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ABSTRACT

Scaled post-training now drives many of the largest capability gains in language
models (LMs), yet its effect on pretrained knowledge remains poorly understood.
Not all forgetting is equal: Forgetting one fact (e.g., a U.S. president or an API call)
does not “average out” by recalling another. Hence, we propose a sample-wise
paradigm to measure what is forgotten and when backward transfer occurs. Our
metric counts 1—0 transitions (correct before post-training, incorrect after) to
quantify forgetting and 0— 1 transitions to quantify backward transfer. Traditional
task averages conflate these effects and obscure large changes. For multiple-choice
benchmarks, we add chance-adjusted variants that subtract the expected contribu-
tion of random guessing from pre- and post-training accuracies. We apply this
framework across post-training stages, model sizes, and data scales. Our large-scale
analysis across nearly 30 model pairs and 100 sub-benchmarks with up to 32,768
generated tokens per sample shows that: (1) Domain-continual pretraining induces
moderate forgetting with low-to-moderate backward transfer; (2) RL/SFT post-
training applied to base models and Instruction tuning yields moderate-to-large
backward transfer on math and logic with overall low-to-moderate forgetting; (3)
Applying RL/SFT to instruction-tuned models is sensitive on data scale: at small
scales, both forgetting and backward transfer are small; at larger scales, effects are
mixed and warrant further study with better controls; (4) Model merging does not
reliably mitigate forgetting. Overall, our framework offers a practical yardstick for
mapping how post-training alters pretrained knowledge at scale — enabling progress
towards generally capable Al systems.

1 INTRODUCTION

Scaling post-training has become the dominant driver of capability gains in modern language models
(LMs) (Jaech et al.l 2024)). Practitioners now iterate through multi-step post-training pipelines often
at data scales that rival early pretraining (Tie et al.| 2025)). The implicit bet is that each step in the
pipeline accumulates new capabilities, with dramatic improvements in areas like coding, math, tool
use and safety, without sacrificing the broad world knowledge. In contrast, it is considered common
knowledge in continual learning that this sequential training would lead to catastrophic forgetting (see
Table[T)). We test this assumption: as we scale post-training, do we erode the very breadth of world
knowledge that pretraining painstakingly compresses into the weights? If the implicit assumption
does not hold, we risk trading generalist competence for narrow specialization, undermining progress
toward generally capable models.

Measuring forgetting in modern post-training pipelines is tricky. Classical evaluations compare
aggregate test accuracy before and after training (Luo et al.| 2025)), implicitly treating a benchmark
as a single task with fungible i.i.d. samples (e.g., classifying images of cats). Pretrained knowledge
violates this assumption. Knowing one U.S. president does not compensate for forgetting another;
recalling a NumPy broadcasting rule does not offset losing a specific cloud-API syntax. In short,
knowledge samples are not fungible: Each carries unique value for quantifying pretraining knowledge.
Aggregation can hide substantial losses. Hence, we measure forgetting and backward transfer in a
sample-wise manner, rather than at the task level as proposed by Lopez-Paz & Ranzato|(2017).

Specifically, we define forgetting as items that are answered correctly before a post-training stage
but incorrectly afterward (the 1 — 0 transitions), and backward transfer as items that are answered
incorrectly before but correctly after post-training (the 0 — 1 transitions). A further complication is
that most knowledge-intensive LLM evaluation benchmarks are multiple-choice. Random guessing
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inflates accuracy and can create illusory transitions: an apparent “1 — 0” may simply be a lucky
guess that later becomes an incorrect answer, even when the underlying knowledge did not change;
likewise for 0 — 1 transitions. When the answer is only among few options (e.g., 4), performance by
random guessing can account for a substantial share of observed transitions, distorting both level and
trend estimates of forgetting. Thus a principled metric should (i) resolve outcomes at the item level
and (ii) explicitly correct for chance.

To account for these considerations we introduce chance-adjusted metrics for forgetting (F\y,) and
backward transfer (BTe), which correct for transitions expected under random choice. They do
not need logits or repeated sampling, measurable using the number of choices in benchmark and
marginal accuracy of the model pre- and post- training, making them practical at scale. Intuitively,
chance-adjusted forgetting asks: among items the model genuinely knew before, what fraction
became wrong beyond chance? Conversely, chance-adjusted backward asks: among items the model
genuinely did not correctly solve, what fraction became correct beyond chance?

Our primary contribution is a large-scale study measuring forgetting caused by post-training across
post-training pipelines. By evaluating the models on the same set of samples before and after each
stage, we obtain a map of what was retained, what was forgotten, and where losses concentrate.
We seek to answer three questions: (i) Where in the pipeline is forgetting most pronounced (e.g.,
instruction tuning vs. reasoning-focused training)?, (ii) What kinds of pretraining knowledge are
most affected (culture vs. logic)?, and (iii) How much knowledge is forgotten or re-elicited? We have
the following key findings:

Key Findings

* Domain-Continual Pretraining induces low to moderate forgetting across most categories;
backward transfer is limited. Forgetting effects marginally decrease with increasing model
scale.

¢ Instruction-Tuning and SFT/RL from base models yield low to moderate forgetting, with
spikes in the Culture and Knowledge categories, but moderate to high (for SFT/RL from Base)
backward-transfer gains in the Math and Logic categories across model families; Forgetting
and backtransfer decrease as parameters increase. Reasoning training yields similar forgetting
and larger backward transfer than instruction tuning.

* SFT/RL Reasoning Post-Training from instruct models have data-scale dependent be-
haviour: For the low-data regime, it yields low forgetting and backward transfer. For the
high-data regime, no dominant factor robustly described the forgetting and backward transfer
dynamics.

* Model Merging does not reliably mitigate forgetting across post-training pipelines (yet).

Table 1: Catastrophic forgetting literature across LLM post-training stages. Continual learning
literature indicates extensive forgetting across the post-training pipeline. However, we find far less
forgetting when testing widely used post-training pipelines, indicating an important gap existing
between continual learning setups and how people post-train language models.

Stage Name Level Summary

CPT Investigating Continual Pretraining Med Most models show continual im-

( in LLMs: Insights and Implications provement; only Llama-2 models
(Yildiz et al., [2024) degrade.
Examining Forgetting in Continual High Continual pre-training degrades ca-
Pre-training of Aligned LLMs (Li & pabilities, alignment and alters out-
Leel 2024 a) put behavior.

SFT/DPO Mitigating Forgetting in LLM Su- Low Combining SFT and DPO sequen-

(§@ pervised Fine-Tuning and Preference tially leads to forgetting and a poor
Learning (Fernando et al., [2024) balance between goals (~ 2% on

MMLU).

(Continued on next page)
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(Continued from previous page)

Stage Name Level Summary

Interpretable Catastrophic Forgetting High Fine-tuning on TRACE shows

SFT of LLM Fine-tuning via Instruction declines primarily from lost

( Vector (Tiang et al, 2024) instruction-following ability.
An Empirical Study of Catastrophic High Forgetting of domain knowledge,
Forgetting in LLMs During Continual reasoning intensifies as model scale
Fine-tuning (Luo et al., 2025) increases (~ 10% MMLU drop).
Catastrophic Forgetting in LLMs: A High Severity varies by architecture and
Comparative Analysis Across Lan- pre-training quality; some models
guage Tasks (Haque} 2025) degrade sharply while others barely

change.

Mitigating Catastrophic Forgetting High Sequential fine-tuning causes ma-
in LLMs with Self-Synthesized Re- jor forgetting; synthetic rehearsal
hearsal (Huang et al.,[2024) mitigates it.

RL Mitigating the Alignment Tax of Med RLHF induces forgetting (“align-

(@ RLHF (Lin et al.| 2024) ment tax”); model averaging re-

duces it.
SFT/RL Understanding Catastrophic Forget- High Fine-tuning skews the model’s im-
( ting in LLMs via Implicit Inference plicit task inference rather than eras-

(Kotha et al., 2024) ing capabilities.
Temporal Sampling for Forgotten Rea- High Fine-tuned LLMs often forget so-
soning in LLMs (Li et al.| [2025) lutions they previously generated

(“temporal forgetting”) across sizes
and methods (SFT, GRPO).

2 MEASURING SAMPLEWISE FORGETTING AND BACKWARD TRANSFER

To formalize these metrics, first consider an evaluation
set of IV multiple-choice questions with k options. For
each sample i, let a?'*, a?** € {0, 1} indicate correct-

¢ ? L. . - Backward .
ness before and after post-training. As illustrated in 1 Transfer Retention
Fig.[I] each sample falls into one of four quadrants

based on effect of training on new task:

apost

(i) Retention preserves knowledge (1—1),
(ii) Backward Transfer improves performance (0— 1), Non-

(iil) Forgetting reduces performance (1—0), and 01 acquisition Forgetting
(iv) non-acquisition has no effect (0 —0).
We define sample-wise forgetting and backward trans-
fer as the proportions of 1 —0 and 0— 1 flips, respec- 0 1
tively: aPre
1 : Figure 1: Each sample is assigned to one
F= N Z Hai® =1A alimt =0} of four quadrants by correctness before and
i=1 after.

N
1
BT =+ > 1{al* =0nal™ =1}

i=1

However, these intuitive metrics confound genuine knowledge change with label flips caused by
guessing, especially when k is small. For example, two independent random binary classifiers (k=2)
yield F' = 0.25 because 0.5 x 0.5 = 0.25.
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A chance baseline for flips. To account for guessing, we assume
a simple response model: on each item the model either knows the Qtrue T
answer or guesses uniformly among the k choices. Let a be mean
accuracy on a set. Then a = @y, + @, where z is the fraction

correct by chance. Since an incorrect guess occurs with probability Figure 2:  Accuracy a de-
(k—1)/k, composes into true knowledge
awee and lucky guesses x.

l—a_ _k=1 ___1-a
r+(1—-a)  k k-1

A 1—0 flip due purely to chance requires (i) a pre-training correct guess and (ii) a post-training error
(converse for backward transfer). Assuming independence between pre- and post-training guessing
events,

1 — gpPre st e 1 — gpost
Fchance - : (]- —a )a BTChance - (]- —a ) .
k—1 —— —— k—1
v incorrect (post) incorrect (pre)
correct by chance (pre) correct by chance (post)

These metrics depend only on aggregate accuracies and k; they require no logits or heavy computation.

Chance-adjusted forgetting and backward transfer. From these estimates we can isolate knowl-
edge change beyond chance by subtracting the baselines from the respective forgetting/backward-
transfer and clip at zero:

Fuue = maX(F — Fenances 0)7 BTe = maX<BT — BT chance; O)

For example, if accuracy drops from 80% to 70% on a 4-option MCQ test, raw forgetting is 10%,
but chance-adjusted forgetting is only about 6% — showing how the correction removes the effect of
lucky guesses. Clipping ensures the metric remains valid even if models perform below chance. In
practice, for an accurate measure of forgetting this metric’s mean and variance statistics should be
computed over multiple seeds as is described in Section

Ceilings: how much could a model forget or improve? Observed forgetting can be small simply
because little was truly correct to begin with. The maximum possible forgetting equals the fraction
truly correct before post-training, which we adjust for guessing and clip at 0:

kake —1
Frnax = Gime = max(aP™ — 2P, 0) = In.&xx(c;C T O) .

Similarly, the maximum possible backward transfer equals the fraction truly correct after post-training:

i i k’ ~post 1
BT ax = Ghos = max(aP! — 2P () = max(i; T O> )

where
1- afpost

k—1" k-1

pre __ 1— Qpre post __

By construction Fyye < Fipax and BT e < BT ax. Reporting the adjusted metrics alongside these
ceilings separates true knowledge loss/acquisition from chance and contextualizes headroom for
degradation or improvement.

Assumptions and scope. The correction uses two assumptions: (i) when the model does not
know an answer, it guesses uniformly at random; and (ii) pre- and post-training guessing events
are independent. These assumptions allow dataset-level adjustments from pre- and post-training
accuracies alone. Note that Fy,,. could quantify failure to elicit previously accessible knowledge and
need not imply that the model has lost/unlearned the underlying information. Likewise, changes in
BT often reflect improved elicitation rather than newly acquired knowledge.

4
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3  WHEN, WHAT & HOW MUCH IS PRETRAINING KNOWLEDGE FORGOTTEN?

In this section, we ask three questions:

1. When is pretraining knowledge forgotten?
Our analysis spans four widely used continual-training regimes: (i) domain-continual
training (§3.1)), (ii) instruction tuning (§3.2), (iii) light SFT/RL on reasoning traces, and (iv)
large-scale SFT/RL for reasoning (§3.3). In total, we evaluate almost 30 model—training
combinations chosen to reflect common practice results, providing broad coverage of how
contemporary LLMs are post-trained in the wild. Each post-trained model is compared with
its initial checkpoint (details in the Appendix).

2. What pretraining knowledge is forgotten?
We evaluate each model on 12 public benchmarks, collectively subdivided into close to a
100 total subdomains. To summarize systematic patterns, we cluster sub-benchmarks into
nine semantically coherent groups that exhibit similar forgetting trends (e.g., common sense,
culture, deduction, language/communication, liberal arts, science/tech). These clusters
provide a better map of which pretraining knowledge areas are most affected by a given
post-training recipe.

3. How much pretraining knowledge is forgotten?
Unless stated otherwise, chance-adjusted metrics for forgetting (Fe) and backward transfer
(BT ) are used to quantify the severity.

Experimental setup. We standardize settings across models for fair comparison. All experiments
use the LightEval framework (Habib et al.| 2023) and log per-sample accuracy. We apply a
zero-shot chain-of-thought prompt to all models and require answers in a fixed MCQ format (see
Appendix); base models receive a few-shot prompt solely to teach the format. When available[ﬂ we
add chat-specific templates to be in line with best practices. We cap sequence length at 32K tokens,
except for Qwen2.5-7B-Math and Qwen2.5-7B-Math-Instruct|Yang et al.| (2024al), which are limited
to 4Kﬂ Decoding uses temperature 0.6 with nucleus sampling (t op_p) of 0.95. We provide additional
details in the Appendix. We provide extensive quantitative results in Appendix [G|and provide figures
and qualitative commentary in the following sections, defining moderate forgetting as 15 4+ 5%, low
forgetting to be below that, and high forgetting to be above that. To facilitate reproducibility and
further inquiry, we will release per-sample logs for every sub-benchmark alongside code.

‘We now showcase our results in the subsections below.

3.1 SUBAREA 1: DOMAIN-CONTINUAL PRETRAINING

Motivation. A popular class of continual learning works adapt general LLMs at the application layer
for domains such as coding, mathematics, search, and tool use. As generalist LLMs are increasingly
wrapped with tools and domain-specific interfaces, specialization must not erode broad pretraining
knowledge. Models still need to contextualize domain outputs, communicate with diverse users,
respect cultural norms, and uphold safety and ethical standards. These needs motivate our study of
forgetting and backward transfer under domain-continual pretraining.

Setup. We study continual pretraining that converts a general base model into a specialized one,
exemplified by Qwen2.5-Coder (Hui et al., |2024) and Qwen2.5-Math (Yang et al., 2024b)ﬂ Un-
like general instruction tuning or reasoning post-training, domain-continual pretraining shifts the
underlying representation using large, relatively uncurated, web-scale domain corpora.

Main results. Figure [3| summarizes our findings. Domain-continual pretraining induces little to
moderate amounts of forgetting among all post-training methods we evaluate. Backward trans-
fer to general abilities is weak: Gains in the specialized domain rarely improve non-target tasks.
The effect spans categories of pretraining knowledge, with no single category driving it, although

!This budget was sufficient in practice; we never required more tokens.

Because base models sometimes continue into subsequent questions, we set explicit stop sequences to end
generation once a prediction is produced.

3We treat domain-continual reasoning via SFT/RL separately in and focus on domain-continual training
here.
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Common Common
Sense Sense
Science/ Science/
Tech Culture Tech Culture
Math Logi Math )\ Logi
(Gen) ogic (Gen) ogic
20% 40% 60% 20% 40% 60%
Math Knowledge Math Knowledge
Liberal Language Liberal Language
Arts Arts

=—o— Qwen 2.5 Coder (14B) =—e— Qwen 2.5 Coder (32B) =—*— Qwen 2.5 Coder (3B)

==o— Qwen 2.5 Coder (7B) === Qwen 2.5 Math (7B)

Figure 3: Forgetting (left) and Backward Transfer (right) after domain-continual pretraining.
Forgetting is low-to-moderate and consistent across categories; backward transfer is low. Scaling
model size reduces forgetting.

math-specialized models show significantly more forgetting. Lastly, larger models forget less and
have marginally better backward transfer.

Qualitative analysis. @~ We performed manual errors analysis, which indicates reduced
instruction-following fidelity (e.g., weaker adherence to constraints, formats, and role-specific direc-
tives). Evidence of this is found in supplemental tests, where a zero-shot, chat-template evaluation is
done. In this case, a coder model may, for example, answer “Who was the president of the US?” with
a response followed by code, often with embedded answers, making extraction difficult of the “’true
answer”. While few-shot prompting alleviates this, it demonstrates a weakened instruction-following
ability and less easily elicited knowledge.

Domain-continual pretraining yields low-to-moderate forgetting across categories; backward
transfer is limited. Scaling model size marginally reduces forgetting. This indicates current
domain-continual pretraining pipelines appear to alleviate much of the large forgetting behavior
seen in previous literature.

3.2 SUBAREA 2: INSTRUCTION TUNING

Motivation. Base models often require carefully engineered prompts to elicit pretraining knowledge,
limiting usability. Modern post-training pipelines therefore add instruction tuning to enable natural
user interaction with minimal prompting. Most continual-learning work we surveyed focuses on
mitigating forgetting in this setting. We ask: To what extent does instruction following come at the
expense of previously learned knowledge?

Setup. We measure forgetting and backward transfer from instruction tuning in generalist models
(Qwen2.5 (Yang et al.,|2024a), Llama 3.1 (Dubey et al., 2024))) and domain-continual pretrained
models (QwenZ.S-Coderﬂ

Results. As shown in Figure[d] there is low to moderate forgetting across models, with spikes in
the Culture and Knowledge categories. However, there is substantial backward transfer in the Math
category. Furthermore, scaling model size reduces forgetting and increases backward transfer. This
effect is consistent across domain-general and domain-specific base models. While most of the

*Qwen2.5-Math Instruct is surprisingly tuned with GRPO which leads to it being classified under Reasoning
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Common Common
Sense Sense
Science/ Science/
Tech Culture Tech Culture

Math Logi Math Logi
(Gen) ’ ogic (Gen) ogic
R0% 40% 60% 20% 40% 60%
Math Knowledge Math Knowledge
Liberal Language Liberal Language
Arts Arts
==e—= Qwen 2.5 Instruct (14B) =—e=— Qwen 2.5 Instruct (32B) Qwen 2.5 Instruct (3B)

== Qwen 2.5 Instruct (7B) === Qwen 2.5 Coder Instruct (14B)
=== Qwen 2.5 Coder Instruct (32B) =—e— Qwen 2.5 Coder Instruct (3B)

=—e— Qwen 2.5 Coder Instruct (7B) === Llama 3.1 Instruct (8B)

Figure 4: Forgetting (left) and Backward Transfer (right) after instruction-tuning yields moderate
forgetting and backward transfer categories-wise. Scaling model size reduces forgetting and backward
transfer.

continual learning literature focuses on reducing forgetting in this area, we note the forgetting is low
to moderate with current training practices.

Qualitative analysis. Transfer gains likely reflect better elicitation of pretraining knowledge:
Instruction-tuned models use what they already know with straightforward prompts used in bench-
marks, whereas base models often require carefully crafted prompts.

Instruction tuning produces low-to-moderate forgetting overall and moderate backward-transfer,
particularly in math, across model families; the forgetting and back-transfer tend to decrease with
increasing model scale. Shifting focus to other subareas of post-training might spur interesting
research directions, but there is still progress to be made in this area.

3.3 SUBAREA 3: TRAINING WITH REASONING TRACES (SFT AND RL)

Motivation. Recent methods encourage explicit reasoning by letting models think on a scratchpad
before answering; which is now scaled in size and trace length with RL objectives. As training
domains and data grow, we measure how much such reasoning training induces forgetting to guide
continual-learning practice.

Setup. We consider two settings: (i) starting from a base model and (ii) starting from an
instruction-tuned model. For the latter, we separate light-touch post-training (small datasets) from
heavy post-training. We do not separate RL from SFT as the behavior across forgetting and backward
transfer is similar between the two objectives.

3.3.1 TRAINING WITH REASONING TRACES FROM BASE MODELS

Models. We evaluate QwQ-32B (from Qwen2.5-32B Base) (Qwen Teaml [2025)),
Qwen2.5-Math-7B-Instruct (RL post-trained with GRPO), and DeepSeek-R1-Distill models across
different models (Qwen2.5 Base and Llama 8B base) (DeepSeek-Al, 2025)).

Results. From Figure[5] we see that across scales, model families, and training types, we observe
large gains, particularly in Math and Logic, in backward transfer with minimal forgetting. Forgetting
is generally low, but is moderate for knowledge and large for Culture. The exception to this trend
is the Qwen2.5 Math Instruct model which shows substantial forgetting across many categories.
Sample-wise inspection shows this is primarily due to weak adherence to the prompt, sometimes
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Common Common
Sense Sense
Science/ Science/
Tech Culture Tech Culture
Math R Math R
(Gen) Logic (Gen) Logic
% 40% 60% 0% 40% 60%
Math Knowledge Math Knowledge
Liberal Language Liberal Language
Arts Arts

=—— QwQ (32B) —*— R1 Distill Qwen (32B) =—*— Qwen 2.5 Math Instruct (7B)

=——o— R1 Distill Qwen (7B) =—e= R1 Distill Llama (8B)

Figure 5: Forgetting (left) and Backward Transfer (right) after reasoning training (SFT/RL)
from base model. It generally yields minimal forgetting, except in the Culture and Knowledge
categories, and has moderate to high backward-transfer gains. Qwen2.5 Math Instruct (7B) is an
exception to this trend, demonstrating forgetting across all categories.

outputting random multilingual text. Except for this case, when compared to instruction tuning on
the same base model (Figure , we see similar forgetting and larger back—transferﬂ

We conclude that much of the backward transfer reflects improved instruction following. To isolate
reasoning effects beyond elicitation, the next sections analyze reasoning training that starts from an
instruction-tuned model, for better exploration of gains. However, models with light-touch reasoning
training (i.e. low data) behave differently from those trained at scale (i.e. high data). We therefore
present these two cases separately.

Training with SFT/RL for reasoning results in dynamics similar to instruction tuning, but to
an even greater extent: We generally observe low to moderate forgetting overall and larger
category-specific backward transfer gains. Forgetting mitigation in this domain should consider
broad categories of knowledge/abilities when measuring forgetting and back transfer.

3.3.2 REASONING TRAINING FROM INSTRUCTION-TUNED MODELS: LOW-DATA SCENARIO

Models. We use the s1.1 family (7B, 14B, 32B) (Muennighoff et al., |2025) and LIMO (v1 and
v2) (Ye et al.} 2025) all tuned from corresponding sized Qwen instruct models.

Results. Figure[26 summarizes our findings. Across categories, models show minimal forgetting and
low backward transfer, except generative math where large gains occurs. This makes sense, as training
for a few passes on little data leaves pretraining knowledge largely intact. That is, the model does not
forget much, but it also exhibits little backward transfer gains beyond the instruction-tuned baseline.
Scaling model size marginally lowers forgetting, and the smaller teacher—student gap similarly tends
to reduce backward transfer, with the exception of the Knowledge category.

For low-data regime, reasoning training from instruct models yields low forgetting and backward
transfer. Forgetting decreases with model scale; backward transfer gains also tend to fall with
a narrowing student-teacher gap. This suggests that future forgetting mitigation literature on
reasoning models should focus on medium-to-large sized training datasets.

3All corresponding tables are available in Appendix for detailed comparison.
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3.3.3 REASONING TRAINING FROM INSTRUCTION-TUNED MODELS: HIGH-DATA SCENARIO

Common Common
Sense Sense
Science/ Science/
Tech Culture Tech Culture

Safety Logic Safety Logic
40% 60% A% 40% 60%
Math Knowledge Math Knowledge
en en
(Gen) (Gen)
Math Language Math Language
Liberal Liberal
Arts Arts

=—o— INTELLECT-2 =—e— Nemotron Code Reasoning (14B) === OpenThinker2 (32B)
=—o— Nemotron Code Reasoning (7B) === OpenThinker3 (7B) === OpenThinker (7B)

==o— Open Math 2 (8B)

Figure 6: Forgetting (left) and Backward Transfer (right) after reasoning training from instruct:
high data scenario. No single factor robustly explains the dynamics of forgetting and backward
transfer.

Models. We evaluate OpenCodeReasoner and OpenMath2 (Bercovich et al.| [2025), OpenThinker-7B,
OpenThinker2-32B, and OpenThinker3-7B (Guha et al., [2025)), and Intellect-2-32B (Prime Intellect;
Team et al.||2025). This spans SFT (former) and RL (Intellect-2).

Results. Results vary by domain mix and model quality. The OpenThinker models generally shows
low—to—moderate forgetting and moderate backward transfer, perhaps due to the breadth of the
training datamix, whereas OpenCodeReasoner models show consistently high forgetting with low
backward transfer gains due to the narrower training data. Furthermore, we find this may be primarily
due to weakened instruction-following capabilities, as sample-level inspection shows the model will
refuse to answer with letters, when numbers are present as options, instead answering numerically.
This is also seen with the Nemotron Code Reasoning models, where answers will often be embedded
within python code. These factors can make the forgetting and backward transfer observed highly
dependent on the extraction method used. We account for through LLM as a judge in Section [C.4]
Scaling model size, if compared in OpenThinker models, signals improvements in both forgetting
and backward transfer — as seen in most previous sections. Decentralized training (as in Intellect-2),
in contrast, showed minimal forgetting or backward transfer. We conjecture that the model largely
remain unchanged compared to the original model as it shows negligible gains on the optimized math
benchmarks Hochlehnert et al.|(2025). However, the results here remain preliminary. We do not find
a single dominant factor—initialization, data regime, or scale that sufficiently explains forgetting and
backward-transfer dynamics. We believe controlling the finer details which determine the quality of
the trained model might lead to better conclusions.

No single factor robustly explains the dynamics of forgetting and backward transfer; training on
a mix of domains appear to improve both forgetting and backward transfer.

4 DOES MODEL MERGING REDUCE FORGETTING?

Motivation. Recent work shows that offline model merging can combine capabilities from multiple
models (Dziadzio et all [2025). Unlike classical continual learning (De Lange et al., 2022), it
requires neither the original training data nor the ability to resume training, which is practical in
resource-constrained settings.
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Common Common
Sense Sense

Science/ Science/
Tech Culture Tech Culture

% 30% 45% Logic Math 5% 30% 45% Logic
g/

Liberal Knowledge Liberal Knowledge
Arts Arts

Math

Language Language

= Linear (0.2) == Linear (0.8) =& Slerp (0.2) = Slerp (0.8)

Figure 7: Forgetting and Backward Transfer of Qwen 2.5 Base merged with Qwen 2.5 Coder
(7B) relative to Qwen2.5 Coder. Induces moderate forgetting and little backward transfer.

Setup. We evaluate Exponential Moving Average (EMA) merging; in the two-checkpoint case this is
linear interpolation,

QEMA(OC) = Gpre + (1 — a) eposb
Prior large-scale studies find these simple schemes effective for continual learning with founda-
tion models (Roth et al.| [2024). Our experiments compare linear interpolations (e.g. LERP and
SLERP) across OpenThinker-7B, OpenThinker3-7B, and Qwen2.5-Coder-7B, together with their
base checkpoints.

Results. We compare merged checkpoints to the post-trained model 6,;; results for 8, appear in the
Appendix. For Qwen2.5-Coder-7B and OpenThinker3-7B, even small mixes with the base checkpoint
degrade performance, severely for the latter case (Figures[7} [I3). In contrast, OpenThinker-7B shows
small overall gains, accompanied by moderate forgetting (Figure[I9). In our setting, merging does
not mitigate forgetting. This may reflect that we merge only two checkpoints, whereas prior work
often merges eight or more (Yadav et al.| 2023} 2024). We further hypothesize that weight drift
between our checkpoints is larger than is typical in the merging literature, which could explain these
outcomes.

Merging model does not yet reliably mitigate forgetting in post-training pipelines.

Merging remains promising, but further study is needed to determine when each method works, how
to overcome its limitations, and whether an increased scale can compensate for these difficulties.
Future works may consider the effect of the number of models merged and weight drift on reasoning
models.

5 CONCLUSION

We present a new metric for sample-wise forgetting and backward transfer that corrects for chance
in multiple-choice evaluations. Our results challenge a common claim: sequential training does not
automatically erode pre-training knowledge. Forgetting depends on the post-training method and its
scale. By focusing on sample-wise forgetting, we offer a clearer map of what knowledge is lost and
in what stages of instruction tuning do language models lose during post-training — providing fertile
ground to study how to preserve (minimize forgetting) and accumulate (higher backward transfer)
knowledge while adding new capabilities by post-training. Promising ways to prevent forgetting
include: (1) Designing objectives and data that explicitly penalize 1—0 transitions; (2) Using targeted
synthetic corpora or brief mid-training bursts to repair localized forgetting; (3) Adding retrieval
mechanisms to reduce reliance on in-weight knowledge storage.
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A RELATED WORKS

Post-training techniques. A broad set of post-training methods now underpins standard LLM
pipelines. Supervised fine-tuning (SFT) (Ouyang et al.,[2022)) remains the core step, used for continued
pre-training and instruction tuning. At later stages, reinforcement learning from human feedback
(RLHF) (Ouyang et al.||2022) aligns model outputs with human preferences. To simplify preference
learning, direct preference optimization (DPO) (Rafailov et al.|[2023)) provides a direct loss surrogate.
With the rise of test-time scaling (e.g. sampling depth or compute at inference), group relative policy
optimization (GRPO) (Shao et al., 2024) has been proposed to elicit stronger intrinsic reasoning.
Taken together, these methods introduce distinct objectives and optimizers, increasing the complexity
of the post-training stack (Wang et al.| [2025)).

Measuring catastrophic forgetting. Catastrophic forgetting is the loss of previously acquired
knowledge when a network learns new information. Early studies examined the effect in small models
and simplified settings (McCloskey & Cohen, |1989; |Ratcliff], [1990; [French, [1999)). [Lopez-Paz &
Ranzato| (2017) formalized forgetting via backward transfer, the effect of learning a new task on
performance in earlier ones: positive values indicate improvement; negative values indicate forgetting.
Recent work extends these analyses to deep networks trained on large-scale data, with growing
attention to language models (Biesialska et al., 2020; [Wu et al.| [2022).

Benchmark paradigm. Task-incremental learning is the dominant paradigm for benchmarking
forgetting (De Lange et al., [2022). Models learn a sequence of tasks with clear boundaries, and task
labels are available at train and test time. Class-incremental learning removes test-time task identifiers,
making evaluation stricter (Wang et al.l 2024). Other views analyze continual learning through
positive/negative transfer (Yildiz et al.,2025)). At the sample level, Toneva et al.[(2019) introduced
forgetting metrics that identify “unforgettable” examples (stable once learned) and “catastrophically
forgotten” examples (highly plastic), and showed these patterns are consistent across architectures
and random seeds.

Language-model forgetting. Recent studies focus on forgetting induced by instruction tuning.
Luo et al.|(2025)) trained models up to 7B parameters with SFT and evaluated multiple knowledge
categories. [DeepSeek-All (2024)) reported instruction-tuning-related regressions on sentence com-
pletion even for 67B models. |[Fernando et al.| (2025) examined forgetting across SFT followed by
RLHF and proposed joint-training strategies to mitigate it. |[Lin et al.[{(2024) framed instruction-tuning
degradation as an “alignment tax” (performance loss on pre-training skills due to alignment) and
found model merging to be the most Pareto-efficient mitigation among tested techniques. |Li &
Lee| (2024b) studied continual pre-training on aligned LMs and observed notable regressions in
alignment-related behavior.

Catastrophic forgetting in reasoning training pipelines. Work on reasoning-oriented LMs high-
lights new failure modes. |Li et al.|(2025)) defined temporal forgetting: models lose the ability to solve
problems they could solve at earlier training checkpoints. The effect appears in both RL-trained and
instruction-tuned models. They proposed temporal sampling—round-robin sampling from recent
checkpoints—as a mitigation. |Pipatanakul et al.|(2025) merged a language-fine-tuned model with
DeepSeek R1 Distill (70B; both derived from Llama 3.3 70B (Dubey et al.,|2024)) to adapt reasoning
while preserving language competence. For multimodal models, |(Chen et al.|(2025) found that later
layers primarily support reasoning, whereas early layers concentrate perception, suggesting layer-wise
interventions. We document forgetting extensively across post-training pipelines in our work.

Each new method introduces its own objective and optimization procedure, adding to the complexity
of the post-training landscape (Wang et al., 2025).

Mitigation strategies. Sequential SFT to RLHF/DPO can exacerbate forgetting. To counteract this,
researchers explore: (i) model averaging, interpolating between pre- and post-RLHF checkpoints to
trade off alignment and retention (Lin et al.| [2024); (ii) joint post-training, optimizing supervised and
preference objectives simultaneously with convergence guarantees (Fernando et al., 2024); and (iii)
unified fine-tuning (UFT), which folds instruction tuning and alignment into a single implicit-reward
objective (Wang et al,|2025). Additional techniques—including advantage models and selective
rehearsal—stabilize RLHF by shaping reward distributions and replaying curated data (Peng et al.,
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2023)). Online Merging Optimizers (OMO) combine gradients from SFT and RLHF models during
training to maximize reward while preserving pre-trained skills (Lu et al.|[2024). Theory supports
these interventions: up to permutation symmetries, weights of homologous models tend to lie in a
shared low-loss basin (Ainsworth et al.,|2023). Hence, we were quite surprised that model merging
does not work for our simple case of mitigating forgetting during post-training with only two deep
networks.

Forgetting at scale. Pre-training mitigates forgetting relative to training from scratch (Mehta et al.|
2023;McRae & Hetherington, [1993). Ramasesh et al.|(2022)) further found that pretrained ResNets
and Transformers (up to ~100M parameters) are robust to forgetting at scale; language experiments
showed similar trends. However, [Luo et al.[(2025) reported increased forgetting with scale in the
1-7B LM regime, suggesting modality- and regime-dependent behavior. In contrast to these works,
we study forgetting during post-training of language models.

B EXPERIMENTAL SETUP

We standardize settings across models for fair comparison. All experiments use the LightEval
framework (Habib et al.| |2023) and log per-sample accuracy. We apply a zero-shot chain-of-thought
prompt to all models and require answers in a fixed MCQ format (see Appendix); base models receive
a few-shot prompt solely to teach the format. When availableﬂ we add chat-specific templates to be
in line with best practices. We cap sequence length at 32K tokens, except for Qwen2.5-7B-Math and
Qwen?2.5-7B-Math-Instruct|Yang et al.[(2024al)), which are limited to 4K|'| Decoding uses temperature
0.6 with nucleus sampling (top_p) of 0.95. We provide additional details in the Appendix. To
facilitate reproducibility and further inquiry, we release per-sample logs for every sub-benchmark
alongside code.

B.1 EVALUATION

To evaluate performance differences between models, we employ chain-of-thought (CoT) prompting
Wei et al.| (2022) on multiple-choice question answering (MCQA) datasets in addition to free-
form/generative math questions. In this setup, the model auto-regressively generates a reasoning
chain prior to producing its final answer. The predicted choice is then extracted from the generated text
and compared against the ground-truth label. When available, chat-specific templates are incorporated
into the prompt to ensure consistent formatting.

Because some models, particularly base models, tend to continue generating responses for subsequent
questions after completing the current one, we provide explicit stop sequences to terminate generation
once a prediction has been produced.

When applicable, to encourage answers in strict MCQA format (models sometimes output the option
text instead of the letter), we prepend the following instruction prompt:

{Instruction}

On the very last line, write exactly "Answer: SLETTER" (e.g.
"Answer: B"), with no extra punctuation, no lowercase, no x,
and no trailing spaces.

Think step by step, showing your reasoning.

Question: "{Question}"

We find adding the additional instructions to not use extra punctuation, asterisks, lowercase letters, or
trailing spaces necessary, as we find LightEval’s letter extraction can fail in certain cases otherwise.
We additionally tell the model to constrain its output to be of the form ”Answer: SLETTER” as
otherwise models will often provide the corresponding answer to a given letter or provide the answer
in another format, making extraction more prone to error.

SThis budget was sufficient in practice; we never required more tokens.
"Because base models sometimes continue into subsequent questions, we set explicit stop sequences to end
generation once a prediction is produced.
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For the case of base models, where few-shot prompting yields a more accurate elicitation of their
knowledge, we use few-shot prompting:

{Instruction}
Question: "{Few-Shot Question 1}"

Reasoning: {Few-shot Reasoning Trace 1}
Answer: {Few-shot Answer 1}

<——— more examples
Question: "{Question}"
Reasoning:

Datasets where CoT reasoning traces are provided for few-shot prompting, we use those. In the
cases where this is not provided (PIQA, MCTest, Social-IQa, ARC, MCTest, and Hellaswag) CoT
few-shot examples were generated and then confirmed these are not included in the benchmarks'.
For free-form/generative math questions, we follow the prompt and extraction methods used in
Hochlehnert et al.| (2025)).

All experiments are conducted using the Hugging Face LightEval framework, with results logged
at the sample level. For generation, we allow up to 32,768 tokens, which we found sufficient for
models to complete their chain of thought and provide an answer. In cases where the maximum
trained context length is smaller, then the generation is reduced to that number, as is the case with
Qwen2.5-7B-Math and Qwen2.5-7B-Math-Instruct|Yang et al.| (2024a)). The temperature is set to 0.6
and nucleus sampling with p = 0.95 is applied. All datasets are evaluated on at least 3 seeds and
metrics reported with mean and standard deviation (c.f. Section[G).

B.2 DATASETS

To evaluate broad model knowledge and capabilities, we benchmark on eighteen public datasets:
MMLU |Hendrycks et al.| (2021bza), BBH [Suzgun et al.| (2022), GPQA [Rein et al.| (2024), MuSR
Sprague et al.| (2024), ARC |Clark et al.| (2018)), Truthful QA Lin et al.| (2022)), HellaSwag |Zellers
et al.[ (2019), Social IQa |Sap et al.| (2019), MCTest Richardson et al.[ (2013), PIQA |Bisk et al.
(2020), CommonsenseQA Talmor et al.| (2019), SaladBench [Li1 et al.| (2024)), AIME24, AIME25,
AMC?23, Math500, Minerva, and OlympiadBench. Several of these benchmarks, namely MMLU and
BBH provide subject-level annotations, enabling fine-grained sub-benchmark analyses in addition to
aggregate reporting. For the cases of MMLU and BBH, subcategory labels are provided which allow
for splitting into further sub-benchmark evaluates by subjects. To enable easier understanding, we
group these (sub-)benchmarks into high-level groups used to evaluate the capabilities of the models.
They are grouped such that (sub-)benchmarks in the same group show similar trends in forgetting
and improvement.

They are grouped as follows:

Commonsense:

* Commonsense QA
* PIQA
Culture:
* BBH (sports understanding and movie recommendation)
Logic
* BBH (navigate, causal judgment, penguins in a table, web of lies, tracking shuffled objects
three objects, tracking shuffled objects seven objects, tracking shuffled objects five ob-
jects, temporal sequences, reasoning about colored objects, logical deduction three objects,

logical deduction seven objects, logical deduction five objects, formal fallacies, and date
understanding)
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* ARC (easy and challenge)
* MuSR (murder mysteries, object placements, and team allocation)
* MMLU (logical fallacies)

Knowledge

* BBH (object counting)
e MMLU (miscellaneous and global facts)
¢ MCTest

Language

* BBH (snarks, disambiguation ga, ruin names, and hyperbaton)
¢ Social IQa

* Hellaswag

e BBH (salient translation error detection)

Liberal Arts

* MMLU (world religions, us foreign policy, sociology, security studies, public relations,
professional psychology, professional law, prehistory, philosophy, management, international
law, high school world history, high school us history, high school psychology, high school
microeconomics, high school macroeconomics, high school government and politics, high
school geography, and high school european history)

Math

* BBH (geometric shapes, and boolean expressions)

* MMLU (high school statistics, high school mathematics, formal logic, elementary mathe-
matics, econometrics, college mathematics, and abstract algebra)

Math (Generative)

« AIME24
* AIME25
* AMC23

* Math500
* Minerva

* OlympiadBench
Safety 2

* MMLU (moral scenarios, moral disputes, jurisprudence, and business ethics)
e TruthfulQA (mcl)
» SaladBench (mrq)

Science & Tech

* MMLU (marketing, virology, professional medicine, professional accounting, nutrition,
medical genetics, machine learning, human sexuality, human aging, high school physics,
high school computer science, high school chemistry, high school biology, electrical engi-
neering, conceptual physics, computer security, college physics, college medicine, college
computer science, college chemistry, college biology, clinical knowledge, astronomy, and
anatomy)

* GPQA (diamond)
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Unless otherwise noted, we follow the standard task formats and official evaluation splits; for Truth-
ful QA we report MC1, for GPQA the Diamond subset, and for SaladBench the MRQ configuration.
This taxonomy serves as the backbone for our analyses of capability acquisition and retention across
training and deployment.

'MMLU is evaluated with few-shot no CoT prompting for the base models

’These are only used in comparisons which do not include a base model because Truthful QA and SaladBench
are designed measure the default behavior of the model rather than knowledge, which few-shot prompting would
bias.
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C EVALUATION METHODOLOGY

C.1 PROMPTING

In additional tests, we measure the ability of base models using the same prompting as instruction-
tuned models. Under these conditions we see ostensibly large forgetting in domain-continual
pretrained models (Figure[9). Our qualitative analysis suggests that this is largely due to the models
outputting code, wherein the location of the answer can be obscured. When this is contrasted with
the few-shot prompting, where there is much less forgetting, we conclude that forgetting metrics can
vary significantly depending on the way knowledge is elicited, especially when training on narrow
tasks, which few-shot prompting alleviates.

Common Common
Sense Sense

Science/ Science/
Tech Culture Tech Culture
Math Logic Math Logic
7 9 ﬁw% 30% 45% 9
Liberal Knowledge Liberal Knowledge
Arts Arts
Language Language

=—o— Qwen 2.5 Coder (32B) =—e— Qwen 2.5 Coder (3B) =—*— Qwen 2.5 Coder (7B)

=== Qwen 2.5 Math (7B)
Figure 8: Domain-Adaptive Pretraining models using chat template prompting

For these reasons, measuring the performance of base models on behavioral evaluations can become
nontrivial. While benchmarks measuring knowledge or capabilities may be elicited through few-shot
prompting, others, such as truthfulness or safety become more difficult as prompting them with
examples would bias their behavior. Further works should consider exploring the effect of providing
no-knowledge few-shot prompting, where the format of the question and answer is provided without
leaking examples to avoid biasing the base model’s output.
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C.2 SAMPLE VS. AGGREGATE METRIC COMPARISON

Common Common
Sense Sense
Science/ Science/
Tech Culture Tech Culture
Math Logic Math Logic
15% 30% 45% 9 15% 30% 45% 9
Liberal Knowledge Liberal Knowledge
Arts Arts

Language

Language

=——o— Qwen 2.5 Coder (14B) =—e— Qwen 2.5 Coder (32B) =—e— Qwen 2.5 Coder (3B)

=== Qwen 2.5 Coder (7B) =—e= Qwen 2.5 Math (7B)

Figure 9: Coder model comparing conventional forgetting (left) against our sample-wise forget-
ting (right). More forgetting is uncovered when using the sample-wise forgetting metric.

The sample-wise nature of our introduced metric uncovers more forgetting than the standard metric,
defined as

—pre —post
Fstandard = max(ap —af 70)

Figure [Oillustrates this effect: our sample-based metric reveals substantially more forgetting relative
to the standard formulation, in some cases finding what was originally low forgetting is actually
moderate. This highlights sample-level degradation that is otherwise hidden when averaging over
tasks.

C.3 METRIC ROBUSTNESS UNDER MCQA

We review the robustness of the chance adjusted forgetting in measuring true knowledge loss, which is
particularly relevant when evaluating under MCQA benchmarks as models can often guess the answer
correctly. While our metric accounts for this by subtracting out an estimate of this probability, we
compare this to another sample-level metric which filters out noisy samples to empirically demonstrate
this. Namely, we consider samples where there is agreement among two out of three seeds on average,
and consider the cases where there is forgetting relative to the other cases.

(1—)0)2
(0—=0)2+ (0—1)2 + (1—=0)2 + (1—1)s"

where we formally define the two-seed sample-agreement metric as follows:

1,8

N

pre __ ___pre post __ ___post
E l{a =r=0a;, NGy =Y=0;,
i=1

(x—y)2 ::(li Z
27 {stye(3)

where S is the set of seeds and N the number of samples. Intuitively, this measures robust knowledge
loss relative to stable knowledge. We find that this metric agrees with our results across the post-
training pipeline, thereby indicating the chance adjusted forgetting metric captures robust knowledge
loss, rather than random forgetting. We show the correlation between these metrics in Figure
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Figure 10: Sub-benchmark count across 2-Seed Agreement Forgetting (x-axis) and Chance
Adjusted Forgetting (y-axis). The line of best fit (red) of the subbenchmark forgetting values shows
both metrics are highly correlated.

We also provide a specific comparison of the metrics in Figure [T}
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Tech

Math

Liberal
Arts

Common
Sense

Culture

Lodi
30% 45% 9

Knowledge

Language

Science/
Tech

Math

Liberal
Arts

=——e— R1 Distill Qwen (7B) =—e= R1 Distill Llama (8B)

Common
Sense
Culture
o 30% 5% —°9°
Knowledge
Language

=—e— QwQ (32B) =——*— R1 Distill Qwen (32B) =—e— Qwen 2.5 Math Instruct (7B)

Figure 11: 2 Seed Forgetting (left) and Chance Adjusted Forgetting (right) of Models Trained
from Base. The overall trends remain the same, with only minor differences such as a slight increase
in forgetting for Qwen2.5 Math Instruct (7B) in the 2 seed forgetting case.
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C.4 EXTRACTION

Sample-level inspection occasionally shows answers that are correct, but unable to be extracted
correctly through the regex extraction described in Section[BI} This occurs particularly in models
trained for specific tasks. For example, we find that coding models will assign the correct answer to
a variable in code and then in a print statement provide the answer variable. We control for these
extraction related errors by using LLM extractor, specifically Qwen2.5-14B-Instruct, which we find
sufficient to correct for errors. We do this by providing the question, response, and ground truth
answers using the below prompt without a chat template, in order to encourage immediate json
output:

You are a strict extractor.
Given the FULL_PROMPT (the original prompt to the model), the model
output SNIPPET (last part, quoted), and the gold extraction (quoted),
return ONLY valid JSON with exactly two keys:
- "extraction\: the final answer token as a string
(e.g. "A", "C", "42") or null if unknown
— "correct": true if the extraction matches the gold, false
if it does not, or null if unknown
Do NOT output anything else (no explanation, no code fences).

FULL_PROMPT: {g_full_prompt}
SNIPPET: {g_snippet}
GOLD: {g_gold}

Return JSON now:

We find that this primarily corrects for outliers while all trends remain the same, which we find to
be true across all knowledge and post-training categories. By comparing Figures[12] where LLM
extraction is used, and@ where regex extraction is used, we see the outlier Qwen2.5 Math Instruct
(7B) is reduced in its outlier effect. Additionally, the overall trends remain the same.

Common Common
Sense Sense
Science/ Science/
Tech Culture Tech Culture
Math Logi Math Logi
ai 0% 40 6d% -9 af % 20% 60%-°Yic
Liberal Knowledge Liberal Knowledge
Arts Arts
Language Language

=—e— Qwen 2.5 Math Instruct (7B) === R1 Distill Qwen (7B) =—e— RL1 Distill Llama (8B)

Figure 12: Forgetting (left) and Backward Transfer (right) of Models Trained from Base
using LLM Extraction. Trends are the same as in Figure[T3] but Qwen2.5-Math-Instruct’s outlier
tendencies are reduced.
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Logic
o 40% 60% 9
Knowledge
Language

=——o— Qwen 2.5 Math Instruct (7B) === R1 Distill Qwen (7B) =—e= RL1 Distill Llama (8B)

Figure 13: Forgetting (left) and Backward Transfer (right) of Models Trained from Base
using Regex Extraction. Trends are the same as in Figure[T2] but Qwen2.5-Math-Instruct’s outlier
tendencies are increased.
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D MODEL MERGING

Recent work shows that offline model merging can combine capabilities from multiple models (Dzi+
adzio et al.|[2025)). Unlike classical continual learning (De Lange et al.}[2022), it requires neither the
original training data nor the ability to resume training, which is practical in resource-constrained
settings.

Setup. We evaluate Exponential Moving Average (EMA) merging; in the two-checkpoint case this is
linear interpolation,
QEMA(Q) =« opre + (1 - a) 0post~

D.1 WEIGHT DRIFT

We observe large weight drift among models in which merging fails. Specifically in the case of model
trained from instruction tuned bases, we compute the ratio of the Ly norm of the task vector (from
the model to the instruct model) to the Ly norm of base. In the case of OpenThinker3 this is just
above 20%. Likewise Qwen2.5 Coder (7B) has a value of 87%. OpenThinker and s1.1, which we
find are both mergeable, have values of only 1.8% and 0.6% resp.

D.2 FAILURE CASE: OPENTHINKER3

Logic Logic
Science/ Science/
Tech Knowledge Tech Knowledge
80%  45% ‘ 15% 30% 45%
Safety Liberal Safety Liberal
Arts Arts
Math Math

=——e— Linear (0.2) == Linear (0.8)

Figure 14: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Instruct merged with
OpenThinker3 (7B) relative to Qwen 2.5 Instruct on MMLU. Large forgetting occurs. Sample-
level analysis shows the model output degeneration, with the model often repeating words or phrases,
typically without providing a final answer.
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Logic Logic
Science/ Science/
Tech Knowledge Tech Knowledge
30% 45% m 15% 30% 45%
Safety Liberal Safety Liberal
Arts Arts
Math Math

=—e— Linear (0.2) =—e— Linear (0.8)

Figure 15: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Instruct merged with
OpenThinker3 (7B) relative to OpenThinker3 on MMLU. Large forgetting occurs. Sample-level
analysis shows the model output degeneration, with the model often repeating words or phrases,
typically without providing a final answer.
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D.3 FAILURE CASE: CODER MODELS

Common Common
Sense Sense
Science/ Science/
Tech Culture Tech Culture
Math Logi Math Logi
& 30% 450 09 & @ 15% 30% 45% 9'°
Liberal Knowledge Liberal Knowledge
Arts Arts
Language Language

=—o— Linear (0.2) = Linear (0.8) = Slerp (0.2) =—*— Slerp (0.8)

Figure 16: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Base merged with Qwen
2.5 Coder (7B) relative to Qwen 2.5 Base on all Benchmarks. Moderate-to-large forgetting occurs
with low backward transfer.

Common Common
Sense Sense

Science/ Sciencel/
Tech Culture Tech Culture

Math Logi Math Logi
a 30% 45% —°9'° & 5% 30% 45% C9'C

Liberal Knowledge Liberal Knowledge
Arts Arts

Language Language

=—eo— Linear (0.2) = Linear (0.8) = Slerp (0.2) =—*— Slerp (0.8)

Figure 17: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Base merged with Qwen
2.5 Coder (7B) relative to Qwen 2.5 Coder on all Benchmarks. Moderate-to-large forgetting
occurs with low-to-moderate backward transfer.
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D.4 MODERATE CASE: OPENTHINKER

Logic
Science/ Science/
Tech Knowledge Tech
@ 15% 30% 45%
Safety Liberal Safety
Arts
Math

=—e— Linear (0.2) == Linear (0.8)

Logic
Knowledge
O 15% 30% 45%
Liberal
Arts
Math

Figure 18: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Instruct merged with
OpenThinker Merge (7B) relative to Qwen 2.5 Instruct on MMLU. We see a marginal overall

performance improvement in the case of Linear (0.8).

Logic

Science/ Science/
Tech Knowledge Tech

15% 30% 45%

Safety Liberal Safety
Arts

Math

=—e— Linear (0.2) =—e— Linear (0.8)

Logic
Knowledge
% 30% 45%
Liberal
Arts
Math

Figure 19: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Instruct merged with
OpenThinker (7B) relative to OpenThinker on MMLU. We see a marginal overall performance

improvement in both cases.
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E EXPANDED COMPARISONS

E.1 DATA DIVERSITY

We split reasoning models into the cases of being trained on narrow domains, where they are trained
on one or two benchmark categories (e.g. math or code), and mixed data, where they are jointly

trained on many tasks or on general data. As indicated in Section

.3.3] increased data diversity
generally mitigates forgetting and helps with backward transfer (Figure|[21) whereas decreased data

diversity shows the opposite trend (Figure 20).
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Science/ Science/
Tech ;Culture Tech
Math Logi Math
a 30% 45% 09'° &

Liberal Knowledge Liberal
Arts Arts

Language

Common
Sense
Culture
Logic
15% 30% 45%
Knowledge
Language

=—e— Nemotron Code Reasoning (14B) =—e=— Nemotron Code Reasoning (7B)

==o—= Qwen 2.5 Math Instruct (7B) === Open Math 2 (8B)

Figure 20: Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with
Narrow Data. Backward transfer is generally low or moderate and forgetting is larger than training

on mixed data.
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==o— OpenThinker3 (7B) =—e= OpenThinker (7B) === s1.1 (7B)

=—e— R1 Distill Qwen (7B)

R1 Distill Llama (8B)

Figure 21: Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with
Mixed Data. Backward transfer is generally moderate to high.

E.2 OBJECTIVE FUNCTION (SFT vs. RL)

Reasoning models tend to be trained using SFT or RL or both. Based on the tested models, we do not
find evidence that these have differing behaviors. (Figures 22]23).
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Figure 22: Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with

SFT Data.
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Common Common
Sense Sense

Science/ Science/
Tech Culture Tech Culture

Math % 30% 45% Logic Math 5% 30% 45%Log|c

Liberal Knowledge Liberal Knowledge
Arts Arts

Language Language

= INTELLECT-2 =——e— QwQ (32B) =——*— Qwen 2.5 Math Instruct (7B)

Figure 23: Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with
RL Data.

E.3 DATA VOLUME

Data volume is another factor we consider in the forgetting and backward transfer dynamics. While
low data volume is indicative of low forgetting and backward transfer (Figure[24), no trend is apparent
in the case of high data volume (Figure[23).
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—e— 1.1 (14B) —e— LIMO —e— LIMO v2 —e— s1.1(32B) —e— s1.1(7B)

Figure 24: Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with
Low Data Volume. Both metrics are generally low across categories.
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Figure 25: Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with
High Data Volume. Forgetting and backward transfer vary significantly between models.
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F ADDITIONAL PLOTS

Common Common
Sense Sense
Science/ Science/
Tech Culture Tech Culture
Safety Logic Safety Logic
G 20% 40% 60% _&20% 40% 60%
Math Knowledge Math Knowledge
(Gen) (Gen)
Math Language Math Language
Liberal Liberal
Arts Arts

—o— s1.1 (14B) —e— LIMO —e— LIMOv2 —e— s1.1(32B) —e— s1.1(7B)

Figure 26: Forgetting (left) and Backward Transfer (right) after reasoning training from
instruct: low data scenario. Yields little forgetting and backward transfer. Forgetting decreases
with model scale.
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G QUANTIFYING FORGETTING ACCURATELY (TABLES FOR REFERENCING

PLOTS)?

Forgetting/backward transfer tables are listed with forgetting as the first number in each entry, standard
deviation after the ”+”, and maximum possible forgetting/backward transfer respectively in brackets.

G.1

INSTRUCTION TUNING

Table 2: Instruction Tuning: Forgetting (Part 1 of 3)

Category

Q2.5 Inst. (3B)

Q2.5 Inst. (7B)

Q2.5 Inst. (14B)

Q2.5 Inst. (32B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Science/Tech

7.0 £0.3 (64.2)
11.7 +0.9 (55.8)
10.9 +0.5 (36.2)

6.8 +1.3 (47.3)

8.7 0.8 (31.0)

8.7 £0.7 (65.3)

7.7 £0.4 (35.4)

6.5 £0.3 (45.6)

5.4 0.1 (60.8)
16.5 +2.8 (64.8)
8.4 +02(52.5)
15.0 +1.0 (58.4)
9.2 +0.6 (45.1)
6.6 £0.7 (74.2)
4.2 +0.4 (47.3)
5.4 £0.4 (56.5)

3.9 £0.6 (75.8)
14.0 +0.1 (76.4)
5.5 £0.4 (65.3)
23.4 403 (76.9)
9.5 +0.8 (59.2)
5.3 404 (78.6)
6.2 +£0.7 (57.9)
4.5 +05 (65.2)

3.7 0.5 (79.5)
15.2 +0.6 (78.9)
4.6 +0.6 (74.4)
15.3 £1.9 (69.4)
8.6 £1.0 (60.2)
5.3 403 (81.9)
4.5 +15(64.4)
4.4 403 (69.7)

Total

8.5 +0.1 (50.2)

8.2 +£0.3 (58.6)

8.0 0.3 (69.7)

6.7 0.5 (72.3)

Table 3: Instruction Tuning: Forgetting (Part 2 of 3)

Category

Q2.5 Coder Inst. (3B)

Q2.5 Coder Inst. (7B)

Q2.5 Coder Inst. (14B)

Q2.5 Coder Inst. (32B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Science/Tech

11.7 £1.0 (59.5)
15.0 £2.6 (45.7)
17.2 +0.6 (41.2)
12.6 +0.1 (48.0)
15.1 +0.7 (36.4)
13.9 +0.6 (59.2)

8.9 +0.9 (32.8)

9.4 +0.7 (40.5)

8.1 £0.3 (67.2)
19.0 +1.9 (60.8)
14.1 +0.2 (51.9)
14.4 +0.3 (56.4)
13.7 £1.0 (43.2)

9.6 £0.0 (67.6)

6.8 +0.2 (40.8)

8.4 +05(52.0)

6.1 +0.2 (70.7)
16.6 +1.6 (66.9)
6.9 +0.2 (64.0)
14.3 403 (64.3)
10.3 +0.8 (52.7)
7.8 +0.4 (74.6)
6.2 +0.4 (54.4)
7.0 £0.2 (59.9)

4.6 +0.4 (77.9)
19.1 +£1.1 (73.8)
5.8 £0.3 (69.8)
17.6 £1.0 (77.7)
8.6 £0.5 (59.2)
6.7 £0.2 (77.7)
4.9 406 (58.6)
5.6 £0.5 (65.1)

Total

13.0 402 (48.2)

10.9 +0.3 (57.6)

8.9 +0.3 (66.2)

8.4 +0.1 (72.2)

Table 4: Instruction Tuning: Forgetting (Part 3 of 3)

Category

Llama 3.1 Inst. (8B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Science/Tech

6.9 0.4 (64.5)
25.3 +22(79.1)
10.9 0.5 (42.5)
20.6 0.8 (60.8)
10.4 +0.7 (39.9)

7.6 +0.6 (64.6)

7.3 £0.9 (30.5)

5.9 £09 (45.5)

Total

10.8 +0.3 (54.5)

3For brevity we shorten Qwen 2.5 to Q2.5 as well as the associated models (e.g. Qwen 2.5 Instruct to Q2.5

Inst.)
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Table 5: Instruction Tuning: Backward Transfer (Part 1 of 3)

Category

Q2.5 Inst. (3B)

Q2.5 Inst. (7B)

Q2.5 Inst. (14B)

Q2.5 Inst. (32B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Science/Tech

10.8 £0.4 (69.2)
7.9 +2.4 (49.2)
10.2 +0.7 (33.6)
13.3 +2.8 (55.8)
7.7 £0.5 (29.8)
7.2 £1.4 (63.3)
18.9 +0.9 (51.0)
11.4 +0.8 (52.1)

17.5 £0.3 (76.9)
5.2 £19 (45.3)
14.6 0.5 (60.4)
7.5 £2.0(52.5)
8.3 £04 (41.4)
5.7 £0.6 (73.0)
19.0 +0.8 (67.3)
11.9 +0.9 (65.2)

8.7 +0.1 (82.1)
5.3 +0.3 (63.7)
13.3 £0.5 (75.6)
5.1 £1.0(57.9)
7.2 £0.0 (54.0)
5.6 £0.9 (78.9)
17.8 £1.4 (73.8)
10.4 +£1.0 (73.0)

7.5 £0.3 (84.6)
3.0 £1.1 (62.1)
9.0 +0.3 (80.4)
7.7 +£1.7 (61.3)
8.3 £2.4(57.0)
4.6 +1.1 (80.9)
15.9 +1.9 (80.0)
9.5 +0.8 (76.5)

Total

10.5 +0.5 (52.7)

11.0 4055 (62.1)

8.9 404 (71.3)

8.2 +0.7 (74.3)

Table 6: Instruction Tuning: Backward Transfer (Part 2 of 3)

Category Q2.5 Coder Inst. (3B) Q2.5 Coder Inst. (7B) Q2.5 Coder Inst. (14B) Q2.5 Coder Inst. (32B)

Common Sense
Culture

10.9 +0.1 (58.3)
4.8 £0.9 (31.0)

10.6 £1.0 (70.5)
4.2 40.7 (37.8)

10.2 +0.8 (76.2)
2.8 +0.5 (47.0)

6.9 +0.1 (80.9)
2.7 +0.7 (50.0)

Logic 6.6 +£0.3 (25.3) 11.7 407 (47.2) 11.5 403 (70.6) 10.8 0.1 (76.4)
Knowledge/QA 8.3 +12(43.4) 9.4 +19(52.5) 10.2 +1.3 (60.6) 4.8 £15(64.2)
Language 4.7 +04 (19.2) 5.6 £12 (29.4) 7.9 +0.2 (48.0) 6.5 £0.7 (55.2)
Liberal Arts 5.8 +1.1(48.4) 6.4 +0.7 (63.3) 5.5 +1.1(71.6) 5.1 408 (75.6)
Math 14.4 +1.8 (41.0) 21.7 +14 (61.2) 17.5 +1.9 (69.6) 19.1 +1.5 (77.8)
Science/Tech 8.7 +1.6 (39.5) 10.2 0.5 (54.3) 10.4 +1.0 (64.4) 9.8 +0.4 (70.6)
Total 7.4 +02 (40.4) 9.3 +0.6 (54.9) 8.6 +0.3 (65.8) 7.6 +04 (71.2)

Table 7: Instruction Tuning: Backward Transfer (Part 3 of 3)

Category

Llama 3.1 Inst. (8B)

Common Sense
Culture

11.2 +0.3 (70.3)
3.9 402 (46.2)

Logic 17.0 +0.9 (49.6)
Knowledge/QA 10.8 +2.3 (52.9)
Language 8.9 £1.4(36.3)
Liberal Arts 9.8 +£1.7 (67.5)
Math 19.3 +0.7 (46.9)
Science/Tech 15.1 £1.3(57.8)
Total 11.4 £1.0(55.1)
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G.2 DOMAIN-CONTINUAL PRETRAINING

Table 8: Domain-Continual Pretraining: Forgetting (Part 1 of 2)

Category Q2.5 Coder (3B) Q2.5 Coder (7B) Q2.5 Coder (14B) Q2.5 Coder (32B)

Common Sense 11.9 +0.5 (64.2) 9.0 +0.4 (60.8) 10.4 +0.6 (75.8) 7.5 £0.6 (79.5)

Culture 11.7 407 (55.8)  10.9 +04 (64.8) 10.8 +0.7 (76.4) 8.8 +0.8 (78.9)
Logic 5.7402(36.2)  9.5+02(52.5) 7.6 +£0.3 (65.3) 8.4 +0.1 (74.4)
Knowledge/QA 5.6 +0.5(47.3) 6.0 +0.8 (58.4) 13.7 402 (76.9) 3.8 0.5 (69.4)
Language 59406 (31.0) 8.4 +15(45.1) 8.6 409 (59.2) 7.4 413 (60.2)
Liberal Arts 6.4 +05(65.3) 7.0 £03 (74.2) 5.1 +0.4 (78.6) 5.2 403 (81.9)
Math 3.8409(354) 7.4 +10(47.3) 6.2 £02 (57.9) 7.8 £05 (64.4)
Science/Tech 4.0 405 (45.6) 5.9 403 (56.5) 6.4 +0.55 (65.2) 5.7 05 (69.7)
Total 6.8 £0.0(50.9) 7.6 02 (60.4) 8.0 +0.1 (71.8) 6.4 402 (74.6)

Table 9: Domain-Continual Pretraining: Forgetting (Part 2 of 2)

Category

Q2.5 Math (7B)

Common Sense
Culture

13.6 +0.8 (60.8)
17.8 £03 (64.8)

Logic 9.8 +0.4 (52.5)
Knowledge/QA 9.8 £0.5 (58.4)
Language 11.3 +0.9 (45.1)
Liberal Arts 20.0 £1.3 (74.2)
Math 7.5 +£1.2(47.3)
Science/Tech 14.4 +0.5 (56.5)
Total 12.9 +0.4 (60.4)

Table 10: Domain-Continual Pretraining: Backward Transfer (Part 1 of 2)

Category

Q2.5 Coder (3B)

Q2.5 Coder (7B)

Q2.5 Coder (14B)

Q2.5 Coder (32B)

Common Sense

8.3 £0.4 (59.5)

13.8 +£0.3 (67.2)

6.6 +0.3 (70.7)

6.3 £0.5(77.9)

Culture 6.3 £2.1 (45.7) 10.0 +1.3 (60.8) 5.8 £0.4 (66.9) 5.6 £0.2 (73.8)
Logic 9.4 405 (41.2) 9.7 402 (51.9) 7.7 £0.8 (64.0) 5.3 £0.4 (69.8)
Knowledge/QA 6.6 £1.1 (48.0) 5.4 +05 (56.4) 2.7 £0.3 (64.3) 12.4 +0.7 (77.7)
Language 8.9 £0.9 (36.4) 7.6 +0.8 (43.2) 5.3 +0.5 (52.7) 7.8 £2.2(59.2)
Liberal Arts 2.0 £0.2 (59.2) 2.2 403 (67.6) 2.3 +0.3 (74.6) 2.1 +0.1 (77.7)
Math 2.4 +0.2(32.8) 3.2 £0.3 (40.8) 34 +12(544) 3.4 £1.0(58.6)
Science/Tech 1.0 +£0.3 (40.5) 2.8 £0.0 (52.0) 2.6 0.1 (59.9) 2.4 £0.2 (65.1)
Total 5.1 +02 (48.2) 6.2 0.1 (57.6) 4.2 402 (66.2) 5.1 £02(72.2)
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Table 11: Domain-Continual Pretraining: Backward Transfer (Part 2 of 2)

Category

Q2.5 Math (7B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Science/Tech

12.7 £0.5 (59.6)
6.9 £0.8 (46.3)
11.9 +0.2 (53.9)
9.9 +1.8 (55.3)
6.1 0.2 (36.3)
1.6 +0.3 (49.5)
4.3 +05 (43.1)
3.2 +0.7 (40.7)

Total

6.3 0.2 (50.1)
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G.3 TRAINED FROM BASE

Table 12: Trained from Base: Forgetting (Part 1 of 2)

Category

Q2.5 Math Inst. (7B)

QwQ (32B)

R1 Distill Qwen (7B)

R1 Distill Llama (8B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Science/Tech

26.0 +£03 (59.6)
27.0 +2.4 (46.3)
16.8 £0.4 (53.9)
25.4 +20 (55.3)
18.2 +0.9 (36.3)
23.7 +0.7 (49.5)
13.1 403 (43.1)
17.1 409 (40.7)

3.2 £04 (79.5)
15.7 0.6 (78.9)
2.8 £0.2(74.4)
13.2 £2.1 (69.4)
7.9 +£1.2 (60.2)
3.1 £02(81.9)
1.5 +0.3 (64.4)
2.2 0.2 (69.7)

8.9 +£0.3 (59.6)
19.3 £2.1 (46.3)
4.4 404 (53.9)
20.1 +0.7 (55.3)
9.4 +0.8 (36.3)
7.6 £0.4 (49.5)
2.2 +0.4 (43.1)
4.6 +0.2 (40.7)

8.1 £0.2 (64.5)
29.0 £1.0 (79.1)
4.8 +£0.2 (42.5)
11.7 0.7 (60.8)
10.4 +0.4 (39.9)
9.4 +0.9 (64.6)
3.3 £0.3 (30.5)
6.4 +0.4 (45.5)

Total

21.4 405 (50.1)

5.4 +£03 (72.3)

8.7 £0.1 (50.1)

9.3 £0.3 (54.5)

Table 13: Trained from Base: Forgetting (Part 2 of 2)

Category

R1 Distill Qwen (32B)

Common Sense

3.9 £0.3 (79.5)

Culture 18.8 +0.7 (78.9)
Logic 2.3 +£03 (74.4)
Knowledge/QA 15.3 £1.3(69.4)
Language 6.9 £1.4 (60.2)
Liberal Arts 3.6 £0.3 (81.9)
Math 1.8 +0.5 (64.4)
Science/Tech 2.4 £0.3 (69.7)
Total 6.0 0.2 (72.3)

Table 14: Trained from Base: Backward Transfer (Part 1 of 2)

Category

Q2.5 Math Inst. (7B)

QwQ (32B)

R1 Distill Qwen (7B)

R1 Distill Llama (8B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Science/Tech

6.0 +0.6 (32.9)
3.4 +13(9.0)
8.4 +0.4 (42.8)
4.1 1.4 (31.2)
9.6 0.6 (20.9)
5.0 +0.4 (24.5)
15.1 1.6 (46.5)
7.2 402 (27.4)

8.9 +0.5 (87.0)
2.9 £1.0(59.8)
11.8 +0.5 (86.7)
9.0 £1.6 (65.2)
9.7 £2.8 (60.6)
6.3 £1.0 (86.1)
22.5 £22(92.2)
13.8 £1.0 (85.0)

11.4 +0.1 (63.0)
5.6 £1.4(23.1)
19.7 +0.1 (74.9)
9.3 +2.4 (45.6)
8.1 +0.8 (33.7)
12.7 +1.6 (56.2)
34.3 +2.4 (85.8)
18.5 +1.5(59.3)

12.6 +0.8 (70.5)

2.8 +0.4 (36.5)
28.9 +0.1 (74.6)
10.8 +1.8 (61.8)
12.1 +1.0 (42.2)
10.3 +1.5 (65.8)
35.0 405 (72.8)
19.3 £1.2 (62.7)

Total

6.7 £0.2 (30.1)

10.3 +0.6 (78.6)

14.3 £1.0 (57.4)

15.4 +0.6 (62.1)
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Table 15: Trained from Base: Backward Transfer (Part 2 of 2)

Category

R1 Distill Qwen (32B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Science/Tech

8.7 +0.3 (85.9)
2.5 406 (55.4)
11.7 +0.4 (87.2)
6.8 +1.3 (60.6)
10.2 +2.7 (62.9)
6.1 +£1.0 (85.2)
22.1 +25(91.4)
133 +1.0 (84.2)

Total

10.0 +0.6 (77.5)
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G.4 TRAINED FROM INSTRUCT - HIGH DATA SCENARIO

Table 16: Trained from Instruct - High Data Scenario: Forgetting (Part 1 of 2)

Category

INTELLECT-2 (32B)

Open Math 2 (8B)

OpenThinker (7B)

OpenThinker2 (32B)

Common Sense
Culture

1.9 +03 (87.0)
0.7 406 (60.2)

28.5 £0.9 (64.5)
49.9 £1.9 (79.1)

18.1 £1.3 (76.9)
13.3 +4.6 (45.3)

3.9 +0.3 (84.6)
7.6 £2.1 (62.1)

Logic 0.6 +0.1 (87.4) 24.2 +0.5 (42.5) 7.4 0.2 (60.4) 1.0 +0.2 (80.4)
Knowledge/QA 2.5 +0.6 (65.9) 33.8 +1.4 (60.8) 13.4 1.1 (52.5) 2.8 405 (61.3)
Language 1.9 +03 (62.7) 20.9 +1.2(39.9) 10.7 1.2 (41.4) 4.2 404 (57.0)
Liberal Arts 1.2 +0.2 (86.1) 32.1 +2.3 (64.6) 15.8 £1.0 (73.0) 2.3 +0.1 (80.9)
Math 0.9 0.1 (91.9) 17.1 £1.4 (30.5) 8.3 £0.8 (67.3) 1.0 +0.3 (80.0)
Safety/Truth 0.9 +0.2 (66.8) 19.5 +0.7 (36.3) 8.6 £0.5 (50.0) 3.3 £0.2 (64.5)
Science/Tech 1.6 +0.1 (85.0) 24.8 +1.8 (45.5) 12.2 40,5 (65.2) 2.1 £02(76.5)
Total 1.3 +0.1 (79.0) 28.8 +0.8 (54.5) 12.6 1.5 (62.0) 2.9 402 (74.3)
Table 17: Trained from Instruct - High Data Scenario: Forgetting (Part 2 of 2)
Category OpenThinker3 (7B) Nemotron Code Reasoning (7B)  Nemotron Code Reasoning (14B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

9.5 +0.4 (76.9)

16.4 +4.5 (45.3)

5.2 £0.2 (60.4)
5.6 £0.9 (52.5)

12.7 +0.8 (41.4)

9.8 +0.6 (73.0)
4.1 +0.1 (67.3)
8.7 £0.6 (50.0)
6.4 +£0.3 (65.2)

22.1 +0.1 (76.9)
21.8 +3.1 (45.3)
14.3 +0.4 (60.4)
11.9 +1.6 (52.5)
21.2 £1.4 (48.3)
19.4 +0.7 (73.0)
16.6 +0.5 (67.3)
14.2 +0.1 (50.0)
18.2 0.4 (65.2)

20.9 £2.4 (79.0)
20.9 +0.7 (63.7)
14.7 £0.3 (75.6)
11.5 £2.1 (57.9)
18.4 £1.2 (62.4)
12.8 +£1.0 (79.6)
13.3 +0.4 (73.8)
12.3 1.2 (63.0)
13.0 +0.2 (73.0)

Total

8.4 £05 (62.1)

17.7 £0.3 (62.4)

14.9 +o0.0 (72.1)

Table 18: Trained from Instruct - High Data Scenario: Backward Transfer (Part 1 of 2)

Category

INTELLECT-2 (32B)

Open Math 2 (8B)

OpenThinker (7B)

OpenThinker2 (32B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

1.7 +0.1 (86.7)
1.1 +0.3 (60.8)
0.7 +0.1 (87.4)
3.4 +£09 (67.5)
1.7 £0.2 (62.7)
1.2 +0.1 (86.0)
0.9 +0.2(92.1)
1.3 £0.5 (67.2)
1.5 0.1 (85.0)

5.7 +£04 (34.1)

0.5 +0.4 (6.5)
6.0 +0.4 (18.3)
2.8 £1.2(25.3)
7.2 +£0.8 (18.1)
2.9 £02 (25.5)
6.9 +£1.1 (15.0)
4.0 406 (15.9)
3.6 £0.9 (17.0)

6.1 +0.8 (60.9)
5.7 +£1.6 (33.6)
13.7 +0.6 (67.4)
7.0 £0.7 (43.0)
8.8 £1.6 (39.1)
5.5 405 (59.2)
11.1 1.0 (71.3)
7.2 £12(48.1)
7.4 +0.4 (58.7)

4.2 405 (85.0)
2.9 +03 (54.3)
6.2 404 (87.5)
3.8 +£0.1 (62.3)
6.4 +0.7 (61.0)
5.6 +£0.3 (85.4)
10.1 +1.1 (91.7)
4.1 +0.8 (65.5)
7.6 £0.3 (83.8)

Total

1.4 0.1 (79.2)

4.2 +02 (21.1)

7.7 £05 (55.1)

5.3 +£0.2(77.3)
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Table 19: Trained from Instruct - High Data Scenario: Backward Transfer (Part 2 of 2)

Category

OpenThinker3 (7B)

Nemotron Code Reasoning (7B)

Nemotron Code Reasoning (14B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

6.7 £0.2 (73.2)
4.0 +£1.0 (23.3)
17.2 £0.9 (76.3)
20.0 £0.3 (66.6)
6.8 £0.7 (33.6)
5.7 £02 (67.5)
14.7 £0.3 (81.2)
7.5 +£0.9 (48.5)
9.4 £0.5 (69.2)

5.2 404 (54.3)
5.1 +£2.3(19.2)
13.7 0.7 (57.4)
5.0 £0.5 (42.6)
4.9 +038 (23.3)
4.3 +0.1 (52.8)
10.4 +0.0 (56.4)
8.6 £1.2 (42.5)
5.2 +0.0 (47.7)

3.6 £1.2 (56.0)
5.2 405 (37.8)
8.1 £0.3 (65.4)
3.2 40.2 (46.6)
7.6 £0.8 (46.3)
4.2 0.5 (68.3)
10.7 +0.8 (69.4)
6.8 +£0.6 (55.6)
6.4 0.1 (64.3)

Total

9.7 +0.2 (62.8)

6.7 +0.4 (46.5)

5.8 +0.1 (59.0)

46



Under review as a conference paper at ICLR 2026

G.5 TRAINED FROM INSTRUCT - LOW DATA SCENARIO

Table 20: Trained from Instruct - Low Data Scenario: Forgetting (Part 1 of 2)

Category

s1.1 (7B)

s1.1 (14B)

s1.1 (32B)

LIMO (32B)

Common Sense

Culture
Logic

Knowledge/QA

Language
Liberal Arts
Math
Safety/Truth
Science/Tech

8.1 £0.4 (76.9)
12.1 £12 (45.3)
7.2 0.1 (60.4)
5.7 +£1.1 (52.5)
8.6 £0.8 (41.4)
7.4 +0.5 (73.0)
6.6 +0.8 (67.3)
7.5 £0.9 (50.0)
7.2 £0.4 (65.2)

5.1 £1.0(82.1)
10.6 +0.4 (63.7)
4.2 404 (75.6)
2.3 +0.1 (57.9)
6.7 +£0.4 (54.0)
5.4 407 (78.9)
5.8 £0.9 (73.8)
5.3 £0.3(59.4)
4.8 +0.6 (73.0)

4.7 05 (84.6)
7.5 £09 (62.1)
2.8 402 (80.4)
2.3 +12(61.3)
4.9 +0.1 (57.0)
3.9 +0.1 (80.9)
3.2 404 (80.0)
4.5 +0.4 (64.5)
3.3 404 (76.5)

3.5 403 (84.6)
3.7 £1.9 (62.1)
3.0 +0.3 (80.4)
2.0 £0.4 (61.3)
3.8 +0.6 (57.0)
2.6 £0.0 (80.9)
1.3 +0.1 (80.0)
2.9 +03 (64.5)
2.3 +0.1 (76.5)

Total

7.7 £02 (62.1)

5.3 402 (71.3)

3.9 +0.1 (74.3)

2.6 +0.1 (74.3)

Table 21: Trained from Instruct - Low Data Scenario: Forgetting (Part 2 of 2)

Category LIMO v2 (32B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

3.0 £0.3 (84.6)
4.4 409 (62.1)
6.1 +0.4 (80.4)
2.4 403 (61.3)
4.2 40.6 (57.0)
2.3 403 (80.9)
1.7 0.1 (80.0)
2.8 402 (64.5)
1.9 402 (76.5)

Total

3.0 £0.2 (74.3)

Table 22: Trained from Instruct - Low Data Scenario: Backward Transfer (Part 1 of 2)

Category

s1.1 (7B)

s1.1 (14B)

s1.1 (32B)

LIMO (32B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

7.3 £0.5 (75.8)
5.7 £0.5 (35.0)
13.8 +0.6 (68.8)
13.1 0.3 (59.3)
10.2 +0.7 (44.7)
6.3 £0.7 (71.5)
11.5 £03 (74.2)
9.4 £0.1 (52.5)
8.5 +0.1 (66.8)

4.6 +0.3 (81.5)
4.6 +04 (54.2)
9.2 405 (81.1)
11.9 +1.3 (69.0)
7.4 +£12(55.7)
5.3 +0.6 (78.9)
12.0 +0.7 (81.9)
7.4 £0.9 (62.2)
7.9 0.3 (77.3)

4.5 402 (84.3)
4.6 +0.4 (56.7)
5.7 £0.4 (83.9)
11.3 405 (71.2)
6.6 £0.5 (60.4)
5.0 0.1 (82.4)
9.4 409 (87.8)
5.2 £0.4 (65.4)
7.6 £0.5 (82.2)

3.9 404 (85.1)
7.5 £0.8 (66.1)
5.8 £0.3 (84.6)
11.1 +£1.3(71.2)
5.6 +0.7 (60.3)
4.7 402 (83.7)
9.6 +0.7 (90.7)
5.0 £0.4 (67.1)
7.2 £0.3 (83.2)

Total

9.1 +0.2 (63.5)

7.2 £0.3 (73.5)

6.2 £0.2 (76.9)

6.2 +0.2 (78.8)
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Table 23: Trained from Instruct - Low Data Scenario: Backward Transfer (Part 2 of 2)

Category

LIMO v2 (32B)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

4.2 402 (86.3)
6.7 +0.8 (64.6)
5.3 0.6 (79.6)
8.0 +0.7 (67.7)
5.3 403 (59.3)
4.9 +02(84.4)
10.1 0.8 (90.8)
4.5 +0.7 (66.7)
7.5 +0.2 (84.0)

Total

5.8 4£0.3 (77.9)
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G.6 QWEN2.5 BASE AND CODER MERGE (RELATIVE TO QWEN2.5 BASE)

Table 24: Qwen2.5 Base and Coder Merge: Forgetting

Category

Linear (0.2)

Linear (0.8)

Slerp (0.2)

Slerp (0.8)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

8.2 £0.6 (67.2)

12.0 +2.0 (60.8)
11.6 £0.4 (51.9)

4.6 +0.4 (56.4)
7.8 £0.4 (43.2)
2.5 +0.5 (67.6)
4.5 +12(44.9)
1.9 +0.7 (49.9)
2.6 £0.6 (52.0)

11.3 +0.7 (67.2)
15.8 £1.8 (60.8)
19.4 £1.0 (51.9)
8.1 +£0.3 (56.4)
11.2 02 (43.2)
4.1 £0.9 (67.6)
8.9 £2.1 (44.9)
3.7 +0.6 (49.9)
5.2 +0.7 (52.0)

13.9 422 (67.2)
21.1 £3.4 (60.8)
234 +1.1(51.9)
10.9 £1.0 (56.4)
14.0 +0.5 (43.2)
5.8 1.6 (67.6)
12.4 £1.9 (44.9)
6.0 £0.3 (49.9)
6.7 £1.3 (52.0)

16.2 +6.4 (67.2)
41.3 +3.3 (60.8)
17.7 £0.9 (51.9)
16.2 £1.0 (56.4)
12.7 +0.4 (43.2)
8.9 0.5 (67.6)
9.4 £0.7 (44.9)
4.7 £1.0 (60.4)
4.4 409 (52.0)

Total

6.1 +£0.2 (58.0)

9.3 +0.4 (58.0)

12.3 +0.2 (58.0)

13.9 +0.4 (59.0)

Table 25: Qwen2.5 Base and Coder Merge: Backward Transfer

Category

Linear (0.2)

Linear (0.8)

Slerp (0.2)

Slerp (0.8)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

8.3 404 (67.4)
4.1 0.8 (46.8)
5.3 0.6 (43.7)
8.3 £0.4 (61.6)
4.2 +0.8 (39.1)
2.1 £0.4 (67.3)
5.5 £1.0 (45.0)
2.4 +0.7 (51.8)
2.7 £03 (51.4)

9.8 +£0.5 (65.2)
6.2 +£1.8 (46.1)
4.2 +0.1 (31.0)
9.2 +0.4 (58.2)
7.2 +0.4 (37.4)
6.1 £1.6(70.2)
6.5 +£1.6 (39.9)
5.0 £1.9 (52.7)
5.6 £1.5(52.3)

9.2 £0.2 (61.0)
8.3 £2.0(44.0)
3.7 +0.1 (24.6)
8.2 +0.8 (53.4)
6.3 +0.2 (32.1)
5.7 £2.0 (67.6)
5.8 £2.9 (34.0)
6.8 £3.0 (51.5)
5.2 £1.6 (49.7)

7.2 £0.9 (55.3)
2.6 £0.5 (15.1)
4.4 +0.2(33.3)
5.1 £0.6 (44.1)
4.6 +0.5 (30.7)
2.1 £0.3 (58.7)
4.6 £1.4 (36.3)
3.0 £1.0(57.9)
2.3 403 (48.1)

Total

4.8 +0.1 (56.0)

6.5 +£0.7 (53.9)

6.4 +£0.9 (49.9)

4.0 0.1 (46.1)
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G.7 QWEN2.5 BASE AND CODER MERGE (RELATIVE TO QWEN2.5 CODER)

Table 26: Qwen2.5 Base and Coder Merge: Forgetting

Category

Linear (0.2)

Linear (0.8)

Slerp (0.2)

Slerp (0.8)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

10.2 0.7 (70.5)
6.8 +1.9 (37.8)
15.1 £0.9 (47.2)
6.5 +£0.8 (52.5)
6.6 £0.6 (29.4)
6.6 +0.1 (63.3)
17.1 £0.5 (58.9)
10.9 +1.7 (42.0)
10.3 0.4 (54.3)

12.7 +0.8 (70.5)
10.6 £1.4 (37.8)
20.4 +0.7 (47.2)
8.0 +0.6 (52.5)
8.1 £0.5(29.4)
6.1 £1.0 (63.3)
19.6 +1.2 (58.9)
10.0 £1.4 (42.0)
10.3 +0.9 (54.3)

15.2 2.5 (70.5)
15.8 £2.3 (37.8)
23.2 405 (47.2)
9.8 £0.3 (52.5)
9.5 +1.1(29.4)
7.6 £1.7 (63.3)
22.2 +2.1 (58.9)
10.6 £1.3 (42.0)
11.6 £1.9 (54.3)

18.2 £7.0 (70.5)
28.5 £3.2(37.8)
18.8 £0.3 (47.2)
14.0 £1.9 (52.5)

9.2 £0.9 (29.4)
12.3 +£0.3 (63.3)
20.8 +0.3 (58.9)
11.2 £12 (43.4)
11.9 +0.3 (54.3)

Total

9.5 +0.3 (54.0)

11.1 +0.4 (54.0)

13.4 +0.3 (54.0)

15.3 £0.9 (54.1)

Table 27: Qwen2.5 Base and Coder Merge: Backward Transfer

Category

Linear (0.2)

Linear (0.8)

Slerp (0.2)

Slerp (0.8)

Common Sense
Culture

Logic
Knowledge/QA
Language
Liberal Arts
Math
Safety/Truth
Science/Tech

7.9 0.4 (67.4)
13.4 +1.7 (46.8)
11.4 +0.2 (43.7)
15.6 1.0 (61.6)
11.0 £0.5 (39.1)

9.6 +0.4 (67.3)

7.7 £1.0 (45.0)

8.7 £1.7 (39.1)

8.1 £0.2(51.4)

8.7 £0.5 (65.2)
15.8 +3.2 (46.1)
7.5 £0.3 (31.0)
14.3 +0.2 (58.2)
12.2 +03 (37.4)
11.2 £0.9 (70.2)
7.0 £0.9 (39.9)
10.3 £13 (42.4)
8.8 £0.6 (52.3)

8.0 £1.3 (61.0)
17.8 £3.6 (44.0)
6.0 +0.2 (24.6)
12.2 +1.2(53.4)
9.9 +0.6 (32.1)
10.8 +£1.3 (67.6)
5.1 £1.5(34.0)
9.1 £1.7 (39.9)
8.1 +0.6 (49.7)

6.8 +£1.6 (55.3)
6.2 £19(15.1)
7.8 £0.0 (33.3)
8.7 £1.5(44.1)
9.1 +0.2 (30.7)
8.5 £0.2 (58.7)
5.2 £0.8 (36.3)
9.2 +0.4 (41.0)
7.2 402 (48.1)

Total

10.0 +0.3 (54.8)

10.2 +0.6 (52.9)

9.3 £0.7 (48.8)

7.5 +0.1 (44.4)
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G.8 QWEN2.5 INSTRUCT AND OPENTHINKER 7B MERGE (RELATIVE TO QWEN2.5
INSTRUCT)

Table 28: Qwen2.5 Instruct and OpenThinker 7B Merge: Forgetting

Category Linear (0.2) Linear (0.8)
Logic 8.7 £1.5(75.2) 3.6 £0.4(75.2)
Knowledge/QA 6.5 +0.4 (60.3) 4.2 £2.8(60.3)
Liberal Arts 9.4 +0.8(73.0) 3.7 0.1 (73.0)
Math 10.5 +0.6 (65.3) 3.3 £0.5 (65.3)
Safety/Truth 7.7 £13(55.1) 2.8 £04 (55.1)
Science/Tech 9.6 £03 (67.4) 4.2 4+02(67.4)
Total 8.7 £0.2 (66.1) 3.6 £0.5 (66.1)

Table 29: Qwen2.5 Instruct and OpenThinker 7B Merge: Backward Transfer

Category Linear (0.2) Linear (0.8)
Logic 6.0 £0.7 (71.6) 4.6 £1.3 (76.6)
Knowledge/QA 5.2 +1.8(58.6) 3.8 +£0.9 (59.8)
Liberal Arts 4.6 £05 (66.6) 3.9 +0.6(73.3)
Math 8.8 £03(63.1) 6.8 +0.5(70.1)
Safety/Truth 5.8 £03(52.7) 3.4 +0.6(56.1)
Science/Tech 6.3 +£03(62.9) 4.9 403 (68.1)
Total 6.1 0.1 (62.6) 4.6 £0.2 (67.3)
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G.9 QWEN2.5 INSTRUCT AND OPENTHINKER 7B MERGE (RELATIVE TO OPENTHINKER)

Table 30: Qwen2.5 Instruct and OpenThinker 7B Merge: Forgetting

Category Linear (0.2) Linear (0.8)
Logic 7.1 £08 (64.0) 3.7 £1.7 (64.0)
Knowledge/QA 7.3 +16(52.2) 7.0+12(52.2)
Liberal Arts 8.5 +£02(59.2) 5.5404(59.2)
Math 143 £16 (72.1) 9.4 +1.5(72.1)
Safety/Truth 10.3 +23(52.2) 7.2 +13(52.2)
Science/Tech 9.2 £02(60.2) 6.8 £0.6 (60.2)
Total 9.4 406 (60.0) 6.6 +0.6 (60.0)

Table 31: Qwen2.5 Instruct and OpenThinker 7B Merge: Backward Transfer

Category Linear (0.2) Linear (0.8)
Logic 12.8 £1.6 (71.6)  13.1 £3.7 (76.6)
Knowledge/QA  12.1 £25(58.6)  12.6 £2.0 (59.8)
Liberal Arts 14.1 £02 (66.6)  16.1 +0.6 (73.3)
Math 7.5 £15(63.1) 7.9 £1.1(70.1)
Safety/Truth 10.7 £1.0 (52.7)  10.1 1.1 (56.1)
Science/Tech 11.2 £0.8(62.9) 12.7 +0.4 (68.1)
Total 11.4 £0.7 (62.6)  12.1 £1.0 (67.3)
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G.10 QWEN2.5 INSTRUCT AND OPENTHINKER3 7B MERGE (RELATIVE TO QWEN2.5

INSTRUCT)

Table 32: Qwen2.5 Instruct and OpenThinker3 7B Merge: Forgetting

Table 33: Qwen2.5 Instruct and OpenThinker3 7B Merge: Backward Transfer

Category

Linear (0.2)

Linear (0.8)

Logic
Knowledge/QA
Liberal Arts
Math
Safety/Truth
Science/Tech

33.6 +2.7 (75.2)
25.7 £8.0 (60.3)
35.0 +2.9 (74.4)
40.1 +6.1 (65.3)
36.2 +2.8 (64.1)
30.1 £3.2 (67.4)

28.1 +138 (74.2)
18.0 +5.2 (45.0)
28.8 +1.7 (73.8)
30.0 +£0.7 (65.3)
22.8 +3.7 (61.0)
29.6 £09 (67.4)

Total

33.5 +3.7 (67.8)

26.0 £038 (63.8)

Category

Linear (0.2)

Linear (0.8)

Logic
Knowledge/QA
Liberal Arts
Math
Safety/Truth
Science/Tech

1.3 +£2.0(31.3)
1.9 +1.0 (28.8)
1.9 +0.8 (30.2)
0.7 +0.8 (12.6)
0.9 +1.1 (15.8)
2.5 +1.0 (30.4)

2.3 £1.0 (39.9)
1.2 +1.4 (21.7)
2.9 +0.1 (39.2)
1.6 +0.8 (27.0)
2.9 +0.6 (34.6)
2.5 +0.2 (30.9)

Total

1.5 £1.1(24.9)

2.2 403 (31.7)
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G.11 QWEN2.5 INSTRUCT AND OPENTHINKER3 7B MERGE (RELATIVE TO OPENTHINKER3)

Table 34: Qwen2.5 Instruct and OpenThinker3 7B Merge: Forgetting

Category Linear (0.2) Linear (0.8)
Logic 28.1 £32(65.4) 25.1 £2.6 (66.9)
Knowledge/QA  21.2 £6.4 (54.3) 17.2 £7.3(38.6)
Liberal Arts 31.3+29(68.9) 27.2 +1.7(68.3)
Math 52.3 469 (81.1) 41.8 £1.8 (81.1)
Safety/Truth 33.5 +£2.1(59.8) 23.5 1.7 (58.6)
Science/Tech 32.0 £35(70.7)  32.2 £1.4(70.5)
Total 33.1 £38(66.7) 28.0 £1.2 (63.8)

Table 35: Qwen2.5 Instruct and OpenThinker3 7B Merge: Backward Transfer

Category Linear (0.2) Linear (0.8)
Logic 3.0+50(31.3) 4.9 409(39.9)
Knowledge/QA 2.2 +0.7 (28.8) 4.5 £23(21.7)

Liberal Arts
Math

2.3 408 (30.2)
0.5 0.6 (12.6)

5.4 407 (39.2)
1.5 £02 (27.0)

Safety/Truth 1.0 +08 (15.8) 5.5 404 (34.6)
Science/Tech 2.0 407 (30.4) 2.8 +03 (30.9)
Total 1.8 £1.3(24.9) 4.0 +0.4 (31.7)
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DISCLAIMER FOR USE OF LLMS

We primarily used LLMs in coding co-pilot applications to facilitate experimentation and help with
plotting code for result presentation. LLMs were also used as writing tools to assist in refining the
paper. However, the final version was carefully reviewed and finalized by the authors. No LLMs
were used in ideation and experimental design.
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