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ABSTRACT

A Markov network characterizes the conditional independence structure, or Markov
property, among a set of random variables. Existing work focuses on specific fami-
lies of distributions (e.g., exponential families) and/or certain structures of graphs,
and most of them can only handle variables of a single data type (continuous or
discrete). In this work, we characterize the conditional independence structure in
general distributions for all data types (i.e., continuous, discrete, and mixed-type)
with a Generalized Precision Matrix (GPM). Besides, we also allow general func-
tional relations among variables, thus giving rise to a Markov network structure
learning algorithm in one of the most general settings. To deal with the computa-
tional challenge of the problem, especially for large graphs, we unify all cases under
the same umbrella of a regularized score matching framework. We validate the
theoretical results and demonstrate the scalability empirically in various settings.

1 INTRODUCTION

Markov networks (also known as Markov random fields) represent conditional dependencies among
random variables. They provide clear semantics in a graphical manner to cope with uncertainty in
probability theory, with a wide application in fields including physics (Cimini et al., 2019), chemistry
(Dodani et al., 2016), biology (Jaimovich et al., 2006), and sociology (Carrington et al., 2005). The
undirected nature of edges also allows cyclic, overlapping, or hierarchical interactions (Shen et al.,
2009). To estimate the Markov network from observational data, existing work focuses on certain
parametric families of distributions, a majority of which study the Gaussian case. By assuming that
the variables are from a multivariate Gaussian distribution, the dependencies can be well represented
by the support of the precision, or inverse covariance, matrix according to Hammersley-Clifford
theorem (Besag, 1974; Grimmett, 1973). Together with various statistical estimators (e.g., the
graphical lasso (Friedman et al., 2008) and neighborhood selection (Meinshausen & Bühlmann,
2006)), this connection between the precision matrix and graphical structure has been well exploited
in the Gaussian case in the past decades (Yuan, 2010; Ravikumar et al., 2011). However, methods for
Gaussian graphical models fail to correctly capture dependencies among variables deviating from
Gaussian or including nonlinearity (Raskutti et al., 2008; Ravikumar et al., 2011).

While non-Gaussianity is more common in real-world data generating process, few results are
applicable to Markov network structure learning on non-Gaussian data. In the discrete setting,
Ravikumar et al. (2010) showed that a binary Ising model can be recovered by neighborhood
selection using ℓ1 penalized logistic regression. Loh & Wainwright (2013) encoded extra structural
relations in the proposed generalized covariance matrix to model the dependencies for Markov
networks with certain structures (e.g., tree structures or graphs with only singleton separator sets)
among variables from exponential families. Several approaches allowed estimation for non-Gaussian
continuous variables while most of them assumed parametric assumptions such as the exponential
families (Yang et al., 2015; Lin et al., 2016; Suggala et al., 2017) or Gaussian copulas (Liu et al.,
2009; 2012; Harris & Drton, 2013). These methods illustrate the possibility of reliable Markov
network estimations in several non-Gaussian cases, but still, the models are restricted to specific
parametric families of distributions and/or structures of conditional independencies.
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Concerned with describing Markov properties of non-Gaussian data with general continuous distribu-
tions, Morrison et al. (2017) used the second-order derivatives to encode the conditional independence
structure. Specifically, their approach is based on a theorem that the zero pattern in the Hessian matrix
of the log-density determines the conditional independencies between non-Gaussian continuous
variables (Spantini et al., 2018). A method based on transport map, i.e., Sparsity Identification in
Non-Gaussian distributions (SING) (Baptista et al., 2021), is then designed to estimate the data
density from samples, and the structure is derived from the estimated density. This approach achieves
consistent Markov network structure recovery in a general non-Gaussian continuous setting. However,
methods relying on the Hessian matrix cannot cope with discrete or mixed-type data. In addition,
density estimation, especially for non-Gaussian data, can be computationally challenging for large
graphs, limiting the scalability of this approach. Kernel-based Conditional Independence test (KCI)
(Zhang et al., 2012) and Generalized Score (GS) (Huang et al., 2018) can handle the mixed-type case
for structure learning, but as kernel-based methods, they are computationally challenging since the
complexity scales cubically in the number of samples.

To deal with these remaining obstacles, we explore a Generalized Precision Matrix (GPM) for
nonparametric Markov networks learning. Based on the necessary and sufficient conditions for the
conditional independence among structures in continuous, discrete, and mixed-type cases, GPM
characterizes the Markov network structures with arbitrary data types. Moreover, our work does
not constrain the distribution to be of specific families, such as exponential families, or has been
normalized. Besides, it is also noteworthy that there are no specific assumptions on the functional
relations among variables. To the best of our knowledge, the proposed GPM illustrates the feasibility
of Markov network structure learning in one of the most general nonparametric settings.

Furthermore, we put all these cases under the same umbrella of the estimation framework based on
regularized score matching, as an extension of the score matching framework (Hyvärinen & Dayan,
2005). Different from the previous approach (SING) that applies a transport map to estimate the
data density for general continuous distributions, our framework allows us to only estimate the model
score function parameterized by a deep model, from which the characterization matrix of the Markov
network structure can be directly calculated. To facilitate the estimation process, we also exploit
suitable penalties on the characterization matrix to encourage constantly sparse entries. Besides,
we adopt recent advancements on score matching (Song et al., 2020) to further scale up the process.
Our method therefore narrows the gap between reliable structure learning and scalable deep learning
techniques. We validate the theoretical results experimentally, and the scalability has been illustrated.

2 GENERALIZED PRECISION MATRIX

Suppose that we observe a collection of random variables X = (X1, . . . , Xd). Our goal is to discover
the underlying Markov network structure. Specifically, it is an undirected graph G comprising a set
of vertices V = {1, . . . , d} and edges E. The edges E encode the conditional independence relations
or the global Markov property: for any disjoint subsets A, B, and C in the vertices set V such that C
separates A and B, XA and XB are conditionally independent given XC, i.e., XA ⊥⊥ XB | XC.1
Throughout this paper, we use an uppercase letter to denote a random variable and a lowercase letter
with subscripts to denote the value of a random variable (e.g., Xi = xi for the value of Xi). For
a discrete variable, say Xi, we denote its support by {xi1, . . . , xiMi}, where Mi is its cardinality.

As an alternative characterization of the conditional independence relations encoded by the graph,
the pairwise Markov property requires that every pair of non-adjacent variables in the graph is
conditionally independent given the remaining variables. That is, for any i ̸= j, an edge between
Xi and Xj is absent if and only if Xi and Xj are conditionally independent given the remaining
variables, i.e., Xi ⊥⊥ Xj | XV\{i,j}. The conditioning set consisting of all remaining variables is
essential. According to Lauritzen (1996), the pairwise Markov property is equivalent to the global
one when the density is strictly positive. In order to estimate nonparametric Markov networks in this
setting, we explore generalized characterizations of conditional independence in all types of data
(i.e., continuous, discrete, and mixed-type) without distributional constraints. We start from learning
conditional independence structures in continuous data with a procedure inspired by Spantini et al.
(2018), and then propose new characterizations for discrete and mixed-type data.

1For any set S ⊂ V, we write XS = {Xi : i ∈ S}.
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Ideally, we aim to construct a Generalized Precision Matrix Ω that satisfies the following desiderata:

a. For any i ̸= j, if Ωi,j = 0, then Xi ⊥⊥ Xj | XV\{i,j};
b. The probability measure is not restricted to be from specific families but only needs to be

strictly positive;
c. The undirected graph G is not restricted to be of certain structures;
d. For continuous variables, the density has continuous derivatives up to second order w.r.t. the

Lebesgue measure;
e. For discrete variables, the cardinality is not restricted;
f. To enable practical estimation procedure, Ω is differentiable w.r.t. X.

Property (a) is the characterization of the pairwise Markov property. Properties (b) and (c) differentiate
our work from most previous works that assumes Gaussianity or/and certain structures of the
conditional independence. Properties (d) and (e) further raise the difficulty of our task, because, in
addition to not being restricted to a specific family of distributions, our characterization Ω has to
be available for all data types (i.e., continuous, discrete, and mixed-type) with mild assumptions.
For discrete variables, Property (e) removes the limitation of cardinality, thus differentiating our
work from those focusing on the binary Ising model. Property (f) allows us to incorporate an ℓ1
regularization term in the estimation procedure and make use of gradient-based optimization.

2.1 CHARACTERIZATION FOR CONTINUOUS DATA

We aim to find the necessary and sufficient conditions for Xi ⊥⊥ Xj | XV\{i,j}. By definition, if
Xi is conditionally independent of Xj given all remaining variable XV\{i,j}, we can factor the
probability density function (PDF) pX as follows

pX(x) = p(xi | xV\{i,j})p(xj | xV\{i,j})p(xV\{i,j}). (1)
Together with the assumption that pX has continuous derivatives up to second order w.r.t. the
Lebesgue measure, we have

∂2 log pX
∂xi∂xj

= 0. (2)

Conversely, the solution of Eq. (2) is given by log pX(x) = g(x1:i−1, xi+1:d) + h(x1:j−1, xj+1:d)
for some functions g, h : Rd−1 → R. It thus follows Xi ⊥⊥ Xj | XV\{i,j}. This connection
between pairwise conditional independence and cross derivatives of the log density has been observed
in Spantini et al. (2018). Methods based on this connection have also been proposed recently
(Morrison et al., 2017; Baptista et al., 2021). Following Baptista et al. (2021), one can characterize
the conditional independence between Xi and Xj in the continuous distribution as

Ω
[c]
ij :=

(
EpX

[
f
[c]
i,j(x)

2
]) 1

2

, (3)

where f
[c]
i,j(·) denotes the LHS of Eq. (2) and [c] denotes continuous data as a type label. In

practice, pX is the empirical PDF. The group structure of it could help achieve simultaneous sparse
approximation (Yuan & Lin, 2006; Huang & Zhang, 2010) when being applied as an ℓ1 regularizer in
the estimation, which we will describe in Sec. 3. We also apply the same group structures for both the
discrete and mixed-type cases, but we will skip the reintroduction for brevity. The characterization
of the Markov property is as follows.
Corollary 1. Assume

i. X = (X1, . . . , Xd) is a set of continuous variable.

ii. The PDFs of X are strictly positive and smooth.

iii. The characterization matrix Ω[c] is defined according to Eq. (3).

Then for any i ̸= j, Ω[c]
i,j = 0 implies Xi ⊥⊥ Xj | XV\{i,j}.

The proof is shown in Appx. A.1. It is worth noting that Cor. 1 also covers the Gaussian case, where
the cross-derivatives of the log-density correspond to entries in the precision or inverse covariance
matrix (Drton et al., 2008), thus generalizing previous work assuming Gaussianity. Hence, the support
of Ω characterizes conditional independence among continuous variables for general distributions.
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2.2 CHARACTERIZATION FOR DISCRETE DATA

Since most of the previous work focuses on the Gaussian setting, and works for non-Gaussian
distribution are mostly restricted to the exponential family, the characterization for continuous data
discussed in Sec. 2.1 has broadened the scope of reliable Markov network learning. However, the
characterization is not applicable to discrete data as the gradient does not exist. In this section, we
provide such a characterization of Markov network structure in the discrete case. Similar to the
continuous case, a key ingredient of the proposed characterization is the necessary and sufficient
conditions of conditional independence for discrete data, which we establish in the following theorem.
Theorem 1. Denote V as a set of discrete variables and Xi, Xj ∈ V. For brevity, denote
V\{Xi, Xj} as Z. Let {xi1, . . . , xiMi

} and {xj1, . . . , xjMj
} be the support of variables Xi and

Xj . Denote z as any value(s) of Z. Then, Xi ⊥⊥ Xj | Z if and only if, for all k ∈ [Mi] and l ∈ [Mj ]
with k ̸= 1 and l ̸= 1, we have

(logm(xi1, xj1, z)− logm(xik, xj1, z))− (logm(xi1, xjl, z)− logm(xik, xjl, z)) = 0. (4)

Proof sketch. For the sufficient condition, we want to show that the general solution to Eq. 4 has no
term that takes the values of both Xi and Xj . We first iterate all possible differences w.r.t. Xj to get
the discrete score function of Xi, which does not take the value of Xj as the argument. Then we
obtain the desired solution by summation over all possible differences w.r.t. Xi. For the necessary
condition, we decompose the PMF according to the conditional independence to obtain Eq. 4.

The full proof is provided in Appx. A.2. Note that we denote m(xik, xjl, z) as the joint probability
mass function (PMF) of {Xi, Xj ,Z}, simplified from mXi,Xj ,Z(xik, xjl, z). Based on Thm. 1, we
propose the characterization matrix of conditional independence for discrete data Ω

[d]
i,j as follows:

Ω
[d]
i,j := EmX

∑
k,l

f [d](xi1, xik, xj1, xjl, z)
2

 , (5)

where f [d](xi1, xik, xj1, xjl, z) denotes the LHS of Eq. (4) and [d] is a type label denoting discrete
data. The support of the matrix above satisfies the pairwise Markov property and characterizes the
Markov network structure, formally stated below with its proof in Appx. A.3.
Corollary 2. Assume

i. X = (X1, . . . , Xd) is a set of discrete variable.

ii. The PMFs of X are strictly positive.

iii. The characterization matrix Ω[d] is defined according to Eq. (5).

Then for any i ̸= j, Ω[d]
i,j = 0 implies Xi ⊥⊥ Xj | XV\{i,j}.

Therefore, we have a characterization matrix Ω[d] to represent the conditional independence structure
for discrete data. It is worth noting that, unlike the generalized covariance matrix in Loh &
Wainwright (2012) that only applies to certain structures among variables from exponential families,
the proposed characterization matrix Ω[d] encodes the Markov properties for general discrete distribu-
tions without any structural constraints. Also, compared with Ravikumar et al. (2010), Thm. 1 can be
applied to general graphical models apart from binary Ising models and does not rely on the structural
condition. It also does not limit the cardinalities of discrete variables. Hence, Theorem 1 sheds light
on characterizing arbitrary conditional independence structures for general discrete distributions.

2.3 CHARACTERIZATION FOR MIXED-TYPE DATA

In the previous sections, we have presented characterizations of conditional independence structures
for both general continuous and discrete distribution. However, it is common for real-world datasets
to have a mixture of continuous and discrete variables. Unfortunately, most works focus on either
continuous or discrete data, and previous results for mixed-type data are mostly based on conditional
Gaussian distribution (Lauritzen et al., 1989; Edwards, 1990; Lauritzen, 1996; Fellinghauer et al.,
2013; Lee & Hastie, 2015; Cheng et al., 2017). Similar to the continuous and discrete settings,
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in this section, we introduce a novel characterization of the pairwise Markov property for general
distributions with mixed data-types. We first provide necessary and sufficient conditions of conditional
independence for mixed-type data in the following theorem, with full proof given in Appx. A.4.

Theorem 2. Denote V as a set of mixed-type variables and Xi, Xj ∈ V, where Xi is discrete
and Xj is continuous. Let {xi1, . . . , xiMi

} be the support of variables Xi. For brevity, denote
V\{Xi, Xj} as Z. Denote z as any value(s) of Z and xj as any value of the continuous variable Xj .
Then, Xi ⊥⊥ Xj | Z if and only if, for all k ∈ [Mi] with k ̸= 1, we have

∂ log
(
pXj ,Z|Xi

(xj , z | xi1)mXi(xi1)
)

∂xj
−

∂ log
(
pXj ,Z|Xi

(xj , z | xik)mXi(xik)
)

∂xj
= 0. (6)

Proof sketch. Similar to the proof sketch of Thm. 1, we consider Xi and Xj separately to construct
the desired general solution of Eq. 6 for the sufficient condition. For the necessary condition, we
decompose the density function according to the conditional independence to obtain Eq. 6.

Based on Thm. 2, we propose to characterize the conditional independence between Xi and Xj given
all remaining variables with the GPM Ω[m], of which the element is defined as

Ω
[m]
i,j :=



EπX

[
f
[c]
i,j(x)

2
]

if Xi ∈ Xc, Xj ∈ Xc

EπX

[∑
k,l f

[d](xi1, xik, xj1, xjl, z)
2
]

if Xi ∈ Xd, Xj ∈ Xd

EπX

[∑
k f

[m](xi, xj1, xjk, z)
2
]

if Xi ∈ Xc, Xj ∈ Xd

EπX

[∑
k f

[m](xj , xi1, xik, z)
2
]

if Xi ∈ Xd, Xj ∈ Xc,

(7)

where f [m] denotes LHS of Eq. (6) and πX is the probability function. The type label [m] de-
notes mixed-type data. Xc and Xd are sets of continuous and discrete variables, respectively. Its
characterization of Markov property is as follows

Corollary 3. Assume

i. X = (X1, . . . , Xd) is a set of variables containing both continuous and discrete variables.

ii. For continuous variables, the PDFs are strictly positive and smooth.

iii. For discrete variables, the PMFs are strictly positive.

iv. The characterization matrix Ω[m] is defined according to Eq. (7).

Then for any i ̸= j, Ω[m]
i,j = 0 implies Xi ⊥⊥ Xj | XV\{i,j}.

The proof is given in Appx. A.5. The GPM Ω[m] encodes the pairwise Markov property for
mixed-type data. More general than previous works, it does not require specific families of
distributions, structures of the underlying graph, or cardinality of discrete variables.

3 SCALABLE ESTIMATION WITH REGULARIZED SCORE MATCHING

In Sec. 2, we provide characterizations of conditional independencies for general distribution in
continuous, discrete, and mixed-type settings. Based on the introduced necessary and sufficient
conditions, these characterizations generalize previous work and establish one of the foundations
for nonparametric estimation of Markov network structures with minimal assumptions.

In addition to general characterizations of the Markov property with theoretical guarantees (i.e.,
GPM), a scalable estimation framework is necessary for reliable and practical structure learning.
Ideally, we would like to exploit the advancements on scalable deep learning models. Hence, we
introduce a regularized score matching-based framework for all considered settings (i.e., general
distributions of continuous, discrete, and mixed-type variables).
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3.1 ESTIMATION FOR CONTINUOUS DATA

We start with the continuous setting. Denote p(x; θ) as a parameterized density model with a
parameter vector θ. The goal is to estimate parameter θ from the observation x. We aim to optimize
the following objective function, which is based on Fisher divergence:

Oc(θ) =
1

2

∫
x∈Rd

p(x)∥∇x log p(x; θ)−∇x log p(x)∥2dx+ ρλ(Ω
[c]), (8)

where ρλ(·) denotes a sparsity penalty function and λ is the penalty parameter with domain [0, 1]. Ω[c]

is defined in Eq. 3 as our characterization of the conditional independence structure for continuous
data. If we assume the model is not degenerate, where different values of θ correspond to different
PDFs, the asymptotic consistency of the optimization has been shown in Thm. 2 by Hyvärinen &
Dayan (2005). We impose a sparsity penalty to encounter for finite-sampling errors in practice.

Also with a strategy in Hyvärinen & Dayan (2005); Pham & Garat (1997), one can remove the data
log-density log pX from Eq. (8) by optimizing the following equation, which is equivalent to Eq. (8):

Oc(θ) =

∫
x∈Rd

p(x)

d∑
i=1

[
1

2
∥∇xi

log p(x; θ)∥2 +Hxi
(log p(x; θ))

]
dx+ ρλ(Ω

[c]), (9)

where H denotes the Hessian. The proof is directly based on Hyvärinen & Dayan (2005) and we
include it (Lemma 1) in Appx. A.6.1 for completeness. It is worth noting that previous work on
Markov network structure learning with general continuous distribution (SING (Morrison et al., 2017;
Baptista et al., 2021)) applies a transport map to estimate data density from samples, which can be
computationally challenging for non-Gaussian data with a large number of variables. Thus, it may
not be scalable as suggested by Fig. 1 and Table 1. To avoid this, the proposed regularized score
matching allows us to optimize the objective function by only estimating the model score function.
Moreover, the estimated model score function directly leads to the characterization matrix Ω[c] by
taking further derivatives, thus efficiently giving rise to the estimated Markov network structure.
After training, the expectation in Equation 3 is computed over the parameterized model p(x; θ).

3.2 ESTIMATION FOR DISCRETE DATA

For the estimation in the discrete case, one cannot directly apply the method introduced for the
continuous case since the gradient, on which the continuous score function is based, is not defined
for discrete data. An intuitive solution is to replace the gradient with a general linear operator L (Lyu,
2012). Of course, one also needs to replace integration with summation and PDF with PMF. For
instance, Eq. (8) can be reformulated as follows

Od(θ) =
1

2

∑
x

mX(x)

∥∥∥∥L(m(x; θ))

m(x; θ)
− L(mX(x))

mX(x)

∥∥∥∥2 + ρλ(Ω
[d]), (10)

where m denotes PMF. In this formulation, L(·) is a generalized version of the score function
for discrete data. As shown in Lyu (2012), Od(θ) keeps the computational advantages of score
matching for continuous data, i.e., the normalizing partition is canceled out and the formulation can
be transformed to an expectation of functions of the unnormalized model. In order to guarantee
the consistency of score matching based on Eq. (10), the linear operator L(·) needs to be complete
according to the following definition.

Definition 1 (Completeness (Lyu, 2012)). A linear operator L(·) is complete if L(p(x))
p(x) = L(q(x))

q(x)

implies p(x) = q(x) almost everywhere, where p(x) and q(x) are two PMFs.

According to Defn. 1, Lyu (2012) used the marginalization operator M(·) : F1 7→ Fd as a choice
for L(·), which is defined as

M(f(x)) =


...

Mi(f(x))
...

 =


...∑

x f(x)
...

 , (11)
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where f ∈ F1. We can observe that Mi(f(x)) is the marginal density of x\i, where x\i denotes the
vector x after dropping the i-th element (i.e., marginalization). The completeness of M(·) has been
shown in Brook (1964), and included as Lemma 3 in Lyu (2012). We have

Od(θ) =
1

2

∑
x

mX(x)

∥∥∥∥M(m(x; θ))

m(x; θ)
− M(mX(x))

mX(x)

∥∥∥∥2 + ρλ(Ω
[d]). (12)

Thus, it is plausible for us to replace the gradient with M(·) for discrete data. However, one key
advantage of regularized score matching is that it does not have to explicitly estimate the data density
(i.e., pX(x) in Theorem 1). As shown by Lyu (2012), we can also optimize Eq. (12) in a similar way,
which is equivalent to optimizing the following equation

Od(θ) =
1

2

∑
x

mX(x)

d∑
i=1

[(
Mi(m(x; θ))

m(x; θ)

)2

− 2Mi

(
Mi(m(x; θ))

m(x; θ)

)]
+ ρλ(Ω

[d]). (13)

The simplification is directly from results in Lyu (2012), of which the corresponding lemma (Lemma
2) is formalized with its proof in Appx. A.6.2 for completeness. Based on Thm. 1 and Thm. 2,
similar to the continuous case, we can estimate Markov network structures for general distributions
in the discrete setting under the same umbrella of regularized score matching.

3.3 ESTIMATION FOR MIXED-TYPE DATA

For mixed-type data, we define the objective function as follows

Om(θ) = EπX

[∑
i

si(x; θ)

]
+ ρλ(Ω

[m]), (14)

where

si(x; θ) :=


1
2∥∇xi log π(x; θ)∥2 +Hxi(log π(x; θ)) Xi ∈ Xc

1
2

(
Mi(m(x;θ))

m(x;θ)

)2

−Mi

(
Mi(m(x;θ))

m(x;θ)

)
Xi ∈ Xd,

(15)

Here, the density π is strictly positive. Basically, Om(θ) is a regularized version of the combination
of the objective functions for the continuous and discrete cases. Because Ω[m] also encodes the
dependencies between continuous and discrete variables, we can estimate its support for mixed-
type data without assuming group structures of data types. The following corollary guarantees the
consistency, where we define O′

m(θ) as Om(θ)− ρλ(Ω
[m]).

Corollary 4. Assume

i. The data density πX(·) is equal to π(·; θ∗) for some θ∗.

ii. The data density πX(·) and model density π(·; θ) are strictly positive. πX(·) and π(·; θ) is
differentiable and twice-differentiable, respectively, w.r.t. continuous variables. For some
θ∗, πX(·) = π(·; θ∗) and no other parameter value gives a density that is equal to π(·; θ∗)
almost everywhere.

iii. The expectations EπX

[
∥ log π(x; θ)∥2

]
and EπX

[
∥log πX(x)∥2

]
are finite for any θ, and

πX(x) log π(x; θ) goes to zero for any θ when ∥x∥ → ∞.

Then O′
m(θ) = 0 implies θ = θ∗.

Cor. 4 follows from Lemma 1 (Hyvärinen & Dayan, 2005) and Lemma 2 (Lyu, 2012), which are
included in Appx. A.6. Together with Thm. 2, one can estimate Markov network structures for
mixed-type data in a general setting.

3.4 SPARSITY REGULARIZATION

By minimizing the objective function O(θ) ∈ {Oc(θ), Od(θ), Om(θ)}, our goal is to essentially
perform a model selection task, i.e., to learn of the support of Ω ∈ {Ω[c],Ω[d],Ω[m]}. Here, using

7



ℓ0 penalty may be computationally infeasible because it leads to a discrete optimization problem
that is difficult to solve. Following previous works (Tibshirani, 1996), we adopt the ℓ1 regularizer
ρλ(Ω) = λ∥Ω∥1. In particular, the high-dimensional support recovery of ℓ1 regularizer has been
extensively studied in the literature; for instance, see Wainwright (2009) for variable selection and
Ravikumar et al. (2008) for Gaussian graphical model selection. Although ℓ1 regularizer induces
sparsity, it may lead to bias in the resulting solution and thereby worsen the performance (Fan & Li,
2001; Breheny & Huang, 2011). This is because the ℓ1 norm increases linearly with the absolute value
of nonzero entries, which is different from ℓ0 norm that is constant for nonzero entries. Therefore,
we experiment with smoothly clipped absolute deviation (SCAD) penalty (Fan & Li, 2001), minimax
concave penalty (MCP) (Zhang, 2010), and adaptive ℓ1 penalty (Zou, 2006) in this work, which helps
remedy the bias issue of ℓ1 regularization. Specifically, SCAD and MCP penalties may be interpreted
as a hybrid of ℓ0 and ℓ1 penalties, while adaptive ℓ1 penalty reweighs the penalty coefficient λ by the
initial estimate of Ω without regularization. Furthermore, the support recovery of ℓ1 penalty relies
on the incoherence condition in various cases (Wainwright, 2009; Ravikumar et al., 2008; 2011),
which may be a rather strong assumption in practice, whereas the SCAD and MCP penalties do not
(Loh & Wainwright, 2017). Thus, we adopt the SCAD penalty according to experimental results (Fig.
7 in Appx. B). We integrate the SCAD penalties for all cases but only introduced here for brevity.

4 EXPERIMENTS

Setup. We conduct experiments on two sets of distributions: (1) Butterfly distributions (Morrison
et al., 2017; Baptista et al., 2021) and (2) distributions from random graphs. For Butterfly distribution
in the continuous setting, we have r i.i.d. pairs of random variables (Pi, Qi) defined as Pi ∼ N (0, 1)
and Qi = WiPi with Wi ∼ N (0, 1) and Wi ⊥⊥ Pi. We replace the Gaussian distribution with
the Multinomial distribution for the discrete case and mix the two different types of pairs for the
mixed-type case with uniformly sampled proportion. For distributions from random graphs, we
first generate a random decomposable directed acyclic graph. Then, for the continuous case, the
data are sampled from nonlinear structural equation models (SEMs) with exogenous noises from an
exponential distribution. We employ a multilayer perceptron (MLP) with randomly generated weights
as the nonlinear function. For the discrete case, variables are generated via randomly parameterized
Multinomial distributions of the variable being simulated and the discrete parents (Andrews et al.,
2018). For the mixed-type case, we simulate data with the process described in Andrews et al. (2018),
of which the details are included in Appx. B. Finally, we moralize all random decomposable DAGs
to obtain the ground-truth Markov network structures. We use the deep kernel exponential family
(DKEF) during estimation and optimize the objective function by gradient descent with the Adam
optimizer. All experiments are on 12 CPU cores with 24 GB RAM.

Considered methods. We consider the following representative methods for comparison: (KCI) We
adopt Kernel-based Conditional Independence test (KCI) (Zhang et al., 2012) with the Incremental
Association Markov Blanket (IAMB) algorithm (Tsamardinos et al., 2003) to learn the Markov net-
work structure in our settings. (GS) We denote GS as Greedy Equivalence Search (GES) (Chickering,
2002) with Generalized Score (GS). Because this procedure estimates causal structures represented
by completed partially DAGs (CPDAGs), we moralize the results to obtain the Markov network struc-
tures. (SING) Sparsity Identification in Non-Gaussian distributions (SING) (Morrison et al., 2017;
Baptista et al., 2021) is an algorithm designed for the estimation of Markov networks in non-Gaussian
continuous distributions. It applies a transport map to estimate the data density. (GLASSO) Graphical
Lasso (GLASSO) is a classical sparse penalized estimator for the inverse covariance matrix. (NPN)
GLASSO with the nonparanormal transformation (Liu et al., 2009).

Table 1: Running time for 12 variables.

Method Ours KCI GS SING GLASSO NPN

Time (s) 62.9 247 9536.5 4020.3 4.4 20.8

Results. We first conduct comparisons
in general distributions for all data types
(i.e., discrete, continuous, and mixed-type)
with different numbers of variables and a
sample size of 1000. Among the considered
methods, both KCI and GS are available for the estimation of Markov network structures for general
distributions with all data types. SING can only deal with continuous data and is therefore only
applied in the continuous setting. We also include (semi)parametric methods (GLASSO and NPN)
for baselines in the considered general settings. We use Hamming distance between the estimated
graph and the ground truth graph as the metric. All results are from 5 trials with different random
seeds. The missing results are either due to timeout (i.e., > 1 day) or OOM.
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Figure 1: Hamming distances for Butterfly distributions.
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Figure 2: Hamming distances for distributions from random graphs.

For the Butterfly distributions (Fig. 1), one can observe that KCI, GS, and our method can almost
recover the true structures with all data types. At the same time, in the more complex setting (i.e., dis-
tributions from random graphs, Fig. 2), it is clear that our method outperforms others in most datasets.
This suggests that, compared to baselines, our method may have more obvious advantages in more
complicated scenarios. Meanwhile, the running times of KCI, GS, and SING are significantly longer
than that of our method (Table. 1). Besides, SING and GS cannot scale with more than 12 and 18 vari-
ables, respectively. GLASSO and NPN are remarkably fast but fail to accurately recover the structure
in the general setting. NPN performs worse than GLASSO in structure recovery, which may be due
to its misaligned hypothesis of the nonparanormal transformation in the general mixed-type setting.

1000 2000 3000 4000 5000
Dim

0

500

1000

1500

2000

2500

3000

Ti
m

e 
(s

)

Figure 3: Running time for large graphs.

We also conduct experiments on large graphs, with
{250, 500, . . . , 5000} continuous variables from Butter-
fly distributions. Other settings are identical to those
for smaller graphs. From Fig. 3, we observe that the
running time is approximately linear w.r.t. the number
of variables. Besides, all experiments are conducted on
CPUs while our framework could be easily deployed on
GPUs. This suggests the potential of taking advantage
of recent advances in computation, especially for deep
models, to even further improve the scalability.

5 CONCLUSION

We provide a scalable estimation framework based on regularized score matching for nonparametric
Markov network structures. We first introduce necessary and sufficient conditions of conditional
independence among variables in general distributions for all data types (i.e., continuous, discrete, and
mixed-type) without specific assumptions on functional relations among variables, thus giving rise
to the corresponding characterizations of the structure, i.e., Generalized Precision Matrix. Then, we
unify all these cases under the same umbrella of the estimation framework based on regularized score
matching. Appropriate penalties on the characterization matrix are introduced to promote constantly
sparse entries for stable estimation. We validate our theoretical claims experimentally in various
settings. Future work includes exploring the connection between Markov networks and causal graphs.

9



6 ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive comments. This project was partially
supported by the National Institutes of Health (NIH) under Contract R01HL159805, by the NSF-
Convergence Accelerator Track-D award #2134901, by a grant from Apple Inc., a grant from KDDI
Research Inc, and generous gifts from Salesforce Inc., Microsoft Research, and Amazon Research.

REFERENCES

Bryan Andrews, Joseph Ramsey, and Gregory F Cooper. Scoring bayesian networks of mixed
variables. International journal of data science and analytics, 6(1):3–18, 2018.

Ricardo Baptista, Youssef Marzouk, Rebecca E Morrison, and Olivier Zahm. Learning non-gaussian
graphical models via hessian scores and triangular transport. arXiv preprint arXiv:2101.03093,
2021.

Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal
Statistical Society: Series B (Methodological), 36(2):192–225, 1974.

Patrick Breheny and Jian Huang. Coordinate descent algorithms for nonconvex penalized regression,
with applications to biological feature selection. The Annals of Applied Statistics, 5(1):232–253,
2011.

D Brook. On the distinction between the conditional probability and the joint probability approaches
in the specification of nearest-neighbour systems. Biometrika, 51(3/4):481–483, 1964.

Peter J Carrington, John Scott, and Stanley Wasserman. Models and methods in social network
analysis, volume 28. Cambridge university press, 2005.

Jie Cheng, Tianxi Li, Elizaveta Levina, and Ji Zhu. High-dimensional mixed graphical models.
Journal of Computational and Graphical Statistics, 26(2):367–378, 2017.

David M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3(Nov):507–554, 2002.

Giulio Cimini, Tiziano Squartini, Fabio Saracco, Diego Garlaschelli, Andrea Gabrielli, and Guido
Caldarelli. The statistical physics of real-world networks. Nature Reviews Physics, 1(1):58–71,
2019.

Sheel C Dodani, Gert Kiss, Jackson KB Cahn, Ye Su, Vijay S Pande, and Frances H Arnold. Discovery
of a regioselectivity switch in nitrating p450s guided by molecular dynamics simulations and
markov models. Nature chemistry, 8(5):419–425, 2016.

Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Lectures on algebraic statistics, volume 39.
Springer Science & Business Media, 2008.

David Edwards. Hierarchical interaction models. Journal of the Royal Statistical Society: Series B
(Methodological), 52(1):3–20, 1990.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

Bernd Fellinghauer, Peter Bühlmann, Martin Ryffel, Michael Von Rhein, and Jan D Reinhardt. Stable
graphical model estimation with random forests for discrete, continuous, and mixed variables.
Computational Statistics & Data Analysis, 64:132–152, 2013.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432–441, 2008.

Geoffrey R Grimmett. A theorem about random fields. Bulletin of the London Mathematical society,
5(1):81–84, 1973.

Naftali Harris and Mathias Drton. Pc algorithm for nonparanormal graphical models. Journal of
Machine Learning Research, 14(11), 2013.

10



Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard Schölkopf, and Clark Glymour. Generalized score
functions for causal discovery. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1551–1560, 2018.

Junzhou Huang and Tong Zhang. The benefit of group sparsity. The Annals of Statistics, 38(4):
1978–2004, 2010.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Ariel Jaimovich, Gal Elidan, Hanah Margalit, and Nir Friedman. Towards an integrated protein–
protein interaction network: A relational markov network approach. Journal of Computational
Biology, 13(2):145–164, 2006.

Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.

Steffen L Lauritzen, Anders Holst Andersen, David Edwards, Karl G Jöreskog, and Søren Johansen.
Mixed graphical association models [with discussion and reply]. Scandinavian Journal of Statistics,
pp. 273–306, 1989.

Jason D Lee and Trevor J Hastie. Learning the structure of mixed graphical models. Journal of
Computational and Graphical Statistics, 24(1):230–253, 2015.

Lina Lin, Mathias Drton, and Ali Shojaie. Estimation of high-dimensional graphical models using
regularized score matching. Electronic journal of statistics, 10(1):806, 2016.

Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: Semiparametric estimation of
high dimensional undirected graphs. Journal of Machine Learning Research, 10(10), 2009.

Han Liu, Fang Han, and Cun-hui Zhang. Transelliptical graphical models. Advances in neural
information processing systems, 25, 2012.

Po-Ling Loh and Peter Bühlmann. High-dimensional learning of linear causal networks via inverse
covariance estimation. Journal of Machine Learning Research, 15(88):3065–3105, 2014.

Po-Ling Loh and Martin J Wainwright. Structure estimation for discrete graphical models: General-
ized covariance matrices and their inverses. Advances in Neural Information Processing Systems,
25, 2012.

Po-Ling Loh and Martin J. Wainwright. Structure estimation for discrete graphical models: General-
ized covariance matrices and their inverses. The Annals of Statistics, 41(6):3022–3049, 2013.

Po-Ling Loh and Martin J. Wainwright. Support recovery without incoherence: A case for nonconvex
regularization. The Annals of Statistics, 45(6):2455–2482, 2017.

Siwei Lyu. Interpretation and generalization of score matching. arXiv preprint arXiv:1205.2629,
2012.

Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the
lasso. The annals of statistics, 34(3):1436–1462, 2006.

Rebecca Morrison, Ricardo Baptista, and Youssef Marzouk. Beyond normality: Learning sparse
probabilistic graphical models in the non-gaussian setting. Advances in neural information
processing systems, 30, 2017.

Ignavier Ng, Yujia Zheng, Jiji Zhang, and Kun Zhang. Reliable causal discovery with improved exact
search and weaker assumptions. In Advances in Neural Information Processing Systems, 2021.

Dinh Tuan Pham and Philippe Garat. Blind separation of mixture of independent sources through a
quasi-maximum likelihood approach. IEEE transactions on Signal Processing, 45(7):1712–1725,
1997.

Garvesh Raskutti, Bin Yu, Martin J Wainwright, and Pradeep Ravikumar. Model selection in gaussian
graphical models: High-dimensional consistency of ell1-regularized mle. Advances in Neural
Information Processing Systems, 21, 2008.

11



Pradeep Ravikumar, Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Model selection in Gaussian
graphical models: High-dimensional consistency of ℓ1-regularized MLE. In Advances in Neural
Information Processing Systems, 2008.

Pradeep Ravikumar, Martin J Wainwright, and John D Lafferty. High-dimensional ising model
selection using 1-regularized logistic regression. The Annals of Statistics, 38(3):1287–1319, 2010.

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, and Bin Yu. High-dimensional covari-
ance estimation by minimizing ℓ1-penalized log-determinant divergence. Electronic Journal of
Statistics, 5:935–980, 2011.

Huawei Shen, Xueqi Cheng, Kai Cai, and Mao-Bin Hu. Detect overlapping and hierarchical
community structure in networks. Physica A: Statistical Mechanics and its Applications, 388(8):
1706–1712, 2009.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020.

Alessio Spantini, Daniele Bigoni, and Youssef Marzouk. Inference via low-dimensional couplings.
The Journal of Machine Learning Research, 19(1):2639–2709, 2018.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9:62–72, 1991.

Arun Suggala, Mladen Kolar, and Pradeep K Ravikumar. The expxorcist: Nonparametric graphical
models via conditional exponential densities. Advances in neural information processing systems,
30, 2017.

Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996.

Ioannis Tsamardinos, Constantin F Aliferis, Alexander R Statnikov, and Er Statnikov. Algorithms
for large scale markov blanket discovery. In FLAIRS conference, volume 2, pp. 376–380. St.
Augustine, FL, 2003.

Martin J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1
-constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55(5):
2183–2202, 2009.

Eunho Yang, Pradeep Ravikumar, Genevera I Allen, and Zhandong Liu. Graphical models via
univariate exponential family distributions. The Journal of Machine Learning Research, 16(1):
3813–3847, 2015.

Ming Yuan. High dimensional inverse covariance matrix estimation via linear programming. The
Journal of Machine Learning Research, 11:2261–2286, 2010.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2):894–942, 2010.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional
independence test and application in causal discovery. arXiv preprint arXiv:1202.3775, 2012.

Hui Zou. The adaptive lasso and its oracle properties. Journal of the American statistical association,
101(476):1418–1429, 2006.

12



Appendix

Table of Contents
A Proofs 13

A.1 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.3 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.4 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.5 Proof of Corollary 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.6 Proof of Corollary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B Experiments 20
B.1 Generating process for mixed-type data . . . . . . . . . . . . . . . . . . . . . . 20
B.2 Influence of the sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.3 Influence of different penalty functions . . . . . . . . . . . . . . . . . . . . . . 22

C Discussion 22
C.1 Towards nonparametric causal discovery . . . . . . . . . . . . . . . . . . . . . 22

A PROOFS

A.1 PROOF OF COROLLARY 1

Corollary 1. Assume

i. X = (X1, . . . , Xd) is a set of continuous variable.

ii. The PDFs of X are strictly positive and smooth.

iii. The characterization matrix Ω[c] is defined according to Eq. (3).

Then for any i ̸= j, Ω[c]
i,j = 0 implies Xi ⊥⊥ Xj | XV\{i,j}.

Proof. According to Eq. (3), it is clear that when Ω
[c]
i,j = 0, we have ∂2 log pX

∂xi∂xj
= 0, which is a

necessary and sufficient condition of xi ⊥⊥ xj | xV\{i,j} for strictly positive, smooth, and continuous
distributions as shown in Sec. 2.1.

It is worth noting that it also applies in the Gaussian case, where X ∼ N (µ,Σ) is a Gaussian vector
with mean µ and non-singular covariance Σ. In this case, we have

PX(x) ∝ exp

(
−(x− µ)⊤Σ−1(x− µ)

2

)
, (16)

which implies
∂2 log pX
∂xi∂xj

= (Σ−1)2i,j , (17)

where (Σ−1)i,j denotes the corresponding entry of the inverse covariance matrix. This well-known
property of Gaussian distribution was also shown in Baptista et al. (2021); Drton et al. (2008).
Because the inverse covariance matrix encodes the conditional independence structure when variables
are from Gaussian distributions, Ω[c] characterizes the Markov property for the Gaussian case.
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A.2 PROOF OF THEOREM 1

Theorem 1. Denote V as a set of discrete variables and Xi, Xj ∈ V. For brevity, denote
V\{Xi, Xj} as Z. Let {xi1, . . . , xiMi} and {xj1, . . . , xjMj} be the support of variables Xi and
Xj . Denote z as any value(s) of Z. Then, Xi ⊥⊥ Xj | Z if and only if, for all k ∈ [Mi] and l ∈ [Mj ]
with k ̸= 1 and l ̸= 1, we have

(logm(xi1, xj1, z)− logm(xik, xj1, z))− (logm(xi1, xjl, z)− logm(xik, xjl, z)) = 0. (4)

Proof. Sufficient condition. Without loss of generality, let us consider three discrete variables,
i.e., {Xi, Xj , Z}. Let {xi1, . . . , xiMi

} and {xj1, . . . , xjMj
} be the support of variables Xi and Xj ,

respectively.

Consider the case that the finite difference of the discrete score function of Xi w.r.t. Xj equals zero.

When Xi = xi1, Xj = xj1, and differences are considered w.r.t. to xik′ and xjl′ , we have

(logm(xi1, xj1, z)− logm(xik′ , xj1, z))

− (logm(xi1, xjl′ , z)− logm(xik′ , xjl′ , z)) = 0,
(18)

where m(xi1, xj1, z) is the joint PMF simplified from mXi,Xj ,Z{xi1, xj1, z}. By iterating all
possible differences w.r.t. Xj , for all l in {2, . . . ,Mj}, we have

(logm(xi1, xj1, z)− logm(xik′ , xj1, z))

− (logm(xi1, xjl, z)− logm(xik′ , xjl, z)) = 0.
(19)

Define the discrete score function of Xi as g(xi1, xik′ , γ) = logm(xi1, γ)− logm(xik′ , γ), where
γ denotes other variables. Eq. 19 means g(xi1, xik′ , γ) doe not take the value of Xj as an argument
when the LHS of Eq. 19 equals zero. As a result, Eq. 19 could be formulated as

logm(xi1, xj1, z) = logm(xik′ , xj1, z) + g(xi1, xik′ , γ). (20)

Then by iterating all possible differences w.r.t. Xi, for all k in Ixi
= {2, . . . ,Mi}, we have

logm(xi1, xj1, z) = logm(xik, xj1, z) + g(xi1, xik, γ). (21)

By summation, we have

(N − 1) logm(xi1, xj1, z) =
∑
k∈Ixi

(logm(xik, xj1, z) + g(xi1, xik, γ))

=
∑
k∈Ixi

logm(xik, xj1, z) +
∑
k∈Ixi

g(xi1, xik, γ),
(22)

which implies that

Mi logm(xi1, xj1, z) =

Mi∑
k=1

logm(xik, xj1, z) +
∑
k∈Ixi

g(xi1, xik, γ),

logm(xi1, xj1, z) =
1

Mi

Mi∑
k=1

logm(xik, xj1, z) +
∑
k∈Ixi

g(xi1, xik, γ)

 .

(23)

Because
∑Mi

k=1 logm(xik, xj1, z) covers all possible values of Xi, this term does not depend on the
specific value of Xi. Besides, the other term

∑
k∈Ixi

g(xi1, xik, γ) does not depend on Xj . It is
worth noting that Xi1 could be any value of Xi w.o.l.g.. Therefore, we could see that when the finite
difference of the discrete score function of Xi w.r.t. to Xj equal to zero (after some aggregation of
samples), Xi ⊥⊥ Xj | Z.
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Necessary condition. When Xi ⊥⊥ Xj | Z, we could decompose m(xi, xj , z) as mXi|Z(xi |
z)mXj |Z(xj | z)mZ(z). This implies that, for all k in {2, . . . ,Mi} and l in {2, . . . ,Mj}, we have

(logm(xi1, xj1, z)− logm(xik, xj1, z))

− (logm(xi1, xjl, z)− logm(xik, yjl, z))

=
(
log

(
mXi|Z(xi1 | z)mXj |Z(xj1 | z)mZ(z)

)
− log

(
mXi|Z(xik | z)mXj |Z(xj1 | z)mZ(z)

)
−
(
log

(
mXi|Z(xi1 | z)mXj |Z(xjl | z)mZ(z)

)
− log

(
mXi|Z(xik | z)mXj |Z(xjl | z)mZ(z)

))
=

((
logmXi|Z(xi1 | z) + logmXj |Z(xj1 | z) + logmZ(z)

)
−

(
logmXi|Z(xik | z) + logmXj |Z(xj1 | z) + logmZ(z)

))
−
((
logmXi|Z(xi1 | z) + logmXj |Z(xjl | z) + logmZ(z)

)
−

(
logmXi|Z(xik | z) + logmXj |Z(xjl | z) + logmZ(z)

))
= 0.

(24)

Therefore, when Xi ⊥⊥ Xj | Z, the finite difference of the discrete score function of Xi w.r.t. to Xj

equals zero.

The proof is complete.

A.3 PROOF OF COROLLARY 2

Corollary 2. Assume

i. X = (X1, . . . , Xd) is a set of discrete variable.

ii. The PMFs of X are strictly positive.

iii. The characterization matrix Ω[d] is defined according to Eq. (5).

Then for any i ̸= j, Ω[d]
i,j = 0 implies Xi ⊥⊥ Xj | XV\{i,j}.

Proof. According to Eq. (5), we have

Ω
[d]
i,j := EmX

∑
k,l

f [d](xi1, xik, xj1, xjl, z)
2

 , (25)

where f [d](xi1, xik, xj1, xjl, z) denotes the LHS of Eq. (4), i.e.,

f [d](xi1, xik, xj1, xjl, z)

= (logm(xi1, xj1, z)− logm(xik, xj1, z))

− (logm(xi1, xjl, z)− logm(xik, xjl, z)) .

(26)

Thus, if Ω[d]
i,j = 0, we must have

(logm(xi1, xj1, z)− logm(xik, xj1, z))

− (logm(xi1, xjl, z)− logm(xik, xjl, z)) = 0,
(27)

for all k ∈ [Mi] and l ∈ [Mj ], where Mi and Mj denote the cardinalities of Xi and Xj , respectively.
Based on Theorem. 1, we have Xi ⊥⊥ Xj | Z.

The proof is complete.

A.4 PROOF OF THEOREM 2

Theorem 2. Denote V as a set of mixed-type variables and Xi, Xj ∈ V, where Xi is discrete
and Xj is continuous. Let {xi1, . . . , xiMi} be the support of variables Xi. For brevity, denote
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V\{Xi, Xj} as Z. Denote z as any value(s) of Z and xj as any value of the continuous variable Xj .
Then, Xi ⊥⊥ Xj | Z if and only if, for all k ∈ [Mi] with k ̸= 1, we have

∂ log
(
pXj ,Z|Xi

(xj , z | xi1)mXi
(xi1)

)
∂xj

−
∂ log

(
pXj ,Z|Xi

(xj , z | xik)mXi
(xik)

)
∂xj

= 0. (6)

Proof. Sufficient condition. Without loss of generality, let us consider three variables, i.e.,
{Xi, Xj , Z}:

xi ∈ {xi1, . . . , xiMi
}

xj ∈ R,
(28)

where we set Xi = xi as the discrete variable and Xj = xj as the continuous variable w.l.o.g. Note
that we do not constraint the type of Z = z here but set Z as continuous for brevity.

Consider the case that the finite difference of the score function of Xj w.r.t. Xi equals zero. Also, we
define p as the p.d.f. and m as the p.m.f.. We first consider the difference between xi1 and xik′ .

∂ log
(
pXj ,Z|Xi

(xj , z | xi1)mXi(xi1)
)

∂xj
−

∂ log
(
pXj ,Z|Xi

(xj , z | xik′)mXi(xik′)
)

∂xj
= 0. (29)

By iterating all possible differences w.r.t. xi, for all k in Ixi = {2, . . . ,M}, we have

∂ log
(
pXj ,Z|Xi

(xj , z | xi1)mXi(xi1)
)

∂xj
−

∂ log
(
pXj ,Z|Xi

(xj , z | xik)mXi(xik)
)

∂xj
= 0, (30)

which is equivalent to

∂ log
(
pXj ,Z|Xi

(xj , z | xi1)mXi
(xi1)

)
∂xj

=
∂ log

(
pXj ,Z|Xi

(xj , z | xik)mXi
(xik)

)
∂xj

. (31)

Then by integrating on both sides w.r.t. Xj , we have

log
(
pXj ,Z|Xi

(xj , z | xi1)mXi(xi1)
)
= log

(
pXj ,Z|Xi

(xj , z | xik)mXi(xik)
)
+ Ck, (32)

where Ck is a constant. We then apply a summation as follows

(Mi − 1) log
(
pXj ,Z|Xi

(xj , z | xi1)mXi
(xi1)

)
=

∑
k∈Ixi

(
log

(
pXj ,Z|Xi

(xj , z | xik)mXi(xik)
)
+ Ck

)
, (33)

which implies that

log
(
pXj ,Z|Xi

(xj , z | xi1)mXi(xi1)
)

=
1

Mi

Mi∑
k=1

log
(
pXj ,Z|Xi

(xj , z | xik)mXi(xik)
)
+

∑
k∈Ixi

Ck

 .
(34)

Because
∑Mi

k=1 log
(
pXj ,Z|Xi

(xj , z | xik)mXi(xik)
)

covers all possible values of k, this term does
not depend on the specific value of Xi. Besides, Ck does not depend on Xj . Therefore, by iterating
all possible differences of Xi, we could see that when the finite difference of the score function of
Xj w.r.t. Xi equals zero (after some aggregation of samples), Xi ⊥⊥ Xj | Z.

It is noteworthy that another “symmetric" case, where the derivative of the discrete score function of
Xi w.r.t. Xj equals zero, is as follows

∂
(
log

((
pXj ,Z|Xi

(xj , z | xi1)mXi
(xi1)

)
− log

(
pXj ,Z|Xi

(xj , z | xik)mXi
(xik)

)))
∂xj

= 0, (35)

which is equivalent to

∂ log
(
pXj ,Z|Xi

(xj , z | xi1)mXi(xi1)
)

∂xj
−

∂ log
(
pXj ,Z|Xi

(xj , z | xik)mXi(xik)
)

∂xj
= 0. (36)
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Thus, we only need to consider Eq. 36, which is the case that the finite difference of the discrete
score function of Xi w.r.t. Xj equals zero.

Necessary condition. When Xi ⊥⊥ Xj | Z, we could decompose pXj ,Z|Xi
(xj , z | xi1)mXi(xi1)

as mXi|Z(xi1 | z)pXj |Z(xj | z)pZ(z). This implies that, for all k in {2, . . . ,Mi}, we have

∂ log
(
pXj ,Z|Xi

(xj , z | xi1)mXi(xi1)
)

∂xj
−

∂ log
(
pXj ,Z|Xi

(xj , z | xik)mXi(xik)
)

∂xj

=
∂ log

(
mXi|Z(xi1 | z)pXj |Z(xj | z)pZ(z)

)
∂xj

−
∂ log

(
mXi|Z(xik | z)pXj |Z(xj | z)pZ(z)

)
∂xj

=
∂
(
logmXi|Z(xi1 | z) + log pXj |Z(xj | z) + log pZ(z)

)
∂xj

−
∂
(
logmXi|Z(xik | z) + log pXj |Z(xj | z) + log pZ(z)

)
∂xj

=
∂ log pXj |Z(xj | z)

∂xj
−

∂ log pXj |Z(xj | z)
∂xJ

=0.

(37)

Therefore, when Xi ⊥⊥ Xj | Z, the finite difference of the score function of Xj w.r.t. to Xi equal to
zero.

The proof is complete.

A.5 PROOF OF COROLLARY 3

Corollary 3. Assume

i. X = (X1, . . . , Xd) is a set of variables containing both continuous and discrete variables.

ii. For continuous variables, the PDFs are strictly positive and smooth.

iii. For discrete variables, the PMFs are strictly positive.

iv. The characterization matrix Ω[m] is defined according to Eq. (7).

Then for any i ̸= j, Ω[m]
i,j = 0 implies Xi ⊥⊥ Xj | XV\{i,j}.

Proof. According to Eq. (7), we have

Ω
[m]
i,j :=



EπX

[
f
[c]
i,j(x)

2
]

if Xi ∈ Xc, Xj ∈ Xc

EπX

[∑
k,l f

[d](xi1, xik, xj1, xjl, z)
2
]

if Xi ∈ Xd, Xj ∈ Xd

EπX

[∑
k f

[m](xi, xj1, xjk, z)
2
]

if Xi ∈ Xc, Xj ∈ Xd

EπX

[∑
k f

[m](xj , xi1, xik, z)
2
]

if Xi ∈ Xd, Xj ∈ Xc,

(38)

where Xc and Xd are the sets of continuous and discrete variables, respectively. We have already
proved the first two cases (i.e., {Xi ∈ Xc, Xj ∈ Xc} and {Xi ∈ Xd, Xj ∈ Xd}) in the proofs of
Cor. 1 and Cor. 2, respectively. So here we will focus on the other two cases. We start from the third
case, where {Xi ∈ Xc, Xj ∈ Xd}. We have

f [m](xi, xj1, xjk, z) =
∂ log

(
pXi,Z|Xj

(xi, z | xj1)mXj
(xj1)

)
∂xi

−
∂ log

(
pXi,Z|Xj

(xi, z | xjk)mXj (xjk)
)

∂xi
.

(39)
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Thus, if Ω[m]
i,j = 0 for {Xi ∈ Xc, Xj ∈ Xd}, we must have

∂ log
(
pXi,Z|Xj

(xi, z | xj1)mXj (xj1)
)

∂xi

−
∂ log

(
pXi,Z|Xj

(xi, z | xjk)mXj
(xjk)

)
∂xi

= 0,

(40)

for all k ∈ [Mj ], where Mj denotes the cardinality of Xj . Thus, according to Theorem 2, we have
Xi ⊥⊥ Xj | Z if Ω[m]

i,j = 0 for {Xi ∈ Xc, Xj ∈ Xd}.

The similar derivation applies for the last case, where {Xi ∈ Xd, Xj ∈ Xc}.

A.6 PROOF OF COROLLARY 4

We first introduce the following lemmas and their proofs for completeness.

A.6.1 PROOF OF LEMMA 1

Lemma 1. [directly from Thm. 1 in (Hyvärinen & Dayan, 2005)] Assume

i. X = (X1, . . . , Xd) is a set of continuous variables.

ii. The data PDF pX(x) is differentiable. The model PDF (x; θ) is twice-differentiable. Both
of them are strictly positive.

iii. The expectations Ex

{
∥ log p(x; θ)∥2

}
and Ex

{
∥log pX(x)∥2

}
are finite for any θ, and

pX(x) log p(x; θ) goes to zero for any θ when ∥x∥ → ∞.

Then Eq. (8) is equivalent to

Oc(θ) =

∫
x∈Rn

pX(x)

d∑
i=1

[
1

2
∥∇xi

log p(x; θ)∥2 +Hxi
(log p(x; θ))

]
dx+ ρλ(Ω

[c]). (41)

Proof. Based on Eq. (8), we have

Oc(θ) =
1

2

∫
px(x)|∇x log p(x; θ)−∇x log px(x)|2dx+ ρλ(Ω

[c]), (42)

where ρλ(·) denotes a sparsity penalty function and λ is the penalty parameter. This is equivalent to

Oc(θ) =
1

2

∫
pX(x)

(
∥∇x log p(x; θ)∥2 + ∥∇x log pX(x)∥2

− 2 (∇x log pX(x))
⊤
(∇x log p(x; θ))dx+ ρλ(Ω

[c]).

(43)

We first consider the integral for the following part

−
∫

pX(x) (∇x log pX(x))
⊤
(∇x log p(x; θ)) dx, (44)

by which we could obtain

−
∑
i

∫
pX(x) (∇xi

log pX(x)) (∇xi
log p(x; θ)) dx

=−
∑
i

∫
(∇xipX(x)) (∇xi log p(x; θ)) dx

=−
∑
i

∫ [∫
∇xi

pX(x) (∇xi
log p(x; θ)) dx1

]
d(x1, . . . , xd)

(⋆)
= −

∑
i

∫ [
lim

a→∞,b→−∞
[pX (a, x2, . . . , xd)∇xi

log p(a, x2, . . . , xd, θ)

−pX (b, x2, . . . , xn)∇xi
log p(b, x2, . . . , xd, θ)]

−
∫

∂2 log pX
∂xi

2
pX(x)dx1

]
d(x2, . . . , xd),

(45)
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where Eq. (⋆) is because if we assume f and g are both differential, we have

∂f(x)g(x)

∂xi
= f(x)

∂g(x)

∂x1
+ g(x)

∂f(x)

∂x1
. (46)

For i ̸= 1, the cases follow similarly. Because we assume pX(x) log p(x; θ) goes to zero for any θ
when ∥x∥ → ∞, the limit is zero. Thus, we have proven that

−
∑
i

∫
pX(x)∇xi log pX(x) ∇xi log p(x; θ)) dx =

∑
i

∫
∂2 log pX
∂xi

2
pX(x)dx, (47)

By injecting it into Eq. (43), we obtain

Oc(θ) =

∫
pX(x)

[
1

2
∥∇x log p(x; θ)∥2 +

1

2
∥∇x log pX(x)∥2

+tr (Hx(log p(x; θ)))]dx+ ρλ(Ω
[c]).

(48)

Because 1
2∥∇x log pX(x)∥2 does not depend on θ, we could ignore it. Then we have

Oc(θ) =

∫ d∑
i=1

[
1

2
∥∇xi log p(x; θ)∥2 +Hxi(log p(x; θ))

]
dx+ ρλ(Ω

[c]). (49)

Thus, the proof is complete.

A.6.2 PROOF OF LEMMA 2

Lemma 2. [directly from (Lyu, 2012)] Assume

i. X = (X1, . . . , Xd) is a set of discrete variables.

ii. The data PMF mX(x) and the model PMF m(x; θ) are strictly positive.

Then Eq. (12) is equivalent to

Od(θ) =
∑
x

mX(x)

d∑
i=1

[(
Mi(m(x; θ))

m(x; θ)

)2

− 2Mi

(
Mi(m(x; θ))

m(x; θ)

)]
+ ρλ(Ω

[d]). (50)

Proof. Based on Eq. (12), we have

Od(θ) =
∑
x

mX(x)

∥∥∥∥M(m(x; θ))

m(x; θ)
− M(mX(x))

mX(x)

∥∥∥∥2 + ρλ(Ω
[d]), (51)

which implies

Od(θ) =
∑
x

mX(x)

d∑
i=1

∥∥∥∥Mi(m(x; θ))

m(x; θ)
− Mi(mX(x))

mX(x)

∥∥∥∥2 + ρλ(Ω
[d])

(⋆)
=

∑
x

mX(x)

d∑
i=1

[(
Mi(m(x; θ))

m(x; θ)

)2

− 2Mi

(
Mi(m(x; θ))

m(x; θ)

)]
+ ρλ(Ω

[d]),

(52)

where Eq. (⋆) is due to the fact that
(

Mi(mX(x))
mX(x)

)2

does not take θ as an argument.

The proof is complete.

Then the corollary follows from these lemmas, which is included as follows.

Corollary 4. Assume

i. The data density πX(·) is equal to π(·; θ∗) for some θ∗.
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ii. The data density πX(·) and model density π(·; θ) are strictly positive. πX(·) and π(·; θ) is
differentiable and twice-differentiable, respectively, w.r.t. continuous variables. For some
θ∗, πX(·) = π(·; θ∗) and no other parameter value gives a density that is equal to π(·; θ∗)
almost everywhere.

iii. The expectations EπX

[
∥ log π(x; θ)∥2

]
and EπX

[
∥log πX(x)∥2

]
are finite for any θ, and

πX(x) log π(x; θ) goes to zero for any θ when ∥x∥ → ∞.

Then O′
m(θ) = 0 implies θ = θ∗.

Proof. The O′
m(θ) is defined as follows

O′
m(θ) = EπX

[∑
i

si(x; θ)

]
, (53)

where

si(x; θ) :=


1
2∥∇xi log π(x; θ)∥2 +Hxi(log π(x; θ)) Xi ∈ Xc

1
2

(
Mi(m(x;θ))

m(x;θ)

)2

−Mi

(
Mi(m(x;θ))

m(x;θ)

)
Xi ∈ Xd,

(54)

where the probability function π is strictly positive. According to Lemma 1 and Lemma 2, both cases

of si(·; θ) in O′
m(θ) are equivalent to 1

2Eπ

[∥∥∥ g(π(·;θ))
π(·;θ) − g(π(·))

π(·)

∥∥∥2], where g denotes the gradient

operator for continuous variables or the marginalization operator for discrete variables. If O′
m(θ) = 0,

si(x; θ) must equal to zero for any i. Because of Brook’s Lemma (Brook, 1964), which is also
included in Lyu (2012) as Lemma 3, the marginalization operator M is complete (Defn. 1). Thus,
for the discrete variables, we could replace the gradient in the continuous score function with the
marginalization operator while preserving local consistency as that for the continuous variables,
which is shown by Theorem 2 in Hyvärinen & Dayan (2005).

B EXPERIMENTS

B.1 GENERATING PROCESS FOR MIXED-TYPE DATA

For the mixed-type case, we simulate data with the process described in Andrews et al. (2018), of
which the details are included here for completeness. After generating a random decomposable
DAG, we first assign a data type (continuous or discrete) to each variable with equal probability.
For variables without parents in the ground-truth graph, we sample their values from Gaussian and
Multinomial distributions, respectively. Then for each continuous variable, we create a temporary
discretized version by applying equal frequency binning. The number of bins is uniformly chosen
between and including 2 and 5. The cardinality of each discrete variable is uniformly chosen between
and including 2 and 4. The randomly generated decomposable DAGs are moralized to obtain the
ground-truth Markov network structures.

Next, for variables with parents in the ground-truth graph, we sample the values of them as follows.
For continuous variables, we first adopt partitioning according to its discrete variables. Then the
values of these continuous variables are generated by randomly parameterizing the coefficients of
a regression for each partition. For discrete variables, we generate the values of them by randomly
parameterizing Multinomial distributions of the variables of the target variable and its discrete parents
(temporary or not). After the simulation, all temporary discretized variables are removed.

B.2 INFLUENCE OF THE SAMPLE SIZE

In this section, we report additional experimental results with a larger sample size. We conduct
experiments for all settings (continuous, discrete, and mixed-type) with different numbers of variables
(d ∈ {4, 6, . . . , 20}) and 10000 samples. The results are summarized in Fig. 4, Fig. 5, and Fig. 6.
One can observe that both KCI and GS fail in all settings, indicating that they cannot scale well with
large sample sizes. It is because the complexities of KCI and GS grow cubically in the number of
samples, which is one of the motivations for the development of our method. Besides, SING cannot
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scale with more than 6 variables because of OOM. At the same time, our method works well across
all datasets without any scalability issues. Together with the better performance illustrated in Sec. 4
(note that one can even go beyond 5000 variables, e.g., it takes 7725 seconds for 10,000 variables
in our setting), we believe the potential of our method is not only theoretically exciting but also
empirically clear in both consistency and scalability.
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Figure 4: Hamming distances for continuous data, n = 10000.
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Figure 5: Hamming distances for discrete data, n = 10000.
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Figure 6: Hamming distances for mixed-type data, n = 10000.
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Figure 7: Hamming distances w.r.t. different sparsity penalty functions and numbers of variables.

B.3 INFLUENCE OF DIFFERENT PENALTY FUNCTIONS

To explore the effect of different regularization functions, we compare the results of our method with
different sparsity penalties, which are shown in Fig. 7. The experiments are conducted on Butterfly
distributions with the number of continuous variables ranging from 4 to 20 and a sample size of
1000. One could observe that SCAD and MCP outperform other penalties, while SCAD performs
slightly better than MCP in general. Adaptive ℓ1 (Zou, 2006) also illustrates its advantage compared
to the original ℓ1 penalty. This suggests the importance of appropriate penalty functions.

C DISCUSSION

C.1 TOWARDS NONPARAMETRIC CAUSAL DISCOVERY

In this section, we briefly discuss the implication of our proposed Markov network estimation method
in causal discovery, of which the goal is to learn graphical models with causal interpretations.

The major classes of approaches for causal discovery are constraint-based approaches that utilize
conditional independence tests and score-based approaches that optimize a specific score function.
Among them, PC (Spirtes & Glymour, 1991) with kernel-based conditional independence test (Zhang
et al., 2012) and GES (Chickering, 2002) with generalized score (Huang et al., 2018) are able to
handle nonparametric cases with assumptions such as causal sufficiency. Both of these approaches
rely on kernel methods whose computational complexity is cubic w.r.t. the number of samples.
Therefore, the running time could be long if the sample size is large. Furthermore, when the number
of variables is large, the search procedure may involve computing the kernel-based conditional
independence test or score function many times, which therefore may also increase the running time.

As shown by Loh & Bühlmann (2014); Ng et al. (2021) in the linear Gaussian case, the Markov
network (i.e., the support of the inverse covariance matrix of the distribution) is guaranteed to be the
super-structure of the ground truth directed acyclic graph (DAG) under a specific type of faithfulness
assumption. That is, the super-structure contains all edges of the true DAG. Using this idea, they
showed that the Markov network may be used to restrict the search space of score-based approaches
for causal discovery, which improves the scalability. Their works focus only on the linear case
and adopt classical methods like graphical Lasso (Friedman et al., 2008) to estimate the Markov
network. In this work, the nonparametric Markov network estimated by our proposed procedure
could potentially be used as a super-structure to restrict the search space for nonparametric causal
discovery methods, i.e., (kernel-based) PC and GES. Similar to (Loh & Bühlmann, 2014; Ng et al.,
2021), this may help reduce the running time and improve the scalability of these methods.
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