84.70(-1.85)

Y
i-

9B

FullAttention 128K 200K 8K 91.02 86.62 82.85 73.17 67.08 60.51 76.87
StreamingLLM 2K - <4K 57.53 28.30 19.08 13.48 12.53 12.81 23.95 (-52.92)
SnapKV 2K - 4K 90.39 75.59 64.48 48.70 39.28 32.97 58.57 (-18.30)
InfLLM 640+2K - <4K 82.66 50.36 36.17 28.20 22.65 20.94 40.16 (-36.71)
Flat 640+100 - 8K 91.09 87.71 84.42 74.58 66.16 59.50 77.24 (+0.37)
IVF 640+100 - 8K 91.03 91.04 83.85 72.19 65.13 58.04 76.29 (-0.58)
RetrievalAttention 640+100 - 8K 90.78 86.32 82.95 73.73 65.67 59.15 76.43(-0.44)

Y
i-

6B

FullAttention 128K 200K <4K 84.52 77.77 69.12 61.64 58.36 55.77 67.86
StreamingLLM 2K - <4K 51.66 24.57 15.82 9.70 9.77 11.54 20.51 (-47.35)
SnapKV 2K - <4K 80.94 59.55 45.36 36.11 33.43 29.53 47.49 (-20.37)
InfLLM 640+2K - <4K 76.42 44.38 34.11 27.11 25.28 25.33 38.77 (-29.09)
Flat 640+100 - <4K 83.69 77.26 67.28 60.58 57.27 50.63 66.12 (-1.75)
IVF 640+100 - <4K 83.25 76.90 67.00 58.94 55.99 50.31 63.33 (-2.53)
RetrievalAttention 640+100 - <4K 83.01 76.56 67.49 59.46 57.20 51.44 65.86(-2.00)

Figure 5: Performance of RetrievalAt-
tention in Needle-in-a-haystack.

Methods 4K 8K 16K 32K 64K 128K

Full (without cache) 0.527 1.167 2.672 6.214 15.263 43.927
vLLM OOM OOM OOM OOM OOM OOM
StreamingLLM 0.029 0.030 0.029 0.030 0.030 0.029
SnapKV 0.029 0.028 0.028 0.029 0.029 0.028
InfLLM 0.058 0.063 0.063 0.065 0.067 0.069
Flat 0.140 0.178 0.226 0.328 0.522 0.922
IVF 0.128 0.140 0.162 0.201 0.253 0.373
RetrievalAttention 0.137 0.144 0.156 0.162 0.169 0.188

Table 4: Per-token generation latency (s) as context
length varies from 4K to 128K on Llama-3-8B.

model accuracy degradation. Due to efficient attention-aware vector search, RetrievalAttention
achieves 4.9× and 1.98× latency reduction compared to Flat and IVF for the 128K context.

Table 5 presents the breakdown of end-to-end latency for different retrieval attention-based algorithms
under the 128K context length. RetrievalAttention only requires 34.0% of the time for vector search,
while Flat and IVF spend 86.6% and 67.0% of time, respectively. This is because RetrievalAttention
scans less data for a high recall, avoiding memory bandwidth contention when multiple heads are per-
forming parallel retrieval on the CPU side. Overall, compared with Flat and IVF, RetrievalAttention
effectively reduces the index search latency by 91% and 74%, respectively. This advantage becomes
more pronounced with longer context lengths.

4.4 INDEX RECALL VS. SCANNING VECTORS

Now, we conduct a micro-analysis of the efficiency of attention-aware vector search by examining
the relationship between recall and the number of scanned key vectors. The number of key vectors
scanned to achieve a target recall serves as an indicator of search efficiency. Figure 6 demonstrates
that for the Q to K search, RetrievalAttention requires scanning only a very limited number of
key vectors (1–3%) to reach a recall rate higher than 0.95, whereas traditional indexes necessitate
retrieving a significantly higher number of keys. We also included a well-known OOD-optimized
solution RobustVamana (Jaiswal et al., 2022) for comparison. However, it performs poorly on
attention vectors. The efficiency of RetrievalAttention arises because it effectively mitigates the OOD
issue between query and key vectors. In contrast, for the in-distribution K to K search, all indexes
exhibit good performance.

9
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Table 5: Decoding latency breakdown on Llama-3-8B.

Methods Retrieval Attention Others Total

Flat 0.798 0.083 0.041 0.922
IVF 0.250 0.084 0.039 0.373
RetrievalAttention 0.064 0.081 0.043 0.188
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Figure 6: Recall vs. scanning key vectors when using the query vector (Q to K) and key vector (K
to K) as the query, individually. Q and K are dumped from three long-context LLM models.

5 RELATED WORKS

To accelerate the long-context LLM inference, some works (Zhang et al., 2023; Liu et al., 2024b;
Xiao et al., 2024b; Han et al., 2024; Ge et al., 2024; Li et al., 2024) attempt to compress the size
of the KV cache by leveraging the sparsity of attention. However, these methods often suffer from
significant model accuracy drops due to the dynamic nature of attention sparsity.

FlexGen (Sheng et al., 2023) and Lamina (Chen et al., 2024b) offload the KV cache to CPU memory,
but they struggle with slow and costly full-attention computation. By identifying the dynamic nature
of important KV vectors for different queries, recent work chooses to retain all of the KV cache and
dynamically attend to different parts of KV vectors based on the current query. Quest (Tang et al.,
2024) partitions the KV cache into blocks and selects a representative key vector for each block.
For a given query, it scans all representative key vectors and attends top-k blocks with the highest
attention scores. InfLLM (Xiao et al., 2024a) adopts a similar strategy as Quest but offloads most
KV cache blocks to the CPU memory to support longer contexts. Due to block-based organization
and retrieval, the accuracy of representative vectors significantly impacts the effectiveness of those
methods for obtaining important tokens. SparQ (Ribar et al., 2024), InfiniGen (Lee et al., 2024),
and LoKi (Singhania et al., 2024) approximate the most relevant top-k keys corresponding to a
given query by reducing the channel dimension. RetrievalAttention instead organizes the KV cache
using ANNS indexes, allowing the retrieval of important tokens with high recalls and low cost. The
concurrent work MagicPiG (Chen, 2024) and PQCache (Zhang et al., 2024a) employ LSH and PQ
centroids to retrieve critical tokens, respectively. However, they fail to address the OOD issue in
attention, necessitating retrieving a large portion of KV cache (e.g., 20%) for high model accuracy.

6 CONCLUSION

We propose RetrievalAttention, a method that offloads most KV vectors to CPU memory and lever-
ages vector search for dynamic sparse attention to minimize inference cost. RetrievalAttention
identifies the different distributions of the query and key vectors and employs an attention-aware
approach to efficiently find critical tokens for model generation. Experimental results demonstrate
that RetrievalAttention effectively achieves 4.9× and 1.98× decoding speedup than exact KNN and
traditional ANNS methods, on a single RTX4090 GPU for a context of 128K tokens. RetrievalAtten-
tion is the first system that supports running 8B-level LLMs with 128K tokens on a single RTX4090
(24GB) GPU with an acceptable latency cost and without compromising model accuracy.
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Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA), pp. 118–132. IEEE,
2024.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran Xu.
Mooncake: Kimi’s kvcache-centric architecture for llm serving. ArXiv preprint, abs/2407.00079,
2024. URL https://arxiv.org/abs/2407.00079.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=OS5dqxmmtl.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

13

https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://arxiv.org/abs/2404.14469
https://openreview.net/forum?id=WsRHpHH4s0
https://openreview.net/forum?id=6RR3wU4mSZ
https://proceedings.neurips.cc/paper/2018/hash/229754d7799160502a143a72f6789927-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/229754d7799160502a143a72f6789927-Abstract.html
https://dl.acm.org/doi/10.1145/3394486.3403280
https://dl.acm.org/doi/10.1145/3394486.3403280
https://arxiv.org/abs/2407.00079
https://openreview.net/forum?id=OS5dqxmmtl


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
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A ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A.1 MODEL ARCHITECTURE

Table 6 compares the architecture differences of
the three models used in our experimental
evaluation. All models supports the grouped query
attention (GQA), in which multiple query heads
share one KV head. Among them, the Yi-9B
model has more transformer layers, while the
Llama-3-8B model has more KV heads.

Table 6: Architecture overview of LLMs.

Model Total Layer Query Head KV Head

Yi-6B 32 32 4
Yi-9B 48 32 4

Llama-3-8B 32 32 8

A.2 ADDITIONAL RESULTS ON NEEDLE-IN-A-HAYSTACK

Figure 7 shows the results of other methods on Needle-in-a-haystack benchmark. StreamingLLM can
only find the correct answer when the needle’s position is within the static pattern. InfLLM maintains
high performance with shorter context lengths. However, as the length increases, its performance
shows a significant decline. Although SnapKV, Flat, and IVF perform well on this benchmark, we
have analyzed their disadvantages in accuracy and latency in the previous evaluation.

A.3 PERFORMANCE IN THE EXTREMELY LONG-CONTEXT INFERENCE

Figure 8 shows the evaluation results of RetrievalAttention for extremely long contexts using the
model Llama-3-8B-1048K. RetrievalAttention still passes all test cases when ranging the context
length from 250K to 1 million, which demonstrates the robustness of our attention-aware indexes.

A.4 DECODING LATENCY ON A100

We test the generality of RetrievalAttention by measuring its performance on a server with one
A100 (80GB) and one AMD EPYC 7V13 CPU with 24 cores and 220GB DRAM. We show the
token-generation latency of different methods on three models in Table 7. Since the KV cache of
full attention is disabled, all prompt tokens need to be recalculated during the decoding, incurring
a very high decoding latency. By enabling the KV cache with the PageAttention optimization in
vLLM, the decoding latency is significantly reduced. However, vLLM suffers from OOM issue with
the increase of context length, which we elaborate further later. Other KV cache dropping or block
retrieval methods including StreamingLLM, SnapKV, and InfLLM achieve faster decoding speed,
but this is at the expense of a significant drop in model accuracy. In contrast, RetrievalAttention does
not compromise generation accuracy while achieving much lower decoding latency than IVF and
Flat because of the efficient mitigation of out-of-distribution problem.

15

https://openreview.net/forum?id=Bl8u7ZRlbM
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Full Attention (b) StreamingLLM

(c) SnapKV (d) InfLLM

(e) FLAT (f) IVF

Figure 7: Performance of different algorithms and models on Needle-in-a-haystack. The size of the
static pattern is consistently 640 (128 initial tokens + 512 tokens in the local window).

Figure 8: Performance of RetrievalAttention in 1 million Needle-in-a-haystack test.
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We also evaluate how the decoding latency changes when the context length varies from 100K to
1M tokens on Llama-3-8B model and the results can be found in Table 8. To make sure there is
enough CPU memory to hold the KV cache and indexes, especially in the 1M context scenario, we
use a powerful machine equipped with an AMD EPYC 7V12 CPU with 48 cores and 1.72 TB of
memory. The machine is also equipped with the same 80GB A100 GPU. The decoding latency of full
attention with KV state re-computation increases quadratically with the context size. With the KV
cache enabled in the GPU memory, vLLM starts triggering the OOM issues when the context size is
larger than 200K. Static KV dropping methods such as StreamingLLM have no latency increase due
to the constant KV cache involved for attention computation. Different from Flat and IVF whose
latency numbers are sensitive to context size, RetrievalAttention only has a minor latency increase
(8%) when the context size increases 10× from 100K to 1M.

Table 7: Per-token generation latency (s) of
128K context-length on A100.

Methods Yi-6B Yi-9B Llama-3-8B

Full (without cache) 31.61 47.51 33.38
vLLM 0.030 0.044 0.033
StreamingLLM 0.032 0.047 0.031
SnapKV 0.033 0.05 0.033
InfLLM 0.069 0.11 0.068
Flat 0.541 0.802 0.564
IVF 0.309 0.468 0.345
RetrievalAttention 0.150 0.227 0.155

Table 8: Per-token generation latency (s) as
context length varies from 100K to 1M.

Methods 100K 200K 500K 1M

Full (without cache) 25.47 83.03 457 1740
vLLM 0.029 0.046 OOM OOM
StreamingLLM 0.034 0.035 0.032 0.035
SnapKV 0.035 0.035 0.034 0.034
InfLLM 0.082 0.079 0.082 0.084
Flat 0.489 0.871 1.92 3.69
IVF 0.308 0.476 1.032 1.889
RetrievalAttention 0.159 0.167 0.170 0.172

B RETRIEVALATTENTION ALGORITHM

B.1 FORMULA OF COMBINING ATTENTION RESULTS FROM THE CPU AND GPU SIDE

RetrievalAttention partitions the KV vectors for attention into two disjoint sets: predictable ones on
GPU (denoted asW) and dynamically retrieved ones on CPU (denoted as Ω).

It,ϵ =W ∪ Ω (3)

Attention operation is applied to the two sets of KV vectors separately on CPU and GPU, generating
two partial attention outputs (denoted as oW and oΩ, respectively). To guarantee the approximated
attention output equals to the attention computation on It,ϵ, RetrievalAttention uses a similar idea of
FlashAttention (Dao et al., 2022) to combine oW and oΩ in the following equations:

oW = Attn(qt,K[W, :],V[W, :])

=

∑
i∈W ezi−z̃1 · vi∑

i∈W ezi−z̃1

oΩ = Attn(qt,K[Ω, :],V[Ω, :])

=

∑
i∈Ω ezi−z̃2 · vi∑

i∈Ω ezi−z̃2

ot = γ1 · oW + γ2 · oΩ (4)

where z̃1 = maxi∈W zi and z̃2 = maxi∈Ω zi are the local maximum dot products in setW and Ω
respectively. And γ1 and γ2 are re-scaling factors to guarantee the attention output is the same as that
on It,ϵ, which are defined as follows:

γ1 =
ez̃1−z̃ ·

∑
i∈W ezi−z̃1∑

i∈It,ϵ
ezi−z̃

γ2 =
ez̃2−z̃ ·

∑
i∈Ω ezi−z̃2∑

i∈It,ϵ
ezi−z̃

(5)
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Algorithm 1: RetrievalAttention

Input: Query vector qt ∈ R1×d

Data: KV Cache in GPU KW ,VW ∈ R|W|×d

Data: CPU-based Vector DatabaseH
Output: Attention output ot ∈ R1×d

// Find the predictable KV vectors
1 W ′ ←− PredictActiveTokens(...);
2 for {i|i ∈ H ∪W ′} do
3 H.remove(i); W .insert(i); // move to GPU

4 for {i|i /∈ W ′ ∧ i ∈ H} do
5 W .remove(i); H.insert(i); // move to CPU

// Attention on GPU
6 oW ←− FlashAttention(qt,KW ,VW )
// Attention on CPU
// Search in vector database to retrieve most relevant KV

vectors
7 Ω←− VectorSearch(qt);
8 oΩ ←− AttentionCPU(Ω); // Combine partial attention outputs
9 ot = γ1 · oW + γ2 · oΩ; // Equation 4,5

B.2 OVERALL EXECUTION FLOW

Algorithm 1 summarizes the above design of RetrievalAttention and elaborates the procedure in an
algorithm. At the beginning of each token generation, RetrievalAttention predicts active KV vectors,
moves them to GPU memory, and computes partial attention using the FlashAttention (Dao et al.,
2022) kernel (#1 - #6). In parallel with GPU computation, RetrievalAttention leverages the specially
designed vector database to find the most relevant KV vectors to compute attention on CPU (#7 - #8).
Finally, RetrievalAttention combines the partial attention outputs on GPU and CPU using #4 and gets
the approximated attention output (#9).

C IMPLEMENTATION

RetrievalAttention builds one individual vector index for the KV cache in one attention head. Re-
trievalAttention has implemented several optimizations to optimize the prompt prefill, accelerate the
vector search, and reduce CPU memory usage.

Optimization for the Prefill Phase. During the prefill phase, full attention computation is required
to generate the output vector for the next layer of the LLM. Simultaneously, we move the KV vectors
to the CPU side for the ANNS index building. To accelerate the overall prefill process, we overlap
the cache movement to the CPU with the full attention computation on the GPU in a pipeline manner.
To minimize peak GPU memory usage during the prefill phase, attention computation is performed
sequentially across multiple attention heads. This approach only slightly impacts the attention
computation speed, as longer prompts can fully leverage GPU parallelism with FlashAttention.

For simplicity, our current implementation does not integrate the KNN computation from Q to K into
FlashAttention. However, the KNN computation can be fused into FlashAttention for acceleration
because (1) FlashAttention inherently includes the step of calculating the inner product of queries and
keys, and (2) the top-K algorithm only consumes registers that are redundant in the flash-attention
kernel for modern GPUs. We can initialize a min-heap for each query in registers and update it with
the matrix multiplication results as the thread block moves through key blocks. Heap operations are
performed in CUDA cores and may take up to 2-3× the prefill latency, which is acceptable. The
detailed algorithm is shown in Algorithm ??.

Handling Newly Generated Tokens. In our current implementation, we do not update the index
and, consequently, the nearest-keys set for prefilled queries during the decoding phase. Instead, we
maintain the newly generated tokens in the GPU memory as a static pattern and include all of them
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Figure 9: The Mahalanobis distance
from the newly generated queries (New
Q) and sampled prefill queries (Old Q)
to the remaining prefill queries.
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Figure 10: Index recalls remain at a high level
(≥0.95) in all attention heads when using 1200
newly generated queries to search in the indexes
built for prompt context.

in the attention computation for subsequent generation steps. This design choice is based on the
observation that newly generated tokens are typically much fewer in number compared to the long
context.

The maximum generation length of long-context benchmark Ruler and InfiniBench is 128 tokens.
Existing studies (Bai et al., 2024; Zhao et al., 2024) have also demonstrated that although modern
LLMs can handle extremely long contexts (e.g., 128K to 1M tokens), the maximum generation length
usually does not exceed 2K tokens. Therefore, newly generated tokens can either remain in the
GPU memory as static patterns or be offloaded to the CPU memory and efficiently retrieved using a
brute-force KNN method. Since we do not update the original index, the index quality for searching
critical tokens within the prompt context remains unchanged as the decoding queries follow the same
distribution as prefill queries. Figure 9 illustrates that the Mahalanobis distances from the newly
generated queries to the prefill queries are nearly identical to the distances among the prefill queries
themselves. This confirms that the newly generated queries remain within the distribution of prefill
queries. Furthermore, we employ a summary task, which generates 1,200 tokens based on a prompt
context of 128K tokens, to validate our design. Figure 10 demonstrates that the index provides robust
performance with high recall of top-k results in prefill key vectors when handling new queries in a
long generation.

Although we have adopted the above design choices, our ANNS can accept incremental inserts
without updating the nearest-keys of prefilled queries. Specifically, we can utilize the update strategy
from RoarGraph (Chen et al., 2024a) to achieve this. For each new key vector (v), we find the
closest prefilled query (q), get the previous nearest-key set (S), and use it to select neighbors for
v without modifying the pre-existing set. This insert strategy is shown to be highly efficient while
maintaining the indexing quality (Chen et al., 2024a). To exemplify this, we insert every key vector
of the generated token into the index in a summary task and test recall rates among all heads in
Llama-3-8B. Figure 11 presents the index of RetrievalAttention maintains its quality at high recall
regimes when continuing to insert newly generated key vectors into the index.

To validate the index works well on special cases with short input and relatively long generation,
we evaluate the index on code generation tasks from LongBench (Bai et al., 2023). The input
lengths for these tasks range from 151 to 719 tokens, with the model allowed to generate up to 2,000
tokens, incorporating incremental inserts into the index. This output length covers most scenarios
in existing benchmarks. We evaluate the recall rates of the index at each decoding step. As shown
in Figure 12, while recall rates exhibit a slight decline as decoding progresses, the index remains
robust, maintaining a recall rate of at least 0.95 in long-generation scenarios, where the output length
exceeds the input length by multiple times.

Multi-head Parallelism on the CPU side. To speed up the dynamic sparse attention computation
on the CPU, we exploit the multi-thread parallelism in vector databases by leveraging the multi-core
ability of modern CPU architecture. Specifically, since the computation of different attention heads
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Figure 11: Index recalls remain at a high level among all attention heads when inserting every newly
generated key vector into the index in a summary task that generates 1,200 tokens.
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Figure 12: Index recalls on contexts in code generation tasks, with short prompt and long generation.

is independent, we launch multiple threads for parallel searching across different vector indexes to
reduce the overall latency on the CPU side. For grouped query attention (GQA) (Ainslie et al., 2023),
although multiple query heads could share the same key-value vectors, we observe that the query
vectors from different query heads in the same group exhibit different vector distributions. Therefore,
we build one vector index for each query head to leverage the specific query distribution of each head.

Minimize the CPU Memory Usage. To reduce CPU memory consumption, the indexes in the same
attention group share one copy of KV vectors by only storing the pointers to KV vectors in each index.
In the future, we plan to utilize scalar quantization to further compress the KV vectors, implementing
an 8-bit quantization in place of the original FP16 format. This compression is promising to reduce
memory usage while preserving computational efficiency. Importantly, our initial results demonstrate
that this quantization approach does not compromise the inference accuracy, maintaining performance
equivalent to the full-precision representation.

D ADDITIONAL RELATED WORK

Sparse Transformers. Since the quadratic complexity of attention has become the bottleneck of
LLM efficiency for long context applications, numerous works have studied to design sparse trans-
formers to reduce the computational and memory complexity of the self-attention mechanism. Some
works restrict the attention computation to predefined patterns, including sliding windows (Child
et al., 2019), dilated windows (Beltagy et al., 2020), or a mixture of different patterns (Zaheer et al.,
2020; Ainslie et al., 2020). Some approaches use cluster-based sparsity based on hash value (Kitaev
et al., 2020) or KNN algorithms (Bertsch et al., 2024; Mao et al., 2024). These solutions either
require pre-training a model from scratch or target limited scenarios like CPU-only, which do not
work for our target to out-of-box usage of LLMs on the GPU-CPU architecture. Although some
approaches (Xiao et al., 2024a; Ribar et al., 2024) exploit the dynamic sparse nature of LLMs, they
often use some estimation using low-rank hidden states or post-statistical approaches, which incurs
high overhead but with low accuracy. Moreover, all these approaches have to maintain full KV
vectors on GPU with only accelerated inference by reduced memory movement, which does not solve
the challenge of commodity GPUs with limited GPU memory.
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Additionally, some approaches accelerate the inference by employing dynamically sparse attention
patterns (Jiang et al., 2024), separating the prefill and decoding stages (Zhong et al., 2024; Qin et al.,
2024), and utilizing sequence parallelism (Jacobs et al., 2023; Liu et al., 2024a). These methods are
orthogonal to ours and can be in conjunction with our approach.

E ADDITIONAL BASELINES

We compare RetrievalAttention with additional baselines InfiniGen and Quest on the RULER bench-
mark and show the results on Table 9. InfiniGen and Quest exhibit a noticeable drop in model
accuracy compared to full attention. In contrast, RetrievalAttention performs best and achieves nearly
the same accuracy as full attention across two benchmarks.

Table 9: Performance (%) of different methods in 128K context length on RULER.

Methods Act. Tokens S1 S2 S3 M1 M2 M3 MQ MV VT CW FW Q1 Q2 Avg.

L
la

m
a-

3 FullAttention 128K 100.0 100.0 100.0 98.0 98.0 73.0 94.5 97.0 87.0 1.0 72.2 58.5 44.5 78.7
InfiniGen 2K 99.0 91.5 24.5 82.5 25.0 0.0 30.3 27.8 67.3 1.2 45.5 33.0 32.5 43.1
Quest 2K 100.0 100.0 98.5 98.5 36.5 0.0 48.9 64.3 89.4 1.0 64.5 45.0 39.5 60.5
Ours 640 + 100 100.0 100.0 100.0 99.0 98.0 45.0 92.8 93.0 88.0 1.1 49.3 60.5 44.5 74.7

F DYNAMIC RETRIEVAL BUDGET ALLOCATION

We investigated the impact of adjusting the retrieval budget according to the sparsity degree across
layers, by adopting the budget allocation policy from PyramidIKV (Cai et al., 2024). Specifically, we
compare the performance of the original RetrievalAttention with and without the PyramidKV-based
budget allocation strategy on the InfiniteBench benchmark, as shown in RTable 2. Specifically, for
the original RetrievalAttention, we set a fixed budget of 2000 tokens for all heads in all layers. In
contrast, PyramidKV dynamically adjusts the retrieval size across different layers, allocating more in
lower layers and less in higher ones.

The results in Table 10 shows that PyramidKV allocation strategy achieves better performance
in Retr.KV tasks, though it slightly decreases performance in the En.QA task. On average, the
accuracy slightly surpasses that of the original RetrievalAttention. This indicates that dynamic budget
allocation is promising but may require task-specific allocation strategies.

Table 10: Performance (%) of RetrievalAttention and RetrievalAttention w/ PyramidKV in 128K
context length.

Methods Retr.N Retr.P Retr.KV Code.D Math.F En.QA En.MC Avg.
Full Attention 100.0 100.0 17.5 19.0 39.5 9.1 68.0 50.4

RetrievalAttention 100.0 100.0 14.5 18.5 40.0 8.7 67.5 49.9
RetrievalAttention w/ PyramidKV 100.0 100.0 16.0 18.5 40.0 8.5 67.5 50.1

G PERFORMANCE ON THE LARGER MODEL

To demonstrate the generalizability of our methods on larger models, we evaluated our method on
Llama-3-70B-262k using a server with eight 40GB A100 GPUs by partitioning the model by layers
across GPUs. We choose the most complex task KV retrieval in∞-Bench to stress test the efficiency
of RetrievalAttention and other baselines.
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Table 11: Performance (%) and decoding latency (s) in Llama-3-70B Model.

Full StreamingLLM Quest Flat RetrievalAttention
Accuracy 35.0 0.0 13.0 24.0 23.5

Decoding latency 248 0.14 1.36 5.68 1.62

The results in the Table 11 shows that RetrievalAttention achieves nearly the same task accuracy as the
exact KNN method Flat, and outperforms Quest by 80%. The decoding speed of RetrievalAttention
is 3.5× faster than Flat as it effectively reduces the vectors to scan.

H TOPK KERNEL IMPLEMENTATION DETAILS

In practical computations, the TopK selection during the Q and K matrix multiplication can be
fused directly into the FlashAttention computation, thereby minimizing the overhead of building
indices. Specifically, during the FlashAttention operation, BitonicSort (Nassimi & Sahni, 1979) and
BitonicMerge (Johnson et al., 2019) algorithms are used within CUDA cores to efficiently retain
TopK information, while Tensor Cores are simultaneously utilized for matrix multiplication. This
design ensures that, on GPUs such as NVIDIA Hopper, the TopK retrieval process is fully hidden
within the FlashAttention computation through the parallel utilization of CUDA cores and Tensor
Cores (Shah et al., 2024), resulting in a highly efficient pipeline. Detailed steps are outlined in
Algorithm 2.
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Algorithm 2: Select Top-K key tokens for each query token, fused with Flash-Attention

Shape: sequence length S, head dim dh, top K number T , block size B, block number N =
⌈
S
B

⌉
Input: Q,K,V ∈ RS×dh

Initialize top K indices J ← (0)S×T ∈ NS×T

Scale τ ←
√

1
dh

# Thread-block-level parallelized
for i← 1 to N do

Load Qchip ← Qi×B:(i+1)×B ∈ RB×dh into shared memory

# B sorted arries of size T with member format of (value, index)
Initialize A← (−∞, 0)B×T ∈ (R,N)B×T in registers
Initialize Ochip ← (0)B×dh ∈ RB×dh in shared memory
Initialize m← (− inf)B ∈ RB in registers
Initialize l← (0)B ∈ RB in registers

# Loop through K, causal
for j ← 1 to i do

Load Kchip ←Kj×B:(j+1)×B ∈ RB×dh into shared memory
Load Vchip ← V j×B:(j+1)×B ∈ RB×dh into shared memory

# Calculate QKT in tensor cores
S ← τQchipK

T
chip

S ← mask(S)

# Top-K in CUDA cores
Aii

new ← BitonicSort(Sii)
Aii ← BitonicMerge(Aii,Aii

new)

# Online softmax in CUDA cores
mi

new ← max(mi, rowmax(S)) ∈ RB

S ← S −mi
new

P ← exp(S)
linew ← rowsum(S)
α← exp(mi −mi

new)
li ← αli + linew

# Calculate PV in tensor cores
Ochip ← αOchip + PVchip

end for
# Write top-K outputs, thread-level parallelized
for ii← 1 to B do

Save J i×B+ii ←Hii.indices
end for
# Write flash-attention outputs
Ochip ← diag(li)−1Ochip

Save Oi×B:(i+1)×B ← Ochip
end for
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