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ABSTRACT

Federated Learning (FL) is a unique approach that typically leverages client-side
computing resources and data on edge devices. Data heterogeneity is a primary
challenge that makes federated learning complex, and many studies have been
conducted to address this issue. In previous studies, solutions were primarily fo-
cused on the client side, such as adjusting the weights of the local model or using
proxy data from the aggregation server. However, we identified a problem where
the global model becomes biased due to averaging the client’s model, depending
on the amount of the client’s data or the extent of data sharing. Therefore, we
introduce local and aggregation balancers for federated learning (FedBal), which
respectively mediate the local training by class distribution and the weight ag-
gregation by specific clients. We employ a local balancer to mitigate biases in
favor of specific classes and an aggregation balancer to regulate biases toward cer-
tain clients. Remarkably, through experiments applying various existing methods
with an aggregation balancer, we found that reflecting the models of marginal-
ized clients more than those of clients with abundant data and classes can improve
the accuracy of the global model by 2%–7%. FedBal, which combines two Bal-
ancers, exhibited an average accuracy improvement of 3%–4% compared to all
other methods. This study raises several questions for further work to deepen our
understanding of the role of the aggregation framework in FL.

1 INTRODUCTION

In the conventional deep neural network training paradigm, centralized algorithms are primarily
used, and both computational resources and training datasets are integrated into a single server.
However, with the advent of large-scale models and geographically distributed data, Federated
Learning (FL), which utilizes multiple remote computing nodes, is gaining attention. The FedAvg
algorithm (McMahan et al., 2017), which serves as the canonical optimization technique in FL, oper-
ates by maintaining a global model on the central server, synthesized by aggregating independently
trained local models from multiple client nodes. While FedAvg demonstrates efficacy under condi-
tions where client datasets are independently and identically distributed (IID) and client participation
rates are elevated, it encounters challenges related to sluggish convergence rates under alternative
conditions (Luo et al., 2021; Chen et al., 2023; Vahidian et al., 2023). Specifically, as the num-
ber of local iterations increases for training efficiency and reduces network capacity, each client’s
model becomes increasingly biased towards its own data, which is the so-called “client drift”(Zhao
et al., 2018). Furthermore, FL systems are susceptible to “canceling out” effects in classifiers due to
variations in label distribution (label skewness) and data quantity among clients(Liao et al., 2023).

Several studies primarily focused on enhancing local learning algorithms through well-designed
regularization and aggregation via FedAvg (or uniform averaging) to mitigate data heterogeneity (Li
et al., 2020; Karimireddy et al., 2020; Wang et al., 2020b). However, we identified a problem where
the global model becomes biased due to averaging the client’s model, depending on the amount of
the client’s data or the extent of data sharing (see Figure 1a). This issue requires adjustments not
only in local regularization but also at the aggregation, where the states of each client can be com-
pared. From the perspective of model aggregation, various methods have been proposed to expedite
convergence or to address non-iid issues. This issue requires adjustments not only in local regular-
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ization but also at the aggregation level, where the states of each client can be compared. From the
perspective of model aggregation, various methods have been proposed to expedite convergence or
address non-IID issues. Still, these methods (Zhao et al., 2018; Yoon et al., 2021) either pose data
exposure risks when utilizing proxy or augmented data or entail complex structures as they adopt
training paradigms (Wang et al., 2020a; Tang et al., 2021; Wu & Wang, 2022; Fraboni et al., 2021).

(a) Example of data distribution in the CIFAR-10
dataset on random distribution (details on Appendix
A.1). The X- and Y-axes represent the data label and
client ID, respectively. The darker the color, the more
data is available to the client. On the right side of the
figure, ‘Total’ refers to the total data of each client.
The red solid box represents the labels that ‘client 0’
holds, and the blue dashed box represents inaccurate
labels in aggregate with equal division.

(b) Class-wise accuracy when performing FL through
FedAvg and uniform division, based on the data dis-
tribution in 1a. Darker color means the more accu-
rate class. The horizontal axis represents the classes
of data.

Figure 1: When employing FedAvg, the global model exhibits bias towards the labels (1, 6, 7,
etc.) held by a specific client. Conversely, with uniform division, labels (0, 1, 6, 7, etc.) that are
more widely shared among clients yield higher accuracy. Label 5 is marginalized in both scenarios,
leading to reduced accuracy in each case.

In this work, we propose a local and aggregation balancer (FedBal). Client drift negatively affects
the global model’s accuracy as each client relies on its own data for training. To mitigate “client
drift,” we implement a local balancer that adjusts the loss of classes each client has, ensuring the
learning is not biased towards specific classes. Additionally, we devise an aggregation balancer
at the global aggregation stage—the only point where the weight distribution of all clients can be
observed—to resolve the “canceling out” effect by automatically determining the aggregation ratio
through similarity calculations with the global model. While adapting the aggregation balancer, we
were confronted with a naive philosophical question: Is a client with extensive knowledge always
wise? Surprisingly, we found that enhancing the overall model’s performance is not achieved by re-
flecting more weight from clients that have undergone extensive learning and thus differ significantly
from the global model. Instead, reflecting more weight on clients with less variation reduces over-
fitting in the global model. Finally, the aggregation balancer has been proven to be easily applicable
and mostly effective with existing methods.

Our Contribution. The proposed framework is subjected to empirical evaluation using bench-
mark datasets that exhibit varying degrees of data heterogeneity. This assessment substantiates the
framework’s efficacy in achieving superior model performance. When the aggregation balancer was
applied to existing models, there was an average performance improvement of 2%–7% depending
on the level of non-IIDness. FedBal, which combines two Balancers, exhibited an average accuracy
improvement of 3%–4% compared to all other methods. Our main contributions are summarized as
follows:

• Introduce a balancing mechanism to prevent a biased global model towards a client or class.
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• We empirically demonstrate that giving more attention to overlooked clients, instead of
those with lots of varied data, at the aggregation stage helps prevent overfitting.

• In the context of FL, we have found that it is more appropriate to determine the aggregation
ratio concerning the classifier than the feature extraction layer.

2 PROBLEM SETTING AND NOTATIONS

Given M clients, the objective of FL is to ascertain a global model θ that alleviates the average
losses across all clients, as illustrated below:

argmin
θ∈Rd

L(θ) :=

M∑
i=1

piLi(θ) and Li(θ) = E(x,y)∼Di
[Li(x, y; θ)] (1)

The function Li measures the average loss of a model with parameters θ on the ith client’s training
data Di, and

∑M
i=1 pi = 1 which is the weight given to client i. Typically, in vanilla FedAvg, pi is

determined to be proportional to the number of samples from the client i. On the other hand, depend-
ing on the implementation, it can be assigned uniformly. The objective is to identify a model that
adequately fits all clients’ data on a weighted average. It is imperative to note that clients may exhibit
heterogeneous data distributions, and any exchanges of training data are explicitly forbidden due to
prevailing privacy concerns. Our objective is to develop a Local Balancer, Li(θ), that addresses
class imbalance and an Aggregation Balancer that finds the optimal pi capable of minimizing L(θ).

In a general FL framework, the server simply aggregates all the participating client models to obtain
the global model. Specifically, in the tth communication round, a central server first sends a global
model θt−1 to each of the clients. Each client sets their initial model θt to θt−1, performs K steps
of the gradient descent optimization to minimize its local loss, and then returns the resultant model
to the central server. The global model for the subsequent round is derived by averaging all the local
models from participating clients in the current round of communication.

2.1 PROBLEM OF FEDAVG

FedAvg can reflect client weights in the global model either based on the size of the data or uni-
formly, depending on the implementation and the setting of pi. When pi is determined by the data
size, as depicted in Figure A.1, Clients 7, 8, and 9 collectively hold a 50% stake in the global model.
Consequently, the accuracy(see ‘FedAvg’ in Figure 1b) is generally high for the classes they pos-
sess, but it is relatively low for un-holding classes(e.g., 0, 5, 9). On the other hand, when distributed
uniformly, the reflection ratio pi is determined by how many clients share a particular label. This
leads to differences in accuracy depending on the degree of data sharing, as in ‘uniform division’
from Figure 1b. The class-wise accuracy of clients sharing less data (blue dash box in Figure A.1) is
lower compared to the accuracy of other classes. Label 5, which is marginalized in both scenarios,
has low accuracy in both cases.

For optimal averaging, it is imperative that clients engage in proactive measures to address the non-
IID phenomena inherent in their specific contexts. Given that client models are also subjected to
learning within imbalanced states, it becomes intricate to integrate information pertaining to un-
derrepresented labels into the global model. Furthermore, meticulous examination of each client’s
distinctive attributes is essential, ensuring the seamless incorporation of diverse information into
the global model without inducing conflicts. To address the aforementioned challenges, our study
employs a Local Balancer and introduces a Aggregation Balancer, strategically aligning with the
respective needs of each scenario.

3 RELATED WORK

FL has emerged as a prominent paradigm, allowing model training across multiple decentralized
devices (or clients) holding local data samples, thus avoiding exchanging them. This approach is
particularly beneficial for preserving privacy and reducing the need to transfer large amounts of data
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to a central location. However, one of the inherent challenges in FL is dealing with non-IID data,
where the data distribution varies significantly across clients. Thus far, methods have been applied
to the client or the global server to address these issues in FL research.

Client side applied methods. A spectrum of research concentrates on refining local learning algo-
rithms, designed to regularize model weights and implementing local bias correction. FedProx (Li
et al., 2020) incorporates a proximal term into the local training objective to maintain the consistency
of the updated parameter with the original model. Similarly, SCAFFOLD (Karimireddy et al., 2020)
employs cross-client variance reduction in local updates. FedNova (Wang et al., 2020b) a normal-
ized gradient averaging method that eliminates objective inconsistency while preserving fast error
convergence. This method represents a significant advancement in tackling the objective inconsis-
tency problem in heterogeneous federated optimization. Recently, methods that employ knowledge
distillation to regularize client weights have emerged (Kim et al., 2022). Besides, methods such as
class-balanced data re-sampling and loss re-weighting have proven efficacious in enhancing training
performance in scenarios where clients possess imbalanced local data (Hsu et al., 2020; Wang et al.,
2021; Xu et al., 2023). However, most existing methods predominantly constrain weights based on
the global model. If the global model is biased towards specific clients or classes, it inadvertently
hinders training diverse class distributions. The proposed local balancer does not compare with the
global model; instead, it adjusts the logits based on each client’s class distribution.

Server side applied methods. From the server side, studies have been conducted using methods that
select clients advantageous for training or utilize public data to enhance the aggregation accuracy.
(Wang et al., 2020a) employed reinforcement learning to select clients in a manner that promotes the
enhancement of validation accuracy while imposing penalties on the utilization of communication
rounds. FedGP (Tang et al., 2021) boosts the convergence rate of FL using loss correlations between
the clients. (Wu & Wang, 2022) and (Fraboni et al., 2021) proposed dynamically changing the
probability for each client to be selected. Additionally, (Wang et al., 2021) used local and global
imbalances similarly to our approach. However, the most significant difference is that they share the
class information they hold during the global aggregation phase. Thus, the proposed Aggregation
Balancer does not directly observe the data; instead, it only compares the weights to dynamically
change the participation rate of the clients. Moreover, our method can be applied without the need
for additional training.

4 PROPOSED METHOD: FEDBAL

We propose balancers that operate in local training and aggregation phases in FL framework. The
local balancer alleviates weight divergence by utilizing the class label counter, for which (Li et al.,
2022a) gives us direct motivations. On the other hand, the aggregation balancer is a mechanism
that reflects more on marginalized clients by comparing each client’s and the previous global model
classifier weight. The aggregation balancer can be applied as a substitute for FedAvg in different
ways as well.

4.1 LOCAL BALANCER

In FL, due to the non-IID dataset, insufficient or absent labels are occurrences at each client. In such
cases, they are trained unevenly at the local level. When the data is imbalanced, the softmax works
for a given sample as follows:

Lsoftmax(x) = − log
ezy∑
j e

zj
(2)

The gradient of Lsoftmax w.r.t. zi is:

∂Lsoftmax

∂zi
=

{
p̂i − 1, i = y

p̂i, i ̸= y
(3)

where p̂i =
ezi∑
j ezj

. zi represents the predicted logit of class i, therefore zy indicates the target logit

and zi(i ̸= y) is the non-target logit. Gradients corresponding to the target class are negative during
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backward propagation, whereas those for non-target classes are positive. Consequently, the training
samples impose penalties on the weights (where i ̸= y), of the non-target classes by p̂i. Therefore,
more rewards need to be given to the non-target class to achieve training balance. Additionally, as
mentioned in (He et al., 2018), the larger the representation norm, the more it implies that there are
more learned representations. This is maximized to induce both representation and logit to be well
learned in local training. Since the goal of our local balancer is to alleviate client drifts, we directly
apply the method used in (Li et al., 2022a) as below.

LLB = − 1

N

∑
i

log
ez

b
yi∑

j e
zjb

(4)

where the zbj represents the balanced logit of class j, and N is number of samples in batch. Detailed
explanations for formulas are in the Appendix B.

4.2 AGGREGATION BALANCER

The Aggregation Balancer was employed due to the appearance of clients that monopolized specific
labels. These clients are being marginalized by the global model. Here, a naive philosophical ques-
tion occurred to us: Is a client with extensive knowledge always wise? From a societal perspective,
when making crucial decisions, it may be rational to adhere to the opinions of experts(the majority)
with diverse and in-depth knowledge. However, it is wiser also to take the views of the marginalized
minority. We also figured out that the same phenomenon is occurring in FL(see in Section 5.2).
Incorporating too much weight from clients who possess abundant data and labels can quickly lead
to overfitting, and as the global iteration increases, the model collapses. However, including more
clients who hold unique data and whose local training is insufficient due to having less data with a
rich distribution enhances the overall performance of the global model. From this motivation, we
devised the aggregation balancer to reflect the knowledge of the minority while still utilizing signifi-
cant clients to create a wise global model. We aim to determine the proper pi in equation 1, allowing
marginalized clients more opportunities to be reflected in the global model.

To achieve the goal, the aggregation balancer waits until all client models are transmitted to achieve
the goal. Once all the client models have arrived, it calculates the importance score as follows:

v′i,score = cos similarity(θt−1
cls , θti,cls) =

θt−1
cls · θti,cls

∥θt−1
cls ∥2 · ∥θti,cls∥2

, for all i ∈ {1, . . . ,M} (5)

where the θcls is the classifier parameter. The importance score of each client vi,score is measured
by cosine similarity between the global model θt−1 before local learning and θti which is a trained
model using the local dataset. And then we append v′i,score in a one vector space:

v′
score := [v′1,score, . . . , v

′
M,score] (6)

The reason for comparing cosine similarity only to the classifier, not the entire model, is 1) because
the classifier gets strong feedback from true labels and 2) because as seen in Appendix C the rep-
resentation layer does not change significantly as the global model updates. In other words, the
process of comparing classifiers is both efficient and effective. While norms (e.g., l2-norm) can be
used to measure similarity, norms consider both the angle and the magnitude between two vectors,
resulting in a value ultimately proportional to the size of the data. This makes it challenging to select
clients holding unique classes. This is because clients possessing unique classes may hold relatively
less data.

However, if v′
score has a large deviation due to the dissimilar models, this also adversely affects

the global model. Therefore, to prevent dissimilar client models (which means that update more
weights), clipping is performed being overly reflected in the global model. Let v̄ represents the
mean of v′

score and σ is the standard deviation. Define a function f : R → R that perform clipping
by:
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vclip = f(v′
score), f(·) =

{
vi if vi ≥ T

T if vi < T
(7)

Here, T = v̄ − β ∗ σ which is threshold. β > 0 controls the outlier level. Also, the β value can
be used as a temperature parameter (as in the softmax function) to control the smoothness of the
probability distribution. In our experiment, β is set to 3 in constant. The smaller value of vclip

mplies a dissimilar client model to the previous global model. To answer the initial question, “Is a
client with extensive knowledge always wise?”, we apply the softmax function directly to the vclip

distribution to create a probability distribution. Therefore, the final form of the importance score is
as follows:

vscore =
ev

clip
i∑

j e
vj clip (8)

Now, vscore is a probability function that can replace pi in Equation 1. Our final FedBal is expressed
as:

argmin
θ∈Rd

L(θ) :=

M∑
i=1

vscoreL
i
LB(θ) and Li

LB(θ) = E(x,y)∼Di
[Li

LB(θ
t)(x, y; θ)] (9)

Further implementation details and reasoning for hyper-parameters can be found in Appendix C.

5 EXPERIMENT AND EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets and Partitioning. We conducted experiments using CIFAR-10 and CIFAR-100 with Con-
vNet that introduced from (Shin et al., 2022). Most of the experiments, including hyper-parameter
tuning, were performed using CIFAR-10, while CIFAR-100 was utilized to verify the robustness of
the method. At this time, the hyper-parameter values were fixed to those tuned with the CIFAR-10
dataset. In this study, only cross-silo environments were considered, and it was tested in a scenario
where only 4 clients participated in each global round(20% of a total of 20 clients). The datasets
were pre-distributed to all clients according to the Dirichlet alpha ratio, and the clients to participate
in the global round were randomly selected. Every client has a unique data set with no duplicate
data. The models of all participating clients are weighted, averaged, and then applied to the global
model.

All datasets were composed with Dirichlet distribution values α ∈ [0.05, 0.1, 0.5, 1] as in (Li et al.,
2022b). A smaller Dirichlet α value implies a more non-iid setting (see Appendix A.1).

Models and Implementation. Our experiments primarily used a 3-layered ConvNet with the same
structure as in (Oh et al., 2021; Shin et al., 2022). Similarly, to verify the model robustness, ResNet-
18 is used. The detailed model architecture is addressed in the Appendix A.2. For the learning setup,
we applied local epoch K 10 times, and Global round T was carried out 130 times. We utilized SGD
for optimization, with momentum and weight decay set at 0.9 and 1e-4, respectively. We employed a
local learning rate of 0.01 and a global learning rate of 1.0, and learning rate decay was utilized, as in
(Shin et al., 2022). In conjunction with PyTorch, we have implemented the FL framework utilizing
Ray(Moritz et al., 2018), which is a framework designed for distributed learning. All experimental
evaluations were executed utilizing two Nvidia 3090 GPUs.

Our experiments primarily used a 3-layered ConvNet with the same structure as in (Oh et al., 2021;
Shin et al., 2022). Similarly, to verify the model’s robustness, ResNet-18 is used. The detailed
model architecture is addressed in Appendix A.2. For the learning setup, we applied local epoch K
10 times, and global round T was carried out 130 times. We utilized SGD for optimization, with
momentum and weight decay set at 0.9 and 1e-4, respectively. We employed a local learning rate of
0.01 and a global learning rate of 1.0, and learning rate decay was utilized, as in (Shin et al., 2022)).
In conjunction with PyTorch, we have implemented the FL framework utilizing Ray (Moritz et al.,
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2018), which is a framework designed for distributed learning. All experimental evaluations were
executed utilizing two Nvidia 3090 GPUs.

5.2 IS A CLIENT WITH EXTENSIVE KNOWLEDGE ALWAYS WISE?

To answer this question, additional experiments were conducted. The experiments were conducted
using the CIFAR-10 dataset and the ConvNet model, with FedBal serving as the baselines. And
all other conditions were the same as mentioned in Section 5.1, and an inversely proportional term,
which is exp(vscore), was added in equation 8. As can be seen from the experimental results(Table
1), it was confirmed that giving more weight to marginalized clients aids in overall performance
improvement. There was an elevating effect in accuracy and a small deviation. The experiment was
conducted a total of three times.

Table 1: Accuracy evaluation for inversely proportional term.

Type With exp Without exp (Original)
Accuracy 63.24 (±1.37) 64.50 (±1.06)

5.3 EXPERIMENT RESULTS

The results of this experiment were obtained by performing 10 local iterations and 130 global it-
erations on CIFAR-10 and CIFAR-100 with ConvNet (see the details in Appendix A.2). While
distributing data with Dirichlet alpha, there is a concern that there will be variations in difficulty
depending on the class label. Therefore, in this study, all methods used the same data distribu-
tion, and to prevent the convergence speed from varying depending on the model’s initial value, the
same initial value was used as well. However, the clients participating in the training were sampled
randomly.

Results on Local Balancer. The local balancer aims to mitigate client drifts within local learning.
Table 2 provides a summary according to different Dirichlet alpha values. As can be seen from the
results, the Local Balancer operates within the classes it possesses. Hence, it exhibits good perfor-
mance in IID situations. It even outperforms Scaffold by more than 5% with α = 1.0. However, in
extreme non-IID cases (e.g., α with 0.05), its performance falls behind FedAvg. This phenomenon
is also observed for FedNova. Consequently, the employment of the local balancer in isolation is
unfeasible. In the presence of Non-IID conditions, a mechanism is indispensable to mitigate the
inherent vulnerabilities of the local balancer. The aggregation balancer we suggest can efficaciously
serve as a surrogate to fulfill this imperative role.

Table 2: Top-1 accuracy of the local balancer depends on data skewness, which has more advantages
in IID situations on both CIFAR-10 and CIFAR-100. The bold font represents the best result.

Datasets CIFAR-10 CIFAR-100
Skewness α=0.05 α=0.1 α=0.5 α=1.0 α=0.05 α=0.1 α=0.5 α=1.0
FedAvg 54.81 59.90 66.01 67.13 33.40 35.27 33.35 34.04
FedProx 57.90 62.34 65.93 67.26 34.18 36.23 32.62 34.49
Scaffold 55.45 62.99 64.76 63.56 30.20 32.33 33.07 31.79
FedNova 52.73 64.35 65.61 67.78 32.93 35.75 34.15 34.33

LocalBalancer (Ours) 52.41 62.34 65.09 68.78 34.54 35.43 35.52 35.13

Adapting Aggregation Balancer for other methods. The aggregation balancer needs to reflect the
marginalized classes in non-IID data distributions more in the global model. According to Table 3,
the aggregation balancer is more effective as it becomes more non-IID and effective in all methods
when α = 0.05. In particular, significant improvements were observed when utilizing the local
balancer. This can be seen as the aggregation balancer supplementing the insufficient information
as the local balancer learns the nonexistent label distribution.

Depending on the degree of Non-IID, excluding when α = 0.1, there was an accuracy improvement
exceeding 1% in many cases from the CIFAR-100 test. The effect is not as pronounced as in CIFAR-
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10, but considering that CIFAR-100 is currently a dataset experiencing difficulties in FL, it can be
regarded as a notable effect.

Table 3: Top-1 accuracy for adapting the aggregation balancer in CIFAR-10. The numbers inside
the parentheses represent the accuracy differences when the aggregation balancer was applied.

Dataset CIFAR-10
Skewness α=0.05 α=0.1 α=0.5 α=1.0
FedAvg 54.81 59.90 66.01 67.13
FedAvg w/ AB 58.62 (+3.81) 63.11 (+3.21) 68.22 (+2.21) 67.05 (-0.08)
FedProx 57.90 62.34 65.93 67.26
FedProx w/ AB 61.43 (+3.53) 63.63 (+1.29) 66.33 (+0.4) 67.90 (+0.64)
Scaffold 55.45 62.99 64.76 63.56
Scaffold w/ AB 57.54 (+2.09) 62.79 (-0.20) 65.17 (+0.41) 66.65 (+3.09)
FedNova 52.73 64.35 65.61 67.78
FedNova w/ AB 59.30 (+6.57) 63.27 (-1.08) 67.54 (+1.93) 69.06 (+1.28)
LocalBalancer (Ours) 52.41 62.34 65.09 68.78
FedBal (Ours) 59.70 (+7.29) 63.95 (+1.61) 68.22 (+3.13) 69.70 (+0.92)

Table 4: CIFAR-100 result for adapting Aggregation Balancer(AB). The values inside the parenthe-
ses represent the difference when the AB is applied.

Dataset CIFAR-100
Methods α=0.05 α=0.1 α=0.5 α=1.0
FedAvg 33.40 35.27 33.35 34.04
FedAvg w/ AB 33.21 (-0.19) 34.94 (-0.33) 34.67 (+1.32) 35.09 (+1.05)
FedProx 34.18 36.23 32.62 34.49
FedProx w/ AB 34.62 (+0.44) 35.14 (-1.13) 35.12 (+2.50) 35.49 (+1.00)
Scaffold 30.20 32.33 33.07 31.79
Scaffold w/ AB 30.52 (+0.32) 31.20 (-0.65) 31.21 (-1.86) 31.91 (+0.12)
FedNova 32.93 35.75 34.15 34.33
FedNova w/ AB 35.14 (+2.21) 35.10 (-1.41) 34.67 (+0.52) 35.90 (+1.57)
LocalBalancer (Ours) 34.54 35.43 35.52 35.13
FedBal (Ours) 34.90 (+0.36) 34.02 (-1.41) 34.96 (-0.56) 36.18 (+1.05)

Effectiveness of Aggregation Balancer According to this study, the aggregation balancer reflects
more of the weights of marginalized clients in the early stages, but it allocates weights in equal
proportions in the later stages (see more details in Appendix C.3). However, for clients that have
undergone extensive learning, there is a significant change in magnitude, even if there is little change
in the gradient angle. Therefore, ultimately, in the later stages of learning, clients with more data
play a more significant role in forming the global model. We discerned the significance of the
role of the aggregation balancer, which reflects wiseness, especially in the initial stages where the
differences in training due to the amount of data are pronounced.

Comparison between FedBal and other methods. Table 5 represents the difference in accuracy
when FedBal was applied. Except for the situation where α = 0.1, it showed better results than the
existing methods in all cases. FedBal can expect accuracy improvement in Non-IID situations due to
the Aggregation Balancer, and in IID situations, its weaknesses can be compensated for by the Local
Balancer. Specifically, FedBal outperformed FedNova by 6.97% when α = 0.05. Even compared to
the robust baseline, FedAvg, it exhibited approximately 5% greater efficacy. While the performance
of other methods varied significantly depending on the degree of non-IID, the difference in the
performance of FedBal was not substantial. Moreover, even in IID situations, such as when α = 1.0,
it exhibited a performance that was 6.14% better than Scaffold, and compared to other methods, there
was an approximately 2% improvement in performance.

In both CIFAR-10 and CIFAR-100 cases, the accuracy is relatively low when α = 0.1. We hypoth-
esize that this is due to the occurrence of a balancer bottleneck. A balance bottleneck is a section
where the local and aggregation balancers conflict, offsetting each other’s advantages.
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Table 5: Top-1 accuracy comparison on CIFAR-10 with ConvNet. The number inside the paren-
theses represents the accuracy differences between FedBal and previous methods. The bold font
represents the best results.

Dataset CIFAR-10
Skewness α=0.05 α=0.1 α=0.5 α=1.0
FedAvg 54.81 (-4.89) 59.90 (-4.05) 66.01 (-2.21) 67.13 (-2.57)
FedProx 57.90 (-1.80) 62.34 (-1.61) 65.93 (-2.29) 67.26 (-2.44)
Scaffold 55.45 (-4.25) 62.99 (-0.96) 64.76 (-3.46) 63.56 (-6.14)
FedNova 52.73 (-6.97) 64.35 (+0.40) 65.61 (-2.61) 67.78 (-1.92)
FedBal (Ours) 59.70 63.95 68.22 69.70

Table 6: Top-1 accuracy comparison on CIFAR-100. The number inside the parentheses represents
the accuracy differences between FedBal and previous methods. The bold font represents the best
results.

Dataset Cifar-100
Skewness α=0.05 α=0.1 α=0.5 α=1.0
FedAvg 33.40 (-1.50) 35.27 (+1.25) 33.35 (-1.61) 34.04 (-2.14)
FedProx 34.18 (-0.72) 36.23 (+2.21) 32.62 (-2.34) 34.49 (-1.69)
Scaffold 30.20 (-4.70) 32.33 (-1.69) 33.07 (-1.89) 31.79 (-4.39)
FedNova 32.93 (-1.97) 35.75 (+1.73) 34.15 (-0.81) 34.33 (-1.85)
FedBal (Ours) 34.90 34.02 34.96 36.18

5.4 DISCUSSION

In ResNet, the aggregation balancer was ineffective in all methods (refer to Appendix D). This is
presumed to be because, unlike ConvNet, ResNet learns a lot of information in the feature extraction
layer. Nevertheless, our approach calculates similarity by considering only the classifier weights,
disregarding the information inherent to the feature extraction layer. Thus, in ResNet, adjusting
the representation is more effective than adjusting the classifier. In subsequent research, we intend
to further observe the learning characteristics of ResNet and devise strategies suitable for deeper
models.

6 CONCLUSION AND FUTURE WORK

This research endeavored to mitigate the inherent biases amongst classes and clients induced by non-
IID distributions in the FL framework. A local balancer, introduced during the local training stage,
enables the correction of underrepresented classes. Concurrently, an aggregation balancer constructs
a global model in the aggregation stage by setting ratios based on the observed differences between
client model distributions. This methodology was substantiated using the CIFAR-10 dataset and
a ConvNet model. Future research will focus on developing a robust local balancer capable of
operating effectively in extreme non-IID environments and an adaptable aggregation balancer that
is modifiable under data distribution and model status.

REFERENCES

Dengsheng Chen, Jie Hu, Vince Junkai Tan, Xiaoming Wei, and Enhua Wu. Elastic aggregation
for federated optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12187–12197, 2023.

Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-
variance and improved representativity for clients selection in federated learning. In International
Conference on Machine Learning, pp. 3407–3416. PMLR, 2021.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

9



Under review as a conference paper at ICLR 2024

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world
data distribution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part X 16, pp. 76–92. Springer, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Jinkyu Kim, Geeho Kim, and Bohyung Han. Multi-level branched regularization for federated
learning. In International Conference on Machine Learning, pp. 11058–11073. PMLR, 2022.

Mengke Li, Yiu-Ming Cheung, and Juyong Jiang. Feature-balanced loss for long-tailed visual recog-
nition. In 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE,
2022a.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study. In 2022 IEEE 38th International Conference on Data Engineering (ICDE),
pp. 965–978. IEEE, 2022b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Dongping Liao, Xitong Gao, Yiren Zhao, and Cheng-Zhong Xu. Adaptive channel sparsity for
federated learning under system heterogeneity. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 20432–20441, 2023.

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
Classifier calibration for federated learning with non-iid data. Advances in Neural Information
Processing Systems, 34:5972–5984, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed frame-
work for emerging {AI} applications. In 13th USENIX symposium on operating systems design
and implementation (OSDI 18), pp. 561–577, 2018.

Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards enhanced representation for
federated image classification. arXiv preprint arXiv:2106.06042, 2021.

Jaewoo Shin, Taehyeon Kim, and Se-Young Yun. Revisiting the activation function for federated
image classification. 2022.

Minxue Tang, Xuefei Ning, Yitu Wang, Yu Wang, and Yiran Chen. Fedgp: Correlation-based active
client selection strategy for heterogeneous federated learning. arXiv preprint arXiv:2103.13822,
2021.

Saeed Vahidian, Mahdi Morafah, Mubarak Shah, and Bill Lin. Rethinking data heterogeneity in
federated learning: Introducing a new notion and standard benchmarks. IEEE Transactions on
Artificial Intelligence, 2023.

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learning on non-iid data
with reinforcement learning. In IEEE INFOCOM 2020-IEEE Conference on Computer Commu-
nications, pp. 1698–1707. IEEE, 2020a.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020b.

10



Under review as a conference paper at ICLR 2024

Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Addressing class imbalance in federated learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10165–10173,
2021.

Hongda Wu and Ping Wang. Node selection toward faster convergence for federated learning on
non-iid data. IEEE Transactions on Network Science and Engineering, 9(5):3099–3111, 2022.

Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized federated learning with feature alignment
and classifier collaboration. arXiv preprint arXiv:2306.11867, 2023.

Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. Fedmix: Approximation of mixup
under mean augmented federated learning. arXiv preprint arXiv:2107.00233, 2021.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

11



Under review as a conference paper at ICLR 2024

Appendix

A DETAILS OF EXPERIMENTAL SETUP

A.1 DATASETS AND DATA PARTITIONING

This study utilized the CIFAR-10 and CIFAR-100 datasets. The CIFAR-10 dataset comprises 60,000
images, each of 32 × 32 size, categorized into 10 distinct classes, each containing 6,000 images. A
total of 5,000 images were allocated as training data and 1,000 as test data. Similarly, the CIFAR-
100 dataset encompasses 60,000 images, each of 32 × 32 size, segregated into 100 classes, each
harboring 600 images. These 100 classes were further grouped into 20 superclasses that were not
used in our experiments. Furthermore, 500 images were designated as training data and 100 as test
data in this dataset.

The class was partitioned before being allocated to the client according to the intensity of the Dirich-
let distribution. The data assigned to each client were distinct, with no intersections, and the aggre-
gate ratio of all distributed class data was 1. However, the total quantity of data that each client
possessed was variable. Figure 2 provides an exemplar of data distributed in alignment with the
alpha value.

(a) α = 0.05 (b) α = 0.1

(c) α = 0.5 (d) α = 1.0

Figure 2: Example of data distribution according to the Dirichlet distribution. The abscissa denotes
the number of clients, which is predetermined at 20. The ordinate symbolizes the label, wherein
a darker shade signifies a higher numerical value. The degree of non-IID increases concomitantly
with the number of classes not possessed by the client.
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A.2 MODEL ARCHITECTURE

The CNN structure we utilized consists of three consecutive convolution layers, one max pooling
layer, and directly connects to one fully connected layer. The shape of the convolution layer is
represented as (Cin, Cout, Ckernel, Ckernel), and (Cin, Cout) for the fully connected layer. All non-
linear activation functions employed ReLu. Table 7 provides the detailed information.

Table 7: Detailed information of the CNN architecture used in our experiments.

Parameter Shape Layer hyper-parameter
conv1.weight (3, 64, 3, 3) stride=1, padding=1

conv1.bias (64) N/A
conv2.weight (64, 64, 3, 3) stride=1, padding=1

conv2.bias (64) N/A
conv3.weight (64, 128, 3, 3) stride=1, padding=1

conv3.bias (128) N/A
MaxPool N/A stride=2, padding=1

fc1.weight (36992, number of classes) N/A
fc1.bias (number of classes) N/A

B FORMULATION OF LOCAL BALANCER

According to the (Li et al., 2022a), increasing the influence of marginalized classes is crucial for
training while enhancing the corresponding representation norm. An additional constraint item can
be incorporated into the original cross-entropy loss to induce a substantial feature norm:

L′
LB = − log

ezy∑
i e

z
i

+ α
λy

∥f∥
(10)

where α serves as the parameter employed to modulate the strength of the constraint, and λy governs
the intensity of the stimulus directed towards different classes. To prevent the norm from being
suppressed in underrepresented classes, λy is assigned to be negatively correlated with the number
of instances per class:

L′
LB = − log

ezy∑
j e

zj
+ log e

λy
∥f∥

= − log
ezy−

λy
∥f∥∑

j e
zj

(11)

As the sum of the probabilities of all classes obtained by Eq. 11 is not equal to 1. (Li et al.,
2022a) additionally adjusted the logit to ascertain that the cumulative predicted probabilities across
all classes equate to 1:

zbj = zj − α(k)
λj

||f ||
(12)

where the zbj represents the balanced logit of class j. Additionally, α(k) is the learning strategy that
controls the regularization intensity. For this experiment, we set α(k) as:

α(k) =

(
k

K

)2

(13)

where the k is current local iteration and K represents the total number of local iteration. Initially, the
model prioritizes the original loss (e.g., cross-entropy loss) in early training and gradually increases
the intensity of regularization. Finally, Local Balancer is expressed as in Eq. 4.
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C EVALUATION OF AGGREGATION BALANCER

C.1 WHY ONLY CALCULATES THE CLASSIFIER, NOT THE WHOLE MODEL?

The classifier is a layer directly associated with labels. Therefore, it is most sensitive to label dis-
tribution. To verify this, we trained a model with a data distribution with a Dirichlet alpha value of
0.1 in FedAvg. For simplicity, just 30 global rounds were executed. We plotted the cosine similarity
between the previous global model and the aggregated model of each layer as a heat map. Indeed,
as seen in Figure 3, in the early stages of training, the CNN layer shows significant differences be-
tween clients, but as training progresses, it offers almost no difference. In contrast, the classifier
consistently exhibits differences.

(a) Global round: 1 (b) Global round: 5

(c) Global round: 21 (d) Global round: 30

Figure 3: This image represents the cosine similarity between the previous and aggregated global
models as the global round progresses.

C.2 EFFECT OF THRESHOLD β IN AGGREGATION BALANCER

Within the aggregation balancer, the threshold β serves the dual purpose of clipping to remove
outliers and acting as the softmax function’s temperature. A more significant value of β implies the
allowance of more outliers, and including more outliers can lead to a sharper probability distribution.
To determine an appropriate value for β, we trained data with a Dirichlet distribution of 0.1 on
CIFAR-10, using ConvNet as a benchmark. Local and global iterations were conducted 10 and 130
times, respectively. The experiment was conducted three times, and when using a β value of 3, we
obtained results with the highest accuracy and the smallest deviation (see Table 8).
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Table 8: Accuracy based on the threshold β.

β 1 2 3
Accuracy 62.64 (±1.2) 62.65 (±2.3) 64.54 (±0.7)

C.3 OBSERVATION OF DISTRIBUTION pi

Even if the weighted ratio in the global model is identical, the weights of clients enriched with data
undergo more updates, leading to substantial changes in magnitude, and thus, are more prominently
reflected in the global model.

Figure 4: Histogram of the global model reflection distribution (pi) when simultaneously using both
the local balancer and the aggregation balancer. The results are obtained using a Dirichlet alpha of
0.05 on the CIFAR-10 dataset.

D ADDITIONAL EXPERIMENTAL RESULTS

To validate the robustness of the proposed method, we carried out additional experiments using
the ResNet-18 model. The experiments were performed under various non-IID data distributions,
maintaining the rest of the hyper-parameters consistent with the initial experiments. However, due
to the consideration of training time in the case of ResNet, we limited our experimentation to three
methods, omitting FedProx and Scaffold.

D.1 EXPERIMENTS RESULT ON RESNET-18

Table 9: Accuracy comparison with various non-IID settings on ResNet-18 and CIFAR-10 used.
The bold text represents the best result.

Methods α = 0.1 α = 0.5 α = 1.0
FedAvg 46.35 66.02 68.53
FedAvg w/ AB 39.60 63.74 67.08
FedNova 45.10 66.19 68.29
FedNova w/ AB 42.45 65.50 66.84
FedBal (Ours) 47.03 65.98 68.41
FedBal w/ AB (Ours) 42.57 65.58 67.48
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