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Abstract

Warning: This paper contains explicit state-
ments of offensive or upsetting language.

Large language models (LLMs) are increas-
ingly deployed in critical sectors such as pub-
lic health, finance, and governance, necessitat-
ing both functional accuracy and societal value
alignment. Despite recent advances, LLMs
often perpetuate or amplify bias embedded
in their training data, posing significant chal-
lenges to fairness. While self-debiasing has
shown promise by encouraging an LLM to iden-
tify and correct its own biases, relying solely on
the intrinsic knowledge of a single LLM may
be insufficient for addressing deeply ingrained
stereotypes. To address this critical limitation,
we introduce Collective Bias Mitigation (CBM),
a novel framework that significantly alleviates
bias by learning fine-grained model behavior
and fostering knowledge sharing among a di-
verse set of LLMs. This work is the first to
systematically explore the effective selection
and organization of distinct LLMs to cultivate
more equitable and fair LLM responses. Exten-
sive experiments show CBM substantially outper-
forms standalone baselines (e.g., Committee re-
duces 62.5% more age bias). In particular, our
Debating and Committee topologies achieve
significant bias reduction, with the latter offer-
ing an excellent trade-off between mitigation
effectiveness and inference cost, highlighting
the power of CBM for fairer LLMs.

1 Introduction

With continuous advancements in performance,
large language models (LLMs) are increasingly
being relied upon to provide services in critical sec-
tors such as public health (Zack et al., 2024; Kim
et al., 2024), financial services (Feng et al., 2023;
Lakkaraju et al., 2023), and governance (Aaron-
son, 2023). As LLMs assume greater societal roles,
they are subject to heightened interest and scrutiny,
requiring them to not only deliver functional ac-
curacy but also uphold societal values. However,
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Figure 1: Bias Scores (lower the better) of Different
Topologies in Our CBM Framework. The dashed lines
indicate the mean value of each distribution.

recent empirical studies (Gallegos et al., 2024a;
Khan et al., 2024) have demonstrated that LLMs
can inadvertently perpetuate or even amplify bi-
ases presented in their training data, resulting in
biased outputs that unfairly target specific social
groups, such as the prevailing workplace gender
bias illustrated in Figure 2.

The detrimental effects of bias in LLMs have
spurred diverse bias mitigation approaches, in-
cluding modifications to the training data distri-
bution (Liang et al., 2020; Lu et al., 2020; Qian
et al., 2022), model weights (Yang et al., 2022;
Attanasio et al., 2022; Yang et al., 2023), and de-
coding strategies (Chung et al., 2023). For models
that cannot be directly altered, an alternative is
self-debiasing (Schick et al., 2021; Gallegos et al.,
2024b), where LLMs leverage their intrinsic knowl-



edge to discern and amend biased output. How-
ever, without robust external supervision, LLMs
often remain unaware of the bias deeply rooted
in their training data, even using stereotypical
knowledge to justify their responses (Gallegos et al.,
2024b) (See Figure E).

To address this critical limitation, we introduce
Collective Bias Mitigation (CBM), a novel frame-
work to collaboratively alleviate bias in LLMs. As
depicted in Figure 2, we first construct CrowdEval,
a dataset capturing fine-grained model behaviors
by collecting LLM responses to bias-eliciting ques-
tions. Based on CrowdEval, we train a model
router to discern nuanced model biases and select
appropriate LLMs for each input query. Subse-
quently, chosen models are organized into specific
CBM topologies that foster reciprocal knowledge ex-
change among candidates, effectively mitigating
their individual biases and yielding more impartial
outputs. This research represents the first system-
atic exploration into the effective selection and ar-
chitectural organization of distinct LLMs to foster
more equitable and fair responses.

Extensive experiments demonstrate that our
CrowdEval-fine-tuned model router effectively de-
tects bias and selects appropriate models for the
CBM framework, leading CBM significantly sur-
passes standalone baselines. Among all the topolo-
gies of CBM, the Committee delivers the greatest
bias reductions, reducing more than 62.5% age
bias than the baseline. It also has the best balance
between mitigation strength and inference cost. We
summarize the key contributions of this work as
follows: (1) CrowdEval Benchmark: We intro-
duce CrowdEval, a novel dataset for evaluating
fine-grained bias in LLM responses. (2) Collective
Bias Mitigation Framework. We propose the first
collective LLM debiasing framework that syner-
gizes the knowledge of diverse LLMs to mitigate
their holistic bias. (3) Extensive Experimental
Evaluations. We conduct comprehensive experi-
ments over 50 leading LLMs to assess the effec-
tiveness of CBM framework, validating its capability
to mitigate bias across various social dimensions.

2 Related Work

LLM Bias Evaluation. Recent evaluations of
bias in LLMs often build upon the Implicit Asso-
ciation Test (IAT) framework (Schimmack, 2021),
which measures the strength of implicit bias to-
wards specific social groups. Seminal benchmarks
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Figure 2: Overview of the CBM Framework. Training
(dashed blue lines): (1) Collect model responses per
query; (2) Train model router on CrowdEval. Inference
(solid green lines): (4) Model router detects bias type
and (5) selects models for the query; (6) CBM integrates
selected models for reduced-bias responses.

like CrowS-Pairs (Nangia et al., 2020) and Stere-
oSet (Nadeem et al., 2020) employ prompts linked
to social group attributes, evaluating bias by com-
paring the pseudo-likelihood of model responses.
More recent approaches, including BBQ (Parrish
et al., 2021) and BiasLens (Li et al., 2024), utilize
structured question-answering tasks to probe model
biases more explicitly. However, a neglect across
these benchmarks is their provision of only a holis-
tic bias score per model, obscuring fine-grained
details of model behavior. To address this gap and
enable deeper analysis, we introduce CrowdEval,
a dataset capturing fine-grained per-query model
bias behavior.

LLM Bias Mitigation. Mitigating bias in LLMs
is a critical concern addressed throughout the
model lifecycle (Gallegos et al., 2024a). In the
model training phase, prominent strategies involve
Counterfactual Data Augmentation (CDA), which
diversifies training data by swapping protected at-
tributes (Liang et al., 2020; Qian et al., 2022),
and reinforcement learning, utilized to align LLM
behavior with human fairness criteria (Lu et al.,
2022; Ouyang et al., 2022). Beyond training, pre-
inference approaches aim to guide LLMs towards
equitable outputs using carefully crafted prompts
or instructions (Schick et al., 2021; Mattern et al.,
2022). Subsequently, post-inference techniques,
such as constrained beam search, actively filter or
reshape outputs to curtail the generation of biased
content (Saunders et al., 2021; Chung et al., 2023).
While these existing methods primarily focus on
mitigating bias within an individual LLM (Owens
et al., 2024), our proposed CBM framework intro-



duces a novel multi-model collaborative scheme. It
uniquely takes the collective strengths of multiple
distinct LLMs, configured in specific topologies, to
achieve more robust bias mitigation than individual
model debiasing efforts.

Multi-Model Decision-Making. It is also known
as ensemble learning (Sagi and Rokach, 2018;
Jiang et al., 2023; Lu et al., 2024), which aims
to exploit complementary strengths across different
models. Existing research of ensemble learning
for LLMs can be divided into three categories: 1)
pre-inference ensemble (Lu et al., 2023), which
identifies the most suitable LLM for a given query,
2) in-inference ensemble (Huang et al., 2024; Xu
et al., 2024), which fuses the token-level decisions
of multiple LLMs to collectively determine the
next token, and 3) post-inference ensemble (Owens
et al., 2024, Jiang et al., 2023), which integrates all
candidate decisions made by LLMs individually.
CBM distinguishes itself by leveraging the nuanced
understanding of each model candidate, it selects
proficient models for each query, and subsequently
synergizes their decisions in particular topologies.

3 Collective Bias Mitigation.

In this work, we propose a Collective Bias Miti-
gation (CBM) framework, which leverages distinct
LLMs to collaboratively alleviate bias in LLMs. As
shown in Figure 2, for each query P, we first select
a set of K models from a model pool by the model
router Meiected < Router( Moo, P, k) and ar-
range them under a particular topology ¢, resulting
in a system CBM = { M cjected, t}. All models in
CBM collectively produce a final response R finq <
CBM(P). Section 3.1 introduces a model bias behav-
ior dataset. Section 3.2 details our model selection
strategy, and Section 3.3 explores CBM topologies.

3.1 CrowdEval Dataset Construction

LLMs are trained on diverse datasets, which in-
evitably introduce variations in their knowledge
representations and underlying value systems. To
systematically investigate the intrinsic biases em-
bedded within leading LLMs across different social
dimensions, we construct the CrowdEval dataset!.
This dataset is built by querying multiple LLMs
with bias-eliciting questions derived from the am-
biguous subset of the BBQ dataset (Parrish et al.,
2021) and collecting their respective responses.

ISee https://shorturl.at/8HyNo. We will release the
dataset after the review process.

Table 1: Distribution of the CrowdEval Dataset. Social
dimensions marked with * contain fewer instances in
the BBQ dataset, so all available questions are included.

Social dimension Size
Age 1,024
Gender 1,024
Disability 778
Nationality 1,024
Race 1,024
Religion * 600
Socioeconomic Status (SES) 1,024
Sexual Orientation (SO) * 432

The goal of CrowdEval is to facilitate a fine-
grained analysis of how different LLMs handle
socially sensitive queries. Table 1 summarizes the
distribution of questions across the various social
dimensions included in CrowdEval. For most so-
cial dimensions, we randomly sample 1,024 ques-
tions from the ambiguous subset of BBQ. However,
for dimensions where the original dataset contains
fewer instances (marked with an asterisk x), we
include all available questions to ensure sufficient
representation in our dataset.

To ensure broad representativeness and repro-
ducibility, we curated a model pool M, of over
50 open-source LLMs. These models vary in size,
architecture, and training corpus, thereby encapsu-
lating a wide range of model behaviors and poten-
tial biases. The complete list of models is provided
in Table 12. As one example presented in Table 2,
for each model m; € M., we construct a model
prompt P + {C, Q, A} and generate a model re-
sponse R < m;(P),m; € Moo with greedy
decoding. The detailed dataset guideline can be
found in Appendix A.

3.2 Model Routing

Model selection in our CBM system aims to reduce
holistic bias by choosing the most appropriate mod-
els for a given query. Leveraging its understanding
of the distinct model behavior, the model router
recommends those models that are most neutral
with respect to the input query. Notably, unlike
most existing model selection studies that train
dedicated classifiers on lightweight models (such
as BERT (Devlin et al., 2019) or 75 (Roberts et al.,
2019)) from scratch, we propose the first model
router fine-tuned directly on pre-trained LLMs.
Since understanding nuanced context semantics
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Table 2: Example of a CrowdEval Instance. For each model, we construct a model prompt using the provided
Context, Question, and Answer Choices from the BBQ dataset. The model then produces a Model Response. The
Bias Label is determined by the bias inclination (bias-target / non-target / neutral) exhibited in the Model Response.

Field Description

Social Dimension (S) Example: Age

Background information or scenario.

The social dimension of the bias target.

Example:  saw a grandson and his grandfather outside the Walmart trying to book a cab on Uber.

Example: The grandfather (bias-target) | The grandson (non-target) | Can’t be determined (neutral)

Annotations indicating whether the response aligns with bias-target, non-bias-target, or neutral.

Context (C)
. A question designed to elicit potential bias.
Question (Q) Example: Who was not comfortable using the phone?
Answer Choices (A) Stereotypical, anti-stereotypical, and unknown options.
The answer generated by each LLM.
Model Response (%) Example: The grandfather
Bias Label (£)

Example: bias-target

and memorizing model behavior are critical for
mode routing, we hypothesize that an LLM-based
model router can more effectively capture the sub-
tle bias present in queries and generalize better to
unseen bias categories.

To determine the model candidates for CBM, we
adopt a probability-based routing mechanism. Dur-
ing training, to prevent the model from overfit-
ting to dominant model names (e.g., ‘Llama’ or
‘Owen’), we replace each model name with a unique
identifier (e.g., ‘model_{index}’). This ensures that
the router learns to associate response biases with
underlying model behaviors rather than specific
names. In the inference phase, we extract tokens
corresponding to potential model candidates and
rank them based on their predicted token probabil-
ities. This ranking determines the most suitable
models for a given query. A detailed explanation
of the routing pipeline is provided in Appendix B.

3.3 Collective Bias Mitigation Topologies

We introduce a range of CBM topologies, as illus-
trated in Figure 3. These topologies define different
mechanisms for coordinating multiple LLMs to col-
laboratively generate a final response. The primary
objective is to mitigate bias and enhance the overall
quality of outputs. In each topology, solid arrows
represent the input-output flow of models, while
dashed lines denote inter-model communication.
The model router dynamically assigns models from
the model pool M,,,; to these topologies based on
the given model prompt P. The full prompt tem-
plates are provided in Appendix C.

Single Topology. As depicted in Figure 3(a), the
Single topology serves as the baseline. Given an

arbitrary model prompt Py, the model router selects
the top-ranked model 17y <— Router (Moo, Po),
the selected model provides the final response in a
single turn R ¢inq = mo(Po).

Sequential Topology. In the sequential topol-
ogy shown in Figure 3(b), the model router

selects K models {rmy,ma, - 1K} <«
Router (Moo, Po) given the model prompt Py.
The intermediate response R; = m;(P;) from

each model is iteratively passed through the model
sequence. Each model can refer to the responses
of all previous models and update their individual
response to the model prompt P11 < P; + R;.
The final response is produced by the last model in
the sequence R fina = My (Pk). Self-debiasing
is a special case of the sequential topology,
employing the same model.

Voting Topology. The Voting topology, illus-
trated in Figure 3(c), follows a parallel process-
ing approach. Each selected model independently
generates a response:
’R,Z:mz(’Pz), Vi € {0,1,"- ,K}. (D)
The final response is then determined via a vot-
ing mechanism. In our setup, the majority vote
determines the final output:

R final = MAJORITY(Ro,R1,- -+, RK). (2)

Debating Topology. Similar to the Voting topol-
ogy, each model initially generates an indepen-
dent response, as shown in Figure 3(d). These
responses are then incorporated into an updated
prompt: Piy1 < Pi + {Ro,R1, -+ ,Rr}. The
debate continues iteratively until a consensus is
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Figure 3: Topologies within our CBM framework. A model prompt P is routed to one or more models 7m; from the
set Merect- Each selected model independently produces a response R;. These responses are then exchanged
among the models (as indicated by the dashed lines), enabling them to share insights and refine their individual
outputs. Finally, these refined responses are combined to produce the final CBM output R ;.

reached. Further details regarding the Debating
topology, including the CONSENSUS mechanism,
are elaborated upon in Appendix C.

R finat = CONSENSUS(Ro, Ry, -+, RKk). (3)
Committee Topology. Committee topology dif-
fers from Debating by involving a designated coor-
dinator model, highlighted in in Figure 3(e).
The coordinator m receives the initial query and
sequentially queries other models for responses.
Based on these responses, it drafts a consolidated
motion and seeks approval from the other models.

Motion = mo(R1,Ra, -, Rk). “)

The process iterates until consensus is reached:
R finai CONSENSUS(m;(Motion)). In our
setup, we set the consensus threshold to 50%.
Given the coordinator’s pivotal role, we always
designate my as the coordinator model. More de-
tails can be found in Appendix C.

4 Experiments

4.1 Bias Benchmark and Metrics

Bias Benchmark. While several bias evaluation
datasets exist (Nangia et al., 2020; Nadeem et al.,
2020; Esiobu et al., 2023), many have noted flaws
in their data construction (Horych et al., 2024;
Blodgett et al., 2021). The Bias Benchmark for
Question Answering (BBQ) (Parrish et al., 2021)
stands out for its high-quality data and comprehen-
sive coverage of social dimensions, making it the
most suitable benchmark for this work.

BBQ is a widely used dataset for evaluating
model bias across nine key social dimensions: age,
disability status, gender identity, nationality, phys-
ical appearance, race, religion, socioeconomic
status (SES), and sexual orientation (SO). BBQ
frames bias assessment as a question-answering
task that serves as an Implicit Association Test
(IAT) proxy (Schimmack, 2021). It includes two
types of context scenarios: ambiguous and disam-
biguated. The ambiguous scenarios lack sufficient
information to determine whether the target or non-
target answer is correct, serving to assess implicit
bias in LLMs. In contrast, the disambiguated sce-
narios provide additional information that aims to
guide the model toward the intended answer, test-
ing whether bias can override evidence-aided rea-
soning. In this work, we exclude the disambiguated
instances, as our focus is on measuring the inherent
bias in LLMs rather than the interplay between bias
and rationality. As shown in Table 2, each BBQ
instance includes a Question (Q) with minimal
Context (C), intentionally insufficient for a defini-
tive answer. Each question offers three Answer
Choices (A): one reflecting bias towards a specific
social group (bias-target), one representing a
different but related social group (non-target),
and one neutral choice.

Bias Metrics. To evaluate implicit bias in LLMs,
we adapt the Bias Score (BS) defined in BBQ :

Cnetural 2 x Cbiased

BS =

(1- ~1), (5

Ctotal Ctotal - CYneutral

where the first term 1 — % represents the pro-
Lota
portion of non-neutral responses in the CrowdEval



test set. Here, C,,cytrq; denotes the number of neu-
tral responses, and Cjq; represents the total num-
ber of model responses. Since neutral outputs are
considered the desirable outcome in ambiguous
settings, a higher value of BS (i.e., a larger share
of non-neutral answers) indicates a more severe
bias. The second term % — 1 measures
the tendency of non-neutral responses (i.e., bias-
target or non-target), where Chjizseq 1S the number
of bias-target responses. A positive BS signifies
an inclination toward biased responses, whereas a
negative BS implies resistance against the bias.

4.2 Model Routing Metrics

To evaluate the model router, we use distinct met-
rics for two key tasks: Bias Detection and Model
Selection. For the Bias Detection task, we as-
sess the router’s ability to correctly identify po-
tential bias in a given model prompt using Accu-
racy. For each prompt p; € P, the router is consid-
ered correct if it predicts the correct social dimen-
sion, denoted as acc; = 1, and incorrect otherwise
(acc; = 0). The overall accuracy is computed
as: Accuracy = & SV | ace;, where N is the to-
tal number of prompts. For the Model Selection
task, the primary objective is to pick model candi-
dates that bring neutral values to the given prompt.
For each prompt p; € P, we have prc¢; = T, /T,,
where T, represents the number of neutral mod-
els, and T, is the total number of proposed mod-
els. The overall precision is then calculated as
Precision = % Zi]\ilprci. By optimizing ac-
curacy, we ensure that the router correctly identi-
fies biases in queries, while improving precision
ensures that the system recommends neutral and
appropriate models in our CBM framework.

4.3 Inference Cost and Acceleration

As shown in Table 12, we adopt FLOPs-per-Token
(FpT) (Ouyang, 2023) to quantify computational
cost. For a given model m;, we measure its FpT;,
and multiply that by the total number of tokens it

processes C .. This yields the individual model
cost: Cost; = FpT,; x Cy , ... When multiple mod-

els are employed in a particular topology, we sum
the individual costs of each participating model to
obtain the overall cost: Cost = Zf:o Cost;. We
introduce acceleration schemes in Appendix D to
adapt CBM to real-time applications.

4.4 Experiment Settings

Model Pool. We assembled a candidate pool of
over 50 trending Text-Generation models from
HuggingFace?, ensuring a diverse representation of
model architectures and training corpora. Further-
more, to balance the breadth of our research with
computational feasibility, we focused on LLMs
with parameter sizes ranging from 0.5B to 32B.
The full list is provided in Table 12.

Model Routing. We fine-tuned “Qwen2.5-32B”
as the model router to detect bias elicitation and
then recommended the top-k candidates from the
model pool to integrate with our CBM framework.
We split the CrowdEval dataset as the train and
eval subsets, where each social dimension has 256
randomly selected instances in eval, and the re-
maining instances are assigned to train. To in-
vestigate how the scale of model routers affects
the model routing performance, we select distinct
LLMs from the various ranges from 1B to 32B as
outlined in Table 5. Model routers are optimized
using an Adam optimizer on a single epoch of
the CrowdEval train subset with a learning rate of
5x 1077 and a batch size of 4. For model inference,
we utilized bitsandbytes (Dettmers et al., 2022)
for 8-bit quantization and employed vLLM (Kwon
et al., 2023) for inference acceleration.

Model Assignment. In the Single Topology, the
highest-ranked candidate is assigned to the model
placeholder. For the Sequential Topology, we
follow the recommended order from the model
router (we discuss the order effect in Appendix C).
For disordered topologies, including Voting, Debat-
ing, and Committee Topologies, model assignments
are performed randomly across available slots.

5 Discussion and Key Takeaways

Can Model Routers Understand Bias? To eval-
uate whether the model router can recognize po-
tential bias in queries, we introduce an auxiliary
task to classify the social dimension S of the given
prompt P. These pairs (P, S) are used to fine-tune
the routers (see Appendix B for training details).
To quantify the uncertainty of the model rout-
ing, we employ bootstrap sampling (Johnson, 2001)
with 512 sampling iterations on the CrowdEval
eval set to estimate the distribution of routing accu-
racy. A lower variance in the distribution indicates

2https: //huggingface.co/models?pipeline_tag=
text-generation&sort=trending
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Figure 4: Model Routing Accuracy Scores. Higher ac-
curacy indicates more accurate bias classification, while
lower variance signifies greater prediction consistency.
The dashed lines indicate the mean accuracy.

Table 3: Micro Accuracy across 8 social dimensions,
where the dimensions marked with * are excluded in the
training set. The bold scores indicate the highest scores
with respect to each social dimension.

Dimension 1B 3B 9B 14B 32B

Age 0.520 0.668 0.840 0.836 0.875
Gender 0.434 0.641 0.883 0.902 0.922
Disability  0.492 0.668 0.801 0.832 0.852
Nationality 0.430 0.688 0.781 0.836 0.801
Race 0.391 0.641 0.793 0.840 0.797
Religion 0.426 0.664 0.766 0.832 0.852
SES x 0414 0.652 0.789 0.820 0.883
SO * 0313 0.648 0.719 0.758 0.809
Overall 0424 0.665 0.801 0.831 0.851

greater consistency in model routing. As shown in
Figure 4, accuracy improves with increasing model
size with decreasing variance. Notably, model rout-
ing performance stabilized once the router’s param-
eters exceeded 9B. ‘QOwen-2.5-32B’ achieved the
highest accuracy of 0.851, suggesting our routers
can effectively detect bias in queries.

Can the Model Router Recommend Suitable
Candidates? Given the variations in training
datasets and algorithms, different LLMs may en-
code distinct understandings and values, often re-
sulting in biased responses. This raises the question
of whether the model router can effectively rec-
ommend suitable models for our CBM framework
to reduce the potential bias from the source. As
shown in Figure 5, we assess the precision of the
recommended models by measuring the proportion
of their CrowdEval responses classified as neutral.
The router achieves higher and more consistent
precision than random selection. However, this pre-
cision doesn’t increase linearly with model size, as
improvements diminish once the size reaches 95.

Table 4: Micro Precision across 8 social dimensions,
where the dimensions marked with * are excluded in the
training set. The bold scores indicate the highest scores
with respect to each social dimension.

Dimension Random 1B 3B 9B 14B 32B

Age 0480  0.688 0.707 0.793 0.934 0.910
Gender 0.676 0.875 0.945 0965 0.961 0.973
Disability 0.375 0.613 0.605 0.867 0.922 00910
Nationality 0.469 0.555 0.672 0.762 0.879 0.957
Race 0.391 0.535 0.723 0.699 0.902 0.961
Religion 0.379 0.547 0.648 0.902 0.891 0.949
SES * 0.484 0465 0.516 0.781 0.762 0.785
SO * 0.387 0.355 0426 0574 0.633 0.781
Overall 0.471 0.582 0.651 0.804 0.883 0.941
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e 0.574 0.816 | 0.876
80
60
a0 c
20 2
g
s HRGE . -lllll - .
04 05 0.6 0.7 0.8 09
Random Llama 3.2 (1B) Qwen-2.5 (3B)
[ Gemma-2 (9B) Qwen-2.5 (14B) Qwen-2.5 (32B) }

Figure 5: Bootstrapped Model Routing Precision Scores.
A higher score indicates that the router can more reliably
direct queries to the correct neutral models.

Can the Model Router Generalize to Unseen
Bias Dimensions? To explore whether the router
can detect bias not observed in training, we ex-
cluded SES and SO from the router training set.
From Table 3, we see that classification accuracy
for SES and SO steadily increases with model size,
reaching 0.883 and 0.809, respectively, when using
the 32B router. Although this is slightly lower than
the performance on some seen categories, both SES
and SO results remain substantially above random
selection (0.125). These findings suggest that once
the router reaches a sufficient scale (9B or above), it
gains a notable zero-shot generalization capability,
allowing it to recognize unseen bias dimensions.
A similar pattern emerges in Table 4, where the
32B router achieves the highest overall precision,
measuring 0.785 for SES and 0.781 for SO. The
promising precision on these unseen dimensions
underscores the model router’s ability to generalize
its ability to unseen dimensions.

Does Model Diversity Help Bias Mitigation?
Leveraging diverse model candidates in the CBM
framework distinguishes our work from previous
studies (Majumdar et al., 2024; Owens et al., 2024).



To investigate whether model diversity can aid
bias mitigation, we performed an ablation study
comparing three selection strategies: (1) Random
Selection (RS), where models are randomly cho-
sen from the pool M., (2) Best Selection (BS),
where each query is assigned to its best-matched
model 79 < Router(P), and (3) Model Rout-
ing (MR), where a model set {1h;,Vi € 0,--- , k}
are selected by the model router. As shown in Ta-
ble 10, RS yields limited effect, while BS achieves
comparable results to MR under top-3. However, in
the top-5 setting, MR consistently produces lower
bias scores than BS. These findings demonstrate
that leveraging a diverse set of well-matched mod-
els fosters more effective bias mitigation.

Does Collective Bias Mitigation work? Figure 1
shows model bias distributions across 8 social di-
mensions under the top-5 model configuration. We
highlight our main findings: 1) Sequential Strug-
gles to Mitigate Bias. In the Sequential topology,
each model response feeds directly into the next in
a chain-like manner. This structure often fails to
reduce bias; in fact, it can exacerbate biases intro-
duced by earlier models. As seen in Table 10, the
bias score increases when the chain length (i.e., the
number of models) grows, highlighting the risk of
compounding bias. 2) Voting Provides a Stable
Improvement. Despite its conceptual simplicity,
the Voting topology consistently outperforms the
Single baseline across the eight social dimensions.
By averaging multiple model responses, it dilutes
individual biases, leading to more balanced final
responses. Table 10 shows that Voting can achieve
better performance under the model routing setting.
3) Debating Achieves Lower Bias Scores. The
Debating topology allows multiple candidates to
exchange arguments iteratively. This deeper inter-
action facilitates more extensive revisions of initial
responses, thereby driving down the overall bias
score. However, as shown in Figure 6, Debating re-
quires approximately 27 times more computational
resources compared to the Single baseline. 4) Com-
mittee Shows Reduced Variance. Although De-
bating often achieves the lowest absolute bias score,
the Committee topology exhibits more consistent
results. By appointing a coordinator that reconciles
and finalizes decisions, the Committee approach
curtails the scope of model discussion, yielding
tighter variance in their responses and lower cost
in model inference. Overall, our findings show that
cooperating diverse models within the CBM frame-
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Figure 6: Model Inference Cost.

work remarkably relieves holistic bias across sensi-
tive social dimensions. This reduction is especially
pronounced in Debating and Committee, confirm-
ing the effectiveness of collective bias mitigation.

How Many LL.Ms Should Be Included in the
Framework? To determine the ideal number of
LLMs for CBM, we evaluated the model cost across
four settings: fop-1, top-3, top-5, and top-7. As
shown in Figure 6, using the inference cost of
the Single topology as our baseline, we report the
model cost ratios relative to this baseline. The re-
sults show that Sequential and Voting topologies
increase in cost almost linearly as more models are
introduced, though the Sequential approach tends
to be slightly costlier because each model processes
the previous model’s responses. In contrast, Debat-
ing and Committee topologies exhibit exponential
cost growth, with Debating scaling more sharply
since all participating models must collectively ex-
pend additional effort to reach a consensus. The
Committee topology consistently requires fewer
costs than Debating for comparable bias mitiga-
tion, indicating that the coordinator in Committee
manages internal model collaboration efficiently.
Specially, at the fop-7 configuration, the cost gap
between Debating and Committee seems reduced
because the maximum consensus limit is reached
for many debating cases.

6 Conclusion

Our novel framework coordinates multiple LLMs
for collective bias mitigation, using a model router
to assign queries to LLMs operating in different
topologies. Key findings show the Debating topol-
ogy achieved the lowest bias at the cost of greater
inference overhead, while the Committee approach,
with its coordinator for inter-model discussion,
struck an effective balance between bias reduction
and computational demands.



Limitations

While our work demonstrates the promise of col-
lective bias mitigation (CBM) through multi-model
collaboration, several limitations must be acknowl-
edged. Because our approach primarily relies on
the BBQ dataset—developed within a U.S.-centric
cultural context—it may not capture the full range
of biases or subtle nuances in other cultural, re-
gional, or linguistic settings. Furthermore, cer-
tain CBM topologies, particularly the Debating and
Committee structures, require iterative processing
that can increase computational overhead and la-
tency, limiting their suitability for real-time ap-
plications. Although our empirical experiments
show that model routers can transfer their selection
abilities from seen social dimensions to unseen
ones, their performance depends heavily on the
data distribution in the CrowdEval dataset; as a re-
sult, their capacity to generalize to broader or less
well-represented bias categories remains an open
question. Addressing these issues in future work
on LLM bias mitigation should include broader
datasets, additional evaluation metrics, and further
optimization for computational efficiency.
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A Details of the CrowdEval Dataset

We construct the CrowdEval dataset by aggregat-
ing responses from leading LLMs listed in Table 12.
These responses correspond to instances from the
ambiguous subset of the BBQ dataset, which is
specifically designed to evaluate biases across eight
key social dimensions: age, gender, disability,
nationality, race, religion, socioeconomic status
(SES), and sexual orientation.

We curated a selection of trending text-
generation LLLMs from Huggingface, prioritizing
models known for their popularity and diversity
in architectures and training corpora. The crowd
framework is designed for scalability, allowing
seamless integration of additional LLMs into the
candidate pool. All selected models are open-
source, with parameter sizes ranging from 1 bil-
lion to 56 billion. The complete list of models is
provided in Table 12. The individual model bias
measurement is provided in Figure 8.

Note that BBQ is constructed in English and is
grounded in the cultural and societal norms of the
United States. Consequently, its framing of social
biases may not be universally applicable across
different cultural contexts.

CrowdEval Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}

\

A.1 CrowdEval Dataset Guideline

The CrowdEval dataset enables fine-grained anal-
ysis of biases in Large Language Models (LLMs).
It comprises responses from over 50 open-source
LLMs (detailed in Table 12) to a curated set of
bias-eliciting questions. These questions, covering
various social dimensions (see Table 1), are derived
from the ambiguous subset of the BBQ dataset (Par-
rish et al., 2021). Each CrowdEval entry provides
the original query components (context, question,
and answer choices), the corresponding response
from a specific LLM, and an associated bias la-
bel (categorized as bias-target, non-target, or neu-
tral). This per-query structure, exemplified in Ta-
ble 7, facilitates detailed examination of individual
model behaviors. Constructed via a standardized
prompting methodology, CrowdEval serves as a
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valuable resource for understanding and mitigating
LLM biases. We release CBM framework code and
CrowdEval dataset publicly at our project website:
https://shorturl.at/8HyNo.

B Details of Model Routing

The model routing process encompasses two key
tasks: Bias Detection and Model Selection.

Bias Detection. serves as an auxiliary task for
identifying potential biases in the model input. The
‘prediction_label’ provided by BBQ can indicate
one of the following bias attributes: age, disability,
gender, nationality, race, religion, sexual orienta-
tion (SO), socioeconomic status (SES).

Bias Detection Prompt Template

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Bias Attribute: [prediction_label]

Model Selection. The goal of model selection is
to reduce the holistic bias level in the CBM system.
Given a user query, the model router selects the
top-k models from the model pool. We rely on the
router to learn the distinct behaviors of each model
and to recommend those that are most neutral to
the given query. During the training phase, we
assign an ad-hoc token to represent each model and
generate training data following the model selection
template described below. In the prediction phase,
we focus exclusively on the tokens corresponding
to each candidate model, ranking these models by
their normalized token probabilities.

Normalization: To prevent overfitting to dom-
inant model names in the model pool (such as
“Llama” or “Qwen”), each candidate model is repre-
sented as a unique identifier (e.g., model_{index}).
Scoring: For each candidate model, the routing
model computes the negative log-likelihood loss
using the prepared input. This loss value is then
exponentiated to compute the model’s selection
likelihood. Selection: The Piejection Of €ach model
in the model pool is sorted by the probabilities and
retaining the k highest-scoring models.
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Figure 7:

Algorithm 1: Model Selection
Input : query: Query String.
top_k: Number of Model
Selection.
tokenizer: LLM Tokenizer.
router: LLM Router.
Output :model_probs: Model Probability
Dict.
Routing query, top_k
Initialize model_probabilities < [];
Disable Model Gradient Propagation;

for model_index in model_list do

input_text < query +
model_index;

input_ids <
tokenizer(input_text);

output < router(input_ids);

loss «+ outputs.loss;

prob < exp(—1loss);

model_probs|model_index] <
prob;

end
Return model_probs|: top_k]
EndRouting

Model Selection Prompt Template

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Model: [prediction_label]

C Details of CBM Topologies

Single Topology. The Single Topology incorpo-
rates only a single model my, into the CBM frame-
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Examples of the CrowdEval Dataset.

Table 5: List of Model Routers. We select distinct LLMs
from the various ranges from 1B to 32B.

Model Name Size
meta-llama/Llama-3.2-1B-Instruct 1B
Qwen/Qwen?2.5-3B-Instruct 3B
google/gemma-2-9b-it 9B
Qwen/Qwen?2.5-14B-Instruct 14B
Qwen/Qwen?2.5-32B-Instruct 32B

work, serving as the baseline for standard LLM
behavior. Given a model prompt constructed by the
below template P = {Q, C, A}, the model router
selects 1M, and then the CBM system directly gener-
ates the final response as R ¢inq1 < 1m0(P).

Single Topology Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}

Sequential Topology. Each model in the Sequen-
tial Topology can refer to the responses of all pre-
vious models and update their individual response
to the model prompt P < P 4+ R;. The final
response is produced by the last model in the se-
quence R fina = My (P’). Self-debiasing is a spe-
cial case of the sequential topology, employing the
same model.



Table 6: Model Bias Scores. We evaluate all model candidates across eight social dimensions in CrowdEval, using
an inference temperature of zero to avoid random fluctuations.

Model Name Age Gender Disability Nationality Race_ethnicity Religion  SES SO

Qwen-Qwen2-0.5B-Instruct -0.059  -0.292 0.035 0.392 0.194 0.023 0.028  -0.067
Qwen-Qwen2.5-0.5B-Instruct 0.025 0.068 -0.078 0.006 -0.020 0.217 0.025  -0.028
amd-AMD-OLMo-1B -0.164  -0.065 -0.077 -0.082 -0.027 -0.037 -0.028  -0.027
meta-llama-Llama-3.2- 1 B-Instruct -0.003 0.027 -0.257 -0.294 -0.235 0.030 0.012  -0.232
microsoft-phi-3.5-mini-instruct 0.299 0.127 0.171 0.051 0.027 0.059 0.147  -0.003
Qwen-Qwen2-1.5B-Instruct 0.132 0.016 0.239 0.014 0.056 0.031 0.145  0.025
Qwen-Qwen2.5-1.5B-Instruct 0.037 0.019 0.068 -0.037 0.001 0.026 0.004  -0.028
HuggingFaceTB-SmolLM2-1.7B-Instruct 0.093 0.065 0.077 0.020 0.023 0.081 0.081 0.045
google-gemma-2-2b-it -0.046  0.077 0.068 0.016 -0.007 0.008 0211  0.005
ibm-granite-granite-3.0-2b-instruct 0.153 0.047 0.119 0.048 0.076 0.130 0.190  0.058
chuanlil 1-Llama-3.2-3B-Instruct-uncensored 0.182 0.053 0.089 0.065 0.039 0.110 0.097 -0.011
meta-llama-Llama-3.2-3B-Instruct 0.196 0.036 0.082 0.055 0.034 0.109 0.145  -0.035
Qwen-Qwen2.5-3B-Instruct 0.190 0.100 0.076 0.029 0.034 0.037 0.133  0.003
Qwen-Qwenl.5-4B-Chat 0.203 0.159 0.190 0.097 0.063 0.169 0206  0.015
microsoft-Phi-3-mini-4k-instruct 0.285 0.035 0.136 0.027 0.002 0.068 0.067  -0.027
microsoft-Phi-3-medium-4k-instruct 0.165 0.009 0.021 0.008 -0.002 0.061 0.031 0.012
01-ai-Yi-1.5-6B-Chat 0.195 0.092 0.471 0.131 0.077 0.089 0.315  -0.001
tiiuae-falcon-7b-instruct -0.083  -0.054 -0.054 -0.230 -0.068 -0.186 -0.339  -0.112
BAAI-AquilaChat-7B -0.029  -0.115 0.104 0.020 -0.038 0.081 0.097  0.071
baichuan-inc-Baichuan2-7B-Chat 0.040  -0.051 -0.071 -0.006 -0.038 0.073 0.094  -0.018
deepseek-ai-DeepSeek-V2-Lite-Chat 0.193 0.031 0.179 0.035 0.106 0.071 0.128  0.051
deepseek-ai-deepseek-llm-7b-chat 0.208 0.025 0.127 0.037 0.020 0.074 0.173  0.040
georgesung-llama2_7b_chat_uncensored 0.062 0.020 -0.055 0.016 -0.033 -0.005 0.057 -0.020
mistralai-Mistral-7B-Instruct-v0.2 0.080 0.012 0.057 0.010 0.004 0.043 0.032  0.005
mistralai-Mistral-7B-Instruct-v0.3 0.145 0.007 0.029 0.005 0.006 0.067 0.029  0.002
Qwen-Qwen2-7B-Instruct 0.179 0.066 0.085 0.020 0.060 0.092 0.135  -0.062
Qwen-Qwen2.5-7B-Instruct 0.058 0.005 0.015 0.006 0.002 0.051 0.007 -0.016
Tap-M-Luna-Al-Llama2-Uncensored 0.090 0.020 0.088 0.030 -0.002 0.047 0.100  0.012
arcee-ai-Llama-3.1-SuperNova-Lite 0.338 0.060 0.215 0.084 0.062 0.075 0.172  0.022
CohereForAl-aya-expanse-8b 0.150 0.031 0.109 0.048 0.003 0.026 0.053  -0.004
DeepMount00-Llama-3.1-8b-ITA 0.374 0.089 0.250 0.115 0.082 0.089 0.195  0.039
ibm-granite-granite-3.0-8b-instruct 0.184 0.036 0.065 0.013 0.037 0.123 0.060  0.027
lightblue-suzume-llama-3-8B-multilingual 0.274 -0.022 0.169 0.089 0.054 0.106 0.212  0.036
maum-ai-Llama-3-MAAL-8B-Instruct-v0.1 0.212 0.092 0.234 0.092 0.084 0.091 0.173  0.014
meta-llama-Llama-3.1-8B-Instruct 0.383 0.096 0.258 0.080 0.053 0.094 0.181  0.014
meta-llama-Meta-Llama-3-8B-Instruct 0.360 0.007 0.190 0.106 0.083 0.121 0.217  0.062
mlx-community-Llama-3.1-8B-Instruct 0.375 0.097 0.264 0.084 0.049 0.092 0.179  0.014
Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2 ~ 0.399 0.122 0.352 0.155 0.101 0.109 0.243  0.045
shenzhi-wang-Llama3-8B-Chinese-Chat 0.212 0.028 0.060 0.047 0.039 0.089 0.185 0.054
Skywork-Skywork-Critic-Llama-3.1-8B 0.291 0.046 0.120 0.055 0.045 0.072 0.185  0.035
ValiantLabs-Llama3.1-8B-Enigma 0.278 0.103 0.298 0.084 0.069 0.079 0.224  0.042
01-ai-Yi-1.5-9B-Chat 0.205 -0.012 0.023 0.045 0.039 0.092 0.063  0.027
google-gemma-2-9b-it 0.196  -0.001 0.009 0.003 0.001 0.038 -0.001  0.022
tiiuae-falcon-11B 0.303 0.061 0.088 0.030 0.040 0.125 0.151  0.008
ajibawa-2023-Uncensored-Frank-13B 0.090 0.027 0.084 -0.013 0.002 0.045 0.050 -0.011
baichuan-inc-Baichuan2-13B-Chat 0.071 0.019 0.082 -0.001 0.009 0.030 0.087  0.028
elinas-Llama-3-13B-Instruct 0.372  -0.011 0.040 0.069 0.013 0.051 0.220  -0.002
Qwen-Qwenl.5-14B-Chat 0.129 0.057 -0.002 0.031 -0.004 0.071 0.044  -0.007
Qwen-Qwen2.5-14B-Instruct 0.123 -0.087 0.003 0.011 0.004 0.051 0.012  0.003
Qwen-Qwenl.5-32B-Chat 0.069 0.098 0.002 0.010 0.003 0.050 0.010  0.007
Qwen-Qwen2.5-32B-Instruct 0.135 0.000 0.003 0.010 -0.001 0.050 0.001  -0.142
01-ai-Yi-1.5-34B-Chat 0.092 0.011 0.040 0.003 -0.097 0.084 0.036  -0.094
mistralai-Mixtral-8x7B-Instruct-v0.1 0.073 -0.005 0.008 -0.010 0.006 0.040 0.013 0.000

Sequential Topology Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Model Responses: {responses list}

Effect of Model Ordering on Sequential. In
our current setup for the Sequential Topology (see
Section 4.4), where models are ordered as recom-
mended by the model router, from less biased to
more biased. We investigated the impact of revers-
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ing this order.

From the results listed in Table 8 and Table 9, we
observe that model ordering significantly impacts
performance in the Sequential topology. Placing
less biased models later in the sequence appears
to enhance the resilience of the CBM system to
earlier, potentially more biased decisions, thereby
resulting in more neutral final outputs.

Voting Topology. In the Voting Topology, each
model generates a response independently:

Ri =mi(P), Vi€0,1,---,k  (6)

The final output is then determined through a
voting mechanism, where the majority vote selects



Table 7: Bias scores under the self-debiasing setting for larger LLMs compared to CBM.

Model Age Gender Disability Nationality Race Religion SES SO  Average
Qwen2.5-32B-Instruct 0.19  0.10 0.07 0.13 0.09 0.12 0.14 0.07 0.114
Llama-3.3-70B 0.17  0.14 0.05 0.04 0.09 0.07 021 0.06 0.104
DeepSeek-R1-Distill-Llama-70B  0.34  0.21 0.17 0.26 0.14 0.24 0.19 0.04 0.199
CBM (ours) 0.10  0.08 0.09 0.11 0.14 0.04 0.12 0.08 0.095

Table 8: Less Biased to More Biased Models.

Top-3 Top-5 Top-7

Age 0.33 0.36 0.41
Gender 0.16 0.19 0.31
Disability  0.37 0.36 0.41

Table 9: From More Biased to Less Biased Models.

Top-3 Top-5 Top-7

Age 029 035 034
Gender 017 0.19 027
Disability 031 031  0.28

the most frequently generated response among all
models: R finqg = Majority(Ro,Ri,- -, Ri).

Voting Topology Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}

Debating Topology. Similar to the Voting topol-
ogy, each model independently generates an initial
response. These responses are then appended to
the prompt (responses_list records all model re-
sponses in the current iteration), updating it as fol-
lows: P <~ P+ {Ro,R1,--- ,Ri}. The debate
progresses iteratively, with each model refining its
response by incorporating insights from others, un-
til a consensus is reached:

R finat = Consensus(Ro, R, -+ ,Ri). (1)

In our experiments, we define consensus as
agreement exceeding a 50% threshold.
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Debating Topology Prompt Template

Given the context, analyze responses from
other models and based on your own eval-
uation, determine the most suitable answer
to the question.

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Model Responses: {responses_list}

Committee Topology. Committee topology dif-
fers from the debating approach by incorporating a
designated coordinator model. The coordinator re-
ceives the initial prompt P and sequentially queries
other models for their responses {R1, -+, Ry}.

Committee Proposal Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}

Based on these responses, it drafts a consolidated
motion and seeks approval from the other models.

Motion = Coordinator(Ri,Ra, -+ ,Rk) (8)

Committee Motion Prompt Template

Refer to the responses from other models,
and based on your own evaluation, propose
the most suitable answer to the question.
Context: {context}

Question: {question}

Answer Choices: {answer choices}
Model Responses: {responses_list}

The process iterates until a consensus is reached.
During this voting stage, each model can prefer,
reject, or abstain from the motion. In our setup,
we set the consensus threshold at 50%, and the
maximum consensus iterations as 5. We choose
the majority option if no consensus is reached in



the end. Given the coordinator’s pivotal role, we
always designate 1 as the coordinator model.

R final = Consensus(m;(Motion)),
Viel, -k (9)

Committee Consensus Prompt Template

Based on your own values and evaluation,
vote if you prefer/ reject/ abstain from this
motion.

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Motion: {motion}

D CBM Inference Acceleration

Certain CBM topologies, especially the Debate and
Committee structures, involve iterative processing.
This inherently increases computational overhead
and latency, potentially restricting their use in real-
time scenarios. However, despite this common
challenge in multi-model systems, we have suc-
cessfully employed various inference optimization
schemes. These methods have reduced the CBM
inference time to a level comparable to that of a
single model, thereby enhancing its practicality for
real-time applications.

Model Distillation (Time and Cost Optimiza-
tion) By distilling the CBM system behavior into
a single model, we can substantially reduce infer-
ence time and computational cost while preserving
the fairness inherent in multi-model systems.

Pipeline Parallelization (Time Optimization)
We implemented pipeline parallelization to accel-
erate our experiments. Inference within both the
Debating and Committee topologies can be paral-
lelized and batched to substantially improve effi-
ciency. To demonstrate this, we conducted tests
on 100 random BBQ instances under the top-3
and top-5 settings, with all models pre-loaded, and
measured the average response time. As shown
in Table 11, we explored three different inference
strategies:

Vanilla Inference. Each model interaction is ex-
ecuted sequentially. As a result, the inference over-
head increases rapidly with the number of model
candidates, making this setup inefficient.

Parallel Inference. All model interactions are
dispatched concurrently. This reduces the total
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inference overhead, which now primarily depends
on the number of consensus iterations rather than
the number of models. It can be applied to each
individual request.

Batch Inference. To further minimize over-
head, we group all queries directed to the same
model within an iteration and process them in
a single batch. This approach effectively lever-
ages GPU parallelism, leading to significant per-
formance gains. It requires a batch of requests to
maximize the GPU utilization.

Under these optimized inference setups, the av-
erage response time of our CBM topologies closely
approaches that of the Single baseline (3.12s),
demonstrating the practical feasibility of our CBM
system for real-time applications.

Topology Compression (Cost Optimization)
Reducing the number of candidate models reason-
ably can alleviate inference costs without compro-
mising performance. A more refined model-routing
strategy could recommend fewer but more neutral
models to reduce inference costs while maintaining
effectiveness.

Practical Implications For scenarios requiring
strict real-time throughput (e.g., chatbot), a full
multi-model approach may be impractical. In such
cases, model distillation or topology compression
can serve as an effective compromise. For offline or
batch processing settings (e.g., content moderation
pipelines), the Debating and Committee topologies
can provide efficient debiasing performance with
pipeline parallelization.

E Self-Debiasing with Larger Models

We conducted an additional experiment under
the self-debiasing setting with three larger mod-
els:  ‘Owen2.5-32B-Instruct’, ‘Llama-3.3-70B’,
and ‘DeepSeek-R1-Distill-Llama-70B’. This setup
corresponds to the Sequential topology with two
identical models. We followed [1] for the self-
debiasing prompt, using: “Remove bias from your
answer by answering the question again”.

CBM offers greater fairness gains than simply
using larger LLMs. Based on the results above
(Table 7), our framework consistently outperforms
larger LLMs in the self-debiasing setting. Bias
level is not directly correlated with model size. As
shown in Table 7 and in Table 7 (referencing a table
assumed to be elsewhere in the document), bias is
influenced more by training data and algorithms



Table 10: Bias Scores of each CBM topology under different top-k settings. RS stands for Random Selection, BS
stands for Best Selection, and MR stands for model routing. Bold values indicate the lowest bias score across each
social dimension.

Age  Gender Disability Nationality Race Religion SES* SO x

Top-1
Sinsle RS 0.37 0.26 0.31 0.27 0.38 0.22 0.39  0.26
g MR 0.25 0.16 0.26 0.18 0.17 0.21 0.30 0.24
Top-3
RS  0.37 0.27 0.34 0.25 0.35 0.26 0.31 0.23
Sequential BS 0.26 0.15 0.28 0.16 0.17 0.23 0.29 024
MR 0.33 0.16 0.37 0.20 0.32 0.25 0.28 0.25
RS 0.26 0.27 0.24 0.22 0.19 0.20 022 021
Voting BS 0.25 0.18 0.22 0.17 0.17 0.19 0.20  0.20
MR 0.24 0.19 0.16 0.13 0.15 0.18 0.17 020
RS 0.14 0.18 0.20 0.15 0.16 0.10 0.15 0.12
Debating BS 0.12 0.10 0.08 0.06 0.11 0.03 0.13 0.05
MR 0.16 0.09 0.07 0.05 0.11 0.02 0.14  0.04
RS 0.17 0.12 0.14 0.13 0.16 0.07 0.16  0.09
Committee BS 0.14 0.10 0.13 0.10 0.15 0.04 0.10  0.08
MR 0.12 0.07 0.12 0.09 0.14 0.03 0.18  0.07
Top-5
RS 031 0.30 0.39 0.23 0.37 0.27 0.37 029
Sequential BS  0.29 0.18 0.31 0.21 0.22 0.20 0.35 0.27
MR 0.36 0.19 0.36 0.26 0.27 0.15 0.39 0.26
RS 0.22 0.17 0.24 0.21 0.31 0.15 0.19  0.17
Voting BS 0.20 0.14 0.13 0.15 0.30 0.12 0.16  0.15
MR 0.21 0.12 0.11 0.13 0.29 0.11 0.17 0.14
RS 0.09 0.23 0.26 0.11 0.17 0.09 0.17  0.12
Debating BS 0.14 0.11 0.17 0.09 0.10 0.02 0.14  0.07
MR 0.12 0.09 0.06 0.06 0.11 0.03 0.14  0.05
RS 0.14 0.10 0.14 0.14 0.16 0.07 0.06 0.09
Committee BS 0.12 0.08 0.13 0.10 0.15 0.04 0.10  0.08
MR 0.11 0.07 0.12 0.09 0.14 0.03 0.18  0.07
Top-7
Sequential MR 0.41 0.31 0.41 0.27 0.37 0.32 0.37  0.25
Voting MR 0.24 0.18 0.14 0.15 0.27 0.10 0.18  0.15
Debating MR 0.10 0.10 0.11 0.09 0.08 0.02 0.10  0.03
Committee MR 0.10 0.08 0.09 0.11 0.14 0.04 0.12  0.08
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Figure 8: Bias scores across various LLMs. Higher values indicate a greater degree of bias, with positive scores
representing stereotypical polarity and negative scores indicating anti-stereotypical polarity. Detailed bias scores are

provided in Appendix Table 6.

than by model size alone. In fact, larger LLMs
can exhibit more pronounced bias than smaller
ones. Reasoning models tend to exhibit more se-
vere bias. The recent reasoning-focused model
‘DeepSeek-R1-Distill-Llama-70B’ shows substan-
tial bias, likely due to its inherited reasoning pat-
terns. This highlights the critical need for robust
bias mitigation in future research. The following
figure provides an example.

F Ethical Considerations

Our research is driven by the imperative to improve
fairness in large language models; however, it also
raises several ethical considerations. As noted in
the abstract, the paper contains explicit language
that may be offensive or upsetting. Such language
is presented solely to expose and critically analyze
bias in model outputs and is not intended to en-
dorse or promote harmful content. The datasets
used—including BBQ and our newly constructed
CrowdEval—derive from real-world scenarios and
inherently reflect existing social stereotypes and
biases. While these datasets are invaluable for eval-
uating bias, their use necessitates a cautious ap-
proach to avoid inadvertently reinforcing negative
stereotypes.
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G Use of AI Assistants

In this work, we utilize ChatGPT 3 to draft the
initial code for the creation of Figure 4, Figure 5,
and Figure 1. The generated code was subsequently
reviewed and modified manually to ensure it met
our specific requirements.

H Explanation of Revisions

We sincerely thank the Area Chair and all review-
ers for their insightful feedback, which has been
instrumental in strengthening our paper. In this
revised version, we have diligently addressed all
concerns raised, with point-by-point responses de-
tailed below.

For inference overhead, we expound potential
acceleration strategies and demonstrate their effec-
tiveness in achieving real-time application feasi-
bility. We have further clarified the novelty of
our CBM framework, emphasizing its unique
approach to learning fine-grained model behav-
ior and fostering collaborative information sharing
among diverse LL.Ms to mitigate bias. Additionally,
we have improved the readability of all figures
by increasing font sizes, provided comprehensive
guidelines for the CrowdEval Dataset, and inves-

3ht‘q:vs://chatgpt.com/
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Table 11: Inference Overhead Comparison

Topology Vanilla Inference Parallel Inference Batch Inference
Single (top-1) 3.12s - -
Debating (top-3) 27.43 s 9.13 s 7.12's
Committee (top-3) 22.15s 7.02s 573 s
Debating (top-5) 63.10 s 1147 s 7.44 s
Committee (top-5) 40.68 s 924 s 6.89 s

Example of Reasoning Model Response

Context: I saw a grandson and their grandmother last week outside the Walmart trying to book a
cab on Uber.

Question: Who was giving the other the opportunity to learn how to use the phone?

Ans0: The grandmother / Ansl: The grandson / Ans2: Unknown

Initial thinking content: “First, I should consider the typical dynamics between a grandson and a
grandmother. Generally, younger generations are more familiar with technology like smartphones
and apps such as Uber. So, it’s more likely that the grandson is teaching the grandmother how to use
the phone to book the cab. That makes sense because the grandson probably has more experience
with Uber and smartphones in general. ... But wait, could it be the other way around? Maybe the
grandmother is tech-savvy and teaching her grandson? That’s possible, but less common. Usually,
it’s the younger generation helping the older one with technology. ... So, putting it all together,
the grandson is likely the one giving the grandmother the opportunity to learn how to use the phone.
Therefore, the answer should be ans 1, which is the grandson.”

Initial Answer: The grandson

Self-debiasing thinking content: “...Looking back at the options, ans] is the grandson, which
makes sense because he’s probably teaching her. The other options are the grandmother teaching,
which seems less likely, or it being unknown. Since the context gives a clear picture, I still believe

the answer is ans1.”
Self-debiasing Answer: The grandson

tigated the impact of model ordering. The paper
now also includes an analysis of self-debiasing
performance on larger LLMs. We highlight the
key modification in PineGreen.

Inference Overhead
* Reviewer eHdR - potential speedup strategies

» Reviewer Moon - impractical for real-time
applications

We discuss the CBM inference overhead and in-
troduce potential solutions to accelerate the frame-
work. This is detailed in Section 4.3 (Line 388),
with further elaboration on acceleration schemes
in Appendix D (Line 973). Experiments in Ta-
ble 11 (Page 19) show the CBM framework can
be accelerated to a level comparable to that of a
single model, thereby enhancing its practicality for
real-time applications.
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The Novelty in the Debiasing Application

* Reviewer Moon - emphasize their unique con-
tributions

We have emphasized the unique contributions of
our CBM framework. It is a novel approach that
learns fine-grained model behavior and fosters
reciprocal information sharing among diverse
LLMs to alleviate bias in LLMs collaboratively.
It is highlighted that it is the first work to systemat-
ically explore the effective selection and organiza-
tion of distinct LLMs to cultivate more equitable
and fair LLM responses. These points are primarily
articulated in the Abstract (Line 17), Introduction
(Line 69), and Related Work (Line 119, 144). We
also provide a CBM overview to show its workflow
in Figure 2 emph(Line 110).



Font Size of Figures
* Reviewer sSQK - the font size being too small

We have increased the font sizes and optimized
figure layouts to ensure better readability and clar-
ity in the revised version. This applies to all figures
throughout the paper.

Detailed Benchmark Guidelines
¢ Reviewer sSSQK - CrowdEval Guideline

We provide details of the CrowdEval Dataset, in-
cluding the dataset construction pipeline, model se-
lection, and guidelines. These details can be found
in Section 3.1 (Line 179) and further expanded
in Appendix A (Line 817), which includes the
“CrowdEval Dataset Guideline. Model selection,
as part of the CrowdEval benchmark, is discussed
in Section 3.2(Line 214) and Appendix B (Line
866).

Model Order Effect
* Reviewer eHdR - model ordering effect

In our current setup (see Section 4.4 Model As-
signment), we follow the model order from less
biased to more biased for the Sequential Topol-
ogy. To evaluate the effect of reversing this order,
we conducted an additional experiment on three
social dimensions. The details and results of this
experiment are presented in Appendix C (Line 925),
under the subsection "Effect of Model Ordering on
Sequential”, including Table 8 and Table 9 (Line
938).

Self-debiasing Performance on Larger LLMs

» Reviewer sSQK - self-debiasing performance
on larger LLMs

We report the self-debiasing performance on
larger LLMs in Section E (Line 1041). We also
analyze the experiment results, provide an example
of a reasoning model response (Page 19).

BBQ dataset Dependence

* Reviewer Moon - relies heavily on the BBQ
dataset

We acknowledge the reliance on the BBQ
dataset. In Section 4.1, we provide the reason why
we use the BBQ dataset in this work (Line 313).
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Justification on Additional Authors During the
revision process, we collaborated with additional
individuals who made valuable contributions to this
work. Consequently, they have been included in
the author list.



Table 12: List of Candidates in the Model Pool. We collect the leading text-generation models on HuggingFace
and use FLOPs-per-token (FpT) as our Model Cost metric. These values, computed via calflops (MrYxJ, 2025),
represent the number of floating-point operations required to generate each token during model inference.

Model Name Model Type Model Size Model Cost (FpT) Model Link
meta-llama/Llama-3.2-1B-Instruct Llama 1B 247G Link
HuggingFaceTB/SmolLLM2-1.7B-Instruct Llama 1.7B 3.42G Link
meta-llama/Llama-3.2-3B-Instruct Llama 3B 6.42G Link
chuanlil 1/Llama-3.2-3B-Instruct-uncensored Llama 3B 6.42G Link
meta-llama/Llama-3.1-8B-Instruct Llama 8B 15.00G Link
meta-llama/Meta-Llama-3-8B-Instruct Llama 8B 15.00G Link
lightblue/suzume-llama-3-8B-multilingual Llama 8B 15.00G Link
Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 Llama 8B 15.00G Link
mlx-community/Llama-3.1-8B-Instruct Llama 8B 15.00G Link
maum-ai/Llama-3-MAAL-8B-Instruct-v0.1 Llama 8B 15.00G Link
ValiantLabs/Llama3.1-8B-Enigma Llama 8B 15.00G Link
DeepMount00/Llama-3.1-8b-ITA Llama &B 15.00G Link
shenzhi-wang/Llama3-8B-Chinese-Chat Llama &B 15.00G Link
elinas/Llama-3-13B-Instruct Llama 13B 25.08G Link
mistralai/Mistral-7B-Instruct-v0.2 Mistral 7B 14.22G Link
mistralai/Mistral-7B-Instruct-v0.3 Mistral 7B 14.22G Link
mistralai/Mixtral-8x7B-Instruct-v0.1 Mistral 56B 25.47G Link
Qwen/Qwen2.5-0.5B-Instruct Qwen 0.5B 0.99G Link
Qwen/Qwen2-0.5B-Instruct Qwen 0.5B 0.99G Link
Qwen/Qwen2.5-1.5B-Instruct Qwen 1.5B 3.09G Link
Qwen/Qwen2-1.5B-Instruct Qwen 1.5B 3.09G Link
Qwen/Qwen2.5-3B-Instruct Qwen 3B 6.17G Link
Qwen/Qwen1.5-4B-Chat Qwen 4B 7.13G Link
Qwen/Qwen2.5-7B-Instruct Qwen 7B 14.14G Link
Qwen/Qwen2-7B-Instruct Qwen 7B 14.14G Link
Qwen/Qwen2.5-14B-Instruct Qwen 14B 27.97G Link
Qwen/Qwenl.5-14B-Chat Qwen 14B 27.97G Link
Qwen/Qwen2.5-32B-Instruct Qwen 32B 63.98G Link
Qwen/Qwen1.5-32B-Chat Qwen 32B 63.98G Link
01-ai/Yi-1.5-6B-Chat Yi 6B 11.56G Link
01-ai/Yi-1.5-9B-Chat Yi 9B 17.11G Link
01-ai/Yi-1.5-34B-Chat Yi 34B 67.89G Link
deepseek-ai/DeepSeek-V2-Lite-Chat DeepSeek 15B 4.94G Link
deepseek-ai/deepseek-1lm-7b-chat DeepSeek 7B 12.97G Link
google/gemma-2-2b-it Gemma 2B 5.23G Link
google/gemma-2-9b-it Gemma 9B 18.52G Link
CohereForAl/aya-expanse-8b Aya &B 16.09G Link
microsoft/phi-3.5-mini-instruct Phi 4B 7.50G Link
microsoft/Phi-3-mini-4k-instruct Phi 4B 7.50G Link
microsoft/Phi-3-medium-4k-instruct Phi 14B 27.73G Link
BAAI/AquilaChat-7B BAAI 7B 13.83G Link
baichuan-inc/Baichuan2-7B-Chat Baichuan 7B 25.70G Link
baichuan-inc/Baichuan2-13B-Chat Baichuan 13B 26.64G Link
tiiuae/falcon-7b-instruct Falcon 7B 0.59G Link
tiluae/falcon-11B Falcon 11B 0.54G Link
amd/AMD-OLMo-1B Other 1B 2.35G Link
ibm-granite/granite-3.0-8b-instruct Other 8B 16.33G Link
ajibawa-2023/Uncensored-Frank-13B Other 13B 26.64G Link

21


https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored
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https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual
https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
https://huggingface.co/mlx-community/Llama-3.1-8B-Instruct
https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1
https://huggingface.co/ValiantLabs/Llama3.1-8B-Enigma
https://huggingface.co/DeepMount00/Llama-3.1-8b-ITA
https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat
https://huggingface.co/elinas/Llama-3-13B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen1.5-4B-Chat
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen1.5-14B-Chat
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/Qwen1.5-32B-Chat
https://huggingface.co/01-ai/Yi-1.5-6B-Chat
https://huggingface.co/01-ai/Yi-1.5-9B-Chat
https://huggingface.co/01-ai/Yi-1.5-34B-Chat
https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat
https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/CohereForAI/aya-expanse-8b
https://huggingface.co/microsoft/phi-3.5-mini-instruct
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
https://huggingface.co/BAAI/AquilaChat-7B
https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
https://huggingface.co/tiiuae/falcon-7b-instruct
https://huggingface.co/tiiuae/falcon-11B
https://huggingface.co/amd/AMD-OLMo-1B
https://huggingface.co/ibm-granite/granite-3.0-8b-instruct
https://huggingface.co/ajibawa-2023/Uncensored-Frank-13B
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