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Asymptotic mutual information in quadratic estimation problems

over compact groups

Kaylee Y. Yang∗ Timothy L. H. Wee∗ Zhou Fan

Abstract

Motivated by applications to group synchronization and quadratic assignment on random data, we

study a general problem of Bayesian inference of an unknown “signal” belonging to a high-dimensional

compact group, given noisy pairwise observations of a featurization of this signal. We establish a quanti-

tative comparison between the signal-observation mutual information in any such problem with that in

a simpler model with linear observations, using interpolation methods. For group synchronization, our

result proves a replica formula for the asymptotic mutual information and Bayes-optimal mean-squared-

error. Via analyses of this replica formula, we show that the conjectural phase transition threshold

for computationally-efficient weak recovery of the signal is determined by a classification of the real-

irreducible components of the observed group representation(s), and we fully characterize the information-

theoretic limits of estimation in the example of angular/phase synchronization over SO(2)/U(1). For

quadratic assignment, we study observations given by a kernel matrix of pairwise similarities and a ran-

domly permutated and noisy counterpart, and we show in a bounded signal-to-noise regime that the

asymptotic mutual information coincides with that in a Bayesian spiked model with i.i.d. signal prior.

1 Introduction

The estimation of a low-rank matrix in a noisy channel is a fundamental problem in statistical inference, which

has received much attention in recent years [DAM16, KXZ16, DMK+16, EAK18, LM19, BM19, BR20]. In

this work, we are motivated by two applications that may be viewed as extensions or variants of this problem:

• In group synchronization, we wish to estimate a collection of elements g∗1, . . . ,g∗N ∈ G from a known

compact group G, given noisy observations of their pairwise alignments

yij = g∗ig
−1
∗j +Gaussian noise.

Examples include synchronization problems over the binary group Z/2Z with application to commu-

nity detection in networks [DAM16], over SO(2) (or equivalently U(1) in the complex domain) with

application to angular and phase synchronization [Sin11], over SO(3) with application to image regis-

tration and cryo-electron microscopy [BCLS20], and over the symmetric group Sk with application to

multi-way matching [PKS13].
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• In quadratic assignment, we wish to estimate a permutation π ∈ SN (the symmetric group on N

elements) that minimizes a cost function
∑

1≤i<j≤N
(yij − aπ(i)π(j))

2

for two sets of pairwise similarities {aij}1≤i<j≤N and {yij}1≤i<j≤N between N objects. We study

a statistical setting where aij = κ(xi, xj) is the evaluation of a symmetric kernel function κ(·, ·) on

samples x1, . . . , xN , and the above quadratic cost arises as the log-likelihood in a model

yij = aπ∗(i)π∗(j) +Gaussian noise

for an unknown true permutation π∗ ∈ SN . This is a Gaussian-noise analogue of some recently

studied models of graph matching on random geometric graphs [WWXY22, GL24, LA24], here with

independent noise for each measurement pair (i, j) rather than for each underlying sample x1, . . . , xN .

These two seemingly different problems share a common underlying structure of inferring an unknown

element G∗ ∈ GN of a high-dimensional group from noisy pairwise observations, where GN ≡ GN is an N -fold

product group in synchronization, and GN ≡ SN is the symmetric group in quadratic assignment. Other

applications having this structure include problems of ranking from pairwise comparisons [FH10, NOS12],

and Procrustes hyperalignment problems that arise in analyses of functional MRI data [HGC+11, LR12].

In this work, we introduce and study a general formulation for such problems in a Bayesian setting, where

pairwise measurements

yij = φ(G∗)i • φ(G∗)j +Gaussian noise for 1 ≤ i < j ≤ N (1)

are observed corresponding to a featurization φ(·) of G∗ belonging to a compact group GN , assumed to

have Haar-uniform prior distribution. The Hamiltonian of the Bayes posterior law is a GN -indexed Gaussian

process whose mean and covariance are determined by a corresponding overlap function

Q(G,G′) = N−1
N∑

i=1

φ(G)i ⊗ φ(G′)i.

We refer to Section 2 for details of this setup. In the context of this general model as well as the afore-

mentioned synchronization and quadratic assignment applications of interest, our work makes the following

contributions:

1. We analyze the mutual information between the latent group element G∗ ∈ GN and the observations

{yij}i<j in general models of the form (1), showing that this admits an approximation in terms of the

mutual information in a linear observation model

yi = q1/2φ(G∗)i +Gaussian noise for i = 1, . . . , N

defined by a suitable element q of the overlap space. The approximation error is small when the overlap

space has small covering number, encompassing scenarios where the signal component of the pairwise

measurements has low effective rank.

Our proof of this result uses interpolation arguments that have been successfully developed and applied

to establish replica formulas in problems of low-rank matrix estimation [KXZ16, EAK18, BM19]. In
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particular, we apply an elegant method of [EAK18] for proving an upper bound on the free energy (i.e.

lower bound on the mutual information) by interpolating on the Franz-Parisi potential at each fixed

overlap, adapting this method to settings where the prior law of G∗ ∈ GN has group symmetry but

may not necessarily decompose as a product of i.i.d. components.

2. Specialized to group synchronization, we provide a rigorous proof of a replica formula for the asymptotic

signal-observation mutual information and Bayes-optimal minimum mean-squared error (MMSE) in

a bounded SNR regime. A version of this replica formula in a model with complex observations was

stated in [PWBM18], which also proposed Approximate Message Passing algorithms for inference.

We obtain a complete characterization of the optimization landscape of the replica potential for (single-

channel) SO(2)/U(1)-synchronization, implying a characterization of the information-theoretic limits

of inference. More generally, for any group, we analyze the stability of the overlap q = 0 as a critical

point of the replica potential, which conjecturally corresponds to the feasibility of non-trivial signal

estimation (i.e. weak recovery) by polynomial-time algorithms [LKZ17, LM19]. We show that the phase

transition threshold for local optimality of q = 0 is determined by the SNR parameters of an equivalent

multi-channel model with real-irreducible group representations, together with a classification of these

representations based on their further reduction into complex-irreducible components.

3. Specialized to quadratic assignment where aij = κ(xi, xj) and yij = aπ∗(i)π∗(j) + Gaussian noise, our

result implies that the mutual information is related to that in a linear observation model

yi = q1/2φ(xπ∗(i)) + Gaussian noise

where φ(·) is a feature map defined by eigenfunctions of the kernel κ(·, ·). This linear model, although

not independent across components i = 1, . . . , N , is well-studied as an oracle model in the literature

on compound decision problems and empirical Bayes estimation [HR55, GR09, JZ09, PW21]. We

deduce from results of this literature that in a bounded SNR regime, if the empirical distribution of

{xi}Ni=1 converges to a limit law ρ, then the asymptotic mutual information between π∗ and {aij , yij}i<j
coincides with the mutual information in a low-rank matrix estimation model having i.i.d. prior ρ for

its signal components.

We present the detailed setting and results of the general model in Section 2, the specialization to group

synchronization in Section 3, and the specialization to random quadratic assignment in Section 4.

1.1 Further related literature

Interpolation methods and overlap concentration. Gaussian interpolation techniques for computing

free energies in spin glass models were brought to prominence by Guerra [Gue03], and have since been ex-

tended and applied to characterize the fundamental limits of inference in many Bayesian statistical problems

with planted signals, including [KM09, KXZ16, DMK+16, EAK18, LM19, BM19, BKM+19]. In Bayesian in-

ference problems, obtaining a tight upper bound for the log-partition-function (i.e. free energy) is oftentimes

more intricate than the lower bound; this was achieved in low-rank matrix estimation problems using an

Aizenman-Sims-Starr scheme in [LM19] and an adaptive interpolation method in [BM19]. Our proofs build

upon a different method in [EAK18] of analyzing the large deviations of the overlap between a posterior

sample and the planted signal, by bounding the Franz-Parisi potential [FP97], i.e. the free energy restricted

to configurations having overlap values in a narrow range. For the high-temperature region of the classical
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Sherrington-Kirkpatrick model, this is also related to the analysis carried out in [Tal11, Theorem 13.4.2].

Large deviations of the overlap have also been studied recently for low-rank matrix estimation models outside

the replica-symmetric setting, under a mismatched prior and noise distribution, in [GKKZ23].

Group synchronization. Angular synchronization problems over SO(2) were introduced in [Sin11], and

subsequently formulated and studied in settings of general groups in [Ban15, BCLS20]. The specific exam-

ples of Z/2Z-synchronization [DAM16, BBV16, MS16, JMRT16, FMM21, LW22, CFM23, LFW23], angu-

lar/phase synchronization [Bou16, BBS17, LYMCS17, ZB18, GZ19, GZ22], and synchronization problems

over the orthogonal and symmetric groups [CLS12, PKS13, GZ21, Lin22b, Lin22a, Zha22, GZ23, Lin23, NZ23]

have each received substantial attention in their own right. Much of this literature focuses on the performance

of spectral, semidefinite-programming (SDP), and/or nonconvex optimization methods for estimation, and

their associated guarantees for exact recovery or optimal estimation rates in regimes of growing SNR.

Closer to our work are the (mostly non-rigorous) results of [JMRT16, PWBM18] which study synchro-

nization problems in bounded SNR regimes, the former analyzing Bayesian, maximum-likelihood, and SDP

approaches to inference via the cavity method in the Z/2Z- and U(1)-synchronization models, and the

latter introducing an Approximate Message Passing algorithm for Bayes-optimal inference in general syn-

chronization models with multiple observation channels corresponding to distinct complex-irreducible group

representations. Our results formalize some of the findings of this latter work [PWBM18] in a similar model

having real observations, and are also complementary to analyses of the free energy for general synchroniza-

tion problems that were carried out in [PWBM16] using a second-moment-method approach.

Quadratic assignment. The quadratic assignment problem was introduced in [KB57], and its behavior on

several models of random data has been investigated in [Bur84, FVHRK85, Rhe91]. Statistical applications of

quadratic assignment and convex relaxations thereof for estimating latent vertex matchings between random

graphs have been studied more recently in [ZBV08, ABK15, LFF+15, FMWX23a, FMWX23b], in the context

of a broader literature on algorithms and fundamental limits of inference for random graph matching problems

[CK17, CKMP20, GM20, DMWX21, Gan22, GMS22, WXY22, HM23, DD23, MRT23, MWXY23]. We

study in this work a quadratic assignment problem with random data matrices of low effective rank, bearing

similarity to matching problems between random geometric graphs recently considered in [WWXY22, GL24,

LA24], and to analyses of related linear matching problems in [CD16, DCK19, KNW22]. Our analyses here

pertain to a bounded SNR regime where consistent estimation of the latent permutation/matching is not

possible, and where we instead show an exact asymptotic equivalence between the signal-observation mutual

information with that in a low-rank matrix estimation model with i.i.d. signal prior.

2 General model and results

Consider a compact group GN , a (N -dependent) featurization φ : GN → HN with “feature” space H, and

a bilinear map • : H × H → K with “observation” space K, where H,K are finite-dimensional real vector

spaces endowed with the inner-products 〈·, ·〉H and 〈·, ·〉K. We study a general observation model in which,

for an unknown parameter G∗ ∈ GN of interest, we observe

yij = φ(G∗)i • φ(G∗)j +
√
N zij for each 1 ≤ i < j ≤ N. (2)
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Here {zij}i<j are i.i.d. standard Gaussian noise vectors in K (i.e. having i.i.d. N (0, 1) components in any

orthonormal basis of K).1

In this work, we will focus on a Bayesian setting where G∗ has Haar-uniform prior G∗ ∼ Haar(GN ).

Denote the combined observations as Y = {yij}i<j . Bayes-optimal inference for G∗ is then based on the

posterior density (with respect to Haar measure)

p(G | Y ) ∝ exp


− 1

2N

∑

1≤i<j≤N
‖yij − φ(G)i • φ(G)j‖2K


 ∝ expH(G;Y ), (3)

where we expand the square and define the Hamiltonian

H(G;Y ) = − 1

2N

∑

1≤i<j≤N
‖φ(G)i • φ(G)j‖2K +

1

N

∑

1≤i<j≤N
〈φ(G)i • φ(G)j ,yij〉K. (4)

We denote its associated free energy

FN =
1

N
EG∗,Z logEG expH(G;Y ). (5)

Here, EG is the expectation over a uniform element G ∼ Haar(GN ), and EG∗,Z is over the independent signal

G∗ ∼ Haar(GN ) and Gaussian noise vectors Z = {zij}i<j which define Y .

We assume a model structure in which there exists a complementary bilinear map ⊗ : H×H → L to an

“overlap” space L, such that GN , φ, •, and ⊗ satisfy the following properties.

Assumption 2.1. (a) GN is a compact group, (H, 〈·, ·〉H) is a finite-dimensional (real) inner-product space,

and φ : GN → HN is a continuous map.

(b) • : H × H → K and ⊗ : H × H → L are bilinear maps from H × H to two finite-dimensional (real)

inner-product spaces (K, 〈·, ·〉K) and (L, 〈·, ·〉L), satisfying for all a,b, a′,b′ ∈ H the compatibility relation

〈a • b, a′ • b′〉K = 〈a⊗ a′,b⊗ b′〉L. (6)

(c) Let B(H) be the space of linear operators on H, and define an inclusion map ι : L → B(H) by

〈a, ι(q)b〉H = 〈q, a⊗ b〉L for all q ∈ L and a,b ∈ H. (7)

Then ι is injective. Furthermore, corresponding to any element q ∈ L, there exist elements |q|, |q⊤| ∈ L
such that ι(|q|), ι(|q⊤|) are both symmetric positive-definite, and

ι(|q|) =
(
ι(q)⊤ι(q)

)1/2
, ι(|q⊤|) =

(
ι(q)ι(q)⊤

)1/2
, ‖q‖L =

∥∥|q|
∥∥
L =

∥∥|q⊤|
∥∥
L. (8)

(d) Define an overlap map Q : GN × GN → L by

Q(G,H) =
1

N

N∑

i=1

φ(G)i ⊗ φ(H)i. (9)

Then Q(·, ·) satisfies the group symmetry Q(G,H) = Q(H−1G, Id) for any G,H ∈ GN , where Id the

identity element of GN .

1We fix the noise standard deviation in (2) as
√
N without loss of generality, absorbing additional problem scalings into the

definition of the N-dependent featurization φ.
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We will illustrate how the group synchronization and quadratic assignment applications fit into this

structure in Sections 3 and 4 to follow. For now, let us observe that under parts (b) and (d) of this

assumption, applying the model definition (2), the Hamiltonian H(G;Y ) in (4) is approximately a linear

combination of the squared overlaps

N‖Q(G,G)‖2L =
1

N

N∑

i,j=1

〈φ(G)i • φ(G)j , φ(G)i • φ(G)j〉K,

N‖Q(G,G∗)‖2L =
1

N

N∑

i,j=1

〈φ(G)i • φ(G)j , φ(G∗)i • φ(G∗)j〉K,

and a GN -indexed centered Gaussian process Z(G) with covariance kernel

E[Z(G)Z(G′)] = N‖Q(G,G′)‖2L =
1

N

N∑

i,j=1

〈φ(G)i • φ(G)j , φ(G′)i • φ(G′)j〉K.

This structure mirrors that of the Bayes posterior law in low-rank matrix estimation problems. The error of

this approximation for the Hamiltonian is2 O(K(GN )) where

K(GN ) = sup
G,G′∈GN

1

N

N∑

i=1

‖φ(G)i ⊗ φ(G′)i‖2L = sup
G,G′∈GN

1

N

N∑

i=1

〈φ(G)i • φ(G)i, φ(G′)i • φ(G′)i〉K, (10)

due to the removal of diagonal terms i = j from the above squared overlap expressions. The group symmetry

of Q(·, ·) in part (d) will ensure that the law over Y of the GN -valued process {H(G;Y )}G∈GN
is, up to this

O(K(GN )) discrepancy, independent of G∗. Finally, the inclusion map ι(·) in part (c) identifies overlaps

q ∈ L with linear operators ι(q) on H, and we will write the shorthands

qa := ι(q)a, q1/2a := ι(q)1/2a, (11)

the latter being well-defined when ι(q) is symmetric positive-semidefinite.

Under this assumption, the main result of this section is a general statement relating the free energy FN
to the following model with linear observations of φ(G∗): Let

Q =
{
q ∈ L : ι(q) is symmetric positive-semidefinite in B(H)

}
⊂ L. (12)

Fixing any q ∈ Q, consider the linear observation model with observations

yi = q1/2φ(G∗)i + zi for each i = 1, . . . , N, (13)

where q1/2 is identified as a linear operator on the feature space H via (11), and {zi}Ni=1 are i.i.d. standard

Gaussian noise vectors in H. Define a potential function ΨN : Q → R by

ΨN(q) = −1

4
‖q‖2L − 1

2
〈q, Q(Id, Id)〉L +

1

N
EG∗,Z logEG exp

(
N〈q, Q(G,G∗)〉L +

N∑

i=1

〈q1/2φ(G)i, zi〉H
)

(14)

2Here and throughout, O(f(N)) denotes an error bounded in magnitude by Cf(N) for an absolute constant C > 0.
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where here EZ is the expectation over Z = {zi}Ni=1. It is readily checked (c.f. Appendix A.4) that the

signal-observation mutual information in the quadratic model (2) with observations Y = (yij)i<j is given by

1

N
I(G∗, Y ) :=

1

N
EG∗,Z log

p(G∗, Y )

p(G∗)p(Y )
=

1

4
‖Q(Id, Id)‖2L −FN +O

(
K(GN )

N

)
, (15)

and the mutual information in the linear model (13) with observations Ylin = {yi}Ni=1 is given by

1

N
i(G∗, Ylin) = −1

4
‖q‖2L +

1

2
〈q, Q(Id, Id)〉L −ΨN (q). (16)

Our main result of this section is the following approximation of the free energy FN in terms of ΨN .

This then provides a direct relation between the mutual informations 1
N I(G∗, Y ) and 1

N i(G∗, Ylin) via (15)

and (16), which we will spell out in the later applications of interest.

Theorem 2.2. Denote

image(Q) = {Q(G,G′) : G,G′ ∈ GN} ⊂ L,
let D(GN ) = max{‖q‖L : q ∈ image(Q)}, and let L(ǫ;GN) be the metric entropy of image(Q), i.e. the log-

cardinality of the smallest ǫ-cover of image(Q) in the norm ‖ · ‖L. Under Assumption 2.1, there exists an

absolute constant C > 0 such that for any ǫ > 0,

∣∣∣FN − sup
q∈Q

ΨN (q)
∣∣∣ ≤ C

(
D(GN )

√
L(

√
ǫ;GN )

N
+
K(GN ) + L(

√
ǫ;GN )

N
+ ǫ

)
.

Here, K(GN ), D(GN ), and L(
√
ǫ;GN ) are finite by compactness of GN and continuity of φ, and these will

all be of constant order for any fixed constant ǫ > 0 in our applications to follow.

Overlap concentration. Denote by 〈f(G)〉 = E[f(G) | Y ] the posterior expectation given Y = {yij}i<j
in the quadratic model (2). An extension of our proof of Theorem 2.2 will establish that for G sampled from

this posterior law, the overlap Q(G,G∗) concentrates on a set defined by near-maximizers of the potential

ΨN (q). We give a general statement of this result here, and we will specialize this to a more interpretable

statement in the group synchronization application of Section 3 to follow.

For any A ∈ B(H), let pA denote the marginal density of Ylin = {yi}Ni=1 in a linear observation model

yi = Aφ(G∗)i + zi for i = 1, . . . , N , similar to (13). For m ∈ L such that ι(m) ∈ B(H) has singular value

decomposition ι(m) = UDV ⊤, denote

mU = D1/2U⊤ ∈ B(H), mV = D1/2V ⊤ ∈ B(H), (17)

and recall from Assumption 2.1(c) that there exists |m| ∈ Q for which ι(|m|) = (ι(m)⊤ι(m))1/2 = m⊤
VmV .

Set3

L∗(ǫ) =

{
m ∈ L :

1

N
DKL(pmV

‖pmU
) ≤ ǫ and sup

q∈Q
ΨN(q) −ΨN(|m|) ≤ ǫ

}
. (18)

Intuitively, anym ∈ L∗(ǫ) is such that |m| is a near-maximizer of ΨN (·), and the conditionN−1DKL(pmV
‖pmU

) ≈
0 captures a class of overlaps m that are (nearly) equivalent to |m| under the group symmetry of the model.

3Here, for any m ∈ L, the element |m| is unique by the assumed injectivity of ι. It may also be checked that DKL(pmV ‖pmU )

has the same value for any singular value decomposition UDV ⊤ of ι(m), so L∗(ǫ) is well-defined.
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Corollary 2.3. In the setting of Theorem 2.2, there exist absolute constants C0, C, c > 0 such that if

ǫ > C0

(
D(GN )

√
L(

√
ǫ;GN )

N
+
K(GN ) + L(

√
ǫ;GN )

N

)
(19)

then

EG∗,Z

〈
1
{
‖Q(G,G∗)− L∗(ǫ)‖2L > ǫ

}〉
≤ C exp

(
−cN min

(
ǫ,

ǫ2

D(GN )2

))
(20)

where ‖Q(G,G∗)− L∗(ǫ)‖L := inf {‖Q(G,G∗)−m‖ : m ∈ L∗(ǫ)}.
The proofs of Theorem 2.2 and Corollary 2.3 are given in Appendix A. We prove both the lower and

upper bounds for FN in Theorem 2.2 using an interpolation technique, the upper bound applying a method

of [EAK18] to perform the interpolation on the Franz-Parisi potential at each fixed overlap. Corollary 2.3

then follows by applying similar arguments to bound a restriction of the free energy.

3 Group synchronization

As a first application of the results in Section 2, we consider a multi-channel group synchronization model,

which is a real analogue of the model studied in [PWBM18]. Let G be a compact group (fixed and not

depending on N), and let φℓ : G → R
kℓ×kℓ for ℓ = 1, . . . , L be real orthogonal representations of G.

Throughout, corresponding to g,g′,g∗ ∈ G, we write the abbreviations

gℓ = φℓ(g), g′
ℓ = φℓ(g

′), g∗ℓ = φℓ(g∗).

Let G∗ = (g
(1)
∗ , . . . ,g

(N)
∗ ) be an unknown parameter vector of interest in the product space GN , with

prior distribution {g(i)
∗ }Ni=1

iid∼ Haar(G).4 Consider the observations




y
(ij)
1 =

√
λ1 g

(i)
∗1g

(j)⊤
∗1 +

√
N z

(ij)
1 ∈ R

k1×k1

...

y
(ij)
L =

√
λL g

(i)
∗Lg

(j)⊤
∗L +

√
N z

(ij)
L ∈ R

kL×kL

for all 1 ≤ i < j ≤ N (21)

where λℓ > 0 are fixed and known signal-to-noise parameters, and {z(ij)ℓ }1≤i<j≤N, 1≤ℓ≤L are noise matrices

with i.i.d. N (0, 1) entries, independent of each other and of G∗.

We note that any observation model (21) is equivalent to such a model in a “canonical” form where the

representations φ1, . . . , φL are real-irreducible, distinct, and non-trivial; this canonical form may be a multi-

channel model even if the original problem consists of a single channel L = 1. We explain this reduction

in Appendix D.3, where we also review some relevant background and terminology pertaining to group

representations.

This model falls into the general framework described in Section 2. Here, GN ≡ GN is the N -fold product

of G. For G = (g(1), . . . ,g(N)) ∈ GN , the feature map φ : GN → HN is separable across coordinates

i = 1, . . . , N , with components

φ(G)i = (g
(i)
1 , . . . ,g

(i)
L ) ∈ H ≡

L∏

ℓ=1

R
kℓ×kℓ . (22)

4For simplicity of the later notation, in this group synchronization model we will use superscripts for the sample index

i ∈ [N ] and subscripts for the channel index ℓ ∈ [L].
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We identify the observation and overlap spaces also as K = L = H =
∏L
ℓ=1 R

kℓ×kℓ , equipped with the usual

Euclidean inner-products

〈a,b〉H = 〈a,b〉K = 〈a,b〉L =

L∑

ℓ=1

Tr a⊤ℓ bℓ.

The pair of bilinear maps • : H×H → K and ⊗ : H×H → L and the inclusion map ι : L → B(H) are then

defined as

a • b =
(√

λℓ aℓb
⊤
ℓ

)L
ℓ=1

, a⊗ b =
(√

λℓ a
⊤
ℓ bℓ

)L
ℓ=1

, ι(q)a =
(√

λℓ aℓq
⊤
ℓ

)L
ℓ=1

. (23)

We will check in the proof of Theorem 3.1 below that the structure of Assumption 2.1 indeed holds under

these definitions.

We write Symk×k, Symk×k
�0 for the spaces of k×k symmetric and symmetric-positive-semidefinite matrices,

respectively, and abbreviate

Sym =

L∏

ℓ=1

Symkℓ×kℓ , Sym�0 =

L∏

ℓ=1

Symkℓ×kℓ
�0 ,

gqg′ =
(
gℓqℓg

′
ℓ

)L
ℓ=1

∈ L for any g,g′ ∈ G and q ∈ Sym.

3.1 Asymptotic mutual information and MMSE

Let Y = {y(ij)
ℓ } be the collection of all observations, and let 〈f(G)〉 = 〈f(g(1), . . . ,g(N))〉 denote the average

under the posterior law of G = (g(1), . . . ,g(N)) ∈ GN given Y . Let I(G∗, Y ) be the mutual information

between G∗ = (g
(1)
∗ , . . . ,g

(N)
∗ ) and Y , and let

MMSEℓ =
1(
N
2

)
∑

1≤i<j≤N
E‖g(i)⊤

∗ℓ g
(j)
∗ℓ − 〈g(i)⊤

ℓ g
(j)
ℓ 〉‖2F for each ℓ = 1, . . . , L (24)

be the Bayes-optimal minimum mean-squared-error (MMSE) for estimating {g(i)⊤
∗ℓ g

(j)
∗ℓ }1≤i<j≤N in the ℓth

channel.

Define the replica potential Ψgs : Sym�0 → R by

Ψgs(q) = −1

4

L∑

ℓ=1

λℓ‖qℓ‖2F − 1

2

L∑

ℓ=1

λℓ Trqℓ + Eg∗,z logEg exp

(
L∑

ℓ=1

λℓ Trqℓg
⊤
ℓ g∗ℓ +

√
λℓ Trq

1/2
ℓ g⊤

ℓ zℓ

)
(25)

where Eg is the expectation over a single uniformly distributed group element g ∼ Haar(G), and Eg∗,z is

over an independent element g∗ ∼ Haar(G) and Gaussian noise z = (z1, . . . , zL) ∈
∏L
ℓ=1 R

kℓ×kℓ with i.i.d.

N (0, 1) entries. By invariance of Haar measure and invariance in law of each zℓ under multiplication by

orthogonal matrices, it may be checked that Ψgs has the group symmetry

Ψgs(q) = Ψgs(gqg
−1) for all g,g′ ∈ G and q ∈ Sym�0. (26)

In particular, the set of maximizers of Ψgs is closed under the mapping q 7→ gqg−1 for all g ∈ G. It is also

direct to check, similarly to (16), that Ψgs satisfies

i(g∗,y) =
L∑

ℓ=1

(
−λℓ

4
‖qℓ‖2F +

λℓ
2

Trqℓ

)
−Ψgs(q) (27)
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where i(g∗,y) is the mutual information between the signal g∗ ∈ G and observations y = (y1, . . . ,yL) in a

q-dependent “single-sample” model





y1 =
√
λ1 g∗1q

1/2
1 + z1 ∈ Rk1×k1

...

yL =
√
λL g∗Lq

1/2
L + zL ∈ RkL×kL .

(28)

The following is an application of Theorem 2.2 and Corollary 2.3, characterizing the asymptotic mutual

information, per-channel MMSE, and concentration of the posterior overlap with the true signal in this group

synchronization model as N → ∞, in terms of a maximization of the above replica potential.

Theorem 3.1. Suppose the group G, representations φ1, . . . , φL, and signal strengths λ1, . . . , λL > 0 are

fixed, as N → ∞.

(a) The signal-observation mutual information I(G∗, Y ) in the model (21) satisfies

lim
N→∞

1

N
I(G∗, Y ) =

1

4

L∑

ℓ=1

λℓkℓ − sup
q∈Sym�0

Ψgs(q). (29)

(b) Fixing any ℓ ∈ {1, . . . , L} and positive values {λ′ℓ}ℓ′ 6=ℓ, set

D =
{
λℓ > 0 : λℓ 7→ sup

q∈Sym�0

Ψgs(q) is differentiable at λℓ

}
.

Then D has full Lebesgue measure in (0,∞). We have λℓ ∈ D if and only if all maximizers q∗ of Ψgs(q)

have the same ℓ-th component Frobenius norm ‖q∗ℓ‖F , in which case

lim
N→∞

MMSEℓ = kℓ − ‖q∗ℓ‖2F . (30)

(c) Denote

L∗,gs =

{
gq∗ : q∗ ∈ argmax

q∈Sym�0

Ψgs(q) and g ∈ G
}

⊂ L (31)

and define a neighborhood L∗,gs(ǫ) = {m ∈ L : infm∗∈L∗,gs

∑L
ℓ=1 λℓ‖mℓ − m∗ℓ‖2F < ǫ}. Then for any

ǫ > 0, there exist constants C, c > 0 depending only on G, φ1, . . . , φL, ǫ such that

E

〈
1





(
1

N

N∑

i=1

g
(i)⊤
ℓ g

(i)
∗ℓ

)L

ℓ=1

/∈ L∗,gs(ǫ)





〉
≤ Ce−cN .

We remark that the parameter G∗ = (g
(1)
∗ , . . . ,g

(N)
∗ ) in this model is identifiable only up to a global

rotation (g
(1)
∗ , . . . ,g

(N)
∗ ) 7→ (g

(1)
∗ g, . . . ,g

(N)
∗ g) by any single group element g ∈ G, and the posterior law is

invariant under this transformation. The above set L∗,gs may be understood as the set of overlaps that are

equivalent to a global maximizer of Ψgs up to this group invariance of the posterior law, and part (c) of this

theorem shows that the overlap of a posterior sample G with the true signal G∗ concentrates near this set

L∗,gs in the N → ∞ limit.
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3.2 Critical points and algorithmic phase transition

Theorem 3.1 implies that the signal-observation mutual information and information-theoretic MMSE are

governed by the global maximizer(s) of the replica potential Ψgs.

In contrast, the local optimality of q = 0 is conjectured to govern the feasibility of computationally-

efficient weak signal recovery (i.e. of attaining non-zero asymptotic overlap limN→∞
1
N

∑N
i=1 ĝ

(i)⊤
ℓ g

(i)
∗ℓ for

some channel ℓ ∈ {1, . . . , L} by a polynomial-time estimator ĝ). In particular, Approximate Message Passing

(AMP) algorithms of the form developed in [PWBM18] are expected to achieve weak signal recovery from a

random initialization whenever q = 0 is not a local maximizer of Ψgs, and conversely it is conjectured that

no polynomial-time algorithm can achieve weak signal recovery when q = 0 is a local maximizer of Ψgs. We

refer to [LKZ17, LM19] for discussion of this conjecture in related low-rank matrix estimation problems.

In this section, for general synchronization problems, we provide a criterion for the local optimality

of q = 0 for maximizing Ψgs, in terms of the signal strengths and classifications of the real-irreducible

components of the observation channels.

The following proposition first derives general forms for the gradient and Hessian of Ψgs. We write

∇Ψgs(q) and ∇2Ψgs(q) for this gradient and Hessian as linear and bilinear forms on Sym. When q is in the

strict interior of Sym�0, these are defined by the Taylor expansion

Ψgs(q+ x) = Ψgs(q) +∇Ψgs(q)[x] +
1

2
∇2Ψgs(q)[x,x] + o(‖x‖2) for x ∈ Sym with ‖x‖ → 0,

and we extend these definitions of ∇Ψgs and ∇2Ψgs by continuity to the boundary of Sym�0.

Proposition 3.2. Let 〈f(g)〉q be the mean under the posterior law of g in the single-sample model (28).

(a) For any q = (q1, . . . ,qL) ∈ Sym�0 and x = (x1, . . . ,xL) ∈ Sym,

∇Ψgs(q)[x] =
L∑

ℓ=1

−λℓ
2

Trxℓ

(
qℓ − Eg∗,zg

⊤
∗ℓ〈gℓ〉q

)
=

L∑

ℓ=1

−λℓ
2

Trxℓ

(
qℓ − Eg∗,z〈gℓ〉⊤q 〈gℓ〉q

)
. (32)

In particular, ∇Ψgs(q) = 0 if and only if qℓ = Eg∗,z〈gℓ〉⊤q 〈gℓ〉q for every ℓ = 1, . . . , L.

(b) For any q = (q1, . . . ,qL) ∈ Sym�0, x = (x1, . . . ,xL) ∈ Sym, and x′ = (x′
1, . . . ,x

′
L) ∈ Sym,

∇2Ψgs(q)[x,x
′] =

L∑

ℓ=1

−λℓ
2

Trxℓx
′
ℓ +

L∑

ℓ,ℓ′=1

λℓλℓ′

2
Eg∗,z

[〈
Trxℓg

⊤
∗ℓgℓTrx

′
ℓ′g

⊤
∗ℓ′gℓ′

〉
q

− 2Trxℓg
⊤
∗ℓ〈gℓ〉q Trx′

ℓ′g
⊤
∗ℓ′〈gℓ′〉q +Trxℓ〈gℓ〉⊤q 〈gℓ〉q Trx′

ℓ′〈gℓ′〉⊤q 〈gℓ′〉q
]
.

(33)

If a representation gℓ = φℓ(g) is not real-irreducible, then applying an orthogonal change-of-basis so

that the matrices {φℓ(g) : g ∈ G} are simultaneously block-diagonal (c.f. Theorem D.12), part (a) of

this proposition implies that ∇Ψgs(q) = 0 can only hold when qℓ has this same block-diagonal structure.

Maximization of Ψgs(q) may then be restricted to qℓ having this structure, in agreement with the reduction

in Appendix D.3 of the model (21) to a canonical form having only real-irreducible representations.

Assuming such a canonical form, the next result characterizes the phase transition threshold for q = 0

to locally maximize Ψgs(q). We recall in Appendix D.2 that any real-irreducible representation φℓ can be

categorized as being of “real type” if φℓ is also C-irreducible, of “complex type” if φℓ ∼= ψ⊕ ψ̄ where ψ, ψ̄ are

C-irreducible complex-conjugate sub-representations with ψ 6∼= ψ̄, or of “quaternionic type” if φℓ ∼= ψ ⊕ ψ

where ψ is C-irreducible and ψ ∼= ψ̄; the type of φℓ may be determined from the value of ρℓ := Eg[(Tr gℓ)
2].
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Proposition 3.3. Suppose φ1, . . . , φL are real-irreducible, distinct, and non-trivial representations of G. Let

ρℓ := Eg[(Tr gℓ)
2] =





1 if gℓ is of real type

2 if gℓ is of complex type

4 if gℓ is of quaternionic type

(34)

and set λ̃ℓ = λℓρℓ/kℓ. Then at q = 0, we have ∇Ψgs(0) = 0. Furthermore,

(a) If maxLℓ=1 λ̃ℓ < 1, then ∇2Ψgs(0) is negative-definite, and q = 0 is a local maximizer of Ψgs(q).

(b) If maxLℓ=1 λ̃ℓ > 1, then ∇2Ψgs(0) has a positive eigenvalue, and q = 0 is not a local maximizer of Ψgs(q).

Let us spell out the implication of this result for four specific examples of synchronization problems over

rotation and permutation groups, due to their particular interest in applications [Sin11, PKS13, BCLS20].

Example 3.4 (Multi-channel angular synchronization). Let

G = SO(2) =

{(
cos θ − sin θ

sin θ cos θ

)
: θ ∈ [0, 2π)

}
. (35)

Identifying g ∈ G with its rotation angle θ ∈ [0, 2π), consider the multi-channel observation model (21) with

the representations

gℓ =

(
cos ℓθ − sin ℓθ

sin ℓθ cos ℓθ

)
∈ R

2×2 for ℓ = 1, . . . , L. (36)

(The setting of single-channel angular synchronization corresponds to L = 1.)

Here, the representations gℓ are distinct, and each representation gℓ is real-irreducible: Indeed, for any

two unit vectors u,v ∈ R2 there exists θ ∈ [0, 2π) for which gℓ defined by (36) satisfies u = gℓv, so no

subspace of R2 is invariant. We have E[(Tr gℓ)
2] = Eθ∼Unif([0,2π))[(2 cos ℓθ)

2] = 2, so each representation gℓ
is of complex type.

Then Proposition 3.3 implies that q = 0 is a local maximizer of Ψgs if maxLℓ=1 λℓ < 1, and it is not a

local maximizer if maxLℓ=1 λℓ > 1.

Example 3.5 (Rotational synchronization). Let G = SO(k), and consider a single-channel model with the

standard representation φ(g) = g ∈ Rk×k given by its rotational action on Rk. That is, for an unknown

signal vector G∗ = (g
(1)
∗ , . . . ,g

(N)
∗ ) with prior distribution {g(i)

∗ }Ni=1
iid∼ Haar(SO(k)), we observe

y(ij) =
√
λ g

(i)⊤
∗ g

(j)
∗ +

√
N z(ij) ∈ R

k×k for 1 ≤ i < j ≤ N

where z(ij) are independent noise matrices with i.i.d. N (0, 1) entries.

This representation is real-irreducible, for the same reason as in Example 3.4. For k = 2, it is of complex

type as shown in Example 3.4. For k ≥ 3, we have E[giigjj ] = 0 for all i 6= j and E[g2ij ] =
1
k2ETrg⊤g = 1

k

for all i, j ∈ {1, . . . , k}, by the invariances in law of SO(k) under negations and transpositions of rows and

columns. Thus E[(Tr g)2] = E[
∑k

i=1 g
2
ii] = 1, so the representation is of real type (i.e. it is also C-irreducible).

Set

λc :=

{
1 if k = 2

k if k ≥ 3.

Proposition 3.3 then implies that q = 0 is a local maximizer of Ψgs for λ < λc, and it is not a local maximizer

for λ > λc.
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Example 3.6 (Cyclic permutation synchronization). Let G = Z/kZ be the cyclic group of size k, with

elements {Id,h,h2, . . . ,hk−1}, and consider its action on R
k by cyclic permutations of coordinates. We

note that the span of e = (1, 1, . . . , 1) ∈ Rk is a trivial invariant subspace of this action, which carries

no information about the permutation. Hence, let us consider the model defined by φ(g) ∈ R(k−1)×(k−1)

representing the restriction of this action to the subspace orthogonal to e, under any choice of orthonormal

basis for this subspace. That is, for an unknown signal vector G∗ = (g
(1)
∗ , . . . ,g

(N)
∗ ) with prior distribution

{g(i)
∗ }Ni=1

iid∼ Haar(Z/kZ), we observe

y(ij) =
√
λφ(g

(i)
∗ )⊤φ(g(j)

∗ ) +
√
N z(ij) ∈ R

(k−1)×(k−1) for 1 ≤ i < j ≤ N

where z(ij) are again independent noise matrices with i.i.d. N (0, 1) entries.

Suppose (for simplicity of discussion) that k ≥ 3 is odd. Then {φ(g) : g ∈ Z/kZ} leaves invariant the

2-dimensional subspaces {Sℓ}(k−1)/2
ℓ=1 of Rk orthogonal to e, spanned by the pairs of vectors

(
1, cos

2πℓ

k
, cos

4πℓ

k
, . . . , cos

2πℓ(k − 1)

k

)
,
(
0, sin

2πℓ

k
, sin

4πℓ

k
, . . . , sin

2πℓ(k − 1)

k

)
.

The sub-representation of φ(·) restricted to each subspace Sℓ is isomorphic to the representation given by

φℓ(h
j) =

(
cos(2πℓj/k) − sin(2πℓj/k)

sin(2πℓj/k) cos(2πℓj/k)

)
∈ R

2×2,

so (c.f. Appendix D.3) this model is equivalent to a multi-channel model in which we observe

y
(ij)
ℓ =

√
λ g

(i)⊤
∗ℓ g

(j)
∗ℓ +

√
N z

(ij)
ℓ ∈ R

2×2

for all ℓ = 1, . . . , (k − 1)/2 and 1 ≤ i < j ≤ N , with g
(i)
∗ℓ = φℓ(g

(i)
∗ ). These representations φℓ are distinct,

real-irreducible, and of complex type by a similar argument as in Example 3.4.

Thus, Proposition 3.3 shows that q = 0 is a local maximizer of Ψgs if λ < 1, and it is not a local

maximizer if λ > 1.

Example 3.7 (Permutation synchronization). Consider now the full symmetric group G = Sk, with action

by permutation of coordinates on Rk. Again, as e = (1, 1, . . . , 1) ∈ Rk spans a trivial invariant subspace,

we consider the model defined by the standard representation φ(g) ∈ R(k−1)×(k−1) representing this action

on the subspace orthogonal to e. That is, for an unknown signal vector G∗ = (g
(1)
∗ , . . . ,g

(N)
∗ ) with prior

distribution {g(i)
∗ }Ni=1

iid∼ Haar(Sk), we observe

y(ij) =
√
λφ(g

(i)
∗ )⊤φ(g

(j)
∗ ) +

√
N z(ij) ∈ R

(k−1)×(k−1) for 1 ≤ i < j ≤ N

where z(ij) are again independent noise matrices with i.i.d. N (0, 1) entries. Here, the standard representation

φ(·) is C-irreducible [FH13, Proposition 3.12], and hence also real-irreducible of real type.

Thus, Proposition 3.3 shows that q = 0 is a local maximizer of Ψgs if λ < k − 1, and it is not a local

maximizer if λ > k − 1.

More generally, the algorithmic phase transition threshold for local optimality of q = 0 in any such

example may be deduced by first reducing the model to a canonical form as described in Appendix D.3, then

determining the type of each real-irreducible component, and finally determining the thresholds for their

corresponding signal strengths from Proposition 3.3.
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Remark 3.8. The work [PWBM18] studied a version of this model of the form





y
(ij)
1 =

√
λ1 g

(i)
∗1g

(j)∗
∗1 +

√
N z

(ij)
1 ∈ Ck1×k1

...

y
(ij)
L =

√
λL g

(i)
∗Lg

(j)∗
∗L +

√
N z

(ij)
L ∈ CkL×kL

for all 1 ≤ i < j ≤ N (37)

where g∗ℓ = φℓ(g∗) ∈ Ckℓ×kℓ for ℓ = 1, . . . , L correspond to distinct C-irreducible representations of G, and
{z(ij)ℓ }i<j are the sub-blocks of kℓN × kℓN noise matrices distributed according to the GOE, GUE, or GSE

depending on the type of the representation φℓ. For such a model, [PWBM18] developed and analyzed an

AMP algorithm for Bayes-optimal inference, and stated also a replica formula for the free energy that is

similar to (25). It was argued (more heuristically) in [PWBM18, Section 6.6] that q = 0 is a stable fixed

point of this AMP algorithm if and only if maxLℓ=1 λℓ/kℓ < 1. Our results of Theorem 3.1 and Proposition

3.3 thus provide rigorous proofs of analogous statements in a real version of this model.

One difference between our analyses and those of [PWBM18]—in addition to the real vs. complex

distinction—is that the replica formula stated in [PWBM18] implicitly assumes that the maximization of

Ψgs(q) may be restricted to overlaps q = (q1, . . . ,qL) where each qℓ is a scalar multiple of the identity

matrix. The analyses of AMP state evolution in [PWBM18] also assume an initialization at overlaps q of

this form, and stability of the state evolution at q = 0 is analyzed under this restriction of q. Outside the

setting of abelian groups (c.f. Proposition 3.9 below), we have not found a general argument that Ψgs(q)

must always be maximized at a point where each qℓ is a multiple of the identity; furthermore, one typically

may not have an initialization for AMP that corresponds to this type of initial state. We have thus defined

the replica potential Ψgs over all symmetric positive-semidefinite overlaps q, and our result of Proposition

3.3 pertains to the local optimality of q = 0 with respect to optimization of Ψgs over this full overlap space.

3.3 Mutual information and MMSE for angular synchronization

A complete characterization of the information-theoretic limits of inference and the possible existence of

computationally-hard SNR regimes may be obtained via an analysis of the global optimization landscape of

Ψgs. To our knowledge, this has been carried out only for the Z/2Z-synchronization example, in [DAM16].

In this section, we develop a similar characterization for single-channel angular synchronization over

SO(2), corresponding to Example 3.4 with L = 1 and Example 3.5 with k = 2. This is a model with the

pairwise observations

y(ij) =
√
λg

(i)⊤
∗ g

(j)
∗ +

√
N z(ij) =

√
λ

(
cos(θj − θi) − sin(θj − θi)

sin(θj − θi) cos(θj − θi)

)
+
√
N z(ij) for 1 ≤ i < j ≤ N (38)

where θ1, . . . , θN
iid∼ Unif([0, 2π)). Averaging the two measurements of cos(θj − θi) and sin(θj − θi) in each

observation y(ij), the model is equivalent to the phase-synchronization model [Bou16] over U(1) with complex

observations

yij =
√
λei(θj−θi) +

√
N zij ∈ C, ℜz(ij),ℑz(ij) iid∼ N (0, 12 ).

Some partial analyses of the replica potential in this model were carried out in [JMRT16, Section 7.2.2],

and it was shown in [PWBM16, Theorem 6.11] using an alternative second-moment-method calculation that

λc = 1 is the (information-theoretic) threshold for contiguity with the null model y(ij) =
√
N z(ij). Here, we

extend these results by showing that the replica potential has a single unique local maximizer q ∈ Sym2×2
�0 ,
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which is non-zero if and only if λ > 1, thus providing a full characterization of the Bayes-optimal MMSE

and confirming the absence of a statistical-computational gap in this model for any positive λ.

We begin with a general statement that optimization of the replica potential Ψgs may be restricted to

overlaps q = (q1, . . . ,qL) where each qℓ is a positive multiple of the identity, if G is abelian and each φℓ is

real-irreducible. (Each representation must then take values in R1×1 or R2×2, c.f. Corollary D.14, so this

statement pertains to the structure of qℓ corresponding to the 2-dimensional representations φℓ.)

Proposition 3.9. Suppose G is any abelian group, and φ1, . . . , φL are real-irreducible. If q = (qℓ)
L
ℓ=1 ∈

Sym�0 is a critical point or local maximizer of Ψgs, then each qℓ is a scalar multiple of the identity.

Restricting to scalar multiples of the identity q = q I2×2 with q ≥ 0, the replica potential takes the form

Ψgs(q I2×2) = −λq
2

2
+ λq − i(λq). (39)

Here, by (27), i(γ) is the mutual information between g∗ and y in a single-letter model

y =
√
γ g∗ + z (40)

with g∗ ∼ Haar(SO(2)) and a noise matrix z ∈ R2×2 having i.i.d. N (0, 1) entries. By the i-mmse relation

[GSV05], critical points q∗ of Ψgs(q I2×2) correspond to solutions of the fixed-point equation

q∗ = 1− 1

2
mmse(λq∗) (41)

where mmse(γ) = E‖g∗ − E[g | y]‖2F = 2− E‖E[g | y]‖2F is the minimum mean-squared-error for estimating

g∗ in the single-letter model (40).

The following is our main result for SO(2)-synchronization.

Theorem 3.10. For the SO(2)-synchronization model (38), all critical points of Ψgs(q) are given by

{q ∈ Sym2×2
�0 : ∇Ψgs(q) = 0} = {q∗ I2×2 : q∗ solves (41)}. (42)

If λ ≤ λc := 1, then 0 is the only solution of (41), q = 0 is the unique global maximizer of Ψgs over Sym
2×2
�0 ,

and

lim
n→∞

1

N
I(Θ∗, Y ) =

λ

2
and lim

N→∞
MMSE = 2,

and for any ǫ > 0, there exists constants C, c > 0 depending only on ǫ such that

E

〈
1





∥∥∥∥∥
1

N

N∑

i=1

g(i)⊤g(i)
∗

∥∥∥∥∥

2

F

>
ǫ

λ





〉
≤ Ce−cN .

If λ > λc := 1, then there exists a unique positive solution q∗ > 0 of (41), q = q∗ I2×2 is the unique global

maximizer of Ψgs over Sym2×2
�0 , and

lim
N→∞

1

N
I(Θ∗, Y ) =

λ

2
−Ψgs(q∗ I2×2) and lim

N→∞
MMSE = 2− 2q2∗,

and for any ǫ > 0, there exists constants C, c > 0 depending only on ǫ such that

E

〈
1





∥∥∥∥∥
1

N

N∑

i=1

g(i)⊤g(i)
∗ − q∗h

∥∥∥∥∥

2

F

>
ǫ

λ
for all h ∈ SO(2)





〉
≤ Ce−cN .
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Remark 3.11. The reduction (42) to diagonal overlap matrices q is possible because SO(2) is abelian. The

analogous statement in the non-abelian setting of SO(k)-synchronization for k ≥ 3 is false: We show in

Proposition B.2 that for any k ≥ 3 and λ > λc := k, Ψgs has a critical point that is not a multiple of the

identity. This suggests that analyses of the global optimization landscape of Ψgs may need to be multivariate

in nature, and it remains an open question to fully characterize this landscape for SO(k)-synchronization

when k ≥ 3 or, more generally, for any non-abelian group G.

4 Quadratic assignment

We transition to a second application of the general results in Section 2, and study a quadratic assignment

model for inference over the symmetric group. Here, the signal and signal prior do not have the “product

structure” of group synchronization.

Let X be a compact space and κ : X × X → R a pairwise similarity kernel, both independent of N . We

observe samples x1, . . . , xN ∈ X , together with noisy pairwise similarities of a permutation of these samples,

yij = κ(xπ∗(i), xπ∗(j)) +
√
Nzij for each 1 ≤ i < j ≤ N. (43)

Here zij
iid∼ N (0, 1), and π∗ ∈ SN is an unknown permutation of interest, assumed to have uniform prior on

the symmetric group SN of all permutations of N elements.

We will characterize the asymptotic mutual information I(π∗, Y ) between the latent permutation π∗ and

observations Y = (yij)i<j , under the following assumptions on X , κ, and x1, . . . , xN as N → ∞.

Assumption 4.1. (a) X is a compact space, and κ : X × X → R is a continuous positive-semidefinite

kernel, i.e. κ(xi, xj)
m
i,j=1 ∈ R

m×m is positive-semidefinite for any m ≥ 1 and x1, . . . , xm ∈ X .

(b) There exists a probability distribution ρ on X such that, as N → ∞, the empirical law 1
N

∑N
i=1 δxi

converges weakly to ρ.

Under Assumption 4.1, κ is a Mercer kernel admitting the following approximation by eigenfunctions,

see e.g. [Wai19, Theorem 12.20].

Theorem 4.2 (Mercer’s theorem). Suppose Assumption 4.1 holds. Then there exists an orthonormal basis of

eigenfunctions {fℓ}∞ℓ=1 of L2(X , ρ) and eigenvalues µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ 0 such that
∫
X κ(x, y)fℓ(y) ρ(dy) =

µℓfℓ(x). Furthermore, κ admits the expansion

κ(x, y) =

∞∑

ℓ=1

µℓfℓ(x)fℓ(y)

where this series converges absolutely and uniformly over all x, y ∈ X .

We define from this eigenfunction expansion, for each L ≥ 1, the truncated kernel

κL(x, y) :=

L∑

ℓ=1

µℓfℓ(x)fℓ(y). (44)

The model defined by κL in place of κ falls into the framework of Section 2, where GN ≡ SN is the symmetric

group, and the feature map φ : SN → HN has components

φ(π)i = (
√
µ1f1(xπ(i)), . . . ,

√
µLfL(xπ(i))) ∈ H ≡ R

L. (45)
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The bilinear maps • : H ×H → K ≡ R and ⊗ : H ×H → L ≡ RL×L and the inclusion map ι : L → B(H)

are given by

a • b = a⊤b, a⊗ b = ab⊤, ι(q)a = qa, (46)

where we equip H,K,L with their usual Euclidean inner-products. Our analyses will first characterize the

asymptotic mutual information between π∗ and observations Y L = {yLij}i<j defined with the truncated

kernel κL, and then take a limit L→ ∞ to describe the mutual information for the original observations Y .

Asymptotic mutual information. Fixing any L ≥ 1 and an overlap matrix q ∈ SymL×L
�0 , denote

u(x) = (
√
µ1f1(x), . . . ,

√
µLfL(x)) ∈ RL and consider a linear observation model

yi = q1/2u(xπ∗(i)) + zi ∈ R
L for i = 1, . . . , N (47)

where π∗ ∼ Haar(SN ) and {zi}Ni=1
iid∼ N (0, IL×L). Consider also the single-letter model

y = q1/2u(x) + z ∈ R
L (48)

where x ∼ ρ is a single random sample in X , and z ∼ N (0, I). It is direct to check, as in (16), that the

mutual information in the model (48) is given by i(x,y) = − 1
4‖q‖2F + 1

2Ex∗
Tru(x∗)⊤qu(x∗) − ΨLqa(q), for

the potential function

ΨLqa(q) = −1

4
‖q‖2F + Ex∗,z logEx exp

(
−1

2
u(x)⊤qu(x) + u(x)⊤qu(x∗) + u(x)⊤q1/2z

)
. (49)

Here, Ex is over x ∼ ρ in X , and Ex∗,z is over independent x∗ ∼ ρ and z ∼ N (0, I).

Inference in the model (47) may be understood as the task of estimating θi = q1/2u(xπ∗(i)) ∈ RL for

i = 1, . . . , N from observations yi = θi + zi, given only the empirical distribution of the values {θi}Ni=1 but

not their ordering. In contrast, inference in the model (48) is the task of estimating θi from an observation

yi = θi + zi assuming a Bayesian prior for θi. Comparisons between these two tasks underlie the classical

literature on empirical Bayes estimation in compound decision problems; in particular, the efficiency of

coordinate-separable decision rules within the class of all decision rules for the former model (47) has been

investigated in [HR55, GR09].

Leveraging the main result of [GR09], the following lemma first shows that the signal-observation mutual

information in the linear observation model (47) coincides, to leading asymptotic order, with that in the

scalar model (48).

Lemma 4.3. Suppose Assumption 4.1 holds, and fix any L ≥ 1 and q ∈ SymL×L
�0 . Let i(π∗, Ylin) be the

mutual information between π∗ ∈ SN and Ylin = {yi}Ni=1 in the model (47). Then

lim
N→∞

1

N
i(π∗, Ylin) = i(x,y) := −1

4
‖q‖2F +

1

2
Ex∗

Tru(x∗)
⊤qu(x∗)−ΨLqa(q).

The general framework of Section 2 then allows us to relate i(π∗, Ylin) with the mutual information

I(π∗, Y ) in the quadratic assignment model (43), yielding the following main result of this section.

Theorem 4.4. Suppose Assumption 4.1 holds. Then there exists a finite limit

Ψ∞ = lim
L→∞

sup
q∈SymL×L

�0

ΨLqa(q),
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and the mutual information I(π∗, Y ) between π∗ ∼ SN and Y = {yij}i<j in the model (43) satisfies

lim
N→∞

1

N
I(π∗, Y ) =

1

4
E
x,x′iid∼ ρ

[κ(x, x′)2]−Ψ∞. (50)

The limit value in (50) may be understood as the mutual information between a signal vector (x∗1, . . . , x∗N )

having i.i.d. prior x∗i
iid∼ ρ, and observations

yij = κ(x∗i, x∗j) +
√
N zij for 1 ≤ i < j ≤ N.

In the setting where κ has a finite expansion into eigenfunctions, i.e. κL = κ for some finite L, this is

the mutual information in a usual low-rank matrix estimation model with i.i.d. signal prior. Informally,

Theorem 4.4 shows that in a bounded SNR regime of the model (43) where the kernel eigenvalues µ1, µ2, . . .

are fixed independently of N , observing the exact sample points x1, . . . , xN is asymptotically no more

informative for estimating κ(xπ∗(i), xπ∗(j))i<j than knowing the “prior distribution” ρ corresponding to the

limit of their empirical law.

5 Conclusion

In this work, we have studied the two models of group synchronization and quadratic assignment on pairs of

noisy positive-semidefinite kernel matrices observed with Gaussian noise. These problems share a common

structure of estimating a latent elementG∗ of a high-dimensional group from pairwise observations. Assuming

a Bayesian setting with Haar-uniform prior for G∗, we have derived under a common framework the limit

of the signal-observation mutual information in both models, in an asymptotic regime of bounded SNR.

For group synchronization, we have given a complete characterization of the algorithmic phase transition

threshold for q = 0 to locally optimize the replica potential in general groups. For quadratic assignment, we

have shown that the signal-observation mutual information is asymptotically equivalent to that in a low-rank

matrix estimation model with i.i.d. signal prior.

The framework developed here is fairly general, and may apply to other Bayesian inference problems of

this form, where the underlying group GN does not necessarily have a product structure. We have analyzed

two examples in which the linear observation model (to which the original quadratic model is compared)

admits a reasonably simple direct analysis. In applications with other group structures, as well as in other

regimes of SNR, the linear model itself may exhibit other types of asymptotic behaviors, and we believe this

may be interesting to investigate in future work.
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A Proofs for the general model

Throughout this section, we write as shorthand

φ = φ(G), φ′ = φ(G′), φ∗ = φ(G∗)

and abbreviate F ≡ FN , Ψ ≡ ΨN . Define the Hamiltonian

H̃(G;G∗, Z) =
∑

1≤i<j≤N
− 1

2N
‖φi • φj‖2K +

1

N
〈φi • φj , φ∗i • φ∗j〉K +

1√
N

〈φi • φj , zij〉K

+
N∑

i=1

− 1

4N
‖φi • φi‖2K +

1

2N
〈φi • φi, φ∗i • φ∗i〉K +

1√
2N

〈φi • φi, zii〉K
(51)

where {zii}Ni=1 are additional standard Gaussian noise vectors in K, independent of G∗ and of {zij}i<j . Then
exp H̃(G;G∗, Z) is proportional to the posterior density of G in the model (2) with additional observations

yii = φi • φi +
√
2N zii for i = 1, . . . , N.

We will establish lower and upper bounds for the perturbed free energy

F̃ =
1

N
EG∗,Z logEG exp H̃(G;G∗, Z)

and remove this perturbation at the conclusion of the proof.

A.1 Free energy lower bound

We first prove the following lower bound for F̃ .

Lemma A.1. Under Assumption 2.1,

F̃ ≥ sup
q∈Q

Ψ(q).

Fixing any q ∈ Q, for every 0 ≤ t ≤ 1, consider the observations




y
(t)
ij =

√
tφ∗i • φ∗j +

√
N zij for all 1 ≤ i < j ≤ N

y
(t)
ii =

√
tφ∗i • φ∗i +

√
2N zii for all i = 1, . . . , N

y
(t)
i =

√
(1− t)q1/2φ∗i + zi for all i = 1, . . . , N

(52)

where {zij}i≤j and {zi}Ni=1 are standard Gaussian noise vectors in K and H respectively, independent of

each other and of G∗ ∼ Haar(GN ). The posterior distribution of G given the joint observations (52) is

proportional to exp H̃t(G;G∗, Z) for the interpolating Hamiltonian

H̃t(G;G∗, Z) =
∑

1≤i<j≤N
− t

2N
‖φi • φj‖2K +

t

N
〈φi • φj , φ∗i • φ∗j〉K +

√
t

N
〈φi • φj , zij〉K

+

N∑

i=1

− t

4N
‖φi • φi‖2K +

t

2N
〈φi • φi, φ∗i • φ∗i〉K +

√
t

2N
〈φi • φi, zii〉K

+

N∑

i=1

− (1− t)

2
‖q1/2φi‖2H + (1− t)〈q1/2φi,q

1/2φ∗i〉H +
√
1− t 〈q1/2φi, zi〉H.

(53)
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For 0 ≤ t ≤ 1, we denote the posterior mean 〈f(G)〉t = EG[f(G) exp H̃t(G;G∗,Z)]

EG[exp H̃t(G;G∗,Z)]
(not to be confused with

the inner-product notations 〈·, ·〉K and 〈·, ·〉H). The Nishimori identity holds for E〈·〉t by Bayes’ rule in the

model (52). Define the interpolating free energy

F̃(t) =
1

N
EG∗,Z logEG exp H̃t(G;G∗, Z)

where F̃(1) = F̃ is the free energy of interest. At t = 0, applying the identity

N∑

i=1

〈q1/2φi,q
1/2φ′i〉H =

N∑

i=1

〈φi,qφ′i〉H =

N∑

i=1

〈q, φi ⊗ φ′i〉L = N〈q, Q(G,G′)〉L (54)

for any G,G′ ∈ GN , and the group symmetry Q(G,G) = Q(Id, Id), we have

F̃(0) = −1

2
〈q, Q(Id, Id)〉L +

1

N
EG∗,Z logEG exp

(
N〈q, Q(G,G∗)〉L +

N∑

i=1

〈q1/2φi, zi〉H
)

= Ψ(q) +
1

4
‖q‖2L (55)

A calculation based on Gaussian integration by parts shows the derivative of F̃(t).

Proposition A.2.

F̃ ′(t) = −1

4
‖q‖2L +

1

4
EG∗,Z

〈
‖Q(G,G∗)− q‖2L

〉
t
.

Proof. First note that

F̃ ′(t) =
1

N
EG∗,Z

〈
d

dt
H̃t(G;G∗, Z)

〉

t

where we have

d

dt
H̃t(G;G∗, Z) =

∑

i<j

− 1

2N
‖φi • φj‖2K +

1

N
〈φi • φj , φ∗i • φ∗j〉K +

1

2
√
tN

〈φi • φj , zij〉K

+

N∑

i=1

− 1

4N
‖φi • φi‖2K +

1

2N
〈φi • φi, φ∗i • φ∗i〉K +

1

2
√
2tN

〈φi • φi, zii〉K

+

N∑

i=1

1

2
‖q1/2φi‖2H − 〈q1/2φi,q

1/2φ∗i〉H − 1

2
√
1− t

〈q1/2φi, zi〉H.

Applying Gaussian integration by parts and denoting φ′i = φ(G′)i for an independent sample G′ from

the posterior law,

EZ

〈
1

2
√
tN

〈φi • φj , zij〉K
〉

t

=
1

2N
EG∗,Z

〈
‖φi • φj‖2K − 〈φi • φj , φ′i • φ′j〉K

〉
t
,

EZ

〈
1

2
√
2tN

〈φi • φi, zii〉K
〉

t

=
1

4N
EG∗,Z

〈
‖φi • φi‖2K − 〈φi • φi, φ′i • φ′i〉K

〉
t
,

EZ

〈
1

2
√
1− t

〈q1/2φi, zi〉H
〉

t

=
1

2
EG∗,Z

〈
‖q1/2φi‖2H − 〈q1/2φi,q

1/2φ′i〉H
〉
t
.
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Hence

F̃ ′(t) =
1

N
EG∗,Z

〈
1

N

∑

i<j

〈φi • φj , φ∗i • φ∗j〉K − 1

2N

∑

i<j

〈φi • φj , φ′i • φ′j〉K +
1

2N

N∑

i=1

〈φi • φi, φ∗i • φ∗i〉K

− 1

4N

N∑

i=1

〈φi • φi, φ′i • φ′i〉K −
N∑

i=1

〈q1/2φi,q
1/2φ∗i〉H +

1

2

N∑

i=1

〈q1/2φi,q
1/2φ′i〉H

〉

t

= EG∗,Z

〈
1

2N2

N∑

i,j=1

〈φi • φj , φ∗i • φ∗j〉K − 1

4N2

N∑

i,j=1

〈φi • φj , φ′i • φ′j〉K

− 1

N

N∑

i=1

〈q1/2φi,q
1/2φ∗i〉H +

1

2N

N∑

i=1

〈q1/2φi,q
1/2φ′i〉H

〉

t

.

By Assumption 2.1, for any G,G′ ∈ GN , we have

N∑

i,j=1

〈φi • φj , φ′i • φ′j〉K =
N∑

i,j=1

〈φi ⊗ φ′i, φj ⊗ φ′j〉L = N2‖Q(G,G′)‖2L. (56)

Applying (54) and (56) to the above gives

F̃ ′(t) = EG∗,Z

〈
1

2
‖Q(G,G∗)‖2L − 1

4
‖Q(G,G′)‖2L − 〈q, Q(G,G∗)〉L +

1

2
〈q, Q(G,G′)〉L

〉

t

. (57)

Finally, by Nishimori’s identity, EG∗,Z 〈f(G,G′)〉t = EG∗,Z 〈f(G,G∗)〉t, so

F̃ ′(t) = EG∗,Z

〈
1

4
‖Q(G,G∗)‖2L − 1

2
〈q, Q(G,G∗)〉L

〉

t

= −1

4
‖q‖2L +

1

4
EG∗,Z

〈
‖Q(G,G∗)− q‖2L

〉
t
.

Proof of Lemma A.1. For any q ∈ Q, applying (55) and Proposition A.2 with ‖Q(G,G∗) − q‖2L ≥ 0,

we have F̃ = F̃(0) +
∫ 1

0 F̃ ′(t)dt ≥ Ψ(q), and the result follows upon taking a supremum over q ∈ Q.

A.2 Free energy upper bound via the Franz-Parisi potential

In this section, we now prove the following upper bound for F̃ .

Lemma A.3. In the setting of Theorem 2.2, for any ǫ > 0,

F̃ ≤ sup
q∈Q

Ψ(q) +D(GN )

√
L(ǫ1/2;GN )

N
+
L(ǫ1/2;GN )

N
+
ǫ

2
. (58)

Recall that Q(G,G∗) = N−1
∑N

i=1 φ(G)i⊗φ(G∗)i ∈ L. For any m ∈ L and ǫ > 0, define the Franz-Parisi

potential

Φ̃ǫ(m) =
1

N
EG∗,Z logEG

[
1{‖Q(G,G∗)−m‖2L ≤ ǫ} exp H̃(G;G∗, Z)

]
. (59)

This is the restriction of the free energy to samples G for which Q(G,G∗) falls close to m. It is clear that

F̃ ≥ Φ̃ǫ(m) for all m ∈ L; the following lemma provides a complementary upper bound.
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Lemma A.4. In the setting of Theorem 2.2, for any ǫ > 0,

F̃ ≤ sup
m∈L

Φ̃ǫ(m) +D(GN )

√
L(ǫ1/2;GN )

N
+
L(ǫ1/2;GN )

N
. (60)

Proof. Let M be a
√
ǫ-cover of image(Q) in the norm ‖ · ‖L with cardinality log |M| = L(ǫ1/2;GN ). Then

for any G,G∗ ∈ GN , some point of M must be within
√
ǫ-distance of Q(G,G∗) ∈ L, so we have

F̃ ≤ 1

N
EG∗,Z log

∑

m∈M
EG

[
1{‖Q(G,G∗)−m‖2L ≤ ǫ} exp H̃(G;G∗, Z)

]

≤ EG∗,Z max
m∈M

1

N
logEG

[
1{‖Q(G,G∗)−m‖2L ≤ ǫ} exp H̃(G;G∗, Z)

]

︸ ︷︷ ︸
:=Φ̃ǫ(G∗,Z;m)

+
log |M|
N

. (61)

We apply concentration over Z = {zij}i≤j to pass EZ inside maxm∈M. Define Φ̃ǫ(G∗, Z;m) as in (61),

and denote the corresponding Gibbs average 〈f(G)〉 =
EG[f(G)1{‖Q(G,G∗)−m‖2

L≤ǫ} exp H̃(G;G∗,Z)]

EG[1{‖Q(G,G∗)−m‖2
L
≤ǫ} exp H̃(G;G∗,Z)]

(again not

to be confused with the inner-products 〈·, ·〉K and 〈·, ·〉L). Then, differentiating (51) and applying (56) and

Jensen’s inequality,

∑

i<j

‖∇zij Φ̃ǫ(G∗, Z;m)‖2K +

N∑

i=1

‖∇ziiΦ̃ǫ(G∗, Z;m)‖2K

=
∑

i<j

∥∥∥∥
1

N

〈
∇zij H̃(G;G∗, Z)

〉∥∥∥∥
2

K
+

N∑

i=1

∥∥∥∥
1

N

〈
∇ziiH̃(G;G∗, Z)

〉∥∥∥∥
2

K

=
1

2N3

N∑

i,j=1

∥∥〈φi • φj
〉∥∥2

K ≤ 1

2N3

〈
N∑

i,j=1

‖φi • φj‖2K

〉
=

1

2N

〈
‖Q(G,G)‖2L

〉
≤ D(GN )2

2N
. (62)

Therefore, Φ̃ǫ(G∗, Z;m) is D(GN )/
√
2N -Lipschitz, so EZ e

λ(Φ̃(G∗,Z;m)−EZΦ̃(G∗,Z;m)) ≤ eλ
2D(GN )2/4N for any

λ > 0 by Gaussian concentration of measure [BLB03, Theorem 5.5]. Thus, applying also Jensen’s inequality,

EZ max
m∈M

(
Φ̃ǫ(G∗, Z;m)− EZΦ̃ǫ(G∗, Z;m)

)
≤ EZ

1

λ
log

∑

m∈M
eλ(Φ̃ǫ(G∗,Z;m)−EZΦ̃ǫ(G∗,Z;m))

≤ 1

λ
log

∑

m∈M
EZe

λ(Φ̃ǫ(G∗,Z;m)−EZΦ̃ǫ(G∗,Z;m)) ≤ 1

λ
log |M|+ λD(GN )2

4N
.

Optimizing over λ and applying this to (61), we get

F̃ ≤ EG∗
max
m∈M

EZΦ̃ǫ(G∗, Z;m) +D(GN )

√
log |M|
N

+
log |M|
N

. (63)

Next, we claim by the group symmetry Q(G,G∗) = Q(G−1
∗ G, Id) that EZΦ̃ǫ(G∗, Z;m) has the same

value for all G∗ ∈ GN , and hence equals Φ̃ǫ(m). Indeed, denoting

Z(G) =
∑

i<j

1√
N

〈φi • φj , zij〉K +

N∑

i=1

1√
2N

〈φi • φi, zii〉K
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and applying the definition of H̃(G;G∗, Z) from (51) and the identity (56), we have

H̃(G;G∗, Z) = −N
4
Q(G,G) +

N

2
Q(G,G∗) + Z(G) = −N

4
Q(Id, Id) +

N

2
Q(G−1

∗ G, Id) + Z(G).

Here, {Z(G)}G∈GN
is a mean-zero Gaussian process with covariance

E[Z(G)Z(G′)] =
∑

i<j

1

N
〈φi • φj , φ′i • φ′j〉K +

N∑

i=1

1

2N
〈φi • φi, φ′i • φ′i〉K =

N

2
Q(G,G′).

For any fixed G∗ ∈ GN , the process {Z(G)}G∈GN
is then equal in law to {Z(G−1

∗ G)}G∈GN
, because the latter

process is also mean-zero with the same covariance

E[Z(G−1
∗ G)Z(G−1

∗ G′)] =
N

2
Q(G−1

∗ G,G−1
∗ G′) =

N

2
Q(G,G′).

Then, applying also the invariance of Haar measure, this implies

EZΦ̃ǫ(G∗, Z;m)

=
1

N
EZ logEG

[
1{‖Q(G−1

∗ G, Id)−m‖2L ≤ ǫ} exp
(
−N

4
Q(Id, Id) +

N

2
Q(G−1

∗ G, Id) + Z(G−1
∗ G)

)]

=
1

N
EZ logEG

[
1{‖Q(G, Id)−m‖2L ≤ ǫ} exp

(
−N

4
Q(Id, Id) +

N

2
Q(G, Id) + Z(G)

)]
= EZΦ̃ǫ(Id, Z;m)

(64)

so EZΦ̃ǫ(G∗, Z;m) = Φ̃ǫ(m) for all G∗ ∈ GN , as claimed. Then (63) is equal to the desired upper bound for

F̃ , completing the proof.

Next, we apply an interpolation argument to upper bound the Franz-Parisi potential (59). For any m ∈ L
and q ∈ Q ⊂ L, define

Ψ(q,m) =
1

4
‖q‖2L − 1

2
‖m‖2L − 1

2
〈q, Q(Id, Id)〉L

+
1

N
EG∗,Z logEG exp

(
N〈m, Q(G,G∗)〉L +

N∑

i=1

〈q1/2φ(G)i, zi〉H
)

Note that Ψ(q,q) = Ψ(q) as defined in (14).

Lemma A.5. For any m ∈ L, q ∈ Q, and ǫ > 0,

Φ̃ǫ(m) ≤ inf
q∈Q

Ψ(q,m) +
ǫ

2
.

Proof. Fix any m ∈ L and q ∈ Q. For 0 ≤ t ≤ 1, define now the interpolating Hamiltonian

H̃t(G;G∗, Z) =
∑

1≤i<j≤N
− t

2N
‖φi • φj‖2K +

t

N
〈φi • φj , φ∗i • φ∗j〉K +

√
t

N
〈φi • φj , zij〉K

+

N∑

i=1

− t

4N
‖φi • φi‖2K +

t

2N
〈φi • φi, φ∗i • φ∗i〉K +

√
t

2N
〈φi • φi, zii〉K

+

N∑

i=1

− (1− t)

2
‖q1/2φi‖2H + (1− t)〈φi,mφ∗i〉H +

√
1− t 〈q1/2φi, zi〉H
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which differs from (53) only by the term (1− t)〈φi,mφ∗i〉H in place of (1− t)〈q1/2φi,q
1/2φ∗i〉H.

Let

Φ̃ǫ(t;m) =
1

N
EG∗,Z logEG

[
1{‖Q(G,G∗)−m‖2L ≤ ǫ} exp H̃t(G;G∗, Z)

]
(65)

and let 〈f(G)〉t = EG[f(G)1{‖Q(G,G∗)−m‖2
L≤ǫ} exp H̃t(G;G∗,Z)]

EG[1{‖Q(G,G∗)−m‖2
L
≤ǫ} exp H̃t(G;G∗,Z)]

be the corresponding Gibbs average. Note that

Φ̃ǫ(1;m) = Φ̃ǫ(m), and when t = 0 we have the trivial bound analogous to (55)

Φ̃ǫ(0;m) ≤ 1

N
EG∗,Z logEG exp H̃0(G;G∗, Z) = Ψ(q,m)− 1

4
‖q‖2L +

1

2
‖m‖2L.

Applying the same calculation as in the proof of Proposition A.2, we have also analogous to (57) that

Φ̃′
ǫ(t;m) = EG∗,Z

〈
1

2
‖Q(G,G∗)‖2L − 1

4
‖Q(G,G′)‖2L − 〈m, Q(G,G∗)〉L +

1

2
〈q, Q(G,G′)〉L

〉

t

= −1

4
EG∗,Z

〈
‖Q(G,G′)− q‖2L

〉
t
+

1

2
EG∗,Z

〈
‖Q(G,G∗)−m‖2L

〉
t
+

1

4
‖q‖2L − 1

2
‖m‖2L.

Upper bounding the first negative term by 0 and applying ‖Q(G,G∗) −m‖2L ≤ ǫ with probability 1 under

the Gibbs measure defining 〈·〉t, we obtain

Φ̃′
ǫ(t;m) ≤ 1

4
‖q‖2L − 1

2
‖m‖2L +

ǫ

2
.

Thus Φǫ(m) = Φ̃ǫ(0;m) +
∫ 1

0 Φ̃′
ǫ(t;m) dt ≤ Ψ(q,m) + ǫ/2, and the lemma follows upon taking the infimum

over q ∈ Q.

Finally, appealing to the closure properties of Assumption 2.1(c), denote by |m|, |m⊤| ∈ Q the elements

for which ι(|m|)2 = ι(m)⊤ι(m) and ι(|m⊤|)2 = ι(m)ι(m)⊤. The following lemma will allow us to pass the

maximization over m ∈ L to |m| ∈ Q.

Lemma A.6. For any m ∈ L,
Ψ(|m⊤|,m) ≤ Ψ(|m|, |m|).

Proof. Consider the linear observation model

yi = Aφ∗i + zi for i = 1, . . . , N

indexed by a parameter A ∈ B(H), where φ∗i = φ(G∗)i, G∗ ∼ Haar(GN ), and {zi}Ni=1 are i.i.d. standard

Gaussian noise vectors in H. Writing φi = φ(G)i, the marginal log-likelihood of Ylin = {yi}Ni=1 is given by

log pA(Ylin) = logEG exp

(
−1

2

N∑

i=1

〈Aφi, Aφi〉H +
N∑

i=1

〈Aφi,yi〉H
)

− 1

2

N∑

i=1

‖yi‖2H − N dim(H)

2
log 2π.

Then for A,B ∈ B(H), the Kullback-Liebler divergence in this model is

DKL (pA‖pB) := EYlin∼pA [log pA(Ylin)− log pB(Ylin)]

= EG∗,Z logEG exp

(
−1

2

N∑

i=1

〈Aφi, Aφi〉H +
N∑

i=1

〈Aφi, Aφ∗i〉H +
N∑

i=1

〈Aφi, zi〉H
)

− EG∗,Z logEG exp

(
−1

2

N∑

i=1

〈Bφi, Bφi〉H +

N∑

i=1

〈Bφi, Aφ∗i〉H +

N∑

i=1

〈Bφi, zi〉H
)
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For any m ∈ L, let us write the singular value decomposition ι(m) = UDV ⊤ and specialize the above to

A = mV and B = mU as defined in (17). Then ι(m) = B⊤A, ι(|m|) = A⊤A, and ι(|m⊤|) = B⊤B, so

DKL (pmV
‖pmU

) = EG∗,Z logEG exp

(
−N

2
〈|m|, Q(G,G)〉L +N〈|m|, Q(G,G∗)〉L +

N∑

i=1

〈|m|1/2φi, V ⊤zi〉H
)

− EG∗,Z logEG exp

(
−N

2
〈|m⊤|, Q(G,G)〉L +N〈m, Q(G,G∗)〉L +

N∑

i=1

〈|m⊤|1/2φi, U⊤zi〉H
)
.

Applying that {V ⊤zi}Ni=1 and {U⊤zi}Ni=1 are both equal in law to {zi}Ni=1, that Q(G,G) = Q(Id, Id), and

that ‖m‖2L = ‖|m|‖2L = ‖|m⊤|‖2L, we get DKL (pmV
‖pmU

) = Ψ(|m|, |m|) − Ψ(|m⊤|,m), and the lemma

follows from non-negativity of Kullback–Leibler divergence.

Proof of Lemma A.3. Combining Lemmas A.5 and A.6, for any m ∈ L and ǫ > 0,

Φ̃ǫ(m) ≤ Ψ(|m⊤|,m) +
ǫ

2
≤ Ψ(|m|, |m|) + ǫ

2
= Ψ(|m|) + ǫ

2
.

The result follows upon applying this to Lemma A.4, and upper bounding the supremum over {|m| : m ∈ L}
by that over q ∈ Q.

Finally, we conclude the proof of Theorem 2.2 by comparing the perturbed free energy F̃ with the original

free energy F .

Proof of Theorem 2.2. Define

Ht(G;G∗, Z) = H(G;Y ) +

N∑

i=1

− t

4N
‖φi • φi‖2K +

t

2N
〈φi • φi, φ∗i • φ∗i〉K +

√
t

2N
〈φi • φi, zii〉K,

which equals H(G;Y ) at t = 0 and H̃(G;G∗, Z) at t = 1. Set F(t;G∗, Z) = N−1 logEG expHt(G;G∗, Z),

and write 〈·〉t for the average over the corresponding law of G. Then a calculation similar to that in

Proposition A.2 using Gaussian integration-by-parts (omitted for brevity) shows, for any fixed G∗ ∈ GN ,

EZF ′(t;G∗, Z) = EZ

[
1

2N2

N∑

i=1

〈
〈φi • φi〉t, φ∗i • φ∗i

〉
K
− 1

4N2

N∑

i=1

∥∥∥〈φi • φi〉t
∥∥∥
2

K

]
.

Recalling K(GN ) in (10), this implies |EZF ′(t;G∗, Z)| ≤ 3K(GN )/(4N) for all t ∈ [0, 1]. Then, denoting

F(G∗, Z) = F(0;G∗, Z) and F̃(G∗, Z) = F(1;G∗, Z) and integrating over t ∈ [0, 1], we have

|EZF(G∗, Z)− EZF̃(G∗, Z)| ≤ 3K(GN)/(4N). (66)

Then also |F − F̃| = |EG∗,ZF(G∗, Z) − EG∗,ZF̃(G∗, Z)| ≤ 3K(GN )/4N , and combining with Lemmas A.1

and A.3 concludes the proof.

A.3 Overlap concentration

Proof of Corollary 2.3. Define the restricted free energy

Φ̃ǫ =
1

N
EG∗,Z logEG

[
1{‖Q(G,G∗)− L∗(ǫ)‖2L > ǫ} exp H̃(G;G∗, Z)

]
.
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Recall the
√
ǫ-cover M from the proof of Lemma A.4. If ‖Q(G,G∗)− L∗(ǫ)‖2L > ǫ, then the point m ∈ M

for which ‖Q(G,G∗)−m‖L ≤ √
ǫ must not belong to L∗(ǫ), hence

1{‖Q(G,G∗)− L∗(ǫ)‖2L > ǫ} ≤
∑

m∈M\L∗(ǫ)

1{‖Q(G,G∗)−m‖2L ≤ ǫ}.

Then the same argument as that of Lemma A.4 shows

Φ̃ǫ ≤ sup
m∈L\L∗(ǫ)

Φ̃ǫ(m) +D(GN )

√
L(ǫ1/2;GN )

N
+
L(ǫ1/2;GN )

N
.

By Lemma A.5 and the argument in Lemma A.6,

Φ̃ǫ(m) ≤ Ψ(|m⊤|,m) +
ǫ

2
≤ Ψ(|m|)−DKL(pmV

‖pmU
) +

ǫ

2
.

If m /∈ L∗(ǫ), then either Ψ(|m|) ≤ supq∈QΨ(q)− ǫ or −DKL(pmV
‖pmU

) ≤ −ǫ. Hence

Φ̃ǫ ≤ sup
q∈Q

Ψ(q)− ǫ

2
+D(GN )

√
L(ǫ1/2;GN )

N
+
L(ǫ1/2;GN )

N
. (67)

Now recall the original Hamiltonian H(G;Y ) from (4), and define

Φ̃ǫ(G∗, Z) =
1

N
logEG

[
1{‖Q(G,G∗)− L∗(ǫ)‖2L > ǫ} exp H̃(G;G∗, Z)

]
,

Φǫ(G∗, Z) =
1

N
logEG

[
1{‖Q(G,G∗)− L∗(ǫ)‖2L > ǫ} expH(G;Y )

]
,

F̃(G∗, Z) =
1

N
logEG

[
exp H̃(G;G∗, Z)

]
,

F(G∗, Z) =
1

N
logEG [expH(G;Y )] .

The same argument as (62) shows that all four quantities are D(GN )/
√
2N -Lipschitz in Z for any fixed

G∗ ∈ GN , the same argument as (66) shows

|EZΦǫ(G∗, Z)− EZΦ̃ǫ(G∗, Z)|, |EZFǫ(G∗, Z)− EZF̃ǫ(G∗, Z)| ≤
3K(GN )

4N
,

and the same argument as (64) shows EZΦ̃ǫ(G∗, Z) = Φ̃ǫ and EZF̃(G∗, Z) = F̃ for every G∗ ∈ GN . Then

by Gaussian concentration of measure [BLB03, Theorem 5.6], for any u > 0,

PG∗,Z

[
Φǫ(G∗, Z) ≥ Φ̃ǫ + u+

3K(GN )

4N

]
≤ PG∗,Z

[
Φ̃ǫ(G∗, Z) ≥ EZΦ̃ǫ(G∗, Z) + u

]
≤ exp

(
− 4Nu2

D(GN )2

)
,

PG∗,Z

[
F(G∗, Z) ≤ F̃ − u− 3K(GN )

4N

]
≤ PG∗,Z

[
F̃(G∗, Z) ≤ EZF̃(G∗, Z)− u

]
≤ exp

(
− 4Nu2

D(GN )2

)
.

Choosing u = ǫ/8, it follows that

EG∗,Z

〈
1{‖Q(G,G∗)− L∗(ǫ)‖2L > ǫ}

〉
= EG∗,Z

expNΦǫ(G∗, Z)

expNF(G∗, Z)

≤ expN

(
Φ̃ǫ − F̃ + 2

(
ǫ

8
+

3K(GN)
4N

))
+ 2 exp

(
− Nǫ2

16D(GN )2

)
.
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Applying (67) and −F̃ ≤ − supq∈Q Ψ(q) from Lemma A.1, this gives

EG∗,Z

〈
1{‖Q(G,G∗)− L∗(ǫ)‖2L > ǫ}

〉

≤ expN

(
− ǫ

4
+D(GN )

√
L(ǫ1/2;GN )

N
+
L(ǫ1/2;GN )

N
+

3K(GN )

2N

)
+ 2 exp

(
− Nǫ2

16D(GN )2

)
,

implying the corollary.

A.4 Mutual information

We verify the mutual information relations (15) and (16). For (15),

1

N
I(G∗, Y ) =

1

N
EG∗,Z log p(Y | G∗)−

1

N
EG∗,Z log p(Y )

=
1

N
EG∗,Z


∑

i<j

− 1

2N
‖yij − φ∗i • φ∗j‖2K


− 1

N
EG∗,Z logEG exp


∑

i<j

− 1

2N
‖yij − φi • φj‖2K




=
1

N
EG∗,Z



∑

i<j

− 1

2N
‖φ∗i • φ∗j‖2K +

1

N
〈yij , φ∗i • φ∗j〉K


−F

=
1

2N2
EG∗

∑

i<j

‖φ∗i • φ∗j‖2K −F =
1

4N2
EG∗

N∑

i,j=1

‖φ∗i • φ∗j‖2K −F +O

(
K(GN )

N

)

=
1

4
‖Q(Id, Id)‖2L −F +O

(
K(GN )

N

)
. (68)

For (16),

1

N
i(G∗, Ylin) =

1

N
EG∗,Z log p(Ylin | G∗)−

1

N
EG∗,Z log p(Ylin)

=
1

N
EG∗,Z

[
N∑

i=1

−1

2
‖yi − q1/2φ∗i‖2H

]
− 1

N
EG∗,Z logEG exp

(
N∑

i=1

−1

2
‖yi − q1/2φi‖2H

)

=
1

N
EG∗,Z

[
N∑

i=1

−1

2
‖q1/2φ∗i‖2H + 〈yi,q1/2φ∗i〉H

]
−
(
Ψ(q) +

1

4
‖q‖2L

)

=
1

2N
EG∗

N∑

i=1

〈q, φ∗i ⊗ φ∗i〉L −
(
Ψ(q) +

1

4
‖q‖2L

)
= −1

4
‖q‖2L +

1

2
〈q, Q(Id, Id)〉L −Ψ(q).

B Proofs for group synchronization

B.1 Asymptotic mutual information and MMSE

Proof of Theorem 3.1. Define GN = GN , H = K = L =
∏L
ℓ=1 R

kℓ×kℓ , the feature map φ : GN → HN by

(22), and the bilinear maps •,⊗ and inclusion map ι by (23). We check the conditions of Assumption 2.1:
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The compatibility relation (6) follows from

〈a • b, a′ • b′〉K =

L∑

ℓ=1

λℓ Tr(aℓb
⊤
ℓ )

⊤(a′ℓb
′⊤
ℓ ) =

L∑

ℓ=1

λℓ Tr(a
⊤
ℓ a

′
ℓ)

⊤(b⊤
ℓ b

′
ℓ) = 〈a ⊗ a′,b⊗ b′〉L

for all a, a′,b,b′ ∈ H. The inclusion relation (7) follows from

〈a, ι(q)b〉H =

L∑

ℓ=1

Tra⊤ℓ (
√
λℓbℓq

⊤
ℓ ) =

L∑

ℓ=1

√
λℓ Trq

⊤
ℓ a

⊤
ℓ bℓ = 〈q, a⊗ b〉L.

From this form, we see that 〈a, ι(q)b〉H = 〈b, ι(q)a〉H and 〈a, ι(q)a〉H ≥ 0 for all a,b ∈ H if and only

if, for every ℓ = 1, . . . , L, we have Trq⊤
ℓ mℓ = Trq⊤

ℓ m
⊤
ℓ for all mℓ ∈ Rkℓ×kℓ and Trq⊤

ℓ mℓ ≥ 0 for all

mℓ ∈ Symkℓ×kℓ
�0 , i.e. if and only if each qℓ is symmetric positive-semidefinite. Thus the set Q in (12) is

Q = Sym�0 :=

L∏

ℓ=1

Symkℓ×kℓ
�0 .

Let us write the shorthands

I = (Ikℓ×kℓ)
L
ℓ=1, m⊤ = (m⊤

ℓ )
L
ℓ=1, mm′ = (mℓm

′
ℓ)
L
ℓ=1 for any m,m′ ∈ L.

Note then that inclusion map ι in (23) satisfies ι(m)⊤ = ι(m⊤) and ι(I)ι(mm′) = ι(m)ι(m′). For any

m ∈ L, defining |m| = ((m⊤
ℓ mℓ)

1/2)Lℓ=1 ∈ Q and |m⊤| = ((mℓm
⊤
ℓ )

1/2)Lℓ=1 ∈ Q, we then have ι(m)⊤ι(m) =

ι(I)ι(m⊤m) = ι(|m|)ι(|m|) and similarly ι(m)ι(m)⊤ = ι(|m⊤|)ι(|m⊤|). Furthermore ‖mℓ‖2F = ‖|m|ℓ‖2F =

‖|m⊤|ℓ‖2F , verifying the conditions of (8). Finally, for any g,h ∈ G and each ℓ = 1, . . . , L, we have (h−1g)ℓ =

h⊤
ℓ gℓ since g 7→ gℓ is an orthogonal representation of G. Hence

Q(G,H) =

(
√
λℓ ·

1

N

N∑

i=1

g
(i)⊤
ℓ h

(i)
ℓ

)L

ℓ=1

= Q(H−1G, Id).

This verifies all the conditions of Assumption 2.1.

Proof of (a): By the independence of the components (g
(i)
∗ , z(i))Ni=1, the expectation EG∗,Z in (14) is

separable across samples i = 1, . . . , N , yielding together with the above definitions that

ΨN(q) =
L∑

ℓ=1

−1

4
‖qℓ‖2F −

√
λℓ
2

Trqℓ + Eg∗,z logEg exp
(√

λℓ Trqℓg
⊤
ℓ g∗ℓ + λ

1/4
ℓ q

1/2
ℓ g⊤

ℓ zℓ

)
.

In particular, ΨN (q) does not depend on N . Defining the change of variables qℓ =
√
λℓq̃ℓ, we then have

ΨN (q) = Ψgs(q̃). The quantities K(GN ), D(GN ), and L(
√
ǫ;GN ) for any fixed ǫ > 0 are bounded by

constants independent of N , so Theorem 2.2 implies

lim
N→∞

FN = sup
q∈Q

ΨN(q) = sup
q̃∈Q

Ψgs(q̃).

Part (a) of the theorem then follows from (15), where ‖Q(Id, Id)‖2L =
∑L

ℓ=1 ‖
√
λℓIkℓ×kℓ‖2F =

∑L
ℓ=1 λℓkℓ.
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Proof of (b): The following I-MMSE relation is standard and follows from similar arguments as in [GSV05],

but we include a brief proof for convenience. From (4) and (15), we have

H(G;G∗, Z) = − 1

2N

∑

i<j

L∑

ℓ=1

λℓ‖g(i)
ℓ g

(j)⊤
ℓ ‖2F +

1

N

∑

i<j

L∑

ℓ=1

λℓ Tr(g
(i)
ℓ g

(j)⊤
ℓ )⊤(g

(i)
∗ℓ g

(j)⊤
∗ℓ )

+
1√
N

∑

i<j

L∑

ℓ=1

√
λℓ Tr(g

(i)
ℓ g

(j)⊤
ℓ )⊤z(ij)ℓ ,

1

N
I(G∗, Y ) =

L∑

ℓ=1

λℓkℓ
4

− 1

N
EG∗,Z logEG expH(G;G∗, Z).

Taking the derivative with respect to λℓ and applying Gaussian integration-by-parts gives

∂λℓ

1

N
I(G∗, Y ) =

kℓ
4

− 1

N
EG∗,Z

〈
− 1

2N

∑

i<j

‖g(i)
ℓ g

(j)⊤
ℓ ‖2F +

1

N

∑

i<j

Tr(g
(i)
ℓ g

(j)⊤
ℓ )⊤(g(i)

∗ℓ g
(j)⊤
∗ℓ )

+
1

2
√
λℓN

∑

i<j

Tr(g
(i)
ℓ g

(j)⊤
ℓ )⊤z(ij)ℓ

〉

=
kℓ
4

− 1

N
EG∗,Z


 1

N

∑

i<j

Tr〈g(i)
ℓ g

(j)⊤
ℓ 〉⊤g(i)

∗ℓ g
(j)⊤
∗ℓ − 1

2N

∑

i<j

‖〈g(i)
ℓ g

(j)⊤
ℓ 〉‖2F


 .

Then, completing the square and applying ‖g(i)
∗ℓ g

(j)
∗ℓ ‖2F = kℓ, we obtain the desired I-MMSE relation

∂λℓ

1

N
I(G∗, Y ) =

1

2N2

∑

i<j

EG∗,Z‖g(i)
∗ℓ g

(j)⊤
∗ℓ − 〈g(i)

ℓ g
(j)⊤
ℓ 〉‖2F +

kℓ
4N

=
1−N−1

4
MMSEℓ +

kℓ
4N

.

Fixing any {λℓ′ : ℓ′ 6= ℓ}, observe by properties of conditional expectation that MMSEℓ is non-increasing

in λℓ, so this I-MMSE relation implies λℓ 7→ − 1
N I(G∗, Y ) is convex. Then its pointwise limit

I(λℓ) := lim
N→∞

− 1

N
I(G∗, Y ) = sup

q∈Sym�0

Ψgs(q)−
L∑

ℓ′=1

λℓ′kℓ′

4

is also convex, the set D ⊆ (0,∞) where I(·) is differentiable has full Lebesgue measure, and for all λℓ ∈ D we

have limN→∞ ∂λℓ
[− 1

N I(G∗, Y )] = I ′(λℓ) [Roc15, Theorems 10.8, 24.6, 25.3]. Applying a change of variables

m = (λℓqℓ)
L
ℓ=1, we may express

I(λℓ) = sup
m∈Sym�0

I(λℓ,m), I(λℓ,m) :=

L∑

ℓ′=1

(
−λℓ′kℓ′

4
− 1

4λℓ′
‖mℓ′‖2F

)
+ F (m)

for a function F (m) not depending on λℓ. It may be checked (via the gradient calculation in Proposition 3.2)

that this function F (m) is Lipschitz in m, and hence for any fixed and bounded range of values λℓ > 0 the

supremum supm∈Sym�0
I(λℓ,m) is attained on a compact subset of Sym�0. Then by the envelope theorem

[MS02, Corollary 4], D is precisely the set where ∂λℓ
I(λℓ,m∗) = −kℓ

4 + 1
4λ2

ℓ

‖m∗ℓ‖2F takes the same value for

all m∗ ∈ argmaxm∈Sym�0
I(λℓ,m), and I ′(λℓ) = −kℓ

4 + 1
4λ2

ℓ

‖m∗ℓ‖2F for any such m∗. Restating this in terms
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of the original variable q, D is the set where ‖q∗ℓ‖2F takes the same value for all q∗ ∈ argmaxq∈Sym�0
Ψgs(q),

and for any λℓ ∈ D we have

lim
N→∞

MMSEℓ = 4 lim
N→∞

∂λℓ

1

N
I(G∗, Y ) = −4I ′(λℓ) = kℓ − ‖q∗ℓ‖2F ,

showing part (b).

Proof of (c): We apply Corollary 2.3. Consider any m ∈ L, and write the singular value decompositions

mℓ = uℓdℓv
⊤
ℓ ∈ Rkℓ×kℓ . Then ι(m) admits a singular value decomposition ι(m) = UDV ⊤ where U, V,D ∈

B(H) are orthogonal and diagonal linear operators defined by

Ua = (aℓu
⊤
ℓ )

L
ℓ=1, V a = (aℓv

⊤
ℓ )

L
ℓ=1, Da = (

√
λℓaℓdℓ)

L
ℓ=1.

So mU ,mV ∈ B(H) are given by mUa = (λ
1/4
ℓ aℓuℓd

1/2
ℓ )Lℓ=1 and mV a = (λ

1/4
ℓ aℓvℓd

1/2
ℓ )Lℓ=1, and pmU

is the

marginal density of Ylin = {y(i)
ℓ }1≤i≤N, 1≤ℓ≤L in the model with observations

y
(i)
ℓ = λ

1/4
ℓ g

(i)
∗ℓ uℓd

1/2
ℓ + z

(i)
ℓ .

By independence of components for i = 1, . . . , N , 1
NDKL(pmV

‖pmU
) is equal to the Kullback-Liebler diver-

gence between the N = 1 models

{yℓ = λ
1/4
ℓ g∗ℓvℓd

1/2
ℓ + zℓ}Lℓ=1 and {yℓ = λ

1/4
ℓ g∗ℓuℓd

1/2
ℓ + zℓ}Lℓ=1.

In particular, 1
NDKL(pmV

‖pmU
) does not depend on N .

Consider L∗(0) corresponding to (18) with ǫ = 0, and suppose m ∈ L∗(0) where mℓ = uℓdℓv
⊤
ℓ . Then

|m| = (vℓdℓv
⊤
ℓ )

L
ℓ=1 ∈ argmaxq∈Q ΨN(q), and also 1

NDKL(pmV
‖pmU

) = 0. Since λℓ > 0, and the law of

any compactly supported random variable X ∈ R
d is uniquely determined by that of X + Z ∈ R

d when

Z ∼ N (0, I), the above characterization of 1
NDKL(pmV

‖pmU
) implies that (g∗ℓvℓd

1/2
ℓ )Lℓ=1 is equal in law to

(g∗ℓuℓd
1/2
ℓ )Lℓ=1. Comparing the supports of these two laws, there must exist g ∈ G for which (gℓvℓd

1/2
ℓ )Lℓ=1 =

(Ikℓ×kℓuℓd
1/2
ℓ )Lℓ=1, so m = (uℓdℓv

⊤
ℓ )

L
ℓ=1 = (gℓvℓdℓv

⊤
ℓ )

L
ℓ=1 = g|m|. Thus L∗(0) ⊆ S := {gq∗ : g ∈ G, q∗ ∈

argmaxq∈Q ΨN(q)}. The reverse inclusion S ⊆ L∗(0) is also evident from reversing these arguments. By

the relation ΨN(q) = Ψgs(q̃) shown in part (a) where qℓ =
√
λℓq̃ℓ, we have S = {(√λℓm∗ℓ)Lℓ=1 : m∗ ∈ L∗,gs}

for L∗,gs defined in (31). So this establishes

L∗(0) =
{
(
√
λℓm∗ℓ)

L
ℓ=1 : m∗ ∈ L∗,gs

}
. (69)

Since ΨN (|m|) and 1
NDKL(pmV

‖pmU
) defining L∗(·) are both independent of N and continuous in m,

for any ǫ > 0, there must exist δ := δ(ǫ) > 0 independent of N for which

L∗(δ) ⊆ {m ∈ L : ‖m− L∗(0)‖2L < ǫ/2}.

Choosing δ := δ(ǫ) sufficiently small, by Corollary 2.3, there then exist constants C, c > 0 for which

E

〈
1
{
‖Q(G,G∗)− L∗(0)‖2L ≥ ǫ

}〉
≤ E

〈
1
{
‖Q(G,G∗)− L∗(δ)‖2L > δ

}〉
≤ Ce−cN

30



Applying Q(G,G∗) = (
√
λℓ · 1

N

∑N
i=1 g

(i)⊤
ℓ g

(i)
∗ℓ )

L
ℓ=1, the characterization of L∗(0) in (69), and the definition

of L∗,gs(ǫ) in the theorem statement, we have exactly

{
‖Q(G,G∗)− L∗(0)‖2L ≥ ǫ

}
=





(
1

N

N∑

i=1

g
(i)⊤
ℓ g

(i)
∗ℓ

)L

ℓ=1

/∈ L∗,gs(ǫ)



 ,

showing part (c).

B.2 Derivatives of the replica potential

Throughout this section, we abbreviate 〈·〉 ≡ 〈·〉q.

Proof of Proposition 3.2. Equip Sym =
∏L
ℓ=1 Sym

kℓ×kℓ with the inner-product 〈a,b〉 7→∑L
ℓ=1 Tr aℓbℓ,

and consider the orthonormal basis {eℓij : 1 ≤ ℓ ≤ L, 1 ≤ i ≤ j ≤ kℓ} of Sym given by

eℓij =

{
eie

⊤
i if i = j

1√
2
(eie

⊤
j + eje

⊤
i ) if i < j

where e1, . . . , ekℓ are the standard basis vectors in R
kℓ .

Denote the partial derivatives of a function f(·) in this basis by

∂ℓijf(q) = lim
δ→0

1

δ
[f(q1, . . . ,qℓ−1,qℓ + δeℓij ,qℓ+1, . . . ,qL)− f(q1, . . . ,qL)].

For any q in the interior of Sym�0, we then have the basis representations

∇Ψgs(q)[x] =

L∑

ℓ=1

∑

1≤i≤j≤kℓ

(x · eℓij)∂ℓijΨgs(q), (70)

∇2Ψgs(q)[x,x
′] =

L∑

ℓ,ℓ′=1

∑

1≤i≤j≤kℓ

∑

1≤i′≤j′≤kℓ′
(x · eℓij)(x′ · eℓ′i′j′)∂ℓij∂ℓ′i′j′Ψgs(q), (71)

so it suffices to compute these first- and second-order partial derivatives of Ψgs(q).

Recall that the replica potential is

Ψgs(q) = −1

4

L∑

ℓ=1

λℓ‖qℓ‖2F − 1

2

L∑

ℓ=1

λℓ Trqℓ + Eg∗,z logEg exp

(
L∑

ℓ=1

Tr
(
λℓqℓg

⊤
∗ℓ +

√
λℓ q

1/2
ℓ z⊤ℓ

)
gℓ

)
.

For part (a), consider any q in the interior of Sym�0. From the definition of ∂ℓij , we have ∂ℓijqℓ′ = 0 if

ℓ 6= ℓ′. For ℓ = ℓ′, we have

∂ℓijqℓ = eℓij , ∂ℓijq
2
ℓ = eℓijqℓ + qℓe

ℓ
ij .

Noting that q 7→ q
1/2
ℓ is smooth on the interior of Sym�0, denote its partial derivatives by ∂ℓij [q

1/2
ℓ ]. Then,

applying Tr eℓij = 1{i = j}, we have

∂ℓijΨgs(q) = −λℓ
2

Tr eℓijqℓ −
λℓ
2
1{i = j}+ Eg∗,z

[
Tr
(
λℓe

ℓ
ijg

⊤
∗ℓ +

√
λℓ∂ℓij [q

1/2
ℓ ]z⊤ℓ

)
〈gℓ〉

]
.
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Setting f(g) =
√
λℓ gℓ∂ℓij [q

1/2
ℓ ] ∈ Rkℓ×kℓ and applying Gaussian integration-by-parts in the form

Ez Tr z
⊤
ℓ 〈f(g)〉 =

kℓ∑

i,j=1

Ez

∂

∂zℓij
〈fij(g)〉 =

√
λℓ Ez Tr

(
q
1/2
ℓ 〈g⊤

ℓ f(g)〉 − q
1/2
ℓ 〈gℓ〉⊤〈f(g)〉

)

we obtain

∂ℓijΨgs(q) = −λℓ
2

Tr eℓijqℓ −
λℓ
2
1{i = j}+ λℓ Eg∗,z Tr e

ℓ
ijg

⊤
∗ℓ〈gℓ〉

+ λℓ Eg∗,z

〈
Trq

1/2
ℓ g⊤

ℓ gℓ∂ℓij [q
1/2
ℓ ]
〉
− λℓ Eg∗,z Tr

[
q
1/2
ℓ 〈gℓ〉⊤〈gℓ〉∂ℓij [q1/2

ℓ ]
]
. (72)

Differentiating implicitly q
1/2
ℓ q

1/2
ℓ = qℓ gives ∂ℓij [q

1/2
ℓ ]q

1/2
ℓ +q

1/2
ℓ ∂ℓij [q

1/2
ℓ ] = eℓij . Thus, since q

1/2
ℓ , ∂ℓij [q

1/2
ℓ ],

and eℓij are all symmetric, for any a ∈ Rkℓ×kℓ we have

Tr
(
q
1/2
ℓ a⊤a∂ℓij [q

1/2
ℓ ]
)
=

1

2
Tr
([
∂ℓij [q

1/2
ℓ ]q

1/2
ℓ + q

1/2
ℓ ∂ℓij [q

1/2
ℓ ]
]
a⊤a

)
=

1

2
Tr eℓija

⊤a. (73)

Applying this to (72) and noting that g⊤
ℓ gℓ = Ikℓ×kℓ because gℓ is orthogonal, the second and fourth terms

of (72) cancel and we obtain

∂ℓijΨgs(q) = −λℓ
2

Tr eℓijqℓ + λℓ Eg∗,zTr e
ℓ
ijg

⊤
∗ℓ〈gℓ〉 −

λℓ
2

Eg∗,zTr e
ℓ
ij〈gℓ〉⊤〈gℓ〉.

By the Nishimori identity,

Eg∗,zTr e
ℓ
ijg

⊤
∗ℓ〈gℓ〉 = Eg∗,zTr e

ℓ
ij〈gℓ〉⊤〈gℓ〉.

Thus

∂ℓijΨgs(q) = −λℓ
2

Tr eℓij

(
qℓ − Eg∗,zg

⊤
∗ℓ〈gℓ〉

)
= −λℓ

2
Tr eℓij

(
qℓ − Eg∗,z〈gℓ〉⊤〈gℓ〉

)
.

Applying this in (70) and using
∑

1≤i≤j≤kℓ (x · eℓij)eℓij = xℓ gives (32). It is clear that the right side of (32)

extends continuously to the boundary of Sym�0, thus establishing (32) for all q ∈ Sym�0. Also from this

form (32), we have ∇Ψgs(q) = 0, i.e. ∇Ψgs(q)[x] = 0 for all x ∈ Sym, if and only if qℓ = Eg∗,z〈gℓ〉⊤〈gℓ〉 for
all ℓ = 1, . . . , L. This shows all claims of part (a).

For part (b), let us compute the second partial derivatives from the form of the first derivative

∂ℓ′i′j′Ψgs(q) = −λℓ′
2

Tr eℓ
′

i′j′

(
qℓ′ − Eg∗,zg

⊤
∗ℓ′〈gℓ′〉

)
.

For q in the interior of Sym�0, taking ∂ℓij using the orthogonality relation

∂ℓij Tr e
ℓ′

i′j′qℓ′ = 1{ℓ = ℓ′}Treℓi′j′eℓij = 1{(ℓ, i, j) = (ℓ′, i′, j′)}

for the first term, we get

∂ℓij∂ℓ′i′j′Ψgs(q) = −λℓ
2
1{(ℓ, i, j) = (ℓ′, i′, j′)}+ λℓ′

2
Eg∗,z Tr e

ℓ′

i′j′g
⊤
∗ℓ′∂ℓij〈gℓ′〉. (74)

Let us abbreviate

mℓ = λℓe
ℓ
ijg

⊤
∗ℓgℓ +

√
λℓ∂ℓij [q

1/2
ℓ ]z⊤ℓ gℓ,
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momentarily write ⊗ for the usual vector space tensor product (in this calculation only, not to be confused

with the bilinear map ⊗ in the rest of the paper), and denote the linear maps (Tr⊗id)(a ⊗ b) = (Tra)b

and (Tr⊗Tr)(a ⊗ b) = (Tra)(Trb). Then

∂ℓij〈gℓ′〉 = 〈(Trmℓ)gℓ′〉 − 〈Trmℓ〉〈gℓ′〉 = Tr⊗id
(
〈mℓ ⊗ gℓ′〉 − 〈mℓ〉 ⊗ 〈gℓ′〉

)
. (75)

To simplify the contributions from the second term of mℓ involving zℓ, we apply Gaussian integration-by-

parts in the forms

Ez Tr⊗id
〈
z⊤ℓ f(gℓ)⊗ gℓ′

〉
= Ez

kℓ∑

i,j=1

∂

∂zℓij
〈fij(gℓ)gℓ′〉

=
√
λℓ Ez Tr⊗id

[〈
q
1/2
ℓ g⊤

ℓ f(gℓ)⊗ gℓ′
〉
−
〈
q
1/2
ℓ 〈gℓ〉⊤f(gℓ)⊗ gℓ′

〉]
,

EzTr⊗id
[
〈z⊤ℓ f(gℓ)〉 ⊗ 〈gℓ′〉

]
= Ez

kℓ∑

i,j=1

∂

∂zℓij
[〈fij(gℓ)〉〈gℓ′〉]

=
√
λℓ Ez Tr⊗id

[
〈q1/2
ℓ g⊤

ℓ f(gℓ)〉 ⊗ 〈gℓ′〉+
〈
q
1/2
ℓ g⊤

ℓ 〈f(gℓ)〉 ⊗ gℓ′
〉

− 2q
1/2
ℓ 〈gℓ〉⊤〈f(gℓ)〉 ⊗ 〈gℓ′〉

]
.

Setting f(gℓ) =
√
λℓ gℓ∂ℓij [q

1/2
ℓ ] as before and taking the difference of the above two expressions,

Ez Tr⊗id
[〈√

λℓz
⊤
ℓ gℓ∂ℓij [q

1/2
ℓ ]⊗ gℓ′

〉
−
〈√

λℓz
⊤
ℓ gℓ∂ℓij [q

1/2
ℓ ]
〉
⊗ 〈gℓ′〉

]

= λℓ Ez Tr⊗id
[〈

q
1/2
ℓ (gℓ − 〈gℓ〉)⊤(gℓ − 〈gℓ〉)∂ℓij [q1/2

ℓ ]⊗ gℓ′
〉

−
〈
q
1/2
ℓ g⊤

ℓ gℓ∂ℓij [q
1/2
ℓ ]
〉
⊗ 〈gℓ′〉+ q

1/2
ℓ 〈gℓ〉⊤〈gℓ〉∂ℓij [q1/2

ℓ ]⊗ 〈gℓ′〉
]

=
λℓ
2

Ez Tr⊗id
[〈

eℓij(gℓ − 〈gℓ〉)⊤(gℓ − 〈gℓ〉)⊗ gℓ′
〉
− 〈eℓijg⊤

ℓ gℓ〉 ⊗ 〈gℓ′〉+ eℓij〈gℓ〉⊤〈gℓ〉 ⊗ 〈gℓ′〉
]

where the last equality applies (73) with a ∈ {gℓ − 〈gℓ〉,gℓ, 〈gℓ〉}. Expanding the square in the first term,

cancelling the terms involving Tr eℓijg
⊤
ℓ gℓ = 1{i = j}, and applying Tr eℓij〈gℓ〉⊤gℓ = Tr eℓijg

⊤
ℓ 〈gℓ〉, we get

Ez Tr⊗id
[〈√

λℓz
⊤
ℓ gℓ∂ℓij [q

1/2
ℓ ]⊗ gℓ′

〉
−
〈√

λℓz
⊤
ℓ gℓ∂ℓij [q

1/2
ℓ ]
〉
⊗ 〈gℓ′〉

]

= λℓ Ez Tr⊗id
[
−〈eℓijg⊤

ℓ 〈gℓ〉 ⊗ gℓ′〉+ eℓij〈gℓ〉⊤〈gℓ〉 ⊗ 〈gℓ′〉
]

Combining this with the contributions from the first term of mℓ and substituting into (75), we arrive at

Ez∂ℓij〈gℓ′〉 = λℓ Ez Tr⊗id
[
〈eℓijg⊤

∗ℓgℓ ⊗ gℓ′〉 − eℓijg
⊤
∗ℓ〈gℓ〉 ⊗ 〈gℓ′〉 − 〈eℓijg⊤

ℓ 〈gℓ〉 ⊗ gℓ′〉+ eℓij〈gℓ〉⊤〈gℓ〉 ⊗ 〈gℓ′〉
]
.

33



Applying this back to (74) and using again Tr eℓij〈gℓ〉⊤gℓ = Tr eℓijg
⊤
ℓ 〈gℓ〉 and Nishimori’s identity,

∂ℓij∂ℓ′i′j′Ψgs(q) = −λℓ
2
1{(ℓ, i, j) = (ℓ′, i′, j′)}

+
λℓλℓ′

2
Eg∗,zTr⊗Tr

[
〈eℓijg⊤

∗ℓgℓ ⊗ eℓ
′

i′j′g
⊤
∗ℓ′gℓ′〉 − eℓijg

⊤
∗ℓ〈gℓ〉 ⊗ eℓ

′

i′j′g
⊤
∗ℓ′〈gℓ′〉

− 〈eℓijgℓ〈g⊤
ℓ 〉 ⊗ eℓ

′

i′j′g
⊤
∗ℓ′gℓ′〉+ eℓij〈gℓ〉⊤〈gℓ〉 ⊗ eℓ

′

i′j′g
⊤
∗ℓ′〈gℓ′〉

]

= −λℓ
2
1{(ℓ, i, j) = (ℓ′, i′, j′)}

+
λℓλℓ′

2
Eg∗,z

[
〈Tr eℓijg⊤

∗ℓgℓTr e
ℓ′

i′j′g
⊤
∗ℓ′gℓ′〉 − 2Tr eℓijg

⊤
∗ℓ〈gℓ〉Tr eℓ

′

i′j′g
⊤
∗ℓ′〈gℓ′〉

+Tr eℓij〈gℓ〉⊤〈gℓ〉Tr eℓ
′

i′j′ 〈gℓ′〉⊤〈gℓ′〉
]
.

Applying this in (71) and using
∑

1≤i≤j≤kℓ(x · eℓij)(x′ · eℓij) = Trxℓx
′
ℓ,
∑

1≤i≤j≤kℓ(x · eℓij)eℓij = xℓ, and the

analogous identity for x′ gives (33). Again, the right side of (33) extends continuously to the boundary of

Sym�0, establishing (33) for all q ∈ Sym�0 and showing part (b).

Proof of Proposition 3.3. Let us write E for the expectation over independent and uniformly random

elements g,h ∼ Haar(G), with corresponding representations (g1, . . . ,gL) and (h1, . . . ,hL).

We use the definition of the type of a real-irreducible representation gℓ following Theorem D.13. If the

representation gℓ is of real type, then it is C-irreducible. Since it is also non-trivial, Schur orthogonality

(Theorem D.7(a)) implies that E[gℓij · 1] = 0 for each entry (i, j) of gℓ, where 1 represents the trivial

representation in C1×1; thus E[gℓ] = 0. If gℓ is of complex or quaternionic type, then the same argument

applies to the entries of the two C-irreducible sub-representations of gℓ. Thus in all cases, E[gℓ] = 0.

At q = 0, a sample g from the posterior measure defining 〈·〉g is uniform over G and independent of g∗.

Thus

∇Ψ(0)[x] =

L∑

ℓ=1

λℓ
2

Trxℓ(Egℓ)
⊤(Egℓ) = 0

for any x ∈ Sym, showing the first claim that ∇Ψ(0) = 0. Furthermore, applying Egℓ = 0,

∇2Ψ(0)[x,x′] =
L∑

ℓ=1

−λℓ
2

Trxℓx
′
ℓ +

L∑

ℓ,ℓ′=1

λℓλℓ′

2
E

[
(Trxℓg

⊤
ℓ hℓ)(Trx

′
ℓ′g

⊤
ℓ′hℓ′)

]
.

By invariance of Haar measure, we have the equality in law g⊤h
L
= g. Furthermore, if ℓ 6= ℓ′, then gℓ and gℓ′

are distinct and real-irreducible, so the C-irreducible sub-representations of gℓ are distinct from those of gℓ′

(c.f. Theorem D.13). Then Schur orthogonality (Theorem D.7(a)) implies E[(Trxℓgℓ)(Trxℓ′gℓ′)] = 0. Thus

∇2Ψ(0)[x,x′] =
L∑

ℓ=1

−λℓ
2

Trxℓx
′
ℓ +

λ2ℓ
2
E

[
(Trxℓgℓ)(Trx

′
ℓgℓ)

]

︸ ︷︷ ︸
=:Hℓ[xℓ,x′

ℓ
]

This shows that ∇2Ψ(0) is block-diagonal in the L×L block decomposition with respect to x = (x1, . . . ,xL),

with blocks {Hℓ}Lℓ=1, so its largest eigenvalue satisfies

λmax(∇2Ψ(0)) =
L

max
ℓ=1

λmax(Hℓ) =
L

max
ℓ=1

sup
xℓ∈Symkℓ×kℓ :‖xℓ‖2

F
=kℓ

1

kℓ
Hℓ[xℓ,xℓ].
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If gℓ is of real type, then it is C-irreducible, and Theorem D.7(a) gives

E[(Trxℓgℓ)
2] = E[(Trxℓgℓ)(Trxℓgℓ)] =

kℓ∑

i,j,i′,j′=1

xℓijxℓi′j′E[gℓijgℓi′j′ ] =
1

kℓ

kℓ∑

i,j=1

xℓijxℓi′j′ =
1

kℓ
‖xℓ‖2F .

Thus

sup
xℓ:‖xℓ‖2

F
=kℓ

E[(Trxℓgℓ)
2] = E[(Tr gℓ)

2] = 1

where the first equality holds because the supremum is attained at any xℓ satisfying ‖xℓ‖2F = kℓ, and in

particular at xℓ = Ikℓ×kℓ .

If gℓ is of complex type, then there exists a unitary matrix (v1 v2) ∈ Ckℓ×kℓ for which

gℓ =
(
v1 v2

)
(
g
(1)
ℓ 0

0 g
(2)
ℓ

)(
v∗
1

v∗
2

)
(76)

and g
(1)
ℓ ,g

(2)
ℓ ∈ Ckℓ/2×kℓ/2 are the two C-irreducible unitary sub-representations of gℓ (c.f. Theorem D.5).

Here, g
(2)
ℓ is distinct from g

(1)
ℓ and isomorphic to the complex conjugate representation ḡ

(1)
ℓ . Then Theorem

D.7(a) gives, similarly as above,

E[(Trxℓgℓ)
2] = E[(Trv∗

1xℓv1g
(1)
ℓ +Trv∗

2xℓv2g
(2)
ℓ )2] =

1

kℓ/2
‖v∗

1xℓv1‖2F +
1

kℓ/2
‖v∗

2xℓv2‖2F .

We have ‖v∗
1xℓv1‖2F + ‖v∗

2xℓv2‖2F ≤ ‖xℓ‖2F , where equality is again attained at xℓ = Ikℓ×kℓ . Then

sup
xℓ:‖xℓ‖2

F=kℓ

E[(Trxℓgℓ)
2] = E[(Tr gℓ)

2] = 2.

Finally, if gℓ is of quaternionic type, then again (76) holds where, now, g
(1)
ℓ ,g

(2)
ℓ are isomorphic C-

irreducible sub-representations of gℓ (and both isomorphic to ḡ
(1)
ℓ ). Then there exists a unitary matrix

u ∈ C
kℓ/2×kℓ/2 for which g

(1)
ℓ = u∗g

(2)
ℓ u (c.f. Proposition D.9). Replacing (v2,g

(2)
ℓ ) by (v2u,u

∗g
(2)
ℓ u), we

may assume that g
(1)
ℓ = g

(2)
ℓ . Then by Theorem D.7(a),

E[(Trxℓgℓ)
2] = E

[(
Tr(v∗

1xℓv1 + v∗
2xℓv2)g

(1)
ℓ

)2]
=

1

kℓ/2
‖v∗

1xℓv1 + v∗
2xℓv2‖2F .

We have ‖v∗
1xℓv1 + v∗

2xℓv2‖2F ≤ 2‖v∗
1xℓv1‖2F + 2‖v∗

2xℓv2‖2F ≤ 2‖xℓ‖2F , where both equalities are attained

at xℓ = Ikℓ×kℓ (since then v∗
1xℓv1 = v∗

2xℓv2 = Ikℓ/2×kℓ/2). Thus

sup
xℓ:‖xℓ‖2

F
=kℓ

E[(Trxℓgℓ)
2] = E[(Tr gℓ)

2] = 4.

Defining ρℓ := E[(Tr gℓ)
2], this verifies in all cases that

λmax(∇2Ψ(0)) =
L

max
ℓ=1

λmax(Hℓ) =
L

max
ℓ=1

1

kℓ

(
−λℓ

2
kℓ +

λ2ℓ
2
ρℓ

)
.

Then setting λ̃ℓ = λℓρℓ/kℓ, we have that λmax(∇2Ψ(0)) < 0 when maxℓ λ̃ℓ < 1, and λmax(∇2Ψ(0)) > 0

when maxℓ λ̃ℓ > 1, as claimed in parts (a) and (b) of the proposition.
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Finally, to conclude the statements about 0 being a local maximizer of Ψ(q), observe that since Sym�0

is a (convex) cone, we have

Bǫ(0) := {q ∈ Sym�0 : ‖q‖F ≤ ǫ} = {tx : x ∈ Sym�0, ‖x‖F = 1, t ∈ [0, ǫ]}.

For any such q = tx ∈ Bǫ(0), Taylor expansion along the line from 0 to q gives

Ψ(q)−Ψ(0) =

∫ t

0

∇Ψ(sx)[x] ds =

∫ t

0

∇Ψ(sx)[x] −∇Ψ(0)[x] ds =

∫

0≤r≤s≤t
∇2Ψ(rx)[x,x] dr ds

where the second equality uses ∇Ψ(0) = 0. If maxℓ λ̃ℓ < 1, then λmax(∇2Ψ(0)) < 0, so by continuity there

is some ǫ > 0 such that λmax(∇2Ψ(rx)) ≤ −ǫ for all rx ∈ Bǫ(0). The above then implies Ψ(q) < Ψ(0) for all

q ∈ Bǫ(0), so q = 0 is a local maximizer of Ψ(q). Conversely, if λ̃ℓ > 1 for some ℓ, then choosing x ∈ Sym�0

with xℓ = Ikℓ×kℓ/
√
kℓ and xℓ′ = 0 for all ℓ′ 6= ℓ, the above proof verifies that ∇2Ψ(0)[x,x] > 0. Then by

continuity, ∇2Ψ(rx)[x,x] > ǫ > 0 for some ǫ > 0 and all r ∈ [0, ǫ]. Then the above shows Ψ(q) > Ψ(0) for

q = tx and all t ∈ (0, ǫ), so q = 0 is not a local maximizer of Ψ(q).

B.3 SO(2)-synchronization

We now prove Theorem 3.10, providing a global analysis of the optimization problem supq∈Q Ψgs(q) for the

single-channel SO(2)-synchronization model.

Proof of Proposition 3.9. If q ∈ Sym�0 is a critical point of Ψgs, then Proposition 3.2(a) shows

qℓ = E〈gℓ〉⊤q 〈gℓ〉q for all ℓ. Then qℓ is a symmetric matrix that commutes with hℓ for every h ∈ G because

G is abelian, so it is a multiple of the identity by Schur’s lemma (c.f. Theorem D.11).

To establish the result also for local maximizers on the boundery of Sym�0, consider any q ∈ Sym�0 for

which some qℓ is not a multiple of the identity. The above implies E〈gℓ〉⊤q 〈gℓ〉q = µℓI for some µℓ ≥ 0. If

qℓ has a strictly positive eigenvalue different from µℓ, with eigenvector vℓ, then defining x by xℓ = vℓv
⊤
ℓ

and xℓ′ = 0 for all ℓ′ 6= ℓ, Proposition 3.2(a) shows ∇Ψgs(q)[x] 6= 0. Then the point q′ = q ± ǫx for some

choice of sign ± and any sufficiently small ǫ > 0 satisfies q′ ∈ Sym�0 and Ψgs(q
′) > Ψgs(q). If qℓ does not

have a strictly positive eigenvalue different from µℓ, then qℓ must have all eigenvalues equal to 0 and µℓ 6= 0.

In this case, let vℓ be an eigenvector corresponding to 0, and define x in the same way. Proposition 3.2(a)

shows ∇Ψgs(q)[x] > 0, so the point q′ = q+ ǫx for any sufficiently small ǫ > 0 also satisfies q′ ∈ Sym�0 and

Ψgs(q
′) > Ψgs(q). In both cases, q is not a local maximizer of Ψgs, implying the proposition.

To show Theorem 3.10, since SO(2) is abelian, Proposition 3.9 allows us to restrict attention to the single-

letter model (40) with mean-squared-error function mmse(γ). The main technical lemma is the following.

Lemma B.1. Let F (γ) = 1 − 1
2 mmse(γ). Then F (0) = 0, F ′(0) = 1, and F (γ) is strictly increasing and

strictly concave over γ ∈ (0,∞).

Proof. It will be convenient to work with the complex variable u = eiθ ∈ U(1) representing

g =

(
cos θ − sin θ

sin θ cos θ

)
∈ SO(2).
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Observing y in the single-letter model (40) is equivalent to observing the sufficient statistic
√
γ(cos θ∗, sin θ∗)+

( z11+z222 , z21−z122 ), which we may represent by the complex observation

y =
√
γu∗ + z ∈ C

where u∗ = eiθ∗ ∼ Haar(U(1)) and ℜz,ℑz iid∼ N (0, 12 ). Then p(u | y) ∝ e−|y−√
γu|2 ∝ eH(u;y) for the

Hamiltonian

H(u; y) =
√
γ(yū+ uȳ) = γ(u∗ū+ uū∗) +

√
γ(zū+ uz̄).

Abbreviating E = Eu∗,z and 〈·〉 for the posterior mean under p(· | y), we have

mmse(γ) = E[2(cos θ∗ − 〈cos θ〉)2 + 2(sin θ∗ − 〈sin θ〉)2]
= 2E|u∗ − 〈u〉|2 = 2(1− Eū∗〈u〉) = 2(1− E〈ū〉〈u〉),

so F (γ) = 1− 1
2 mmse(γ) = Eū∗〈u〉 = E〈ū〉〈u〉. At γ = 0 we have 〈u〉 = 0, so F (0) = 0.

Differentiating in γ and applying the Gaussian integration-by-parts formulas Ezf(z, z̄) = E∂z̄f(z, z̄) and

Ez̄f(z, z̄) = E∂zf(z, z̄), we get

F ′(γ) = Eū∗

〈
u

(
u∗ū+ uū∗ +

1

2
√
γ
(zū+ uz̄)

)〉
− Eū∗〈u〉

〈
u∗ū+ uū∗ +

1

2
√
γ
(zū+ uz̄)

〉

= E

[
1− 〈ū〉〈u〉+ ū2∗(〈u2〉 − 〈u〉2) + zū∗

2
√
γ
(1− 〈ū〉〈u〉) + z̄ū∗

2
√
γ
(〈u2〉 − 〈u〉2)

]

= E

[
1− 〈ū〉〈u〉+ ū2∗(〈u2〉 − 〈u〉2) + ū∗

2
(−〈u〉 − 〈ū〉〈u2〉+ 2〈ū〉〈u〉2) + ū∗

2
(−〈u〉 − 〈ū〉〈u2〉+ 2〈ū〉〈u〉2)

]

= E
[
1− 〈ū〉〈u〉+ ū2∗(〈u2〉 − 〈u〉2)− ū∗〈u〉 − ū∗〈ū〉〈u2〉+ 2ū∗〈ū〉〈u〉2

]

= E
[
1− 2〈ū〉〈u〉+ 〈ū〉2〈u〉2 + (〈ū2〉 − 〈ū〉2)(〈u2〉 − 〈u〉2)

]

= E
[
(1− |〈u〉|2)2 + |〈u2〉 − 〈u〉2|2

]
.

Here, both terms are non-negative. For any (finite) γ > 0 the posterior law of u is not a point mass on the

circle U(1), so |〈u〉| < 1 with probability 1 over y. Then the first term is strictly positive, showing that F (γ)

is strictly increasing. At γ = 0, we have 〈u〉 = 〈u2〉 = 0, so F ′(0) = 1.

It remains to show that F (γ) is strictly concave. For this, observe first that the Hamiltonian H(u; y)

defining the posterior mean 〈·〉 depends on (γ, y) only via
√
γy. Observe next that by rotational symmetry

of the model about the origin in the complex plane, the function
√
γy 7→ (1−|〈u〉|2)2+ |〈u2〉−〈u〉2|2 depends

only on the modulus
√
γ|y|. Thus, setting x =

√
γ|y|, we may define

f(x) = (1 − |〈u〉|2)2 + |〈u2〉 − 〈u〉2|2 where 〈uj〉 = Eu∼Haar(U(1))u
jex(u+ū)

Eu∼Haar(U(1))ex(u+ū)

for real arguments x ≥ 0, and we have F ′(γ) = Ef(
√
γ|y|). It then suffices to show

1. For any γ1 > γ2 > 0, the law of x1 =
√
γ1|y| stochastically dominates that of x2 =

√
γ2|y|, in the sense

P[x1 ≥ t] > P[x2 ≥ t] for all t > 0.

2. f ′(x) < 0 for all x > 0.
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Indeed, then there would exist a coupling of (x1, x2) so that x1 > x2 with probability 1, hence F ′(γ1) −
F ′(γ2) = E[f(x1)− f(x2)] = E[

∫ x1

x2
f ′(t)dt] < 0, implying strictly concavity of F (γ).

To show claim (1), observe that 2|y|2 ∼ χ2
2(2γ) which is stochastically increasing in the chi-squared

non-centrality parameter 2γ (as this represents the power of a chi-squared statistical test against a family

of alternatives ordered by γ). Thus Pγ1 [|y| ≥ t] > Pγ2 [|y| ≥ t] for any t > 0, implying also P[x1 ≥ t] =

Pγ1 [
√
γ1|y| ≥ t] > Pγ1 [

√
γ2|y| ≥ t] > Pγ2 [

√
γ2|y| ≥ t] = P[x2 ≥ t].

To show claim (2), observe that 〈uj〉 is real for any j ≥ 0, since the law p(u) ∝ ex(u+ū) = e2x cos θ is

conjugation-symmetric. More precisely, p(u) is a von Mises distribution on the circle, for which

uj := 〈uj〉 = Ij(2x)/I0(2x) (77)

where Ij(·) is the modified Bessel function of the first kind

Ij(2x) =
∑

m≥0

1

m!(m+ j)!
x2m+j . (78)

We have ∂xuj = 〈uj+1 + uj−1〉 − 〈uj〉〈u+ ū〉 = uj−1 + uj+1 − 2u1uj and f(x) = (1− u21)
2 + (u2 − u21)

2, so

f ′(x) = −4u1(1− u21)(1 + u2 − 2u21) + 2(u2 − u21)[(u1 + u3 − 2u1u2)− 2u1(1 + u2 − 2u21)]

= −4u1(1 + u2 − 2u21)
2 + 2(u2 − u21)(u1 + u3 − 2u1u2).

We then make the following observations:

• It is clear from definition that Ij(2x) > 0 for any x > 0 and j ≥ 0, hence u1 = I1(2x)/I0(2x) > 0.

• We have u2 − u21 = I0(2x)
−2(I2(2x)I0(2x)− I1(2x)

2), where I0(2x)
−2 > 0 and

I2(2x)I0(2x)− I1(2x)
2 =

∑

p,q≥0

1

p!(p+ 2)!
x2p+2 1

q!q!
x2q −

∑

p,q≥0

1

p!(p+ 1)!
x2p+1 1

q!(q + 1)!
x2q+1

=
∑

k≥0

x2k+2
∑

p,q: p+q=k

1

p!(p+ 2)!q!q!
− 1

p!(p+ 1)!q!(q + 1)!

=
∑

k≥0

x2k+2
∑

p,q: p+q=k

1

k!(k + 2)!

(
k

p

)(
k + 2

q

)
− 1

(k + 1)!(k + 1)!

(
k + 1

p

)(
k + 1

q

)

=
∑

k≥0

x2k+2
( 1

k!(k + 2)!
− 1

(k + 1)!(k + 1)!

)(2k + 2

k

)
,

the last equality using Vandermonde’s identity. Here 1
k!(k+2)! − 1

(k+1)!(k+1)! < 0 for every k ≥ 0, so

u2 − u21 < 0.

• We have similarly u1 + u3 − 2u1u2 = I0(2x)
−2(I3(2x)I0(2x) + I1(2x)I0(2x) − 2I2(2x)I1(2x)), where
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I0(2x)
−2 > 0 and

I3(2x)I0(2x) + I1(2x)I0(2x)− 2I2(2x)I1(2x)

=
∑

p,q≥0

1

p!(p+ 3)!
x2p+3 1

q!q!
x2q +

∑

p,q≥0

1

p!(p+ 1)!
x2p+1 1

q!q!
x2q − 2

∑

p,q≥0

1

p!(p+ 2)!
x2p+2 1

q!(q + 1)!
x2q+1

= x+
∑

k≥0

x2k+3

(
∑

p,q: p+q=k

1

p!(p+ 3)!q!q!
+

∑

p,q: p+q=k+1

1

p!(p+ 1)!q!q!
− 2

∑

p,q: p+q=k

1

p!(p+ 2)!q!(q + 1)!

)

= x+
∑

k≥0

x2k+3

(
∑

p,q: p+q=k

1

k!(k + 3)!

(
k

p

)(
k + 3

q

)
+

∑

p,q: p+q=k+1

1

(k + 1)!(k + 2)!

(
k + 1

p

)(
k + 2

q

)

− 2
∑

p,q: p+q=k

1

(k + 1)!(k + 2)!

(
k + 1

p

)(
k + 2

q

))

= x+
∑

k≥0

x2k+3

(
1

k!(k + 3)!

(
2k + 3

k

)
+

1

(k + 1)!(k + 2)!

(
2k + 3

k + 1

)
− 2

(k + 1)!(k + 2)!

(
2k + 3

k

))

= x+
∑

k≥0

x2k+3 1

(k + 1)!(k + 2)!

(
2k + 3

k

)(
k + 1

k + 3
+
k + 3

k + 1
− 2

)
.

This summand is positive for every k ≥ 0, hence u1 + u3 − 2u1u2 > 0.

Combining the above yields f ′(x) < 0 as desired, which concludes the proof.

Proof of Theorem 3.10. The fixed-point equation (41) is q = F (λq), for the function F (γ) of Lemma

B.1. Here q = 0 is a fixed point because F (0) = 0. Since q 7→ F (λq) is bounded, increasing, and strictly

concave, this is the only fixed point when 1 ≥ ∂qF (λq)|q=0 = λ, and there exists a unique other positive fixed

point q∗ > 0 when 1 < ∂qF (λq)|q=0 = λ. Furthermore, ∂qΨgs(qI) = −λq + λ− λ
2 mmse(λq) = λ[F (λq) − q].

When λ ∈ (0, 1], we have q > F (λq) for all q > 0, so Ψgs(qI) attains its unique maximum at q = 0. When

λ > 1, we have q < F (λq) for q < q∗ and q > F (λq) for q > q∗, so Ψgs(qI) attains its unique maximum at

q = q∗.

Proposition 3.9 then implies that (42) holds, and that q = 0 and q = q∗I are, respectively, the unique

global maximizer of Ψgs in the two cases λ ∈ (0, 1] and λ > 1. The remaining statements on I(G∗, Y ),

MMSE, and overlap concentration then follow from Theorem 3.1.

Example of non-identity critical point for SO(k)-synchronization.

Proposition B.2. Consider the single-channel SO(k)-synchronization model of Example 3.5, with k ≥ 3.

If λ > λc := k, then there exists a scalar value q∗ > 0 for which ∇Ψgs(diag(q∗, 0, . . . , 0)) = 0.

Proof. Write F (q) = Eg∗,z 〈g〉⊤q 〈g〉
q
, so ∇Ψgs(q) = 0 if and only if q = F (q).

We claim that for any q of the form q = diag(q, 0, . . . , 0), we have F (q) = diag(q′, 0, . . . , 0) for some

other q′ ≥ 0. To see this, momentarily let g1 ∈ Rk and g2:k ∈ Rk×(k−1) denote the first and remaining k− 1

columns of g. Observe that when q = diag(q, 0, . . . , 0), y is independent of g2:k given g1. Hence, for any

fixed h ∈ SO(k − 1), we have E[g2:kh | y] = E[E[g2:kh | g1,y] | y] = E[E[g2:kh | g1] | y]. Fixing any g1, we

have E[g2:kh | g1] = E[g2:k | g1] by invariance of Haar measure. Thus E[g2:kh | y] = E[g2:k | y] for every
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h ∈ SO(k − 1). Then, taking the average over h ∼ Haar(SO(k − 1)) which has mean 0 for k ≥ 3, we get

〈g2:k〉q = E[g2:k | y] = 0, so F (q) is non-zero in only the (1, 1) entry, as claimed.

Thus diag(q, 0, . . . , 0) is a fixed point if and only if q = F11(q) where F11(q) denotes the (1, 1)-entry

of F (diag(q, 0, . . . , 0)). We note that F11(0) = 0. By specializing Proposition 3.2(b) to L = 1, q =

diag(q, 0, . . . , 0), and x = x′ = diag(1, 0, . . . , 0), we have

F ′
11(q) = λEg∗,z

[〈
(g⊤

∗ g)
2
11

〉
q
− 2(g⊤

∗ 〈g〉q)211 + (〈g〉⊤q 〈g〉q)211
]
.

When q = 0, we have 〈g〉q = 0 and g⊤
∗ g is equal in law to g ∼ Haar(SO(k)), so this gives simply F ′

11(0) =

λEg[(g)
2
11] =

λ
k . Therefore, if λ > k, then F ′

11(0) > 1. As F11(q) is continuous and bounded, there must

exist a solution q∗ > 0 to q = F11(q), and hence a fixed point diag(q∗, 0, . . . , 0) of Ψgs(q).

C Proofs for quadratic assignment

In this section, we analyze the quadratic assignment model (43). We start by studying the model with

linear observations (47) and showing Lemma 4.3 in Section C.1. We then prove Theorem 4.4 in Section C.2,

applying the general result of Theorem 2.2 and formalizing an approximation of the free energy by that in

a model with the truncated kernel κL.

We will use throughout the following elementary observations: Since κ is continuous and X is compact,

there exists a constant K0 <∞ for which

|κ(x, y)| < K0 for all x, y ∈ X . (79)

Furthermore, since fℓ(x) = µ−1
ℓ

∫
κ(x, y)fℓ(y)ρ(dy) and

∫
|κ(x, y)fℓ(y)|ρ(dy) < K0(

∫
fℓ(y)

2ρ(dy))1/2 < ∞,

by the dominated convergence theorem limx′→x fℓ(x
′) = fℓ(x). Thus each fℓ(x) is also continuous on X , so

there exist constants Cℓ <∞ for which

|fℓ(x)| < Cℓ for all x ∈ X and ℓ ≥ 1. (80)

C.1 Mutual information of the linear model

Proof of Lemma 4.3. We apply the result of [GR09] for Bayesian estimation in compound decision

models. Fixing {xi}Ni=1, let us compare the two observation models

yi =
√
λq1/2u(xπ∗(i)) + zi for i = 1, . . . , N (81)

y′
i =

√
λq1/2v∗i + z′i for i = 1, . . . , N (82)

where {v∗i}Ni=1 are drawn i.i.d. (with replacement) from the empirical distribution of {u(xi)}Ni=1, and zi, z
′
i
iid∼

N (0, I). Let iλ(π∗, Ylin) be the mutual information between π∗ and Ylin = (yi)
N
i=1 in the model (81), and let

iλ(V∗, Y ′
lin) be the mutual information between V∗ = (v∗i)Ni=1 and Y ′

lin = (y′
i)
N
i=1 in the model (82). In (82),

the samples (v∗i,y′
i) are i.i.d. given {xi}Ni=1, and a direct calculation gives

1

N
iλ(V∗, Y

′
lin) = Ev∗,z′

[
λ

2
v⊤
∗ qv∗ − logEv exp

(
−λ
2
v⊤qv + λv⊤qv∗ +

√
λv⊤q1/2z′

)]

where Ev,Ev∗
are expectations over v,v∗ ∈ RL sampled uniformly at random from the empirical distribution

of {u(xi)}Ni=1.
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By the i-mmse relation [GSV05], we have

∂

∂λ
iλ(π∗, Ylin) =

1

2

N∑

i=1

E

∥∥∥q1/2u(xπ∗(i))− q1/2
E[u(xπ(i)) | Ylin]

∥∥∥
2

2
=:

1

2
mmseπ∗

(λ),

∂

∂λ
iλ(V∗, Y

′
lin) =

1

2

N∑

i=1

E

∥∥∥q1/2v∗i − q1/2
E[vi | Y ′

lin]
∥∥∥
2

2
=:

1

2
mmseV∗

(λ).

The analyses of [GR09, Theorem 5.1, Corollary 5.2] extend verbatim to a multivariate setting, to show

|mmseπ∗
(λ) − mmseV∗

(λ)| ≤ Cλ for a constant Cλ depending only on maxNi=1 ‖
√
λu(xi)q

1/2‖2. Then,

applying i0(π∗, Ylin) = i0(V∗, Y ′
lin) = 0 and integrating over λ ∈ [0, 1], we obtain

∣∣∣∣
1

N
i1(π∗, Ylin)−

1

N
i1(V∗, Y

′
lin)

∣∣∣∣ ≤
C

N

for some constant C > 0 depending on (Cℓ)ℓ≤L from (80).

Here, i1(π∗, Ylin) = i(π∗, Ylin) is the mutual information of interest in the model (47). Since the empirical

law of {xi}Ni=1 converges weakly to ρ, by continuity of u(x) we have that the law of v,v∗ (i.e. the empirical

law of {u(xi)}Ni=1) converges weakly to the law of u(x) when x ∼ ρ. Then by the dominated convergence

theorem, limN→∞
1
N i1(V∗, Y

′
lin) = i(x,y) as defined in the lemma.

C.2 Mutual information of the quadratic model

We now bound the discrepancy in mutual information due to truncation of the kernel.

Lemma C.1. Suppose Assumption 4.1 holds, and let K0 satisfy (79). Let I(π∗, Y ) be the signal-observation

mutual information in the model (43), and let I(π∗, Y L) be that in the analogous model with kernel κL defined

by (44). Then for any ǫ > 0, there exists L0 = L0(ǫ) such that for all L ≥ L0 and N ≥ 1,

1

N

∣∣I(π∗, Y )− I(π∗, Y
L)
∣∣ ≤ K0ǫ.

Proof. By the uniform convergence of κL to κ given by Mercer’s theorem (Theorem 4.2), for any ǫ > 0, there

exists an L0 = L0(ǫ) such that for all L ≥ L0,

sup
x,y

∣∣κL(x, y)− κ(x, y)
∣∣ < ǫ. (83)

From here on, fix any L ≥ L0. Write as shorthand

κij = κ(xπ(i), xπ(j)), κ∗ij = κ(xπ∗(i), xπ∗(j)), κLij = κL(xπ(i), xπ(j)), κL∗ij = κL(xπ∗(i), xπ∗(j)).

The Hamiltonians associated to the model (43) and the one defined by κL in place of κ are, respectively,

H(π;π∗, Z) := − 1

2N

∑

i<j

κ2ij +
1

N

∑

i<j

κ∗ijκij +
1√
N

∑

i<j

κijzij , (84)

HL(π;π∗, Z) := − 1

2N

∑

i<j

(κLij)
2 +

1

N

∑

i<j

κL∗ijκ
L
ij +

1√
N

∑

i<j

κLijzij . (85)
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Let F∞
N and FL

N denote the free energies associated with these Hamiltonians,

F∞
N :=

1

N
Eπ∗,Z logEπ expH(π;π∗, Z) and FL

N :=
1

N
Eπ∗,Z logEπ expH

L(π;π∗, Z). (86)

Then by the same calculations as (68),

1

N
I(π∗, Y ) =

1

2N2
Eπ∗

∑

i<j

κ2∗ij −F∞
N ,

1

N
I(π∗, Y

L) =
1

2N2
Eπ∗

∑

i<j

(κL∗ij)
2 −FL

N .

Thus, with H and HL defined in (84) and (85), we have

1

N

∣∣I(π∗, Y )− I(π∗, Y
L)
∣∣ ≤ 1

2N2
Eπ∗

∑

i<j

|κ2∗ij − (κL∗ij)
2|+ 1

N
Eπ∗,Z sup

π∈SN

∣∣H(π;π∗, Z)−HL(π;π∗, Z)
∣∣ .

(87)

By the boundedness of the kernels (79), and (83), for any π, π∗ we have
∣∣κ2ij − (κLij)

2
∣∣ ,
∣∣κ∗ijκij − κL∗ijκ

L
ij

∣∣ ,
∣∣κ2∗ij − (κL∗ij)

2
∣∣ ≤ 2K0ǫ.

Set zii = 0 and κii = κ(xπ(i), xπ(i)) for all i = 1, . . . , N , set κij = κji, κ
L
ij = κLji, zij = zji for all i > j,

and define the symmetric matrices K = (κij)
N
i,j=1, K

L = (κLij)
N
i,j=1, and Z = (zij)

N
i,j=1. Then, applying the

von-Neumann trace inequality,
∣∣∣∣∣∣

∑

i<j

κijzij − κLijzij

∣∣∣∣∣∣
=

1

2

∣∣TrZ(K −KL)
∣∣ ≤ 1

2
‖Z‖op

∥∥K −KL
∥∥
∗ =

1

2
‖Z‖op Tr(K −KL)

where ‖·‖∗ denotes the nuclear norm, and the last equality follows because κ − κL remains a positive-

semidefinite kernel, so K − KL is a positive-semidefinite matrix. Applying Tr(K − KL) ≤ K0Nǫ by (83)

and combining the above into (87), we obtain

1

N

∣∣I(π∗, Y )− I(π∗, Y
L)
∣∣ ≤ 2K0ǫ+

K0ǫ

2
√
N

E ‖Z‖op .

Denote by Z̃ a copy of Z with diagonal entries replaced by independent N (0, 2) variables, and observe that

E[(u⊤Zu− v⊤Zv)2] ≤ E[(u⊤Z̃u− v⊤Z̃v)2] for any unit vectors u, v ∈ RN . Then by a standard application

of the Sudakov-Fernique inequality (see e.g. [Ver18, Exercise 7.3.5]), E‖Z‖op ≤ E‖Z̃‖op ≤ 2
√
N , and the

result follows upon adjusting the value of ǫ.

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. We apply Theorem 2.2. Fixing any L ≥ 1, define GN = SN , the feature map

φ : SN → (RL)N by (45), and the bilinear forms •,⊗ and inclusion map ι(·) by (46). It is then direct to

check that all conditions of Assumption 2.1 hold. The quantities K(GN ), D(GN ), and L(ǫ;GN ) for any fixed

ǫ > 0 in Theorem 2.2 are bounded by a constant due to (79), and as N → ∞,

‖Q(Id, Id)‖2L =

∥∥∥∥∥
1

N

N∑

i=1

u(xi)u(xi)
⊤

∥∥∥∥∥

2

F

→
∥∥Ex∼ρu(x)u(x)⊤

∥∥2
F
= E

x,x′iid∼ ρ
(u(x)⊤u(x′))2 = E

x,x′iid∼ ρ
[κL(x, x′)2],

〈q, Q(Id, Id)〉L = Trq

(
1

N

N∑

i=1

u(xi)u(xi)
⊤
)

→ Ex∗∼ρTrqu(x∗)u(x∗)
⊤ = Ex∗∼ρu(x∗)

⊤qu(x∗)
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under Assumption 4.1. Hence from Theorem 2.2, Lemma 4.3, and the forms (15) and (16) for the mutual

informations, we have

lim
N→∞

1

N
I(π∗, Y

L) =
1

4
E
x,x′iid∼ ρ

[
κL(x, x′)2

]
− sup

q∈SymL×L

�0

ΨLqa(q). (88)

Here, sup
q∈SymL×L

�0
ΨLqa(q) is non-decreasing in L, as a restriction of this supremum to q ∈ SymL×L

�0 having

last row and column equal to 0 gives the optimization for dimension L − 1. Thus the limit Ψ∞ exists in

(−∞,∞], and

lim
L→∞

lim
N→∞

1

N
I(π∗, Y

L) =
1

4
E
x,x′iid∼ ρ

[
κ(x, x′)2

]
−Ψ∞.

Finally, Lemma C.1 shows that N−1I(π∗, Y L) converges to N−1I(π∗, Y ) as L → ∞, uniformly over all

N ≥ 1. Thus the limits in L and N on the left side may be interchanged. Since I(π∗, Y ) is bounded below

by 0 and E
[
κ(x, x′)2

]
is bounded above due to (79), this implies that Ψ∞ is finite, concluding the proof.

D Group representations

We give a brief review of relevant notions from the representation theory of compact groups, and refer readers

to [BTD13, Chapter 2] and [Kna01, Chapter 1] for further background.

Throughout, G is a compact group, and representations are always finite-dimensional and continuous.

We will choose to fix the bases and inner-product structures for Ck and Rk, thus identifying representations

as k × k matrices.

D.1 Complex representations

A (complex) representation of G is a continuous map φ : G → Ck×k satisfying the group homomorphism

properties φ(gh) = φ(g)φ(h), φ(g−1) = φ(g)−1, and φ(Id) = Ik×k. The representation is trivial if φ(g) = Ik×k
for all g ∈ G, and non-trivial otherwise.

Definition D.1. Given a representation φ : G → Ck×k, a complex linear subspace W ⊆ Ck is invariant

if φ(g)w ∈ W for every g ∈ G and w ∈ W . The representation φ is C-irreducible if there are no complex

invariant subspaces other than W = {0} and W = Ck.

Definition D.2. Given two representations φ : G → Ck×k and φ′ : G → Ck
′×k′ , a map U ∈ Ck

′×k is an

intertwining map of φ with φ′ if Uφ(g) = φ′(g)U for all g ∈ G. It is an isomorphism if k = k′ and U is

invertible. The representations φ, φ′ are isomorphic (denoted φ ∼= φ′) if there exists such an isomorphism,

i.e. an invertible map U ∈ Ck×k such that φ(g) = U−1φ′(g)U for all g ∈ G; otherwise φ and φ′ are distinct.

Theorem D.3 (Schur’s Lemma, [BTD13] Theorem 2.1.10). Let φ : G → Ck×k and φ′ : G → Ck
′×k′ be two

C-irreducible representations of G.

(a) If U ∈ C
k′×k is an intertwining map of φ with φ′, then either U = 0 or U is an isomorphism.

(b) If U ∈ C
k×k is an intertwining map of φ with itself, then U = λIk×k for some λ ∈ C.
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An intertwining map U of φ with itself is a map that commutes with φ(g) for all g ∈ G; part (b) states
that when φ is C-irreducible, any such map is a multiple of the identity. If G is abelian, then U = φ(g0) is

such an intertwining map for any g0 ∈ G, so an immediate consequence is the following.

Corollary D.4 ([BTD13] Proposition 2.1.13). If G is abelian and φ : G → Ck×k is C-irreducible, then k = 1.

A representation φ : G → Ck×k is unitary if φ(g) is a unitary matrix for all g ∈ G, i.e. φ(g)∗φ(g) = Ik×k.

For compact G, any representation is isomorphic to a unitary representation [BTD13, Theorem 2.1.7].

Theorem D.5 (Complete reducibility, [Kna01] Theorem 1.12(d)). Let φ : G → Ck×k be a unitary rep-

resentation of a compact group G. Then there exists a unitary map U ∈ Ck×k and C-irreducible unitary

representations φℓ : G → Ckℓ×kℓ for ℓ = 1, . . . , L with k1 + . . .+ kL = k, such that

φ(g) = U



φ1(g)

. . .

φL(g)


U−1. (89)

If a representation φ : G → Ck×k admits a decomposition of the form (89) for some invertible map

U ∈ Ck×k (where φ, U and φ1, . . . , φL are not necessarily unitary), then we say that φ1, . . . , φL are sub-

representations contained in φ, and φ is a direct sum of φ1, . . . , φL, denoted φ ∼= φ1 ⊕ . . .⊕ φL.

Definition D.6. The character χφ : G → C of a representation φ : G → Ck×k is the function

χφ(g) = Trφ(g).

Theorem D.7 (Schur orthogonality, [Kna01] Theorem 1.12(b), [BTD13] Theorem 2.4.11). Let G be a

compact group, and let φℓ : G → Ckℓ×kℓ be any distinct, C-irreducible, and unitary representations of G, with
corresponding characters χℓ : G → C.

(a) The normalized matrix entry functions

{k1/2ℓ φℓ(·)ij}ℓ=1,...,L, 1≤i,j≤kℓ

are orthonormal in the complex inner-product space L2(G) with respect to Haar measure on G.

(b) The characters {χℓ : ℓ = 1, . . . , L} are also orthonormal in L2(G).

We remark that if φ ∼= φ′ and φ ∼= φ1 ⊕ . . . ⊕ φL, then by definition, their characters satisfy χφ = χφ′

and χφ = χφ1 + . . .+ χφL
. An immediate consequence of this and Theorem D.7(b) is the following.

Corollary D.8 ([BTD13] Theorem 2.4.12). Two representations φ, φ′ of G are isomorphic if and only if

χφ = χφ′ , i.e. χφ(g) = χφ′(g) for all g ∈ G.

We conclude with a basic proposition showing that if two unitary representations are isomorphic, then

the isomorphism between these representations may also be taken to be a unitary transform.

Proposition D.9. Let φ, φ′ : G → Ck×k be isomorphic unitary representations. Then there exists a unitary

matrix U ∈ Ck×k for which φ′(g) = Uφ(g)U∗ for all g ∈ G.
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Proof. Applying Theorem D.5, we may write φ(g) in the form (89) for some unitary matrix U ∈ Ck×k and

unitary C-irreducible sub-representations φ1, . . . , φL, and similarly for φ′ and some U ′, φ′1, . . . , φ
′
M . Since

χφ1+. . .+χφL
= χφ′

1
+. . .+χφ′

M
and characters of distinct irreducible representations are distinct orthogonal

functions in L2(G), this implies that L = M and φ1 ∼= φ′1, . . . , φL ∼= φ′L under some ordering of these

irreducible sub-representations. Absorbing this ordering as a permutation into U and U ′, it suffices to prove

the proposition in the case where φ, φ′ are isomorphic and C-irreducible.

Since φ, φ′ are isomorphic, there exists an invertible matrix U ∈ Ck×k for which φ(g) = U−1φ′(g)U for

all g ∈ G; we must show that we may take U to be unitary. Since φ(g) is unitary, we have I = φ(g)φ(g)∗ =

U−1φ′(g)UU∗φ′(g)∗U−∗. Then, since φ′(g) is unitary, rearranging this gives UU∗φ′(g) = φ′(g)UU∗. Thus

UU∗ is an intertwining map of φ′ with itself. Since φ′ is irreducible, Schur’s lemma implies UU∗ = αI for

some α ∈ C. We must have α ∈ R and α > 0 because UU∗ is Hermitian positive-definite. Thus Ũ = U/
√
α

is unitary and φ(g) = Ũ∗φ′(g)U as claimed.

D.2 Real representations

A representation φ of G is a real representation if φ(g) is real-valued for all g ∈ G, i.e. φ is a map φ : G → Rk×k.

It is orthogonal if furthermore φ(g) is an orthogonal matrix for all g ∈ G, i.e. φ(g)⊤φ(g) = Ik×k.

Definition D.10. Given a real representation φ : G → Rk×k, a real linear subspace W ⊆ Rk is invariant if

φ(g)w ∈ W for every g ∈ G and w ∈ W . The representation is real-irreducible (or R-irreducible) if it has no

real invariant subspaces other than W = {0} and W = Rk.

The following statements are analogues of Schur’s lemma and complete reducibility in the real setting.

We include their proofs for completeness, which are similar to their complex counterparts.

Theorem D.11. Let φ : G → Rk×k and φ′ : G → Rk
′×k′ be two real-irreducible representations of G.

(a) If U ∈ Rk
′×k is an intertwining map of φ with φ′, then either U = 0 or U is an isomorphism.

(b) If U ∈ Rk×k is an intertwining map of φ with itself, and U has at least one real eigenvalue, then

U = λIk×k for some λ ∈ R.

Proof. For (a), since Uφ = φ′U , we have that kerU ⊆ Rk is a real invariant subspace of φ, and imU ⊆ Rk
′

is a real invariant subspace of φ′. Thus either kerU = Rk in which case U = 0, or kerU = 0 and imU = Rk
′

in which case k = k′ and U is an isomorphism.

For part (b), let λ ∈ R be an eigenvalue of U , and let Vλ = ker(U − λI) ⊆ Rk be its corresponding

eigenspace. For any v ∈ Vλ and g ∈ G, we have Uφ(g)v = φ(g)Uv = λφ(g)v, so φ(g)v ∈ Vλ. Thus Vλ is a

real invariant subspace. We have Vλ 6= {0} since λ is an eigenvalue, so Vλ = R
k and U = λIk×k .

Theorem D.12. Let φ : G → R
k×k be an orthogonal representation of a compact group G. Then it is an

orthogonal direct sum of real-irreducible components, i.e., there exists an orthogonal map U ∈ Rk×k and

real-irreducible orthogonal representations φℓ : G → Rkℓ×kℓ for ℓ = 1, . . . , L with k1 + . . .+ kL = k, such that

φ(g) = U



φ1(g)

. . .

φL(g)


U⊤
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Proof. If φ is real-irreducible, then the statement holds trivially with L = 1 and U = I. Otherwise, let

W ⊂ R
k be a real invariant subspace not equal to {0} or R

k, and let W⊥ be its orthogonal complement.

For any v ∈ W , w ∈ W⊥, and g ∈ G we have (φ(g)w)⊤v = w⊤φ(g−1)v = 0 because φ(g−1)v ∈ W . So

φ(g)w ∈ W⊥, implying that W⊥ is also invariant. Thus φ(g) acts as two separate linear maps on W and

W⊥ for all g ∈ G. Choosing U where the first k1 columns and last k2 = k − k1 columns form orthonormal

bases for W and W⊥, respectively, this implies that each φ(g) takes the form

φ(g) = U

(
φ1(g)

φ2(g)

)
U⊤ ⇔

(
φ1(g)

φ2(g)

)
= U⊤φ(g)U (90)

for some functions φ1 : G → Rk1×k1 and φ2 : G → Rk2×k2 . Continuity, orthogonality, and the group

representation properties of φ1, φ2 follow from the equality on the right side of (90) and the corresponding

properties for φ. Thus φ1, φ2 are real orthogonal sub-representations of G, of lower dimensionalities k1, k2 < k,

and the result follows from induction on k.

Any real representation φ : G → Rk×k that is C-irreducible (when viewed as a complex representation

under the embedding Rk×k ⊂ Ck×k) is, by definition, also real-irreducible. However the converse is not true,

and real-irreducible representations may be reducible in the complex sense. An example is the standard

representation of G = SO(2) in (35), which has no real invariant subspaces, but two orthogonal complex

invariant subspaces spanned by (1, i) and (i, 1). This example shows also that the extra assumption in

Theorem D.11(b) of U having a real eigenvalue cannot, in general, be removed: G = SO(2) is abelian, so

any U ∈ SO(2) is an intertwining map of SO(2) with itself, but U may not be a multiple of the identity.

Theorem D.13 (Classification of real-irreducible representations, [BTD13] Table 2.6.2, Theorem 2.6.3). Let

φ : G → R
k×k be a real-irreducible representation. Then, as a complex representation in C

k×k, it is either

(a) C-irreducible.

(b) Isomorphic to the direct sum ψ ⊕ ψ̄ of two C-irreducible representations ψ, ψ̄ such that ψ, ψ̄ are distinct

(i.e. ψ 6∼= ψ̄), where ψ̄ denotes the complex conjugate representation ψ̄(g) = ψ(g) for all g ∈ G.

(c) Isomorphic to the direct sum ψ ⊕ ψ of a C-irreducible representation ψ with itself, such that ψ ∼= ψ̄.

We remark that since the sub-representations ψ in case (b) are distinct from those in case (c), the C-

irreducible sub-representations of φ must be distinct from those of φ′ if φ, φ′ are real-irreducible and distinct.

This implies also by Theorem D.7 that the corresponding characters χφ, χφ′ are orthogonal (although not

necessarily orthonormal) in L2(G).
Following the terminology of [BTD13, Section 2.6], we call φ of “real type”, “complex type”, and “quater-

nionic type” in these cases (a), (b), and (c) respectively. From the character relations χφ = χψ + χψ̄ and

χφ = 2χψ in the latter two cases, and the Schur orthogonality of characters for C-irreducible representations

(Theorem D.7), it is readily deduced that ρ := Eg∼Haar(G)[(Trφ(g))
2] takes the value 1, 2, or 4 when φ is of

real, complex, or quaternionic type respectively, as stated in (34).

A direct consequence of Theorem D.13 and Corollary D.4 is the following.

Corollary D.14. If G is abelian and φ : G → Rk×k is real-irreducible, then k = 1 if φ is of real type, and

k = 2 if φ is of complex or quaternionic type.

Finally, the following is an analogue of Proposition D.9.
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Proposition D.15. Let φ, φ′ : G → Rk×k be real representations that are isomorphic. Then there exists

a (real) invertible map U ∈ R
k×k such that φ(g) = U−1φ′(g)U for all g ∈ G. If furthermore φ, φ′ are

orthogonal, then there exists such a map U which is also orthogonal.

Proof. Since characters of distinct real-irreducible representations are distinct and orthogonal functions of

L2(G), the same argument as in Proposition D.9 shows that φ1 ∼= φ′1, . . . , φL ∼= φ′L for some ordering of the

real-irreducible sub-representations of φ, φ′, so it suffices to prove the statements when φ, φ′ are isomorphic

and real-irreducible.

Since φ, φ′ are isomorphic, there exists an invertible matrix U ∈ Ck×k for which φ(g) = U−1φ′(g)U ; we

must show that we may take U to be real. Writing the real and imaginary parts U = P + iQ, we have

(P + iQ)φ(g) = φ′(g)(P + iQ). Then Pφ(g) = φ′(g)P and Qφ(g) = φ′(g)Q since φ and φ′ are real, so

(P +λQ)φ(g) = φ′(g)(P +λQ) for all λ ∈ R. The complex polynomial f(λ) = det(P +λQ) is not identically

0 because it is non-zero at λ = i. Then there exists also some λ ∈ R for which f(λ) 6= 0, implying that

Ũ = P + λQ ∈ Rk×k is invertible, and φ(g) = Ũ−1φ′(g)Ũ . This shows the first statement.

Now letting U ∈ Rk×k be such that φ(g) = U−1φ′(g)U , if furthermore φ, φ′ are orthogonal, then the same

argument as in Proposition D.9 shows UU⊤φ′(g) = φ′(g)UU⊤. Here UU⊤ is symmetric positive-semidefinite,

having all real eigenvalues, so Schur’s lemma in the form of Theorem D.11(b) implies UU⊤ = αI for some

α > 0. Thus Ũ = U/
√
α is orthogonal and φ(g) = Ũ⊤φ′(g)U , showing the second statement.

D.3 Canonical form for the group synchronization model

Consider observations from a model (21) with real orthogonal representations φℓ : G → Rkℓ×kℓ . By Theorem

D.12 and the invariance in law of z
(ij)
ℓ under the rotation z

(ij)
ℓ 7→ u⊤z(ij)ℓ u for any orthogonal matrix

u ∈ Rkℓ×kℓ , each observation y
(ij)
ℓ is equivalent to observing

ỹ
(ij)
ℓ =



φℓ,1(g)

. . .

φℓ,M (g)




⊤

φℓ,1(g)

. . .

φℓ,M (g)


+ z̃

(ij)
ℓ

where φℓ,1, . . . , φℓ,M are real-irreducible orthogonal sub-representations of φℓ, and {z̃(ij)ℓ } are standard Gaus-

sian noise matrices equal in law to {z(ij)ℓ }. The coordinates of ỹ
(ij)
ℓ outside the M diagonal blocks, as well

as the coordinates of any diagonal block corresponding to a trivial representation φℓ,m, carry no information

about g and hence may be discarded. Thus the observation model (21) is equivalent to a model in which

each representation φℓ is real-irreducible and non-trivial.

If two such representations φℓ, φℓ′ are isomorphic, then Proposition D.15 implies that there exists an

orthogonal matrix u ∈ Rkℓ×kℓ for which φℓ(g) = uφℓ′u
⊤. Then, replacing {y(ij)

ℓ } by the equivalent observa-

tions ỹ
(ij)
ℓ = u⊤y(ij)

ℓ u as above, we may assume that φℓ(g) = φℓ′(g) for all g ∈ G. We may then replace the

observations in the two channels {y(ij)
ℓ } and {y(ij)

ℓ′ } by their sufficient statistics {y
(ij)
ℓ

+y
(ij)

ℓ′√
2

}, which yields a

new channel for the representation gℓ having the same standard Gaussian law for the noise, and with a new

signal-to-noise parameter
√
λ =

√
λℓ+

√
λℓ′√

2
. Applying this replacement iteratively, the observation model

(21) is then equivalent to a model in which the real-irreducible representations {φℓ}Lℓ=1 are also distinct.
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mismatched prior and noise: universality and large deviations. arXiv preprint arXiv:2306.09283, 2023.

[GL24] Shuyang Gong and Zhangsong Li. The Umeyama algorithm for matching correlated Gaussian geometric

models in the low-dimensional regime. arXiv preprint arXiv:2402.15095, 2024.
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tion. In 2016 IEEE Information Theory Workshop (ITW), pages 71–75. IEEE, 2016.

[LA24] Suqi Liu and Morgane Austern. Random geometric graph alignment with graph neural networks. arXiv

preprint arXiv:2402.07340, 2024.

[LFF+15] Vince Lyzinski, Donniell E Fishkind, Marcelo Fiori, Joshua T Vogelstein, Carey E Priebe, and Guillermo

Sapiro. Graph matching: Relax at your own risk. IEEE transactions on pattern analysis and machine

intelligence, 38(1):60–73, 2015.

[LFW23] Gen Li, Wei Fan, and Yuting Wei. Approximate message passing from random initialization with appli-

cations to z2 synchronization. Proceedings of the National Academy of Sciences, 120(31):e2302930120,

2023.

[Lin22a] Shuyang Ling. Improved performance guarantees for orthogonal group synchronization via generalized

power method. SIAM Journal on Optimization, 32(2):1018–1048, 2022.

50



[Lin22b] Shuyang Ling. Near-optimal performance bounds for orthogonal and permutation group synchronization

via spectral methods. Applied and Computational Harmonic Analysis, 60:20–52, 2022.

[Lin23] Shuyang Ling. Solving orthogonal group synchronization via convex and low-rank optimization: Tight-

ness and landscape analysis. Mathematical Programming, 200(1):589–628, 2023.

[LKZ17] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Constrained low-rank matrix estimation:

Phase transitions, approximate message passing and applications. Journal of Statistical Mechanics:

Theory and Experiment, 2017(7):073403, 2017.
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