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Abstract
Mechanistic interpretability aims to reverse
engineer the computation performed by a neural
network in terms of its internal components.
Although there is a growing body of research on
mechanistic interpretation of neural networks,
the notion of a mechanistic interpretation itself
is often ad-hoc. Inspired by the notion of abstract
interpretation from the program analysis literature
that aims to develop approximate semantics for
programs, we give a set of axioms that formally
characterize a mechanistic interpretation as
a description that approximately captures the
semantics of the neural network under analysis
in a compositional manner. We demonstrate
the applicability of these axioms for validating
mechanistic interpretations on an existing, well-
known interpretability study as well as on a new
case study involving a Transformer-based model
trained to solve the well-known 2-SAT problem.

1. Introduction
Neural networks are notoriously opaque. Mechanistic in-
terpretability seeks to reverse-engineer the computation de-
scribed by a neural network in a human-interpretable form.
Typically, the resulting mechanistic interpretation takes the
form of a circuit (i.e., program) operating over features (i.e.,
symbols). The features refer to human-interpretable proper-
ties of the input (such as edges, textures, or shapes for vision
models and part-of-speech tags, named entities, or semantic
relationships for language models) that the model represents
internally in its representations spaces whereas the circuit
refers to a chain of human-interpretable operations, encoded
by the model in its layers, such that each operation processes
and transforms the features (Millière & Buckner, 2024).
While mechanistic interpretability has been used to analyze
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aspects of vision as well as language models, it has found
most success in analyzing small models trained to solve
specific algorithmic tasks such as modular addition (Nanda
et al., 2023a). Although such small models are not necessar-
ily of practical use, analyzing them has been fruitful for de-
veloping the techniques needed to mechanistically interpret.

Despite the broad interest in mechanistic interpretability, we
observe that the notion of a mechanistic interpretation has
so far been primarily defined in an ad-hoc manner. In this
work, we propose a collection of axioms that characterize
a mechanistic interpretation.1 Our view on mechanistic
interpretability is inspired by the notion of abstract inter-
pretation from the program analysis literature (Cousot &
Cousot, 1977; 1992) that seeks to approximate the semantics
of programs in order to make their analysis computationally
feasible. Similarly, our axioms are meant to capture the
property that the mechanistic interpretation should capture
the semantics of the model. Further, our axioms also capture
the intuition that such an approximation should respect
the compositional structure of the neural network—not
only should the input-output behavior of the mechanistic
interpretation be as close as possible to the original model,
but every step in the reverse-engineered algorithm should
be as close as possible to the computation performed by the
internal components of the model (i.e., neurons and layers).
Our axioms clarify the responsibilities of an analyst; in
addition to providing a mechanistic interpretation, an
analyst also needs to present evidence to support the fact
that the provided interpretation is valid, i.e., satisfies these
axioms. Note that our axioms present a general framework
for validating mechanistic interpretations. Closest to our
work are recent papers by Geiger et al. (2021) and Chan
et al. (2022) that seek to formalize the notion of mechanistic
interpretability from a causal perspective. We believe that
these formulations are complementary to our axioms.

We demonstrate the applicability of our axioms for validat-
ing mechanistic interpretations via two case studies2—the
existing, well-known analysis by Nanda et al. (2023a) of a
model with a Transformer-based architecture (Vaswani et al.,
2017) trained to solve modular addition, and a new analysis

1In the same sense that group axioms characterize the notion
of an abstract group in abstract algebra.

2Our implementation is available at https://github.
com/nilspalumbo/axiomatic-validation.
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of a small Transformer-based model trained by us to solve
a Boolean satisfiability problem. For the new case study,
we choose Boolean satisfiability as a challenging yet well-
understood problem that serves to highlight new techniques
and our axiomatic evaluation criteria for mechanistic inter-
pretability. Further, there are many other problems in com-
puter science that reduce to it, for example, graph reachabil-
ity is reducible to 2-SAT. To keep the analysis tractable, we
focus on the 2-SAT problem with a fixed number of clauses
and variables; the problem can be solved in polynomial time
(while the more general 3-SAT problem is NP-complete).

To apply our axioms, we first need to extract a mechanistic
interpretation of the model under analysis. Although such an
interpretation is already known for the modular arithmetic
model, we present a new analysis for the 2-SAT model that
is guided by our axioms. Through our analysis, we are
able to reverse engineer the algorithm learned by the 2-SAT
model—the model parses the formula into a clause-level
representation in its initial layers and then uses the later lay-
ers to evaluate the formula satisfiability via enumeration of
different possible valuations of the Boolean variables. Since
we only consider 2-SAT formulas with ten clauses and five
variables, such an enumerative approach is computationally
feasible and our model has the capacity to encode it. We use
novel variants of attention pattern analysis to interpret the
first Transformer block of the model. For the second (i.e.,
final) Transformer block, attention pattern analysis does not
suffice and we use automated learning of functions (decision
trees) to derive an interpretation. Finally, for both the case
studies, we present evidence that the mechanistic interpreta-
tions extracted for these models indeed satisfy our axioms.

2. Related Work
Work on interpreting neural networks can be divided
between techniques that find input features with the largest
effect on model behavior (Input Interpretability) such
as gradient-based (Simonyan et al., 2013; Sundararajan
et al., 2017; Leino et al., 2018; Smilkov et al., 2017) and
activation-based (Olah et al., 2017; Petsiuk et al., 2018;
Fong & Vedaldi, 2017; Selvaraju et al., 2019; Wang et al.,
2020) attributions, and those that interpret the internal
reasoning performed by a model (Internal Interpretability).
We focus on the latter.

Mechanistic interpretability typically refers to analyses that
seek to understand the model behavior completely, i.e., they
seek to reverse engineer, in a human-understandable, and
hence simplified form, the full algorithm that the neural
network learns. Such analyses have tended to focus on an-
alyzing toy models trained for algorithmic tasks such as
modular addition (Nanda et al., 2023a; Zhong et al., 2023),
finding greatest common divisors (Charton, 2023), n-digit
integer addition (Quirke & Barez, 2024), and finite group op-

erations (Chughtai et al., 2023). Mechanistic interpretability
has also been used to refer to analyses that only seek to un-
derstand specific aspects of the model behavior. Such analy-
ses, often referred to as circuit analyses, isolate circuits, i.e.,
subgraphs of the neural network computational graph, that
are responsible for the behavior of interest (Cammarata et al.,
2020; Olsson et al., 2022; Wang et al., 2023; Lepori et al.,
2024; Wu et al., 2023b; Lieberum et al., 2023; Conmy et al.,
2023). The circuits are validated by measuring the causal
effect of ablating the circuit using techniques such as activa-
tion patching (Vig et al., 2020; Geiger et al., 2021; Heimer-
sheim & Nanda, 2024) on a metric that measures the relevant
model behavior. In either case, the standards for judging
the validity of the mechanistic interpretations produced by
such analyses are ad-hoc and do not take the compositional
structure of the neural network into account. We axiomatize
the standards for making such judgment in this paper.

Related to circuit analysis and the evaluation of mechanistic
interpretations is emerging work on causal abstraction analy-
sis (Geiger et al., 2021; 2024; Wu et al., 2023a;b; Chan et al.,
2022) that extracts causal models to explain certain aspects
of neural network behavior and uses techniques similar to
activation patching for validating the causal abstractions.

The surveys by Millière & Buckner (2024), Mueller et al.
(2024), and Räuker et al. (2023) are excellent resources for
a broader and more detailed description of techniques for
interpreting the internals of neural networks and the archi-
tectural components which form the interpreted units. Ap-
pendix A has a further discussion on internal interpretability
techniques such as probing and attention pattern analysis.

3. Mechanistic Interpretation Axioms
Neural networks can be seen as programs in a purely
functional language, which we denote λT , with basic
operations corresponding to the commonly used neural net-
work layers such as Embed, Unembed, Lin (i.e., linear),
ReLU , Self -Attention, Convolution, Residual, and so
on. Since λT is purely functional, all these operations are
side-effect free—they simply transform inputs into outputs.
The syntax of λT is as follows (x ∈ V ar):

t ::= Embed(x) | Unembed(x) | Lin(x) | ReLU(x) |
Self -Attention(x) | Convolution(x) |
Residual(x, t) | . . . | t ◦ t

The decomposition of a model t ∈ λT is a list of programs
in λT such that the composition of these programs is syntac-
tically equivalent to t. For example, consider the program
t := Lin ◦ReLU ◦ Lin(x). One possible decomposition
of t is the list [Lin,ReLU,Lin]. Given a decomposition
d, we use d[i] to refer to the ith component of d, d[: i] as a
shorthand for d[i− 1] ◦ d[i− 2] ◦ . . . ◦ d[1] and refer to it
as a prefix of t of length i− 1 (with respect to d), and d[i :]
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as the shorthand for d[len(d)] ◦ d[len(d)− 1] ◦ . . . ◦ d[i]
and referred to as a suffix of t.

Mechanistic Interpretation. The mechanistic interpre-
tation of a neural network t ∈ λT is a program in a
different, purely functional language λH , that is human
interpretable. The basic constructs of λH will tend to be
more abstract than the ones supported by λT ; λH might also
be less expressive than λT to aid human-interpretability.
While the specific design of λH and the question of how
to judge whether a program is human-interpretable is
domain-specific and subjective (and therefore difficult
to formalize), we focus here on the question of how to
judge whether a program h ∈ λH is a valid mechanistic
interpretation of the neural network t ∈ λT under analysis.

At the very least, the input-output behavior of h should
be similar to t. Ideally, the input-output behaviors of the
two programs should coincide on every input but this
requirement is much too strong in practice. Assuming that
the inputs are drawn from a distribution D, we formalize the
weaker requirement that the outputs of the two programs
should be equal with a high probability as an axiom. For
these equality conditions to be practically applicable, h
must operate over discrete values. Also, the output type
of t must be discrete, in particular, we assume that an
argmax or top-k operator has been applied to the logits.
We additionally require that the behaviors of h and t are
equivalent at the level of individual components (obtained
via suitably decomposing these programs) and that replac-
ing a component of t with the corresponding component
of h has a negligible effect on the neural network’s output.
Definition 3.1 (Mechanistic Interpretation). Given a
model t ∈ λT of type X → Y and a decomposition dt
of t, an ϵ-accurate mechanistic interpretation of t, with
respect to decomposition dt and a distribution D over X ,
is a program h ∈ λH with a decomposition dh such that
len(dt) = len(dh) and Axioms 1, 2, 3, and 4 hold.

Note that the definition is parametric in decomposition dt
of t as well as the input distribution D. In practice, we will
often consider layer or block-wise decompositions of t.

Abstraction and Concretization. The first four axioms
use the notion of α and γ functions which we describe here.
The intuition is that a neural network t and a corresponding
mechanistic interpretation h operate on different types of
data representations. While t operates over real-valued
vectors, to aid interpretability, h is intended to operate over
human-interpretable features or symbols. Accordingly, α
(or abstraction) functions map the real-valued activations
(which we also refer to concrete representations) computed
by t to the corresponding features or symbols (which we
refer to abstract representations) that h operates over.
Given a decomposition dt of t, we use αi to refer to the α
function mapping concrete representations computed by

dt[: i+ 1], i.e., the prefix of length i. The α functions are
similar to probes (Alain & Bengio, 2017) for extracting
features from a model’s internal activations. The γ (or
concretization) functions map in the opposite direction—
they map abstract features or symbols operated on by
h to corresponding real-valued representations of those
features in t’s representation space. The α and γ functions
in our axioms are directly inspired by the abstraction and
concretization operations from the abstract interpretation
literature used to map values between the original semantics
and the abstract semantics of a program (Cousot & Cousot,
1977; 1992). We note that the α and γ functions need to be
individually instantiated every mechanistic interpretation.

Axioms. We define the following axioms for a particular
choice of ϵ; in our analysis we say that an interpretation satis-
fies an axiom with ϵ when the statement of that axiom holds.

Axiom 1 bounds the probability that the abstract and the
concrete representations computed by the same-length
prefix of h and t, respectively, do not coincide (after
applying α functions to map between the representations).
Put differently, the mechanistic interpretation prefixes do
not introduce too much error.
Axiom 1 (ϵ-Prefix Equivalence). ∀i ∈ [len(d)].

P r
x∼D

[αi ◦ dt[: i+ 1](x) = dh[: i+ 1] ◦ α0(x)] ≥ 1− ϵ

In contrast, Axiom 2 requires that none of the individual
components of the mechanistic interpretation h introduce
too much error. Axiom 2 does not imply Axiom 1 since the
errors introduced by each component of the mechanistic
interpretation can compound in the worst case (Dziri et al.,
2023).
Axiom 2 (ϵ-Component Equivalence). ∀i ∈ [len(d)].

P r
x∼D

[αi ◦ dt[: i+ 1](x) = dh[i] ◦ αi−1 ◦ dt[: i](x)] ≥ 1− ϵ

Axioms 3 and 4 are similar except that they consider
equivalence of the output. Axiom 3 requires that replacing
the prefixes of t with the corresponding prefixes of h (after
applying appropriate α and γ functions to map between the
representations) has limited effect on t’s output. Axiom 4
requires the same when individual components of t are
replaced by corresponding components of h.
Axiom 3 (ϵ-Prefix Replaceability). ∀i ∈ [len(d)].

P r
x∼D

[t(x) = dt[i+ 1 :] ◦ γi ◦ dh[: i+ 1] ◦ α0(x)] ≥ 1− ϵ

Axiom 4 (ϵ-Component Replaceability). ∀i ∈ [len(d)].

P r
x∼D

[t(x) = dt[i+ 1 :] ◦ γi ◦ dh[i] ◦ αi−1 ◦ dt[: i](x)] ≥ 1− ϵ

We propose two additional axioms, namely, Axioms 5 and
6, that are more informal in nature and we do not consider
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them for the analysis presented in this paper. These axioms
are presented as a goal for future work and described in
Appendix B.

Checking the Axioms. The proposed axioms can be
checked statistically. Given a test dataset (which need not
be labeled), we can estimate the error rate ϵ for each axiom
by computing the proportion of test inputs which violate
the equality condition specified by the axiom. The number
of violations is distributed binomially—the parameter p of
this binomial distribution is equal to ϵ. Hence, any method
for deriving confidence intervals for the parameter of a
binomial distribution can be used to derive confidence
intervals for our estimate of ϵ; we use the Clopper-Pearson
method (Clopper & Pearson, 1934) in our experiments.
Validating the axioms is thus cheap and feasible in practice.
These axioms represent a minimal set that we believe
are necessary albeit may not be sufficient in all cases for
characterizing a mechanistic interpretation. In future work,
we plan to address this by considering analysis of models
trained for other problems.

Relationship to Existing Approaches. The evaluation of
Nanda et al. (2023a)’s seminal paper on mechanistically
interpreting the complete behavior exemplifies typical ap-
proaches to evaluating a mechanistic interpretation (Zhong
et al., 2023; Quirke & Barez, 2024; Chughtai et al., 2023).
The first three pieces of evidence (presented in Sections
4.1, 4.2, and 4.3 in their paper) resemble our Axiom 2 that
compares each individual component of the mechanistic
interpretation with the corresponding component of the
model. However, as there does not exist a direct analogue
of abstraction, this analysis is primarily observational.

The evidence they present in Section 4.4 of their paper
is similar to our Axiom 4 that checks the effect on the
output of the model when individual model components
are replaced by the corresponding components from the
mechanistic interpretation. Notably, they do not present the
evidence required by our Axioms 1 and 3. This amounts
to not considering the compositional structure of the model
and, therefore, the possible compounding of error intro-
duced by each component of the mechanistic interpretation;
we discuss this further at the end of this section.

Causal abstraction (Geiger et al., 2021; 2022; 2024; 2025)
and causal scrubbing (Chan et al., 2022) are key existing
attempts to formalize the notion of a mechanistic interpre-
tation. Both of these formulate the abstract and concrete
models as directed acyclic graphs (DAG) with a map that
relates the two DAGs. While it may seem that, compared
to our approach, the DAG formulation is more generic
since it admits parallel composition of components in
addition to sequential composition, this is not fundamental,
in particular, Appendix B.1 discusses how to represent
arbitrary computational graphs in our framework.

The map used by causal abstraction to relate the two DAGs
corresponds to our abstraction function α; however, it does
not have any analog of a concretization function γ. Geiger
et al. (2025) note that the inverse of abstraction may be
used as a concretization operator; however, this may not
be feasible in practice, as this choice necessitates the use of
set semantics for evaluation of the concrete model when the
abstraction operator fails to be invertible. Under the causal
abstraction framework, a valid interpretation is defined
by comparing the effects of interventions on the concrete
model with corresponding interventions on the abstract
model; in contrast, our notion of a valid interpretation
may be viewed as one which is invariant up to a class
of interventions, characterized by our axioms, which
interleave the concrete and abstract models. While causal
abstraction is a very general framework for the validation of
mechanistic interpretations, in practice, it uses the specific
metric of interchange intervention accuracy (Geiger et al.,
2022) to validate interpretations and this metric fails to
directly evaluate the equivalence of internal representations.

On the other hand, the map defined by causal scrubbing
can be seen as an form of concretization, but it does not
define an abstraction function. While both these approaches
compare the outputs of the concrete and abstract models
similar to our Axioms 3 and 4, they tend to omit direct
evaluation of the equivalence of internal representations, as
in our Axioms 1 and 2. This is potentially problematic since
there is no direct validation that the intermediate steps of the
mechanistic interpretation correspond to the intermediate
steps of the neural network (Scheurer et al., 2023). Further,
as causal abstraction and scrubbing lack concretization and
abstraction operators respectively, even Axioms 3 and 4
cannot be expressed directly in these frameworks.

Compositionality. While it may appear that our axioms
for compositional evaluation (Axioms 1 and 3) follow from
their componentwise counterparts (Axioms 2 and 4 respec-
tively), this is not the case; for example, while bounds of the
form of Axiom 1 can be derived from Axiom 2, these hold
only with far weaker ϵ; when the number of components
is sufficiently high, the derived bounds entirely cease to
be meaningful. More details are given in Appendix E;
Appendix F includes empirical evidence demonstrating the
pitfalls of omitting the compositional axioms.

4. Case Study: 2-SAT
4.1. Data and Model Details

The 2-SAT Problem. Given a Boolean formula, i.e., a
conjunction of disjunctive clauses over exactly two literals,
the 2-SAT problem is to determine whether there is an as-
signment to the formula’s variables that makes the formula
evaluate to True; the formula is said to be satisfiable, or SAT.
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For example, the formula (x0∨x1)∧(x1∨¬x2) is satisfiable,
with a satisfying assignment x0 = True, x1 = False, x2 =
False (written also as x0,¬x1,¬x2). If a formula has no sat-
isfying assignment, it is said to be unsatisfiable, or UNSAT.

Dataset. We construct a dataset of randomly generated
2-SAT formulas with ten clauses and up to five vari-
ables, eliminating syntactic duplicates. We use a solver
(Z3 (De Moura & Bjørner, 2008)) to check satisfiability for
each formula. We built a balanced dataset of 106 SAT and
106 UNSAT instances; we used 60% (also balanced) for
training, and the rest for testing. For model analysis, we
construct a separate dataset with 105 SAT and 105 UNSAT
instances split as before in to train and test sets.

Each formula is represented as a string. For example,
(x0∨x1)∧(x1∨¬x2) is represented as “(x0x1)(x1¬x2) : s”
where s indicates that the formula is SAT (u would indicate
UNSAT). We tokenize these formulas by considering each
xi, its negation ¬xi, and each of the symbols in the set
{(, ), :, s, u} as a separate token. The colon token (‘:’) is
the final token in the input and we consider the next token
predicted by the model as the output; hence, we refer to this
token as the readout token and refer to its position as the
readout position.

Model Architecture and Training. We use a two-layer
ReLU decoder-only Transformer with token embeddings
of dimension d = 128, learned positional embeddings, one
attention head of dimension d in the first layer, four attention
heads of dimension d/4 = 32 in the second, and n = 512
hidden units in the MLP (multi-layer perceptron). We use
full-batch gradient descent with the AdamW optimizer,
setting the learning rate γ = 0.001 and weight decay
parameter λ = 1. We perform extensive epochs of training
(1000 epochs), recognizing the combinatorial nature of
SAT problems and the need for thorough exploration of the
solution space. We obtained a model with 99.76% accuracy
on test data. All our experiments were run on an NVIDIA
A100 GPU.

4.2. Mechanistic Interpretability Analysis

The network can be naturally decomposed into its blocks
and we describe the analysis of each in the following
two sections. We note that our axioms help guide our
analysis, particularly for the second block. As our goal is
to understand the algorithm used by the model to determine
satisfiability, we refrain from analyzing behavior which
does not affect the final prediction. Thus, we focus on
the model’s prediction at the readout position. Figure 5 in
Appendix D describes our decomposition of the model into
the concrete components dt[i].

4.2.1. FIRST BLOCK AS PARSER

To reverse-engineer the first block’s behavior, we start
by examining the attention patterns, i.e., the attention
scores (by default, post-softmax unless stated otherwise)
calculated by both blocks on given input formulas. Figure 1
shows the attention scores on a formula from our test set.
We clearly see patterns emerge—most tokens in the first
block attend heavily to the first token, while tokens in
position 4i+ 2, 0 ≤ i < 10, that we refer to as the second
literal positions, primarily attend to themselves and the
previous token, i.e., to the two literals in each clause.3

Attention from the readout token is nearly uniform. This
suggests that the first block parses each clause, storing
the parsed clause information in the token representations
output by the first block in the second literal positions.

In the second block, the attentions heavily focus on these
second literal positions, suggesting that the model uses the
parsed clause information contained in these representations
to classify. This allows us to restrict our analysis of the
first block to the second literal positions and the readout
position. To further validate this decision, we compute
the average attention score from each head on each token
across the test set (see Figure 6 in Appendix D.1). The
results show strong periodicity with period 4, following the
pattern seen in Figure 1.

We perform additional distributional and worst-case analysis
of attention patterns (described in Appendix D.1) and these
analyses confirm the parsing hypothesis for the first block.

Interpretation. Based on our analysis of the attention
patterns for the first block, we hypothesize that it is parsing
the input sequence of tokens into a list of clauses (Listing 5
in Appendix D.1). The behavior of attention is enough to
form this hypothesis, as the sparse attention patterns show
that information primarily flows from tokens in a clause to
the token in the second literal position in the same clause;
hence we can view the action of the first block as computing
a representation for each clause in the input. In this sense,
analyzing the MLP in the first block is not necessary to
identify the semantic function of the first block.

We show in Sec 4.2.3 that we can successfully validate this
hypothesis using our axioms. As we’ll see in the analysis of
the second block in Sec 4.2.2, we cannot always count on
self-explanatory attention patterns; for the second block, we
will be forced to analyze the much harder-to-interpret MLP.

4.2.2. SECOND BLOCK AS EVALUATOR

From the first block’s analysis, we know that the inputs to
the second block can be described, in an abstract sense, as

3Formulas are of the form, (x0x1)(x1¬x2) : s, so token posi-
tions 4i+ 1 and 4i+ 2 correspond to the literals of the ith clause.

5



Validating Mechanistic Interpretations: An Axiomatic Approach

0 10 20 30 40
Position

0

5

10

15

20

25

30

35

40

Po
sit

io
n

Block 1, Head 1: Attention Scores

0 10 20 30 40
Position

0

5

10

15

20

25

30

35

40
Po

sit
io

n

Block 2, Head 1: Attention Scores

0 10 20 30 40
Position

0

5

10

15

20

25

30

35

40

Po
sit

io
n

Block 2, Head 2: Attention Scores
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Block 2, Head 3: Attention Scores
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Figure 1: Attention scores for all heads on the first sample of the test set, the formula
(¬x0¬x1)(x1¬x4)(x1x2)(x0x3)(¬x2¬x3)(x2¬x4)(¬x0¬x3)(x0x2)(x1¬x2)(x1x4). The x-axis represents the source
(key) positions and the y-axis represents the destination (query) positions for the attention mechanism.
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Figure 2: Output coefficients of hidden neurons computed
via the composition of the output layer of the MLP and the
unembedding matrix projected to the SAT logit.

the list of clauses in the formula. As the model’s output is a
label SAT or UNSAT, the interpretation of the second block
is a function that checks satisfiability given a list of clauses.
This means that the core logic of the model is encoded
primarily in the second block.

Identifying the Key Pathway. We observe that the
unembedding vector for UNSAT is nearly the negative of
that of SAT (in particular, ∥W SAT

U +WUNSAT
U ∥ < 10−5 and

their cosine similarity is -1 up to floating point precision),
and hence, their logits are likewise negatives of each other.
Also, for all formulas in the dataset, either the SAT or the
UNSAT logit output at the readout position is much larger
than the logits for all other tokens. Hence, the effect of
components on classification can be fully described by their
effects on the SAT logit. Furthermore, we observe that
the effect of the attention mechanism on the SAT logit is
consistently suppressive and varies little between samples.
Hence, the core pathway necessary to identify SAT flows
through the MLP at the readout position. Unlike the first
block, we cannot identify an interpretation directly from the
behavior of attention. See Appendix D.2 for more details.

Sparsity in the MLP Hidden Layer. We begin our analysis
of the MLP by noting that, somewhat surprisingly, it exhibits
sparsity in the hidden neurons. We conclude this by first ob-
serving that the second layer of the MLP and the unembed-
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Figure 3: Average activation of neuron 10 from SAT
formulas, UNSAT formulas, and formulas satisfiable with
particular assignments to the variables.

ding operation are both linear, so their composition is again
linear. From this perspective, then, the MLP’s effect on the
classification is fully captured by a weighted sum of the post-
activation outputs of the hidden neurons. We refer to these
weights as neuron output coefficients for the SAT logit. This
is the sense in which we observe sparsity; to see this clearly,
see Figure 2. There are only 35 neurons which have a non-
negligible absolute coefficient (> 10−6); one of these has a
significantly lower coefficient than the others along with con-
sistently low activation values on the samples in our analysis
training set resulting in a negligible effect on the SAT logit.
Hence, we restrict our analysis to the remaining 34 neurons.

Evaluation in the Hidden Neurons. Note furthermore that
all the non-negligible coefficients are positive; hence, the
effect of each of the relevant neurons is purely to promote
SAT. This suggests that the neurons may each recognize
some subset of SAT formulas instead of recognizing charac-
teristics of UNSAT formulas. Figure 3 shows that the typical
activation of one such neuron on SAT formulas is highly
dependent on the assignment to the variables which satisfies
the formula. This suggests that the MLP may implement a
very simple algorithm: that of exhaustive evaluation. In par-
ticular, if we treat the formula ϕ as a Boolean function fϕ,
ϕ is SAT if and only if fϕ is not the constant False function.
Hence, we can identify SAT formulas by a brute-force tech-
nique which computes the truth table of the corresponding
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Boolean functions and checks whether any entry is True.

We’ll see that this is indeed the case; hence, we will refer to
these neurons as evaluating neurons. However, the behavior
of the neurons is somewhat more complex than the most
natural form, in which each neuron specializes in identifying
formulas satisfiable with one of the 32 possible assignments.
In particular, as seen in Figure 3, some neurons are affected
by multiple assignments to the variables. The notation ϕ[...]
means that the corresponding Boolean function fϕ evaluates
to True when the variables are assigned the shown truth
values. For instance, ϕ[TTFFT ] indicates that formula ϕ is
satisfiable with x0, x1, x4 set to True and x2, x3 set to False.

A natural hypothesis is then that each of the evaluating
neurons evaluates ϕ on some set of assignments, with some
overlap between neurons; we refer to such interpretations
of neuron activation behavior as disjunction-only since they
take the form h ::= ϕ[...] | h ∨ h. However, we observe
that the actual behavior is less intuitive: in some cases,
satisfiability with an assignment can decrease activation
on some evaluating neurons. Hence, we also consider
more general Boolean expressions in terms of the ϕ[...]’s as
neuron interpretations. We find that our axiomatic analysis
provides a clear way to quantify the trade-off between
interpretability and fidelity of the different interpretations.

As decision trees can represent arbitrary Boolean functions,
we use standard decision tree learning to learn the more
general interpretations of neurons; specifically, we learn
classifiers trained to predict whether a neuron’s activation is
above or below a threshold (0.5 in our experiments) given
all the features ϕ[...] for a formula ϕ. Deriving the simpler
disjunction-only interpretation is easier; we do so by
identifying the assignments a such that the empirical mean,
calculated over our analysis training set, of a neuron’s
post-activation value on formulas satisfied by a is above
the threshold. For instance, in Figure 3, these are the
assignments that cause the post-activation score to be above
the threshold.

Finally, we observe that the output coefficients of the eval-
uating neurons for the SAT logit are consistently high (>
2.9 in all cases), which means that a high activation on any
individual evaluating neuron forces prediction of SAT; see
Appendix D.2 for more details. In this sense, the action of
MLP’s output layer and the unembedding layer is conceptu-
ally close to logical OR operation. We now have enough in-
formation to describe our interpretation of the second block.

Interpretation. Based on our analysis, we decompose the
interpretation of the second block into two components. We
hypothesize that the second block up to the MLP’s hidden
layer evaluates the input formula with different assignments
and outputs the results of these evaluations as a list of
Booleans. The neuron interpretations describe the precise

combination of assignments considered for computing
each Boolean output (see Tables 2 and 3 of Appendix G
for two different neuron interpretations). We evaluated
the completeness of the neuron interpretations, i.e., their
ability to correctly evaluate all 2-SAT formulas, using
Z3 (De Moura & Bjørner, 2008). The rest of the model,
namely, the MLP’s output layer and the unembedding layer,
performs a logical OR over the Booleans output by the
previous component and outputs True if the formula is SAT.
Listing 6 and 7 in Appendix D.2 describe the mechanistic
interpretation of the second block and the entire model,
respectively, using Python syntax.

4.2.3. CHECKING THE AXIOMS

First Block. Since the input to the neural model is a se-
quence of token IDs, α0 here is the function that translates
token IDs into tokens. To derive α1 and γ1, we first compute
a canonical representation for each possible clause ψ.

Drawing from the observation that the output of attention
on the second token of each clause is largely a function of
the two tokens in the clause alone (ignoring all other past to-
kens), we compute the representation output by block 1 for
clause ψ in each position i by masking attention such that
it is only applied to the left and right literals in the clause.
The canonical representation for ψ is the average of the rep-
resentations derived for each position i. α1 : [Tensor] →
[(Literal,Literal)], where Literal is the type con-
sisting of the xi and their negations, maps the list of rep-
resentations output by the first block to a list of clauses by
comparing (via cosine similarity) the representations in the
second-variable positions 4i+ 2 with the canonical clause
representations and returning the clauses with the most-
similar representations. γ1 : [(Literal,Literal)] →
[Tensor] maps a list of clauses to a list of canonical clause
representations. For positions other than 4i+ 2, γ1 returns
the mean representation in that position across the training
set. For position 4i+ 2, it returns the canonical representa-
tion for the clause in position i. See Listing 1 and Listing 3
of Appendix D for pseudocode for α1 and γ1, respectively.

Prefix Equivalence. For each clause position i, α1 outputs
a clause ϕ := l ∨ r, where l and r are literals, and, as
such, we consider the clauses r ∨ l and l ∨ r equal. With
this notion of equality, we obtain an ϵ4 of approximately
0.0000374 (corresponding to perfect matching on the test
set) between the abstract states output by α1 ◦ dt[1] and
dh[1] ◦ α0. When we enforce order consistency, we obtain
a much worse ϵ of 0.849; however, as the abstract state is
order independent and the second block’s behavior does
not vary significantly with the order of variables in a clause,
an order-dependent notion of equality is not necessary here.

4We always report ϵ in terms of the upper bound of a one-sided
95% Clopper-Pearson confidence interval.
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Component Equivalence. As this is the first component,
component equivalence and prefix equivalence are identical,
hence the results are the same as above.

Prefix Replaceability. We obtain ϵ ≈ 0.0418, i.e. substi-
tuting the first component of the model with γ1 ◦ dh[1] ◦ α0

affects the final output 4.2% of the time. In particular,
this quantifies the effect of replacing the actual first-block
representation of ‘:’ with its mean value across the dataset
and the effect of ignoring attention to previous clauses
when computing the canonical clause representations.

Component Replaceability. As this is the first component,
component and prefix replaceability are identical, hence
the results are the same as above.

Hidden Layer of Second Block. The output of the second
concrete component is a pair consisting of the residual
from attention and the post-activation outputs of the hidden
neurons; α2 : (Tensor,Tensor) → [bool] maps these
to a Boolean vector representing whether or not sufficiently
high activation (> 0.5) has occurred at each of the 34
evaluating neurons. γ2 : [bool] → (Tensor,Tensor)
simply returns a constant value for the residual (the mean on
the analysis training set); the MLP’s hidden neurons have
zero activation except for the evaluating neurons with True
values in the corresponding position in the abstract state vec-
tor, which we assign an arbitrary large activation (2 in our
experiments). Note that this is higher than the threshold for
α2; we observe that this amplification is necessary for a re-
liable interpretation; see below. See Listing 2 and Listing 4
of Appendix D for pseudocode for α2 and γ2, respectively.

Prefix Equivalence. We obtain ϵ ≈ 0.182 when using
the decision tree neuron interpretations, compared with
approximately 0.309 for the disjunction-only interpretations
in which our neuron models activate on formulas satisfiable
with any of a set of assignments. This means that the
disjunction-only interpretations are much worse at predict-
ing the intermediate state of the model. This is the only
place where this simplifying choice has a cost with respect
to the validity of the mechanistic interpretation; aside
from component equivalence below, the disjunction-only
interpretations differ little from the decision trees in all other
respects. This illustrates the need to check the axiomatic
properties at component level for the model under analysis.

Component Equivalence. We again obtain ϵ ≈ 0.182
for the decision tree interpretations and 0.309 for the
disjunction-only interpretations. The similarity in the ϵ
values for prefix and component equivalence is because
the interpretation of the first component perfectly matches
the behavior of neural network, up to literal order, on the
analysis test set.

Prefix Replaceability. In both cases, substituting the
first two concrete components with the first two abstract

components has minimal effect on the model’s output be-
havior: specifically, we get ϵ ≈ 0.0128 for the decision tree
interpretations, and ϵ ≈ 0.00290 for the disjunction-only
interpretations. If we drop the amplification step discussed
above for γ2, we significantly affect the model’s predictions:
we get an ϵ of approximately 0.249 (i.e. over 24% of sam-
ples are affected) for the decision tree interpretations and ap-
proximately 0.135 for the disjunction-only interpretations.

Component Replaceability. As above, we obtain
ϵ ≈ 0.0128 for the decision tree interpretations, and
ϵ ≈ 0.00290 for the disjunction-only interpretations.

Output Layer of Second Block. For our analysis, we
consider the model to be composed with a function which
returns True if and only if the top logit at the readout
position is SAT. The output type of this composed model
and the mechanistic interpretation are identical; hence α3

and γ3 are both the identity function.

Prefix Equivalence. Since prefix equivalence incorporates
the mechanistic interpretation of the previous component,
we need to consider both the decision tree and the
disjunction-only version of the previous component. We
obtain very close matching in both cases, with ϵ ≈ 0.0128
for the decision tree interpretations and ≈ 0.00290 for the
disjunction-only interpretations.

Component Equivalence. We obtain a very close match
with ϵ ≈ 0.00433.

Prefix Replaceability. As this is the final component of
the network and α3 and γ3 are the identity, this is the same
as prefix equivalence.

Component Replaceability. Same as component
equivalence for the reason above.

5. Case Study: Modular Addition
Nanda et al. (2023a) train a model with a single Transformer
block to perform modular addition. The model is given
input of the form a b = and returns a + b mod P at
the ‘=’ token where P is fixed to be 113. They claim the
following mechanistic interpretation of the concrete model
(see Listing 8 in Appendix H for the pseudocode for the
abstract components):

1. Encoding of inputs: The embedding matrix represents
a and b as sin(wka), sin(wkb), cos(wka), and
cos(wkb) for key frequencies wk = (2kπ)/P for
k ∈ {14, 35, 41, 42, 52}.

2. Computation of sum-of-angles identities: The
attention and MLP input layer compute cos(wk(a+b))
and sin(wk(a+ b)) using trigonometric identities.

3. Difference-of-angles identities and argmax: The
MLP output layer and the unembedding matrix
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computes cos(wk(a+ b− c)) for each key frequency
and for each c ∈ ZP , adds the computed cosines, and
then selects the c maximizing the sum, which occurs
at c∗ = a+ b mod P .

As all abstract components but the last one output con-
tinuous values, we must discretize the output of each
abstract component for Axioms 1 and 2 to be meaningful.
For the first component, we apply a simple discretization
of rounding up to three decimal points; for the second
component, we define an equivalence class which treats
abstract states as equivalent when their downstream effects
on both the abstract and concrete models are identical. Dis-
cretizations of this form are quite general: an equivalence
class up to the next discrete-valued intermediate value is
expressible for any abstract model with a discrete-valued
output. Axioms 3 and 4 ensure that any discretization does
not impact end-to-end behavior. The α and γ functions
for each component are linear maps learned from data. See
Appendix H for more details.

We apply our approach to this model and confirm that the
Nanda et al. (2023a)’s mechanistic interpretation satisfies
our axioms, noting that, in their paper, while Nanda et al.
(2023a) provide evidence similar to our Axioms 2 and 4
in support of the validity of their interpretation, they do not
provide any evidence as required by our Axioms 1 and 3.

In particular, with the above discretization we obtain a
very strong ϵ of 0.000335, which corresponds to perfect
matching. However, it is important to note that results with
simple discretizations indicate that the model’s behavior
is not fully captured. In particular, we obtain an ϵ of 1 from
Axioms 1 and 2 for the second component when, instead,
we discretize by rounding to a single decimal place. There
are important tradeoffs to the application of this type of
discretization: while it enables the analyst to eliminate
variation which has no impact on the downstream behavior
of the model, it also limits the ability of Axioms 1 and 2
to validate the internal behavior.

6. Conclusion
We presented a set of axioms that characterize a mechanistic
interpretation and enable judgment of the interpreta-
tion’s validity with respect to the neural network under
analysis. Using the axioms as a guide, we analyzed a
Transformer-based model trained to solve the 2-SAT
problem. We applied our axioms to validate the mechanistic
interpretation of this 2-SAT model and a model trained to
solve the modular addition task. Our axioms provide an
automated and quantitative way of evaluating the quality
of a mechanistic interpretation (via the ϵ values). Not
only can the ϵ’s serve as useful progress measures (in the
sense of Nanda et al. (2023a)) to understand the training

dynamics of models but can also help in the development
of techniques for automated mechanistic interpretability
analyses by serving as a useful evaluation metric.

Impact Statement
We believe that work on mechanistic interpretability in
particular and on internal interpretability of neural networks
in general is essential for increasing trust in neural networks
and mitigating their risks. In this context, the work pre-
sented in this paper is of a foundational nature and advances
the interpretability research agenda by clarifying the notion
of a mechanistic interpretation. Therefore, we do not foresee
a direct path from our work to negative societal impacts.
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A. More Related Work
Probing. Probing involves training a separate supervised classifier to predict human-understandable features of the
data from the model’s internal activations (Alain & Bengio, 2017; Zou et al., 2023) and has found wide applications for
understanding the representations learned by language models (Tenney et al., 2019; Li et al., 2023; Nanda et al., 2023b;
Burns et al., 2023; Belrose et al., 2023; Huben et al., 2024; Gurnee et al., 2023; Wang et al., 2024). Even though a probe
might be successful in predicting features from internal activations, it need not imply a causal relationship between these
features and the model output (Belinkov, 2022). It has also been questioned whether the model activations genuinely
represent the feature of interest or the probe itself learns these features by picking up on spurious correlations (Hewitt
& Liang, 2019). However, recent works have demonstrated that for Transformer-based language models probes can be used
to steer the model’s output behavior by manipulating the identified internal representations (Zou et al., 2023; Li et al., 2023).

Related to probing is the work on concept-based reasoning (Kim et al., 2018; Crabbé & van der Schaar, 2022; Yeh et al.,
2021; 2020) that extracts representations of high-level concepts as geometric shapes in the neural network representation
space (i.e., the activation spaces of inner layers of neural networks) and quantifies the impact of these high-level concepts
on model outputs via attribution-based techniques.

Attention Pattern Analysis. There is a large body of work that attempts to understand the behavior of Transformer-based
models by analyzing the attention patterns computed by the self-attention layer (Allen-Zhu & Li, 2023; Zhang et al., 2023;
Ebrahimi et al., 2020; Vig & Belinkov, 2019; Hao et al., 2021; Qiang et al., 2022; Lu et al., 2021; Abnar & Zuidema, 2020;
Chefer et al., 2021; Liu et al., 2023). However, there is an active ongoing debate about the validity of attention patterns
as a tool for interpreting model behavior (Jain & Wallace, 2019; Pruthi et al., 2020; Bibal et al., 2022; Bastings & Filippova,
2020; Wiegreffe & Pinter, 2019).

B. Axioms of Mechanistic Interpretation
Axioms 5 and 6 are stated more informally. Unlike the earlier axioms requiring the observed behaviors of the mechanistic
interpretation and the neural network to coincide, these axioms are concerned with the compilability of the mechanistic
interpretation into a neural network. Both axioms assume the existence of a semantics-preserving compiler from λH to λT
(denoted by compilerλH

λT
). While Axiom 5 requires the compiled version of h to have the same structure and parameters as

t (i.e., syntactic equivalence), Axiom 6 requires the compiled version to only have the same structure as t. The requirements
imposed by these last two axioms are hard to establish in practice, and we do not consider them for the analysis presented
in this paper. We present these axioms as a goal for future work. Recent work on compilers from the RASP language (Weiss
et al., 2021) to Transformer models is a promising step in this direction (Lindner et al., 2023).

Axiom 5 (Strong Mechanistic Derivability). h is mechanistically derived from t if there exists a semantics-preserving
compilation compilerλH

λT
(h) of h in λT such that compilerλH

λT
(h) and t are syntactically equal.

Axiom 6 (Weak Mechanistic Derivability). h is mechanistically derivable from t if there exists a semantics-preserving
compilation compilerλH

λT
(h) of h in λT such that compilerλH

λT
(h) has the same architecture (with the same number of

parameters) as t.

B.1. Extension to Circuits

While we focus on end-to-end analyses, our axioms are compatible with the analysis of subgraphs of a larger model.

B.1.1. AXIOMS FOR ARBITRARY COMPUTATIONAL GRAPHS

We can extend our axioms to operate directly on the graphs G and G′; we present a generalization of Axioms 1 through 4 be-
low. Let G = (V,E) be the concrete model expressed as a computational graph and let G′ = (V ′, E′) be the computational
graph, isomorphic to G, representing the abstract model. Let the isomorphism between G and G′ be Π and call the input
and output vertices of G, in and out, respectively; while this can be easily extended to multiple input and output vertices,
we present the single input, single output case for simplicity. Let execute(G)(x) return a mapping val : V → V al with the
values of all intermediate nodes where V al is the set of all possible values (i.e., vectors of reals) that the nodes can take. For
a (partial) assignment to the vertices assign : V ′ → V al with {in} ⊆ V ′ ⊆ V , propagate(G)(assign) returns a mapping
of the same type val : V → V al which is the result of execution of G where the provided intermediate assignments override
the standard results of execution for those vertices. In this way, we can represent arbitrary interventions on G and G′.
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We define an abstraction operator αv for each concrete node v ∈ V and a concretization operator γ′v for each abstract node
v′ ∈ V ′. α and γ are the corresponding functions which apply the corresponding mappings to each vertex in the graph.
Finally, define select(v)(val) = val(v) for val : V → V al and v ∈ V ; we overload and let select(V ′)(val)(v′) = val(v′)
for V ′ ⊆ V and v′ ∈ V ′.

We can then define extensions of Axioms 1 to 4 below:

Axiom 7 (ϵ-Prefix Equivalence). ∀v ∈ V.

Pr
x∼D

[αv ◦ select(v) ◦ execute(G)(x) = select(Π(v)) ◦ execute(G′) ◦ αin(x)] ≥ 1− ϵ

Axiom 8 (ϵ-Component Equivalence). ∀v ∈ V.

Pr
x∼D

[
αv ◦ select(v) ◦ execute(G)(x) =
select(Π(v)) ◦ propagate(G′) ◦ select(Π(p) ∪ {Π(in)}) ◦ α ◦ execute(G)(x)

]
≥ 1− ϵ

where p = predecessors(v).

Axiom 9 (ϵ-Prefix Replaceability). ∀v ∈ V.

Pr
x∼D

[
select(out) ◦ execute(G)(x) =
select(out) ◦ propagate(G) ◦ select({in, v}) ◦ γ ◦ execute(G′) ◦ αin(x)

]
≥ 1− ϵ

Axiom 10 (ϵ-Component Replaceability). ∀v ∈ V.

Pr
x∼D

select(out) ◦ execute(G)(x) =
 select(out) ◦ propagate(G) ◦ select({in, v})◦

γ ◦ propagate(G′) ◦ select(Π(p) ∪ {Π(in)})◦
α ◦ execute(G)(x)

 ≥ 1− ϵ

where p = predecessors(v).

Note that our Axioms 1 to 4 are equivalent to these formulations, specialized to linear computational graphs.

In linear computational graphs, all dependencies on ancestor nodes are mediated by a node’s predecessor; hence, there
is a limited need to consider parallel interventions, which involve simultaneously performing independent interventions
on multiple nodes of the graph. In the case of prefix equivalence and prefix replaceability, any parallel interventions on
linear graphs are equivalent to the intervention on the final node in the sequence and hence have no additional effect. While
parallel extensions of component equivalence and component replaceability would strengthen evaluation in the linear
setting, considering parallel interventions is particularly important in the nonlinear case.

Consider the following scenario: there are two sibling nodes in the graph that encode redundant computations and the
concrete states output by both these nodes contain information needed by the downstream circuit. Also, let us say that
the corresponding abstract model fails to faithfully capture the computation performed by either of these nodes. However,
this failure may not be captured by the axioms without parallel interventions since the redundant copy of the computation
in the sibling concrete node masks any intervention applied to the other concrete node.

One potential solution is to merge such redundant sibling nodes in the analyzed graph G, however, this prevents checking
equivalence of the nodes independently. A more general solution is to extend Axioms 7 through 10 to accommodate
arbitrary parallel interventions. We present a preliminary formulation of an axiom for parallel intervention below; a final
formulation is left to future work. In particular, this axiom cannot be efficiently evaluated in its current form.

We first extend execute and propagate to accommodate execution of arbitrary mixtures of the graphs G and G′. These
behave as before, except that any concrete inputs to an abstract operation are abstracted prior to execution, and, similarly,
any abstract inputs to a concrete operation are concretized prior to evaluation. Let interleave(G,G′, V ′) be a graph
identical to G except that the operations for any nodes v ∈ V ′ are replaced with the operations for the corresponding nodes
Π(v) in G′. Let conditional_abstract(V ′) be a mapping on the values of the nodes v ∈ V identical to αΠ(v) for v ̸∈ V ′

and the identity if v ∈ V ′. We can now express an axiom which generalizes Axioms 7, 8, and 10 to parallel interventions:

Axiom 11 (ϵ-Equivalence). ∀V ′ ⊆ V,∀v ∈ V .

Pr
x∼D

[
select(v) ◦ conditional_abstract(V ′) ◦ execute(G)(x) =
select(v) ◦ conditional_abstract(V ′) ◦ execute(interleave(G,G′, V ′))(x)

]
≥ 1− ϵ
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The condition of Axiom 11 can be made even stronger by the treeification (Chan et al., 2022) of the graphs G and G′ prior
to evaluation. This allows, for each node v ∈ V , independent selection of the set of ancestors whose operations are replaced
with their abstract equivalents. With treeification, Axiom 11 can express prefix replaceability as well, leading it to generalize
Axioms 7 through 10.

B.1.2. LINEARIZING CIRCUITS

We can directly validate arbitrary circuits with the standard linear-graph axioms. In particular, we will describe how, for
any computational graphs G = (V,E) and G′ = (V ′, E′), which represent the concrete model t and the abstract model
h, respectively, we can construct a linearized computational graph. It is enough to show the construction for G.

We will do so by propagating partial assignments to the vertices v ∈ V through a topologically sorted sequence of operations
which compute the values of each node v as a function of the values of the predecessors. First, we extend λT to include
multivariate functions f(x1, x2, . . . , xn) for xi ∈ V ar. Suppose that op : V → λT returns the operation op(v) computed
by node each node v, and let predecessors(v) return the predecessors of node v in the argument order of op(v). For
simplicity, we assume that G has exactly one input node in and exactly one output node out.

Let o : [|V |] → V be a topological ordering of G. Let idx : V → [|V |], the inverse of o, return the position of each node v
in the topological ordering o. We again extend λT to include the function execute_op(f, p, v)(env) which, given an m-ary
function f , a node v ∈ V , a partial assignment to the vertices env : V → V al∪{⊥} and a sequence of input nodes p : [m] →
V such that env(p(i)) ∈ V al for each 1 ≤ i ≤ m, returns an updated environment env′ of the same type, identical to env
except that env′(v) = f(env(p(1)), . . . , env(p(m))). Finally, for val ∈ V al, let input_env(val) be a partial assignment to
the vertices input_env(val) : V → V al ∪ {⊥} which is ⊥ everywhere but in, where we have input_env(val)(in) = val.

Noting that op(1) must always be in, we can define a decomposition of t as follows:

dt = (select(out) ◦ execute_op(op(o(|V |)), predecessors(o(|V |)), o(|V |)))
◦ . . .
◦ execute_op(op(o(2)), predecessors(o(2)), o(2))
◦ input_env.

C. Remark on Extensional Equivalence
Scheurer et al. (2023) presents an example illustrating the extensional equivalence problem: in particular, they demonstrate
that causal scrubbing cannot distinguish between two mechanistic interpretations with equivalent input-output behavior but
which differ in internal behavior. See Figure 4 for the two models. We make copies of the x0 and x1 nodes in model (b) to
ensure that the two models are isomorphic.

As observed by Scheurer et al. (2023), the two are indistinguishable to causal scrubbing, noting that we assume that x0
and x1 are both positive. This is a necessary consequence of the resampling technique used by causal scrubbing to derive
its interventions. In particular, causal scrubbing replaces the values of concrete nodes with randomly selected values which
are equivalent up to the abstract model.

Clearly, the concrete model is invariant with respect to resampling ablations derived from interpretation (a), which is identical
to the concrete model. But, likewise, there is no effect from the corresponding intervention derived from interpretation
(b). For instance, resampling concrete values of node (4), 1

x0
, up to equivalence in the abstract state of x0 can have no effect.

Hence, both interpretations are evaluated as perfect by causal scrubbing. For the same reason, these interpretations cannot
be distinguished by interchange intervention accuracy (Geiger et al., 2022): interchange intervention accuracy replaces
the values of intermediate nodes with those derived with different sets of inputs and evaluates the rate at which these
interventions have an identical effects on the output of the abstract model on and the abstracted output of the concrete model.

If we restrict the set of allowable α and γ functions, for example to linear mappings alone, Axioms 1 through 4 can distinguish
between the two hypotheses. In particular, as no more than two points on the curve (x, 1/x) can be collinear, Axiom 1
cannot hold with ϵ = 0 on any distribution with more than four points in its support when we restrict α and γ to be linear.

In the general case, with unrestricted α and γ, the interpretations are again indistinguishable. However to obtain this result,
we must conduct meaningful computation in the abstraction and concretization functions, e.g. α4(x) = γ4(x) =

1
x ; while

not directly evaluated by the axioms, any analyst with a bias towards keeping complexity in the interpretation would prefer
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Figure 4: Extensionally equivalent mechanistic interpretations considered by Scheurer et al. (2023). Model (a) is the
concrete model and the ground truth interpretation. Model (b) is the abstract model.

the ground-truth interpretation.

D. More Details on Mechanistic Interpretability Analysis of the 2-SAT Model
The decomposition of the original Transformer 2-SAT solver is shown in Figure 5.

The abstraction operators from our analysis are shown in Listings 1 and 2 and the concretization operators are shown in
Listings 3 and 4.

D.1. First Block as Parser

Decomposed Attention Analysis. The parsing behavior in the first block cannot be fully described by token-to-token
attention, and hence, we further decompose the standard QK-decomposition of Elhage et al. (2021) to account for positional
factors as well. In a Transformer, each token’s initial embedding is the sum of a positional embedding and a token
embedding; hence, rather than viewing attention as from destination embeddings to source embeddings, we can equivalently
express the pre-softmax scores as the sum of four sets of preferences—token-to-token attention, token-to-position attention,
position-to-token attention, and position-to-position attention. In particular we can decompose the first block’s self-attention
mechanism as follows.5 Given token tsrc in position psrc to token tdst in position tdst, the pre-softmax score is(

tsrc
TWE

T + psrc
TWPOS

T
)
WK

TWQ (WEtdst +WPOSpdst)

=
(
tsrc

TWE
T + psrc

TWPOS
T
)
WQK (WEtdst +WPOSpdst)

= tsrc
TWE

TWQKWEtdst + tsrc
TWE

TWQKWPOStsrc +

psrc
TWPOS

TWQKWEtdst + psrc
TWPOS

TWQKWPOSpdst

= tsrc
TW tok→tok

QK tdst + tsrc
TW tok→pos

QK psrc + psrc
TW pos→tok

QK tdst + psrc
TW pos→pos

QK pdst,

where WE and WPOS are the token and positional embedding matrices, WQK is the QK matrix, tsrc and tdst are the source
and destination tokens, while psrc and pdst are source and destination positions.

5We use the QK circuit notation of Elhage et al. (2021)
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Figure 5: Breakdown of the concrete model into concrete components, corresponding to the components dt[i].

Our observations in Figures 1 and 6 suggest that the tokens relevant to the final classification decision, are in position 4i+ 2
for 0 ≤ i < 10, which, given the structure of the inputs to the model, are the second tokens of each clause of the form
xi or ¬xi for 0 ≤ i < 5. If we restrict our view to destination tokens at this position, we can express the effects of the
four components of the first block’s QK circuit as shown in Figure 7. With the somewhat odd exception of the first clause,
and, in particular, a first clause with second literal x0 or ¬x0, attention strongly deprioritizes the parentheses but has weak
preferences for the source token otherwise. Outside of destination tokens x0 and ¬x0, preferences for source position are
fairly consistent, and hence, the core effect is a combination of position-to-position preferences (see the bottom right of
Figure 7) and a preference against punctuation (the parentheses tokens ‘(’ and ‘)’). This can be seen in the token-to-position
preferences in the bottom left, with an exception in the case of token 2, which may behave differently as all tokens to the
left belong to the first clause, limiting the importance of learning more specific attention patterns. A general preference
against punctuation can be seen in the token-to-position preferences (top left) as well. For the first several clauses, positional
preferences encode a preference for the positions where parentheses occur, open parentheses in particular; however, the
preference against parentheses shown in the token-to-position attention scores (corresponding to W tok→pos

QK ) counteract
that effect to result in a net effect of attention to the first literal of the clause.

Distributional Attention Analysis. To illustrate how these four components of the QK circuit work together on typical
formulas, we can use the values of the four QK matrices to compute the attention scores in expectation given a uniformly
distributed choice of literals. To compute the attention scores in expectation, we only consider destination positions p
(p = 4i + 2 for some i). Call the token in that position, t, and the full embedding passed to attention, e. To compute
the expected pre-softmax attention score on position p′ ≤ p (defining t′ and e′ similarly), we first check if p′ contains
punctuation. If p′ ≡ 0 (mod 4), t′ is ‘(’ and if p′ ≡ 3 (mod 4), t′ is ‘)’. For such t and t′ we can use our decomposition

18



Validating Mechanistic Interpretations: An Axiomatic Approach

1 a l p h a _ 0 = i d e n t i t y
2

3 d e f c l a u s e _ r e p r e s e n t a t i o n ( l i t e r a l _ l , l i t e r a l _ r ) :
4 # G e n e r a t e t h e i n p u t t e n s o r f o r t h e f o r m u l a wi th 10 c o p i e s o f t h e c l a u s e
5 i n p u t s = t o _ t o k s ( [ Or ( l i t e r a l _ l , l i t e r a l _ r ) ] * 10)
6

7 embeds = model . embed ( i n p u t s )
8 a t t n _ o u t = embed + model . b l o c k s [ 0 ] . a t t e n t i o n (
9 embeds ,

10 mask= g e n _ a t t e n t i o n _ m a s k ( [ 4 * i +2: c l a u s e _ p o s i t i o n s _ a n d _ p a r e n s ( i ) ] )
11 )
12 b l o c k _ 1 _ o u t = a t t n _ o u t + model . b l o c k s [ 0 ] . mlp ( a t t n _ o u t )
13

14 # We d e r i v e t h e c a n o n i c a l r e p r e s e n t a t i o n by a v e r a g i n g a c r o s s second l i t e r a l p o s i t i o n s
15 r e t u r n mean ( b l o c k _ 1 _ o u t [4* c l a u s e _ i d x +2] f o r c l a u s e _ i d x i n r a n g e ( 1 0 ) )
16

17 c l a u s e _ r e p r e s e n t a t i o n s = {
18 Or ( l , r ) : c l a u s e _ r e p r e s e n t a t i o n ( l , r )
19 f o r l i n l i t e r a l s
20 f o r r i n l i t e r a l s
21 }
22

23 d e f a l p h a _ 1 ( b l o c k _ 1 _ o u t p u t ) :
24 s e c o n d _ l i t e r a l _ o u t p u t s = [ b l o c k _ 1 _ o u t p u t s [4* i +2] f o r i i n r a n g e ( 1 0 ) ]
25 # C a l c u l a t e c o s i n e s i m i l a r i t i e s be tween t h e a c t u a l r e p r e s e n t a t i o n s o u t p u t a t
26 # t h e second v a r i a b l e p o s i t i o n s and t h e c a n o n i c a l c l a u s e
27 # r e p r e s e n t a t i o n s , s e l e c t t h e c l a u s e s which b e s t match
28 r e t u r n

[ a r g m a x _ c o s i n e _ s i m s ( out , c l a u s e _ r e p r e s e n t a t i o n s ) f o r o u t i n s e c o n d _ l i t e r a l _ o u t p u t s ]

Listing 1: Abstraction operators for the first block in Python pseudocode.

1 d e f a l p h a _ 2 ( r e s i d u a l _ a n d _ m l p _ o u t p u t , t h r e s h o l d = 0 . 5 ) :
2 m l p _ o u t p u t = r e s i d u a l _ a n d _ m l p _ o u t p u t [ 1 ]
3 r e t u r n [ m l p _ o u t p u t [ i ] >= t h r e s h o l d f o r i i n e v a l u a t i n g _ n e u r o n s ]
4

5 a l p h a _ 3 = i d e n t i t y

Listing 2: Abstraction operators for the second block in Python pseudocode.

into the four sets of preferences to calculate an expected score:

E
t,t′
e′TWQKe = E

t′,t

[
t′TW tok→tok

QK t+ t′TW tok→pos
QK p+ p′TW pos→tok

QK t+ p′TW pos→pos
QK p

]
= E

t
t′TW tok→tok

QK t+ t′TW tok→pos
QK p+ E

t
p′TW pos→tok

QK t+ p′TW pos→pos
QK p

=
1

|lit|
∑
t∈lit

W tok→tok
QK t′,t

+ t′TW tok→pos
QK p +

1

|lit|
∑
t∈lit

W pos→tok
QK p′,t

+ p′TW pos→pos
QK p

where we overload notation and use t, t′ as tokens, indices, and the corresponding one-hot representations, and similarly
for the positions p and p′ and where lit is the set of literals.

If p′ does not contain punctuation, then we know that t′ is a variable (xi or ¬xi for some i), and similarly for t. Using
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1 gamma_0 = i d e n t i t y
2

3 # Mean o u t p u t from t h e f i r s t t r a n s f o r m e r b lock , by p o s i t i o n , on t h e t r a i n i n g s e t
4 mean_block_1_out = mean ( model . i n t e r m e d i a t e _ o u t p u t s ( " b lock_1 " , x ) f o r x i n t r a i n )
5

6 # C o n s t a n t on e v e r y t h i n g b u t second t o k e n p o s i t i o n s
7 d e f gamma_1 ( c l a u s e s ) :
8 o u t p u t = mean_block_1_out . copy ( )
9 # S u b s t i t u t e t h e c o r r e s p o n d i n g c a n o n i c a l c l a u s e r e p r e s e n t a t i o n

10 f o r i , c l a u s e i n enumera t e ( c l a u s e s ) :
11 o u t p u t [4* i +2] = c l a u s e _ r e p r e s e n t a t i o n s [ c l a u s e ]
12 r e t u r n o u t p u t

Listing 3: Concretization operators for the first block in Python pseudocode.

1 # Mean r e s i d u a l from a t t e n t i o n f o r t h e r e a d o u t t o k e n on t h e t r a i n i n g s e t
2 m e a n _ a t t n _ o u t

= mean ( model . i n t e r m e d i a t e _ o u t p u t s ( " a t t e n t i o n _ b l o c k _ 2 " , x ) [ −1] f o r x i n t r a i n )
3

4 # Outpu t a c o n s t a n t r e s i d u a l term , and map p r e d i c t e d a c t i v a t i o n s t o
5 # a l a r g e c o n s t a n t v a l u e
6 d e f gamma_2 ( a c t i v a t i o n _ m o d e l _ o u t p u t s , h i g h _ a c t i v a t i o n =2) :
7 m l p _ o u t _ c o n c r e t i z a t i o n = t o r c h . z e r o s ( mlp_width )
8 f o r i , model_out i n z i p ( e v a l u a t i n g _ n e u r o n s , a c t i v a t i o n _ m o d e l _ o u t p u t s ) :
9 i f model_out :

10 m l p _ o u t _ c o n c r e t i z a t i o n [ i ] = h i g h _ a c t i v a t i o n
11

12 r e t u r n mean_a t t n_ou t , m l p _ o u t _ c o n c r e t i z a t i o n
13

14 gamma_3 = i d e n t i t y

Listing 4: Concretization operators for the second block in Python pseudocode.

that, we can use our decomposition into the four sets of preferences to calculate an expected score:

E
t,t′
e′TWQKe = E

t′,t

[
t′TW tok→tok

QK t+ t′TW tok→pos
QK p+ p′TW pos→tok

QK t+ p′TW pos→pos
QK p

]
= E

t′,t
t′TW tok→tok

QK t+ E
t′
t′TW tok→pos

QK p+ E
t
p′TW pos→tok

QK t+ p′TW pos→pos
QK p

=
1

|lit|2
∑

t,t′∈lit

W tok→tok
QK t′,t

+
1

|lit|
∑
t′∈lit

W tok→pos
QK t′,p

+

1

|lit|
∑
t∈lit

W pos→tok
QK p′,t

+ p′TW pos→pos
QK p

After taking the softmax of the resulting values, the result is shown in Figure 8.

Worst-case Attention Analysis. We can also show that the parsing behavior occurs by a worst-case analysis of the
attention scores, i.e. what is the minimum weight from attention to the first token of the clause and to the clause as a
whole? This allows us to dispense with any distributional assumptions, and to validate that the inconsistent preferences
for particular literals (i.e. the differences in preferences when the destination token is x0). Given the definition of softmax,
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Figure 6: Average attention scores, grouped by source token position, for all heads, calculated over the test set. In the
first block, we further average across destination token positions restricted to positions 4i + 2, where 0 ≤ i < 10 is the
clause index. For the second block, we only consider the readout token as the destination.
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Figure 7: Decomposed QK circuit of the first block’s attention mechanism; the subset where the destination token is the
second variable of a clause is shown.

we can compute the minimum weight on the first token of clause i by the second token of clause i as follows:

min
ϕ

scoresoftmax
4i+1,4i+2(ϕ)

= min
t∈tok4i+2

min
{ϕ|ϕ4i+2=t}

escore4i+1,4i+2(ϕ)∑
j≤4i+2 e

scorej,4i+2(ϕ)

≤ min
t∈tok4i+2

emin{ϕ|ϕ4i+2=t} score4i+1,4i+2(ϕ)

emin{ϕ|ϕ4i+2=t} score4i+1,4i+2(ϕ) +
∑

j≤4i∨j=4i+2 e
max{ϕ|ϕ4i+2=t} scorej,4i+2(ϕ)

where toki is the set of all possible tokens in position i and where scores,d(ϕ) and scoresoftmax
s,d (ϕ) refer to the pre- and

post-softmax attention scores with destination token in position d and source token in position s and where the input formula
is ϕ. For the full clause, the approach is similar, except we add the term emin{ϕ|ϕ4i+2=t} score4i+2,4i+2(ϕ) to the numerator.

Now, we can derive the minimal and maximal scores for and s and d using our decomposition of the QK circuit:

min
{ϕ|ϕd=t}

scores,d(ϕ) =W pos→pos
QK s,d

+ min
t′∈toks

W tok→pos
QK t′,d

+W pos→tok
QK s,t

+ min
t′∈toks

W tok→tok
QK t′,t
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Figure 8: Softmax of expected attention scores by position for the second token of each clause, showing that for each
second token position, attention on literal positions in the corresponding clause are expected to dominate, consistent with
our interpretation of the first block’s attention mechanism as a parser.
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Figure 9: Minimum post-softmax attention weights for each clause.

and similarly for the maximum (noting that if s = d, we must have t′ = t as well).

The results are shown in Figure 9, and demonstrate that regardless of the choice of formula, the majority of attention will
be placed on the clause as a whole, except in the case of the first clause, in which case any additional attention is to the
first ‘(’ token, which contains no useful information.

Now, we can perform similar analysis on the attention of the ‘:’ token. We observe in Figure 1 that the attention of the
‘:’ token in the first block is near uniform. To see why this occurs, see Figure 10, which fully describes the first-block
attention of ‘:’. These are derived from the four QK matrices using the known position c = 40 of the token. The attention
scores are consistently very small and have very little variation. As above, we can use this set of preferences to calculate
a lower bound on the attention paid by the ‘:’ token to any individual token:

min
i,ϕ

scoresoftmax
i,40 (ϕ) ≤ emini,t score(:)i,t

emini,t score(:)i,t + 40emaxi,t score(:)i,t

where score(:)i,t refers to the “:” token’s pre-softmax attention to token t in position i. We derive that the minimum attention
paid to any token by ‘:’ is approximately 0.0209, and we can similarly show that the maximum attention to any token
is ≈ 0.0285; hence, the “:” token’s attention can never vary far from the ≈ 0.0244 paid by uniform attention.

Interpretation. Listing 5 shows our extracted mechanistic interpretation of the first component as Python code.
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Figure 10: Pre-softmax attention scores by the ’:’ token to each token, by position and token type.

1 d e f p a r s e _ c l a u s e s ( f o r m u l a : l i s t [ t o k ] ) −> l i s t [ t u p l e [ l i t , l i t ] ] :
2 r e t u r n [ ( f o r m u l a [4* i +1 ] , f o r m u l a [4* i + 2 ] ) f o r i i n r a n g e ( 1 0 ) ]

Listing 5: First component’s mechanistic interpretation in Python syntax.

D.2. Second Block as Evaluator

Abstract Attention Analysis. We showed in Section 4.2.1 that the behavior of the first block is accurately captured
by an interpretation which, after the application of γ1, outputs canonical representations for each clause at the second
literal positions and is constant at all other positions. Prefix replaceability, in particular, enforces this property directly.
Furthermore, we must only study attention with the readout token as the destination to explain the output behavior; hence,
we can characterize the behavior of attention in the second block solely by the preferences of each head in the readout
token position to the canonical clause representations in the second literal positions, dramatically reducing dimensionality.

In this way, the key behavior of attention in the second block is fully described by Figure 11. Each of the four charts shows
the preferences on each clause by the corresponding head; the columns correspond to the first literal of the clause and
the rows to the second.

We see that the behavior of attention is nearly identical for a clause and its equivalent mirror image (i.e. the attention score
on (l ∨ r) is approximately the same as that on (r ∨ l)); this is as expected given that, logically, l ∨ r = r ∨ l. We can
also see that each head prefers clauses containing certain literals (for instance, head 0 prefers negated literals as well as
x0 and x3); each clause receives a high score from some head (so no clauses are overlooked by the attention mechanism).

While we might read far more into these patterns, this is a mistake in this case. In this instance, the behavior of attention
is, in fact, not relevant to the underlying algorithm and serves only to obscure the underlying behavior. As discussed
in Section 4.2.2, we can much better understand attention in concert with the first layer of the MLP; collectively, these
components encode the observed evaluating behavior, as discussed in more detail below.

Identifying the Key Pathway. We observe that the unembedding vector for UNSAT is nearly exactly the negative of
the unembedding vector for SAT (∥W SAT

U +WUNSAT
U ∥ ≈ 6.2× 10−6); hence, the SAT logit and the UNSAT logit are almost

exactly negatives of each other; furthermore, the model’s output token is always SAT or UNSAT. Across all formulas in
the analysis dataset, the minimum value of the logit associated with the prediction (either SAT or UNSAT) is slightly over
0, while while the maximum logit on any other token across the dataset is below -9. Hence, we can consider the behavior
of the SAT logit exclusively.

Next, we show that the key pathway that determines classification passes through the second block’s MLP. For an input
formula, the effect of the second block’s attention mechanism through the residual connection on the SAT logit simply
the dot product of the post-attention embedding in the readout token position with W SAT

U ; as we can see in Figure 12, this
value is fairly consistent across the dataset and always negative; so a positive SAT logit and hence a SAT classification
must depend on the action of the MLP.
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Figure 11: Second-block abstract attention preferences.
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Figure 13: Average total effect on the SAT logit across
all relevant neurons from SAT, UNSAT, and formulas
satisfiable with particular assignments to the variables.

Evaluation in the Hidden Neurons. As discussed in Section 4.2.2, only 34 hidden neurons have a significant effect
on classification; hence, we focus on the behavior of these neurons. As observed in Figure 12, the effect of the residual
stream from the second block attention on the SAT logit reduces the SAT logit by less than 6 units for all formulas in the
analysis test dataset. Furthermore, as observed in Section 4.2.2, the model always predicts SAT or UNSAT, and the SAT and
UNSAT logits are tied (in particular, they are negatives). Hence, the model will predict SAT when the collective effect of
these 34 neurons is to increase SAT by > 6 units. We have observed that the expected behavior of these neurons is strongly
dependent on which assignments to the variables satisfy the formula ϕ.

A natural question to ask is whether, whether these neurons will collectively increase the SAT logit sufficiently to output
SAT on SAT formulas regardless of which assignment to the variables satisfies the formulas. Calculating this in the same
way as we do for an individual neuron in Figure 3, we obtain Figure 13, which shows that, indeed, the collective effect of the
evaluating neurons (recall that we refer to the 34 relevant neurons as evaluating neurons) correctly identifies SAT formulas
regardless of how the formulas are satisfiable. It may seem odd that the average effect of SAT is significantly below the
minimum of the effects for formulas satisfiable with any given assignment, as any SAT formula belongs to one such category;
this is an artifact of the fact that no neuron has a large effect for all SAT formulas, and that each specializes in a subset.

Now, each of these neurons has a large positive (> 2.9) output coefficient (recall that the output coefficient of a neuron
is the weight in the weighted sum expression constructed by composing the output layer of the MLP and the unembedding
matrix projected to the SAT logit), so an activation above 2 units on any of the evaluating neurons is enough to force SAT,
ignoring all other neurons; hence, the model outputs SAT if any evaluating neuron activates sufficiently strongly. In this
sense, the effect of the final output components (the MLP’s output layer, the unembedding matrix, and the residual from
attention) can be viewed as an OR operation.

However, in reality, individual neurons do not consistently reach activations of ≥ 2 (for example, see Figure 3, in which
the average output value for formulas satisfiable with assignment TFFFF is approximately 1.5), and multiple neurons
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Figure 14: F1 scores of decision tree interpretations classifying high (> 0.5) activation of MLP hidden neurons.
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Low Activation
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High Activation

True

Figure 15: Decision tree interpretation for unit 29 of the second block MLP’s hidden layer, maximum leaf nodes: two.

recognize a given SAT formula. Hence, moderate activation may be necessary across several neurons to predict SAT in some
cases; this may explain the redundancy in evaluation behavior between neurons seen in Appendix G. For simplicity in our
interpretation (in particular, to allow replacing a numerical weighted sum with Boolean operations) we handle this by using
varying thresholds between the corresponding α and γ functions for the MLP’s hidden layer (in particular, γ2 outputs an
activation of 2 for neurons whose interpretation predicts high activation, while 0.5 is considered a high activation in the case
of α2); as noted in the paragraph titled Hidden Layer of Second Block in Section 4.2.3, if γ2 and α2 both use the lower
threshold, replacing the neural network components with our interpretation no longer has a minimal effect on classification.

Interpreting Neurons via Decision Trees. We observe that each assignment to the variables has some neuron for which
formulas satisfiable with that assignment result in a significant increase to the SAT logit on average, as we’d expect if
the model was implementing the natural exhaustive enumeration algorithm for satisfiability checking. In particular, every
assignment a has some neuron which increases the SAT logit by at least 2.9 units on average on formulas where a is a
satisfying assignment; however, the average-case analysis hides the complexity of the behavior of these neurons. We can see
this by noting that for every relevant neuron that on average demonstrates high activation for formulas satisfiable with some
assignment a, we are able to find some formula satisfiable with a which fails to result in a sufficient activation for the neuron.

We’ll focus on the general decision tree classifiers discussed in Section 4.2.2 here. We train decision tree classifiers on
the thresholded activations of each evaluating neuron on the analysis training set; this allows us to learn an arbitrary Boolean
function in the features ϕ[...]. We observe that these decision trees do indeed reliably predict activation. In particular, even
very limited-size decision trees are reasonably strong predictors of the behavior of the neurons; we limit our decision trees to
four leaf nodes in our experiments. Figures 15, 16, and 17 illustrate the effect on the decision trees as we lift this constraint.
Figure 14 shows that more complex decision trees are not significantly better predictors of the behavior of the neurons.

Implementation of Decision Trees by the Model. To see how the model implements the decision trees, we’ll consider the
effect of the composition of the second block MLP’s hidden layer with the attention mechanism on the canonical representa-
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Figure 16: Decision tree interpretation for unit 29 of the second block MLP’s hidden layer, maximum leaf nodes: four.

tions of the clauses, using the abstract attention approach discussed earlier. As the pre-softmax attention score by each head on
the second literal of a clause is a fixed value for each clause (recall that γ1 leaves the representation of the readout token con-
stant), we can express the effect of attention precisely in terms of the number of occurrences of each clause, as we show next.

For head h and clause l ∨ r, let the pre-softmax attention score paid by h to the clause be wh
l∨r. Moreover, the output of the

OV circuit is likewise a fixed vector for each clause, call it vhl∨r. Say that our formula contains a list of n clauses (n = 10
for all our experiments) where the ith clause is li ∨ ri. Then, the attention paid to the ith clause by head h is:

softmax([wh
lj∨rj ]j∈[1..n]])i =

ew
h
li∨ri∑n

j=1 e
wh

lj∨rj

and hence the output of the attention mechanism (call it o) at the readout token is, by rearranging terms,

e: +

m∑
h=1

n∑
i=1

softmax([wh
lj∨rj ]j∈[1..n]])iv

h
li∨ri = e: +

m∑
h=1

∑
l∈lit,r∈lit e

wh
l∨rcountl∨r(ϕ)v

h
l∨r∑

l∈lit,r∈lit e
wh

l∨rcountl∨r(ϕ)

where countl∨r(ϕ) is the number of occurrences of l ∨ r in the formula ϕ and where m is the number of attention heads
and where e: is the fixed representation of the readout token ‘:’.

Now, consider the action of the MLP’s hidden layer on this value: in particular, consider the effect on a specific neuron
n, where wn is the corresponding column of the MLP’s input weight matrix and bn is the corresponding bias value.

The pre-activation score for n will then be:

bn + wT
n o = bn + wT

n

(
e: +

m∑
h=1

∑
l∈lit,r∈lit e

wh
l∨rcountl∨r(ϕ)v

h
l∨r∑

l∈lit,r∈lit e
wh

l∨rcountl∨r(ϕ)

)

= bn + wT
n e: +

m∑
h=1

∑
l∈lit,r∈lit e

wh
l∨rcountl∨r(ϕ)w

T
n v

h
l∨r∑

l∈lit,r∈lit e
wh

l∨rcountl∨r(ϕ)

= cn +

m∑
h=1

∑
l∈lit,r∈lit c

h,n
l∨rcountl∨r(ϕ)∑

l∈lit,r∈lit d
h
l∨rcountl∨r(ϕ)

where we define the following constants: cn = bn + wT
n e:, d

h
l∨r = ew

h
l∨r , ch,nl∨r = dhl∨rw

T
n v

h
l∨r.

Note that the numerator and denominator of the fraction describing the contribution of head h are both linear functions
of the number of occurrences of each clause in the formula.
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Figure 17: Decision tree interpretation for unit 29 of the second block MLP’s hidden layer, unlimited leaf node count.

We’ll briefly describe how ϕ[a] and ¬ϕ[a] can be implemented with a single neuron for an arbitrary assignment a to the
variables in this formulation (in particular, we can ensure activation if and only if the condition that ϕ is satisfiable by a
or not satisfiable by a holds), and then analyze the behavior of a neuron with an interpretation of this form.

As the formula ϕ is in conjunctive normal form, ϕ[a] is true if and only if none of the clauses l ∨ r in ϕ evaluate to false
given the assignment a to the variables (in particular, this holds if neither l nor r holds given a). We can then implement
ϕ[a] in neuron n if we let dhl∨r be constant, ch,nl∨r = 0 for l ∨ r which are true given assignment a, and let ch,nl∨r = −∞
for l ∨ r which are false given a, and then let cn be a large positive number. Then, if ϕ[a], countl∨r(ϕ) = 0 for l ∨ r
unsatisfiable given a, so the output is cn. Otherwise, if ¬ϕ[a], countl∨r(ϕ) > 0 and so the output is −∞. After applying
ReLU, the activation of unit n is a large positive number when ϕ[a] and zero otherwise. Similarly, we can implement ¬ϕ[a]
by assigning cn to a negative number and letting ch,nl∨r = ∞ for l ∨ r which are false given a.

Now, suppose that we want to implement some DNF expression e in the ϕ[...] without negation of any ϕ[...]. Say that e con-
tains k conjuncts ei for 1 ≤ i ≤ k and that the attention mechanism has at least k heads. We can extend the ideas in the imple-
mentation of ϕ[a] to one for e as follows: let cn = k; now, consider head h with corresponding conjunct ei as in the ϕ[a] case,
let ch,nl∨r = 0 for l∨ r which are not true for every assignment a appearing in ei. As in that case, ϕ satisfies ei if and only if no
clause violates the constraint (following from the assumption that ei is a conjunction of ϕ[aj ] which appear without negation,
as, for an ei of this form to be satisfied, each clause in ϕmust be true for each assignment aj). Hence, if we let ch,nl∨r = −1 for
l∨r which violate ei, let dhl∨r = 1 for such l∨r and dhl∨r some negligible value for l∨r which do not violate the condition, the
contribution of head h to the expression is 0 if ei is satisfied and −1 otherwise (as the numerator will be −v and the denomina-
tor will be v+ϵwhere v is the number of clauses violating the condition). Hence, if all conjuncts ei fail to be satisfied, the out-
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1 d e f e v a l u a t e _ s a t i s f i a b i l i t y (
2 c l a u s e s : l i s t [ t u p l e [ l i t , l i t ] ] ,
3 n e u r o n _ i n t e r p r e t a t i o n s : l i s t [ C a l l a b l e [ [ l i s t [ t u p l e [ l i t , l i t ] ] ] , boo l ] ]
4 ) −> l i s t [ boo l ] :
5 r e t u r n [
6 n e u r o n _ i n t e r p ( c l a u s e s )
7 f o r n e u r o n _ i n t e r p i n n e u r o n _ i n t e r p r e t a t i o n s ]
8

9 d e f p r e d i c t _ s a t i s f i a b i l i t y ( s a t i s f i a b i l i t i e s : l i s t [ boo l ] ) −> boo l :
10 r e t u r n any ( s a t i s f i a b i l i t i e s )

Listing 6: Second block’s mechanistic interpretation. First, it applies a series of functions, namely, the neuron interpretations,
to the parsed clauses from the first block (evaluate_satisfiability) and then, it applies an OR operation
(predict_satisfiability).

1 d e f a b s t r a c t _ m o d e l ( f o r m u l a : l i s t [ t o k ] ) −> boo l :
2 r e t u r n p r e d i c t _ s a t i s f i a b i l i t y (
3 e v a l u a t e _ s a t i s f i a b i l i t y (
4 p a r s e _ c l a u s e s ( f o r m u l a ) ) )

Listing 7: Mechanistic interpretation of full model; see Listings 5 and 6 for the component interpretations.

put will be 0, else, some ei must be satisfied, so the output will be at least k−(k−1) = 1, and, hence, the neuron will activate.

Interpretation. Listing 6 shows our derived mechanistic interpretation for the second block. Listing 7 shows the
mechanistic interpretation for the entire model.

E. Importance of Prefix Axioms: Theoretical Evidence
While it may appear that each componentwise axiom implies the corresponding prefix axiom, for instance, that Axiom 2
implies Axiom 1, this is not the case. While it is possible to derive a bound, the resulting bound is extremely weak, and,
for Axioms 3 and 4, we cannot derive even such a weak bound without additional assumptions.

E.1. Equivalence Axioms

Suppose that Axiom 2, component equivalence, holds with a fixed ϵ0. We will show that prefix equivalence (Axiom 1)
holds at component i with an ϵ of iϵ0; if the number of components l is at least ⌈ 1

ϵ0
⌉ the bound becomes useless.

Let PEi be the event that x ∼ D satisfies the prefix equivalence condition for component i, i.e. that
αi ◦ dt[: i + 1](x) = dh[: i + 1] ◦ α0(x) and and let CEi be the event that x satisfies the component equiva-
lence condition for component i, i.e. that αi ◦ dt[: i+ 1](x) = dh[i] ◦ αi−1 ◦ dt[: i](x). Call Pr[PEi] as pi.

Now,

pi+1 = Pr
x∼D

[αi+1 ◦ dt[: i+ 2](x) = dh[: i+ 2] ◦ α0(x)]

≥ Pr
x∼D

[αi+1 ◦ dt[: i+ 2](x) = dh[i+ 1] ◦ αi ◦ dt[: i+ 1](x) ∧ dh[i+ 1] ◦ αi ◦ dt[: i+ 1](x) = dh[: i+ 2] ◦ α0(x)]

≥ Pr
x∼D

[αi+1 ◦ dt[: i+ 2](x) = dh[i+ 1] ◦ αi ◦ dt[: i+ 1](x) ∧ αi ◦ dt[: i+ 1](x) = dh[: i+ 1] ◦ α0(x)]

= Pr[CEi+1 ∧ PEi],

noting that αi ◦ dt[: i + 1](x) = dh[: i + 1] ◦ α0(x) implies dh[i + 1] ◦ αi ◦ dt[: i + 1](x) = dh[: i + 2] ◦ α0(x) by the
definition of the dh[:] notation.
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Now, we have that

Pr[CEi+1 ∧ PEi] = 1− Pr[¬(CEi+1 ∧ PEi)]

= 1− Pr[¬CEi+1 ∨ ¬PEi]

≥ 1− (Pr[¬CEi+1] + Pr[¬PEi]).

Hence, as Pr[CEi+1] ≥ 1− ϵ0 by component equivalence, we have pi+1 ≥ 1− (ϵ0 + (1− pi)) and so pi+1 ≥ pi − ϵ0.
We have p1 ≥ 1 − ϵ0 as prefix equivalence and component equivalence are identical for the first component, and so
pi ≥ 1− iϵ0, and we are done.

If we assume that CEi+1 and PEi are independent, we could derive a stronger bound:

Pr[CEi+1 ∧ PEi] = Pr[CEi+1]Pr[PEi] ≥ (1− ϵ0)pi

from which we can derive pi ≥ (1 − ϵ0)
i. However, even this stronger bound grows very weak as depth increases,

illustrating the need to evaluate a mechanistic interpretation compositionally.

E.2. Replaceability Axioms

We can only derive a bound in the case that γi = α−1
i and that all concrete components are invertible. Assume component

replaceability, Axiom 4 is satisfied.

Similarly to Appendix E.1 let the PRi and CRi be the events that x ∼ D satisfies the prefix replaceability and com-
ponent replaceability conditions for component i, i.e. that t(x) = dt[i + 1 :] ◦ γi ◦ dh[: i + 1] ◦ α0(x) and that
t(x) = dt[i+1 :] ◦ γi ◦ dh[i] ◦αi−1 ◦ dt[: i](x), respectively. By the assumption that all concrete components are invertible,
PRi iff dt[: i+ 1] = γi ◦ dh[: i+ 1] ◦ α0(x) and CRi iff dt[: i+ 1] = γi ◦ dh[i] ◦ αi−1 ◦ dt[: i](x). Call Pr[PRi] pi.

Now,

pi+1 = Pr
x∼D

[t(x) = dt[i+ 2 :] ◦ γi ◦ dh[: i+ 2] ◦ α0(x)]

= Pr
x∼D

[dt[: i+ 2] = γi+1 ◦ dh[: i+ 2] ◦ α0(x)]

≥ Pr
x∼D

[
dt[: i+ 2] = γi+1 ◦ dh[i+ 1] ◦ αi ◦ dt[: i+ 1](x)∧
γi+1 ◦ dh[: i+ 2] ◦ α0(x) = γi+1 ◦ dh[i+ 1] ◦ αi ◦ dt[: i+ 1](x)

]
≥ Pr

x∼D

[
dt[: i+ 2] = γi+1 ◦ dh[i+ 1] ◦ αi ◦ dt[: i+ 1](x)∧
dh[: i+ 1] ◦ α0(x) = αi ◦ dt[: i+ 1](x)

]
= Pr

x∼D

[
dt[i+ 2 :] ◦ dt[: i+ 2] = dt[i+ 2 :] ◦ γi+1 ◦ dh[i+ 1] ◦ αi ◦ dt[: i+ 1](x)∧
dt[i+ 1 :] ◦ γi ◦ dh[: i+ 1] ◦ α0(x) = dt[i+ 1 :] ◦ γi ◦ αi ◦ dt[: i+ 1](x)

]
= Pr

x∼D

[
t(x) = dt[i+ 2 :] ◦ γi+1 ◦ dh[i+ 1] ◦ αi ◦ dt[: i+ 1](x)∧
t(x) = dt[i+ 1 :] ◦ γi ◦ dh[: i+ 1] ◦ α0(x)

]
= Pr[CRi+1 ∧ PRi]

by the assumption that all concrete components are invertible and that γi = α−1
i . The proof proceeds as before.

In particular, even with strong conditions such as these, we derive a bound which grows very weak as depth increases,
and hence, we observe maintaining Axioms 1 and 3 in addition to Axioms 2 and 4 is essential for a reliable evaluation.
See Appendix F for empirical evidence for this fact.

F. Importance of Prefix Axioms: Empirical Evidence
We can demonstrate the importance of the prefix axioms by simulating errors in the interpretation of the 2-SAT model;
specifically, every clause output by the first component of the abstract model is replaced by a randomly sampled clause
1% of the time (the slight difference in e.g. the epsilons for component and prefix equivalence for the first component
are due to independent sampling); results are shown in Table 1.
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Table 1: Comparison of results of experiments with synthetic error injected into the first component of the abstract model
to original experimental results.

Axiom Noised first abstract component Original abstract model
Component 1 Component 2 Component 3 Component 1 Component 2 Component 3

Axiom 1: Prefix Equivalence 0.0955 0.212 0.0315 0.0000374 0.182 0.0128
Axiom 2: Component Equivalence 0.0942 0.182 0.00433 0.0000374 0.182 0.00433
Axiom 3: Prefix Replaceability 0.0583 0.0312 0.0318 0.0418 0.0128 0.0128
Axiom 4: Component Replaceability 0.0581 0.0128 0.00433 0.0418 0.0128 0.00433

The evaluation of the componentwise axioms are identical to the original results except on the first component, as these
axioms do not take error propagation into account. The prefix axioms, on the other hand, show the extent to which errors
in the earlier components result in downstream errors.

Taking error propagation into account is particularly important when we consider deeper models. While we can derive
worst-case compositional bounds from the componentwise results, this may not actually describe model behavior; in
particular, as the number of components increases, the derived bound rapidly becomes meaningless (see Appendix E for
more details). For example, in our case, the aggregation operation in the final component enables prefix equivalence to
improve with depth; hence, restricting ourselves to the pure worst-case analysis derived from component-only analysis
would suggest that our interpretation is far less reliable end-to-end than is actually the case.

G. Neuron Interpretations for the 2-SAT Model
Tables 2 and 3 show the decision tree based and disjunction-only neuron interpretations, respectively.

H. More Details on Mechanistic Interpretability Analysis of the Modular Addition Model
Pseudocode for the abstract model is shown in Listing 8. The concrete model is likewise broken into three corresponding
components. The embedding matrix corresponds to encoding_of_inputs, the attention mechanism and the input layer
of the MLP correspond to sum_of_angles, and the output layer of the MLP and the unembedding matrix correspond
to difference_of_angles_argmax. The abstraction and concretization operators are linear maps learned using
the continuous-valued abstract values (e.g. prior to rounding) and the corresponding concrete intermediate representations
on the training set, using the original train/test split of Nanda et al. (2023a).

Note that, in Nanda et al. (2023a)’s paper, the third component is further decomposed into two pieces; specifically, the
difference-of-angles identities and the summation (along with the argmax) steps are considered separate. The difference-of-
angles identity is computed using the MLP output layer and the unembedding matrix while the summation step is computed
via the unembedding matrix. As there is no canonical factorization of the unembedding matrix, there exists no natural decom-
position of the concrete model into these two components—we analyze the composition of these two components instead.

As noted in Section 5, the discretization operators are necessary for compatibility with Axioms 1 and 2. Without rounding
on the first component, we obtain epsilons of 1 for Axioms 1 and 2; epsilons for Axioms 3 and 4 are unaffected by rounding.

For the second component, we apply the equivalence class formulation described in Section 5; however, we strengthen the
equivalence criterion by ensuring that equal samples affect neither concrete nor abstract model behavior. This was chosen
to avoid the need to sample from the equivalence class on concretization or to select a canonical representative for each
class; doing so would have been needed to correctly evaluate Axioms 3 and 4 without such a guarantee. When sampling
in this way is feasible, an equivalence relation up to the abstract only model is sufficient. Pseudocode is given in Listing 9.

As for the first component, we obtain epsilons of 1 for Axioms 1 and 2 without applying the equivalence class mapping;
by construction, the epsilons for Axioms 3 and 4 are unaffected by the equivalence class operation. Note that simple
discretization operators do not suffice: we once again obtain an ϵ of 1 for Axioms 1 and 2 when rounding to a single decimal
place. While strong results with the discretization described above show that the abstract and concrete representations of
the output of the second component are equivalent up to their downstream impact on both the concrete and abstract models,
results with simpler discretizations indicate that the the concrete representation does not represent the abstract state exactly.
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Figure 18: The IOI circuit, reproduced from Wang et al. (2023).

I. A Sketch of Application to Circuits: Indirect Object Identification
As described in Appendix B.1, our axioms may be extended to evaluate circuits-type interpretations, or may be applied
directly by linearization of the computational graph of the circuit.

To illustrate the process, we’ll describe how the circuit for Indirect Object Identification (IOI) (Wang et al., 2023) may
be evaluated. The IOI circuit consists of five broad categories of heads:

1. Previous token heads, which copy information from the prior token

2. Duplicate token heads, which identify whether there exists any prior duplicate of the current token

3. Induction heads, which serve the same function as duplicate token heads, mediated via the previous token heads

4. S-inhibition heads, which output a signal suppressing attention by name mover heads to duplicated names

5. Name mover heads, which copy names except those suppressed by the S-inhibition heads for output

Note that each of these attention heads computes a well-defined interpretable function which can be represented in our
framework. Figure 18 shows the structure of the circuit. We’ll now illustrate the process by which the circuit may be
analyzed via the linearization technique from Appendix B.1.2 or the graph axioms from Appendix B.1.1. The circuit in
Figure 18 cannot be directly evaluated, as it must be made isomorphic to a decomposition of the concrete model.

To do so, we will first expand the circuit in Figure 18 to a head-by-head graph. Next, for each block with an interpreted
head, we construct dummy nodes in the interpretation which correspond to uninterpreted heads; as the interpretation claims
that these are uninvolved in the IOI task, these nodes compute the identity function, a constant function or some other
no-op which is independent of the IOI task.

Now, we must account for computations performed in uninterpreted blocks and in MLPs. We can express the computation
performed by a block of a transformer as a simple computational graph: each interpreted head, and well as the dummy
node corresponding to the uninterpreted heads, takes the incoming residual stream as an input and returns an update to
the residual stream. These updates are added to the residual stream and processed by the remaining components, such
as the MLP and any normalization, which produce the final residual output by the block. For simplicity, we combine any
uninterpreted layers into this operation. These nodes, abstractly, update the program state from the potentially redundant
input information. In this way, we can construct isomorphic concrete and abstract models from any circuit of this form.

We derive the concrete and abstract models shown in Figure 19. Note that structuring the circuit in this way allows us
to clearly define and evaluate a hypothesis on how redundant copies of a given abstract concept are combined downstream.
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Figure 19: Concrete and abstract models derived from the IOI circuit.
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For example, the model might retain independent duplicate copies of the information, one copy per head, retain only the
most recently-computed value, or aggregate redundant copies with some weighting.

At this point, we can apply either the linearization technique of Appendix B.1.2 or the generalized axioms of Appendix B.1.1
to evaluate the hypotheses. We do not fully evaluate IOI with our axioms here as Wang et al. (2023) leaves key components
of the interpretation unspecified. In particular, the authors do not clearly state how the model combines the information pro-
duced by redundant heads performing the same function, and the authors do not conclusively state what the duplicate-token
suppressing information output by the S-inhibition heads represents. For example, that information may be represented
as the suppressed token itself, via either relative or absolute positions, or a combination of token and position information.
A complete analysis with our axioms would enable the analyst to derive clear evidence for the correct hypotheses.
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Table 2: General neuron interpretations derived by decision tree learning on neuron activations. A neuron activates if the
corresponding condition in the second column holds.

Neuron Interpretation (General Case)

10 ϕ[TFFFF ]
29 ϕ[FTTFF ] ∧ ¬ϕ[FFFFT ] ∧ ¬ϕ[TTTTT ]
36 ϕ[TTFFF ] ∧ ¬ϕ[FTFTF ]
41 ϕ[FFFFF ]
48 (¬ϕ[FTTFF ] ∧ ϕ[FTFFF ]) ∨ ϕ[FTTFF ]
55 ϕ[TTTFF ]
77 ϕ[FFTTT ]
81 ϕ[FTTTF ]
96 ϕ[TFTTF ] ∧ ¬ϕ[FFTFF ]

150 ϕ[FTFTF ] ∧ ¬ϕ[TTFFF ]
185 ϕ[FFFTT ]
189 ϕ[FTTTT ] ∧ ¬ϕ[TTTFT ]
195 ϕ[TFFTF ] ∧ ¬ϕ[TTTTT ]
201 ϕ[TTFFT ] ∧ ¬ϕ[TFTFF ]
224 ϕ[FFFFT ]
231 ϕ[FTFTT ] ∧ ¬ϕ[FFTTF ]
245 ϕ[FTFFT ]
261 ϕ[TTFTT ]
291 ϕ[TFTTT ]
304 ϕ[FFTTF ] ∧ ¬ϕ[TFTFF ]
317 ϕ[TFFFT ]
326 ϕ[TTTTF ]
334 ϕ[FTTTF ] ∧ ¬ϕ[FFFTT ]
374 ϕ[TTFTT ] ∧ ¬ϕ[TFTTF ] ∧ ¬ϕ[FFFFF ]
380 ϕ[TFFTT ]
411 ϕ[TTFFT ]
416 ϕ[TTTFF ]
435 (ϕ[TTFTF ] ∧ ¬ϕ[FTFFF ]) ∨ (ϕ[TTFTF ] ∧ ϕ[FTFFF ] ∧ ϕ[TFFTF ])
450 ϕ[FFTFT ] ∧ ¬ϕ[FTFFF ]
482 ϕ[TTTTT ] ∧ ¬ϕ[FTTFT ]
490 (ϕ[FTTFT ] ∧ ¬ϕ[TTTTT ]) ∨ (ϕ[FTTFT ] ∧ ϕ[TTTTT ] ∧ ¬ϕ[TTTFT ])
492 ϕ[TFTFT ]
495 ϕ[FFFTF ]
499 (ϕ[FFTFF ] ∧ ¬ϕ[TFTTF ]) ∨ (ϕ[FFTFF ] ∧ ϕ[TFTTF ] ∧ ϕ[FFTTF ])
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Table 3: Disjunction-only neuron interpretations derived by finding satisfying assignments that are correlated with a high
average neuron activation value over the analysis training set. A neuron activates if the corresponding condition in the
second column holds.

Neuron Interpretation (Disjunction-Only)

10 ϕ[TFFFF ] ∨ ϕ[TFTFF ] ∨ ϕ[TTFFF ]
29 ϕ[FTTFF ]
36 ϕ[TTFFF ]
41 ϕ[FFFFF ] ∨ ϕ[FTFFF ]
48 ϕ[FTFFF ] ∨ ϕ[FTTFF ]
55 ϕ[TTTFF ] ∨ ϕ[TTTFT ]
77 ϕ[FFTTF ] ∨ ϕ[FFTTT ] ∨ ϕ[FTTTT ]
81 ϕ[FTTTF ] ∨ ϕ[FTTTT ]
96 ϕ[TFTTF ]

150 ϕ[FTFTF ]
185 ϕ[FFFTT ]
189 ϕ[FTTTT ]
195 ϕ[TFFTF ] ∨ ϕ[TFTTF ] ∨ ϕ[TTFTF ]
201 ϕ[TTFFT ]
224 ϕ[FFFFT ]
231 ϕ[FTFTT ] ∨ ϕ[FTTTT ]
245 ϕ[FTFFF ] ∨ ϕ[FTFFT ] ∨ ϕ[FTTFT ]
261 ϕ[TTFTT ]
291 ϕ[TFTTF ] ∨ ϕ[TFTTT ] ∨ ϕ[TTTTT ]
304 ϕ[FFTTF ]
317 ϕ[TFFFT ]
326 ϕ[TTFTF ] ∨ ϕ[TTTTF ] ∨ ϕ[TTTTT ]
334 ϕ[FTTTF ]
374 ϕ[TTFTT ]
380 ϕ[TFFTT ]
411 ϕ[TTFFT ] ∨ ϕ[TTTFT ]
416 ϕ[TFTFF ] ∨ ϕ[TTTFF ]
435 ϕ[TTFTF ]
450 ϕ[FFTFF ] ∨ ϕ[FFTFT ] ∨ ϕ[FTTFT ]
482 ϕ[TTTTT ]
490 ϕ[FTTFT ]
492 ϕ[TFTFF ] ∨ ϕ[TFTFT ] ∨ ϕ[TTTFT ]
495 ϕ[FFFTF ]
499 ϕ[FFTFF ]
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1 modulus = 113
2 k e y _ f r e q s = [ 1 4 , 35 , 41 , 42 , 52]
3

4 c o s _ s i n = t u p l e [ l i s t [ f l o a t ] , l i s t [ f l o a t ] ]
5

6 d e f e n c o d i n g _ o f _ i n p u t s (
7 a : i n t ,
8 b : i n t ,
9 ) −> t u p l e [ c o s _ s i n , c o s _ s i n ] :

10 cos_a = [ round ( cos (2 * f * p i * a / modulus ) ) f o r f i n k e y _ f r e q s ]
11 cos_b = [ round ( cos (2 * f * p i * b / modulus ) ) f o r f i n k e y _ f r e q s ]
12 s i n _ a = [ round ( s i n (2 * f * p i * a / modulus ) ) f o r f i n k e y _ f r e q s ]
13 s i n _ b = [ round ( s i n (2 * f * p i * b / modulus ) ) f o r f i n k e y _ f r e q s ]
14

15 r e t u r n ( cos_a , s i n _ a ) , ( cos_b , s i n _ b )
16

17 d e f sum_of_ang l e s (
18 components : t u p l e [ c o s _ s i n , c o s _ s i n ] ,
19 ) −> E q u i v a l e n c e C l a s s :
20 ( cos_a , s i n _ a ) , ( cos_b , s i n _ b ) = components
21 cos_ab = [
22 ca * cb − sa * sb
23 f o r ca , sa , cb , sb i n z i p ( cos_a , s i n _ a , cos_b , s i n _ b )
24 ]
25 s i n _ a b = [
26 sa * cb + ca * sb
27 f o r ca , sa , cb , sb i n z i p ( cos_a , s i n _ a , cos_b , s i n _ b )
28 ]
29

30 r e t u r n E q u i v a l e n c e C l a s s ( cos_ab , s i n _ a b )
31

32 d e f d i f f e r e n c e _ o f _ a n g l e s _ a r g m a x ( a n g l e _ s u m s _ c l a s s : E q u i v a l e n c e C l a s s ) −> i n t :
33 cos_ab , s i n _ a b = e x t r a c t _ a n g l e _ s u m s ( a n g l e _ s u m s _ c l a s s )
34 cos_ab_minus_c = [
35 [
36 cab * cos (2 * f * p i * c / modulus ) + sab * s i n (2 * f * p i * c / modulus )
37 f o r cab , sab , f i n z i p ( cos_ab , s in_ab , k e y _ f r e q s )
38 ]
39 f o r c i n r a n g e ( modulus )
40 ]
41

42 r e t u r n argmax ( map ( sum , cos_ab_minus_c ) )
43

44 d e f m o d u l a r _ a d d i t i o n ( a : i n t , b : i n t ) −> i n t :
45 r e t u r n d i f f e r e n c e _ o f _ a n g l e s _ a r g m a x (
46 sum_of_ang l e s (
47 e n c o d i n g _ o f _ i n p u t s ( a , b )
48 )
49 )

Listing 8: Mechanistic interpretation of the modular arithmetic model

1 d e f e q u i v a l e n t ( a : c o s _ s i n , b : c o s _ s i n ) −> boo l :
2 a b s t r a c t _ e q = a b s t r a c t _ c o m p o n e n t s [ 3 ] ( a ) == a b s t r a c t _ c o m p o n e n t s [ 3 ] ( b )
3 c o n c r e t e _ e q

= c o n c r e t e _ c o m p o n e n t s [ 3 ] ( gammas [ 2 ] ( a ) ) == c o n c r e t e _ c o m p o n e n t s [ 3 ] ( gammas [ 2 ] ( b ) )
4 r e t u r n a b s t r a c t _ e q and c o n c r e t e _ e q

Listing 9: Equivalence relation for second component of mechanistic interpretation of the modular arithmetic model
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