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Abstract

The mathematical problem-solving capabilities of
large language models have become a focal point
of research, with growing interests in leveraging
self-generated reasoning paths as a promising way
to refine and enhance these models. These paths
capture step-by-step logical processes while re-
quiring only the correct answer for supervision.
The self-training method has been shown to be
effective in reasoning tasks while eliminating the
need for external models and manual annotations.
However, optimizing the use of self-generated
data for model training remains an open chal-
lenge. In this work, we propose Entropy-Based
Adaptive Weighting for Self-Training (EAST),
an adaptive weighting strategy designed to prior-
itize uncertain data during self-training. Specifi-
cally, EAST employs a mapping function with a
tunable parameter that controls the sharpness of
the weighting, assigning higher weights to data
where the model exhibits greater uncertainty. This
approach guides the model to focus on more in-
formative and challenging examples, thereby en-
hancing its reasoning ability. We evaluate our
approach on GSM8K and MATH benchmarks.
Empirical results show that, while the vanilla
method yields virtually no improvement (0%)
on MATH, EAST achieves around a 1% gain
over backbone model. On GSMS8K, EAST at-
tains a further 1-2% performance boost com-
pared to the vanilla method. Our codebase is pub-
licly available on GitHub (https://github.
com/mandyyyyii/east).

1. Introduction

Mathematical reasoning is a key component of Large Lan-
guage Model (LLM) capabilities, as it directly relates to
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logical consistency and problem-solving skills (Yu et al.,
2023a; Zhang et al., 2024; Gao et al., 2024; Liu et al., 2024).
This area has drawn increasing attention because the cor-
rectness of a final mathematical answer can provide a direct,
verifiable reward signal for reinforcement learning (RL)
approaches, enabling LLLM-generated reasoning paths for
both self-training (Zelikman et al., 2022; Singh et al., 2023;
Xiong et al., 2024) and distillation (Ho et al., 2022; Fu et al.,
2023; Gou et al., 2023).

The core idea of both self-training and distillation is based
on rejection sampling: for each given question, the LLM
generates multiple responses and selects the reasoning paths
that yield correct answers as positive samples for subse-
quent fine-tuning (Zelikman et al., 2022; Singh et al., 2023;
Luong et al., 2024). Through iterative application of this
self-training process, the LLM progressively enhances its
performance. Recent studies have explored leveraging nega-
tive samples to construct preference pairs for reward mod-
els (Hosseini et al., 2024) or directly applying pair-wise
alignment methods for fine-tuning (Xu et al., 2024b; Sun
et al., 2024; Zhong et al., 2024; Ivison et al., 2024; Saeidi
et al., 2024; Xiong et al., 2024).

However, many self-training methodologies treat generated
data uniformly, assigning equal importance to all generated
examples. Such approaches may overlook the varying edu-
cational value of different data points, which can potentially
impede the model’s ability to prioritize the most informative
data and possibly limits its overall learning effectiveness.
This observation raises a question: could reweighting train-
ing data during self-training improve reasoning capabilities?
If so, which data should be prioritized, and to what extent
should it be emphasized?

In the self-training pipeline for reasoning tasks, additional
training on already well-understood questions brings mini-
mal gains and risks overfitting the model to simpler data. In-
stead, focusing on challenging questions—where the model
struggles—promises more efficient learning (Huang et al.,
2022; Singh et al., 2023). Moreover, large language models
can exhibit resistance to updating their predictions, particu-
larly in cases where they demonstrate high confidence. In
contrast, guiding the model to focus on areas of uncertainty
enhances its training effectiveness (Kumar et al., 2024; Li
et al., 2024). To address this gap, we introduce Entropy-


 https://github.com/mandyyyyii/east
 https://github.com/mandyyyyii/east

Entropy-Based Adaptive Weighting for Self-Training

Higher Weight (EAST)

Sample with correct answer
Sample with incorrect answerl

W Sample with incorrect answer2

Sample with incorrect answer3 A
W Sample with incorrect answer4 _

Sample with incorrect answers

Lower Weight (EAST)

Discard h
Traditional
= Self-Training UNIFORMLY

Sample

Generation L]

Questions

Figure 1. Comparison between the traditional self-training pipeline and EAST. The LLM generates n responses per question, clustered by
final answers. Questions with all incorrect answers are discarded. Self-training fine-tunes uniformly on the rest, while EAST assigns
higher weights to questions with diverse (uncertain) answers and lower weights to consistent (confident) ones.

Based Adaptive Weighting for Self-Training (EAST), a
novel method that assigns adaptive weights to training data
during self-training based on model uncertainty, measured
via the entropy of the model’s sample distribution for a
given question. Specifically, given multiple samples gener-
ated by an LLM for a question, EAST clusters these samples
by their final answers and computes the entropy over the
resulting cluster-based distribution. EAST then applies a
mapping function that transforms the entropy value into a
bounded weight under predefined constraints. This function
includes a tunable parameter that controls the sharpness of
the weighting, allowing flexible emphasis on uncertain data.
By assigning higher weights to high-entropy data—those
reflecting greater model uncertainty—EAST encourages
the model to focus on more informative and challenging
examples during training. Prioritizing such examples not
only enhances reasoning capability but also helps prevent
overfitting to overconfident data. Moreover, EAST is a flex-
ible framework that supports both iterative self-training and
integration with various loss functions, making it broadly
applicable across different training settings.

We evaluate EAST by incorporating it into SFT,
DPO (Rafailov et al., 2024), and KTO (Ethayarajh et al.,
2024) loss functions on two mathematical reasoning bench-
marks GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021). EAST achieves notable performance gains of
5.6% on GSMS8K and approximately 1% on MATH over the
default backbone model, substantially outperforming vanilla
SFT, which yields only a 3.9% improvement on GSM8K
and no gain on MATH. A similar trend is observed for both
DPO and KTO, with performance improvements of up to
1.7% on GSM8K and 2.1% on MATH compared to the
vanilla methods. We further show that EAST consistently
surpasses vanilla method through iterative training. In ad-
dition, we demonstrate the effectiveness of entropy-based
weighting, which outperforms other weighting strategies
by better leveraging uncertain data and reducing reliance

on overconfident data during training, thereby enhancing
reasoning capabilities.

Our contributions are summarized as follows:

* Entropy-Based weighting: a new weighting strategy
that leverages uncertainty information, derived from
the entropy of the model’s sample distribution over the
training data

* Mapping function: a novel mapping function that
controls the extent to which higher uncertain data are
weighted

¢ Experimental evaluation : EAST further boosts self-
training performance compared to the vanilla method.

2. Preliminaries

We consider a large language model (LLM) parameterized
by 6, denoted pg. Given a prompt = [z1,...,2,], the
model generates a response y = [y1, ..., Ym] Via an auto-
regressive factorization:

m
po(y | @) = Hpe(yj | z, y<j),
j=1

7yj—1]-

Self-Training Pipeline. Self-training addresses the scarcity
of human-annotated data by leveraging the target model to
generate completion paths (Zelikman et al., 2022; Singh
et al., 2023; Chen et al., 2024). Formally, under math-
ematical context, given a dataset of input-output pairs
(s, yi)fil), where (z;) represents a mathematical question
and (y;) is its corresponding ground truth answer, we aim to
introduce an intermediate reasoning path (r;) that delineates
the logical steps from (x;) to (y;). Let (pa(r; | 2;)) denote
the model’s distribution over possible reasoning paths, pa-
rameterized by (6). The self-training process involves:

where y; = [y1,. ..
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1. Sampling reasoning paths (¥; ~ pg(- | z;))

2. Evaluating the correctness of (7;) by verifying if it
leads to the ground truth (y;)

3. Updating the training set with validated triples
A\ M
((mi’ Yi, Ti)i:l)

4. Updating model parameters (£) through iterative train-
ing

For supervised fine-tuning (SFT), only sample paths that
yield correct answers are incorporated into the training data.
Alignment methods such as direct preference optimization
(DPO, Rafailov et al., 2024) utilize both correct and in-
correct sample paths to learn from contrastive preferences,
where correct paths serve as positive pairs and incorrect
ones as negative pairs.

3. Method

In this section, we introduce EAST, a novel weighting
method that prioritizes uncertain data within the self-training
pipeline. We begin by presenting the entropy-based weight-
ing strategy, followed by the proposed mapping function,
and conclude with the final loss objective. Figure 1 demon-
strates the comparison between the traditional self-training
pipeline and EAST. Figure 2 represents the detailed frame-
work of EAST.

3.1. Entropy-Based Weight

Many studies have found that large language models (LLMs)
tend to be resistant to changing their predictions, particularly
when they are highly confident in their responses (Kumar
et al., 2024; Yang et al., 2024c; Li et al., 2024). There-
fore, guiding the model to focus on areas where it lacks
confidence or is uncertain becomes a natural next step.
Research indicates that prioritizing learning from uncer-
tain questions—rather than those where the model is stub-
born—Ieads to improved reasoning capabilities. (Kumar
et al., 2024; Li et al., 2024).

Based on this observation, we introduce an entropy-based
weighting approach that encourages models to focus on
learning from uncertain data. The key insight is that ques-
tions with higher entropy reflect greater uncertainty in the
model’s predictions, indicating a lack of strong preference
among possible answers. By prioritizing high-entropy ques-
tions during training, the model is encouraged to focus on
informative and challenging examples, which enhances rea-
soning capabilities and helps prevent overfitting to overcon-
fident examples. We further demonstrate the advantage of
entropy-based weighting over alternative weighting strate-
gies in Section 4.3, including accuracy-based weighting,
which considers the proportion of correct answers (accuracy

ratio), and rejection-based weighting, which captures the
dominance of the most frequent incorrect answer (dominant
incorrect ratio).

In the self-training pipeline, we generate n samples for each
question and cluster them based on their final answers, with
each cluster representing a distinct answer. The number of
clusters for a given question depends on the diversity of the
model’s outputs, which we denote as k; (where k; < n)
for question x;. The underlying assumption is that samples
leading to the same final answer tend to share similar reason-
ing patterns. Thus, each cluster reflects the model’s implicit
preference for a particular reasoning path. A larger number
of sparse clusters (k;) indicates greater model uncertainty
for that question, while a distribution concentrated in a sin-
gle cluster suggests higher model confidence. The model’s
uncertainty for a given question z; is quantified through
the entropy value, computed over the k; answer clusters as
follows:

ki
H(z;) ==Y pjlogp; (1
j=1

where p; denotes the proportion of samples in cluster j
relative to the total number of samples for x;. For simplicity,
we denote h; = H(x;).

3.2. Mapping Function

Given the entropy value h; on each question, our goal is
to map this entropy value to a weight applied to the model
loss using a function f. This mapping function f must sat-
isfy two constraints: (1) Non-negativity—all transformed
weights must be non-negative to ensure proper model train-
ing; (2) Normalization—the transformed weights should
have an average of 1 to prevent unintended effects on the
learning rate, formally:

. RS
min(f(h)) = 0, N;ﬂhi):l' @

Attempt 1. A straightforward mapping function is the mean-
division function:

h 1 &

f(hy=—=, u==)> h (3)
which satisfies the normalization constraint. However, this
approach lacks tunable parameters to control the distribution
of transformed values.

Attempt 2. To allow for control over the distribution
of transformed values, we introduce a new parameter
R = f(max(h)) — f(min(h)) that represents the range
of mapped values. Therefore, instead of applying a fixed
compression ratio(as in the mean-division function) to en-
tropy values, we allow a controllable compression ratio a
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Figure 2. The framework of EAST. For each training question, the LLM generates n responses, clustered by final answers. Entropy value
is computed from the cluster distribution, transformed via mapping function, and integrated as weight into the loss objective.

that adapts the new output range R and the original range ~ Therefore, our final mapping function is:
(max(h) — min(h)):
R o N
h)y=ah+b, a= b=1-apu. fh) =h® ——- (6)
f(h)=ah+b, a max(h) — min(h)’ a SN e
“

Here, b is determined by the normalization constraint: The exponent parameter a provides curvature control over
% va L(ah; +b) = ap+ b= 1, which gives b = 1 — a. the transformation: f(h) enhances differences between

The non-negativity constraint (min(f(h)) > 0) requires Bveights thl:n ?(Z) L f (h) cl?mpre.s;es(;i.iffégen.ces wEen
. _ T max(h)—min(h) < a <1 mverts the weight distribution when
a(min(h) — p) + 1 > 0, yielding R < () o< 0.

While this linear approach offers some control, it has two
key limitations: (1) the output range [? is upper-bounded  Ajgorithm 1 Entropy-Based Adaptive Weighting for Self-
by the non-negativity requirement, and (2) the linear map- Training(EAST)

ping does not allow for “’curvature” control to amplify or
compress differences between entropy values.

Input: Initial model parameters 6, training data D =
{(z4,v:)} Y, exponent parameter a, maximum iter-

Attempt 3 (Final). To address the non-negativity constraint, ations T’ R

we propose mapping the transformed values into the expo- ~ Output: Trained model parameters 6

nential space by applying a logarithmic transformation to fort =1to T do

the entropy values: foreach question x; € D do .
aln hab o b Generate n responses and cluster them into
f(h)=e =h"-e’, (%)

k; groups by final answers with proportions
D1, ..,Dk; per group Compute entropy: h; =

where exponent parameter a controls the curvature of the ki
— 2551 Pjlogp;

transformation, providing flexibility in how the entropy val-

ues are reshaped. This formulation automatically ensures Compute coefficient: ¢ ZN The
f(h) is non-negative for h > 0. Substituting into the nor- foreach question z; € D do
malization constraint and solving for b: Compute weight: f(h;) = h¢ - e’
N 1 Update loss function: Lgast(6;2;) = f(hi) -
EOWINEED WIS wIEs Lowy
i=1 i=1 | Train model by minimizing LgasT

) return 0

4
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3.3. Loss Objective

The resulting weight is then integrated into the loss objective
as:

Least(0) = f(h) - L(0),

where f(h) is the mapping function applied to the entropy
value H(x), and L(6) denotes the base loss. EAST is flex-
ible and can be seamlessly applied to various loss func-
tions(e.g., SFT or DPO). Furthermore, it naturally supports
iterative training by repeating the weighting and fine-tuning
process. The full procedure is detailed in Algorithm 1.

where h = H(z) (7)

4. Experiment

In this section, we present the experiment setup in Sec-
tion 4.1 and main results in Section 4.2. Then, we provide
further ablation study in Section 4.3.

4.1. Experiment Setup

Dataset. We evaluate EAST on two mathematical bench-
marks: MATH (Hendrycks et al., 2021) and GSM8K (Cobbe
et al., 2021). For training data, we prompt the backbone
model to generate 128 samples per question and randomly
select a positive—negative pair based on answer correctness,
with the positive drawn from correct answers and the neg-
ative from incorrect ones. For evaluation, we note minor
performance variations with vLLM across GPU types. For
reproducibility and fair comparison, all results use the same
GPU with temperature 0. We adapt the evaluation pipeline
of Yang et al. (2024a).

Baseline. We evaluate EAST across three loss functions:
SFT, DPO(Rafailov et al., 2024), and KTO(Ethayarajh et al.,
2024), which correspond to learning from positive samples,
paired samples, and unpaired samples. In addition to the
vanilla method, we incorporate weighting baselines that
capture local uncertainty information. Specifically, local
uncertainty information refers to model uncertainty derived
exclusively from the token-level probabilities of a single
selected sample response. This metric captures the uncer-
tainty within an individual response, without accounting for
the full distribution of all generated responses for a given
question. One baseline uses the perplexity score for local
information weighting (denoted as LW(P)), which is normal-
ized within each batch to ensure stability and fair compari-
son. Another baseline (denoted as LW(W)) is inspired by
WPO (Zhou et al., 2024), which computes adaptive weights
based on the log-likelihood of the sample response. De-
tailed formulations for both baselines are provided in the
Appendix B.1.

Model Configuration. We conduct experi-
ments systematically based on two backbone
models: Llama-3.2-1B-Instruct and

Llama-3.1-8B-Instruct. For SFT, we use a
learning rate of 2e-6 for 1B on GSM8K and MATH
datasets. We adapt LoRA for 8B model with learning rate
as S5e-5 for GSMS8K and 2e-5 for MATH. For DPO, we
adapt a learning rate of 2e-7 for 1B with § = 0.01 and
2e-6 for 8B using LoRA with 8 = 0.1 for both datasets.
For KTO, we adapt a learning rate of 2e-7 for 1B with
B = 0.05 and 2e-6 for 8B using LoRA with 8 = 0.1 for
both datasets. For both baselines and EAST, we use the
same set of hyperparameters as the vanilla method to
ensure fair comparison. Each model is trained for three
epochs with a batch size of 16 and warmup ratio of 0.1.
For Llama-3.1-8B-Instruct, we apply LoRA with
a rank of 16 and a LoRA alpha of 16. All models are
trained using bf16 precision, and we use the AdamW
optimizer. We adapt the exponent parameters a in the range
[—3, 3] to fully investigate the functionality of the mapping
function. Detailed hyperparameter study is provided in
Appendix B.2.

4.2. Experiment Results

Table 1 presents the performance in terms of accuracy score
of EAST compared to the vanilla method and baselines
on the GSM8K and MATH benchmarks during the first
iteration. The impact of different exponent parameters a is
shown in Figure 3. Additionally, experiment results from
iterative learning are presented in Figure 4. We have the
following observations:

Observation 1: EAST outperforms the vanilla method
and baselines. As shown in Table 1, EAST consistently
improves performance compared to the vanilla method and
baselines across both benchmarks under all loss functions.
The vanilla SFT method struggles to outperform the default
backbone model when trained on self-generated data, espe-
cially on the challenging MATH dataset. For instance, SFT
achieves accuracies of 28.4% and 50.0% on MATH using
LLaMA-3.2-1B and LLaMA-3.1-8B, respectively, which
are slightly lower than the corresponding default model
performances of 28.5% and 50.4%. In comparison, EAST
improves the results to 29.4% and 51.2%, demonstrating
over a 1% absolute gain relative to SFT by focusing on
more informative training examples. A similar trend is also
observed on KTO: the vanilla KTO achieves only 83.9%
and 48.9% on the 8B model, while EAST boosts the per-
formance to 85.1% and 51.0%, representing gains of 1.2%
and 2.1%, respectively. Integrating EAST with the DPO
loss function also leads to consistent gains. For example, on
GSMSK with the LLaMA-3.2-1B model, EAST improves
performance from 50.2% to 51.9%.

We also evaluate baselines (LW(W) and LW(P)) that use
local uncertainty information of model. These approaches
rely on the likelihood of next-token prediction for a given
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Table 1. Experimental results in terms of accuracy(%) on GSM8K and MATH benchmarks. The best performance under each loss category
is highlighted in bold. Significant boosts (> 1%) of EAST over both the vanilla method and baselines are underlined.

LLaMA-3.2-1B

LLaMA-3.1-8B

SCUNg  OMSK(%) MATH(%) AVG(%) GSMSK(%) MATH(%) AVG(%)
default 46.2 28.5 37.3 82.8 504 66.6
SFT 50.1 28.4 39.2 85.0 50.0 67.5
+LW(W) 50.9 28.5 39.7 84.8 50.9 67.8
+LW(P) 51.2 28.4 39.8 85.1 50.8 68.0
+EAST 51.8 29.4 40.6 86.1 51.2 68.6
DPO 50.2 28.7 39.5 84.6 50.1 67.5
+LW(W) 50.9 28.1 39.5 85.1 50.2 67.6
+LW(P) 50.3 28.4 394 85.2 50.8 68.0
+EAST 51.9 29.7 40.8 85.4 50.9 68.1
KTO 53.0 28.8 40.9 83.9 48.9 66.4
+LW(W) 52.9 28.2 40.6 84.3 49.1 66.7
+LW(P) 52.9 28.9 40.9 83.9 49.1 66.5
+EAST 53.0 29.9 415 85.1 51.0 68.1

sample response, rather than the overall sample distribution,
which also accounts for the correctness of the sample path.
Results show that EAST outperforms both local information
baselines across all loss functions and benchmarks. Notably,
on the MATH dataset using the LLaMA-3.2-1B model, lo-
cal weighting baselines achieve only 28.1% (LW(W)) and
28.4% (LW (P)), which is lower than both the vanilla DPO
(28.7%) and the default model (28.5%). In contrast, EAST
achieves a significantly higher score of 29.7%, suggesting
that local weighting may be more sensitive to token-level
noise and potentially limiting its training effectiveness.

Observation 2: Weighting more on uncertain data con-
tributes to performance improvement. Figure 3 demon-
strates the accuracy score of different parameters a using
SFT method on both benchmarks using LLaMA-3.2-1B
model. The figure demonstrates that while performance
varies with different values of a, the best results are achieved
when a > 0 for both datasets. The model achieves peak ac-
curacy on the GSM8K dataset at @ = 1.5 with 51.8%, com-
pared to 50.6% and 50.8% when a = —0.75 and a = —1,
respectively. Similarly, for the MATH dataset, performance
reaches 29.3% at a = 1 and 29.4% at a = 3, outperforming
the 28.1% and 28.5% observed at a = —1 and a = —0.75,
respectively. These results suggest that prioritizing uncertain
data helps the model enhance its reasoning ability during
training, leading to improved performance.

Observation 3: EAST demonstrates consistent benefits
in iterative training. To further investigate the performance

of EAST in iterative learning, we conduct experiments with
iterations 7' = 3 using LLaMA-3.2-1B on both the MATH
and GSMS8K datasets, with results presented in Figure 4
. EAST consistently outperforms vanilla SFT across iter-
ations on both datasets. Notably, EAST maintains strong
performance over time, while vanilla SFT appears to overfit
on self-generated data in GSM8K. Although both methods
struggle with iterative learning on the MATH dataset, EAST
still demonstrates a relative advantage.

4.3. Ablation Study: Effect of Accuracy-Based and
Reject-Based Weights

To further investigate the effectiveness of entropy-based
weighting, we compare it to alternative weighting strate-
gies grounded in other distributional metrics. Noting that
entropy is typically low when a single answer—whether
correct or incorrect—dominates the distribution, we explore
two complementary approaches: accuracy-based weighting,
which considers the proportion of the correct answer, and
rejection-based weighting, which measures the dominance
of the most frequent incorrect answer.

4.3.1. ACCURACY-BASED WEIGHTS.

Accuracy-based weighting leverages the accuracy ratio of
model for each question to determine the corresponding
weight. Specifically, in the self-training pipeline with n
samples for each question in the training data and the accu-
racy score is computed based on the proportion of correct
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Figure 3. Performance(accuracy (%)) of various exponent parameters a on GSM8K and MATH datasets using LLaMA-3.2-1B.

GSM8K
52
s
- 50
(o)
o
S 48
o
& —o— SFT
46 —e— SFT+EAST
0 1 2 3 -
lterations

MATH
—~ 29
g
9
© 27
4
3
v —
& 25 —e— SFT
—e— SFT+EAST
0 1 2 3 "
Iterations

Figure 4. Comparison of iterative learning performance (accuracy (%)) between vanilla SFT and EAST on LLaMA-3.2-1B.

predictions: A(z) = % S W (yi = y*), where y; repre-

sents the i-th sampled prediction and y* denotes the ground
truth. For notational simplicity, let s; = 1 — A(x;) repre-
sent the inverse accuracy score for question ¢ and the weight
is aggregated using mapping function f(s;), as detailed in
Section 3.2. Intuitively, when s; is large, the model faces
challenges when solving the problems.

4.3.2. REJECTED-BASED WEIGHT.

Recent studies indicate that large language models (LLMs)
struggle with self-correction, particularly when they gen-
erate responses with high confidence (Kumar et al., 2024;
Yang et al., 2024c). To further investigate this phenomenon,
we propose a novel weighting scheme that prioritizes the
most “stubborn” questions—those for which the model re-
peatedly produces the same incorrect answers. Specifically,
for all samples that yield incorrect answers, we partition
them into k clusters, where each cluster corresponds to a
distinct final answer. Next, we calculate the proportion p of
each incorrect answer cluster and identify the most frequent
(dominant) mistake: R(z) = max ., p;. For notational
simplicity, let r; = R(x;) represent the inverse accuracy
score for question ¢ and the weight is aggregated using map-
ping function f(r;), as detailed in Section 3.2.

4.3.3. EXPERIMENT RESULT AND ANALYSIS.

As shown in Equation 1, both A(x;) and R(x;) can be
interpreted as components of the probability distribution
H (z;) over predicted answers. According to the equation,
when either A(x;) or R(z;) is large, the entropy H (z;)
tends to be low, reflecting greater certainty in the model’s

predictions. This relationship is further illustrated in Fig-
ure 5, where higher entropy values are associated with larger
(1 — A(z;)) (i.e., lower accuracy) and smaller R(z;) values
(i.e., greater diversity in incorrect predictions). However,
when (1 — A(xz;)) becomes large—exceeding 0.8, for in-
stance—this does not necessarily imply a low R(z;). In
fact, Figure 5 shows that many of these low-accuracy sam-
ples still exhibit high R(x;) values, indicating repeated,
confident errors. As a result, applying the mapping func-
tion f to such cases may overemphasize these “stubborn”
questions during training, potentially skewing the learning
dynamics and degrading overall performance. In contrast,
entropy-based weighting effectively addresses this problem
by automatically assigning lower weights to cases where a
single incorrect answer dominates.

Empirical results of the three weighting strategies on both
datasets are reported in Figure 5, using SFT and LLaMA-
3.2-1B. The results show that entropy-based weighting out-
performs other strategies on both datasets. In contrast, reject-
based weighting consistently yields the lowest performance
across both benchmarks, while accuracy-based weighting
achieves comparable results but exhibits certain limitations.

5. Related Work

5.1. Self-Training on Mathematical Reasoning.

Mathematical reasoning has emerged as a critical evalua-
tion benchmark for Large Language Models (LLMs), as it
directly correlates with logical reasoning capabilities and
provides clear assessment metrics (Azerbayev et al., 2023;
Wang et al., 2023; Zhang et al., 2024; Gao et al., 2024; Liu
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Figure 5. The figure illustrates the distribution of training data in entropy-based, accuracy-based, and rejected-based values. Each point
represents a training example (z;), with coordinates (H (x;), 1 — A(x;)) for entropy-based and accuracy-based values, and color indicating
the rejected-based value (R(z;)). The accompanying table reports the performance (accuracy(%)) of three weighting strategies on the

GSMB8K and MATH datasets.

et al., 2024). Traditional methods rely on carefully curated
manual datasets as demonstrations for fine-tuning (Yue et al.,
2023; Yu et al., 2023a; Luo et al., 2023). As high-quality
annotated data are expensive, numerous studies leverage
rephrasing methods to augment datasets (Deng et al., 2023;
Yu et al., 2023a), or employ strong LL.Ms to generate syn-
thetic data for knowledge distillation (Taori et al., 2023;
Chiang et al., 2023; Ho et al., 2022; Fu et al., 2023; Gou
etal., 2023).

Recently, several studies have explored using the target
model to generate training data and enhance its performance
through self-training (Zelikman et al., 2022; Singh et al.,
2023; Hosseini et al., 2024; Yu et al., 2023b; Chen et al.,
2024; Kumar et al., 2024; Tao et al., 2024), while others
extend such techniques for pair-wise alignment methods
by leveraging negative samples generated from previous
iterations (Tajwar et al., 2024; Xu et al., 2024b; Sun et al.,
2024; Zhong et al., 2024; Ivison et al., 2024; Xiong et al.,
2024; Xie et al., 2024; Pang et al., 2025). For instance, Sun
et al. (2024) compare REST-EM with iterative DPO in a
self-training pipeline, and Xiong et al. (2024) employs the
multi-turn reasoning path for iterative learning process. For
this work, we further optimize self-generated data usage
by incorporating weighting strategies to improve reasoning
capabilities.

5.2. Alignment Method.

Reinforcement Learning from Human Feedback (RLHF)
has emerged as an essential framework for aligning machine
learning models with human preferences, emphasizing the
importance of post-training optimization. Direct Prefer-
ence Optimization (DPO) is a widely recognized method
for alignment(Rafailov et al., 2024). Recent studies have
explored derivation of DPO (Xu et al., 2024a; Meng et al.,
2024; Azar et al., 2024). For example, KTO directly max-
imizes the utility of generated outputs instead of focus-

ing on the log-likelihood of preferences(Ethayarajh et al.,
2024). Some other studies focused on applying local weight-
ing(Zhou et al., 2024) or reward weighting upon DPO (Adler
et al., 2024; Xiao et al., 2024; Yang et al., 2024b). RPO
incorporates reward gaps into preference learning to miti-
gate overfitting and better capture nuanced response qual-
ity(Adler et al., 2024). However, it relies on an external
reward model to assign weights to preference pairs. In
contrast, WPO reweights preference pairs based on their
likelihood under the current policy (Zhou et al., 2024). Nev-
ertheless, WPO relies solely on local information of the
given sample response without considering the overall sam-
ple distribution or controlling weight distribution skewness.

6. Conclusion

This paper introduces EAST, an Entropy-based Adaptive
Self-Training method that dynamically assigns weights to
training samples based on their uncertainty, with the goal of
enhancing the reasoning capabilities of large language mod-
els (LLMs) during the self-training process. The core idea
behind EAST is to leverage entropy—a measure of predic-
tion uncertainty—to prioritize more ambiguous or challeng-
ing examples, which are often more informative for learning.
To achieve this, EAST applies a tunable power-law map-
ping function that transforms the entropy values into sample
weights, enabling fine-grained control over the contribution
of each sample during model optimization. We conduct
extensive experiments on two widely-used benchmarks for
mathematical reasoning—GSM8K and MATH—to evaluate
the effectiveness of EAST. The results demonstrate con-
sistent improvements over standard self-training baselines
across multiple metrics, validating both the robustness and
generality of the approach. Notably, EAST is compatible
with a wide range of self-training pipelines and can be inte-
grated as a lightweight yet powerful plug-in module.
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Supplementary Material for EAST

A. Reproducibility

All code will be publicly available in the GitHub. All results are evaluated using the NVIDIA RTX A6000 GPU, following
the evaluation pipeline of Yang et al. (2024a).

B. Experiment Setup
B.1. Baseline

For local uncertainty information weighting, we use the standard perplexity(LW(P)):

||
PPL(zy) = exp | — 1 > logmo(ye | z,y<e) | ®)
t=1

where 7y (y: | x,y<+) denotes the model’s predicted probability of token y; conditioned on the input x and the preceding
tokens y.,. We further normalize the perplexity score within each batch by dividing by the batch mean:

PPL(z,y)

f)ﬁ‘(l', y) = B - NNE
% Dim1 PPL(z(®), y(9)

C))

where B denotes the batch size, and PPL(x(?), y(*)) is the perplexity of the i-th sample in the batch.

For local uncertainty information weighting, we use the formulation from WPO (Zhou et al., 2024) as our local weighting
strategy:
|yl

1
w(x,y) = exp ol > log >
t=1

ﬂg(yt ‘ J"7y<t) (10)
vev To(V [ 2, y<e)? |

For DPO, local weights are computed for both positive and negative pairs and multiplied to obtain the final weight, whereas
for SFT, only the positive samples are used.
B.2. Hyperparameter Study

For SFT, the learning rate in Llama-3.2-1B-Instruct is chosen from {2e—6,5e—6,7e—6,1e—5}, and in
Llama-3.1-8B-Instruct from {2e—5,5e—5, Te—5, le—4}.

For DPO and KTO, we tune the temperature parameter § within the set {0.01,0.05,0.1}. In L1lama-3.2-1B-Instruct,
we search the learning rate in {2e—7,5e—7, 7e—7,1le—6}, while for Llama—-3.1-8B-Instruct, the learning rate is
selected from {2e—6, 5e—6, 7Te—6, le—5}.

The baseline method and EAST share the same set of hyperparameters as the vanilla method to en-
sure a fair comparison. For EAST, we additionally search the exponent parameter a from the range
{-3,-2.5,-2,-1.5,-1.25,—1,-0.75,—-0.5,0.1,0.2,0.5,0.7,1,1.5,2, 2.5, 3}.

For the ablation study, we report the average accuracy scores for a € {0.5,1, 1.5} across all three weighting methods.
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