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ABSTRACT

Scaled post-training now drives many of the largest capability gains in language
models (LMs), yet its effect on pretrained knowledge remains poorly understood.
Not all forgetting is equal: Forgetting one fact (e.g., a U.S. president or an API call)
does not “average out” by recalling another. Hence, we propose a sample-wise
paradigm to measure what is forgotten and when backward transfer occurs. Our
metric counts 1→0 transitions (correct before post-training, incorrect after) to
quantify forgetting and 0→1 transitions to quantify backward transfer. Traditional
task averages conflate these effects and obscure large changes. For multiple-choice
benchmarks, we add chance-adjusted variants that subtract the expected contribu-
tion of random guessing from pre- and post-training accuracies. We apply this
framework across post-training stages, model sizes, and data scales. Our large-scale
analysis shows that: (1) Domain-continual pretraining induces moderate forgetting
with low backward backward transfer; (2) RL/SFT post-training applied to base
models and Instruction tuning yield substantial backward transfer with minimal
forgetting; (3) Applying RL/SFT to instruction-tuned models is sensitive on data
scale: at small scales, both forgetting and backward transfer are small; at larger
scales, effects are mixed and warrant further study with better controls; (4) Model
merging does not reliably mitigate forgetting. Overall, our framework offers a
practical yardstick for mapping how post-training alters pretrained knowledge at
scale – enabling progress towards generally capable AI systems.

1 INTRODUCTION

Scaling post-training has become the dominant driver of capability gains in modern language models
(LMs) (Jaech et al., 2024). Practitioners now iterate through multi-step post-training pipelines often
at data scales that rival early pretraining (Tie et al., 2025). The implicit bet is that each step in
the pipeline accumulates new capabilities, with dramatic improvements in areas like coding, math,
tool use and safety, without sacrificing the broad world knowledge. In contrast, its considered
common knowledge in continual learning that this sequential training would lead to catastrophic
forgetting (see tab:forgetlit). We test this assumption: as we scale post-training, do we erode the
very breadth of world knowledge that pretraining painstakingly compresses into the weights? If the
implicit assumption does not hold, we risk trading generalist competence for narrow specialization,
undermining progress toward generally capable models.

Measuring forgetting in modern post-training pipelines is tricky. Classical evaluations compare
aggregate test accuracy before and after training (Luo et al., 2025), implicitly treating a benchmark
as a single task with fungible i.i.d. samples (e.g., classifying images of cats). Pretrained knowledge
violates this assumption. Knowing one U.S. president does not compensate for forgetting another;
recalling a NumPy broadcasting rule does not offset losing a specific cloud-API syntax. In short,
knowledge samples are not fungible: Each carries unique value for quantifying pretraining knowledge.
Aggregation can hide substantial losses. Hence, we measure forgetting and backward transfer in a
sample-wise manner, rather than at the task level as proposed by Lopez-Paz & Ranzato (2017).

Specifically, we define forgetting as items that are answered correctly before a post-training stage
but incorrectly afterward (the 1→0 transitions), and backward transfer as items that are answered
incorrectly before but correctly after post-training (the 0→1 transitions). A further complication is
that most knowledge-intensive LLM evaluation benchmarks are multiple-choice. Random guessing
inflates accuracy and can create illusory transitions: an apparent “1→ 0” may simply be a lucky
guess that later becomes an incorrect answer, even when the underlying knowledge did not change;
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likewise for 0→1 transitions. When the answer is only among few options (e.g., 4), performance by
random guessing can account for a substantial share of observed transitions, distorting both level and
trend estimates of forgetting. Thus a principled metric should (i) resolve outcomes at the item level
and (ii) explicitly correct for chance.

We introduce chance-adjusted metrics for forgetting (Ftrue) and backward transfer (BTtrue), which
correct for transitions expected under random choice. They do not need logits or repeated sampling,
measurable using the number of choices in benchmark and marginal accuracy of the model pre- and
post- training, making them practical at scale. Intuitively, chance-adjusted forgetting asks: among
items the model genuinely knew before, what fraction became wrong beyond chance? Conversely,
chance-adjusted backward asks: among items the model genuinely did not correctly solve, what
fraction became correct beyond chance?

Our primary contribution is a large-scale study measuring forgetting caused by post-training across
post-training pipelines. By evaluating the models on the same set of samples before and after each
stage, we obtain a map of what was retained, what was forgotten, and where losses concentrate.
We seek to answer three questions: (i) Where in the pipeline is forgetting most pronounced (e.g.,
instruction tuning vs. reasoning-focused training)?, (ii) What kinds of pretraining knowledge are
most affected (culture vs. logic)?, and (iii) How much knowledge is forgotten or re-elicited? We have
the following key findings:

Key Findings

• Domain-Continual Pretraining induces moderate forgetting across most categories; back-
ward transfer is limited. Both effects marginally improve with increasing model scale.

• Instruction-Tuning and SFT/RL from Base model yield low forgetting but large
backward-transfer gains across categories and model families; both effects improve with
increasing model scale. Reasoning training yields lower forgetting and larger backward
transfer than instruction tuning.

• SFT/RL Reasoning Post-Training from Instruct model has data-scale dependent behaviour:
For low-data regime, it yields low forgetting and backward transfer. For high-data regime, no
dominant factor robustly described theforgetting and backward transfer dynamics.

• Model Merging does not reliably mitigate forgetting across post-training pipelines (yet).

2 MEASURING SAMPLEWISE FORGETTING AND BACKWARD TRANSFER

apre

a
po

st

0 1

0

1
Backward
Transfer

Forgetting

Retention

Non-
acquisition

Consider an evaluation set of N multiple-choice questions
with k options. For each sample i, let apre

i , apost
i ∈ {0, 1}

indicate correctness before and after post-training. As illus-
trated in Fig. 2, each sample falls into one of four quadrants
based on effect by training on new task:

(i) Retention preserves knowledge (1→1),
(ii) Backward Transfer improves performance (0→1),
(iii) Forgetting reduces performance (1→0), and
(iv) non-acquisition has no effect (0→0).

We define sample-wise forgetting and backward transfer as the proportions of 1→0 and 0→1 flips,
respectively:

F =
1

N

N∑
i=1

1{apre
i = 1 ∧ apost

i = 0} (1)

BT =
1

N

N∑
i=1

1{apre
i = 0 ∧ apost

i = 1} (2)

These intuitive metrics confound genuine knowledge change with label flips caused by guessing,
especially when k is small. For example, two independent random binary classifiers (k=2) yield
F = 0.25 because 0.5× 0.5 = 0.25.
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Table 1: Catastrophic forgetting literature across LLM post-training stages. Continual learning
literature indicates extensive forgetting across the post-training pipeline. However, we find far less
forgetting when testing widely used post-training pipelines, indicating an important gap existing
between continual learning setups and how people post-train language models.

Stage Name Level Summary
CPT

(§3.1)
Investigating Continual Pretraining in LLMs:
Insights and Implications (Yıldız et al., 2024)

Med Most models show continual improvement;
only Llama-2 models degrade.

Examining Forgetting in Continual Pre-
training of Aligned LLMs (Li & Lee, 2024a)

High Continual pre-training degrades capabili-
ties, alignment and alters output behavior.

SFT/DPO
(§3.2)

Mitigating Forgetting in LLM Supervised Fine-
Tuning and Preference Learning (Fernando
et al., 2024)

Low Combining SFT and DPO sequentially
leads to forgetting and a poor balance be-
tween goals (∼ 2% on MMLU).

SFT
(§3.3)

Interpretable Catastrophic Forgetting of LLM
Fine-tuning via Instruction Vector (Jiang et al.,
2024)

High Fine-tuning on TRACE shows declines pri-
marily from lost instruction-following abil-
ity.

An Empirical Study of Catastrophic Forgetting
in LLMs During Continual Fine-tuning (Luo
et al., 2025)

High Forgetting of domain knowledge, reasoning
intensifies as model scale increases (∼ 10%
MMLU drop).

Catastrophic Forgetting in LLMs: A Compara-
tive Analysis Across Language Tasks (Haque,
2025)

High Severity varies by architecture and pre-
training quality; some models degrade
sharply while others barely change.

Mitigating Catastrophic Forgetting in LLMs
with Self-Synthesized Rehearsal (Huang et al.,
2024)

High Sequential fine-tuning causes major forget-
ting; synthetic rehearsal mitigates it.

RL
(§3.2)

Mitigating the Alignment Tax of RLHF (Lin
et al., 2024)

Med RLHF induces forgetting (“alignment tax”);
model averaging reduces it.

SFT/RL
(§3.2)

Understanding Catastrophic Forgetting in
LLMs via Implicit Inference (Kotha et al.,
2024)

Med Fine-tuning skews the model’s implicit task
inference rather than erasing capabilities.

Temporal Sampling for Forgotten Reasoning
in LLMs (Li et al., 2025)

High Fine-tuned LLMs often forget solutions
they previously generated (“temporal for-
getting”) across sizes and methods (SFT,
GRPO).

ātrue x

ā 1− ā

Figure 1: Accuracy ā de-
composes into true knowledge
ātrue and lucky guesses x.

A chance baseline for flips. We assume a simple response model:
on each item the model either knows the answer or guesses uniformly
among the k choices. Let ā be mean accuracy on a set. Then
ā = ātrue + x, where x is the fraction correct by chance. Since an
incorrect guess occurs with probability (k − 1)/k,

1− ā

x+ (1− ā)
=

k − 1

k
=⇒ x =

1− ā

k − 1
.

A 1→0 flip due purely to chance requires (i) a pre-training correct guess and (ii) a post-training error
(converse for backward transfer). Assuming independence between pre- and post-training guessing
events,

Fchance =
1− āpre

k − 1︸ ︷︷ ︸
correct by chance (pre)

· (1− āpost)︸ ︷︷ ︸
incorrect (post)

, BTchance = (1− āpre)︸ ︷︷ ︸
incorrect (pre)

· 1− āpost

k − 1︸ ︷︷ ︸
correct by chance (post)

.

These metrics depend only on aggregate accuracies and k; they require no logits or heavy computation.

Chance-adjusted forgetting and backward transfer. To isolate knowledge change beyond chance,
subtract the baselines and clip at zero:

Ftrue = max
(
F− Fchance, 0

)
, BTtrue = max

(
BT− BTchance, 0

)
.

For example, if accuracy drops from 80% to 70% on a 4-option MCQ test, raw forgetting is 10%,
but chance-adjusted forgetting is only about 6% – showing how the correction removes the effect of
lucky guesses. Clipping ensures the metric remains valid even if models perform below chance.
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Ceilings: how much could a model forget or improve? Observed forgetting can be small simply
because little was truly correct to begin with. The maximum possible forgetting equals the fraction
truly correct before post-training:

Fmax = āpre
true = āpre − xpre = max

(
k āpre − 1

k − 1
, 0

)
.

Similarly, the maximum possible backward transfer equals the fraction truly correct after post-training:

BTmax = āpost
true = āpost − xpost = max

(
k āpost − 1

k − 1
, 0

)
.

By construction Ftrue ≤ Fmax and BTtrue ≤ BTmax. Reporting the adjusted metrics alongside these
ceilings separates true knowledge loss/acquisition from chance and contextualizes headroom for
degradation or improvement.

Assumptions and scope. The correction uses two assumptions: (i) when the model does not
know an answer, it guesses uniformly at random; and (ii) pre- and post-training guessing events
are independent. These assumptions allow dataset-level adjustments from pre- and post-training
accuracies alone. Note that Ftrue could quantify failure to elicit previously accessible knowledge and
need not imply that the model has lost/unlearned the underlying information. Likewise, changes in
BTtrue often reflect improved elicitation rather than newly acquired knowledge.

3 WHEN, WHAT & HOW MUCH IS PRETRAINING KNOWLEDGE FORGOTTEN?

In this section, we ask three questions: when, what, and how much pretraining knowledge do
post-trained LLMs forget?

1. When is pretraining knowledge forgotten? Our analysis spans four widely used continual-training
regimes: (i) domain-continual training (§3.1), (ii) instruction tuning (§3.2), (iii) light SFT/RL on
reasoning traces, and (iv) large-scale SFT/RL for reasoning (§3.3). In total, we evaluate almost 30
model–training combinations chosen to reflect common practice, providing broad coverage of how
contemporary LLMs are post-trained in the wild. Each post-trained model is compared with its initial
checkpoint (details in the Appendix).

2. What pretraining knowledge is forgotten? We evaluate each model on 12 public benchmarks, col-
lectively subdivided into close to a 100 total subdomains. To summarize systematic patterns, we
cluster sub-benchmarks into nine semantically coherent groups that exhibit similar forgetting trends
(e.g., common sense, culture, deduction, language/communication, liberal arts, science/tech). These
clusters provide an better map of which pretraining knowledge areas are most affected by a given
post-training recipe.

3. How much pretraining knowledge is forgotten? Unless stated otherwise, chance-adjusted metrics
for forgetting (Ftrue) and backward transfer (BTtrue) are used to quantify the severity.

Experimental setup. We standardize settings across models for fair comparison. All experiments
use the LightEval framework (Habib et al., 2023) and log per-sample accuracy. We apply a
zero-shot chain-of-thought prompt to all models and require answers in a fixed MCQ format (see
Appendix); base models receive a few-shot prompt solely to teach the format. When available1, we
add chat-specific templates to be in line with best practices. We cap sequence length at 32K tokens,
except for Qwen2.5-7B-Math and Qwen2.5-7B-Math-Instruct Yang et al. (2024a), which are limited
to 4K2. Decoding uses temperature 0.6 with nucleus sampling (p = 0.95). We provide additional
details in the Appendix. To facilitate reproducibility and further inquiry, we will release per-sample
logs for every sub-benchmark alongside code.

We now showcase our results in the subsections below.

3.1 SUBAREA 1: DOMAIN-CONTINUAL PRETRAINING

Motivation. A popular class of continual learning works adapt general LLMs at the application layer
for domains such as coding, mathematics, search, and tool use. As generalist LLMs are increasingly

1This budget was sufficient in practice, we never required more tokens.
2Because base models sometimes continue into subsequent questions, we set explicit stop sequences to end

generation once a prediction is produced.
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Figure 2: Forgetting (left) and Backward Transfer (right) after domain-continual pretraining.
Forgetting is moderate and consistent across categories; backward transfer is low. Scaling model size
reduces forgetting and marginally improves backward transfer.

wrapped with tools and domain-specific interfaces, specialization must not erode broad pretraining
knowledge. Models still need to contextualize domain outputs, communicate with diverse users,
respect cultural norms, and uphold safety and ethical standards. These needs motivate our study of
forgetting and backward transfer under domain-continual pretraining.

Setup. We study continual pretraining that converts a general base model into a specialized one,
exemplified by Qwen2.5-Coder (Hui et al., 2024) and Qwen2.5-Math (Yang et al., 2024b).3 Un-
like general instruction tuning or reasoning post-training, domain-continual pretraining shifts the
underlying representation using large, relatively uncurated, web-scale domain corpora.

Main results. Figure 2 summarizes our findings. Domain-continual pretraining induces moderate-
large amount of forgetting among all post-training methods we evaluate. Backward transfer to general
abilities is weak: gains in the specialized domain rarely improve non-target tasks. The effect spans
categories of pretraining knowledge, no single category drives it, although math-specialized models
show significantly more forgetting. Lastly, larger models forget less and have marginally better
backward transfer.

Qualitative analysis. We performed manual errors analyses to check causes of forgetting. Our analy-
sis indicates reduced instruction-following fidelity (e.g., weaker adherence to constraints, formats,
and role-specific directives). Domain-continual pretraining appears to overfit to domain-specific
behaviors. For example, a coder model may answer “Who was the president of the US?” by burying
the answer within code. This is the primary driver of performance degradation, with worse answer
accuracy an important factor.

Takeaway

Domain-continual pretraining yields moderate forgetting across categories; backward transfer is
limited. Scaling model size reduces forgetting and marginally improves backward transfer.

3.2 SUBAREA 2: INSTRUCTION TUNING

Motivation. Base models often require carefully engineered prompts to elicit pretraining knowledge,
limiting usability. Modern post-training pipelines therefore add instruction tuning to enable natural
user interaction with minimal prompting. Most continual-learning work we surveyed focuses on
mitigating forgetting in this setting. We ask: To what extent does instruction following come at the
expense of previously learned knowledge?

3We treat domain-continual reasoning via SFT/RL separately in §3.3 and focus on domain-continual training
here.
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Figure 3: Forgetting (left) and Backward Transfer (right) after instruction-tuning. yields
moderate forgetting categories-wise with large backward transfer. Scaling model size reduces
forgetting and marginally improves backward transfer.

Setup. We measure forgetting and backward transfer from instruction tuning in generalist models
(Qwen2.5 (Yang et al., 2024a), Llama 3.1 (Dubey et al., 2024)) and domain-continual pretrained
models (Qwen2.5-Coder)4.

Results. As shown in Figure 3, there is minimal forgetting across models, with small spikes in
the Culture cluster. However, there is large backward transfer in all categories except culture and
language. Furthermore, scaling model size reduces forgetting and increases backward transfer. This
effect is consistent across domain-general and domain-specific base models. These findings suggest
that much of the continual-learning literature aims to reduce forgetting in a regime where forgetting
is already minimal. Shifting focus to other subareas of post-training might spur interesting research
directions.

Qualitative analysis. Transfer gains likely reflect better elicitation of pretraining knowledge:
instruction-tuned models use what they already know with straightforward prompts used in bench-
marks, whereas base models often require carefully crafted prompts.

Takeaway

Instruction tuning produces low forgetting but large backward-transfer gains across categories
and model families; both effects improve with increasing model scale.

3.3 SUBAREA 3: TRAINING WITH REASONING TRACES (SFT AND RL)

Motivation. Recent methods encourage explicit reasoning by letting models think on a scratchpad
before answering; which is now scaled in size and trace length with RL objectives. As training
domains and data grow, we measure how much such reasoning training induces forgetting to guide
continual-learning practice.

Setup. We consider two settings: (i) starting from a base model and (ii) starting from an
instruction-tuned model. For the latter, we separate light-touch post-training (small datasets) from
heavy post-training. We do not separate RL from SFT as the behavior across forgetting and backward
transfer is similar between the two objectives.

3.3.1 TRAINING WITH REASONING TRACES FROM BASE MODELS

Models. We evaluate QwQ-32B (from Qwen2.5-32B Base) (Qwen Team, 2025),
Qwen2.5-Math-7B-Instruct (RL post-trained with GRPO), and DeepSeek-R1-Distill models across
different models (Qwen2.5 Base and Llama 8B base) (DeepSeek-AI, 2025).

Results. From Figure 4, we see that across scales, model families, and training types, we observe large
gains in backward transfer with minimal forgetting similar in nature to instruction tuning. Similarly,

4Qwen2.5-Math Instruct is surprisingly tuned with GRPO which leads to it being classified under Reasoning

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Forgetting (left) and Backward Transfer (right) after reasoning training (SFT/RL)
from base model. Yields minimal forgetting and has high backward-transfer gains.

Figure 5: Forgetting (left) and Backward Transfer (right) after reasoning training from instruct:
low data scenario. Yields little forgetting and backward transfer. Forgetting decreases with model
scale.

forgetting is moderate for the lone category of Culture and correspondingly backward transfer there
is low. However, when compared to instruction tuning on the same base model (Figure 3)5, we see
lower forgetting and larger back-transfer.

Takeaway

Training with SFT/RL for reasoning yields minimal forgetting and large backward-transfer gains,
similar in nature to instruction tuning. However, compared to instruction tuning, we see lower
forgetting and larger back-transfer.

We conclude that much of the backward transfer reflects improved instruction following. To isolate
reasoning effects beyond elicitation, the next sections analyze reasoning training that starts from an
instruction-tuned model, for better exploration of gains. However, models with light-touch reasoning
training (low data) behave differently from those trained at scale (high data). We therefore present
these two cases separately.

3.3.2 REASONING TRAINING FROM INSTRUCTION-TUNED MODELS: LOW-DATA SCENARIO

Models. We use the s1.1 family (7B, 14B, 32B) (Muennighoff et al., 2025) and LIMO (Ye et al.,
2025) all tuned from corresponding sized Qwen instruct models.

5Corresponding tables are available in Appendix E.4 for detailed comparison
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Figure 6: Forgetting (left) and Backward Transfer (right) after reasoning training from instruct:
high data scenario. No single factor robustly explains the dynamics of forgetting and backward
transfer

Results. Figure 5 summarizes our findings. Across categories, models show minimal forgetting and
low backward transfer. This makes sense, training for a few passes on little data leaves pretraining
knowledge largely intact: the model does not forget much, but it also exhibits little backward transfer
gains beyond the instruction-tuned baseline. Scaling model size marginally lowers forgetting, and the
smaller teacher–student gap similarly tends to reduce backward transfer.

Takeaway

For low-data regime, reasoning training from instruct models yields low forgetting and back-
ward transfer. Forgetting decreases with model scale; backward transfer gains also fall with a
narrowing student-teacher gap.

3.3.3 REASONING TRAINING FROM INSTRUCTION-TUNED MODELS: HIGH-DATA SCENARIO

Models. We evaluate OpenCodeReasoner and OpenMath2 (Bercovich et al., 2025), OpenThinker-7B,
Openthinker2-32B, and OpenThinker3-7B (Guha et al., 2025), and Intellect-2-32B (Prime Intellect
Team et al., 2025). This spans SFT (former) and RL (Intellect-2).

Results. Results vary by domain mix and model quality. The OpenThinker models shows
low–to–moderate forgetting and moderate backward transfer, perhaps due to the breadth of the
training datamix, whereas OpenCodeReasoner models show consistently high forgetting with low
backward transfer gains due to the narrower training data. Scaling model size, if compared in
Openthinker models, signals improvements in both forgetting and backward transfer – as seen in most
previous sections. Decentralized training, as in Intellect-2, in contrast showed minimal forgetting or
backward transfer. We conjecture that the model largely remain unchanged compared to the original
model as it shows negligible gains on the optimized math benchmarks Hochlehnert et al. (2025).
However, the results here remain preliminary. We do not find a single dominant factor—initialization,
data regime, or scale that sufficiently explains forgetting and backward-transfer dynamics. We believe
controlling the finer details which determine the quality of the trained model might lead to better
conclusions.

Takeaway

No single factor robustly explains the dynamics of forgetting and backward transfer – training
on a mix of domains seems to improve both forgetting and backward transfer.

4 DOES MODEL MERGING REDUCE FORGETTING?

textbfMotivation. Recent work shows that offline model merging can combine capabilities from
multiple models (Dziadzio et al., 2025). Unlike classical continual learning (De Lange et al., 2022),

8
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Figure 7: Qwen2.5 Base with Coder Merge (7B) Forgetting and Backward-Transfer relative to
Qwen2.5 Base (without MMLU). Induces large forgetting and little backward transfer.

it requires neither the original training data nor the ability to resume training, which is practical in
resource-constrained settings.

Setup. We evaluate Exponential Moving Average (EMA) merging; in the two-checkpoint case this is
linear interpolation,

θEMA(α) = α θpre + (1− α) θpost.

We also evaluate linear interpolation (SLERP). Prior large-scale studies find these simple schemes
effective for continual learning with foundation models (Roth et al., 2024). Our experiments compare
LERP and SLERP across OpenThinker-7B, OpenThinker3-7B, and Qwen2.5-Coder-7B, together
with their base checkpoints.

Results. We compare merged checkpoints (LERP/SLERP) to the post-trained model θpost; results
for θpre appear in the Appendix. For Qwen2.5-Coder-7B and OpenThinker3-7B, even small mixes
with the base checkpoint severely degrade performance (Figures 7, 10). In contrast, OpenThinker-7B
shows small overall gains, accompanied by moderate forgetting (Figure 11). In our setting, merging
does not mitigate forgetting. This may reflect that we merge only two checkpoints, whereas prior
work often merges eight or more (Yadav et al., 2023; 2024). We further hypothesize that weight drift
between our checkpoints is larger than is typical in the merging literature, which could explain these
outcomes.

Takeaway

Model merging does not yet mitigate forgetting in post-training pipelines.

Merging remains promising, but further study is needed to determine when each method works, how
to overcome its limitations, and whether increased scale can offset these difficulties.

5 CONCLUSION

We present a new metric for sample-wise forgetting and backward transfer that corrects for chance
in multiple-choice evaluations. Our results challenge a common claim: sequential training does not
automatically erode pre-training knowledge. Forgetting depends on the post-training method and its
scale. By focusing on sample-wise forgetting, we offer a clearer map of what knowledge is lost and
in what stages of instruction tuning do language models lose during post-training – providing fertile
ground to study how to preserve (minimize forgetting) and accumulate (higher backward transfer)
knowledge while adding new capabilities by post-training. Promising ways to prevent forgetting
include: (1) Designing objectives and data that explicitly penalize 1→0 transitions; (2) Using targeted
synthetic corpora or brief mid-training bursts to repair localized forgetting; (3) Adding retrieval
mechanisms to reduce reliance on in-weight knowledge storage.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido
Galil, Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran
Zilberstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald
Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen,
Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia,
Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek,
Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shubham
Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus Kliegl, Rabeeh
Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Brandon Norick, Joseph
Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary, Abhinav Khattar, Deepak
Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha,
Sahil Jain, Christine Harvey, Elad Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy
Putterman, George Lam, Arun Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang,
Anna Warno, Abhilash Somasamudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar
Mor, Omer Ullman Argov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Monika Katariya,
Marco Rovinelli, Viji Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam,
Smita Ithape, Karthik Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit
Daw, Denys Fridman, Erick Galinkin, Michael Evans, Katherine Luna, Leon Derczynski, Nikki
Pope, Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika
Katariya, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii
Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro,
Jonah Alben, Yonatan Geifman, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient
reasoning models, 2025. URL https://arxiv.org/abs/2505.00949.

Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-jussà. Continual lifelong learning
in natural language processing: A survey. In Donia Scott, Nuria Bel, and Chengqing Zong
(eds.), Proceedings of the 28th International Conference on Computational Linguistics, pp. 6523–
6541, Barcelona, Spain (Online), December 2020. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.574. URL https://aclanthology.org/
2020.coling-main.574/.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Shiqi Chen, Jinghan Zhang, Tongyao Zhu, Wei Liu, Siyang Gao, Miao Xiong, Manling Li, and
Junxian He. Bring reason to vision: Understanding perception and reasoning through model
merging. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=ntCAP6tMoX.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2022.
doi: 10.1109/TPAMI.2021.3057446.

DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954, 2024. URL https://github.com/deepseek-ai/DeepSeek-LLM.

DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning, 2025. URL https://arxiv.org/abs/2501.12948.

10

https://openreview.net/forum?id=CQsmMYmlP5T
https://arxiv.org/abs/2505.00949
https://aclanthology.org/2020.coling-main.574/
https://aclanthology.org/2020.coling-main.574/
https://openreview.net/forum?id=ntCAP6tMoX
https://openreview.net/forum?id=ntCAP6tMoX
https://github.com/deepseek-ai/DeepSeek-LLM
https://arxiv.org/abs/2501.12948


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024. URL https://doi.org/10.48550/arXiv.2407.21783.

Sebastian Dziadzio, Vishaal Udandarao, Karsten Roth, Ameya Prabhu, Zeynep Akata, Samuel
Albanie, and Matthias Bethge. How to merge multimodal models over time? In ICLR 2025
Workshop on Modularity for Collaborative, Decentralized, and Continual Deep Learning, 2025.

Heshan Fernando, Han Shen, Parikshit Ram, Yi Zhou, Horst Samulowitz, Nathalie Baracaldo, and
Tianyi Chen. Mitigating forgetting in llm supervised fine-tuning and preference learning. arXiv
preprint arXiv:2410.15483, 2024.

Heshan Fernando, Han Shen, Parikshit Ram, Yi Zhou, Horst Samulowitz, Nathalie Baracaldo, and
Tianyi Chen. Mitigating forgetting in llm supervised fine-tuning and preference learning, 2025.
URL https://arxiv.org/abs/2410.15483.

Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cog-
nitive Sciences, 3(4):128–135, 1999. ISSN 1364-6613. doi: https://doi.org/10.
1016/S1364-6613(99)01294-2. URL https://www.sciencedirect.com/science/
article/pii/S1364661399012942.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighte-
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A EXTENDED RELATED WORKS

Post-training techniques. A broad set of post-training methods now underpins standard LLM
pipelines. Supervised fine-tuning (SFT) (Ouyang et al., 2022) remains the core step, used for continued
pre-training and instruction tuning. At later stages, reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022) aligns model outputs with human preferences. To simplify preference
learning, direct preference optimization (DPO) (Rafailov et al., 2023) provides a direct loss surrogate.
With the rise of test-time scaling (e.g., sampling depth or compute at inference), group relative policy
optimization (GRPO) (Shao et al., 2024) has been proposed to elicit stronger intrinsic reasoning.
Taken together, these methods introduce distinct objectives and optimizers, increasing the complexity
of the post-training stack (Wang et al., 2025).

Measuring catastrophic forgetting. Catastrophic forgetting is the loss of previously acquired
knowledge when a network learns new information. Early studies examined the effect in small models
and simplified settings (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999). Lopez-Paz &
Ranzato (2017) formalized forgetting via backward transfer, the effect of learning a new task on
performance in earlier ones: positive values indicate improvement; negative values indicate forgetting.
Recent work extends these analyses to deep networks trained on large-scale data, with growing
attention to language models (Biesialska et al., 2020; Wu et al., 2022).

Benchmark paradigm. Task-incremental learning is the dominant paradigm for benchmarking
forgetting (De Lange et al., 2022). Models learn a sequence of tasks with clear boundaries, and task
labels are available at train and test time. Class-incremental learning removes test-time task identifiers,
making evaluation stricter (Wang et al., 2024). Other views analyze continual learning through
positive/negative transfer (Yıldız et al., 2025). At the sample level, Toneva et al. (2019) introduced
forgetting metrics that identify “unforgettable” examples (stable once learned) and “catastrophically
forgotten” examples (highly plastic), and showed these patterns are consistent across architectures
and random seeds.

Language-model forgetting. Recent studies focus on forgetting induced by instruction tuning.
Luo et al. (2025) trained models up to 7B parameters with SFT and evaluated multiple knowledge
categories. DeepSeek-AI (2024) reported instruction-tuning-related regressions on sentence com-
pletion even for 67B models. Fernando et al. (2025) examined forgetting across SFT followed by
RLHF and proposed joint-training strategies to mitigate it. Lin et al. (2024) framed instruction-tuning
degradation as an “alignment tax” (performance loss on pre-training skills due to alignment) and
found model merging to be the most Pareto-efficient mitigation among tested techniques. Li &
Lee (2024b) studied continual pre-training on aligned LMs and observed notable regressions in
alignment-related behavior.

Catastrophic forgetting in reasoning training pipelines. Work on reasoning-oriented LMs high-
lights new failure modes. Li et al. (2025) defined temporal forgetting: models lose the ability to solve
problems they could solve at earlier training checkpoints. The effect appears in both RL-trained and
instruction-tuned models. They proposed temporal sampling—round-robin sampling from recent
checkpoints—as a mitigation. Pipatanakul et al. (2025) merged a language-fine-tuned model with
DeepSeek R1 Distill (70B; both derived from Llama 3.3 70B (Dubey et al., 2024)) to adapt reasoning
while preserving language competence. For multimodal models, Chen et al. (2025) found that later
layers primarily support reasoning, whereas early layers concentrate perception, suggesting layer-wise
interventions. We document forgetting extensively across post-training pipelines in our work.

Each new method introduces its own objective and optimization procedure, adding to the complexity
of the post-training landscape (Wang et al., 2025).

Mitigation strategies. Sequential SFT to RLHF/DPO can exacerbate forgetting. To counteract this,
researchers explore: (i) model averaging, interpolating between pre- and post-RLHF checkpoints to
trade off alignment and retention (Lin et al., 2024); (ii) joint post-training, optimizing supervised and
preference objectives simultaneously with convergence guarantees (Fernando et al., 2024); and (iii)
unified fine-tuning (UFT), which folds instruction tuning and alignment into a single implicit-reward
objective (Wang et al., 2025). Additional techniques—including advantage models and selective
rehearsal—stabilize RLHF by shaping reward distributions and replaying curated data (Peng et al.,
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2023). Online Merging Optimizers (OMO) combine gradients from SFT and RLHF models during
training to maximize reward while preserving pre-trained skills (Lu et al., 2024). Theory supports
these interventions: up to permutation symmetries, weights of homologous models tend to lie in a
shared low-loss basin (Ainsworth et al., 2023). Hence, we were quite surprised that model merging
does not work for our simple case of mitigating forgetting during post-training with only two deep
networks.

Forgetting at scale. Pre-training mitigates forgetting relative to training from scratch (Mehta et al.,
2023; McRae & Hetherington, 1993). Ramasesh et al. (2022) further found that pretrained ResNets
and Transformers (up to ∼100M parameters) are robust to forgetting at scale; language experiments
showed similar trends. However, Luo et al. (2025) reported increased forgetting with scale in the
1–7B LM regime, suggesting modality- and regime-dependent behavior. In contrast to these works,
we study forgetting during post-training of language models.

B EXPERIMENTAL SETUP

B.1 EVALUATION

To evaluate performance differences between models, we employ chain-of-thought (CoT) prompting
Wei et al. (2022) on multiple-choice question answering (MCQA) datasets. In this setup, the model
auto-regressively generates a reasoning chain prior to producing its final answer. The predicted
choice is then extracted from the generated text and compared against the ground-truth label. When
available, chat-specific templates are incorporated into the prompt to ensure consistent formatting.

Because some models, particularly base models, tend to continue generating responses for subsequent
questions after completing the current one, we provide explicit stop sequences to terminate generation
once a prediction has been produced.

To encourage answers in strict MCQA format (models sometimes output the option text instead of
the letter), we prepend the following instruction prompt:

{Instruction}
On the very last line, write exactly "Answer: $LETTER" (e.g. "Answer: B"),
with no extra punctuation, no lowercase, no *, and no trailing spaces.
Think step by step, showing your reasoning.
Question: "{Question}"

For the case of base models, where few-shot prompting yields a more accurate elicitation of their
knowledge, we use few-shot prompting:

{Instruction}
Question: "{Few-Shot Question 1}"
{Example answer 1}

... <--- more examples

Question: "{Question}"

Datasets where CoT reasoning traces are provided for few-shot prompting, we use those. In the cases
where this is not provided (PIQA, MCTest, Social-IQa, ARC, MCTest, and Hellaswag) CoT few-shot
examples were generated and then confirmed these are not included in the benchmarks1.

All experiments are conducted using the Hugging Face LightEval framework, with results logged
at the sample level. For generation, we allow up to 32,768 tokens, which we found sufficient for
models to complete their chain of thought and provide an answer. In cases where the maximum
trained context length is smaller, then the generation is reduced to that number, as is the case with
Qwen2.5-7B-Math and Qwen2.5-7B-Math-Instruct Yang et al. (2024a). The temperature is set to 0.6
and nucleus sampling with p = 0.95 is applied.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 DATASETS

To evaluate broad model knowledge and capabilities, we benchmark on twelve public datasets:
MMLU Hendrycks et al. (2021b;a), BBH Suzgun et al. (2022), GPQA Rein et al. (2024), MuSR
Sprague et al. (2024), ARC Clark et al. (2018), TruthfulQA Lin et al. (2022), HellaSwag Zellers
et al. (2019), Social IQa Sap et al. (2019), MCTest Richardson et al. (2013), PIQA Bisk et al. (2020),
CommonsenseQA Talmor et al. (2019), and SaladBench Li et al. (2024). Several of these benchmarks,
namely MMLU and BBH provide subject-level annotations, enabling fine-grained sub-benchmark
analyses in addition to aggregate reporting. For the cases of MMLU and BBH, subcategory labels
are provided which allow for splitting into further sub-benchmark evaluates by subjects. To enable
easier understanding, we group these (sub-)benchmarks into high-level groups used to evaluate the
capabilities of the models. They are grouped such that (sub-)benchmarks in the same group show
similar trends in forgetting and improvement.

They are grouped as follows:

Commonsense:

• Commonsense QA
• PIQA

Culture:

• BBH (sports understanding and movie recommendation)

Logic

• BBH (navigate, causal judgment, penguins in a table, web of lies, tracking shuffled objects
three objects, tracking shuffled objects seven objects, tracking shuffled objects five ob-
jects, temporal sequences, reasoning about colored objects, logical deduction three objects,
logical deduction seven objects, logical deduction five objects, formal fallacies, and date
understanding)

• ARC (easy and challenge)
• MuSR (murder mysteries, object placements, and team allocation)
• MMLU (logical fallacies)

Knowledge

• BBH (object counting)
• MMLU (miscellaneous and global facts)
• MCTest

Language

• BBH (snarks, disambiguation qa, ruin names, and hyperbaton)
• Social IQa
• Hellaswag
• BBH (salient translation error detection)

Liberal Arts

• MMLU (world religions, us foreign policy, sociology, security studies, public relations,
professional psychology, professional law, prehistory, philosophy, management, international
law, high school world history, high school us history, high school psychology, high school
microeconomics, high school macroeconomics, high school government and politics, high
school geography, and high school european history)

Math
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• BBH (geometric shapes, and boolean expressions)
• MMLU (high school statistics, high school mathematics, formal logic, elementary mathe-

matics, econometrics, college mathematics, and abstract algebra)

Safety 2

• MMLU (moral scenarios, moral disputes, jurisprudence, and business ethics)
• TruthfulQA (mc1)
• SaladBench (mrq)

Science & Tech

• MMLU (marketing, virology, professional medicine, professional accounting, nutrition,
medical genetics, machine learning, human sexuality, human aging, high school physics,
high school computer science, high school chemistry, high school biology, electrical engi-
neering, conceptual physics, computer security, college physics, college medicine, college
computer science, college chemistry, college biology, clinical knowledge, astronomy, and
anatomy)

• GPQA (diamond)

Unless otherwise noted, we follow the standard task formats and official evaluation splits; for Truth-
fulQA we report MC1, for GPQA the Diamond subset, and for SaladBench the MRQ configuration.
This taxonomy serves as the backbone for our analyses of capability acquisition and retention across
training and deployment.

1MMLU is evaluated with few-shot no CoT prompting for the base models
2These are only used in comparisons which do not include a base model because TruthfulQA and SaladBench

are designed measure the default behavior of the model rather than knowledge, which few-shot prompting would
bias.
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C EVALUATION COMPARISON

C.1 PROMPTING METHOD

In additional tests, we measure the ability of base-models using the same prompting as instruction-
tuned models. Under these conditions we see ostensibly large forgetting in domain adaptive continual-
pretrained models. Qualitative analysis suggests that this is largely due to the models outputting
code, wherein the location of the answer can be obscured. When this is contrasted with the few-
shot prompting, where there is much less forgetting, we conclude that forgetting metrics can vary
significantly depending on the way knowledge is elicited, especially when training on narrow tasks.

Figure 8: Coder model using chat template prompting

Due to this, measuring performance of base models on certain datasets can become nontrivial. While
benchmarks measuring knowledge or capabilities may be elicted through few-shot prompting, others,
such as truthfulness or safety become more difficult as prompting them with examples would bias
their behavior, invalidating the purpose of the dataset. Further works consider exploring the effect
of providing no-knowledge few-shot prompting, where the format of the question and answer is
provided without leaking examples biasing the models output.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.2 METRIC

Figure 9: Coder model comparing conventional forgetting (left) against sample-wise forgetting (right)

Additionally, the sample-wise nature of the introduced metric allows more forgetting to be uncovered
than is possible with the standard metric, the difference between the accuracy after training from
the accuracy before training, clipped at 0. We demonstrate this on the example of the forgetting
when undergoing domain continual pretraining for Qwen2.5 to Qwen2.5 Coder (7B) when using the
standard metric

From the Figure 9 there appears to be little forgetting when using the conventional forgetting.
However, using sample-wise data, moderate forgetting can be seen.
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D MODEL MERGING: RESULTS

Figure 10: Qwen2.5 Instruct with OpenThinker3 Merge (7B) Forgetting and Backward-Transfer
relative to OpenThinker3 (on MMLU)

MODERATE SUCCESS CASE

Figure 11: Qwen2.5 Instruct with OpenThinker Merge (7B) Forgetting and Backward-Transfer
relative to OpenThinker (all benchmarks)
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E QUANTIFYING FORGETTING ACCURATELY (TABLES FOR REFERENCING
PLOTS)

E.1 INSTRUCTION TUNING (GENERAL)

Table 2: Instruction Tuning (General): Forgetting (Part 1 of 2)
Category Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct Qwen2.5-7B-Instruct

Common Sense 2.2 ±0.7 (42.6) 3.1 ±0.3 (61.8) 6.3 ±0.8 (63.0)
Culture 12.7 ±0.9 (74.7) 16.2 ±1.3 (79.5) 17.0 ±3.8 (70.2)
Logic 3.7 ±0.5 (67.1) 3.9 ±0.3 (71.8) 8.1 ±0.6 (51.0)
Knowledge/QA 21.2 ±6.3 (21.9) 4.1 ±5.1 (39.7) 7.5 ±6.0 (43.4)
Language 8.3 ±1.5 (57.2) 7.1 ±0.5 (54.9) 5.7 ±2.8 (33.1)
Liberal Arts - 3.7 ±0.3 (55.4) 3.8 ±0.5 (46.6)
Math 9.9 ±2.1 (70.9) 4.2 ±0.6 (53.7) 2.2 ±0.6 (37.1)
Safety/Truth 2.4 ±2.6 (7.4) 2.0 ±0.3 (29.4) 4.3 ±1.7 (24.3)
Science/Tech - 2.5 ±0.3 (47.7) 2.4 ±0.2 (33.2)

Total 7.8 ±0.4 (53.1) 4.8 ±0.5 (56.2) 6.1 ±1.0 (45.7)

Table 3: Instruction Tuning (General): Forgetting (Part 2 of 2)
Category Llama-3.1-8B-Instruct

Common Sense 5.3 ±1.3 (53.6)
Culture 18.9 ±5.9 (65.0)
Logic 5.3 ±0.4 (18.3)
Knowledge/QA 12.2 ±2.8 (48.2)
Language 4.9 ±2.8 (22.2)
Liberal Arts 5.0 ±0.3 (53.7)
Math 4.1 ±0.5 (32.8)
Safety/Truth 6.8 ±0.8 (32.6)
Science/Tech 4.7 ±0.3 (46.8)

Total 6.9 ±1.1 (40.3)

Table 4: Instruction Tuning (General): Backward Transfer (Part 1 of 2)
Category Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct Qwen2.5-7B-Instruct

Common Sense 28.0 ±3.9 (76.9) 20.2 ±3.3 (84.6) 16.7 ±2.8 (76.8)
Culture 6.5 ±0.6 (65.0) 3.3 ±1.1 (61.4) 2.8 ±2.1 (43.8)
Logic 14.6 ±1.3 (81.7) 10.2 ±0.5 (80.2) 11.9 ±4.3 (55.5)
Knowledge/QA 2.2 ±1.0 (1.8) 19.0 ±1.1 (60.4) 14.0 ±3.1 (54.8)
Language 5.4 ±0.6 (51.6) 9.1 ±0.6 (57.1) 10.8 ±1.2 (38.7)
Liberal Arts - 22.6 ±1.6 (80.8) 23.6 ±0.6 (73.3)
Math 10.4 ±2.1 (73.1) 22.3 ±1.3 (78.8) 23.6 ±1.5 (66.8)
Safety/Truth 27.3 ±5.5 (42.1) 27.9 ±2.5 (64.3) 23.1 ±2.6 (50.1)
Science/Tech - 23.7 ±2.1 (76.0) 26.5 ±1.2 (65.2)

Total 13.0 ±0.7 (60.8) 18.0 ±1.4 (73.9) 16.6 ±0.7 (59.2)
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Table 5: Instruction Tuning (General): Backward Transfer (Part 2 of 2)
Category Llama-3.1-8B-Instruct

Common Sense 17.8 ±5.8 (70.3)
Culture 9.2 ±5.6 (46.2)
Logic 37.6 ±1.3 (49.6)
Knowledge/QA 13.7 ±1.4 (52.9)
Language 22.6 ±6.5 (42.2)
Liberal Arts 15.3 ±2.2 (67.5)
Math 15.5 ±0.8 (46.9)
Safety/Truth 11.4 ±1.8 (38.5)
Science/Tech 14.6 ±0.9 (60.1)

Total 20.0 ±1.7 (55.9)

Table 6: Instruction Tuning (Task): Forgetting (Part 1 of 2)
Category Qwen2.5-Coder-14B-Instruct Qwen2.5-Coder-32B-Instruct Qwen2.5-Coder-3B-Instruct

Common Sense 5.1 ±0.3 (62.3) 2.9 ±0.5 (57.7) 10.2 ±1.6 (49.8)
Culture 15.9 ±2.0 (54.1) 16.6 ±0.9 (68.2) 14.7 ±3.6 (38.7)
Logic 7.3 ±0.6 (75.8) 5.4 ±0.3 (66.8) 15.9 ±0.6 (38.0)
Knowledge/QA 5.4 ±1.7 (35.6) 4.7 ±0.7 (43.9) 4.4 ±4.1 (25.2)
Language 9.6 ±1.0 (49.9) 8.0 ±0.5 (55.3) 8.0 ±0.8 (20.7)
Liberal Arts - 4.7 ±0.5 (60.6) -
Math 16.2 ±2.4 (45.2) 3.4 ±1.0 (50.6) 14.4 ±1.2 (39.6)
Safety/Truth 2.7 ±1.7 (19.0) 4.4 ±0.6 (35.1) 5.1 ±5.5 (10.4)
Science/Tech - 3.7 ±0.5 (50.3) -

Total 8.0 ±0.8 (50.7) 5.5 ±0.3 (56.4) 9.5 ±1.0 (31.4)

Table 7: Instruction Tuning (Task): Forgetting (Part 2 of 2)
Category Qwen2.5-Coder-7B-Instruct

Common Sense 5.9 ±0.7 (50.1)
Culture 19.1 ±5.0 (57.1)
Logic 12.5 ±1.1 (53.4)
Knowledge/QA 16.1 ±2.7 (55.0)
Language 10.6 ±1.9 (37.1)
Liberal Arts 8.6 ±1.0 (59.4)
Math 16.4 ±11.4 (47.8)
Safety/Truth 5.6 ±3.3 (26.0)
Science/Tech 6.3 ±1.2 (43.8)

Total 10.9 ±1.4 (48.6)

Table 8: Instruction Tuning (Task): Backward Transfer (Part 1 of 2)
Category Qwen2.5-Coder-14B-Instruct Qwen2.5-Coder-32B-Instruct Qwen2.5-Coder-3B-Instruct

Common Sense 15.5 ±1.6 (76.2) 20.4 ±2.3 (81.0) 16.4 ±4.4 (58.1)
Culture 10.0 ±1.5 (47.1) 4.0 ±0.8 (50.2) 8.8 ±4.5 (30.3)
Logic 12.4 ±0.6 (82.0) 11.8 ±0.8 (75.0) 7.2 ±1.3 (25.8)
Knowledge/QA 25.0 ±3.3 (60.2) 20.8 ±2.4 (64.7) 24.0 ±2.8 (50.4)
Language 9.2 ±1.1 (47.9) 9.2 ±1.0 (55.6) 7.8 ±0.5 (20.4)
Liberal Arts - 16.3 ±3.8 (76.1) -
Math 14.0 ±2.8 (42.8) 22.4 ±2.1 (76.1) 4.0 ±1.1 (27.7)
Safety/Truth 13.0 ±2.2 (32.9) 21.8 ±1.4 (57.5) 18.6 ±4.0 (29.0)
Science/Tech - 18.9 ±3.8 (70.8) -

Total 15.2 ±1.2 (60.0) 16.1 ±1.3 (70.2) 15.2 ±1.3 (39.1)
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Table 9: Instruction Tuning (Task): Backward Transfer (Part 2 of 2)
Category Qwen2.5-Coder-7B-Instruct

Common Sense 21.5 ±2.1 (70.9)
Culture 7.8 ±7.0 (39.9)
Logic 14.8 ±2.8 (55.1)
Knowledge/QA 11.4 ±0.7 (51.6)
Language 7.6 ±1.5 (30.5)
Liberal Arts 11.5 ±3.1 (63.3)
Math 15.3 ±4.2 (48.3)
Safety/Truth 14.4 ±3.2 (38.4)
Science/Tech 15.7 ±3.1 (56.2)

Total 14.3 ±1.2 (53.1)

Table 10: Domain-continual pretraining: Forgetting (Part 1 of 2)
Category Qwen2.5-Coder-14B Qwen2.5-Coder-32B Qwen2.5-Coder-3B

Common Sense 10.2 ±2.2 (40.4) 12.3 ±1.6 (61.8) 16.8 ±8.4 (51.8)
Culture 13.9 ±1.4 (74.0) 10.7 ±1.4 (79.5) 14.8 ±4.8 (52.8)
Logic 5.8 ±0.4 (66.7) 8.2 ±0.6 (71.8) 6.7 ±0.7 (34.3)
Knowledge/QA 23.4 ±12.7 (29.2) 4.9 ±4.2 (39.7) 20.5 ±20.9 (23.7)
Language 9.4 ±1.5 (56.1) 7.8 ±0.6 (54.9) 7.3 ±0.8 (23.3)
Liberal Arts - 3.8 ±1.3 (55.4) -
Math 10.2 ±1.9 (71.8) 7.9 ±1.5 (53.7) 9.1 ±2.1 (52.0)
Safety/Truth 1.1 ±1.8 (7.3) 2.7 ±1.3 (29.4) 4.9 ±2.5 (16.6)
Science/Tech 1.8 ±1.8 (7.1) 3.9 ±1.6 (47.7) 0.6 ±1.4 (3.7)

Total 10.6 ±1.0 (48.2) 7.2 ±0.8 (56.2) 12.1 ±2.3 (35.4)

Table 11: Domain-continual pretraining: Forgetting (Part 2 of 2)
Category Qwen2.5-Coder-7B Qwen2.5-Math-7B

Common Sense 17.0 ±3.7 (61.9) 32.0 ±4.2 (61.9)
Culture 13.3 ±4.3 (67.9) 24.1 ±3.6 (67.9)
Logic 10.2 ±0.9 (51.3) 25.7 ±3.8 (51.3)
Knowledge/QA 7.9 ±2.9 (48.4) 25.8 ±5.1 (48.4)
Language 10.2 ±1.4 (40.0) 17.9 ±3.0 (40.0)
Liberal Arts 3.7 ±0.3 (46.6) 11.8 ±1.2 (46.6)
Math 4.2 ±0.6 (37.8) 10.5 ±1.9 (37.8)
Safety/Truth 2.9 ±0.7 (24.3) 8.1 ±2.6 (24.3)
Science/Tech 2.7 ±0.4 (33.2) 7.7 ±0.9 (33.2)

Total 9.2 ±1.0 (49.0) 20.1 ±1.4 (49.0)

Table 12: Domain-continual pretraining: Backward Transfer (Part 1 of 2)
Category Qwen2.5-Coder-14B Qwen2.5-Coder-32B Qwen2.5-Coder-3B

Common Sense 12.8 ±1.3 (43.8) 9.2 ±3.4 (57.7) 8.2 ±3.2 (40.3)
Culture 3.8 ±1.1 (58.1) 3.5 ±0.4 (68.2) 5.9 ±2.0 (38.8)
Logic 9.4 ±0.8 (70.4) 5.7 ±0.9 (68.2) 9.6 ±1.0 (38.1)
Knowledge/QA 9.0 ±5.4 (14.0) 7.1 ±3.6 (43.9) 5.4 ±6.9 (7.5)
Language 5.8 ±0.4 (49.9) 7.4 ±1.0 (55.3) 6.2 ±1.1 (20.7)
Liberal Arts - 7.5 ±3.5 (60.6) -
Math 7.1 ±2.2 (69.4) 5.1 ±1.5 (50.6) 7.3 ±2.0 (49.7)
Safety/Truth 9.4 ±3.4 (20.5) 6.5 ±0.9 (35.1) 2.4 ±2.4 (14.5)
Science/Tech 4.6 ±0.9 (11.0) 6.0 ±3.1 (50.3) 0.5 ±0.9 (2.8)

Total 7.6 ±1.2 (44.5) 7.3 ±1.0 (56.6) 5.5 ±0.8 (26.8)
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Table 13: Domain-continual pretraining: Backward Transfer (Part 2 of 2)
Category Qwen2.5-Coder-7B Qwen2.5-Math-7B

Common Sense 8.2 ±1.5 (50.1) 3.5 ±2.3 (23.9)
Culture 8.6 ±1.3 (59.1) 4.3 ±1.7 (37.1)
Logic 9.6 ±0.4 (49.9) 5.1 ±2.1 (28.4)
Knowledge/QA 10.7 ±2.6 (53.7) 1.4 ±1.4 (18.6)
Language 7.8 ±1.2 (37.1) 4.5 ±1.4 (21.1)
Liberal Arts 12.8 ±4.3 (59.9) 1.9 ±2.4 (31.1)
Math 8.9 ±1.6 (45.8) 4.7 ±1.6 (33.1)
Safety/Truth 9.7 ±3.4 (33.9) 1.9 ±2.1 (13.3)
Science/Tech 9.0 ±3.7 (42.6) 3.0 ±2.2 (24.6)

Total 9.2 ±1.2 (49.3) 3.2 ±1.6 (26.3)

Table 14: Trained from Base: Forgetting (Part 1 of 2)
Category QwQ-32B DeepSeek-R1-Distill-Qwen-32B Qwen2.5-Math-7B-Instruct

Common Sense 2.6 ±0.4 (61.8) 3.0 ±0.4 (61.8) 7.9 ±4.0 (23.9)
Culture 15.9 ±1.3 (79.5) 19.2 ±1.3 (79.5) 19.3 ±5.4 (37.1)
Logic 2.2 ±0.2 (71.6) 1.8 ±0.3 (71.8) 9.4 ±2.1 (28.4)
Knowledge/QA 3.4 ±4.4 (39.7) 4.0 ±5.2 (39.7) 6.8 ±1.2 (18.6)
Language 5.9 ±0.8 (54.9) 5.4 ±0.6 (54.9) 9.9 ±4.4 (21.1)
Liberal Arts 2.2 ±0.2 (55.4) 2.6 ±0.4 (55.4) 14.6 ±1.6 (31.1)
Math 1.5 ±0.4 (53.7) 1.5 ±0.2 (53.7) 6.4 ±0.8 (33.1)
Safety/Truth 1.9 ±0.6 (29.4) 2.1 ±0.6 (29.4) 5.9 ±2.6 (13.3)
Science/Tech 1.3 ±0.2 (47.7) 1.4 ±0.1 (47.7) 10.0 ±1.6 (24.6)

Total 3.7 ±0.5 (56.1) 4.2 ±0.5 (56.2) 9.9 ±2.2 (26.3)

Table 15: Trained from Base: Forgetting (Part 2 of 2)
Category DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Llama-8B

Common Sense 3.0 ±1.5 (25.5) 6.6 ±1.6 (53.6)
Culture 15.4 ±3.9 (37.4) 23.2 ±4.5 (65.0)
Logic 3.1 ±0.2 (28.2) 3.7 ±0.4 (18.3)
Knowledge/QA 2.9 ±2.1 (19.1) 7.9 ±2.2 (48.2)
Language 7.6 ±3.3 (26.0) 5.6 ±2.2 (22.2)
Liberal Arts 4.3 ±0.7 (31.8) 6.5 ±0.9 (53.7)
Math 0.8 ±0.1 (34.3) 1.7 ±0.4 (32.8)
Safety/Truth 1.6 ±0.9 (13.4) 6.5 ±0.2 (32.6)
Science/Tech 2.3 ±0.7 (25.8) 6.0 ±0.1 (46.8)

Total 4.2 ±1.2 (27.4) 6.9 ±0.9 (40.3)

Table 16: Trained from Base: Backward Transfer (Part 1 of 2)
Category QwQ-32B DeepSeek-R1-Distill-Qwen-32B Qwen2.5-Math-7B-Instruct

Common Sense 21.5 ±3.7 (87.0) 21.0 ±3.4 (85.7) 14.5 ±2.3 (32.8)
Culture 3.0 ±0.9 (60.2) 3.0 ±0.9 (56.2) 4.8 ±0.7 (10.9)
Logic 13.0 ±0.7 (85.8) 13.2 ±0.6 (87.2) 23.7 ±3.4 (43.0)
Knowledge/QA 22.5 ±2.0 (65.9) 18.6 ±0.7 (60.8) 17.7 ±1.0 (32.0)
Language 9.9 ±0.9 (60.7) 10.9 ±0.5 (62.9) 11.1 ±1.9 (20.0)
Liberal Arts 25.1 ±1.9 (86.1) 24.6 ±1.8 (84.9) 9.7 ±0.7 (24.6)
Math 28.9 ±1.4 (90.2) 28.6 ±1.7 (90.1) 16.3 ±2.1 (45.9)
Safety/Truth 29.5 ±2.4 (66.8) 29.3 ±2.7 (66.1) 8.9 ±0.6 (17.6)
Science/Tech 29.2 ±2.3 (85.0) 28.6 ±2.2 (84.1) 11.8 ±0.8 (27.0)

Total 20.5 ±1.5 (78.5) 20.0 ±1.6 (77.5) 13.9 ±1.0 (30.0)
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Table 17: Trained from Base: Backward Transfer (Part 2 of 2)
Category DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Llama-8B

Common Sense 31.1 ±4.8 (63.0) 19.2 ±4.9 (70.5)
Culture 8.6 ±3.5 (23.1) 8.7 ±4.5 (36.5)
Logic 43.2 ±7.8 (74.9) 57.1 ±1.6 (74.6)
Knowledge/QA 23.2 ±1.0 (45.6) 18.4 ±1.8 (61.8)
Language 17.5 ±4.7 (39.2) 28.6 ±9.2 (49.2)
Liberal Arts 22.3 ±2.3 (56.2) 15.5 ±1.8 (65.8)
Math 38.8 ±2.8 (83.0) 32.8 ±0.7 (72.8)
Safety/Truth 21.3 ±2.8 (39.4) 17.2 ±0.7 (46.5)
Science/Tech 27.9 ±2.7 (60.4) 18.9 ±0.5 (64.0)

Total 27.4 ±3.1 (57.0) 26.1 ±1.8 (63.0)

Table 18: Trained from Instruct - High Data Scenario: Forgetting (Part 1 of 3)
Category INTELLECT-2 OpenCodeReasoning-Nemotron-1.1-14B OpenThinker2-32B

Common Sense 1.9 ±0.3 (87.0) 20.9 (76.2) 3.9 ±0.2 (84.6)
Culture 0.7 ±0.6 (60.2) 21.5 ±0.6 (65.0) 7.3 ±1.9 (61.4)
Logic 0.6 ±0.1 (87.0) 14.4 ±0.3 (76.5) 1.0 ±0.1 (81.2)
Knowledge/QA 2.5 ±0.6 (65.9) 6.9 ±2.6 (23.1) 2.9 ±0.5 (60.4)
Language 1.9 ±0.3 (62.7) 17.4 ±0.9 (61.7) 4.2 ±0.3 (57.1)
Liberal Arts 1.2 ±0.2 (86.1) 12.7 ±0.9 (81.5) 2.4 ±0.1 (80.8)
Math 0.9 ±0.1 (91.9) 12.5 ±0.6 (70.6) 0.9 ±0.3 (80.2)
Safety/Truth 0.9 ±0.2 (66.8) 13.4 ±1.1 (70.1) 3.4 ±0.1 (64.3)
Science/Tech 1.6 ±0.1 (85.0) 12.9 ±0.5 (75.1) 2.0 ±0.2 (76.0)

Total 1.3 ±0.1 (79.0) 14.1 ±0.6 (66.7) 2.9 ±0.3 (74.2)

Table 19: Trained from Instruct - High Data Scenario: Forgetting (Part 2 of 3)
Category OpenCodeReasoning-Nemotron-1.1-7B OpenThinker3-7B OpenThinker-7B

Common Sense 22.1 ±0.1 (76.8) 9.4 ±0.5 (76.8) 21.2 ±4.0 (74.7)
Culture 22.1 ±4.3 (46.4) 15.8 ±3.9 (43.8) 14.9 ±4.4 (46.4)
Logic 13.8 ±0.9 (59.8) 5.6 ±0.8 (59.1) 7.5 ±0.3 (60.7)
Knowledge/QA 11.2 ±1.3 (51.2) 7.3 ±3.1 (54.8) 13.1 ±1.0 (51.2)
Language 22.1 ±1.7 (49.7) 10.7 ±4.3 (38.7) 10.1 ±1.2 (40.1)
Liberal Arts 19.5 ±0.7 (73.1) 9.8 ±0.4 (73.3) 16.1 ±1.1 (73.1)
Math 16.6 ±0.4 (67.6) 3.9 ±0.4 (68.4) 8.4 ±1.1 (67.6)
Safety/Truth 14.4 ±0.6 (50.1) 8.1 ±0.6 (50.1) 9.6 ±0.8 (53.6)
Science/Tech 18.9 ±0.3 (67.4) 6.5 ±0.3 (65.2) 12.2 ±0.4 (65.2)

Total 17.8 ±0.4 (62.8) 8.3 ±0.4 (59.8) 13.2 ±1.6 (62.1)

Table 20: Trained from Instruct - High Data Scenario: Forgetting (Part 3 of 3)
Category OpenMath2-Llama3.1-8B

Common Sense 23.6 ±2.8 (53.6)
Culture 38.9 ±6.8 (65.0)
Logic 10.4 ±0.7 (18.3)
Knowledge/QA 25.4 ±3.5 (48.2)
Language 12.2 ±6.3 (22.2)
Liberal Arts 26.3 ±2.1 (53.7)
Math 15.8 ±1.0 (32.8)
Safety/Truth 17.5 ±0.8 (32.6)
Science/Tech 25.0 ±0.9 (46.8)

Total 20.8 ±1.5 (40.3)
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Table 21: Trained from Instruct - High Data Scenario: Backward Transfer (Part 1 of 3)
Category INTELLECT-2 OpenCodeReasoning-Nemotron-1.1-14B OpenThinker2-32B

Common Sense 1.7 ±0.1 (86.7) 4.1 (53.8) 4.2 ±0.3 (85.0)
Culture 1.1 ±0.3 (60.8) 4.6 ±0.4 (37.8) 2.9 ±0.4 (54.0)
Logic 0.7 ±0.1 (87.1) 7.7 ±0.5 (66.6) 6.2 ±0.1 (88.4)
Knowledge/QA 3.4 ±0.9 (67.5) 3.8 ±1.0 (18.5) 4.6 ±0.7 (62.5)
Language 1.7 ±0.2 (62.7) 7.7 ±0.8 (47.1) 6.6 ±0.5 (61.3)
Liberal Arts 1.2 ±0.1 (86.0) 3.9 ±0.1 (69.7) 5.6 ±0.3 (85.2)
Math 0.9 ±0.2 (92.1) 11.2 ±0.9 (67.5) 10.0 ±0.7 (91.8)
Safety/Truth 1.3 ±0.5 (67.2) 5.4 ±2.0 (59.4) 4.2 ±0.3 (65.3)
Science/Tech 1.5 ±0.1 (85.0) 6.2 ±0.2 (66.2) 7.9 ±0.4 (84.0)

Total 1.4 ±0.1 (79.2) 6.1 ±0.4 (55.0) 5.4 ±0.1 (77.4)

Table 22: Trained from Instruct - High Data Scenario: Backward Transfer (Part 2 of 3)
Category OpenCodeReasoning-Nemotron-1.1-7B OpenThinker3-7B OpenThinker-7B

Common Sense 5.2 ±0.5 (54.3) 6.7 ±0.0 (73.2) 5.2 ±1.7 (53.5)
Culture 4.7 ±2.3 (19.2) 2.4 ±1.9 (17.8) 6.5 ±1.4 (33.6)
Logic 14.0 ±1.1 (58.2) 14.7 ±2.7 (71.9) 13.5 ±0.3 (67.4)
Knowledge/QA 5.3 ±0.2 (42.6) 14.2 ±8.6 (61.0) 7.7 ±0.9 (43.0)
Language 4.8 ±0.9 (23.3) 5.6 ±1.8 (32.8) 8.2 ±1.8 (37.6)
Liberal Arts 4.3 ±0.3 (52.8) 5.6 ±0.4 (67.6) 5.6 ±0.7 (59.2)
Math 10.1 ±0.7 (56.4) 13.9 ±1.6 (81.5) 11.0 ±2.2 (71.3)
Safety/Truth 8.7 ±1.1 (42.5) 6.8 ±0.8 (48.4) 7.5 ±0.7 (50.7)
Science/Tech 5.4 ±0.4 (49.3) 9.6 ±0.7 (69.4) 7.4 ±0.1 (58.7)

Total 6.7 ±0.4 (46.8) 8.5 ±1.5 (59.0) 7.7 ±0.4 (54.4)

Table 23: Trained from Instruct - High Data Scenario: Backward Transfer (Part 3 of 3)
Category OpenMath2-Llama3.1-8B

Common Sense 9.0 ±2.8 (34.1)
Culture 1.7 ±1.2 (6.5)
Logic 14.0 ±0.4 (18.3)
Knowledge/QA 6.4 ±0.7 (25.3)
Language 12.4 ±2.3 (19.1)
Liberal Arts 5.2 ±1.3 (25.5)
Math 4.7 ±0.8 (15.0)
Safety/Truth 5.2 ±0.4 (15.9)
Science/Tech 3.4 ±0.7 (17.6)

Total 7.9 ±0.4 (21.2)
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E.2 INSTRUCTION TUNING (TASK)

E.3 DOMAIN-CONTINUAL PRETRAINING

E.4 REASONING MODELS TRAINED FROM BASE

F REASONING MODELS TRAINED FROM INSTRUCT - HIGH DATA SCENARIO

G REASONING MODELS TRAINED FROM INSTRUCT - LOW DATA SCENARIO

Table 24: Trained from Instruct - Low Data Scenario: Forgetting (Part 1 of 2)
Category s1.1-14B LIMO s1.1-32B

Common Sense 6.5 ±1.5 (76.9) 4.6 ±0.6 (80.1) 6.0 ±1.2 (80.1)
Culture 10.1 ±0.3 (65.0) 3.4 ±1.0 (60.9) 7.4 ±0.6 (60.9)
Logic 4.1 ±0.6 (75.2) 3.1 ±0.4 (80.2) 2.0 ±0.2 (83.3)
Knowledge/QA 2.4 ±0.3 (45.2) 2.1 ±1.1 (47.8) 2.3 ±1.5 (26.1)
Language 6.8 ±0.9 (51.6) 3.6 ±0.5 (55.2) 4.9 ±0.6 (60.1)
Liberal Arts 5.2 ±0.6 (79.1) 2.4 ±0.2 (81.4) 3.0 ±0.3 (87.4)
Math 5.2 ±0.5 (73.5) 1.1 ±0.1 (80.2) 3.7 ±0.4 (80.8)
Safety/Truth 5.6 ±0.6 (59.8) 3.0 ±0.5 (64.7) 3.6 ±0.3 (62.1)
Science/Tech 4.7 ±0.4 (74.8) 2.1 ±0.1 (75.9) 3.0 ±0.3 (79.3)

Total 5.3 ±0.3 (69.5) 2.7 ±0.1 (72.2) 3.8 ±0.2 (71.6)

Table 25: Trained from Instruct - Low Data Scenario: Forgetting (Part 2 of 2)
Category s1.1-7B

Common Sense 9.3 ±0.1 (73.9)
Culture 11.3 ±5.4 (42.7)
Logic 8.8 ±0.1 (55.3)
Knowledge/QA 4.5 ±2.1 (57.8)
Language 7.9 ±0.8 (35.4)
Liberal Arts 7.5 ±0.4 (73.1)
Math 6.3 ±0.6 (66.8)
Safety/Truth 6.6 ±0.7 (53.5)
Science/Tech 7.4 ±0.1 (67.4)

Total 7.7 ±0.8 (61.6)

Table 26: Trained from Instruct - Low Data Scenario: Backward Transfer (Part 1 of 2)
Category s1.1-14B LIMO s1.1-32B

Common Sense 5.1 ±0.1 (75.1) 4.4 ±0.5 (79.8) 4.5 ±0.7 (78.1)
Culture 3.0 ±0.9 (54.2) 7.8 ±0.5 (66.1) 5.1 ±0.7 (56.7)
Logic 9.3 ±0.5 (81.1) 6.0 ±0.0 (84.6) 5.5 ±0.1 (87.7)
Knowledge/QA 14.7 ±1.5 (59.4) 15.3 ±1.0 (62.4) 22.0 ±3.0 (48.3)
Language 7.5 ±1.3 (53.7) 5.5 ±0.5 (58.5) 6.6 ±0.2 (63.4)
Liberal Arts 5.1 ±0.3 (78.9) 4.5 ±0.6 (84.2) 3.8 ±0.2 (88.6)
Math 11.6 ±0.4 (81.9) 9.3 ±0.8 (90.7) 9.2 ±0.7 (88.2)
Safety/Truth 7.4 ±0.5 (62.2) 4.9 ±0.4 (67.1) 3.9 ±0.2 (62.5)
Science/Tech 7.7 ±0.2 (78.9) 7.4 ±0.2 (83.2) 7.5 ±0.4 (85.3)

Total 7.4 ±0.3 (71.9) 6.7 ±0.3 (77.2) 7.0 ±0.3 (75.4)
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Table 27: Trained from Instruct - Low Data Scenario: Backward Transfer (Part 2 of 2)
Category s1.1-7B

Common Sense 6.2 ±0.5 (69.8)
Culture 4.5 ±1.3 (29.1)
Logic 14.3 ±0.4 (62.4)
Knowledge/QA 5.4 ±1.3 (58.9)
Language 8.9 ±0.8 (37.2)
Liberal Arts 6.3 ±0.9 (71.5)
Math 11.9 ±0.6 (74.5)
Safety/Truth 8.8 ±0.2 (56.4)
Science/Tech 8.4 ±0.2 (68.8)

Total 8.0 ±0.2 (61.5)
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H TRAINED FROM INSTRUCT - SFT

Table 28: Trained from Instruct - SFT: Forgetting (Part 1 of 2)
Category s1.1-14B OpenThinker2-32B s1.1-32B

Common Sense 6.5 ±1.5 (76.9) 3.9 ±0.2 (84.6) 6.0 ±1.2 (80.1)
Culture 10.1 ±0.3 (65.0) 7.3 ±1.9 (61.4) 7.4 ±0.6 (60.9)
Logic 4.1 ±0.6 (75.2) 1.0 ±0.1 (81.2) 2.0 ±0.2 (83.3)
Knowledge/QA 2.4 ±0.3 (45.2) 2.9 ±0.5 (60.4) 2.3 ±1.5 (26.1)
Language 6.8 ±0.9 (51.6) 4.2 ±0.3 (57.1) 4.9 ±0.6 (60.1)
Liberal Arts 5.2 ±0.6 (79.1) 2.4 ±0.1 (80.8) 3.0 ±0.3 (87.4)
Math 5.2 ±0.5 (73.5) 0.9 ±0.3 (80.2) 3.7 ±0.4 (80.8)
Safety/Truth 5.6 ±0.6 (59.8) 3.4 ±0.1 (64.3) 3.6 ±0.3 (62.1)
Science/Tech 4.7 ±0.4 (74.8) 2.0 ±0.2 (76.0) 3.0 ±0.3 (79.3)

Total 5.3 ±0.3 (69.5) 2.9 ±0.3 (74.2) 3.8 ±0.2 (71.6)

Table 29: Trained from Instruct - SFT: Forgetting (Part 2 of 2)
Category OpenThinker3-7B OpenThinker-7B s1.1-7B

Common Sense 9.4 ±0.5 (76.8) 21.2 ±4.0 (74.7) 9.3 ±0.1 (73.9)
Culture 15.8 ±3.9 (43.8) 14.9 ±4.4 (46.4) 11.3 ±5.4 (42.7)
Logic 5.6 ±0.8 (59.1) 7.5 ±0.3 (60.7) 8.8 ±0.1 (55.3)
Knowledge/QA 7.3 ±3.1 (54.8) 13.1 ±1.0 (51.2) 4.5 ±2.1 (57.8)
Language 10.7 ±4.3 (38.7) 10.1 ±1.2 (40.1) 7.9 ±0.8 (35.4)
Liberal Arts 9.8 ±0.4 (73.3) 16.1 ±1.1 (73.1) 7.5 ±0.4 (73.1)
Math 3.9 ±0.4 (68.4) 8.4 ±1.1 (67.6) 6.3 ±0.6 (66.8)
Safety/Truth 8.1 ±0.6 (50.1) 9.6 ±0.8 (53.6) 6.6 ±0.7 (53.5)
Science/Tech 6.5 ±0.3 (65.2) 12.2 ±0.4 (65.2) 7.4 ±0.1 (67.4)

Total 8.3 ±0.4 (59.8) 13.2 ±1.6 (62.1) 7.7 ±0.8 (61.6)

Table 30: Trained from Instruct - SFT: Backward Transfer (Part 1 of 2)
Category s1.1-14B OpenThinker2-32B s1.1-32B

Common Sense 5.1 ±0.1 (75.1) 4.2 ±0.3 (85.0) 4.5 ±0.7 (78.1)
Culture 3.0 ±0.9 (54.2) 2.9 ±0.4 (54.0) 5.1 ±0.7 (56.7)
Logic 9.3 ±0.5 (81.1) 6.2 ±0.1 (88.4) 5.5 ±0.1 (87.7)
Knowledge/QA 14.7 ±1.5 (59.4) 4.6 ±0.7 (62.5) 22.0 ±3.0 (48.3)
Language 7.5 ±1.3 (53.7) 6.6 ±0.5 (61.3) 6.6 ±0.2 (63.4)
Liberal Arts 5.1 ±0.3 (78.9) 5.6 ±0.3 (85.2) 3.8 ±0.2 (88.6)
Math 11.6 ±0.4 (81.9) 10.0 ±0.7 (91.8) 9.2 ±0.7 (88.2)
Safety/Truth 7.4 ±0.5 (62.2) 4.2 ±0.3 (65.3) 3.9 ±0.2 (62.5)
Science/Tech 7.7 ±0.2 (78.9) 7.9 ±0.4 (84.0) 7.5 ±0.4 (85.3)

Total 7.4 ±0.3 (71.9) 5.4 ±0.1 (77.4) 7.0 ±0.3 (75.4)
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Table 31: Trained from Instruct - SFT: Backward Transfer (Part 2 of 2)
Category OpenThinker3-7B OpenThinker-7B s1.1-7B

Common Sense 6.7 ±0.0 (73.2) 5.2 ±1.7 (53.5) 6.2 ±0.5 (69.8)
Culture 2.4 ±1.9 (17.8) 6.5 ±1.4 (33.6) 4.5 ±1.3 (29.1)
Logic 14.7 ±2.7 (71.9) 13.5 ±0.3 (67.4) 14.3 ±0.4 (62.4)
Knowledge/QA 14.2 ±8.6 (61.0) 7.7 ±0.9 (43.0) 5.4 ±1.3 (58.9)
Language 5.6 ±1.8 (32.8) 8.2 ±1.8 (37.6) 8.9 ±0.8 (37.2)
Liberal Arts 5.6 ±0.4 (67.6) 5.6 ±0.7 (59.2) 6.3 ±0.9 (71.5)
Math 13.9 ±1.6 (81.5) 11.0 ±2.2 (71.3) 11.9 ±0.6 (74.5)
Safety/Truth 6.8 ±0.8 (48.4) 7.5 ±0.7 (50.7) 8.8 ±0.2 (56.4)
Science/Tech 9.6 ±0.7 (69.4) 7.4 ±0.1 (58.7) 8.4 ±0.2 (68.8)

Total 8.5 ±1.5 (59.0) 7.7 ±0.4 (54.4) 8.0 ±0.2 (61.5)
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DISCLAIMER FOR USE OF LLMS

We primarily used LLMs in coding co-pilot applications to facilitate experimentation and help with
plotting code for result presentation. LLMs were also used as writing tools to assist in refining the
paper. However, the final version was carefully reviewed and finalized by the authors. No LLMs
were used in ideation and experimental design.
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