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ABSTRACT

Fact-checking in code-mixed, low-resource languages such as Hinglish remains a
significant and underexplored challenge in natural language processing. Existing
fact-verification systems are primarily designed for high-resource, monolingual
settings and fail to generalize to real-world political discourse in linguistically di-
verse regions like India. To address this gap, we introduce HiFACTMix, a novel
benchmark comprising approximately 1,500 real-world factual claims made by 28
Indian state Chief Ministers and several influential political leaders in Hinglish,
each annotated with textual evidence and veracity labels (True, False, Partially
True, Unverifiable). Building on this resource, we propose a Quantum-Enhanced
Retrieval-Augmented Generation (RAG) framework that integrates code-mixed
text encoding, evidence graph reasoning, and explanation generation. Exper-
imental results show that HiFACTMix not only outperforms strong multilin-
gual and code-mixed baselines (CM-BERT, VerT5erini, IndicBERT, mBERT) but
also remains competitive against recent large language models, including GPT-4,
LLaMA-2, and Mistral. Unlike generic LLMs that may generate fluent but weakly
grounded outputs, HiFACTMix explanations are explicitly linked to retrieved evi-
dence, ensuring both accuracy and transparency. This work opens a new direction
for multilingual, quantum-assisted, and politically grounded fact verification, with
implications for combating misinformation in low-resource, code-mixed environ-
ments.

1 INTRODUCTION

The pervasive spread of misinformation, particularly in the political domain, poses a significant
threat to societal well-being and democratic processes. Automated fact-checking has emerged as
a promising solution to counter this challenge, typically involving four major stages: identifying
check-worthy claims, retrieving evidence, verifying truthfulness, and generating justifications. Fig-
ure 1 illustrates the general pipeline of an NLP-based fact-checking system, from claim input to
veracity prediction and explanation generation (Rashkin et al., 2017; Saju et al., 2025).

Figure 1: Overview of a Natural Language Processing framework for automated fact-checking. The
pipeline typically consists of claim detection, evidence retrieval, veracity prediction, and justification
generation (Guo et al., 2022).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite its promise, traditional fact-checking methods, often relying on expert journalists and man-
ual verification, struggle to cope with the scale, speed, and complexity of modern information
ecosystems (Agunlejika, 2025; Soprano, 2025). With the rapid rise of AI-generated content, the
demand for scalable and automated fact-checking systems has become even more pressing (Boon-
sanong et al., 2025). Existing approaches, however, often rely on static datasets and coarse classi-
fication metrics, failing to adequately evaluate justification quality or capture significant limitations
of large language models (LLMs) (Lin et al., 2025).

While much progress has been made in English-language fact-checking, multilingual societies face
additional challenges. A large portion of political discourse in countries like India is conducted in
code-mixed languages, such as Hinglish (a mixture of Hindi and English). Code-mixing introduces
complexities including lexical borrowing, syntactic integration, and semantic ambiguity, which often
confound traditional NLP tools (Muharram & Purwarianti, 2024; Chung et al., 2025). Moreover, the
absence of standardized corpora and resources for code-mixed political discourse further limits the
development of effective fact-checking systems.

Hinglish, a blend of Hindi and English, is one of the most widely used code-mixed languages in
India and dominates online political and social discourse. Recent studies estimate that nearly 30–
40% of social media content from Indian users is expressed in Hinglish or related code-mixed forms
(Bali et al., 2014; Khanuja et al., 2020). This prevalence makes Hinglish particularly important for
political fact-checking, since misinformation in India often spreads through multilingual and code-
mixed channels such as Twitter, WhatsApp, and regional news outlets (Rathore et al., 2020; Joshi
et al., 2020). Developing resources for Hinglish fact-checking is thus crucial for both linguistic
inclusivity and combating misinformation in multilingual societies. In particular, political leaders
frequently employ Hinglish in speeches, interviews, and online posts, creating unique challenges for
fact-checking systems that are designed primarily for monolingual text.

With this motivation our work addresses the above mentioned gap and presents HiFACTMix, a
benchmark dataset of approximately 1,500 annotated Hinglish political claims, and HiFACTMix,
a novel fact-checking framework that integrates code-mixed quantum-enhanced RAG modules for
efficient knowledge retrieval and improved claim-evidence alignment. Our key contributions are as
follows:

• We introduce a benchmark dataset of approximately 1,500 evidence-annotated Hinglish
political claims curated from 28 Chief Ministers across Indian states and a few influential
political leaders, accompanied by manually collected evidence and veracity labels.

• We propose HiFACTMix, a graph-aware multilingual fact-checking pipeline that combines
advanced language modeling with quantum-enhanced retrieval-augmented reasoning and
explanation generation.

• We conduct extensive experiments comparing HiFACTMix with strong multilingual and
explainable baselines and recent language models, showing our proposed approach outper-
forms others on Hinglish political claims.

2 RELATED WORK

The veracity of generated content from large language models (LLMs) is difficult to evaluate be-
cause factual information often involves complex inter-sentence dependencies (Liu et al., 2025). To
address these challenges, FactScore was introduced as a novel evaluation metric (Min et al., 2023).
Rather than assessing factuality holistically, FactScore adopts a decompose-then-verify approach,
wherein input text is broken into smaller, more manageable subclaims (Jiang et al., 2024). Each
subclaim is independently verified against a knowledge source, and the resulting factuality scores
are aggregated into an overall factuality score for the original text. Automated evaluation of factual-
ity in LLM-generated content has thus become a critical approach to mitigate hallucinations, where
models generate statements inconsistent with established facts (Xie et al., 2024).

Recent work suggests that fully atomic facts are not the ideal representation for fact verification
and proposes two criteria for molecular facts — decontextuality and minimality (Gunjal & Dur-
rett, 2024). Studies also show that LLMs often generate factual errors when responding to open-
ended, fact-seeking prompts (Wei et al., 2024). Our work intersects multiple research areas: mul-
tilingual fact-checking, code-mixed NLP, explanation generation, and graph-based reasoning. Sev-
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eral datasets have driven progress in evidence-based verification. English-only benchmarks such as
FEVER (Thorne et al., 2018), LIAR (Wang, 2017), and Climate-FEVER (Diggelmann et al., 2020)
have been widely adopted. The CheckThat! series (Barrón-Cedeño et al., 2020) extends this to
political claims in multiple languages, while IndicFact (Patel et al., 2021) specifically targets Indian
languages. However, none of these resources adequately capture the complexities of Hinglish or
code-mixed political discourse.

In the realm of code-mixed NLP, benchmarks like GLUE-CoS and LINCE have been instrumental
in evaluating parsing, classification, and translation tasks (Khanuja et al., 2020). Hinglish-specific
models such as CM-BERT (Winata et al., 2021) and HiNER (Chandu et al., 2018) demonstrate im-
provements on code-switching tasks, but their applicability to fact-checking remains largely unex-
plored. Explainable fact-checking has also gained traction. Resources such as e-FEVER (DeYoung
et al., 2020a), ERASER (DeYoung et al., 2020b), and VerT5erini (Pradeep et al., 2021) incorporate
techniques for evidence alignment and justification generation. Yet, these systems are predominantly
English-only and do not generalize well to low-resource multilingual settings.

Finally, graph-based reasoning models have demonstrated strong performance in factuality tasks.
GraphFact (Nakashole et al., 2021) and KGAT (Liu et al., 2020b) leverage graph neural networks
to represent evidence structures, while GraphFormer introduces transformer-based reasoning for
relational data (Liu et al., 2020a). Drawing inspiration from these, our model integrates lightweight
graph reasoning over code-mixed evidence. Consequently, our benchmark and model address this
gap, offering the first unified framework for evidence-grounded, explainable, political fact-checking
tailored to Hinglish.

3 HIFACT DATASET

HiFACT is a benchmark specifically designed for fact-checking in Hinglish political discourse. It
contains approximately 1,500 real-world factual claims drawn from 28 Indian state Chief Ministers
and a few influential political leaders. Each claim was paired with textual evidence and annotated
for veracity to enable rigorous evaluation of automated fact-checking models.

3.1 DATA COLLECTION

The claims were collected from diverse sources including political speeches, press conferences,
government press releases, interviews, and news reports from trusted outlets such as NDTV, PIB,
and state-level media. To ensure that the dataset reflects verifiable political discourse, we excluded
rhetorical, opinion-based, and unverifiable statements that lacked factual grounding.

3.2 ANNOTATION PROCESS

Every claim was manually annotated along three dimensions:

• Veracity label: TRUE, FALSE, PARTIALLY TRUE, or UNVERIFIABLE.

• Evidence: Supporting documents, news articles, or government records that justify the
label.

• Metadata: Speaker identity, political affiliation, position, date, and source URL.

Annotations were verified independently by multiple reviewers. Conservative labeling guidelines
were adopted, meaning incomplete or weakly supported claims were more likely to be classified as
PARTIALLY TRUE or UNVERIFIABLE.

3.3 DATASET DISTRIBUTION

Table 1 presents the distribution of claims across the four veracity categories in HiFACT. The dataset
is clearly imbalanced, with FALSE and UNVERIFIABLE claims together accounting for more than
60% of the total. This mirrors the reality of political discourse, where misleading, ambiguous, or
unverifiable statements occur more frequently than entirely factual ones.
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Veracity Label Count Percentage (%)
FALSE 522 35.25
UNVERIFIABLE 373 25.19
PARTIALLY TRUE 305 20.59
TRUE 281 18.97
Total 1481 100.00

Table 1: Distribution of claims by veracity label in the HiFACT dataset.

The imbalance in label distribution has important implications for automated verification models.
Systems trained on such data may overfit to majority classes (FALSE and UNVERIFIABLE), lead-
ing to reduced sensitivity for minority classes such as TRUE or PARTIALLY TRUE. This class
imbalance makes HiFACT a challenging and realistic benchmark, encouraging the development of
robust methods that can handle skewed distributions and avoid bias toward frequent labels.

4 METHODOLOGY

The proposed HiFACTMix-Quantum-RAG framework integrates multilingual encoding, graph-
based reasoning, quantum-enhanced retrieval, and explanation generation to fact-check code-mixed
Hinglish claims. Figure 2 presents an overview of the complete pipeline. The methodology unfolds
in the following stages.

Figure 2: Architecture of the HiFACTMix framework. Political claims are collected from social
media, encoded using a code-mixed text encoder, passed through a graph-based reasoning pipeline
and Quantum-Enhanced RAG, and finally processed by an LLM-based explanation generator.
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4.1 DATA COLLECTION

Political factual claims were collected from 28 Chief Ministers across Indian states through web
scraping of social media platforms such as Twitter, Facebook, and regional blogs. These claims
were annotated with four veracity categories: True, False, Partially True, and Unverifiable. This
ensures coverage of the nuanced nature of political discourse in Hinglish, where factual ambiguity
is common (Bali et al., 2014; Joshi et al., 2020).

4.2 CODE-MIXED TEXT ENCODING

Each Hinglish claim is processed using a Code-Mixed Text Encoder based on multilingual trans-
formers (Khanuja et al., 2020; Winata et al., 2021). The encoder captures both Hindi and English
semantics, producing embeddings that preserve lexical borrowings, syntactic irregularities, and se-
mantic shifts inherent in Hinglish code-mixing.

4.3 GRAPH-BASED REASONING PIPELINE

To incorporate structured reasoning, we construct an evidence graph, where nodes represent claims,
entities, and retrieved evidence, while edges encode semantic, temporal, and discourse-level rela-
tionships. A Graph Neural Reasoner (Graph Transformer) (Liu et al., 2020a; Nakashole et al.,
2021) processes this graph to propagate contextual information and capture interdependencies across
evidence. The resulting graph representations are used for veracity prediction and are explicitly
grounded in supporting evidence, mitigating over-reliance on shallow text matching.

4.4 QUANTUM-ENHANCED RETRIEVAL-AUGMENTED GENERATION (QUANTUM-RAG)

The predicted claim representation, coupled with the evidence graph, is passed to a Quantum-
Enhanced Retrieval-Augmented Generation (Quantum-RAG) module. This component applies
quantum-inspired search and re-ranking (Schuld et al., 2015; Kerenidis & Prakash, 2019) to im-
prove retrieval efficiency and semantic alignment. By integrating quantum-enhanced re-ranking, the
system ensures that retrieved evidence is both semantically relevant and contextually optimal for
verifying Hinglish claims.

4.5 NATURAL LANGUAGE EXPLANATION GENERATION

To enhance interpretability, the claim, predicted veracity label, and evidence graph output are fed
into FLAN-T5, a multilingual sequence-to-sequence model (Chung et al., 2022). The model gen-
erates human-readable justifications, linking each decision directly to supporting evidence. This
explanation serves as a transparent rationale, enabling users to understand why a claim is catego-
rized as True, False, Partially True, or Unverifiable.

4.6 EXPLANATION QUALITY EVALUATION

We evaluate the quality of generated explanations by comparing them against ground-truth anno-
tations and retrieved evidence using automatic metrics such as ROUGE-L (Lin, 2004) and BLEU
(Papineni et al., 2002). While these metrics do not directly capture factual correctness, they provide
a proxy for measuring how well explanations align with retrieved evidence and annotator-provided
justifications. Future work will incorporate semantic and factuality metrics such as BERTScore and
FactScore (Min et al., 2023) for more robust evaluation.

4.7 USER INTERFACE DEMONSTRATION

To improve accessibility and facilitate real-world usage, we implemented a Gradio-based user inter-
face for HiFACTMix-Quantum-RAG. The interface allows users to enter a Hinglish political claim
and receive three outputs in real time:

• The predicted veracity label (True, False, Partially True, or Unverifiable),
• The retrieved supporting evidence (URL or textual snippet), and
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• A natural language explanation that justifies the predicted outcome.

Figure 3 presents a screenshot of the deployed interface. In the example shown, the claim “Congress
ne Nehru ke zamane me Bhagat Singh ko jail nahi visit kiya” is predicted as False, with the system
retrieving an external evidence URL and providing an explanation.

This deployment demonstrates the practicality of HiFACTMix in real-world political discourse,
where code-mixed misinformation is frequently spread on social media. By integrating multilin-
gual encoding, graph reasoning, quantum-enhanced retrieval, and explanation generation into an
interactive pipeline, HiFACTMix ensures that fact-checking is both interpretable and accessible to a
wide audience.

Figure 3: Gradio-based user interface for HiFACTMix-Quantum-RAG. Users enter Hinglish politi-
cal claims and receive veracity prediction, evidence retrieval, and explanation in real time.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP AND EVALUATION

We evaluate the proposed HiFACTMix-Quantum-RAG framework through a structured experi-
mental setup designed to emulate real-world political fact-checking in a Hinglish environment. All
experiments were conducted on the HiFACT dataset comprising approximately 1,500 annotated
claims, each paired with supporting textual evidence and a veracity label (True, False, Partially
True, Unverifiable). The dataset was divided into training (70%), validation (10%), and testing
(20%) subsets while maintaining class balance across splits to ensure fairness and generalization.
This stratified split preserved linguistic diversity and veracity distribution across train, validation,
and test sets.

5.2 DATASET SPLITS

The training split (70%) was used for model learning, where claims and their associated evidence
were encoded and aligned with veracity labels. The validation set (10%) supported hyperparameter
tuning and early stopping to prevent overfitting, while the held-out test set (20%) provided the final
evaluation of model performance on unseen Hinglish claims. Careful attention was given to preserve
class ratios across all subsets, ensuring equal exposure of claims belonging to each veracity category
and capturing the complexity of code-mixing.

5.3 BASELINES

To establish competitive benchmarks, we compared HiFACTMix with both multilingual and code-
mixed baselines:

• mBERT + FFNN: A multilingual baseline using mBERT embeddings with a feed-forward
classifier.

• IndicBERT + XGBoost: A hybrid pipeline combining IndicBERT embeddings with
gradient-boosted decision trees.
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• CM-BERT: A transformer pre-trained on code-mixed corpora, serving as a strong
Hinglish-specific baseline.

• VerT5erini: A retrieval-augmented transformer originally fine-tuned for English fact ver-
ification, adapted as a cross-lingual baseline.

• Recent LLMs: For a contemporary comparison, we evaluated GPT-4 (?), LLaMA-2 (?),
and Mistral (?) on the HiFACT dataset, measuring their explanation quality under code-
mixed conditions.

5.4 METRICS

We employ multiple evaluation metrics to capture both classification accuracy and explanation qual-
ity. For veracity prediction, we report Accuracy and Macro-F1 score. Accuracy measures overall
correctness, while Macro-F1 balances performance across classes, mitigating bias due to label im-
balance.

For explanation quality, we compute ROUGE-L (Lin, 2004) and BLEU (Papineni et al., 2002).
ROUGE-L measures the longest common subsequence with reference justifications, while BLEU
captures n-gram overlap with human-annotated explanations. To supplement automatic evaluation,
a human study was conducted with 150 randomly sampled explanations rated by three linguistic
experts for factual consistency and interpretability.

5.5 RESULTS

Figure 4 presents the comparison of explanation quality across HiFACTMix, baseline models, and
recent LLMs. HiFACTMix achieves the highest ROUGE-L score (0.64) and a strong BLEU score
(0.51), outperforming all code-mixed and multilingual baselines such as CM-BERT, VerT5erini,
mBERT+FFNN, and IndicBERT+XGBoost.

When compared against recent large language models, HiFACTMix remains competitive: GPT-
4 (0.62 ROUGE-L, 0.49 BLEU), LLaMA-2 (0.59 ROUGE-L, 0.46 BLEU), and Mistral (0.60
ROUGE-L, 0.47 BLEU) all show strong explanation quality, but still do not surpass HiFACTMix.
Importantly, HiFACTMix’s explanations are more evidence-grounded, benefiting from the explicit
graph reasoning and quantum-enhanced retrieval pipeline, whereas general-purpose LLMs may gen-
erate fluent but less evidence-linked justifications.

These findings confirm the effectiveness of HiFACTMix in tackling Hinglish political fact-checking,
where purely monolingual or generic LLMs face challenges due to linguistic ambiguity and lack of
specialized training.

Figure 4: Explanation Quality Comparison using ROUGE-L and BLEU. HiFACTMix outperforms
code-mixed baselines and shows competitive performance against recent LLMs.
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5.6 ABLATION STUDY

To quantify the contribution of individual components in HiFACTMix, we conducted an ablation
study by incrementally removing key modules:

• HiFACTMix w/o Graph Reasoning: Removed the graph-based evidence module; deci-
sions were made solely on encoded text embeddings.

• HiFACTMix w/o Quantum-RAG: Replaced quantum-enhanced retrieval with classical
dense retrieval.

• HiFACTMix w/o Explanation Generator: Evaluated only label prediction, omitting jus-
tification generation.

The results are summarized in Table 2. Both graph reasoning and quantum-enhanced retrieval sub-
stantially improved veracity classification and explanation quality, confirming their complementary
role. Graph reasoning provided structured contextual grounding, while Quantum-RAG improved ev-
idence retrieval precision. Removing the explanation generator reduced interpretability, highlighting
the importance of justification for practical fact-checking.

Model Variant Accuracy Macro-F1 ROUGE-L
HiFACTMix (Full) 78.5 76.3 0.64
w/o Graph Reasoning 73.1 70.5 0.57
w/o Quantum-RAG 72.4 69.8 0.55
w/o Explanation Generator 77.2 75.1 –

Table 2: Ablation results showing the impact of individual components in HiFACTMix. Both Graph
Reasoning and Quantum-RAG contribute significantly to veracity prediction and explanation qual-
ity.

6 LIMITATIONS AND FUTURE WORK

While HiFACTMix demonstrates significant advances in fact-checking code-mixed political claims,
several limitations remain that open avenues for future research.

6.1 ETHICAL CONSIDERATIONS

All claims in the HiFACT dataset were sourced from public domains such as government portals,
verified news portals, and official political press releases. Care was taken to maintain political
neutrality and avoid introducing subjective bias during annotation. Personally identifiable informa-
tion (PII) and sensitive non-factual statements were excluded. Nevertheless, fact-checking political
claims is inherently sensitive: automatic predictions may be misused for censorship or disinforma-
tion if applied outside of an academic setting. To mitigate this, we emphasize that HiFACTMix is
intended strictly for research and educational use, and all outputs will be released under open-access
licensing with transparent documentation.

6.2 DATASET LIMITATIONS

Despite careful curation, the dataset size (1,500 claims) remains modest compared to large-scale En-
glish benchmarks such as FEVER. While we ensured balanced splits across the four veracity classes
(True, False, Partially True, Unverifiable), certain classes (e.g., Unverifiable) still pose annotation
challenges. Additionally, claims were sourced only from 28 Indian state Chief Ministers and a few
senior political leaders. Although this ensures political relevance, it may limit diversity in linguistic
style and topical coverage. Extending HiFACT to include regional politicians, policy debates, and
grassroots-level claims would broaden its representativeness.

6.3 COMPUTATIONAL CHALLENGES

The integration of graph-based reasoning and quantum-enhanced retrieval modules improves ev-
idence alignment but introduces computational overhead. Training HiFACTMix required high-
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memory GPUs and specialized optimization strategies. Deploying the full pipeline in low-resource
environments (e.g., mobile fact-checking apps) remains non-trivial. Moreover, evaluation of ex-
planation quality still relies on surface metrics such as ROUGE-L and BLEU, which cannot fully
capture factual consistency or truthfulness.

6.4 FUTURE DIRECTIONS

Building on the strengths and limitations of HiFACTMix, several promising directions emerge:

• Multimodal Claims: Extending fact-checking beyond text to include audio and video
evidence, e.g., political speeches, interviews, or memes.

• Domain-Specific LLMs: Incorporating Indic-focused large language models (e.g., In-
dicGPT, HimixLM) to improve robustness in code-mixed discourse.

• Cross-Lingual Generalization: Adapting HiFACTMix to other Indian code-mixed lan-
guages such as Tamlish (Tamil-English) or Benglish (Bengali-English) to test generaliz-
ability.

• Enhanced Evaluation: Introducing metrics such as FactScore and BERTScore to better
capture semantic and factual alignment of generated explanations.

• Practical Deployment: Extending the current Gradio interface into browser plugins,
WhatsApp/Twitter fact-checking bots, or newsroom tools for real-time misinformation
monitoring.

In summary, HiFACTMix contributes the first code-mixed Hinglish benchmark and graph-aware
quantum-enhanced framework for political fact verification. While promising results highlight its
potential, future work must address scalability, fairness, and multimodal integration to fully realize
fact-checking systems for multilingual societies.

7 CONCLUSION AND FUTURE WORK

This work presented HiFACTMix, a benchmark and fact-checking pipeline designed for political
claims expressed in Hinglish, a highly prevalent code-mixed language in India. The proposed sys-
tem integrates multilingual representation learning, graph-based reasoning, and quantum-enhanced
retrieval to deliver evidence-grounded veracity classification and human-interpretable justifications.

Extensive experiments on the HiFACT dataset demonstrate that HiFACTMix consistently outper-
forms strong multilingual and code-mixed baselines such as CM-BERT, VerT5erini, mBERT, and
IndicBERT+XGBoost. Moreover, when compared against recent large language models including
GPT-4, LLaMA-2, and Mistral, HiFACTMix shows competitive performance in terms of explana-
tion quality (ROUGE-L and BLEU), while maintaining a unique advantage: its explanations are
explicitly linked to retrieved evidence, ensuring factual grounding and interpretability. This distinc-
tion highlights the importance of task-specific, evidence-aware architectures over general-purpose
LLMs, especially in politically sensitive domains.

As future work, we aim to expand HiFACTMix in several directions: (i) incorporating multimodal
claims that combine text with images, videos, or speeches; (ii) exploring domain-specific large
language models for Indian code-mixed languages such as IndicGPT-HiMix; and (iii) conducting
cross-lingual transfer experiments on other code-mixed settings such as Tamlish (Tamil-English)
and Benglish (Bengali-English). Together, these steps will push the boundaries of multilingual,
explainable, and evidence-linked fact verification in low-resource environments.

REPRODUCIBILITY CHECKLIST

• Novel Models / Algorithms: The HiFACTMix-Quantum-RAG framework is described in
Section 5.3, including code-mixed encoding, graph reasoning, quantum-enhanced retrieval,
and explanation generation. Ablation results in Section 5.6 quantify each component’s
contribution. Anonymous source code (to be provided in supplementary material) includes
model training scripts, evaluation pipelines, and the Gradio-based UI demo.
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• Datasets: The HiFACT dataset of approximately 1,500 claims is described in Section 3,
including collection, annotation, and distribution details. Class imbalance and challenges
are explicitly discussed in Section 1. Dataset splits (train/validation/test) are detailed in
Section 5.2 with stratification for fairness.

• Experimental Setup: Training, validation, and testing framework is documented in Sec-
tion 5.1. Baselines (mBERT, IndicBERT, CM-BERT, VerT5erini, GPT-4, LLaMA-2, Mis-
tral) are described in Section ??. Evaluation metrics (Accuracy, Macro-F1, ROUGE-L,
BLEU) are specified in Section 5.4. Human evaluation procedure (150 explanations, 3
annotators) is also provided in Section 5.4.

• Theoretical Results: Graph-based reasoning and quantum retrieval components reference
prior theoretical work (e.g., Schuld et al., 2015; Kerenidis & Prakash, 2019). Assumptions
and limitations are discussed in Section 6.

• Supplementary / Appendix: Annotation guidelines, hyperparameters, and error analyses
are included in the Appendix (Section ??). Screenshots of the Gradio UI (Figure 3) and
pipeline diagram (Figure 2) aid interpretability.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of HiFACTMix. The dataset, methodol-
ogy, and evaluation framework are comprehensively documented: the HiFACT dataset and its an-
notation pipeline are described in Section 3, while the architecture of HiFACTMix-Quantum-RAG,
including graph reasoning and quantum-enhanced retrieval modules, is detailed in Section 5.3. The
experimental setup, dataset splits, baselines, and evaluation metrics are provided in Section ??, with
ablation studies highlighting individual component contributions in Section 5.6. Hyperparameters,
annotation guidelines, and additional error analyses are included in the Appendix (Section ??). To
support replication, we will release anonymized source code and dataset scripts as supplementary
material. Together, these resources ensure that researchers can reproduce and extend our results
reliably.
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