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ABSTRACT

Semantic concepts are frequently defined by combinations of underlying at-
tributes. As mappings from attributes to classes are often simple, attribute-based
representations facilitate novel concept learning with zero or few examples. A
significant limitation of existing attribute-based learning paradigms, such as zero-
shot learning, is that the attributes are assumed to be known and fixed. In this work
we study the rapid learning of attributes that were not previously labeled. Com-
pared to standard few-shot learning of semantic classes, in which novel classes
may be defined by attributes that were relevant at training time, learning new
attributes imposes a stiffer challenge. We found that supervised learning with
training attributes does not generalize well to new test attributes, whereas self-
supervised pre-training brings significant improvement. We further experimented
with random splits of the attribute space and found that predictability of test at-
tributes provides an informative estimate of a model’s generalization ability.

1 INTRODUCTION

Formation of class concepts is one of the most fundamental processes in machine perception. Al-
though class concepts are often defined based on their attribute information, e.g., birds are warm-
blooded vertebrates that lay eggs and have feathers, attributes are rarely considered in a typical
machine perception system that directly maps from input signals to output classes. Humans also
leverage similarity in the attribute space to recognize classes, which are “information-rich bundles
of attributes that form natural discontinuities” (Rosch & Mervis, 1975). The acquisition of attribute
knowledge therefore helps us build a more compact and efficient representation that is useful for the
perception of classes.

Another distinct advantage of using attribute information is that it facilitates learning new classes
with few or even zero examples, which has been leveraged in studies of zero-shot learning
(ZSL) (Palatucci et al., 2009; Lampert et al., 2014; Misra et al., 2017). Other models use attributes as
direct outputs before the classes for improved modularity and interpretability (Farhadi et al., 2009;
Koh et al., 2020). However, all of these attribute-based models rely on a pre-defined set of attributes,
that are shared among all classes. Consider a learning agent deployed in the wild. Although the agent
may learn new classes by composing some of the existing attributes, its learning capability would
be greatly improved if it can expand its attribute vocabulary.

Motivated by this learning scenario, we are interested in the problem of learning new attributes that
are previously not labeled in the dataset. This is a step towards continual learning (Van de Ven &
Tolias, 2019), where the reward function evolves and the system must adapt if the reward becomes
dependent on previously irrelevant input attributes. In particular, we focus on a few-shot learning
(FSL) setup (Lake et al., 2011; Vinyals et al., 2016), where only a few positive and negative examples
of the target attributes are available, to model the rapid adaptation task.

Considering few-shot attribute learning has an extra benefit, in that it can provide manipulable fac-
tors to study generalization. In standard few-shot learning, object semantic classes are split into
training and test; however, there is still a lack of understanding of when models transfer their knowl-
edge from training classes to test ones. Since semantic classes can often be defined with a set of
attributes, a split in the attribute space therefore provides us a finer control on the degree to which
training classes are related to test ones. By studying the transfer performance on novel attributes,
we expect our work can generate insight into the generalization performance on semantic classes in
standard few-shot learning.
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Celeb-A Zappos-50K

Positive examples

Negative examples

Attribute: Male & Smiling Attribute: Cheekbones & Earrings

Positive examples

Negative examples

Attribute: Women & Lace Up

Positive examples

Negative examples

Attribute: Slippers & Slip-On

Positive examples

Negative examples

Figure 1: Sample FSAL episodes using Celeb-A (left) and Zappos-50K (right). Positive and negative ex-
amples are sampled according to attributes.

To study this challenging task of few-shot attribute learning (FSAL), we contribute new benchmark
datasets consisting of images of faces (Celeb-A) (Liu et al., 2015), shoes (Zappos50K) (Yu & Grau-
man, 2014), and general objects (ImageNet-with-Attributes) (Deng et al., 2009). Unlike in standard
few-shot learning where supervised pre-training generally helps learning, surprisingly we found that
directly supervising the model with a set of training attributes does not generalize well on the test
attributes, whereas self-supervised pre-training brings significant improvement. We further ran ex-
periments with random splits of the attribute space and discovered that the predictability of attributes
provides an informative estimate of a model’s ability to generalize. The few-shot attribute learning
paradigm proposed in this paper will facilitate more efficient and flexible continual learning and
shed a light on the practical understanding on generalization of novel concepts.

2 FEW-SHOT ATTRIBUTE LEARNING

In this section, we define our few-shot attribute learning (FSAL) paradigm and highlight the addi-
tional challenges of FSAL compared to the standard few-shot learning of semantic classes.

Similar to standard few-shot learning, at test time, the learner is presented with an episode of data.
The support set consists of N positive and negative examples of the target attributes

S = {(xS+
1 , 1), . . . , (xS+

N , 1), (xS−
1 , 0), . . . , (xS−

N , 0)}, (1)

where the + or − superscript suffix denotes whether the input is a positive or negative example.
After rapid learning on the support set, the model is then evaluated on the binary classification
performance of the query set:

Q = {(xQ+
1 , 1), . . . , (xQ+

M , 1), (xQ−
1 , 0), . . . , (xQ−

M , 0)}. (2)

At test time, the target binary label may concern a novel attribute that was previously unlabeled in
the training set. For example, in one test episode, a smiling face with eyeglasses is positively labeled
alongside other faces with eyeglasses. The task here is to learn the attribute of “wearing eyeglasses”.
However, while the learner might have seen training images with eyeglasses, it was never a relevant
feature for the purpose of predicting the positively labeled instances.

Furthermore, suppose that in another test episode, the same smiling face is positively labeled along-
side other smiling faces. The target attribute here has now changed from “wearing eyeglasses” to
“smiling.” This highlights a critical difference between few-shot attribute learning and standard
few-shot learning of semantic classes: in standard FSL, each instance can belong to only one class
regardless of the episode. In FSAL, due to the multi-label nature of the attribute space, one instance
could have different labels depending on the context of the support set examples. Furthermore, there
may be a large amount of ambiguity when the support set is small. Figure 1 shows a few examples
of our attribute learning episodes. Note that in order to create task diversity, we allow both unary
and binary attributes, where binary attributes are conjunctions of two unary attributes.

In order to solve the FSAL task, the learner must correctly determine the context. Just like in
zero-shot learning, one natural way to solve this problem would be to learn to predict the under-
lying attributes of each image. Given the attributes, you could then estimate the context in each
episode (Lampert et al., 2014). However, methods that accurately predict attributes relevant to train-
ing episodes may not generalize well, since at test time FSAL introduces novel attributes. Instead,
we explore methods that allow more general representations to be learned.

3 METHODOLOGY

In this section, we present our proposed approach to tackle the problem of few-shot attribute learn-
ing. Two classes of approaches are frequently considered in standard few-shot learning. First,
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episodic approaches train methods directly from a set of few-shot episodes. This class of methods
can be naturally applied to our learning setting. Second, pre-training approaches train a network
to directly classify a set of training classes, and at test time, the embedding network is transferred
to solve the test task by training another classifier on top. If absolute attribute IDs are provided to
the learner, then one natural approach is to instead train an attribute classifier. After the attribute
classifier network is learned, we can then transfer the representations to recognize test attributes.

We explored both of these approaches in our experiments, but we found that they tend to learn good
representations only for the training attributes but not for test ones. To address the generalization is-
sues of these standard approaches, we propose a new algorithm that preserves more general features.

Our proposed method follows the pre-training paradigm and contains three stages. The first stage
is pre-training the representation network using an unsupervised (contrastive) learning objective.
The second stage is fine-tuning using supervision based either on attribute or episode information.
Lastly, we learn a sparse linear classifier at test-time to solve a new episode. We describe each stage
of learning below.

3.1 STAGE I: UNSUPERVISED REPRESENTATION PRE-TRAINING

Our proposed few-shot attribute learning tasks require a strongly generalizable learner. We hypothe-
sized that learning general-purpose features that capture varying aspects of objects would be helpful
to enable this desired capability. We therefore considered unsupervised representation learning, and
we hypothesize that it can learn general semantic features. We chose SimCLR (Chen et al., 2020) as
a representative from this category due to its empirical success. In general, contrastive learning ap-
proaches aim to build invariant representations between a pair of inputs {x,x′} that are produced by
applying random data augmentations (e.g. cropping) to an input image. It is likely to preserve more
general semantic features since all image attributes are useful towards identifying another random
crop of the same image.

We first obtain the embedding output h from the CNN, and then following SimCLR, we project
h to z using a multi-layered perceptron (MLP): h = CNN(x), z = MLP1(h). With a batch of
image pairs denoted by {xi}, {x′i}, we can obtain their features {zi}, {z′i}, and the contrastive loss
function is defined similar to the cross entropy function:

L1 = −
∑
i

log
exp(zi · z′i/τ)∑
j exp(zi · z′j/τ)

, (3)

where τ is an extra temperature hyperparameter.

3.2 STAGE II: REPRESENTATION FINE-TUNING

In the second stage, we aim to utilize some labels from the training set to supervise the network.
We consider using two different modes of supervision: 1) the FSAL binary episodic labels, or 2)
the underlying binary attribute IDs. To prevent overwriting the representations and making them
overly sensitive to training attributes, we add another projection MLP that learns more specific
representations for finetuning on training attributes: g = MLP2(h). The fine-tuning objectives we
consider are as follows.

• Unsupervised-then-FineTune-on-Episodes (UFTE). We adopt the Prototypical Networks (Snell
et al., 2017) formulation, where the network solves a learning episode of N positive and negative
support examples by using prototypes p: p+ = 1

N

∑
i g

+
i ;p

− = 1
N

∑
i g
−
i . With query example

gq , we can make a binary prediction:

ŷq =
exp(−d(gq,p+))

exp(−d(gq,p+)) + exp(−d(gq,p−))
, (4)

where d is some dissimilarity score, e.g. Euclidean distance or cosine dissimilarity, and the training
objective is to minimize the classification loss between the prediction ŷq and the label yq:

L2E =
∑
j

−yj log ŷqj − (1− yqj ) log(1− ŷ
q
j ), (5)

where j is the index of query examples.
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Paradigm Test time task Task specification
ZSL (Lampert et al., 2014) Novel semantic classes of existing attributes Attribute IDs
CZSL (Misra et al., 2017) Novel combinations of existing attributes & classes Attribute IDs

FSL (Lake et al., 2011) Novel semantic classes Support examples

FSAL (Ours) Novel (previously unlabeled) attributes Support examples

Table 1: Differences between zero-shot learning (ZSL), compositional ZSL (CZSL), few-shot learning
(FSL), and our newly proposed few-shot attribute learning (FSAL). Our task requires the model to gener-
alize to new attributes.

• Unsupervised-then-FineTune-on-Attributes (UFTA). With persistent attribute information, we can
train a linear classifier with sigmoid activation to directly predict the absolute attribute labels a:
â =WAg + bA, with the loss being

L2A =
∑
k

−ak log âk − (1− ak) log(1− âk), (6)

where k is the index of attributes.

3.3 STAGE III: FEW-SHOT LEARNING

Once representations are learned, it remains to be decided how to use the small support set of each
given test episode in order to make predictions for the associated query set. We consider three al-
ternative approaches. MatchingNet (Vinyals et al., 2016) uses a nearest neighbor (NN) classifier,
whereas ProtoNet (Snell et al., 2017) uses the nearest centroid (NC). Following Chen et al. (2019),
we propose to directly learn a logistic regression (LR) on top of the representation. This approach
learns a weight coefficient for each feature dimension, thus performing some level of feature selec-
tion, unlike the NC or NN variants. Still, the weights need to be properly regularized to encourage
high-fidelity selection. This is important since each episode only focuses on a new classification
criteria using a subset of features. For this, we apply an L1 regularizer on the weights to encourage
sparsity. In this way, the learning of a classifier is essentially done at the same time as the selection
of feature dimensions. The overall objective of the classifier is:

argmin
w,b

−y log(ŷ)− (1− y) log(1− ŷ) + λ‖w‖1, (7)

where ŷ = σ(w>h+ b), and h is the representation vector extracted from the CNN backbone. Note
that in this stage we discard the projection MLPs that are defined in previous stages since they are
trained towards training attributes and we found that they do not transfer well to novel attributes.

4 RELATED WORK

Few-shot learning: Few-shot learning (FSL) (Fei-Fei et al., 2006; Lake et al., 2011; Vinyals et al.,
2016) entails learning new tasks with only a few examples. With an abundance of training data, FSL
is closely related to the general meta-learning or learning to learn paradigm (Thrun, 1998), as a
few-shot learning algorithm can be developed on training tasks and run on novel tasks at test time.
In standard few-shot classification, each image only has a single unambiguous class label, whereas
in our few-shot attribute learning, the target attributes can vary depending on how the support set is
presented. We show in this paper that this is a more challenging problem as it requires the model
to be more flexible and generalizable. In early benchmarks, a set of semantic classes was randomly
split into a training and test set. We hypothesize that this often leads to a common set of attributes
that span (most of) the training and test classes, thus causing high transferability between these two
sets, which allows simple solutions based on feature re-use (Chen et al., 2019; Raghu et al., 2020)
to work well. Later benchmarks explicitly attempt to vary the separation between train and test
classes, based on varying the distances in the underlying WordNet classes (tiered-ImageNet (Ren
et al., 2018)), or in different image domains (Meta-Dataset (Triantafillou et al., 2020)). However,
we argue that reasoning about the underlying attributes directly offers a more systematic framework
to measure the relatedness and transferability between the train and test set. We expect our analysis
to open the door to such studies in the future. Few-shot attribute learning is also related to multi-
label few-shot learning (Alfassy et al., 2019; Li et al., 2021). These prior works emphasize on
the compositional aspect, whereas we propose models that address the transferability of the learned
representations. Additionally, Xiang et al. (2019) explored combining incremental few-shot learning
and attribute learning for pedestrian images.

Attribute learning: In the past, there have been a number of works that aim to predict attribute
information from raw inputs Ferrari & Zisserman (2007); Farhadi et al. (2009; 2010); Wang &
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Celeb-A Zappos-50K
Sup. 5-shot 20-shot 5-shot 20-shot

Chance - 50.00±0.00 50.00±0.00 50.00±0.00 50.00±0.00
MatchingNet E 68.30±0.76 71.73±0.52 77.26±0.60 80.47±0.49
MAML/ANIL E 71.24±0.74 73.35±0.53 77.05±0.50 81.10±0.43
TAFENet E 69.10±0.76 72.11±0.54 79.20±0.57 83.42±0.44
ProtoNet E 72.12±0.75 75.27±0.51 77.22±0.51 83.42±0.41
TADAM E 73.54±0.70 76.06±0.53 81.45±0.50 86.23±0.40
ID C 69.95±0.69 77.53±0.53 - -
U - 73.47±0.68 79.97±0.51 83.88±0.44 90.92±0.32
UFTE (Ours) E 76.69±0.69 82.83±0.48 85.50±0.42 92.20±0.28
SA A 72.91±0.74 78.86±0.48 82.17±0.48 88.24±0.37
UFTA (Ours) A 78.98±0.69 84.14±0.48 84.61±0.43 91.66±0.29

Oracles
SA* A 84.74±0.60 89.15±0.38 88.11±0.39 93.00±0.28
GT - 91.07±0.49 98.16±0.17 97.66±0.16 99.84±0.04

Table 2: 5- and 20-shot attribute learning results on Celeb-A and Zappos-50K. We compare standard FSL
methods to variants of our approach. Representation learning based on class identity or attribute labels are out-
performed by unsupervised methods that fine-tune using attribute or episode labels. Methods can be supervised
by 1) “E”=episode binary labels, 2) “A”=attributes, and 3) “C”=face identity. The best is bolded and the
second best is underlined.

Mori (2010). A related model is later proposed by Koh et al. (2020) to achieve better causal inter-
pretability. There have also been a number of datasets that have been collected with visual attributes
annotated (Liu et al., 2015; Yu & Grauman, 2014; Welinder et al., 2010; Patterson & Hays, 2016;
Pham et al., 2021). One key difference between our work and these attribute learning approaches
is that at test time we aim to learn a classifier on novel attributes that are previously not labeled in
the training set, and this brings additional challenges of transfer learning and learning with limited
labeled data.

Zero-shot learning: In zero-shot learning (ZSL) (Farhadi et al., 2009; Akata et al., 2013; Xian
et al., 2019; Lampert et al., 2014; Romera-Paredes & Torr, 2015; Akata et al., 2015), a model is
asked to recognize classes not present in the training set, supervised only by some auxiliary descrip-
tion (Ba et al., 2015) or attribute values (Farhadi et al., 2009) (see Wang et al. (2019a) for a survey).
Lampert et al. (2014) studied the direct attribute prediction method, similar to the Supervised At-
tribute baseline described in Section 5.2. Compositional ZSL aims at learning classes (Misra et al.,
2017; Purushwalkam et al., 2019; Wang et al., 2019b; Yang et al., 2020) defined by a novel composi-
tion of labeled attributes and object classes. An important distinction between ZSL and our few-shot
attribute learning task is that ZSL uses the same set of attributes for both training and testing; by
contrast, our task asks the model to learn attributes for which there are no labels during training, and
they may not be relevant to any of the training attributes or episodes. We summarize the relationships
between ZSL, FSL and our task in Table 1.

Generalization to novel tasks: One key component of our work is an attempt to understand the
generalization behavior of learning novel concepts at test time. Relevant theoretical studies consider
novel task generalization, casting it in a transfer learning and learning to learn framework (Baxter,
2000; Ben-David & Borbely, 2008; Ben-David et al., 2010; Pentina & Lampert, 2014; Amit & Meir,
2018; Lucas et al., 2021). A common theme in these studies is in characterizing task relatedness,
and the role that it plays in generalization to novel tasks. Arnold & Sha (2021) studied task
clustering for few-shot learning in the embedding space and found class splits that are of different
difficulty levels. Sariyildiz et al. (2021) use the WordNet hierarchy to compute semantic distances.
In our paper, we instead split the data in the attribute space, and if we assume that semantic classes
are combinations of attributes, then a disjoint attribute split will imply further semantic distances.
In our work, we investigate the role of task relatedness empirically by investigating generalization
performance under different splits of the attribute space.

5 EXPERIMENTS

In this section, we evaluate our proposed UFTE and UFTA approaches on several FSAL tasks.

5.1 DATASETS

We consider the following three datasets:
• Celeb-A (Liu et al., 2015) contains over 200K images of celebrities’ faces. Each image is anno-

tated with binary attributes, detailing hair color, facial expressions, and other descriptors. We split
14 attributes for training and 13 for test.
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Celeb-A Zappos-50K
NN NC LR NN NC LR

Meta 71.73±0.52 75.27±0.51 73.38±0.53 80.47±0.49 83.42±0.41 81.10±0.43
U 75.72±0.48 77.78±0.52 79.97±0.51 85.17±0.40 88.63±0.37 90.92±0.32
UFTE 79.03±0.47 81.04±0.47 82.83±0.48 86.23±0.34 90.61±0.31 92.20±0.28
SA 75.33±0.47 77.24±0.51 78.86±0.48 81.17±0.44 85.48±0.41 88.24±0.37
UFTA 77.30±0.52 82.16±0.46 84.14±0.48 86.40 ±0.36 90.25±0.33 91.66±0.29
SA* 78.84±0.41 84.61±0.42 89.15±0.38 87.54±0.33 90.97±0.31 93.00±0.28

Table 3: Combination of different representation & few-shot learners on 20-shot attribute learning. Our
proposed representation learning plus a simple logistic regression (LR) is consistently the best. Note: Meta-NN
= MatchingNet, Meta-NC = ProtoNet, Meta-LR = MAML/ANIL.

Celeb-A Zappos-50K
Train attr Test attr Gap Train attr Test attr Gap

ProtoNet 87.12±0.40 75.09±0.52 –12.03 92.88±0.24 83.42±0.41 –9.46
U 79.48±0.54 79.97±0.51 –0.49 94.03±0.23 90.92±0.32 –3.11
UFTE 87.25±0.40 82.83±0.48 –4.42 95.91±0.18 92.20±0.28 –3.71
SA 88.25±0.38 78.86±0.48 –9.39 95.11±0.19 88.24±0.37 –6.87
UFTA 85.53±0.43 84.14±0.48 –1.39 94.61±0.21 91.66±0.29 –2.95
SA* 87.88±0.39 89.15±0.38 +1.27 95.59±0.18 93.00±0.28 –2.58

Table 4: Comparison of representation learning methods
with respect to their ability to predict training and test-
ing attributes. Standard methods such as ProtoNet and SA
perform well on training attributes but do not transfer well to
novel ones (large training vs. test gaps in red).

L D? UFTE UFTA
Val Acc. (∆) Gap Val Acc. (∆) Gap

0 78.02 (–2.19) –9.72 82.81 (+2.60) –4.80
1 76.86 (–3.35) –11.14 79.56 (–0.65) –7.43
1 X 82.01 (+1.80) –5.63 83.39 (+3.18) –2.05
2 76.32 (–3.89) –11.58 79.71 (–0.50) –7.23
2 X 82.43 (+2.22) –4.83 83.86 (+3.65) –1.90

Table 5: Number of projection layers (L)
during finetuning, and whether they are dis-
carded (D) during testing. Numbers are from
Celeb-A 20-shot. ∆ denotes changes compared
to no finetuning.

• Zappos-50K (Yu & Grauman, 2014) contains just under 50K images of shoes annotated with
attribute values. We split these into 40 attribute values for training, and 39 for testing.

• ImageNet-with-Attributes is a small subset of the ImageNet dataset (Deng et al., 2009) with
attribute annotations. It has 9.6K images. We used 11 attributes for training and 10 for testing.

In all of the datasets above, there is no overlap between training and test attributes. Additional split
details can be found in the supplementary materials.

Episode construction: For each episode, we randomly select one or two attributes and look for
positive examples belonging to these attributes simultaneously. We also sample an equal number
of negative examples that don’t match the selected attributes. This will construct a support set of
positive and negative samples, and then we repeat the same process for the corresponding query set
as well. Sample episodes are shown in Figure 1.

5.2 METHODS FOR COMPARISON

We first consider a set of classic few-shot learning methods for comparison. These methods are
directly trained on FSAL episodes of training attributes.

• MatchingNet (Vinyals et al., 2016) is a soft version of 1-nearest-neighbor. At test time, it will
retrieve the label of the support example that is the closest in the feature space.

• MAML (Finn et al., 2017) performs several gradient descent steps in an episode and learns the
parameter initialization. For simplicity, we used the ANIL variant (Raghu et al., 2020) that only
learns the last layer in the inner loop.

• ProtoNet (Snell et al., 2017) computes an average “prototype” for each class and retrieves the
closest one.

• TAFENet (Wang et al., 2019c) learns a meta-network that can output task-conditioned classifier
parameters.

• TADAM (Oreshkin et al., 2018) predicts the batch normalization parameters by using the average
features of the episode. For our task we found that conditioning on the positive examples only
works the best.

In addition to the approaches above, we consider the following representation learning baselines for
comparison.

• ID trains a network to perform the auxiliary task of face identity classification (Celeb-A only).
• SA, or supervised attribute, resembles the “Baseline” approach in the FSL literature (Chen et al.,

2019). The network learns representations by predicting the training attributes associated with
each image.

• U denotes unsupervised representation learning (SimCLR). We train separate models on the
Celeb-A and Zappos datasets. For ImageNet, we utilize the off-the-shelf model checkpoint
trained on the full ImageNet-1K. Compared to our approach, this baseline skips the finetuning
stage (Stage II).
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ImageNet-with-Attributes
X A 5-shot 20-shot

Chance 50.00 ± 0.00 50.00 ± 0.00

MAML 57.90 ± 0.75 57.46 ± 0.70

U X 69.05 ± 0.65 71.25 ± 0.62

UFTE (Ours) X 70.92 ± 0.69 72.12 ± 0.63

SA X 64.36 ± 0.68 64.16 ± 0.65

UFTA (Ours) X X 71.12 ± 0.65 72.91± 0.63

Table 6: 5- and 20-shot attribute learning re-
sults on ImageNet. Learners uses logistic re-
gression (LR) at test time.

NN NC LR
Meta 61.28 ± 0.62 61.50 ± 0.70 57.46 ± 0.70

U 69.63 ± 0.59 71.12 ± 0.66 71.25 ± 0.62

UFTE 69.77 ± 0.57 72.94 ± 0.61 72.12 ± 0.63

SA 62.42 ± 0.62 62.84 ± 0.68 64.16 ± 0.65

UFTA 71.55 ± 0.61 72.42 ± 0.63 72.91 ± 0.63

SA* 68.36 ± 0.60 70.48 ± 0.66 70.92 ± 0.64

Table 7: 20-shot FSAL on Im-
ageNet with different few-shot
learners.

Train Test Gap
attr attr

MAML 68.16 ± 0.59 57.46 ± 0.70 -10.70
U 76.36 ± 0.60 71.25 ± 0.62 -5.11
UFTE 78.31 ± 0.56 72.12 ± 0.63 -6.19
SA 69.03 ± 0.66 64.16 ± 0.65 -4.87
UFTA 77.08 ± 0.62 72.91 ± 0.63 -4.17
SA* 68.72 ± 0.64 70.92 ± 0.64 2.20

Table 8: Training vs. test at-
tributes of 20-shot FSAL on
ImageNet.

1) Mustache

UFTA

SA

2) Brown Hair & 
High Cheekbone

3) Peep Toe & 
Slip On

4) Women & 
Heels

SA*

Figure 2: Visualization of few-shot classifiers using CAM (Zhou et al., 2016), on top of different repre-
sentations. Left: Celeb-A; Right: Zappos-50K. Target attributes that define the episode are shown above and
images are from the query set of the positive class at test time.

We also provide two oracle approaches to study the upper bound to generalization to novel attributes.

• Oracle SA* learns its representations by predicting all binary attributes including both training
and test ones.

• Oracle GT directly uses the ground-truth binary attribute values as input features, and the readout
is performed by training a logistic regression. It still needs to select the active attributes that are
used in each episode.

For representation learning baselines, we mainly use logistic regression (LR) in few-shot episodes,
but we also report results using the nearest neighbor (NN) and nearest centroid (NC) classifiers.

Implementation details: For Celeb-A and Zappos, images were cropped and resized to 84×84.
We used ResNet-12 (He et al., 2016; Oreshkin et al., 2018) as the CNN backbone. The projection
MLPs have 512-512-128 units. We train SimCLR entirely on Celeb-A/Zappos images, i.e. not using
pre-trained ImageNet checkpoints for fair comparison. For ImageNet-with-Attributes, we utilize the
off-the-self SimCLR model from ImageNet-1k, which has access to more unlabeled images. The
image dimensions are 224×224. We include additional experimental details in the Appendix.

5.3 MAIN RESULTS

Table 2 shows our main results on Celeb-A and Zappos-50K with 5- and 20-shot episodes. Ta-
ble 3 explores different combinations of representations and few-shot learners. Overall, the standard
episodic meta-learners performed relatively poorly. Also, supervised attribute (SA) learning and
learning via the auxiliary task of class facial identification (ID) were not helpful for representation
learning either. Interestingly, U attained relatively better test performance, suggesting that the train-
ing objective in contrastive learning indeed preserves more general features—not just for semantic
classification tasks as shown in prior work, but also for the flexibly-defined attribute classes in our
FSAL paradigm.

Our proposed UFTA and UFTE approaches obtained significant gains in performance, suggesting
that a combination of unsupervised features with some supervised information is indeed beneficial
for this task. Lastly, our methods are able to reduce the generalization gap between SA and the
oracle SA*, in fact almost closing it entirely on Zappos-50K.

Results on ImageNet-with-Attributes are reported separately for clarity, because U, UFTE, and
UFTA had access to additional unlabeled examples. As shown in Table 6, both UFTE and UFTA
outperformed other methods substantially. Because of the additional unlabeled data available in this
setting, even U achieved a substantially better accuracy than SA and MAML. Results in Table 7
show that UFTE and UFTA work well when combined with different few-shot learners.
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Figure 3: Task ambiguity and the effect of number of shots in FSAL

Visualizing few-shot classifiers: To understand and interpret the decision made by few-shot lin-
ear classifiers, we visualize the classifier weights by using CAM (Zhou et al., 2016), and plot the
heatmap over the 11×11 spatial feature map in Figure 2. SA sometimes shows incorrect localization
as it is not trained to classify those novel test attributes. SA* shows bigger but less precise heatmaps
since the training objective encourages the propagation of attribute information spatially. In con-
trast, our proposed method produces surprisingly accurate and localized heatmaps that pinpoint the
location of the attributes (e.g. mustache or cheekbone); this is impressive since no labeled informa-
tion concerning these attributes was available during representation learning. This result supports
the hypothesis that local features can be good descriptors that match different views of the same
instance during contrastive learning, and finetuning further establishes a positive transfer between
training and test attributes.

Number of shots and task ambiguity: Since we have a flexible target attribute class in each
episode, it could be the case that the support examples are ambiguous. For example, by presenting
only a smiling face with eyeglasses in the support set, it is unclear whether the positive set is deter-
mined by “smiling” or “wearing eyeglasses”. Figure 3a show several approaches evaluated using LR
with varying numbers of support examples per class in Celeb-A and Zappos-50K episodes, respec-
tively. The oracle GT gradually approached 100% accuracy as the number of shots approached 20.
This demonstrates that FSAL tasks potentially require more support examples than standard FSL to
resolve ambiguity. Again here, UFTA and UFTE consistently outperformed U, SA, and ID baselines
across different number of shots. Figure 3b shows the correlation between readout performance of
attributes and few-shot learning accuracy, using UFTA. With a larger number of shots, there is a
higher correlation between the two, but there is still a large amount of variance that is due to the
ambiguity of the task itself. More details are included in the Appendix.

Ablation studies: Table 5 studies the effect of the projection MLP for attribute classification fine-
tuning. Adding MLP projection layers was found to be beneficial for unsupervised learning in prior
work (Chen et al., 2020). Here we found that adding MLP layers is also critical in our representation
finetuning stage as well. Finetuning directly on the backbone (depth=0), and keeping the MLP dur-
ing test (Discard=no) both led to significant drop in performance. In the Appendix, we also report
on studies of the effect of adding the L1 regularizer on LR.

5.4 ANALYSIS ON FEW-SHOT GENERALIZATION

In Tables 4 and 8, we study the performance gap between training attributes and test attributes.
Notably, SA performs very well on test episodes defined using training attributes, but there is a large
generalization gap between training and test attributes. Our methods show significant improvements
in terms of reducing the generalization gap between training and test attributes. Moreover, we find
that self-supervised pre-training generally preserves informative features and is more general than
supervised pre-training.

Investigating the cause of generalization issues: We hypothesize that the weak performance
of episodic learners and SA on our benchmarks is because their training objectives essentially
encourage ignoring attributes that are not useful at training time, but may still be useful at test
time. In Appendix G, we study a synthetic problem to further analyze these generalization issues.
We explore training a ProtoNet model on data from a linear generative model, where each FSAL
episode presents ambiguity in identifying the relevant attributes. In this setting, the network
is forced to discard information that is useful for test tasks in order to solve the training tasks
effectively, and thus fails to generalize.

Transferability score: Up to this point, we have only studied one particular split of training/test
attributes. We would like to examine whether our conclusions generalize over different splits. More
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Figure 4: Few-shot performance vs. transferability across training and test attributes. A: Transferability
score (T-score) is computed based on the AUC of a test attribute predicted by a logistic regression model on a set
of training attributes. 100 different random splits across train/test attributes per split are used. B: Both episodic
accuracy and T-scores are recorded on 60,000 episodes (600 episodes per split). Episodes are grouped into
three bins in terms of their T-scores. C: Performance of training or finetuning on training attributes correlates
with T-score. Error bars are standard errors in each bin.

importantly, we aim to predict the transferability between training and test splits by analyzing the
training vs. test attributes. Each image has a complete attribute vector, describing the values of each
attribute in the image. Some of these attributes are in the training set, and others in the test set. To
quantify the transferability, we leverage the idea of mutual information. More concretely, we learn
a logistic regression model that takes the training attribute vector in a particular image as input and
predicts the value of one of the test attributes in that image. Each logistic regression model will
generate an AUC score on held-out images, and we average them across the relevant test attributes
in each episode, and we define this AUC score as the “transferability score.” Our hypothesis is that
more mutual information between the attribute label distributions will translate to higher transfer
performance when the model is supervised on the training attributes and tested on the test attributes.

In Figure 4, we ran experiments using 100 random splits of training and test attributes. The results
verify our hypothesis. We see positive correlation between the transfer performance and our trans-
ferability score: When subtracting U as a baseline, both UFTA and UFTE models get better when
there is higher transferability (subtraction reduces the effect of per-episode variability). The same
conclusion can be drawn when we subtract SA* from SA. By plotting the relation between U and
SA, we show that supervised learning is more helpful when there is higher transferability in the label
space whereas self-supervised learning is more flexible at adapting to novel target tasks.

6 CONCLUSION
Acquiring knowledge of new attributes is one of the most basic learning skills of an intelligent
agent. In this paper, we propose few-shot attribute learning to enable this core functionality. We
developed benchmarks using the Celeb-A, Zappos-50K, and ImageNet datasets to create learning
episodes using existing attribute labels. This setting presents a strong generalization challenge,
since the split in attribute space can make the training and test tasks less similar. Consequently
standard supervised representation learning performs poorly on the test set, unlike recent benchmark
results in few-shot learning of semantic classes. We found that unsupervised contrastive learning
preserved more general features, and further finetuning yielded strong performance. We also
discovered that the similarity in the attribute label space can roughly predict the gain obtained
by supervised training and finetuning, which could provide some insight into the generalization
behavior of representation learning algorithms when dealing with novel tasks at test time.
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Mean AUC RND PN ID SA U UFTE UFTA SA*
All (40) 79.18 88.80 91.29 90.27 92.80 93.34 93.33 94.46
Train+Test (27) 82.27 93.38 94.31 94.23 95.78 96.53 96.52 97.18
Train (14) 84.40 96.04 95.34 96.04 96.43 97.23 97.23 97.50
Test (13) 79.96 90.52 93.19 92.63 95.08 95.78 95.76 96.84

Table 9: Celeb-A attribute readout performance of different representations, measured in mean AUC. RND
denotes using a randomly initialized CNN; PN denotes ProtoNet.

SA U UFTE UFTA SA* GT
LR 77.4 79.2 82.2 83.1 87.1 95.8

+L1 (1e-4) 77.6 (+0.2) 79.4 (+1.2) 82.3 (+0.1) 83.2 (+0.1) 87.4 (+0.3) 96.1 (+0.3)
+L1 (1e-3) 78.2 (+0.8) 80.2 (+1.0) 82.4 (+0.2) 83.8 (+0.7) 88.4 (+1.3) 97.1 (+1.3)
+L1 (1e-2) 75.7 (–1.7) 78.3 (–0.9) 78.8 (–3.5) 79.5 (–3.6) 87.6 (+0.5) 98.2 (+2.4)

Table 10: Effect of the L1 regularizer on different representations for the validation set of Celeb-A 20-shot.

A ATTRIBUTE READOUT

In Tab. 9 and 11, we provide attribute readout performance with different learned representations.
This is a similar task that measures the generalizability, but it does not evaluate the rapid learning
aspect brought by few-shot learning.

B ABLATION STUDIES

Table 10 studies the effect of the L1 regularization. The benefit is especially noticeable on SA* and
GT, since it allows the few-shot learner to have a sparse selection of disentangled feature dimensions.

C ADDITIONAL HEATMAP VISUALIZATION

We provide additional visualization results in Figure 5, 6, and 7, and we plot the heat map to visualize
the LR classifier weights. Figure 5 includes SA*, U, and UFTE which are omitted in the main paper
due to space limitations. Figure 6 and 7 visualize more information including both support and
query examples in the episode, and some of the episodes are challenging to solve given just a few
examples.

D ATTRIBUTE SPLITS OF CELEB-A

We include the attribute split for Celeb-A in Table 12. There are 14 attributes in training and 13
attributes in val/test. We discarded the rest of the 13 attributes in the original datasets since they are
either hard to classify with the oracle classifier (e.g. big lips, oval face) or simply ambiguous (e.g.
young, attractive).

E ATTRIBUTE SPLITS OF ZAPPOS-50K

The Zappos-50K dataset annotates images with different values relating to the following aspects
of shoes: ‘Category’, ‘Subcategory’, ‘HeelHeight’, ‘Insole’, ‘Closure’, ‘Gender’, ‘Material’ and
‘Toestyle’.

Mean AUC SA SA* U UFTA
All (25 attributes) 72.01 73.02 81.08 82.49
Train+Test (21 attributes) 73.43 78.98 80.14 82.37
Train (11 attributes) 72.69 75.86 80.63 82.43
Test (10 attributes) 72.01 74.98 81.08 83.30

Table 11: ImageNet-with-Attributes attribute readout binary prediction performance of different representa-
tions, measured in mean AUC.
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Figure 5: Additional visualization results, on 20-shot episodes, including more methods for comparison.

Context: Bangs

Positive support Negative support

Positive query

77.9% 79.2% 79.8% 78.6% 80.9% 7.3% 41.2% 16.0% 27.2% 51.7%

Negative query

Context: Brown Hair & Mouth Slightly Open

Positive support Negative support

Positive query

75.8% 52.4% 86.4% 89.5% 81.1% 21.1% 63.5% 32.1% 9.7% 78.6%

Negative query

Figure 6: Visualization of Celeb-A 20-shot LR classifiers using CAM on top of UFTA representations.
Context attributes that define the episode are shown above. Classifier sigmoid confidence scores are shown at
the bottom. Red numbers denote wrong classification and green denote correct.

We discarded the ‘Insole’ values, since those refer to the inside part of the shoe which isn’t visible in
the images. We also discarded some ‘Material’ values that we deemed hard to recognize visually. We
also modified the values of ‘HeelHeight’ which originally was different ranges of cm of the height
of the heel of each shoe. Instead, we divided those values into only two groups: ‘short heel’ and
‘high heel’, to avoid having to perform very fine-grained heel height recognition which we deemed
was too difficult.
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Context: Slip-On & Heels

Positive support Negative support

Positive query

93.8% 95.7% 67.9% 96.0% 52.5% 34.5% 7.7% 18.1% 22.4% 6.4%

Negative query

Context: Boots & Ankle

Positive support Negative support

Positive query

79.8% 86.5% 88.4% 98.0% 88.2% 30.6% 45.5% 64.6% 2.4% 20.1%

Negative query

Figure 7: Visualization of Zappos-50K 20-shot LR classifiers using CAM on top of UFTA representations.
Context attributes that define the episode are shown above. Classifier sigmoid confidence scores are shown at
the bottom. Red numbers denote wrong classification and green denote correct.

Train

5 o Clock Shadow Black Hair Blond Hair Chubby
Double Chin Eyeglasses Goatee Gray Hair

Male No Beard Pale Skin Receding Hairline
Rosy Cheeks Smiling

Val/Test

Bald Bangs Brown Hair Heavy Makeup
High Cheekbones Mouth Slightly Open Mustache Narrow Eyes

Sideburns Wearing Earrings Wearing Hat Wearing Lipstick
Wearing Necktie

Table 12: Attribute Splits for Celeb-A

These modifications leave us with a total of 79 values (across all higher-level categories). Not all
images are tagged with a value from each category, while some are even tagged with more than one
value from the same category (e.g. two different materials used in different parts of the shoe). We
split these values into 40 ‘training attributes’ and 39 ‘val/test attributes’.

We include the complete list of attributes in Table 13. The format we use is ‘X-Y’ where X stands
for the category (e.g. ‘Material’) and Y stands for the value of that category (e.g. ‘Wool’). We
do this to avoid ambiguity, since it may happen that different categories have some value names in
common, e.g. ‘Short Heel’ is a value of both ‘SubCategory’ and ‘HeelHeight’.

F ATTRIBUTE SPLITS OF IMAGENET-WITH-ATTRIBUTES

We include the attribute split for ImageNet-with-Attributes in Table 14. There are 11 attributes in
training and 10 attributes in val/test. We discarded the rest of the 4 attributes in the “shape” category
(long, round, rectangular and square), since they are difficult to predict from the images.
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Train

Category-Shoes Category-Sandals SubCategory-Oxfords SubCategory-Heel
SubCategory-Boot SubCategory-Slipper Flats SubCategory-Short heel SubCategory-Flats

SubCategory-Slipper Heels SubCategory-Athletic SubCategory-Knee High SubCategory-Crib Shoes
SubCategory-Over the Knee HeelHeight-High heel Closure-Pull-on Closure-Ankle Strap

Closure-Zipper Closure-Elastic Gore Closure-Sling Back Closure-Toggle
Closure-Snap Closure-T-Strap Closure-Spat Strap Gender-Men
Gender-Boys Material-Rubber Material-Wool Material-Silk

Material-Aluminum Material-Plastic Toestyle-Capped Toe Toestyle-Square Toe
Toestyle-Snub Toe Toestyle-Bicycle Toe Toestyle-Open Toe Toestyle-Pointed Toe
Toestyle-Almond Toestyle-Apron Toe Toestyle-Snip Toe Toestyle-Medallion

Val/Test

Category-Boots Category-Slippers SubCategory-Mid-Calf SubCategory-Ankle
SubCategory-Loafers SubCategory-Boat Shoes SubCategory-Clogs and Mules SubCategory-Sneakers and Athletic Shoes
SubCategory-Heels SubCategory-Prewalker SubCategory-Prewalker Boots SubCategory-Firstwalker

HeelHeight-Short heel Closure-Lace up Closure-Buckle Closure-Hook and Loop
Closure-Slip-On Closure-Ankle Wrap Closure-Bungee Closure-Adjustable

Closure-Button Loop Closure-Monk Strap Closure-Belt Gender-Women
Gender-Girls Material-Suede Material-Snakeskin Material-Corduroy

Material-Horse Hair Material-Stingray Toestyle-Round Toe Toestyle-Closed Toe
Toestyle-Moc Toe Toestyle-Wingtip Toestyle-Center Seam Toestyle-Algonquin

Toestyle-Bump Toe Toestyle-Wide Toe Box Toestyle-Peep Toe

Table 13: Attribute splits for Zappos-50K

Train

pink spotted wet blue
shiny rough striped white

metallic wooden gray

Val/Test

brown green violet red
orange yellow furry black

vegetation smooth

Table 14: Attribute Splits for ImageNet-with-Attributes

G FEW-SHOT ATTRIBUTE LEARNING TOY PROBLEM

In this section, we present a toy problem that illustrates the challenges introduced by the FSAL
setting and the failures of existing approaches on this task. This simple problem captures the core
elements of our FSAL tasks, including ambiguity, introducing novel attributes at test time, and the
role of learning good representations. The primary limitation of this model is the fact that it is fully
linear and the attribute values are independent—in a more realistic FSAL task recovering a good
representation from the data is significantly more challenging, and the data points will have a more
complex relationship with the attributes as in our benchmark datasets.

Problem setup We define a FSAL problem where the data points x ∈ Rm are generated from
binary attribute strings, z ∈ {0, 1}d, with x = Az+ ζ for some matrix A ∈ Rm×d with full column
rank and noise source ζ. Thus, each data point x is a sum of columns ofA with some additive noise.

In each episode, examples are labelled as positive when two designated entries of the attribute strings
are both 1-valued, and negative otherwise. For the training episodes, the labels depend only on the
first d1 < d entries of z. At test time, the labels depend on the remaining d − d1 attributes. The
training and test episodes are generated by choosing two of the attributes in the respective sets. Then
k data points are sampled with positive labels (the two attributes are 1-valued) and k with negative
labels (at least one of the attributes is 0-valued).

Linear prototypical network Now, consider training a prototypical network on this data with a
linear embedding network, g(x) = Wx. Within each episode, the prototypical network computes
the prototypes for the positive and negative examples,

cj =
1

k

∑
xi∈Sj

g(xi) =
1

k

∑
xi∈Sj

d∑
l=1

zilWal, for j ∈ {0, 1},

where Sj is the set of data points in the episode with label j, and al is the lth column of the matrix
A. Further, the prototypical network likelihood is given by,

p(y = 0|x) =
exp

{
−‖Wx− c0‖22

}
exp {−‖Wx− c0‖22}+ exp {−‖Wx− c1‖22}

.

The goal of the prototypical network is thus to learn weights W that lead to small distances between
data points in the same class and large distances otherwise. In the FSAL tasks, there is an addi-
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(A) FSAL features (B) FSL task learned features

Figure 8: Projecting data features into prototypical network embedding space (WA) for the linear toy problem.
Values closer to zero are darker in colour. On the FSAL task, the model destroys information from the test
attributes to remove ambiguity at training time.

tional challenge in that class boundaries shift between episodes. The context (the choice of attribute
entries) defining the boundary is unknown and must be inferred from the episode. However, with
few shots (small k) there is ambiguity in the correct context — with a high probability that several
possible contexts provide valid explanations for the observed data.

Fitting the prototypical network Notice that under our generative model, with x =Wz+ ζ and
for j ∈ {0, 1} we have,

Wx− cj =WA(z− 1

k

∑
zi∈Sj

zi) +
1

k

∑
i

Wζi +Wζ.

Notice that if vj(z) = A(z− 1
k

∑
zi∈Sj

zi) ∈ Ker(W ), the kernel of W , then the entire first term
is zero. Further, if z ∈ Sj (the same class as the prototype) then there is no contribution from the
positive attribute features in this term. Otherwise, this term is guaranteed to have some contribution
from the positive attribute features.

Therefore, if W projects to the linear space spanned by the positive attribute features then Wvj(z)
is zero when z ∈ Sj and non-zero otherwise. This means that the model will be able to solve the
episode without contextual ambiguity. Then the optimal weights are those that project to the set of
features used in the training set—destroying all information about the test attributes which would
otherwise introduce ambiguity.

We observed this effect empirically in Figure 8, where we have plotted the matrix abs(WA). Each
column of these plots represents a column of A mapped to the prototypical network’s embedding
space. The first 5 columns correspond to attributes used at training time, and the remaining 5 to
those used at test time.

In the FSAL task described above, as our analysis suggests, the learned prototypical feature weights
project out the features used at test time (the last 5 columns). As a result, the model achieved 100%
training accuracy but only 51% test accuracy (chance is 50%).

We also compared against an equivalent problem set up that resembles the standard few-shot learning
setting. In the FSL problem, the binary attribute strings may have only a single non-zero entry and
each episode is a binary classification problem where the learner must distinguish between two
classes. Now the vector z is a one-hot encoding and the comparison to the prototypes occurs only
over a single feature column of A, thus there is no benefit to projecting out the test features. As
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expected, the model we learned (Figure 8 B) is not forced to throw away test-time information and
achieves 100% training accuracy and 99% test accuracy.

Settings for Figure 8 We use 10 attributes, 5 of which are used for training and 5 for testing. We
use a uniformly random sampled A ∈ R30×10 and the prototypical network learns W ∈ R10×30.
We use additive Gaussian noise when sampling data points with a standard deviation of 0.1. The
models are trained with the Adam optimizer using default settings over a total of 30000 random
episodes, and evaluated on an additional 1000 test episodes. We used k = 20 to produce these plots,
but found that the result was consistent over different shot counts.
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