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Abstract

Deep neural networks often develop spurious bias,
reliance on correlations between non-essential fea-
tures and classes for predictions. For example, a
model may identify objects based on frequently
co-occurring backgrounds rather than intrinsic
features, resulting in degraded performance on
data lacking these correlations. Existing mitiga-
tion approaches typically depend on external an-
notations of spurious correlations, which may be
difficult to obtain and are not relevant to the spu-
rious bias in a model. In this paper, we take a
step towards self-guided mitigation of spurious
bias by proposing NeuronTune, a post hoc method
that directly intervenes in a model’s internal de-
cision process. Our method probes in a model’s
latent embedding space to identify and regulate
neurons that lead to spurious prediction behav-
iors. We theoretically justify our approach and
show that it brings the model closer to an unbi-
ased one. Unlike previous methods, NeuronTune
operates without requiring spurious correlation an-
notations, making it a practical and effective tool
for improving model robustness. Experiments
across different architectures and data modalities
demonstrate that our method significantly miti-
gates spurious bias in a self-guided way.

1. Introduction

Deep neural networks trained using empirical risk minimiza-
tion (ERM) often develop spurious bias: a tendency to rely
on spurious correlations for predictions. A spurious correla-
tion refers to a non-causal relationship between a class and
an attribute that is not essential for defining the class, com-
monly referred to as a spurious attribute (Ye et al., 2024).
For example, the class of waterbird and the background of
the water can form spurious correlations in the predictions
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of waterbird (Sagawa et al., 2019), as the background of
the water is a spurious attribute. In contrast, core attributes,
such as bird feathers, causally determine a class. A model
with spurious bias may achieve a high prediction accuracy
(Beery et al., 2018; Geirhos et al., 2019; 2020; Xiao et al.,
2021; Zheng et al., 2024a) even without core attributes, such
as identifying an object only by its frequently co-occurring
background (Geirhos et al., 2020). However, the model may
perform poorly on the data lacking the learned spurious
correlations, which poses a great challenge to robust model
generalization.

Existing methods (Sagawa et al., 2019; Kirichenko et al.,
2023; Deng et al., 2024) that mitigate spurious bias are
mostly at the sample level, using a curated set of samples
with annotations of spurious correlations called group labels
to retrain a biased model. A group label (class, spurious
attribute) annotates a sample with a spurious attribute and
its class label, representing a spurious correlation. However,
group labels are difficult to acquire and often require costly
human-guided annotations. To circumvent this, group label
estimation (Nam et al., 2022) and various sample reweight-
ing mechanisms (Nam et al., 2020; Liu et al., 2021; Kim
et al., 2022; Qiu et al., 2023; LaBonte et al., 2024) are
adopted using the idea that spurious bias can be identified
through the misclassification of bias-conflicting samples.

Despite significant progress in spurious bias mitigation, ex-
isting sample-level methods that rely on group labels or sam-
ple reweighting offer limited and indirect control over how
spurious bias is addressed. On the one hand, group labels
are data annotations that are external to a model and may
not accurately reflect the specific spurious bias developed
in the model. On the other hand, sample reweighting does
not directly target the internal mechanisms that give rise to
spurious bias. This highlights the need for a self-guided
approach that directly intervenes in a model’s decision
process, providing more targeted and model-relevant signals
for mitigating spurious bias than sample-level approaches.

To this end, we focus on developing self-guided methods
that directly analyze the internal prediction mechanism of
a model to identify components of the model that are af-
fected by spurious bias and then mitigate their influence
to final predictions. We take a step towards this goal by
proposing a novel method termed NeuronTune, which sys-
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tematically reduces spurious bias in deep neural networks.
NeuronTune first probes in the latent embedding space of
a trained model to identify dimensions (neurons) of sam-
ple embeddings affected by spurious bias, termed biased
dimensions—those where spurious attributes predominantly
contribute to prediction errors (Bykov et al., 2023; Singla
& Feizi, 2021). Those dimensions can be identified when
high activation magnitudes are strongly associated with in-
correct predictions, indicating that features represented by
those dimensions are not truly predictive of target classes.
Importantly, rather than attempting to explicitly distinguish
dimensions representing spurious and core attributes, an
inherently challenging task given the complex entanglement
of features in deep networks, NeuronTune instead identifies
biased dimensions and suppresses the contributions of the
these dimensions to final predictions. This intervention en-
courages the model to discover robust decision rules and
mitigates spurious bias in the model.

Compared with the existing sample-level methods for spu-
rious bias mitigation, NeuronTune provides direct inter-
vention at the neuron level, allowing for more precise and
targeted control over the mitigation of spurious bias during
model tuning. Unlike approaches that rely on sample-level
annotations such as group labels, NeuronTune enables the
model to self-debias without external supervision. This
makes it applicable in standard ERM training settings, where
no additional annotations beyond class labels are available.
As aresult, NeuronTune serves as a practical and effective
post hoc tool for mitigating spurious bias.

We theoretically demonstrate that neuron activations cou-
pled with their final prediction outcomes provide self-
identifying information on whether the neurons are affected
by spurious bias. Our theoretical findings further suggest
a practical metric for identifying biased dimensions and
proves that NeuronTune can bring a model closer to the
unbiased one. Experiments on vision and text datasets with
different model architectures confirm the effectiveness of
our method.

2. Related Work

Depending on the availability of external supervision, we
summarize prior spurious bias mitigation methods into su-
pervised, semi-supervised, and unsupervised categories.

Supervised Spurious Bias Mitigation. In this setting, cer-
tain spurious correlations in data are given in the form of
group labels. With group labels in the training data, balanc-
ing the size of the groups (Cui et al., 2019; He & Garcia,
2009), upweighting groups that do not have specified spuri-
ous correlations (Byrd & Lipton, 2019), or optimizing the
worst-group objective (Sagawa et al., 2019) can be effective.
Regularization strategies, such as using information bottle-

neck (Tartaglione et al., 2021) or the distributional distance
between bias-aligned samples (Barbano et al., 2023), are
also proved to be effective in spurious bias mitigation. The
concept of neural collapse has also been exploited recently
for spurious bias mitigation (Wang et al., 2024). However,
this setting requires to know what spurious bias needs to
be mitigated a priori and only focuses on mitigating the
specified spurious bias.

Semi-Supervised Spurious Bias Mitigation. This setting
aims to mitigate spurious bias without extensive spurious
correlation annotations. A small portion of group labels
in a held-out set are required for achieving optimal per-
formance. One line of works is to use data augmentation
(Zhang et al., 2018; Han et al., 2022; Wu et al., 2023; Yao
et al., 2022). Some methods propose to infer group labels
via misclassified samples (Liu et al., 2021), clustering hid-
den embeddings (Zhang et al., 2022), or training a group
label estimator (Nam et al., 2022). Creager et al. (2021)
adopts invariant learning with inferred group labels. Other
approaches include using biased models (Bahng et al., 2020),
poisoning attack (Zhang et al., 2024), and mining intermedi-
ate attribute samples (Zhang et al., 2023). Recently, LaBonte
et al. (2024) proposes to only use a small set of samples
with group labels selected by the early-stop disagreement
criterion. Relevant to our method are the last layer retraining
(Kirichenko et al., 2023; Qiu et al., 2023) methods which
only retrain the last layer of a model. In addition to re-
training the last layer to minimize computational overhead,
our method intervenes the internal decision process of a
targeted model for more relevant and targeted spurious bias
mitigation than existing methods.

Unsupervised Spurious Bias Mitigation. The goal in this
setting is to train a robust model without using any group
labels. Typically, we would expect relatively lower per-
formance for methods working in this setting than in the
above two settings as no information regarding the spuri-
ous correlations in test data is provided. Prior works use
vision-language models to extract group labels (Zheng et al.,
2024c;b), upweights training samples that are misclassified
by a bias-amplified model (Li et al., 2024), or regularizes
model retraining with detected prediction shortcuts in the
latent space of a model (Zheng et al., 2025). A recent
work (He et al., 2025) uses the observation that features
with high confidence are likely to be spurious and mitigates
spurious bias by erasing the corresponding activations. Our
method considers the activation patterns of both correctly
and incorrectly predicted samples of the same class to iden-
tify and mitigate spurious features.

3. Problem Setting

We consider a standard classification problem. The training
set Diain = {(x,y)|x € X,y € Y} typically contains
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data groups Dtgr with Dipain = Ugeng, where x denotes a
sample in the input space X', y is the corresponding label in
the finite label space ), g := (y, a) denotes the group label
defined by the combination of a class label y and a spurious
attribute a € A, where A denotes all spurious attributes in
Dhrain, and G denotes all possible group labels. Sample-label
pairs in the group Dg have the same class label y and the
same spurious attribute a.

Our Scenario. We consider unsupervised spurious bias
mitigation, where no group labels are available, resembling
a standard ERM training. A commonly used performance
metric is the worst-group accuracy (WGA), which is the
accuracy on the worst performing data group in the test set
Dy, .., WGA = mingeg Acc(f, Dtge), where Dtge denotes
a group of data in Dyegy With Dyegy = Ugeng;, and f denotes
a trained model. Typically, data in Dy, is imbalanced
across groups, and the model f tends to favor certain data
groups, resulting in a low WGA. Improving WGA without
knowing group labels during training is challenging.

4. Methodology

We propose NeuronTune, a self-guided method for mitigat-
ing spurious bias without requiring group labels. Neuron-
Tune identifies neurons (dimensions) affected by spurious
bias in a model’s latent space and tunes the model while sup-
pressing the identified neurons. In Section 4.1, we present
an analytical framework that outlines the design principles
and theoretical properties of NeuronTune. Section 4.2 in-
troduces a practical implementation for mitigating spurious
bias in real-world settings.

4.1. NeuronTune: An Analytical Framework

At the core of NeuronTune is the identification of neurons
that are affected by spurious bias. We establish an analytical
framework to (1) elucidate the principle of neuron selection,
(2) derive a selection metric that follows the principle of neu-
ron selection, and (3) reveal the mechanism of NeuronTune
in mitigating spurious bias.

4.1.1. DATA AND PREDICTION MODELS

Data Model. We design a data generation process that
facilitates learning spurious correlations. Following the
setting in (Arjovsky et al., 2019; Ye et al., 2023), we model
a sample-label pair (X, y) in Dy, as:

Dx1 T
X = Xcore D Xepu € RZ>E, Y = B Xcore + Ecores (D

where Xcore € RP1*1 is the core component, & denotes the

vector concatenation operator, and the spurious component
Xpu € RP2%1 with Dy + Dy = D is associated with the
label y with the following relation:

Xopu = (2a — 1)y + €gpu, a ~ Bern(p), 2)

where (2a — 1) € {—1,+1}, a ~ Bern(p) is a Bernoulli
random variable, and p is close to 1, indicating that Xgp, is
mostly predictive of y but not always. In (1) and (2), 3 €
RP1x1 and 4 € RP2*1 are coefficients with unit L? norm,
and ecore € R and g,y € RP2x1 represent the variations in
the core and spurious components, respectively. We set €ore
and each element in €, as zero-mean Gaussian random
variables with the variances 72, and 72, respectively. We
set 2. > nfpu to facilitate learning spurious correlations
(Sagawa et al., 2019).

Prediction Model. We adopt a linear regression model
with two linear layers (Ye et al., 2023) defined as f(x) =
b?Wx, where W € RM*P denotes the embedding matrix
simulating a feature extractor, b € RM*! denotes the last
layer, and M is the number of embedding dimensions. The
model f(x) can be further expressed as follows,

M
f(X) = Z bi(xz:)rewcore,i + le;uwspu,i) 3)
=1

_ T T
- Xcorel‘lCOl‘e + Xspu uspu;

where Weprei € RP1x1, Wepu,i € RP2x1, W;‘F =

T T 1xD : . B
[wcore’i,wspw] e R is the i-th row of W, Ucore =

Zf\il biWeore,i» and Ugp, = Zfﬁl biWpu,;- The training
objective is £y (W, b) = 3E (x ), | £ (x) — y3.

Remark: To better understand our data and prediction mod-
els, consider that a in Eq. (2) controls subpopulations in
data, e.g., when a = 1, it may represent a group of water-
birds on water, and when a = 0, it may represent a group of
waterbirds on land. The probability p controls the severity
of imbalance in subpopulations. When p is close to one, the
data is severely imbalanced in subpopulations. After train-
ing with ERM, the model minimizes the training loss, i.e.,
maximizes the average-case accuracy, but obtains a large
nonzero weight on the spurious feature (Lemma 1 in Ap-
pendix) and is away from the optimal model (Corollary 1 in
Appendix). For example, the model may focus on correctly
classifying waterbirds on water, at the expense of its ability
to recognize waterbirds on land.

4.1.2. PRINCIPLE OF NEURON SELECTION

NeuronTune aims to identify neurons that reflect spurious
bias. Proposition 4.1 specifies the principle of NeuronTune
in terms of what neurons are to be identified and suppressed
during model tuning.

Proposition 4.1 (Principle of NeuronTune). Given the
model f(x) = bTWx trained with the data specified
in (1) and (2), it captures spurious correlations when
YW < 0,i € {1,...,M}. The principle of Neuron-
Tune is to suppress neurons containing negative ﬂyTWS,,M.

If vaSpu’i > 0, the model handles the spurious component
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Figure 1. Practical implementation of NeuronTune. (a) Extract latent embeddings v, . . .

, v and prediction outcomes (blue for correct

and red for incorrect predictions) from an ERM-trained model using the identification data Diq.. (b) Identify biased neurons (dimensions)
utilizing the statistics M ;s and Mo derived from neuron activations for correct (blue) and incorrect (red) predictions from Eq. (5). (c)
Retrain the last prediction layer on Drune While keeping the feature extractor frozen and suppressing identified biased dimensions.

correctly. Specifically, when a = 1, the spurious component
Xspu positively correlates with the core component Xcore
and contributes to the output, whereas when a = 0, its
correlation with X, breaks with a negative one and has a
negative contribution to the output. The relations reverse
when ’yTWSpu,i < 0, i.e., the model utilizes X, even when
the correlation breaks, demonstrating a strong reliance on
the spurious component instead of the core component. The
proof is in Appendix A.2.4.

4.1.3. METRIC FOR NEURON SELECTION

Guided by the principle of NeuronTune in Proposition 4.1,
the following theorem gives a practical metric to select
neurons that are affected by spurious bias.

Theorem 4.2 (Metric for Neuron Selection). Given the
model f(x) = bTWx, we cast it to a classification model
by training it to regress y € {—u,u} (u > 0) on x based
on the data model specified in (1) and (2), where p =
E[ﬁTxmre]. The metric 6! defined in the following can
identify neurons affected by spurious bias when 5] > 0:

8¢ = Med(V?) — Med(VY),

where VY and f}ly are the sets of activation values for mis-
classified and correctly predicted samples with the label y
from the i-th neuron, respectively; an activation value is
defined as XL | W pre i + xsj‘,;uwspu,i, and Med(-) returns the
median of an input set of values.

We show in Appendix A.2.5 that the theorem establishes
the approximation §; ~ 72;ryTwspu,i, which confirms that
neurons selected by the metric defined above follow the
principle in Proposition 4.1. Adopting medians in the metric
makes the metric robust to outlier values.

Let M, = Med(VY) and Mo = Med(VY). Intuitively,
a high M, indicates that high activations at the i-th di-
mension contribute to misclassification when predicting the
class y. A low M., implies that the i-th dimension has little
effect in correctly predicting the class y. Thus, a large dif-
ference between M pis and M, 1.€., a large 5?, indicates
that the 7-th dimension represents features that are irrelevant
to the class y. In other words, with a high likelihood, the
dimension is affected by spurious bias. In contrast, a neg-
ative 7 highlights the relevance of the i-th dimension for
predictions as most correctly predicted samples have high
activation values in this dimension, and most incorrectly
predicted samples have low activation values.

Remark: Proposition 4.1 and Theorem 4.2 state that when
a spurious correlation breaks, neurons that continue to pos-
itively contribute to mispredictions will be selected. For
example, in the case of waterbird with water and land back-
grounds, neurons that cause misclassification on images of
waterbird appearing on land will be identified.

4.1.4. MECHANISM OF NEURONTUNE

NeuronTune mitigates spurious bias by retraining the last
layer while suppressing (zeroing out) the identified neurons.
The following theorem shows that this improves model ro-
bustness and explains how it achieves this.

Theorem 4.3 (NeuronTune Mitigates Spurious Bias).
Consider the model f*(x) = xTu* trained on the biased
*T

training data with p >> 0.5, where w*’' = [}, u;l]. Un-

der the mild assumption that ,BTWCO,M- =~ 'yTW‘Wyi, Vi =
1,..., M, then applying NeuronTune to f*(x) produces a
model that is closer to the unbiased one.
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The assumption ﬁTwcmeyi ~ YW, Vi = 1,..., M
generally holds for a biased model, as the model has learned
to associate spurious attributes with core attributes. The
proof is in Appendix A.2.6. Denote the NeuronTune solu-
tion by uZore and uipu. Our finding reveals that retraining
the last layer does not alter the weight on the spurious com-
ponent, i.e., ulpu = u:‘pu, which is the optimal solution
achievable by last-layer retraining methods (see Lemma 3
in Appendix). However, it does adjust qure to be closer to
the optimal weight on the core component, 3. Overall, Neu-
ronTune brings the model parameters closer to the optimal,
unbiased solution compared to the parameters of the origi-
nal biased model. Therefore, NeuronTune is guaranteed to
outperform the ERM-trained model. Further discussion on
the connection to last-layer retraining methods is provided
in Appendix A.3.

Remark: Our findings suggest that our approach makes
a slight trade-off in average-case accuracy to achieve im-
proved worst-group accuracy. For example, our method
may slightly reduce the model’s ability to classify waterbird
on water due to a relative decrease in reliance on the water
feature, while significantly enhancing its ability to classify
waterbird on land.

4.2. NeuronTune: Practical Implementation

For real-world spurious bias mitigation, we con-
sider a well-trained ERM model fg where 8 =
arg ming: Ex )ep,.. /(for (X), y), and £ denotes the cross-
entropy loss function. The model fg = eg, © hg, consists
of a feature extractor e, : X — R followed by a linear
classifier hg, : RM — RIYI, where M is the number of di-
mensions of latent embeddings obtained from eg, , o denotes
the function composition operator, and = 61 U 05.

NeuronTune aligns best with our theoretical analysis when
implemented as a last-layer retraining method where the
feature extractor eg, is fixed and the last layer is linear and
tunable. Fig. 1 gives an overview of NeuronTune which
mainly includes identifying affected neurons (Section 4.2.1)
and model tuning with identified neurons (Section 4.2.2).

4.2.1. IDENTIFYING AFFECTED NEURONS

As shown in Fig. 1(a), we use a set of identification data
Dige, which typically contains a set of diverse features not
seen by the model, to identify dimensions (neurons) affected
by spurious bias in the model’s latent space. We first extract
latent embeddings and prediction outcomes for samples of
class y in Dige, i.e.,

VY = {(V7O)|V = €0, (X),V(X, y) € ’Dlde}y @

where 0 = 1{argmax fg(x) == y}, v € RM is an M-
dimensional latent embedding of x, and o is the correspond-
ing prediction outcome with 1 being an indicator function.

Identification Criterion. As shown in Fig. 1(b), for each
embedding dimension ¢, we separate V¥ into two sets szy
and V7, representing values at the i-th embedding dimen-
sion from VY, contributing respectively to correct and in-
correct predictions, i.e.,V? = {v[i]|(v,1) € V¥}, and
VY = {v[i]|(v,0) € V¥},Vi=1,...,M, y € Y, where
v|i] denotes the i-th dimension of v. We propose a spuri-
ousness score 6! to measure the spuriousness of the i-th
dimension when predicting the class y. Following the in-
sight from Theorem 4.2, we define 6! as follows:

53 = Mmis - Mcor> (5)
where Mpis = Med(VY) and Mo = Med(VY).

Theorem 4.2 assumes that each dimension of input embed-
dings consists of a linear combination of spurious and core
components. While it generally holds that each dimension
represents a mixture of spurious and core components, in
real-world scenarios, the combination is typically nonlin-
ear. To account for this, we introduce ) as a threshold and
identify dimensions using the following criterion:

S={ié >\ Vi=1,...,M,y € V}. 6)
We set A to 0 by default, as it works well in practice.

In the following, we refer to a dimension as a biased di-
mension when 47 > \ and unbiased dimension otherwise.
A biased (unbiased) dimension does not imply that the di-
mension exclusively represents spurious (core) attributes.
In practice, an unbiased dimension exhibits high activation
values for target classes, whereas a biased dimension shows
high activation values for undesired classes. Visualizations
of several identified biased and unbiased dimensions on
real-world datasets are provided in Appendix A.9.

We include the dimensions identified for all the classes into
the set S since an identified biased dimension for one class
cannot serve as a core contributor to predicting some other
class in a well-defined classification task. For example, con-
sider that the dimension representing “blue color” is biased
for the “rectangle” class while being unbiased for the “blue
color” class. This happens when we have a blue rectangle
as the input, which makes the classification ambiguous.

4.2.2. MODEL TUNING WITH IDENTIFIED NEURONS

As illustrated in Fig. 1(c), we tune the last prediction layer
while suppressing the signals from the identified biased
dimensions. In this way, we explicitly intervene the internal
decision process of the model to discover robust decision
rules beyond using spurious correlations.

Learning Objective. Concretely, given a model tuning
dataset Drype, We optimize the following objective,

0; = arg min E E é(hez ({f), y)7 (7)

02 B~Drune (z,y)EB
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where B contains class-balanced sample-label pairs from
D1une, addressing that the classifier may favor certain classes
during model tuning, and v is the latent embedding after
zeroing-out activations on the biased dimensions in S. Un-
less otherwise stated, we use Dain a8 Dune-

Model Selection. Without group labels, it is challenging
to select robust models (Liu et al., 2021; Yang et al., 2023).
We address this by designing a novel model selection metric,
termed spuriousness fitness score (SFit), which is the sum
of magnitudes of spuriousness scores across dimensions and
classes, i.e., SFit = 2%21 > yey Abs(d,), where Abs(-)
returns the absolute value of a given input. The score holisti-
cally summarizes whether biased and unbiased dimensions
in the model are distinguishable. A low SFit indicates that
the model tends to memorize samples. Empirically, we find
that a high SFit effectively selects a robust model.

NeuronTune is highly efficient as it only requires tuning the
last layer of the model. We use (6) and (7) to iteratively
perform the biased dimension detection and model tuning
while using SFit for model selection.

5. Experiments
5.1. Datasets

We tested NeuronTune on four image datasets and two text
datasets, each with different types of spurious attributes. (1)
Waterbirds (Sagawa et al., 2019) is an image dataset for
recognizing waterbird and landbird. It is generated syntheti-
cally by combining images of the two bird types from the
CUB dataset (Welinder et al., 2010) and the backgrounds,
water and land, from the Places dataset (Zhou et al., 2017).
(2) CelebA (Liu et al., 2015) is a large-scale image dataset
of celebrity faces. The task is to identify hair color, non-
blond or blond, with male or female as the spurious attribute.
(3) ImageNet-9 (Xiao et al., 2021) is a subset of ImageNet
(Deng et al., 2009) containing nine super-classes. It com-
prises images with different background and foreground
signals and can be used to assess how much models rely
on image backgrounds. (4) ImageNet-A (Hendrycks et al.,
2021) is a dataset of real-world images, adversarially cu-
rated to test the limits of classifiers such as ResNet-50. We
used this dataset to test the robustness of a classifier after
training it on ImageNet-9. (5) MultiNLI (Williams et al.,
2018) is a text classification dataset with three classes: neu-
tral, contradiction, and entailment, representing the natural
language inference relationship between a premise and a
hypothesis. The spurious attribute is the presence of nega-
tion. (6) CivilComments (Borkan et al., 2019) is a binary
text classification dataset aimed at predicting whether an
internet comment contains toxic language. The spurious
attribute involves references to eight demographic identities.
The dataset uses standard splits provided by the WILDS

(a) Original Model

3

During Testing:
Acc: 70.7%, WGA: 67.8%

During Training:
Acc: 95.4%, WGA: 66.2%

(b) Identify Spurious Dimensions

Density
Density

I
L
2 3 4 -5 00 05 10 15 20 25

Dimension 1 Dimension 2
8 = Muis — Meor = Med(?) — Med(V))

1
(c) After Neuron Tuning

During Training:
Acc: 90.7%, WGA: 87.6%

During Testing:
Acc: 90.6%. WGA: 89.1%

Figure 2. Synthetic experiment. (a) Training and test data distri-
butions along with the decision boundaries of the trained model.
(b) Value distributions of the correctly (blue) and incorrectly (red)
predicted samples at the first (left) and second (right) dimensions
of input embeddings, with the second dimension identified as a
biased dimension. (c) NeuronTune improves WGA. Data groups
(y = +1,a = 1): red dots; (y = +1,a = 0): orange dots;
(y =—1,a = 0): blue dots; (y = —1,a = 1): green dots.

benchmark (Koh et al., 2021).

5.2. Experimental Setup

Training Details. We first trained ERM models on each
of the datasets. We used ResNet-50 and ResNet-18 (He
et al., 2016) models pretrained on ImageNet for experi-
ments on the Waterbirds and CelebA datasets, and on the
ImageNet-9 and ImageNet-A datasets, respectively. For text
datasets, we used the BERT model (Kenton & Toutanova,
2019) pretrained on Book Corpus and English Wikipedia
data. We followed the settings in Izmailov et al. (2022)
for ERM training, with the best models selected based on
the average validation accuracy. For our NeuronTune train-
ing, unless otherwise stated, we used the validation data
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Table 1. Comparison of worst-group accuracy (%), average accuracy (%), and accuracy gap (%) on the image datasets. | denotes using a
fraction of validation data for model tuning. The best result in each group of methods is in boldface.

. Group annotations Waterbirds CelebA
Algorithm
Train Val WGA (1) Acc. (1) Acc.Gap () WGA (1) Acc. (1) Acc. Gap (J)

ERM (Vapnik, 1999) - - 72.6 97.3 24.7 47.2 95.6 48.4
JTT (Liu et al., 2021) No Yes 86.7 93.3 6.6 81.1 88.0 6.9
SELF' (LaBonte et al., 2024) No Yes 93.0003 94.0417 1.0 839109 9174104 7.8
CNC (Zhang et al., 2022) No Yes 88.5103 909101 24 88.8.09 899405 1.1
BAM (Li etal., 2024) No Yes 89.2:{:0‘3 91 .4:{:0‘4 2.2 83.5:{:0,9 880;{:0.4 4.5
AFR (Qiu et al., 2023) No Yes 904411 9424419 3.8 82.0495 913103 9.3
DFRT (Kirichenko et al., 2023) No Yes 924,109 949403 2.5 87.0411  92.6405 5.6
BPA (Seo et al., 2022) No No 71.4 - - 82.5 - -

GEORGE (Sohoni et al., 2020)  No No 76.2 95.7 19.5 524 94.8 42.4
BAM (Ll et al., 2024) No No 89.1:&0,2 91.4:&0,3 2.3 801i55 884i25 8.3
NeuronTune No No 922403 944400 2.2 83.1411  92.0405 8.9
NeuronTune’ No No 925,09 945103 2.0 873104 903405 3.0

as Dyge and the training data as Drype. We took the abso-
lute values of neuron activations before the identification
process, ensuring that high activation magnitudes reflect
strong contributions to predictions. We ran the training
under five different random seeds and reported average
accuracies along with standard deviations. We provide
full training details in Appendix A.8. Code is available
athttps://github.com/gtzheng/NeuronTune.

Evaluation Metrics. To evaluate the robustness to spurious
bias, we adopt the widely accepted robustness metric, worst-
group accuracy (WGA), that gives the lower-bound perfor-
mance of a classifier on the test set with various dataset
biases. We also focus on the accuracy gap between the stan-
dard average accuracy and the worst-group accuracy as a
measure of a classifier’s reliance on spurious correlations. A
high worst-group accuracy and a low accuracy gap indicate
that the classifier is robust to spurious correlations and can
fairly predict samples from different groups.

5.3. Synthetic Experiment

We considered an input v = [v¢,v%,v¢] € R? that has three
dimensions: a core dimension with the core component
v¢ € R, a spurious dimension with the spurious component
v® € R, and a noise dimension with the noise component
v¢. We generated training and test sets with sample-label
pairs (v,y), where y € {—1,+1}. The core component
in v is a noisy version of the label y in both sets. The
spurious component in the training set is a noisy version
of the spurious attribute a = 0 in 95% (5% for a = 1) of
samples with y = —1 and in 5% (95% for a = 1) of samples
with y = 41. The noise component is an independent zero-
mean Gaussian variable. In the test set, for each label, we
reduced the 95% group to 10%, effectively reversing the
majority and minority group roles. We adopted a logistic

regression model ¢ (v) = 1/(1+exp{—(wTv+b)}) with
w = [w,b]. The model predicts +1 when ¢y (v) > 0.5
and —1 otherwise. We trained ¢y, on the generated training
data and tested it on the corresponding test data. Details of
the data generation are provided in Appendix A.1.

Fig. 2 illustrates spurious bias and how NeuronTune mit-
igates it. First, we observe that the decision boundary of
the trained model tends to separate the majority groups of
training samples. This leads to a high average accuracy but
a small WGA on the training set (Fig. 2(a), left) and poor
performance on the test set (Fig. 2(a), right). Then, Fig.
2(b) demonstrates the value distributions of the first (core)
and second (spurious) dimensions of the input samples with
y = —1. NeuronTune identified the second dimension
as a biased dimension, which indeed represents spurious
attributes. Next, Fig. 2(c) shows that NeuronTune signif-
icantly improves WGA on both the training and test sets
by suppressing the contributions from biased dimensions.
Finally, independent of how NeuronTune works, there exists
a tradeoff between average accuracy and WGA due to com-
plexity of input samples, as demonstrated in the left parts of
Figs. 2(a) and 2(c).

5.4. Comparison with Existing Approaches

We evaluated NeuronTune on both image and text datasets
to showcase its effectiveness and versatility in handling dif-
ferent data modalities and model architectures. Our primary
comparisons were with methods specifically designed for
unsupervised spurious bias mitigation, where no group la-
bels are available for bias mitigation. To provide additional
context, we also included methods for semi-supervised spu-
rious bias mitigation, which leverage group labels in the
validation set to select robust models.

Results in the lower parts of Tables 1 and 2 were obtained
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Table 2. Comparison of worst-group accuracy (%), average accuracy (%), and accuracy gap (%) on the text datasets. | denotes using a
fraction of validation data for model tuning. The best result in each group of methods is in boldface.

. Group annotations MultiNLI CivilComments
Algorithm
Train Val WGA (1)  Acc. (1) Acc.Gap () WGA (1) Acc. (1) Acc. Gap (})
ERM (Vapnik, 1999) - - 67.9 824 14.5 57.4 92.6 35.2
JTT (Liu et al., 2021) No Yes 72.6 78.6 6.0 69.3 91.1 21.8
SELF' (LaBonte et al., 2024) No Yes 707425 812407 10.5 7914191 877406 8.6
CNC (Zhang et al., 2022) No Yes - - - 689121 817405 12.8
BAM (Li et al., 2024) No Yes 712416 79.611.1 8.4 793107 883408 9.0
AFR (Qiu et al., 2023) No Yes 734,06 8ldigo 8.0 68.7106 89.840¢ 21.1
DFRT (Kirichenko et al., 2023)  No Yes 7084108 81.7402 109 818116 8754102 5.7
BAM (Li et al., 2024) No No 708415 803419 9.5 793197 883i0s 9.0
NeuronTune No No 721401 8l.ligg 9.0 824102 892401 6.8
NeuronTune’ No No 72.5.05 803106 7.8 827104 894102 6.7

Table 3. Average accuracy (%) and accuracy gap (%) comparison on the ImageNet-9 and ImageNet-A datasets. All methods used

ResNet-18 as the backbone. The best results are in boldface.

Method ImageNet-9 ImageNet-A Acc. Gap ({)
ERM (Vapnik, 1999) 90.840.6 249411 65.9
StylisedIN (Geirhos et al., 2019) 88.440.5 24.641.4 63.8
RUBI (Cadene et al., 2019) 90.540.3 277421 62.8
ReBias (Bahng et al., 2020) 91.941.7 29.641.6 62.3
LfF (Nam et al., 2020) 86.0 24.6 614
CaaM (Wang et al., 2021) 95.7 32.8 62.9
SSL+ERM (Kim et al., 2022) 94.2401 34.2405 60.0
LWBC (Kim et al., 2022) 94.040.2 36.040.5 58.0
NeuronTune 93.710.1 373105 56.4

in the unsupervised spurious bias mitigation setting. In this
setting, our method achieves the highest worst-group accu-
racies and smallest accuracy gaps across the datasets, high-
lighting its effectiveness in enhancing models’ robustness
to spurious bias and balancing performance across different
data groups. Results in the upper parts of Tables 1 and 2
were from methods in the semi-supervised spurious bias mit-
igation setting. Methods in this setting benefit from group
labels for selecting robust models. Despite this advantage,
NeuronTune demonstrates strong self-debiasing capabilities,
competing favorably with methods such as AFR and DFR
that rely on group labels. When a half of the validation set
was used in training, NeuronTune achieved better WGASs
and accuracy gaps on three out of four datasets than DFR
and SELF that exploited the same set of data for training.

Notably, compared with sample-level last-layer retraining
methods, such as AFR, NeuronTune manipulates the neu-
rons within a model, providing more targeted control on how
spurious bias is mitigated. Hence, NeuronTune in theory
can achieve better robustness to spurious bias (Appendix
A.3). In general, NeuronTune compares favorably with
AFR in terms of WGA and accuracy gap, with larger gains

achieved when AFR models were selected without group
labels (Appendix A.4).

We further used the ImageNet-9 (Kim et al., 2022; Bahng
et al., 2020) and ImageNet-A (Hendrycks et al., 2021)
datasets to evaluate NeuronTune’s robustness to distribu-
tion shifts, which are challenging to depict in group la-
bels. We first trained an ERM model from scratch using
ImageNet-9 and then fine-tuned its last layer with Neuron-
Tune. In Table 3, NeuronTune achieves the best accuracy
on the challenging ImageNet-A dataset, which is known for
its natural adversarial examples. While this improvement
comes with a slight trade-off in in-distribution accuracy on
ImageNet-9, NeuronTune maintains the smallest accuracy
gap between the two datasets, making it a robust method for
out-of-distribution generalization.

Finally, in Tables 1, 2, and 3, we observe a common trade-
off between average accuracy and WGA that exists across
many spurious bias mitigation methods. For NeuronTune,
this trade-off primarily occurs when samples sharing the
same spurious attribute but belonging to different classes
are difficult to separate in the latent space, as illustrated in
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Table 4. Comparison of worst-group accuracy (%) between different choices of Dig. and Drune as well as neuron-based tuning (NT) on the
four datasets. The best results are in boldface.

Dirde Drune NT Waterbirds CelebA MultiNLI CivilComments
Duain© Duain Yes 78.042.3 585412  42.04105 80.0+10.5

Dya Dyain~ Yes 922403 831411 T2.140.1 824109

Dyal Duain No 827104 539400 63.410.7 81.510.5
Dya/2 Dya/2 Yes 925,09 873,04 72.5.i03 82.7. 0.4

Table 5. Analysis of the impact of partial suppression (masking value > 0) and full suppression (masking value = 0) on the performance

of NeuronTuneT, evaluated on the CelebA dataset.

Masking value 0 0.2 0.4 0.6 0.8 1.0
WGA (1) 873104 715415 722412 729475 731115 73.01410
Acc. (T) 90'3i0.5 93.8i0,2 93-8i0.3 93.8i0_2 93.810.2 93-9i0.2

Fig. 2. While improving sample embeddings could help alle-
viate this issue, it often demands substantial computational
resources. In contrast, NeuronTune, as a post hoc method,
efficiently mitigates spurious bias by tuning only the last
layer with low computational complexity (Appendix A.5)
while still achieving a favorable balance between WGA and
overall performance.

5.5. Ablation Studies

In Table 4, we compare NeuronTune’s performance between
different choices of the identification dataset Dy, and the
model tuning dataset Dry,.. Additionally, we demonstrate
the effectiveness of neuron-based tuning on the identified
biased dimensions (denoted as NT).

When using Dige = Dirain, We Observe a relatively low per-
formance across datasets. After switching to a held-out
validation data D,,, we observe significant performance
improvements. This highlights the advantage of using a new
and independent dataset to identify biased dimensions, as
models may have already memorized patterns in Dyin. By
default, NeuronTune adopts Dy, as Dyge. It is important to
note that using D, to identify biased dimensions is anal-
ogous to using it for model selection. Hence, D,y is not
directly used for updating model weights.

Next, we disabled NT during model tuning (NT=No), which
effectively reduces NeuronTune to class-balanced model
tuning. We observe consistent performance degradation
across the four datasets, which validates the effectiveness of
NT across datasets.

Moreover, inspired by the success of DFR (Kirichenko et al.,
2023), which uses a half of the validation data for model
tuning, we divided Dy, into two equal halves: one half
(denoted as D,,/2) was used as Dyqe, While the other half
served as Dryype. Unlike DFR, our method does not rely
on group labels in the validation data. This strategy leads

to further performance improvements on datasets such as
CelebA and MultiNLI, demonstrating the advantage of us-
ing separate and independent datasets for bias identification
and model tuning. Identifying the optimal choice for Di4.
and Dry,e remains an avenue for future research.

Finally, we analyze different strategies for handling the iden-
tified biased dimensions, as shown in Table 5. Our default
approach, described in Section 4.2.2, fully suppresses the
activations on the biased dimensions by multiplying the ac-
tivations with a masking value of zero. To explore the effect
of partial suppression, we varied the masking value from 0.2
to 1.0, where 1.0 corresponds to no suppression. As shown
in Table 5, on the CelebA dataset, only the full suppression
strategy (masking value = 0) led to an improvement in WGA.
This highlights that while partial suppression may reduce
the loss in average accuracy, its impact on spurious bias
is similar to no suppression at all. With nonzero masking
values, models can still adjust their weights using biased
activations, resulting in persistent spurious bias.

6. Conclusion

We proposed a self-guided spurious bias mitigation method
that directly intervenes the prediction mechanisms within
a model without using group labels. Our method exploits
distinct patterns of neuron activations in a model’s latent
space to identify biased dimensions and suppresses signals
from these dimensions while tuning the remaining model.
We theoretically validated our neuron identification method
and proved that our method can bring a model closer to an
unbiased one than its ERM counterpart. Experiments vali-
dated our theoretical findings and showed that our method is
a lightweight post hoc bias mitigation method that can work
across different data modalities and model architectures.
Future work may explore different choices of identification
and model tuning data to enhance spurious bias mitigation.
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A. Appendix

The appendix is organized as follows:

» Section A.1: Details of the Synthetic Experiment

» Section A.2: Theoretical Analysis

— Section A.2.1: Preliminary

— Section A.2.2: Proof of Lemma 1

— Section A.2.3: Proof of Corollary 1

— Section A.2.4: Proof of Proposition 4.1
— Section A.2.5: Proof of Theorem 4.2

— Section A.2.6: Proof of Theorem 4.3

— Section A.2.7: Proof of Lemma 2

— Section A.2.8: Proof of Lemma 3

¢ Section A.3: Connection to Last-Layer Retraining Methods

¢ Section A.4: Comparison between Models Selected with Worst-Class Accuracy
» Section A.5: Complexity Analysis

» Section A.6: Advantages over Variable Selection Methods

» Section A.7: Dataset Details

 Section A.8: Training Details

e Section A.9: Visualizations of Biased and Unbiased Dimensions

A.1. Details of the Synthetic Experiment

Data Model. Without loss of generality, we considered an input v € R? to simulate a latent embedding before the last
prediction layer, which consists of three dimensions: a core dimension with the core component v¢ € R, a spurious
dimension with the spurious component v* € R, and a noise dimension with the noise component v¢. We considered a
dataset DV = {(v;, )}V, of N sample-label pairs, where y; € {—1,+1}, v¢ = y; + n., and v¢ and n,. are zero-mean
Gaussian noises with variances o2 and o2, respectively. When y; = —1, v§ = 0+ n, with the probability o and v = 1+ ng
with the probability 1 — «; when y; = +1, vJ = 1 4 ng with the probability  and v; = 0 + n, with the probability 1 — «,
where n is an independent zero-mean Gaussian noise with the variance 2. To facilitate developing the spurious bias
of using the correlation between v and y; for predictions, we generated a training set ng?n with easy-to-learn spurious
attributes by setting o2 > 02 and a ~ 1 (Sagawa et al., 2020). Thus, the correlations between v{ and y; are predictive of

aN labels. To demonstrate, we set 02 = 0.6, 02 = 0.1, 02 = 0.1, a = 0.95, and N = 5000. We generated a test set Dioy
with the same set of parameters except o« = 0.1. Now, spurious correlations between v; and y; are only predictive of a small
portion of the test samples. Fig. 2 shows four data groups along with their respective proportions in each class.

Classification Model. We considered a logistic regression model ¢ (v) = 1/(1 + exp{—(w’v 4 b)}), where w = [w, b].

The model predicts +1 when ¢ (v) > 0.5 and —1 otherwise. We trained ¢ on D>: and tested it on DpYy.

train

Spurious Bias. We observed a high average accuracy of 95.4% but a WGA of 66.2% (Fig. 2(a) in the main paper) on the
training data. The results show that the model heavily relies on the correlations that exist in the majority of samples and
exhibits strong spurious bias. As expected, the performance on the test data is significantly lower (Fig. 2(a), right). The
decision boundary (Fig. 2(a), black lines) learned from the training data does not generalize to the test data.

Mitigation Strategy. Without group labels, it is challenging to identify and mitigate spurious bias in the model. We tackled
this challenge by first finding that the distributions of values of an input dimension, together with the prediction outcomes
for a certain class, provide discriminative information regarding the spuriousness of the dimension. (1) When the values for
misclassified samples at the dimension are high, while values for the correctly predicted samples are low, this indicates that

13
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the absence of the dimension input does not significantly affect the correctness of predictions, while the presence of the
dimension input does not generalize to certain groups of data. Therefore, the dimension tends to be a biased dimension. The
plots in Fig. 2(b) illustrate the value distributions of the first and second dimensions of input embeddings when y; = —1. (2)
In contrast, if the absence of the dimension input results in misclassification, then the dimension tends to represent a core
attribute. The left plot of Fig. 2(b) represents the first dimension of input embeddings when y; = —1. Next, we retrained
the model while suppressing the second and third dimensions. As a result, the retrained model has learned to balance its
performance on both the training and test data with a significant increase in WGA on the test data (Fig. 2(c)).

A.2. Theoretical Analysis
A.2.1. PRELIMINARY

For the ease of readability, we restate the data model specified by (1) and (2) in the following

Dx1 T
X = Xcore D Xspu € RZ>E, Yy = B Xcore + Ecores (®)

and
Xspu = (2a - 1)7y + Espu, & ~ Bern(p)v ©)

where (2a — 1) € {—1,+41}, a ~ Bern(p) is a Bernoulli random variable, p is close to 1, ecore is a zero-mean Gaussian
random variable with the variance n2 ., and each element in 4y, follows a zero-mean Gaussian distribution with the variance
N2 We set 72, > 12, to facilitate the learning of spurious attributes. The model f(x) = b” Wx in Section 4.1 can be
further expressed as follows,

M
~ T T T T
Y= E b; (Xcorewcore,i + XsquSpU’i) = Xgore Ucore 1 XspuUspu; (10)
=1
where w!' € R™P is the i-th row of W, w! = (W e is W 1] With Weore i € RP1X1 and wp,; € RP2X gy =

M M . . .. )
D im1 biWeore,is and Ugpy = > ;— 1 b;Wpu ;. The loss function which we use to optimize W and b is

1

le(W.b) = SE(x ey £ (%) = w3 (11)

With the above definitions, the following lemma gives the optimal coefficients u}, . and u},, based on the training data.

core spu

A.2.2. PROOF OF LEMMA 1

Lemma 1. Given a training dataset Dy, with p defined in (9) satisfying 1 > p > 0.5, the optimized weights in the form of
u;, . andu;, are

core spu
* (2 - 2p)77020re + nvzpu
Uepre = 5 5 B, (12)
77(,‘0}"6 + 773[7%
and ( 2
* 2p -1 Ncore
u, =y, (13)
P Moo + M
respectively. When p = 0.5, the training data is unbiased and we obtain an unbiased classifier with weights u},,, = 3 and
u’ =0.

spu

Proof. Note that f(x) = bTWx = xTv = xL_uoe + xguuspu, then we have

GW,0) = SElx et + Xt — 113 (14
- %EHXCTmucore + (20 = V)vy + €] ugn — vl (15)
= SElxetion — [1 = (20— 1Dy gyl + 31 s (16)
= SOB + (1= p)Es) + o gl (7)

14
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where By = ||xX ucore — (1 — v ugpu)y|3 when a = 1 and By = ||x1 ucore — (1 + v  ugpu)y||3 when a = 0. We first
calculate the lower bound for £ as follows

By = E|[XoreUcore — (1 — '7TUSPU)(ﬂTXcore + ecore) I3 (18)
= EHXz;reucore - (1 - 7Tuspu)ﬂTXcore + (1 - 7Tuspu)500re)|‘§ (19)
= EHXz;reucore - (1- VTUSPU)ﬁTXcoreHE + 77c20re(1 - ’YTuSPU)Q (20)
> 77c20re(1 - 7Tu5pu)2~ 21
Similarly, we have
Ey = EHX:{)reucore -1+ ’YTuspu)(ﬁTXcore + Ecore) H% (22)
= EHxareucore -1+ ’YTUSPU)/BTXcoreng + 77c20re(1 + ’YTUSPU)2 (23)
> Nore (1 + 7 1) (24)

Then, plug in (21) and (24) into (17), we obtain the following

1

étr(m b) 2 §(p7730re(1 - ’7TuSPU)2 + (1 _p)ngore(l + 'yTuSPU)2 + nzpu”uSPUH%) (25)
1

= §(pnc20re(1 - ’yTUSPU)Q + (1 _p)ngore(l + '7TuSPu)2 + 7752pu||’7||§||uspu||§) (26)
1

Z §(p77020re(1 - 7Tu5PU>2 + (1 _p)ngore(l + ’YTuSPU)z + nszpu||7TuSPU||§)7 (27)

where (26) uses the fact that - has a unit norm, and the inequality (27) exploits the Cauchy—Schwarz inequality. Let

z =T gy, we have £(z) = pn2,. (1 — 2)? + (1 — p)n2 (1 + 2)% + 12, 2%. Let %(zz) = 0, we obtain

x T __ (2]?_ 1)77c20re
=y Uy, =
Meore T Mspu

Given ug,,, we can obtain the optimal ug,,, for minimizing £ in (20) as g, = (1 — 2*)/3; similarly, we can obtain the

optimal u,,,, for minimizing E» in (23) as u,,, = (1 + z*)B. Via proof by contradiction, only u’,, or u,,, is the solution
for ug

core core
core*

Since p > 0.5, E; contributes to the majority error of (20). Thus, u},,.. = (1 — 2*)3, i.e.,

(2 - 2p)n?0re + 775‘2pu

B.
77c20re + 7’52pu

u:ore = (1 - Z*)ﬁ =

A.2.3. PROOF OF COROLLARY 1

Lemma 1 gives the optimal model weights under a given training dataset Dy, with the parameter p controlling the strength
of spurious correlations. Lemma 1 generalizes the result in (Ye et al., 2023) where p = 1. Importantly, we obtain the
following corollary for unbiased models:

T

*
core

Corollary 1. The unbiased model f(x) = u' x = X;quwre + xz;muspu is achieved when .y, = U, , and ’yTusp,, =0.

Proof. Plug AT Ueore = 0 into (20) and (23), then we observe that Uee minimizes errors from both the majority (a = 1)

and minority (a = 0) groups of data. O
If we could obtain a set of unbiased training data with p = 0.5, then we obtain an unbiased model with ug,, = 0 and
u},. = B. However, in practice, it is challenging to obtain a set of unbiased training data, i.e., it is challenging to control

the value of p.
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A.2.4. PROOF OF PROPOSITION 4.1

Proposition 4.1 (Principle of NeuronTune). Given the model f(x) = b Wx trained with data generated under the data
model specified in (8) and (9), it captures spurious correlations when 'yTWspM‘ < 0,i € {1,..., M}. The principle of
NeuronTune is to suppress neurons containing negative 'yTwspu,i.

Proof. Consider the i-th neuron e; (¢ = 1, ..., M) before the last layer. We first expand it based on our data model specified
by (8) and (9) as follows:

e = xz;rewcore7i + Xg,uwspw (28)
= XcToreWcore,i +[(2a — 1)y + Espu]TWspu,i (29)
= XloreWeorei + (20— 1)[B7 Xeore + Ecore) V" Wipui + Eopu Wipu,i (30)
= XooreWeore,i (20 — 1) Xeorey Wpu,i + Erem, 31)

where €e = score'yTwspu7¢ + Ez;;uwspu,i- In (31), if 'yTwSpu,i > 0, the model handles the spurious component correctly.
Specifically, when a = 1, the spurious component positively correlates with the core component and contributes to the
output, whereas when a = 0, its correlation with the core component breaks with a negative one and has a negative
contribution to the output. In contrast, if ”yTwspuJ < 0 and @ = 1, then the model still utilizes the spurious component even
the correlation breaks, demonstrating a strong reliance on the spurious component instead of the core component. Therefore,
the principle of selective activation is to find neurons containing negative v wyy, ; so that suppressing them improves model

generalization. O

A.2.5. PROOF OF THEOREM 4.2

The following theorem validates our neuron selection method.

Theorem 4.2 (Metric for Neuron Selection). Given the model f(x) = b” Wx, we cast it to a classification model by
training it to regress y € {—p, u} (1 > 0) on x based on the data model specified in (8) and (9), where ;1 = E[B” Xcore).
The metric 6! defined in the following can identify neurons with spurious correlations when §; > 0:

8¢ = Med(V!) — Med(VY),

where T/ly and ]A)ly are the sets of activation values for misclassified and correctly predicted samples with the label y from the
i-th neuron, respectively; an activation value is defined as Xchwwre,i + Xgmwxpuyi; and Med(-) returns the median of an
input set of values.

Proof. We start by obtaining the set of correctly predicted samples f)y and the set of incorrectly predicted samples Z_)y
as D, = {x|f(x) > 0,(x,y) € Due} and D, = {x|f(x) < 0,(x,y) € D}, where D is the set of identification
data. Then, we have VY = {e;|x € D,}, and V¥ = {e;|x € D,}, where ¢; is the i-th neuron activation defined in (31).
Expanding e; following (31), we obtain

€; = Xg:)rewcore,i + (2a - 1)BTXcore'YTWspu,i + Erem-
Note that Xz;rewcore,i and e, exist for all the samples, regardless of the ultimate prediction results, and all e; follows a
Gaussian distribution given a. Then, among all the correctly predicted samples with the label y, according the Lemma 2, we
have Med(]ff’ )~ E[xL . Weore,i] + 1177 Wypu,;. Similarly, among all the incorrectly predicted samples with the label y, we
have Med(V!) ~ E[xL . Weore,i] — ;ryTwspu,i. Then, the difference between the two is

621! ~ _QM'YTWspu,i .

When 6¢ > 0, we have 7" wyy, ; < 0. According Proposition 4.1, using 7 > 0 indeed selects neurons that have strong
reliance on spurious components. O
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A.2.6. PROOF OF THEOREM 4.3

Theorem 4.3 (NeuronTune Mitigates Spurious Bias). Consider the model f*(x) = x'u* trained on the biased
training data with p > 0.5, with u},., and u;, defined in (12) and (13), respectively. Under the mild assumption that

core spu
,BTWCO,M- ~ Y Wi, Vi = 1,..., M, then applying NeuronTune to f*(x) produces a model that is closer to the unbiased
one.

Proof. Consider f*(x) as the base model. We aim to prove that the retrained model obtained with NeuronTune is closer to
the unbiased model defined in Corollary 1 than the base model in the parameter space.

First, the assumption that [)'Twcorw ~ ’yTwspuJ, Vi = 1,..., M generally holds for a biased model as the model has
learned to associate spurious attributes with the core attributes.

Then, we denote the retrained parameters obtained with NeuronTune as uim and ulpu. We start with calculating u;rpu.

*

Focusing on (27) and following the derivation in Lemma 1, we obtain u;fpu => biWspu,i = U, where 7, denotes

ieTy
the set of neuron indexes satisfying "}’TWSPUJ‘ > (. Note that NeuronTune is a last-layer retraining method; thus we only
optimize b; here and wyp, ; is the same as in f*(x). Left multiplying ulpu with 4T, we have

’YTul‘Lpu = Z b;‘rﬂyTWspu,i (32)
€Ty
— o — (2]9 - 1)nc20re > 0.

2 2
Tcore + nspu

Note that 'yTwSpu,,- > 0, Vi € Z, because of NeuronTune. Hence, we have bj > 0, Vi € Z,. Moreover, we observe that

*

u;rpu is the same as ug,, as long as 7 is non-empty. This shows that NeuronTune is not able to optimize parameters related
to the spurious components in the input data.

According to the Corollary 1, the unbiased model is achieved when p = 0.5 and u.oe = 3. The Euclidean distance between

(3 and the biased solution ueoe = (1 — 2*)B is ||u,,. — B|| = 2*. Based on (32), we estimate the distance between our
NeuronTune solution uzm and 3 as follows
[wloe = Bl = 18" (Wl — B)ll2 (33)
= 18" ulye — 12 (34)
= H Z b;‘rIBTWcore,i - 1”2 35)
1€T
~ ” Z b;'r')/TWspu,i - 1”2 (36)
ieT,
= [|2" = 1], (37)
where (34) uses the fact that ,BTﬁ =1, and (35) uses the condition ,BTWcore,i ~ 'yTwspu,Z—, Vi=1,...,M. Note that z* is

achieved on the training data with p > 0.5 and 2, >> 12, hence we have z* ~ 1 and [udore — B||2 & 0. In other words,
NeuronTune can bring model parameters closer to the optimal and unbiased solution than the parameters of the biased
model.

O

A.2.7. PROOF OF LEMMA 2

Lemma 2 (Majority of Samples among Different Predictions). Given the model f(x) = bTWx trained on y €
{—p, 1} (> 0) with pu = E[B" Xcore), and the conditions that p > 3/4 and n?,,, > Neyw We have the following claims:

* Among the set of all correctly predicted samples with the label y, more than half of them are generated with a = 1;

* Among the set of all incorrectly predicted samples with the label y, more than half of them are generated with a = 0.
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Proof. With the two regression targets, —u and /i, the optimal decision boundary is 0. Without loss of generality, we
consider y = . Then, the set of correctly predicted samples D, is

Dy = {x|f(x) 2 0, (x,9) € Diac},
and the set of incorrectly predicted samples @y is

D, = {x|f(x) <0, (x,y) € Dige}-
The probability of a sample with the label y that is correctly predicted is

P(x € Dyly) = P(a=1)P(f(x) > 0la =1,y) + P(a = 0)P(f(x) > 0la =0,y)
=pP(f(x) > 0la=1,y) + (1 = p)P(f(x) = 0la = 0,y).

Similarly, the probability of a sample with the label y that is incorrectly predicted is
P(x € Dyly) = pP(f(x) < 0la = 1,y) + (1 — p)P(f(x) < O]a = 0,y).
To calculate P(f(x) > 0la = 1,y), we expand f(x) as follows:

T T
f(X) = Xcoreu:me + Xspuu:pu

T
= Xg;reﬁ(l - Z*) + (7(ﬁ Xcore 1 Ecore) + ESPU)Tu:pu
T T T T T
- Xcore/B(]' - Z*) + Xcoreﬁ7 u;‘kpu + Y u;‘kpu‘c:core + E“spu]'l;kpu

_ T * T %
- Xcoreﬁ + 2 Ecore + Espu uspu'

The output of f(x) follows a Gaussian distribution, with the mean p; = E[f(x)] = p, and the variance 0? = Var(xL .3)+
Neore (2°)? + 1%, (2%)?. Therefore, we have

P(f(x) 2 Ola = 1,y) = P(x € D, Ja = Ly) = 1 - B("_) — (L) (38)
P(f(x) <0la=1,y) = P(x € Dyla=1,y)=1— @(Oﬂl) - @(%ﬁ‘). (39)

Similarly, to calculate P(f(x) > Ola = 0,y), we expand f(x) as follows:

T T T T T
f(X) = Xcoreﬁ(]- - Z*) - Xcoreﬁ’)/ u:pu - u:puECOI’e + Espuu:pu

— * * T *
- Xcore/B(]' -2z ) — 2 Ecore T E.spuuspu'

The output of f(x) follows a Gaussian distribution, with the mean py = E[f(x)] = p(1 — 22*), and the variance
05 = (1= 22)*Var(xLeB) + Nooe (2°)? + 15, (2*)?. As a result, we have

: 0—tto) _ g (L=2m,

P(f(x) >0la=0,y) = P(x € Dyla=0,y) =1— ®( , (40)
0o 0o
_ _ S 1 _ poy o —(1—22")p
P(f(x) <0la=0,y) = P(z € Dyla=0,y) =1 - ‘1>(;0) = Q(T)- 41
Then, we obtain the probabilities for correctly and incorrectly predicted samples with the label y, i.e.,
- w 1—-22%)u
P(x € Dyly) =p<1>(*)+(1—p)<1>(¥), (42)
01 g0
and
— —(1—2z*
P(x e Dyly) = p2(2L) + (1 - pra(—L 2 @)
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Next, we seek to determine whether the majority of samples in the correctly (incorrectly) predicted set ﬁy (@y) is generated
with @ = 0 or @ = 1. To achieve this, in the set of correctly predicted samples, we use the Bayesian theorem based on (42),
i.e.,
P(x € Dyla=1,y)P(a=1)
P(x € Dyly)
p®(p/o1)

= pB(ufon) + (L—p)@((1— 227 )ufor)’ (9

Pla=1x € Dy,,y) =

and
Pla=0[x€Dy,,y) =1—Pla=1|x € D,,y)
_ (1-p)e(1=2)/o)
p®(p/o1) + (1 —p)@((1 - 22*)u/00)
Similarly, in the set of incorrectly predicted samples, we have
P(x € Dyla=1,y)P(a=1)
P(x € Dyly)
_ p®(—p/o1)
p®(—p/o1) + (1 = p)@(=(1 - 22*)p/00)’

(45)

P(a=1|x € Dy,y) =

(46)

and
P(a=0lx € Dy,y) =1— Pla=1|x € Dy,y)
(1 —p)®(=(1 - 2z")p/00)

= B pfon) + (- p)B(—(1 - 2: ) fo0)” @7

Under the assumption that p > 3/4 and 02, > 12, we have 1 — 2z* = ((3 — 4p)nl,.. + n2.)/ (Nae + 1%) < 0. Hence,

O(—(1 — 22*)u/og) < 1/2and P(a = 1]x € Dy, y) > 1/2; in other words, among the set of all correctly predicted
samples with the label y, more than half of them are generated with o = 1.

Moreover, under the assumption that ®(—pu/01) & 0, i.e., predictions of the model have a high signal-to-noise ratio, then
Pla=0|x e ﬁy, y) > 1/2, i.e., among the set of all incorrectly predicted samples with the label y, more than half
of them are generated with a = 0. This assumption is generally true, as 07 = Var(x%3) + Nae (%) + 12, (2%)? is
typically very small when z* approaches zero given p > 3/4 and 12, > 12,,. 0O

A.2.8. PROOF OF LEMMA 3

T

Lemma 3. Consider the model f(x) = x' u with u = [Ueore, W], the optimal solution for w,,, denoted as 0, can be

spu’
achieved by last-layer retraining on the retraining data with p,, and is calculated as

2pre — 1)n?
ur — ( p )77607'8’)/. (48)

Spu 2 2
Necore + nxpu

Proof. First, we have f(x) = xTu = b Wx. For last-layer retraining, b is optimized. Following the derivation in Lemma
1, we similarly obtain the inequality in (27) with p = p, i.e.,

1
K(b) Z 5 (pren?ore(]' - 7Tuspu)2 + (1 - pre)nzore(l + PyTuSPU)Q + 7)52pu||7TuSpu||§> . (49)
Note that the terms on the right side of the inequality are independent of any manipulation of the retraining data, such as
reweighting. Then, taking the derivative of the sum of these terms with respect to b, we obtain the following equation

(2pre —1 ) 77020re

T
v Wgub =
i N2e + N

(50)

where ug,, = W b. Since ~T~ =1, then we have Ugpy = ugpu. We finally verify that ugpu indeed minimizes the sum of
the terms on the right hand side of (49). If pr equals to p for the training data, then ug,, = ug,, defined in (13). O

spu
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A.3. Connection to Last-Layer Retraining Methods

Although our method shares a similar setting to last-layer retraining methods, such as AFR (Qiu et al., 2023) and DFR
(Kirichenko et al., 2023), our method is fundamentally different from these methods in how spurious bias is mitigated. Take
AFR for an example. It, in essence, is a sample-level method and adjusts the weights of the last layer indirectly via retraining
on samples with loss-related weights. Our method directly forces the weights identified as affected by spurious bias to zero,
while adjusting the remaining weights with retraining.

The advantage of NeuronTune can be explained more formally in our analytic framework. First, considering the training
loss in (17), we can express it as the sum of the following terms for brevity,

1 1 1
gtr (W; b) == ipEWH(ucorea uspu)] + 5(1 - p)]E['l/)Q(ucorea uspu)] + iwl}(uspu)a (51)
where p is the data generation parameter and is a constant, and 1)1, Y2, and 13 are defined as
wl (ucor67 uspu) = E”Xz;reucore - (1 - Ar’Tuspu)/gTXcore||§a

Y2 (Ueore; Uspu) = E”ch;reucore -1+ 'VTUSPU)ﬁTXcore”gv
and
3 (Ugpu) = Pore (1 = 7 i) + (1 = D)re (1 + 5 0gpu) + nu 7 0pu3,
respectively. Based on Lemma 3, for last-layer retraining methods in general, the optimal solution for uy, is ug,,, given that
the retraining data follows the same distribution as the training data.

AFR changes the distribution within the first two expectation terms 11 (Ucore, Uspu) and 2 (Ucore, Uspu) and jointly updates
Ucore and Ugpy, While there is no optimality guarantee for ugp, (¢3(Uspu) is not considered in AFR). By contrast, according
to Theorem 4.3, NeuronTune first ensures that ugp, is optimal, then it moves U close the the unbiased solution.

A.4. Comparison between Models Selected with Worst-Class Accuracy

We compared our approach with AFR (Qiu et al., 2023) and JTT (Liu et al., 2021) to demonstrate the challenges of the
unsupervised setting for semi-supervised methods. These methods were tuned using worst-class accuracy (Yang et al., 2023)
on the validation set instead of WGA. As shown in Table 6, our method exhibits larger performance gains over AFR and
JTT compared to their results presented in Tables 1 and 2.

Table 6. WGA comparison when models selected by the worst-class accuracy on the validation set.

Method Waterbirds  CelebA

JTT 842105 523418
AFR 89.0496 68.741.7
NeuronTune 91.840.8 83.0495

A.5. Complexity Analysis

We analyze the computational complexity of our method, NeuronTune, alongside representative reweighting-based methods,
including AFR (Qiu et al., 2023), DFR (Kirichenko et al., 2023), and JTT (Liu et al., 2021). Let the number of identification
samples be Nyqge, the number of retraining samples be N, the total number of training samples be N, the number of latent
dimensions be M, and the number of training epochs be E. Additionally, denote the time required for inference as 74, for
last-layer retraining as 7y, and for optimizing the entire model as 7,p.. The computational complexities of these methods are
summarized in Table 7.

Among the methods, JTT has the highest computational complexity since 7op >> 711, requiring full model optimization.
DFR is much faster due to its reliance on last-layer retraining, though it requires group annotations. AFR extends DFR by
additionally precomputing sample losses, increasing its computational cost slightly. NeuronTune, while requiring more time
than AFR to identify biased dimensions across all M embedding dimensions, remains computationally efficient. This is
because T4y, the time required for forward inference, is typically very small. As a result, NeuronTune offers an effective
balance between computational efficiency and robust spurious bias mitigation.
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Table 7. Computation complexity comparison between NeuronTune and reweighting methods.

Method Time complexity
JTT (Liu et al., 2021) O(NETnpt)
AFR (Qiu et al., 2023) O(NigeTtw + ENww ETy)
DFR (Kirichenko et al., 2023) O(E N ETy)
NeuronTune O(E(NweM 7t + Niet ET1))

A.6. Advantages over Variable Selection Methods

Although the identification of biased dimensions in (6) may resemble traditional variable selection methods (Heinze et al.,
2018), our approach extends beyond simply selecting a subset of variables that optimally explain the target variable. Instead,
it specifically addresses spurious bias—an issue often neglected in traditional variable selection.

Traditional variable selection methods, such as L1 regularization, do not differentiate between variables representing spurious
attributes and those representing core attributes. Since spurious attributes are often predictive of target labels in the training
data and are easier for models to learn (Tiwari & Shenoy, 2023; Ye et al., 2023), these methods may mistakenly prioritize
spurious attributes, thereby amplifying spurious bias. In contrast, our method explicitly targets dimensions affected by
spurious bias and rebalances the model’s reliance on features to reduce dependence on spurious information.

Furthermore, unlike many variable selection methods that require explicit supervision (e.g., labels or statistical relationships)
to mitigate spurious bias, NeuronTune operates in an unsupervised setting where group labels indicative of spurious attributes
are unavailable. By leveraging misclassification signals to estimate spuriousness scores, our method is better suited for
scenarios where group annotations are costly or infeasible, offering a practical and scalable solution to challenges of spurious
bias mitigation.

A.7. Dataset Details

Table 8 gives the details of the two image and two text datasets used in the experiments. Additionally, the ImageNet-9
dataset (Xiao et al., 2021) has 54600 and 2100 training and validation images, respectively. The ImageNet-A (Hendrycks
et al., 2021) dataset has 1087 images for evaluation.

A.8. Training Details

Table 9 and Table 10 give the hyperparameter settings for ERM and NeuronTune training, respectively.

A.9. Visualizations of Unbiased and Biased Dimensions

We provide visualizations of the neuron activation value distributions for the identified unbiased and biased dimensions in
Figs. 3 to 6. The biased and unbiased dimensions selected for visualizations are obtained by first sorting the dimensions
based on their spuriousness scores and then selecting three biased dimensions that have the largest scores and three unbiased
dimensions that have the smallest scores. Note that a dimension does not exclusively represent a core or spurious attribute; it
typically represents a mixture of them.

On the CelebA dataset, as shown in Fig. 3, samples that highly activate the unbiased dimensions have both males and
females; thus, the unbiased dimensions do not appear to have gender bias. For samples that highly activate the identified
biased dimensions, all of them are females, demonstrating a strong reliance on the gender information. In Fig. 4, samples that
highly activate the identified biased dimensions (right side of Fig. 4) tend to have slightly darker hair colors or backgrounds,
as compared with samples that highly activate the identified unbiased dimensions (left side of Fig. 4). With the aid of the
heatmaps, we observe that these biased dimensions mostly represent a person’s face, which is irrelevant to target classes.

On the Waterbirds dataset, as shown in Fig. 5, for the landbird class, the identified unbiased dimensions mainly represent
certain features of a bird and land backgrounds. For the identified biased dimensions, they mainly represent water
backgrounds, which are irrelevant to the landbird class based on the training data. For the waterbird class, as shown in Fig.
6, the identified unbiased dimensions mostly represent certain features of a bird and water backgrounds, while the identified
biased dimensions mainly represent land backgrounds.
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Table 8. Numbers of samples in different groups and different splits of the four datasets.

Class Spurious attribute  Train Val Test
Waterbirds
landbird land 3498 467 2225
landbird water 184 466 2225
waterbird land 56 133 642
waterbird water 1057 133 642
CelebA
non-blond female 71629 8535 9767
non-blond male 66874 8276 7535
blond female 22880 2874 2480
blond male 1387 182 180
MultiNLT
contradiction no negation 57498 22814 34597
contradiction negation 11158 4634 6655
entailment no negation 67376 26949 40496
entailment negation 1521 613 886
neither no negation 66630 26655 39930
neither negation 1992 797 1148
CivilComments
neutral no identity 148186 25159 74780
neutral identity 90337 14966 43778
toxic no identity 12731 2111 6455
toxic identity 17784 2944 8769

Table 9. Hyperparameters for ERM training.

Hyperparameters Waterbirds CelebA ImageNet-9 MultiNLI  CivilComments
Initial learning rate 3e-3 3e-3 le-3 le-5 le-3
Number of epochs 100 20 120 10 10
Learning rate scheduler CosineAnnealing CosineAnnealing MultiStep[40,60,80] Linear Linear
Optimizer SGD SGD SGD AdamW AdamW
Backbone ResNet50 ResNet50 ResNetl18 BERT BERT
Weight decay le-4 le-4 le-4 le-4 le-4
Batch size 32 128 128 16 16

Table 10. Hyperparameters for NeuronTune.

Hyperparameters Waterbirds CelebA ImageNet-9 MultiNLI CivilComments
Learning rate le-3 le-3 le-3 le-5 le-3
Number of batches per epoch 200 200 200 200 200
Number of epochs 40 40 1 60 60
Optimizer SGD SGD SGD AdamW AdamW
Batch size 128 128 128 128 128
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(a) Identified unbiased dimensions for non-blond hair (b) Identified biased dimensions for non-blond hair

Figure 3. Value distributions of the correctly (blue) and incorrectly (red) predicted samples for unbiased (a) and biased (b) dimensions,
along with the representative samples, respectively, based on the non-blond hair samples in the CelebA dataset.
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Figure 4. Value distributions of the correctly (blue) and incorrectly (red) predicted samples for unbiased (a) and biased (b) dimensions,
along with the representative samples, respectively, based on the blond hair samples in the CelebA dataset.
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(a) Identified unbiased dimensions for landbird (b) Identified biased dimensions for landbird

Figure 5. Value distributions of the correctly (blue) and incorrectly (red) predicted samples for unbiased (a) and biased (b) dimensions,
along with the representative samples, respectively, based on the landbird samples in the Waterbirds dataset.
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Figure 6. Value distributions of the correctly (blue) and incorrectly (red) predicted samples for unbiased (a) and biased (b) dimensions,
along with the representative samples, respectively, based on the waterbird samples in the Waterbirds dataset.
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