

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MAPPING POST-TRAINING FORGETTING IN LANGUAGE MODELS AT SCALE

Anonymous authors

Paper under double-blind review

ABSTRACT

Scaled post-training now drives many of the largest capability gains in language models (LMs), yet its effect on pretrained knowledge remains poorly understood. Not all forgetting is equal: Forgetting one fact (e.g., a U.S. president or an API call) does not “average out” by recalling another. Hence, we propose a sample-wise paradigm to measure what is forgotten and when backward transfer occurs. Our metric counts $1 \rightarrow 0$ transitions (correct before post-training, incorrect after) to quantify forgetting and $0 \rightarrow 1$ transitions to quantify backward transfer. Traditional task averages conflate these effects and obscure large changes. For multiple-choice benchmarks, we add chance-adjusted variants that subtract the expected contribution of random guessing from pre- and post-training accuracies. We apply this framework across post-training stages, model sizes, and data scales. Our large-scale analysis across nearly 30 model pairs and 100 sub-benchmarks with up to 32,768 generated tokens per sample shows that: (1) Domain-continual pretraining induces moderate forgetting with low-to-moderate backward transfer; (2) RL/SFT post-training applied to base models and Instruction tuning yields moderate-to-large backward transfer on math and logic with overall low-to-moderate forgetting; (3) Applying RL/SFT to instruction-tuned models is sensitive on data scale: at small scales, both forgetting and backward transfer are small; at larger scales, effects are mixed and warrant further study with better controls; (4) Model merging does not reliably mitigate forgetting. Overall, our framework offers a practical yardstick for mapping how post-training alters pretrained knowledge at scale – enabling progress towards generally capable AI systems.

1 INTRODUCTION

Scaling post-training has become the dominant driver of capability gains in modern language models (LMs) (Jaech et al., 2024). Practitioners now iterate through multi-step post-training pipelines often at data scales that rival early pretraining (Tie et al., 2025). The implicit bet is that each step in the pipeline accumulates new capabilities, with dramatic improvements in areas like coding, math, tool use and safety, without sacrificing the broad world knowledge. In contrast, it is considered common knowledge in continual learning that this sequential training would lead to catastrophic forgetting (see Table 1). We test this assumption: as we scale post-training, do we erode the very breadth of world knowledge that pretraining painstakingly compresses into the weights? If the implicit assumption does not hold, we risk trading generalist competence for narrow specialization, undermining progress toward generally capable models.

Measuring forgetting in modern post-training pipelines is tricky. Classical evaluations compare aggregate test accuracy before and after training (Luo et al., 2025), implicitly treating a benchmark as a single task with fungible i.i.d. samples (e.g., classifying images of cats). Pretrained knowledge violates this assumption. Knowing one U.S. president does not compensate for forgetting another; recalling a NumPy broadcasting rule does not offset losing a specific cloud-API syntax. In short, knowledge samples are not fungible: Each carries unique value for quantifying pretraining knowledge. Aggregation can hide substantial losses. Hence, we measure forgetting and backward transfer in a sample-wise manner, rather than at the task level as proposed by Lopez-Paz & Ranzato (2017).

Specifically, we define *forgetting* as items that are answered correctly before a post-training stage but incorrectly afterward (the $1 \rightarrow 0$ transitions), and *backward transfer* as items that are answered incorrectly before but correctly after post-training (the $0 \rightarrow 1$ transitions). A further complication is that most knowledge-intensive LLM evaluation benchmarks are multiple-choice. Random guessing

054 inflates accuracy and can create illusory transitions: an apparent “1 → 0” may simply be a lucky
 055 guess that later becomes an incorrect answer, even when the underlying knowledge did not change;
 056 likewise for 0 → 1 transitions. When the answer is only among few options (e.g., 4), performance by
 057 random guessing can account for a substantial share of observed transitions, distorting both level and
 058 trend estimates of forgetting. Thus a principled metric should (i) resolve outcomes at the *item* level
 059 and (ii) explicitly correct for chance.

060 To account for these considerations we introduce chance-adjusted metrics for forgetting (F_{true}) and
 061 backward transfer (BT_{true}), which correct for transitions expected under random choice. They do
 062 not need logits or repeated sampling, measurable using the number of choices in benchmark and
 063 marginal accuracy of the model pre- and post- training, making them practical at scale. Intuitively,
 064 chance-adjusted forgetting asks: among items the model genuinely knew before, what fraction
 065 became wrong beyond chance? Conversely, chance-adjusted backward asks: among items the model
 066 genuinely did not correctly solve, what fraction became correct beyond chance?

067 Our primary contribution is a large-scale study measuring forgetting caused by post-training across
 068 post-training pipelines. By evaluating the models on the same set of samples before and after each
 069 stage, we obtain a map of what was retained, what was forgotten, and where losses concentrate.
 070 We seek to answer three questions: (i) Where in the pipeline is forgetting most pronounced (e.g.,
 071 instruction tuning vs. reasoning-focused training)?, (ii) What kinds of pretraining knowledge are
 072 most affected (culture vs. logic)?, and (iii) How much knowledge is forgotten or re-elicited? We have
 073 the following key findings:

Key Findings

- **Domain-Continual Pretraining** induces low to moderate forgetting across most categories; backward transfer is limited. Forgetting effects marginally decrease with increasing model scale.
- **Instruction-Tuning and SFT/RL from base models** yield low to moderate forgetting, with spikes in the Culture and Knowledge categories, but moderate to high (for SFT/RL from Base) backward-transfer gains in the Math and Logic categories across model families; Forgetting and backtransfer decrease as parameters increase. Reasoning training yields similar forgetting and larger backward transfer than instruction tuning.
- **SFT/RL Reasoning Post-Training from instruct models** have data-scale dependent behaviour: For the low-data regime, it yields low forgetting and backward transfer. For the high-data regime, no dominant factor robustly described the forgetting and backward transfer dynamics.
- **Model Merging** does not reliably mitigate forgetting across post-training pipelines (yet).

090 **Table 1: Catastrophic forgetting literature across LLM post-training stages.** Continual learning
 091 literature indicates extensive forgetting across the post-training pipeline. However, we find far less
 092 forgetting when testing widely used post-training pipelines, indicating an important gap existing
 093 between continual learning setups and how people post-train language models.

095 Stage	096 Name	097 Level	098 Summary
099 CPT (§3.1)	100 Investigating Continual Pretraining 101 in LLMs: Insights and Implications (Yıldız et al., 2024)	Med	102 Most models show continual im- 103 provement; only Llama-2 models 104 degrade.
	105 Examining Forgetting in Continual 106 Pre-training of Aligned LLMs (Li & 107 Lee, 2024a)		108 Continual pre-training degrades ca- 109 pabilities, alignment and alters out- 110 put behavior.
SFT/DPO (§3.2)	Mitigating Forgetting in LLM Su- 103 pervised Fine-Tuning and Preference 104 Learning (Fernando et al., 2024)	Low	105 Combining SFT and DPO sequen- 106 tially leads to forgetting and a poor 107 balance between goals (~ 2% on 108 MMLU).

(Continued on next page)

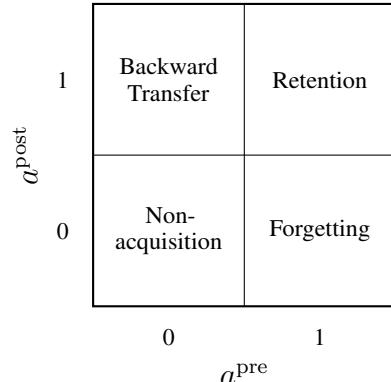
108
109
110
(Continued from previous page)

Stage	Name	Level	Summary
SFT (\\$3.3)	Interpretable Catastrophic Forgetting of LLM Fine-tuning via Instruction Vector (Jiang et al., 2024)	High	Fine-tuning on TRACE shows declines primarily from lost instruction-following ability.
	An Empirical Study of Catastrophic Forgetting in LLMs During Continual Fine-tuning (Luo et al., 2025)	High	Forgetting of domain knowledge, reasoning intensifies as model scale increases ($\sim 10\%$ MMLU drop).
	Catastrophic Forgetting in LLMs: A Comparative Analysis Across Language Tasks (Haque, 2025)	High	Severity varies by architecture and pre-training quality; some models degrade sharply while others barely change.
	Mitigating Catastrophic Forgetting in LLMs with Self-Synthesized Rehearsal (Huang et al., 2024)	High	Sequential fine-tuning causes major forgetting; synthetic rehearsal mitigates it.
RL (\\$3.2)	Mitigating the Alignment Tax of RLHF (Lin et al., 2024)	Med	RLHF induces forgetting (“alignment tax”); model averaging reduces it.
SFT/RL (\\$3.2)	Understanding Catastrophic Forgetting in LLMs via Implicit Inference (Kotha et al., 2024)	High	Fine-tuning skews the model’s implicit task inference rather than erasing capabilities.
	Temporal Sampling for Forgotten Reasoning in LLMs (Li et al., 2025)	High	Fine-tuned LLMs often forget solutions they previously generated (“temporal forgetting”) across sizes and methods (SFT, GRPO).

136
137
2 MEASURING SAMPLEWISE FORGETTING AND BACKWARD TRANSFER138
139
140
141
142
143
144
145
146
147
148
149
150
151
To formalize these metrics, first consider an evaluation set of N multiple-choice questions with k options. For each sample i , let $a_i^{\text{pre}}, a_i^{\text{post}} \in \{0, 1\}$ indicate correctness before and after post-training. As illustrated in Fig. 1, each sample falls into one of four quadrants based on effect of training on new task:152
153
154
155
156
157
(i) Retention preserves knowledge ($1 \rightarrow 1$),
(ii) Backward Transfer improves performance ($0 \rightarrow 1$),
(iii) Forgetting reduces performance ($1 \rightarrow 0$), and
(iv) non-acquisition has no effect ($0 \rightarrow 0$).158
159
160
161
We define sample-wise *forgetting* and *backward transfer* as the proportions of $1 \rightarrow 0$ and $0 \rightarrow 1$ flips, respectively:

162
163
164
$$F = \frac{1}{N} \sum_{i=1}^N \mathbf{1}\{a_i^{\text{pre}} = 1 \wedge a_i^{\text{post}} = 0\}$$

165
166
167
$$BT = \frac{1}{N} \sum_{i=1}^N \mathbf{1}\{a_i^{\text{pre}} = 0 \wedge a_i^{\text{post}} = 1\}$$

168
169
170
171
However, these intuitive metrics confound genuine knowledge change with label flips caused by guessing, especially when k is small. For example, two independent random binary classifiers ($k=2$) yield $F = 0.25$ because $0.5 \times 0.5 = 0.25$.172
173
174
Figure 1: Each sample is assigned to one of four quadrants by correctness before and after.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

A chance baseline for flips. To account for guessing, we assume a simple response model: on each item the model either *knows* the answer or *guesses* uniformly among the k choices. Let \bar{a} be mean accuracy on a set. Then $\bar{a} = \bar{a}_{\text{true}} + x$, where x is the fraction correct by chance. Since an incorrect guess occurs with probability $(k-1)/k$,

$$\frac{1-\bar{a}}{x+(1-\bar{a})} = \frac{k-1}{k} \implies x = \frac{1-\bar{a}}{k-1}.$$

A $1 \rightarrow 0$ flip due purely to chance requires (i) a pre-training correct guess and (ii) a post-training error (converse for backward transfer). Assuming independence between pre- and post-training guessing events,

$$F_{\text{chance}} = \underbrace{\frac{1-\bar{a}^{\text{pre}}}{k-1}}_{\text{correct by chance (pre)}} \cdot \underbrace{(1-\bar{a}^{\text{post}})}_{\text{incorrect (post)}}, \quad BT_{\text{chance}} = \underbrace{(1-\bar{a}^{\text{pre}})}_{\text{incorrect (pre)}} \cdot \underbrace{\frac{1-\bar{a}^{\text{post}}}{k-1}}_{\text{correct by chance (post)}}.$$

These metrics depend only on aggregate accuracies and k ; they require no logits or heavy computation.

Chance-adjusted forgetting and backward transfer. From these estimates we can isolate knowledge change beyond chance by subtracting the baselines from the respective forgetting/backward-transfer and clip at zero:

$$F_{\text{true}} = \max(F - F_{\text{chance}}, 0), \quad BT_{\text{true}} = \max(BT - BT_{\text{chance}}, 0).$$

For example, if accuracy drops from 80% to 70% on a 4-option MCQ test, raw forgetting is 10%, but chance-adjusted forgetting is only about 6% – showing how the correction removes the effect of lucky guesses. Clipping ensures the metric remains valid even if models perform below chance. In practice, for an accurate measure of forgetting this metric’s mean and variance statistics should be computed over multiple seeds as is described in Section B.1.

Ceilings: how much could a model forget or improve? Observed forgetting can be small simply because little was truly correct to begin with. The *maximum possible* forgetting equals the fraction truly correct before post-training, which we adjust for guessing and clip at 0:

$$F_{\text{max}} = \bar{a}_{\text{true}}^{\text{pre}} = \max(\bar{a}^{\text{pre}} - x^{\text{pre}}, 0) = \max\left(\frac{k\bar{a}^{\text{pre}} - 1}{k-1}, 0\right).$$

Similarly, the *maximum possible* backward transfer equals the fraction truly correct after post-training:

$$BT_{\text{max}} = \bar{a}_{\text{true}}^{\text{post}} = \max(\bar{a}^{\text{post}} - x^{\text{post}}, 0) = \max\left(\frac{k\bar{a}^{\text{post}} - 1}{k-1}, 0\right).$$

where

$$x^{\text{pre}} = \frac{1-\bar{a}^{\text{pre}}}{k-1}, \quad x^{\text{post}} = \frac{1-\bar{a}^{\text{post}}}{k-1}$$

By construction $F_{\text{true}} \leq F_{\text{max}}$ and $BT_{\text{true}} \leq BT_{\text{max}}$. Reporting the adjusted metrics alongside these ceilings separates true knowledge loss/acquisition from chance and contextualizes headroom for degradation or improvement.

Assumptions and scope. The correction uses two assumptions: (i) when the model does not know an answer, it guesses uniformly at random; and (ii) pre- and post-training guessing events are independent. These assumptions allow dataset-level adjustments from pre- and post-training accuracies alone. Note that F_{true} could quantify failure to elicit previously accessible knowledge and need not imply that the model has lost/unlearned the underlying information. Likewise, changes in BT_{true} often reflect improved elicitation rather than newly acquired knowledge.

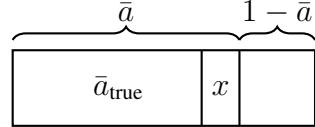


Figure 2: Accuracy \bar{a} decomposes into true knowledge \bar{a}_{true} and lucky guesses x .

216 3 WHEN, WHAT & HOW MUCH IS PRETRAINING KNOWLEDGE FORGOTTEN?
217218 In this section, we ask three questions:
219220 1. *When is pretraining knowledge forgotten?*221 Our analysis spans four widely used continual-training regimes: (i) domain-continual
222 training (§3.1), (ii) instruction tuning (§3.2), (iii) light SFT/RL on reasoning traces, and (iv)
223 large-scale SFT/RL for reasoning (§3.3). In total, we evaluate almost 30 model-training
224 combinations chosen to reflect common practice results, providing broad coverage of how
225 contemporary LLMs are post-trained in the wild. Each post-trained model is compared with
226 its initial checkpoint (details in the Appendix).227 2. *What pretraining knowledge is forgotten?*228 We evaluate each model on 12 public benchmarks, collectively subdivided into close to a
229 100 total subdomains. To summarize systematic patterns, we cluster sub-benchmarks into
230 nine semantically coherent groups that exhibit similar forgetting trends (e.g., common sense,
231 culture, deduction, language/communication, liberal arts, science/tech). These clusters
232 provide a better map of which pretraining knowledge areas are most affected by a given
233 post-training recipe.234 3. *How much pretraining knowledge is forgotten?*235 Unless stated otherwise, chance-adjusted metrics for forgetting (F_{true}) and backward transfer
236 (BT_{true}) are used to quantify the severity.237 **Experimental setup.** We standardize settings across models for fair comparison. All experiments
238 use the LightEval framework (Habib et al., 2023) and log per-sample accuracy. We apply a
239 zero-shot chain-of-thought prompt to all models and require answers in a fixed MCQ format (see
240 Appendix); base models receive a few-shot prompt solely to teach the format. When available¹, we
241 add chat-specific templates to be in line with best practices. We cap sequence length at 32K tokens,
242 except for Qwen2.5-7B-Math and Qwen2.5-7B-Math-Instruct Yang et al. (2024a), which are limited
243 to 4K². Decoding uses temperature 0.6 with nucleus sampling (top_p) of 0.95. We provide additional
244 details in the Appendix. We provide extensive quantitative results in Appendix G and provide figures
245 and qualitative commentary in the following sections, defining moderate forgetting as $15 \pm 5\%$, low
246 forgetting to be below that, and high forgetting to be above that. To facilitate reproducibility and
247 further inquiry, we will release per-sample logs for every sub-benchmark alongside code.

248 We now showcase our results in the subsections below.

249 3.1 SUBAREA 1: DOMAIN-CONTINUAL PRETRAINING

250 **Motivation.** A popular class of continual learning works adapt general LLMs at the application layer
251 for domains such as coding, mathematics, search, and tool use. As generalist LLMs are increasingly
252 wrapped with tools and domain-specific interfaces, specialization must not erode broad pretraining
253 knowledge. Models still need to contextualize domain outputs, communicate with diverse users,
254 respect cultural norms, and uphold safety and ethical standards. These needs motivate our study of
255 forgetting and backward transfer under domain-continual pretraining.256 **Setup.** We study continual pretraining that converts a general base model into a specialized one,
257 exemplified by Qwen2.5-Coder (Hui et al., 2024) and Qwen2.5-Math (Yang et al., 2024b).³ Unlike
258 general instruction tuning or reasoning post-training, domain-continual pretraining shifts the
259 underlying representation using large, relatively uncurated, web-scale domain corpora.260 **Main results.** Figure 3 summarizes our findings. Domain-continual pretraining induces little to
261 moderate amounts of forgetting among all post-training methods we evaluate. Backward transfer
262 to general abilities is weak: Gains in the specialized domain rarely improve non-target tasks.
263 The effect spans categories of pretraining knowledge, with no single category driving it, although264
265 ¹This budget was sufficient in practice; we never required more tokens.
266267 ²Because base models sometimes continue into subsequent questions, we set explicit stop sequences to end
268 generation once a prediction is produced.269 ³We treat domain-continual reasoning via SFT/RL separately in §3.3 and focus on domain-continual training
here.

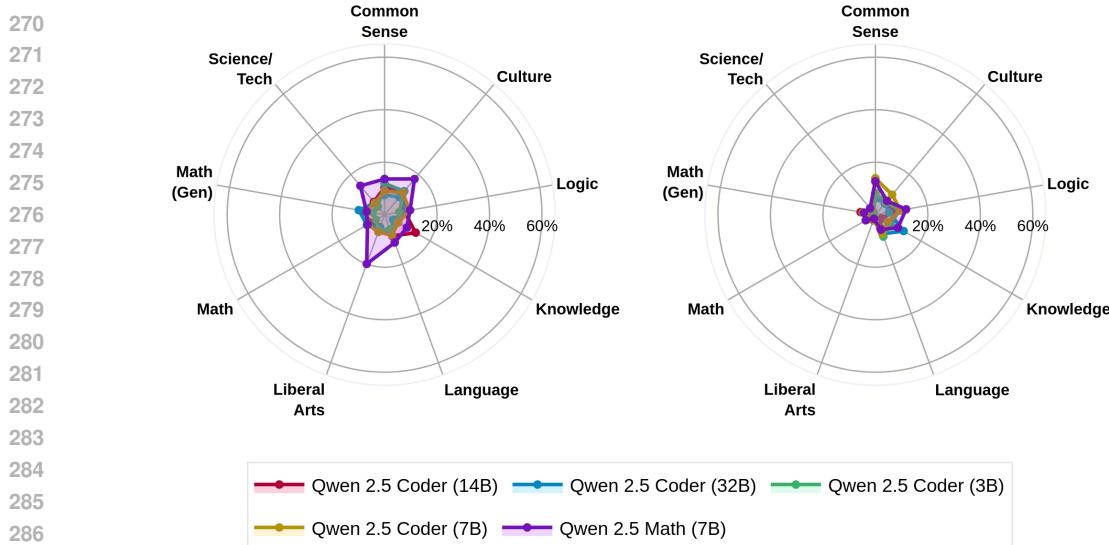


Figure 3: **Forgetting (left) and Backward Transfer (right) after domain-continual pretraining.** Forgetting is low-to-moderate and consistent across categories; backward transfer is low. Scaling model size reduces forgetting.

math-specialized models show significantly more forgetting. Lastly, larger models forget less and have marginally better backward transfer.

Qualitative analysis. We performed manual errors analysis, which indicates reduced instruction-following fidelity (e.g., weaker adherence to constraints, formats, and role-specific directives). Evidence of this is found in supplemental tests, where a zero-shot, chat-template evaluation is done. In this case, a coder model may, for example, answer “Who was the president of the US?” with a response followed by code, often with embedded answers, making extraction difficult of the “true answer”. While few-shot prompting alleviates this, it demonstrates a weakened instruction-following ability and less easily elicited knowledge.

Takeaway

Domain-continual pretraining yields low-to-moderate forgetting across categories; backward transfer is limited. Scaling model size marginally reduces forgetting. This indicates current domain-continual pretraining pipelines appear to alleviate much of the large forgetting behavior seen in previous literature.

3.2 SUBAREA 2: INSTRUCTION TUNING

Motivation. Base models often require carefully engineered prompts to elicit pretraining knowledge, limiting usability. Modern post-training pipelines therefore add instruction tuning to enable natural user interaction with minimal prompting. Most continual-learning work we surveyed focuses on mitigating forgetting in this setting. We ask: To what extent does instruction following come at the expense of previously learned knowledge?

Setup. We measure forgetting and backward transfer from instruction tuning in generalist models (Qwen2.5 (Yang et al., 2024a), Llama 3.1 (Dubey et al., 2024)) and domain-continual pretrained models (Qwen2.5-Coder)⁴.

Results. As shown in Figure 4, there is low to moderate forgetting across models, with spikes in the Culture and Knowledge categories. However, there is substantial backward transfer in the Math category. Furthermore, scaling model size reduces forgetting and increases backward transfer. This effect is consistent across domain-general and domain-specific base models. While most of the

⁴Qwen2.5-Math Instruct is surprisingly tuned with GRPO which leads to it being classified under Reasoning

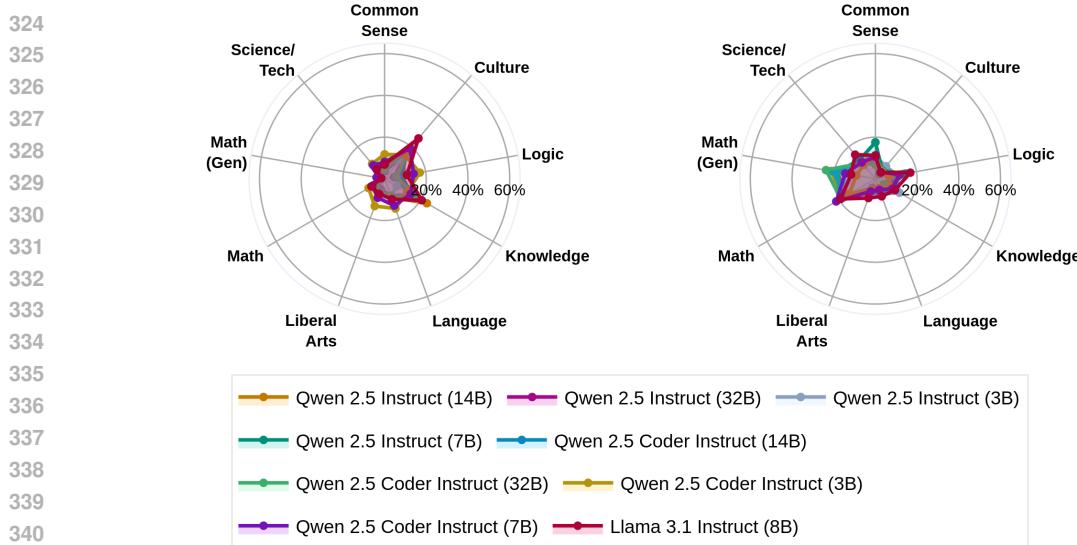


Figure 4: **Forgetting (left) and Backward Transfer (right) after instruction-tuning** yields moderate forgetting and backward transfer categories-wise. Scaling model size reduces forgetting and backward transfer.

continual learning literature focuses on reducing forgetting in this area, we note the forgetting is low to moderate with current training practices.

Qualitative analysis. Transfer gains likely reflect better elicitation of pretraining knowledge: Instruction-tuned models use what they already know with straightforward prompts used in benchmarks, whereas base models often require carefully crafted prompts.

Takeaway

Instruction tuning produces low-to-moderate forgetting overall and moderate backward-transfer, particularly in math, across model families; the forgetting and back-transfer tend to decrease with increasing model scale. Shifting focus to other subareas of post-training might spur interesting research directions, but there is still progress to be made in this area.

3.3 SUBAREA 3: TRAINING WITH REASONING TRACES (SFT AND RL)

Motivation. Recent methods encourage explicit reasoning by letting models *think* on a scratchpad before answering; which is now scaled in size and trace length with RL objectives. As training domains and data grow, we measure how much such reasoning training induces forgetting to guide continual-learning practice.

Setup. We consider two settings: (i) starting from a base model and (ii) starting from an instruction-tuned model. For the latter, we separate light-touch post-training (small datasets) from heavy post-training. We do not separate RL from SFT as the behavior across forgetting and backward transfer is similar between the two objectives.

3.3.1 TRAINING WITH REASONING TRACES FROM BASE MODELS

Models. We evaluate QwQ-32B (from Qwen2.5-32B Base) (Qwen Team, 2025), Qwen2.5-Math-7B-Instruct (RL post-trained with GRPO), and DeepSeek-R1-Distill models across different models (Qwen2.5 Base and Llama 8B base) (DeepSeek-AI, 2025).

Results. From Figure 5, we see that across scales, model families, and training types, we observe large gains, particularly in Math and Logic, in backward transfer with minimal forgetting. Forgetting is generally low, but is moderate for knowledge and large for Culture. The exception to this trend is the Qwen2.5 Math Instruct model which shows substantial forgetting across many categories. Sample-wise inspection shows this is primarily due to weak adherence to the prompt, sometimes

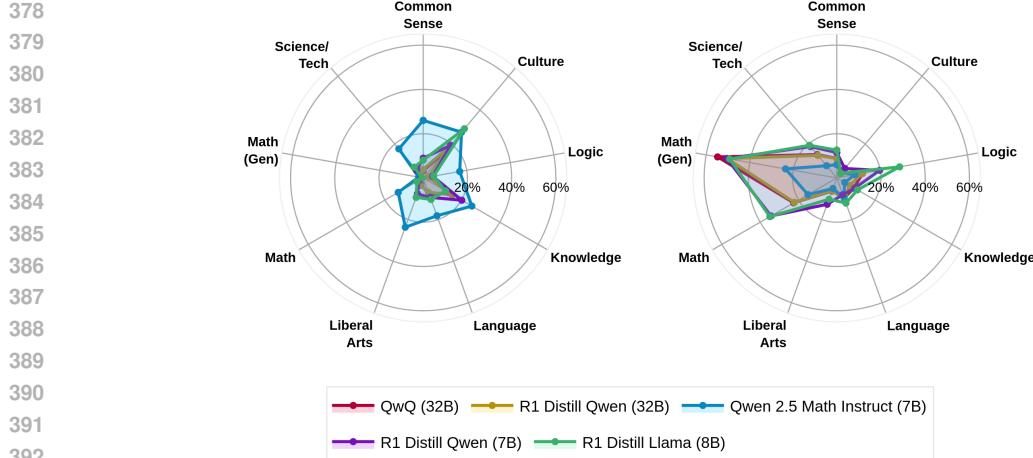


Figure 5: **Forgetting (left) and Backward Transfer (right) after reasoning training (SFT/RL) from base model.** It generally yields minimal forgetting, except in the Culture and Knowledge categories, and has moderate to high backward-transfer gains. Qwen2.5 Math Instruct (7B) is an exception to this trend, demonstrating forgetting across all categories.

outputting random multilingual text. Except for this case, when compared to instruction tuning on the same base model (Figure 4), we see similar forgetting and larger back-transfer⁵.

We conclude that much of the backward transfer reflects improved instruction following. To isolate reasoning effects beyond elicitation, the next sections analyze reasoning training that starts from an instruction-tuned model, for better exploration of gains. However, models with light-touch reasoning training (i.e. low data) behave differently from those trained at scale (i.e. high data). We therefore present these two cases separately.

Takeaway

Training with SFT/RL for reasoning results in dynamics similar to instruction tuning, but to an even greater extent: We generally observe low to moderate forgetting overall and larger category-specific backward transfer gains. Forgetting mitigation in this domain should consider broad categories of knowledge/abilities when measuring forgetting and back transfer.

3.3.2 REASONING TRAINING FROM INSTRUCTION-TUNED MODELS: LOW-DATA SCENARIO

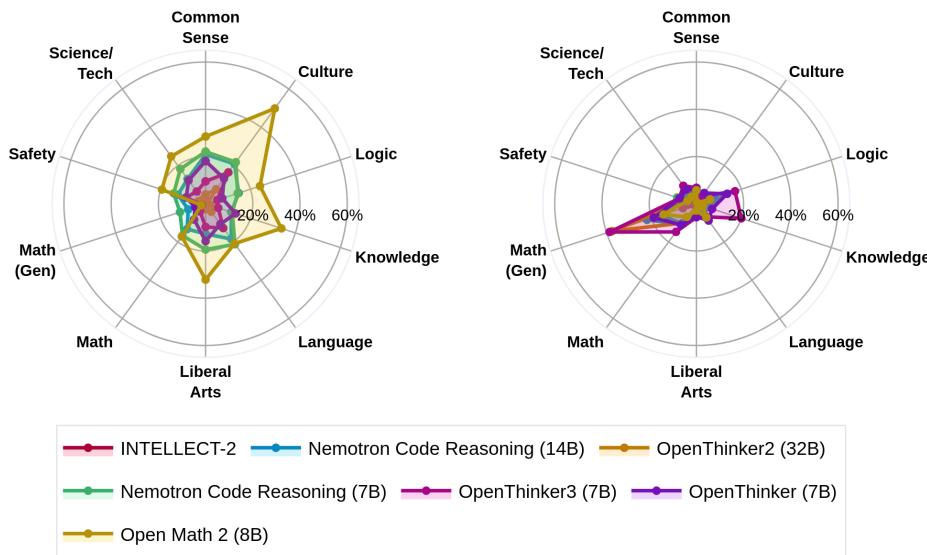
Models. We use the s1.1 family (7B, 14B, 32B) (Muennighoff et al., 2025) and LIMO (v1 and v2) (Ye et al., 2025) all tuned from corresponding sized Qwen instruct models.

Results. Figure 26 summarizes our findings. Across categories, models show minimal forgetting and low backward transfer, except generative math where large gains occurs. This makes sense, as training for a few passes on little data leaves pretraining knowledge largely intact. That is, the model does not forget much, but it also exhibits little backward transfer gains beyond the instruction-tuned baseline. Scaling model size marginally lowers forgetting, and the smaller teacher-student gap similarly tends to reduce backward transfer, with the exception of the Knowledge category.

Takeaway

For low-data regime, reasoning training from instruct models yields low forgetting and backward transfer. Forgetting decreases with model scale; backward transfer gains also tend to fall with a narrowing student-teacher gap. This suggests that future forgetting mitigation literature on reasoning models should focus on medium-to-large sized training datasets.

⁵All corresponding tables are available in Appendix G.3 for detailed comparison.

432 3.3.3 REASONING TRAINING FROM INSTRUCTION-TUNED MODELS: HIGH-DATA SCENARIO
433452 **Figure 6: Forgetting (left) and Backward Transfer (right) after reasoning training from instruct:**
453 **high data scenario.** No single factor robustly explains the dynamics of forgetting and backward
454 transfer.455 **Models.** We evaluate OpenCodeReasoner and OpenMath2 (Bercovich et al., 2025), OpenThinker-7B,
456 OpenThinker2-32B, and OpenThinker3-7B (Guha et al., 2025), and Intellect-2-32B (Prime Intellect
457 Team et al., 2025). This spans SFT (former) and RL (Intellect-2).458 **Results.** Results vary by domain mix and model quality. The OpenThinker models generally show
459 low-to-moderate forgetting and moderate backward transfer, perhaps due to the breadth of the
460 training datamix, whereas OpenCodeReasoner models show consistently high forgetting with low
461 backward transfer gains due to the narrower training data. Furthermore, we find this may be primarily
462 due to weakened instruction-following capabilities, as sample-level inspection shows the model will
463 refuse to answer with letters, when numbers are present as options, instead answering numerically.
464 This is also seen with the Nemotron Code Reasoning models, where answers will often be embedded
465 within python code. These factors can make the forgetting and backward transfer observed highly
466 dependent on the extraction method used. We account for this through LLM as a judge in Section C.4.
467 Scaling model size, if compared in OpenThinker models, signals improvements in both forgetting
468 and backward transfer – as seen in most previous sections. Decentralized training (as in Intellect-2),
469 in contrast, showed minimal forgetting or backward transfer. We conjecture that the model largely
470 remain unchanged compared to the original model as it shows negligible gains on the optimized math
471 benchmarks Hochlehnert et al. (2025). However, the results here remain preliminary. We do not find
472 a single dominant factor—initialization, data regime, or scale that sufficiently explains forgetting and
473 backward-transfer dynamics. We believe controlling the finer details which determine the quality of
474 the trained model might lead to better conclusions.475 **Takeaway**476 No single factor robustly explains the dynamics of forgetting and backward transfer; training on
477 a mix of domains appear to improve both forgetting and backward transfer.

480 4 DOES MODEL MERGING REDUCE FORGETTING?

481 **Motivation.** Recent work shows that offline model merging can combine capabilities from multiple
482 models (Dziadzio et al., 2025). Unlike classical continual learning (De Lange et al., 2022), it
483 requires neither the original training data nor the ability to resume training, which is practical in
484 resource-constrained settings.

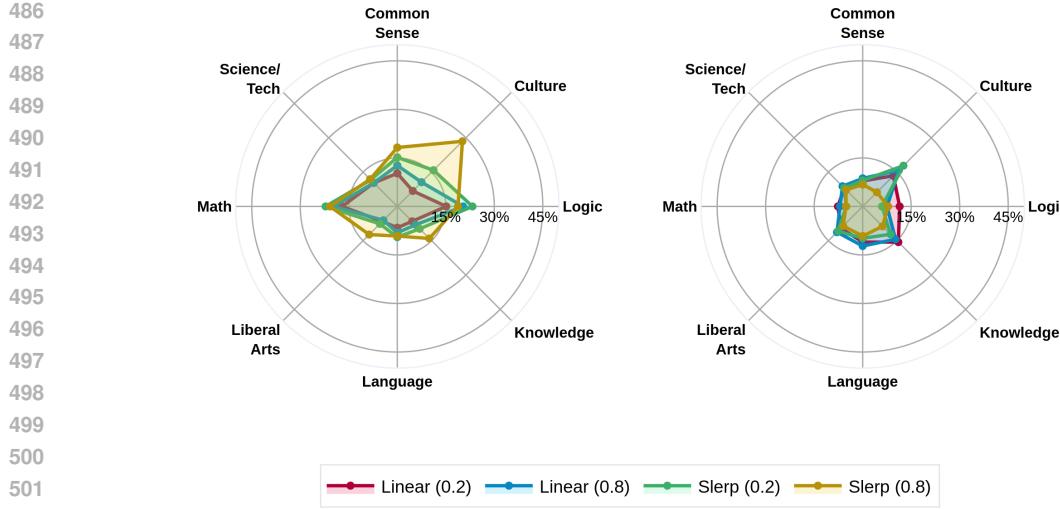


Figure 7: **Forgetting and Backward Transfer of Qwen 2.5 Base merged with Qwen 2.5 Coder (7B) relative to Qwen2.5 Coder.** Induces moderate forgetting and little backward transfer.

Setup. We evaluate Exponential Moving Average (EMA) merging; in the two-checkpoint case this is linear interpolation,

$$\theta_{\text{EMA}}(\alpha) = \alpha \theta_{\text{pre}} + (1 - \alpha) \theta_{\text{post}}.$$

Prior large-scale studies find these simple schemes effective for continual learning with foundation models (Roth et al., 2024). Our experiments compare linear interpolations (e.g. LERP and SLERP) across OpenThinker-7B, OpenThinker3-7B, and Qwen2.5-Coder-7B, together with their base checkpoints.

Results. We compare merged checkpoints to the post-trained model θ_{post} ; results for θ_{pre} appear in the Appendix. For Qwen2.5-Coder-7B and OpenThinker3-7B, even small mixes with the base checkpoint degrade performance, severely for the latter case (Figures 7, 15). In contrast, OpenThinker-7B shows small overall gains, accompanied by moderate forgetting (Figure 19). In our setting, merging does not mitigate forgetting. This may reflect that we merge only two checkpoints, whereas prior work often merges eight or more (Yadav et al., 2023; 2024). We further hypothesize that weight drift between our checkpoints is larger than is typical in the merging literature, which could explain these outcomes.

Takeaway

Merging model does not yet reliably mitigate forgetting in post-training pipelines.

Merging remains promising, but further study is needed to determine when each method works, how to overcome its limitations, and whether an increased scale can compensate for these difficulties. Future works may consider the effect of the number of models merged and weight drift on reasoning models.

5 CONCLUSION

We present a new metric for sample-wise forgetting and backward transfer that corrects for chance in multiple-choice evaluations. Our results challenge a common claim: sequential training does not automatically erode pre-training knowledge. Forgetting depends on the post-training method and its scale. By focusing on sample-wise forgetting, we offer a clearer map of what knowledge is lost and in what stages of instruction tuning do language models lose during post-training – providing fertile ground to study how to preserve (minimize forgetting) and accumulate (higher backward transfer) knowledge while adding new capabilities by post-training. Promising ways to prevent forgetting include: (1) Designing objectives and data that explicitly penalize $1 \rightarrow 0$ transitions; (2) Using targeted synthetic corpora or brief mid-training bursts to repair localized forgetting; (3) Adding retrieval mechanisms to reduce reliance on in-weight knowledge storage.

540 REFERENCES
541

542 Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
543 permutation symmetries. In *The Eleventh International Conference on Learning Representations*,
544 2023. URL <https://openreview.net/forum?id=CQsmMYmlP5T>.

545 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido
546 Galil, Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropf, Ehud Karpas, Ran
547 Zilberman, Jiaqi Zeng, Soumye Singh, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald
548 Shen, Ameya Sunil Mahabaleshwar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen,
549 Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia,
550 Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek,
551 Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shubham
552 Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
553 Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus Kliegl, Rabeeh
554 Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Brandon Norick, Joseph
555 Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary, Abhinav Khattar, Deepak
556 Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha,
557 Sahil Jain, Christine Harvey, Elad Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy
558 Puterman, George Lam, Arun Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang,
559 Anna Warna, Abhilash Somasudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar
560 Mor, Omer Ullman Argov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Monika Katariya,
561 Marco Rovinelli, Viji Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam,
562 Smita Ithape, Karthik Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit
563 Daw, Denys Fridman, Erick Galinkin, Michael Evans, Katherine Luna, Leon Derczynski, Nikki
564 Pope, Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika
565 Katariya, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii
566 Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro,
567 Jonah Alben, Yonatan Geifman, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient
568 reasoning models, 2025. URL <https://arxiv.org/abs/2505.00949>.

569 Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-jussà. Continual lifelong learning
570 in natural language processing: A survey. In Donia Scott, Nuria Bel, and Chengqing Zong
571 (eds.), *Proceedings of the 28th International Conference on Computational Linguistics*, pp. 6523–
572 6541, Barcelona, Spain (Online), December 2020. International Committee on Computational
573 Linguistics. doi: 10.18653/v1/2020.coling-main.574. URL <https://aclanthology.org/2020.coling-main.574/>.

574 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
575 about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial
576 Intelligence*, 2020.

577 Shiqi Chen, Jinghan Zhang, Tongyao Zhu, Wei Liu, Siyang Gao, Miao Xiong, Manling Li, and
578 Junxian He. Bring reason to vision: Understanding perception and reasoning through model
579 merging. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=ntCAP6tMoX>.

580 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
581 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
582 *arXiv:1803.05457v1*, 2018.

583 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
584 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
585 tasks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(7):3366–3385, 2022.
586 doi: 10.1109/TPAMI.2021.3057446.

587 DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. *arXiv preprint
588 arXiv:2401.02954*, 2024. URL <https://github.com/deepseek-ai/DeepSeek-LLM>.

589 DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
590 Learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

594 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 595 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
 596 Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
 597 Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
 598 Bin Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
 599 McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
 600 Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
 601 Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
 602 Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
 603 Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
 604 Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
 605 Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
 606 Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vrane, Jason Park, Jay Mahadeokar, Jeet
 607 Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
 608 Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
 609 Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Kartikeya Upasani,
 610 Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. *CoRR*,
 611 abs/2407.21783, 2024. URL <https://doi.org/10.48550/arXiv.2407.21783>.

612 Sebastian Dziadzio, Vishaal Udandarao, Karsten Roth, Ameya Prabhu, Zeynep Akata, Samuel
 613 Albanie, and Matthias Bethge. How to merge multimodal models over time? In *ICLR 2025*
 614 *Workshop on Modularity for Collaborative, Decentralized, and Continual Deep Learning*, 2025.

615 Heshan Fernando, Han Shen, Parikshit Ram, Yi Zhou, Horst Samulowitz, Nathalie Baracaldo, and
 616 Tianyi Chen. Mitigating forgetting in llm supervised fine-tuning and preference learning. *arXiv*
 617 *preprint arXiv:2410.15483*, 2024.

618 Heshan Fernando, Han Shen, Parikshit Ram, Yi Zhou, Horst Samulowitz, Nathalie Baracaldo, and
 619 Tianyi Chen. Mitigating forgetting in llm supervised fine-tuning and preference learning, 2025.
 620 URL <https://arxiv.org/abs/2410.15483>.

621 Robert M. French. Catastrophic forgetting in connectionist networks. *Trends in Cognitive Sciences*, 3(4):128–135, 1999. ISSN 1364-6613. doi: [https://doi.org/10.1016/S1364-6613\(99\)01294-2](https://doi.org/10.1016/S1364-6613(99)01294-2). URL <https://www.sciencedirect.com/science/article/pii/S1364661399012942>.

622 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
 623 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
 624 Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muenninghoff, Shiye Su,
 625 Wanja Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
 626 Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
 627 Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
 628 Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
 629 Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
 630 Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
 631 2025. URL <https://arxiv.org/abs/2506.04178>.

632 Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Light-
 633 eval: A lightweight framework for llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.

634 Naimul Haque. Catastrophic forgetting in llms: A comparative analysis across language tasks. *arXiv*
 635 *preprint arXiv:2504.01241*, 2025.

636 Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
 637 Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference on*
 638 *Learning Representations (ICLR)*, 2021a.

639 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 640 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International*
 641 *Conference on Learning Representations (ICLR)*, 2021b.

648 Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
 649 Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
 650 reproducibility. *arXiv preprint arXiv:2504.07086*, 2025.

651 Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao,
 652 and Jinsong Su. Mitigating catastrophic forgetting in large language models with self-synthesized
 653 rehearsal. *arXiv preprint arXiv:2403.01244*, 2024.

654 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 655 Bowen Yu, Kai Dang, et al. Qwen2.5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 656 2024.

657 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 658 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 659 *arXiv:2412.16720*, 2024.

660 Gangwei Jiang, Zhaoyi Li, Defu Lian, and Ying Wei. Refine large language model fine-tuning via
 661 instruction vector. *arXiv preprint arXiv:2406.12227*, 2024.

662 Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forgetting
 663 in language models via implicit inference. In *The Twelfth International Conference on Learning
 664 Representations*, 2024. URL <https://openreview.net/forum?id=VrHiF2hsrm>.

665 Chen-An Li and Hung-Yi Lee. Examining forgetting in continual pre-training of aligned large
 666 language models. *arXiv preprint arXiv:2401.03129*, 2024a.

667 Chen-An Li and Hung-Yi Lee. Examining forgetting in continual pre-training of aligned large
 668 language models, 2024b. URL <https://arxiv.org/abs/2401.03129>.

669 Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wangmeng Zuo, Dahua Lin, Yu Qiao, and Jing
 670 Shao. Salad-bench: A hierarchical and comprehensive safety benchmark for large language models.
 671 *arXiv preprint arXiv:2402.05044*, 2024.

672 Yuetai Li, Zhangchen Xu, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen
 673 Lin, Xiang Yue, and Radha Poovendran. Temporal sampling for forgotten reasoning in LLMs. In
 674 *Second Workshop on Test-Time Adaptation: Putting Updates to the Test! at ICML 2025*, 2025.
 675 URL <https://openreview.net/forum?id=J0HWRSsPJ>.

676 Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
 677 falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of
 678 the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 679 pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
 10.18653/v1/2022.acl-long.229. URL [https://aclanthology.org/2022.acl-long.
 680 229/](https://aclanthology.org/2022.acl-long.229).

681 Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
 682 Wang, Wenbin Hu, Hanning Zhang, Hanze Dong, Renjie Pi, Han Zhao, Nan Jiang, Heng Ji, Yuan
 683 Yao, and Tong Zhang. Mitigating the alignment tax of rlhf, 2024. URL [https://arxiv.org/
 684 abs/2309.06256](https://arxiv.org/abs/2309.06256).

685 David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning.
 686 *Advances in neural information processing systems*, 30, 2017.

687 Keming Lu, Bowen Yu, Fei Huang, Yang Fan, Runji Lin, and Chang Zhou. Online merging optimizers
 688 for boosting rewards and mitigating tax in alignment. *arXiv preprint arXiv:2405.17931*, 2024.

689 Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
 690 catastrophic forgetting in large language models during continual fine-tuning. *IEEE Transactions
 691 on Audio, Speech and Language Processing*, 2025.

692 Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
 693 sequential learning problem. volume 24 of *Psychology of Learning and Motivation*, pp. 109–165.
 694 Academic Press, 1989. doi: [https://doi.org/10.1016/S0079-7421\(08\)60536-8](https://doi.org/10.1016/S0079-7421(08)60536-8). URL <https://www.sciencedirect.com/science/article/pii/S0079742108605368>.

702 Ken McRae and Amy Hetherington. Catastrophic interference is eliminated in pretrained networks.
 703 1993. URL <https://api.semanticscholar.org/CorpusID:2129036>.
 704

705 Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investigation
 706 of the role of pre-training in lifelong learning. *Journal of Machine Learning Research*, 24(214):
 707 1–50, 2023. URL <http://jmlr.org/papers/v24/22-0496.html>.
 708

709 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 710 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 711 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.
 712

713 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 714 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 715 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 716 27744, 2022.
 717

718 Baolin Peng, Linfeng Song, Ye Tian, Lifeng Jin, Haitao Mi, and Dong Yu. Stabilizing rlhf through
 719 advantage model and selective rehearsal, 2023. URL <https://arxiv.org/abs/2309.10202>.
 720

721 Kunat Pipatanakul, Pittawat Taveekitworachai, Potsawee Manakul, and Kasima Tharnpipitchai.
 722 Adapting language-specific llms to a reasoning model in one day via model merging – an open
 723 recipe, 2025. URL <https://arxiv.org/abs/2502.09056>.
 724

725 Prime Intellect Team, Sami Jaghouar, Justus Mattern, Jack Min Ong, Jannik Straube, Manveer Basra,
 726 Aaron Pazdera, Kushal Thaman, Matthew Di Ferrante, Felix Gabriel, Fares Obeid, Kemal Erdem,
 727 Michael Keiblanger, and Johannes Hagemann. Intellect-2: A reasoning model trained through
 728 globally decentralized reinforcement learning, 2025. URL <https://arxiv.org/abs/2505.07291>.
 729

730 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 731 <https://qwenlm.github.io/blog/qwq-32b/>.
 732

733 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 734 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 735 in neural information processing systems*, 36:53728–53741, 2023.
 736

737 Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
 738 forgetting in neural networks. In *International Conference on Learning Representations*, 2022.
 739 URL https://openreview.net/forum?id=GhVS8_yPeEa.
 740

741 Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
 742 forgetting functions. *Psychological Review*, 97(2):285–308, 1990. doi: 10.1037/0033-295X.97.2.285.
 743

744 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 745 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 746 benchmark. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.
 747

748 Matthew Richardson, Christopher J.C. Burges, and Erin Renshaw. MCTest: A challenge dataset for
 749 the open-domain machine comprehension of text. In David Yarowsky, Timothy Baldwin, Anna
 750 Korhonen, Karen Livescu, and Steven Bethard (eds.), *Proceedings of the 2013 Conference on
 751 Empirical Methods in Natural Language Processing*, pp. 193–203, Seattle, Washington, USA,
 752 October 2013. Association for Computational Linguistics. URL <https://aclanthology.org/D13-1020/>.
 753

754 Karsten Roth, Vishal Udandarao, Sebastian Dziadzio, Ameya Prabhu, Mehdi Cherti, Oriol Vinyals,
 755 Olivier Hénaff, Samuel Albanie, Matthias Bethge, and Zeynep Akata. A practitioner’s guide to
 continual multimodal pretraining. *arXiv preprint arXiv:2408.14471*, 2024.

756 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
 757 sense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
 758 (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*
 759 and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
 760 pp. 4463–4473, Hong Kong, China, November 2019. Association for Computational Linguistics.
 761 doi: 10.18653/v1/D19-1454. URL <https://aclanthology.org/D19-1454/>.

762 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 763 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 764 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

765

766 Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. MuSR: Testing the
 767 limits of chain-of-thought with multistep soft reasoning. In *The Twelfth International Conference*
 768 on *Learning Representations*, 2024. URL <https://openreview.net/forum?id=jenyYQzuel>.

769

770 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 771 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
 772 big-bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 773 2022.

774

775 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
 776 answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference of*
 777 *the North American Chapter of the Association for Computational Linguistics: Human Language*
 778 *Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June
 779 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421>.

780

781

782 Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong Zhou, Yurou Dai, Wen Yin, Zhejian Yang,
 783 Jiangyue Yan, Yao Su, Zhenhan Dai, Yifeng Xie, Yihan Cao, Lichao Sun, Pan Zhou, Lifang He,
 784 Hechang Chen, Yu Zhang, Qingsong Wen, Tianming Liu, Neil Zhenqiang Gong, Jiliang Tang,
 785 Caiming Xiong, Heng Ji, Philip S. Yu, and Jianfeng Gao. A survey on post-training of large
 786 language models, 2025. URL <https://arxiv.org/abs/2503.06072>.

787

788 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
 789 Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network learning.
 790 In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=BJ1xm30cKm>.

791

792 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
 793 Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 794 46(8):5362–5383, 2024. doi: 10.1109/TPAMI.2024.3367329.

795

796 Zhichao Wang, Bin Bi, Zixu Zhu, Xiangbo Mao, Jun Wang, and Shiyu Wang. Uft: Unifying
 797 fine-tuning of sft and rlhf/dpo/una through a generalized implicit reward function, 2025. URL
 798 <https://arxiv.org/abs/2410.21438>.

799

800 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi, Quoc
 801 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
 802 *arXiv preprint arXiv:2201.11903*, 2022.

803

804 Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang Li, Guilin Qi, and Gholamreza Haffari.
 805 Pretrained language model in continual learning: A comparative study. In *International Conference*
 806 on *Learning Representations*, 2022. URL <https://openreview.net/forum?id=figzpGMrdD>.

807

808 Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
 809 Resolving interference when merging models. In *Thirty-seventh Conference on Neural Information*
 810 *Processing Systems*, 2023. URL <https://openreview.net/forum?id=xtaX3WyCj1>.

810 Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal,
 811 and Tsendsuren Munkhdalai. What matters for model merging at scale? *arXiv preprint*
 812 *arXiv:2410.03617*, 2024.

813
 814 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 815 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 816 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 817 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 818 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 819 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
 820 2024a.

821 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 822 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 823 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
 824 model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

825 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 826 reasoning, 2025. URL <https://arxiv.org/abs/2502.03387>.

827 Çağatay Yıldız, Nishaanth Kanna Ravichandran, Prishruit Punia, Matthias Bethge, and Beyza Ermis.
 828 Investigating continual pretraining in large language models: Insights and implications. *arXiv*
 829 *preprint arXiv:2402.17400*, 2024.

830 Çağatay Yıldız, Nishaanth Kanna Ravichandran, Nitin Sharma, Matthias Bethge, and Beyza
 831 Ermis. Investigating continual pretraining in large language models: Insights and implica-
 832 tions. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=aKjJoEVKgO>.

833
 834 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 835 really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for*
 836 *Computational Linguistics*, 2019.

837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864

865

866

867

Appendix

868

869

CONTENTS

870

871

A Related Works 19

872

873

B Experimental Setup 20

874

B.1 Evaluation 20

875

B.2 Datasets 21

876

C Evaluation Methodology 24

877

C.1 Prompting 24

878

C.2 Sample vs. Aggregate Metric Comparison 25

879

C.3 Metric Robustness under MCQA 25

880

C.4 Extraction 28

881

D Model Merging 30

882

D.1 Weight Drift 30

883

D.2 Failure Case: OpenThinker3 30

884

D.3 Failure Case: Coder Models 32

885

D.4 Moderate Case: OpenThinker 33

886

E Expanded Comparisons 34

887

E.1 Data Diversity 34

888

E.2 Objective Function (SFT vs. RL) 35

889

E.3 Data Volume 36

890

F Additional Plots 38

891

G Quantifying Forgetting Accurately (Tables for referencing plots)³ 39

892

G.1 Instruction Tuning 39

893

G.2 Domain-Continual Pretraining 41

894

G.3 Trained from Base 43

895

G.4 Trained from Instruct - High Data Scenario 45

896

G.5 Trained from Instruct - Low Data Scenario 47

897

G.6 Qwen2.5 Base and Coder Merge (Relative to Qwen2.5 Base) 49

898

G.7 Qwen2.5 Base and Coder Merge (Relative to Qwen2.5 Coder) 50

899

G.8 Qwen2.5 Instruct and OpenThinker 7B Merge (Relative to Qwen2.5 Instruct) 51

900

G.9 Qwen2.5 Instruct and OpenThinker 7B Merge (Relative to OpenThinker) 52

918	G.10 Qwen2.5 Instruct and OpenThinker3 7B Merge (Relative to Qwen2.5 Instruct) . . .	53
919		
920	G.11 Qwen2.5 Instruct and OpenThinker3 7B Merge (Relative to OpenThinker3) . . .	54
921		
922		
923		
924		
925		
926		
927		
928		
929		
930		
931		
932		
933		
934		
935		
936		
937		
938		
939		
940		
941		
942		
943		
944		
945		
946		
947		
948		
949		
950		
951		
952		
953		
954		
955		
956		
957		
958		
959		
960		
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		

972 A RELATED WORKS
973

974 **Post-training techniques.** A broad set of post-training methods now underpins standard LLM
975 pipelines. *Supervised fine-tuning (SFT)* (Ouyang et al., 2022) remains the core step, used for continued
976 pre-training and instruction tuning. At later stages, *reinforcement learning from human feedback*
977 (*RLHF*) (Ouyang et al., 2022) aligns model outputs with human preferences. To simplify preference
978 learning, *direct preference optimization (DPO)* (Rafailov et al., 2023) provides a direct loss surrogate.
979 With the rise of test-time scaling (e.g. sampling depth or compute at inference), *group relative policy*
980 *optimization (GRPO)* (Shao et al., 2024) has been proposed to elicit stronger intrinsic reasoning.
981 Taken together, these methods introduce distinct objectives and optimizers, increasing the complexity
982 of the post-training stack (Wang et al., 2025).

983 **Measuring catastrophic forgetting.** Catastrophic forgetting is the loss of previously acquired
984 knowledge when a network learns new information. Early studies examined the effect in small models
985 and simplified settings (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999). Lopez-Paz &
986 Ranzato (2017) formalized forgetting via *backward transfer*, the effect of learning a new task on
987 performance in earlier ones: positive values indicate improvement; negative values indicate forgetting.
988 Recent work extends these analyses to deep networks trained on large-scale data, with growing
989 attention to language models (Biesialska et al., 2020; Wu et al., 2022).

990 **Benchmark paradigm.** Task-incremental learning is the dominant paradigm for benchmarking
991 forgetting (De Lange et al., 2022). Models learn a sequence of tasks with clear boundaries, and task
992 labels are available at train and test time. Class-incremental learning removes test-time task identifiers,
993 making evaluation stricter (Wang et al., 2024). Other views analyze continual learning through
994 positive/negative transfer (Yildiz et al., 2025). At the sample level, Toneva et al. (2019) introduced
995 forgetting metrics that identify “unforgettable” examples (stable once learned) and “catastrophically
996 forgotten” examples (highly plastic), and showed these patterns are consistent across architectures
997 and random seeds.

998 **Language-model forgetting.** Recent studies focus on forgetting induced by instruction tuning.
999 Luo et al. (2025) trained models up to 7B parameters with SFT and evaluated multiple knowledge
1000 categories. DeepSeek-AI (2024) reported instruction-tuning-related regressions on sentence com-
1001 pletion even for 67B models. Fernando et al. (2025) examined forgetting across SFT followed by
1002 RLHF and proposed joint-training strategies to mitigate it. Lin et al. (2024) framed instruction-tuning
1003 degradation as an “alignment tax” (performance loss on pre-training skills due to alignment) and
1004 found model merging to be the most Pareto-efficient mitigation among tested techniques. Li &
1005 Lee (2024b) studied continual pre-training on aligned LMs and observed notable regressions in
1006 alignment-related behavior.

1007 **Catastrophic forgetting in reasoning training pipelines.** Work on reasoning-oriented LMs high-
1008 lights new failure modes. Li et al. (2025) defined *temporal forgetting*: models lose the ability to solve
1009 problems they could solve at earlier training checkpoints. The effect appears in both RL-trained and
1010 instruction-tuned models. They proposed *temporal sampling*—round-robin sampling from recent
1011 checkpoints—as a mitigation. Pipatanakul et al. (2025) merged a language-fine-tuned model with
1012 DeepSeek R1 Distill (70B; both derived from Llama 3.3 70B (Dubey et al., 2024)) to adapt reasoning
1013 while preserving language competence. For multimodal models, Chen et al. (2025) found that later
1014 layers primarily support reasoning, whereas early layers concentrate perception, suggesting layer-wise
1015 interventions. We document forgetting extensively across post-training pipelines in our work.

1016 Each new method introduces its own objective and optimization procedure, adding to the complexity
1017 of the post-training landscape (Wang et al., 2025).

1018 **Mitigation strategies.** Sequential SFT to RLHF/DPO can exacerbate forgetting. To counteract this,
1019 researchers explore: (i) *model averaging*, interpolating between pre- and post-RLHF checkpoints to
1020 trade off alignment and retention (Lin et al., 2024); (ii) *joint post-training*, optimizing supervised and
1021 preference objectives simultaneously with convergence guarantees (Fernando et al., 2024); and (iii)
1022 *unified fine-tuning (UFT)*, which folds instruction tuning and alignment into a single implicit-reward
1023 objective (Wang et al., 2025). Additional techniques—including advantage models and selective
1024 rehearsal—stabilize RLHF by shaping reward distributions and replaying curated data (Peng et al.,
1025

1026 2023). *Online Merging Optimizers (OMO)* combine gradients from SFT and RLHF models during
 1027 training to maximize reward while preserving pre-trained skills (Lu et al., 2024). Theory supports
 1028 these interventions: up to permutation symmetries, weights of homologous models tend to lie in a
 1029 shared low-loss basin (Ainsworth et al., 2023). Hence, we were quite surprised that model merging
 1030 does not work for our simple case of mitigating forgetting during post-training with only two deep
 1031 networks.

1032
 1033 **Forgetting at scale.** Pre-training mitigates forgetting relative to training from scratch (Mehta et al.,
 1034 2023; McRae & Hetherington, 1993). Ramasesh et al. (2022) further found that pretrained ResNets
 1035 and Transformers (up to $\sim 100M$ parameters) are robust to forgetting at scale; language experiments
 1036 showed similar trends. However, Luo et al. (2025) reported increased forgetting with scale in the
 1037 1–7B LM regime, suggesting modality- and regime-dependent behavior. In contrast to these works,
 1038 we study forgetting during post-training of language models.

1040 B EXPERIMENTAL SETUP

1041
 1042 We standardize settings across models for fair comparison. All experiments use the `LightEval`
 1043 framework (Habib et al., 2023) and log per-sample accuracy. We apply a zero-shot chain-of-thought
 1044 prompt to all models and require answers in a fixed MCQ format (see Appendix); base models receive
 1045 a few-shot prompt solely to teach the format. When available⁶, we add chat-specific templates to be
 1046 in line with best practices. We cap sequence length at 32K tokens, except for Qwen2.5-7B-Math and
 1047 Qwen2.5-7B-Math-Instruct Yang et al. (2024a), which are limited to 4K⁷. Decoding uses temperature
 1048 0.6 with nucleus sampling (`top_p`) of 0.95. We provide additional details in the Appendix. To
 1049 facilitate reproducibility and further inquiry, we release per-sample logs for every sub-benchmark
 1050 alongside code.

1051 B.1 EVALUATION

1052 To evaluate performance differences between models, we employ chain-of-thought (CoT) prompting
 1053 Wei et al. (2022) on multiple-choice question answering (MCQA) datasets in addition to free-
 1054 form/generative math questions. In this setup, the model auto-regressively generates a reasoning
 1055 chain prior to producing its final answer. The predicted choice is then extracted from the generated text
 1056 and compared against the ground-truth label. When available, chat-specific templates are incorporated
 1057 into the prompt to ensure consistent formatting.

1058 Because some models, particularly base models, tend to continue generating responses for subsequent
 1059 questions after completing the current one, we provide explicit stop sequences to terminate generation
 1060 once a prediction has been produced.

1061 When applicable, to encourage answers in strict MCQA format (models sometimes output the option
 1062 text instead of the letter), we prepend the following instruction prompt:

1063 {Instruction}

1064 On the very last line, write exactly "Answer: \$LETTER" (e.g.
 1065 "Answer: B"), with no extra punctuation, no lowercase, no *,
 1066 and no trailing spaces.

1067 Think step by step, showing your reasoning.

1068 Question: "{Question}"

1069 We find adding the additional instructions to not use extra punctuation, asterisks, lowercase letters, or
 1070 trailing spaces necessary, as we find `LightEval`'s letter extraction can fail in certain cases otherwise.
 1071 We additionally tell the model to constrain its output to be of the form "Answer: \$LETTER" as
 1072 otherwise models will often provide the corresponding answer to a given letter or provide the answer
 1073 in another format, making extraction more prone to error.

1074
 1075
 1076
 1077
 1078 ⁶This budget was sufficient in practice; we never required more tokens.

1079 ⁷Because base models sometimes continue into subsequent questions, we set explicit stop sequences to end
 1080 generation once a prediction is produced.

1080 For the case of base models, where few-shot prompting yields a more accurate elicitation of their
 1081 knowledge, we use few-shot prompting:
 1082

```
1083 {Instruction}
1084
1085 Question: "{Few-Shot Question 1}"
1086 Reasoning: {Few-shot Reasoning Trace 1}
1087 Answer: {Few-shot Answer 1}
1088 ...
1089 ... <--- more examples
1090
1091 Question: "{Question}"
1092 Reasoning:
```

1093 Datasets where CoT reasoning traces are provided for few-shot prompting, we use those. In the
 1094 cases where this is not provided (PIQA, MCTest, Social-IQa, ARC, MCTest, and Hellaswag) CoT
 1095 few-shot examples were generated and then confirmed these are not included in the benchmarks¹.
 1096 For free-form/generative math questions, we follow the prompt and extraction methods used in
 1097 Hochlehnert et al. (2025).

1098 All experiments are conducted using the Hugging Face LightEval framework, with results logged
 1099 at the sample level. For generation, we allow up to 32,768 tokens, which we found sufficient for
 1100 models to complete their chain of thought and provide an answer. In cases where the maximum
 1101 trained context length is smaller, then the generation is reduced to that number, as is the case with
 1102 Qwen2.5-7B-Math and Qwen2.5-7B-Math-Instruct Yang et al. (2024a). The temperature is set to 0.6
 1103 and nucleus sampling with $p = 0.95$ is applied. All datasets are evaluated on at least 3 seeds and
 1104 metrics reported with mean and standard deviation (c.f. Section G).

1105 **B.2 DATASETS**
 1106

1107 To evaluate broad model knowledge and capabilities, we benchmark on eighteen public datasets:
 1108 MMLU Hendrycks et al. (2021b;a), BBH Suzgun et al. (2022), GPQA Rein et al. (2024), MuSR
 1109 Sprague et al. (2024), ARC Clark et al. (2018), TruthfulQA Lin et al. (2022), HellaSwag Zellers
 1110 et al. (2019), Social IQa Sap et al. (2019), MCTest Richardson et al. (2013), PIQA Bisk et al.
 1111 (2020), CommonsenseQA Talmor et al. (2019), SaladBench Li et al. (2024), AIME24, AIME25,
 1112 AMC23, Math500, Minerva, and OlympiadBench. Several of these benchmarks, namely MMLU and
 1113 BBH provide subject-level annotations, enabling fine-grained sub-benchmark analyses in addition to
 1114 aggregate reporting. For the cases of MMLU and BBH, subcategory labels are provided which allow
 1115 for splitting into further sub-benchmark evaluates by subjects. To enable easier understanding, we
 1116 group these (sub-)benchmarks into high-level groups used to evaluate the capabilities of the models.
 1117 They are grouped such that (sub-)benchmarks in the same group show similar trends in forgetting
 1118 and improvement.

1119 They are grouped as follows:

1120 **Commonsense:**

1121

- 1122 • Commonsense QA
- 1123 • PIQA

1124 **Culture:**

1125

- 1126 • BBH (sports understanding and movie recommendation)

1127 **Logic**

1128

- 1129 • BBH (navigate, causal judgment, penguins in a table, web of lies, tracking shuffled objects
 1130 three objects, tracking shuffled objects seven objects, tracking shuffled objects five ob-
 1131 jects, temporal sequences, reasoning about colored objects, logical deduction three objects,
 1132 logical deduction seven objects, logical deduction five objects, formal fallacies, and date
 1133 understanding)

1134 • ARC (easy and challenge)
 1135 • MuSR (murder mysteries, object placements, and team allocation)
 1136 • MMLU (logical fallacies)

1137 **Knowledge**

1138 • BBH (object counting)
 1139 • MMLU (miscellaneous and global facts)
 1140 • MCTest

1141 **Language**

1142 • BBH (snarks, disambiguation qa, ruin names, and hyperbaton)
 1143 • Social IQa
 1144 • Hellaswag
 1145 • BBH (salient translation error detection)

1146 **Liberal Arts**

1147 • MMLU (world religions, us foreign policy, sociology, security studies, public relations, professional psychology, professional law, prehistory, philosophy, management, international law, high school world history, high school us history, high school psychology, high school microeconomics, high school macroeconomics, high school government and politics, high school geography, and high school european history)

1148 **Math**

1149 • BBH (geometric shapes, and boolean expressions)
 1150 • MMLU (high school statistics, high school mathematics, formal logic, elementary mathematics, econometrics, college mathematics, and abstract algebra)

1151 **Math (Generative)**

1152 • AIME24
 1153 • AIME25
 1154 • AMC23
 1155 • Math500
 1156 • Minerva
 1157 • OlympiadBench

1158 **Safety**²

1159 • MMLU (moral scenarios, moral disputes, jurisprudence, and business ethics)
 1160 • TruthfulQA (mc1)
 1161 • SaladBench (mrq)

1162 **Science & Tech**

1163 • MMLU (marketing, virology, professional medicine, professional accounting, nutrition, medical genetics, machine learning, human sexuality, human aging, high school physics, high school computer science, high school chemistry, high school biology, electrical engineering, conceptual physics, computer security, college physics, college medicine, college computer science, college chemistry, college biology, clinical knowledge, astronomy, and anatomy)
 1164 • GPQA (diamond)

1188 Unless otherwise noted, we follow the standard task formats and official evaluation splits; for Truth-
1189 fulQA we report MC1, for GPQA the *Diamond* subset, and for SaladBench the MRQ configuration.
1190 This taxonomy serves as the backbone for our analyses of capability acquisition and retention across
1191 training and deployment.

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

¹MMLU is evaluated with few-shot no CoT prompting for the base models

1240

1241

²These are only used in comparisons which do not include a base model because TruthfulQA and SaladBench are designed measure the default behavior of the model rather than knowledge, which few-shot prompting would bias.

1242 C EVALUATION METHODOLOGY
12431244 C.1 PROMPTING
1245

1246 In additional tests, we measure the ability of base models using the same prompting as instruction-
1247 tuned models. Under these conditions we see ostensibly large forgetting in domain-continual
1248 pretrained models (Figure 9). Our qualitative analysis suggests that this is largely due to the models
1249 outputting code, wherein the location of the answer can be obscured. When this is contrasted with
1250 the few-shot prompting, where there is much less forgetting, we conclude that forgetting metrics can
1251 vary significantly depending on the way knowledge is elicited, especially when training on narrow
1252 tasks, which few-shot prompting alleviates.

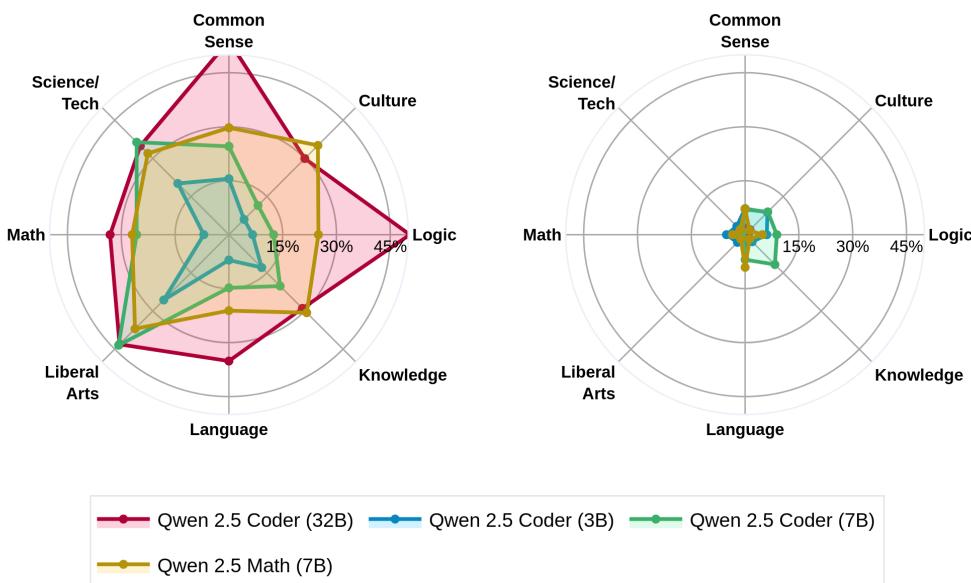
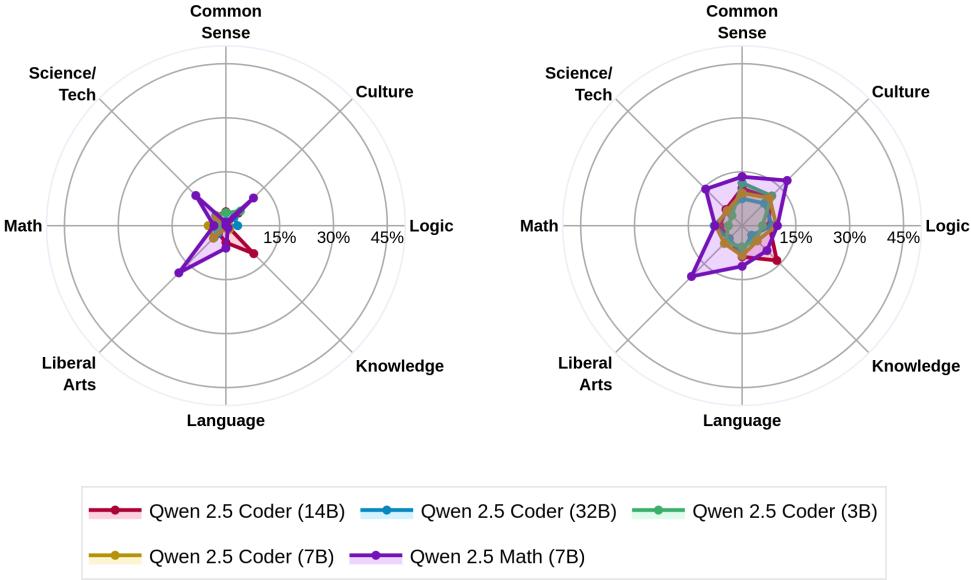


Figure 8: Domain-Adaptive Pretraining models using chat template prompting

For these reasons, measuring the performance of base models on behavioral evaluations can become nontrivial. While benchmarks measuring knowledge or capabilities may be elicited through few-shot prompting, others, such as truthfulness or safety become more difficult as prompting them with examples would bias their behavior. Further works should consider exploring the effect of providing no-knowledge few-shot prompting, where the format of the question and answer is provided without leaking examples to avoid biasing the base model’s output.

1296 C.2 SAMPLE VS. AGGREGATE METRIC COMPARISON
12971318 **Figure 9: Coder model comparing conventional forgetting (left) against our sample-wise forget-
1319 ting (right).** More forgetting is uncovered when using the sample-wise forgetting metric.
13201321 The sample-wise nature of our introduced metric uncovers more forgetting than the standard metric,
1322 defined as
1323

$$F_{\text{standard}} = \max(\bar{a}^{\text{pre}} - \bar{a}^{\text{post}}, 0)$$

1325 Figure 9 illustrates this effect: our sample-based metric reveals substantially more forgetting relative
1326 to the standard formulation, in some cases finding what was originally low forgetting is actually
1327 moderate. This highlights sample-level degradation that is otherwise hidden when averaging over
1328 tasks.1330 C.3 METRIC ROBUSTNESS UNDER MCQA
13311332 We review the robustness of the chance adjusted forgetting in measuring true knowledge loss, which is
1333 particularly relevant when evaluating under MCQA benchmarks as models can often guess the answer
1334 correctly. While our metric accounts for this by subtracting out an estimate of this probability, we
1335 compare this to another sample-level metric which filters out noisy samples to empirically demonstrate
1336 this. Namely, we consider samples where there is agreement among two out of three seeds on average,
1337 and consider the cases where there is forgetting relative to the other cases.

$$F = \frac{(1 \rightarrow 0)_2}{(0 \rightarrow 0)_2 + (0 \rightarrow 1)_2 + (1 \rightarrow 0)_2 + (1 \rightarrow 1)_2}.$$

1341 where we formally define the two-seed sample-agreement metric as follows:
1342

$$1343 (x \rightarrow y)_2 := \frac{1}{\binom{|\mathcal{S}|}{2}} \sum_{\{s,t\} \in \binom{\mathcal{S}}{2}} \sum_{i=1}^N \mathbf{1}\{a_{i,s}^{\text{pre}} = x = a_{i,t}^{\text{pre}} \wedge a_{i,s}^{\text{post}} = y = a_{i,t}^{\text{post}}\}.$$

1347 where \mathcal{S} is the set of seeds and N the number of samples. Intuitively, this measures robust knowledge
1348 loss relative to stable knowledge. We find that this metric agrees with our results across the post-
1349 training pipeline, thereby indicating the chance adjusted forgetting metric captures robust knowledge
loss, rather than random forgetting. We show the correlation between these metrics in Figure 10.

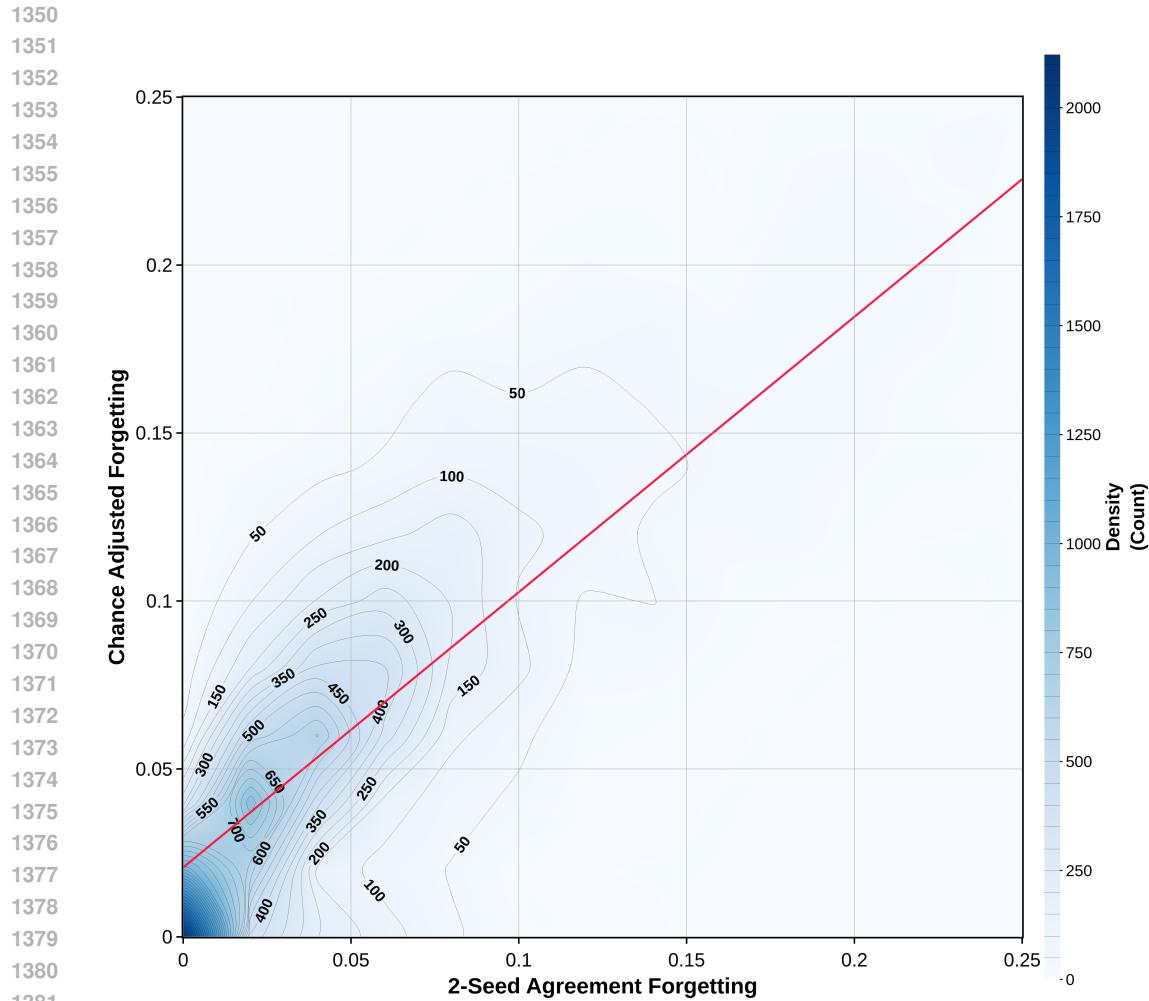


Figure 10: **Sub-benchmark count across 2-Seed Agreement Forgetting (x-axis) and Chance Adjusted Forgetting (y-axis).** The line of best fit (red) of the subbenchmark forgetting values shows both metrics are highly correlated.

We also provide a specific comparison of the metrics in Figure 11.

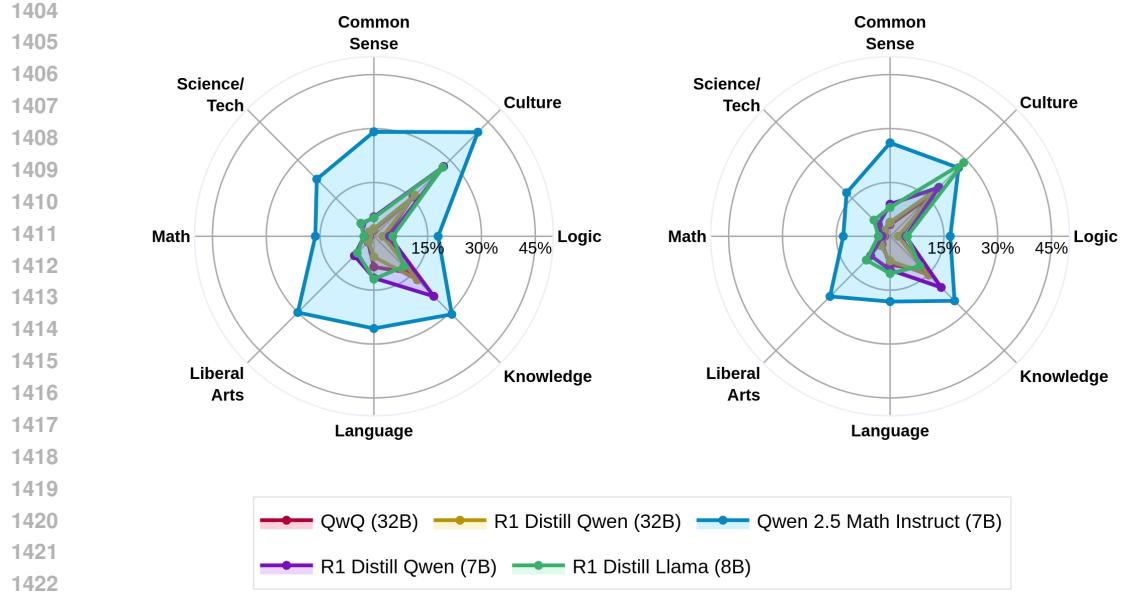


Figure 11: **2 Seed Forgetting (left) and Chance Adjusted Forgetting (right) of Models Trained from Base.** The overall trends remain the same, with only minor differences such as a slight increase in forgetting for Qwen2.5 Math Instruct (7B) in the 2 seed forgetting case.

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 C.4 EXTRACTION
1459

1460 Sample-level inspection occasionally shows answers that are correct, but unable to be extracted
1461 correctly through the regex extraction described in Section B.1. This occurs particularly in models
1462 trained for specific tasks. For example, we find that coding models will assign the correct answer to
1463 a variable in code and then in a print statement provide the answer variable. We control for these
1464 extraction related errors by using LLM extractor, specifically Qwen2.5-14B-Instruct, which we find
1465 sufficient to correct for errors. We do this by providing the question, response, and ground truth
1466 answers using the below prompt without a chat template, in order to encourage immediate json
1467 output:

1468

1469 You are a strict extractor.

1470 Given the FULL_PROMPT (the original prompt to the model), the model
1471 output SNIPPET (last part, quoted), and the gold extraction (quoted),
1472 return ONLY valid JSON with exactly two keys:

- 1473 - "extraction\": the final answer token as a string
1474 (e.g. "A", "C", "42") or null if unknown
- 1475 - "correct": true if the extraction matches the gold, false
1476 if it does not, or null if unknown

1477 Do NOT output anything else (no explanation, no code fences).

1478

1479 FULL_PROMPT: {q_full_prompt}

1480 SNIPPET: {q_snippet}

1481 GOLD: {q_gold}

1482

1483 Return JSON now:

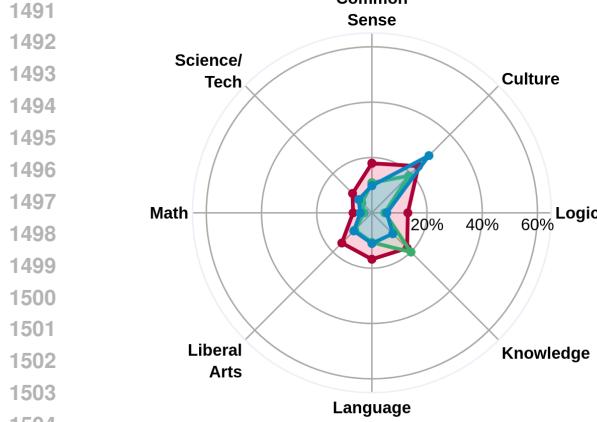
1484

1485 We find that this primarily corrects for outliers while all trends remain the same, which we find to
1486 be true across all knowledge and post-training categories. By comparing Figures 12, where LLM
1487 extraction is used, and 13, where regex extraction is used, we see the outlier Qwen2.5 Math Instruct
(7B) is reduced in its outlier effect. Additionally, the overall trends remain the same.

1488

1489

1490



1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

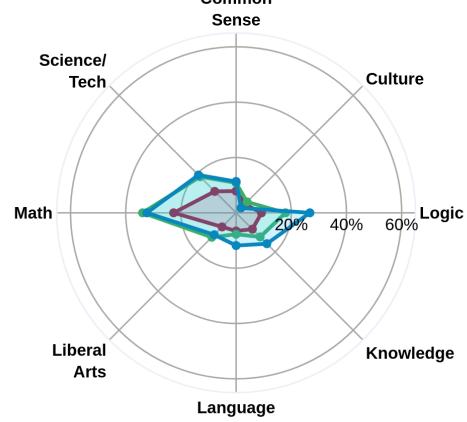
1507

1508

1509

1510

1511



1512 Figure 12: **Forgetting (left) and Backward Transfer (right) of Models Trained from Base**
1513 **using LLM Extraction.** Trends are the same as in Figure 13, but Qwen2.5-Math-Instruct's outlier
1514 tendencies are reduced.

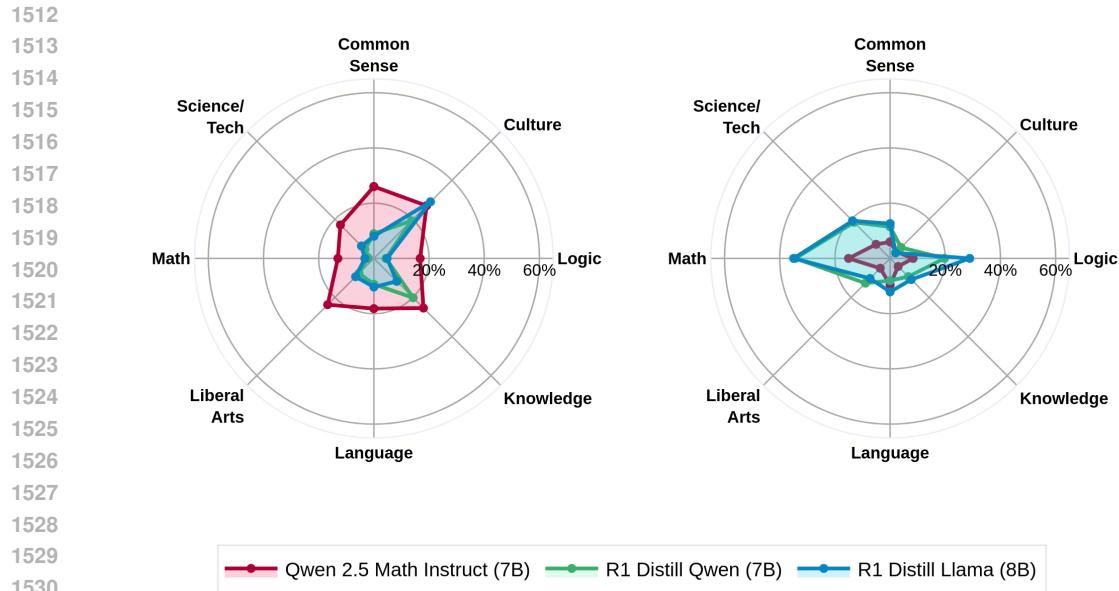


Figure 13: **Forgetting (left) and Backward Transfer (right) of Models Trained from Base using Regex Extraction.** Trends are the same as in Figure 12, but Qwen2.5-Math-Instruct's outlier tendencies are increased.

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566
1567

D MODEL MERGING

1568
1569
1570
1571

Recent work shows that offline model merging can combine capabilities from multiple models (Dzidzio et al., 2025). Unlike classical continual learning (De Lange et al., 2022), it requires neither the original training data nor the ability to resume training, which is practical in resource-constrained settings.

1572
1573
1574
1575

Setup. We evaluate Exponential Moving Average (EMA) merging; in the two-checkpoint case this is linear interpolation,

$$\theta_{\text{EMA}}(\alpha) = \alpha \theta_{\text{pre}} + (1 - \alpha) \theta_{\text{post}}.$$

1576
1577

D.1 WEIGHT DRIFT

1578
1579
1580
1581
1582

We observe large weight drift among models in which merging fails. Specifically in the case of model trained from instruction tuned bases, we compute the ratio of the L_2 norm of the task vector (from the model to the instruct model) to the L_2 norm of base. In the case of OpenThinker3 this is just above 20%. Likewise Qwen2.5 Coder (7B) has a value of 87%. OpenThinker and s1.1, which we find are both mergeable, have values of only 1.8% and 0.6% resp.

1583
1584

D.2 FAILURE CASE: OPENTHINKER3

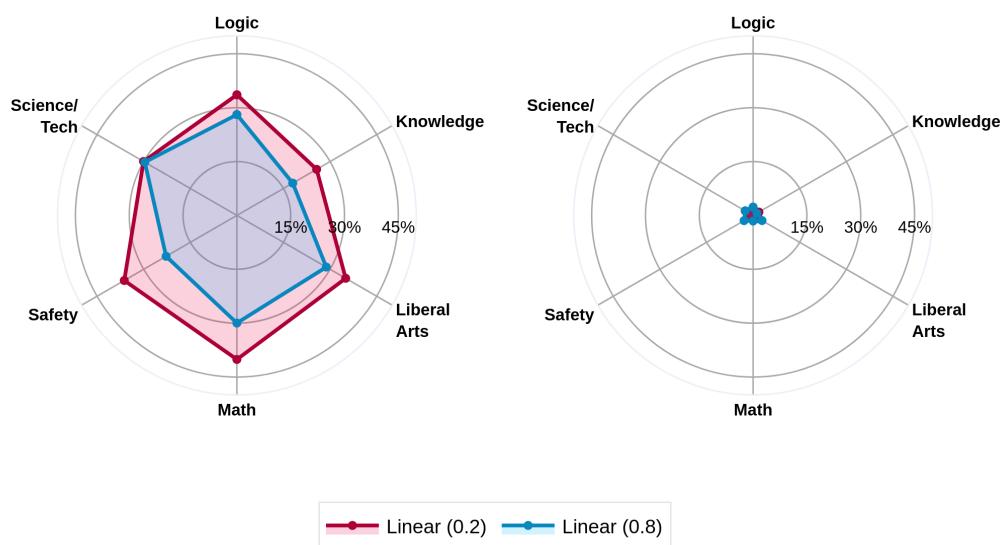
1585
15861605
1606
1607
1608
1609

Figure 14: **Forgetting** (left) and **Backward Transfer** (right) of Qwen 2.5 Instruct merged with OpenThinker3 (7B) relative to Qwen 2.5 Instruct on MMLU. Large forgetting occurs. Sample-level analysis shows the model output degeneration, with the model often repeating words or phrases, typically without providing a final answer.

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

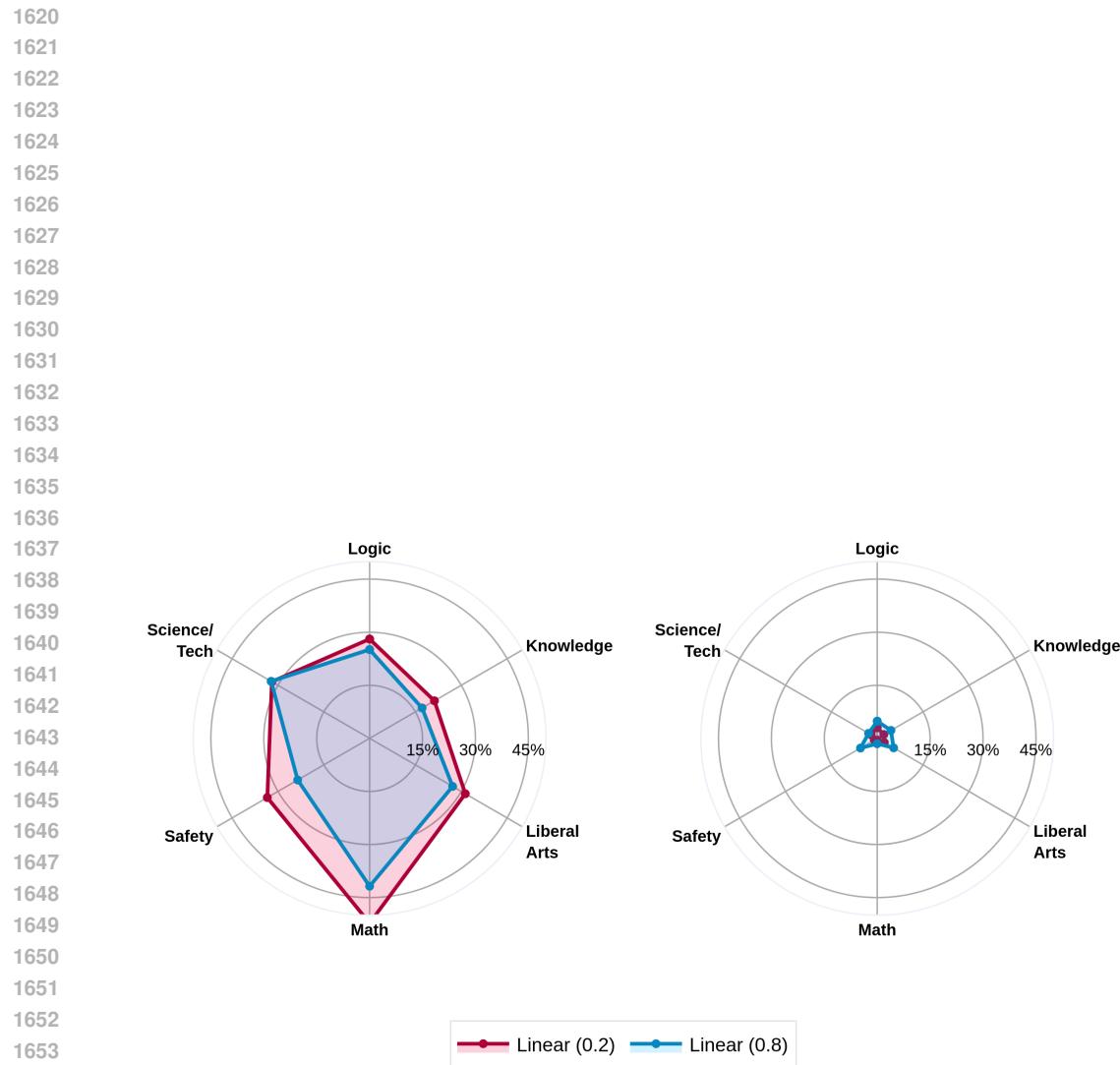


Figure 15: **Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Instruct merged with OpenThinker3 (7B) relative to OpenThinker3 on MMLU.** Large forgetting occurs. Sample-level analysis shows the model output degeneration, with the model often repeating words or phrases, typically without providing a final answer.

1674 D.3 FAILURE CASE: CODER MODELS
1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

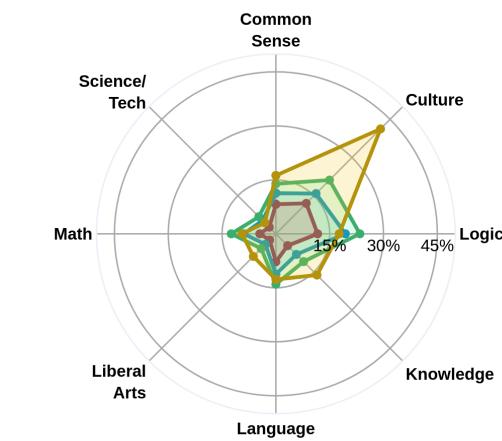
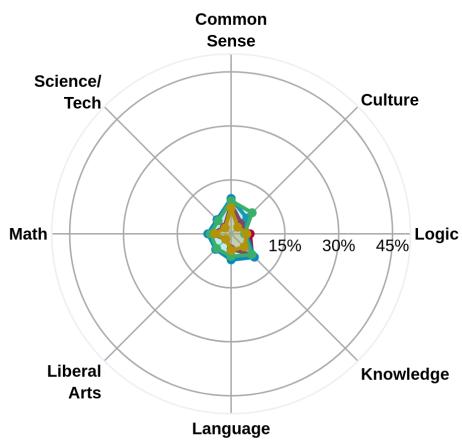
1691

1692

1693

1694

1695



—●— Linear (0.2) —●— Linear (0.8) —●— Slerp (0.2) —●— Slerp (0.8)

1696 **Figure 16: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Base merged with Qwen
1697 2.5 Coder (7B) relative to Qwen 2.5 Base on all Benchmarks.** Moderate-to-large forgetting occurs
1698 with low backward transfer.

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

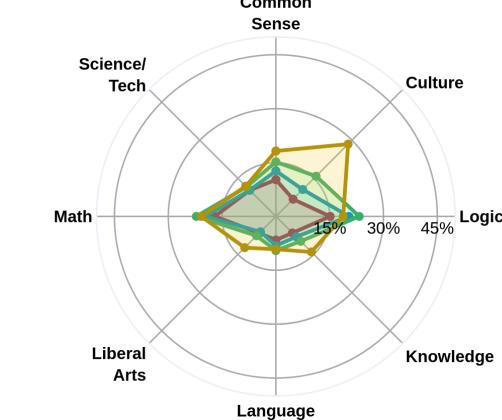
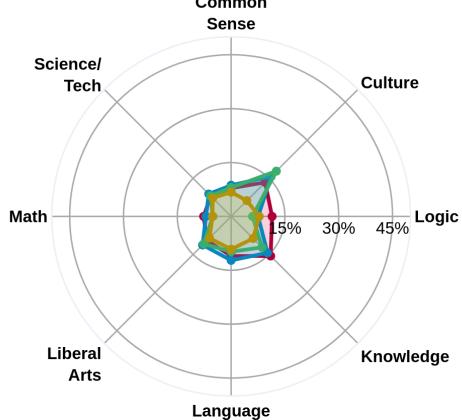
1715

1716

1717

1718

1719



—●— Linear (0.2) —●— Linear (0.8) —●— Slerp (0.2) —●— Slerp (0.8)

1720 **Figure 17: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Base merged with Qwen
1721 2.5 Coder (7B) relative to Qwen 2.5 Coder on all Benchmarks.** Moderate-to-large forgetting occurs
1722 with low-to-moderate backward transfer.

1723

1724

1725

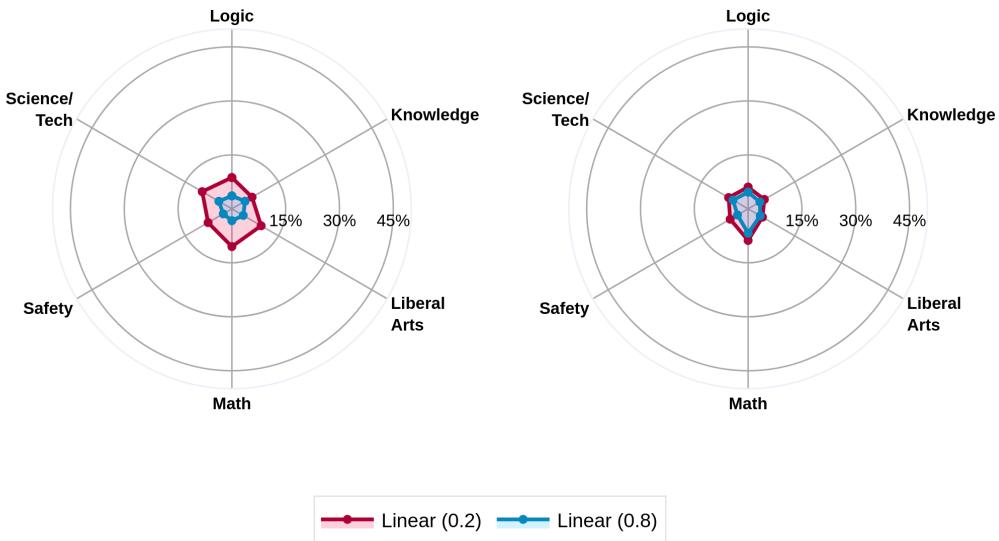
1726

1727

1728

1729

D.4 MODERATE CASE: OPENTHINKER

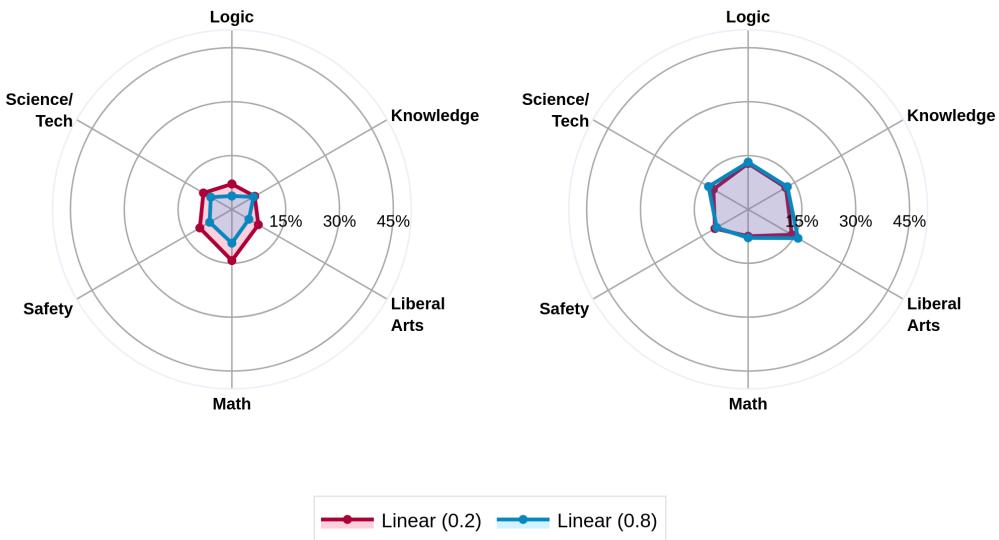


1750

1751

Figure 18: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Instruct merged with OpenThinker Merge (7B) relative to Qwen 2.5 Instruct on MMLU. We see a marginal overall performance improvement in the case of Linear (0.8).

1753



1774

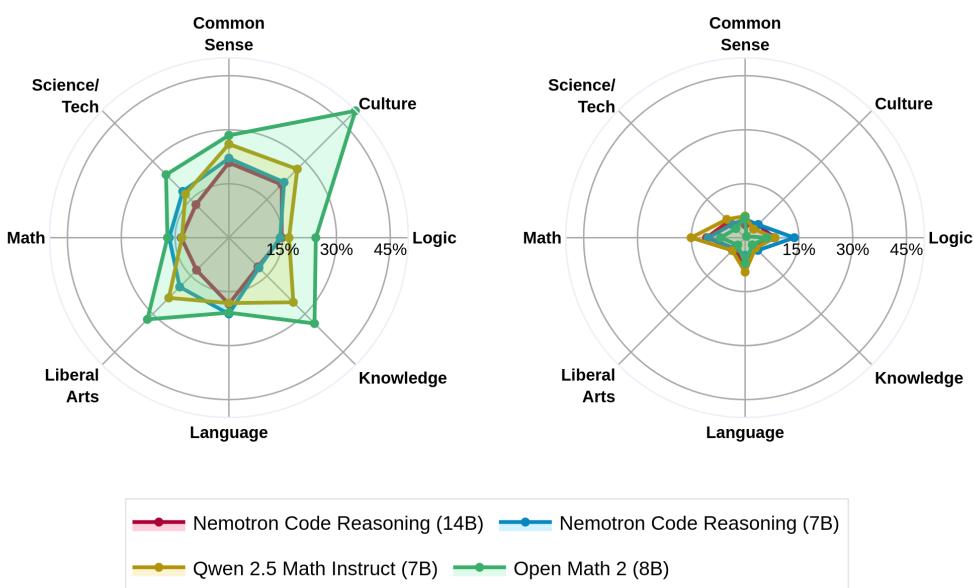
Figure 19: Forgetting (left) and Backward Transfer (right) of Qwen 2.5 Instruct merged with OpenThinker (7B) relative to OpenThinker on MMLU. We see a marginal overall performance improvement in both cases.

1777

1778

1779

1780

1782 E EXPANDED COMPARISONS
17831784
1785
1786
1787
1788
1789
1790
1791 E.1 DATA DIVERSITY
17921793
1794
1795
1796
1797
1798 We split reasoning models into the cases of being trained on narrow domains, where they are trained
1799 on one or two benchmark categories (e.g. math or code), and mixed data, where they are jointly
1800 trained on many tasks or on general data. As indicated in Section 3.3.3, increased data diversity
1801 generally mitigates forgetting and helps with backward transfer (Figure 21) whereas decreased data
1802 diversity shows the opposite trend (Figure 20).
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
18131829
1830
1831
1832
1833 Figure 20: **Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with
1834 Narrow Data.** Backward transfer is generally low or moderate and forgetting is larger than training
1835 on mixed data.

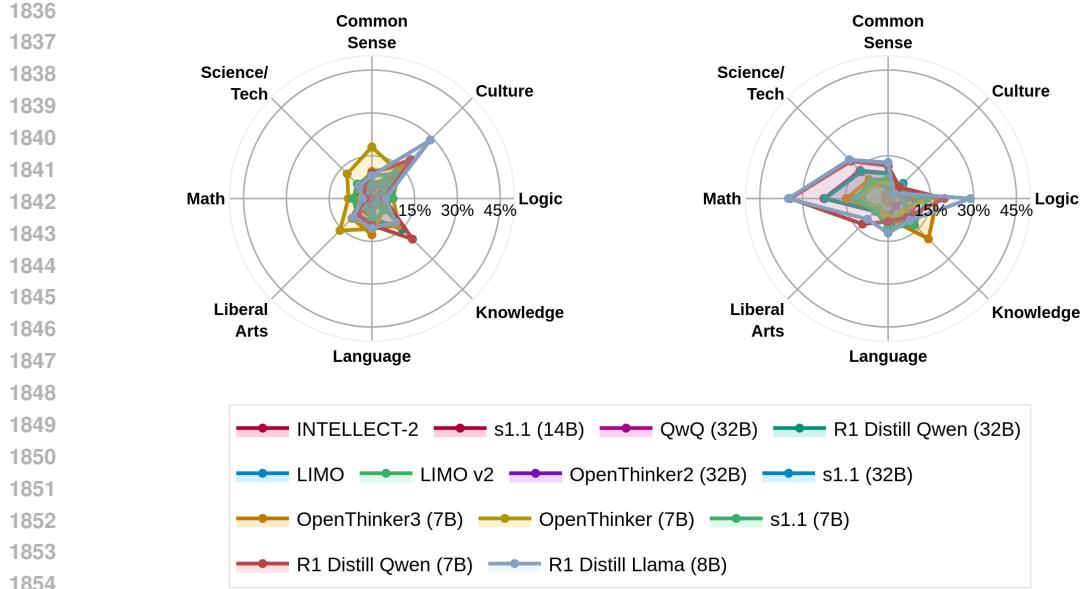


Figure 21: **Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with Mixed Data.** Backward transfer is generally moderate to high.

E.2 OBJECTIVE FUNCTION (SFT vs. RL)

Reasoning models tend to be trained using SFT or RL or both. Based on the tested models, we do not find evidence that these have differing behaviors. (Figures 22,23).

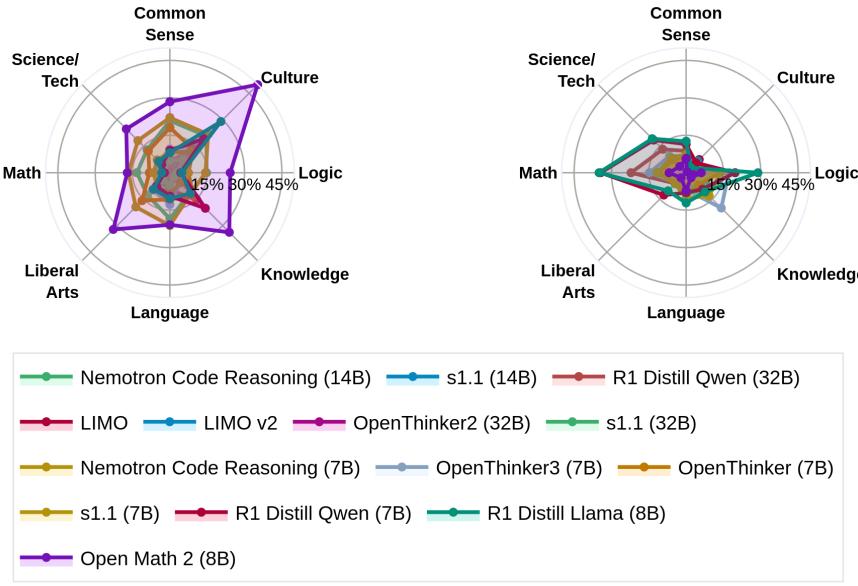


Figure 22: **Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with SFT Data.**

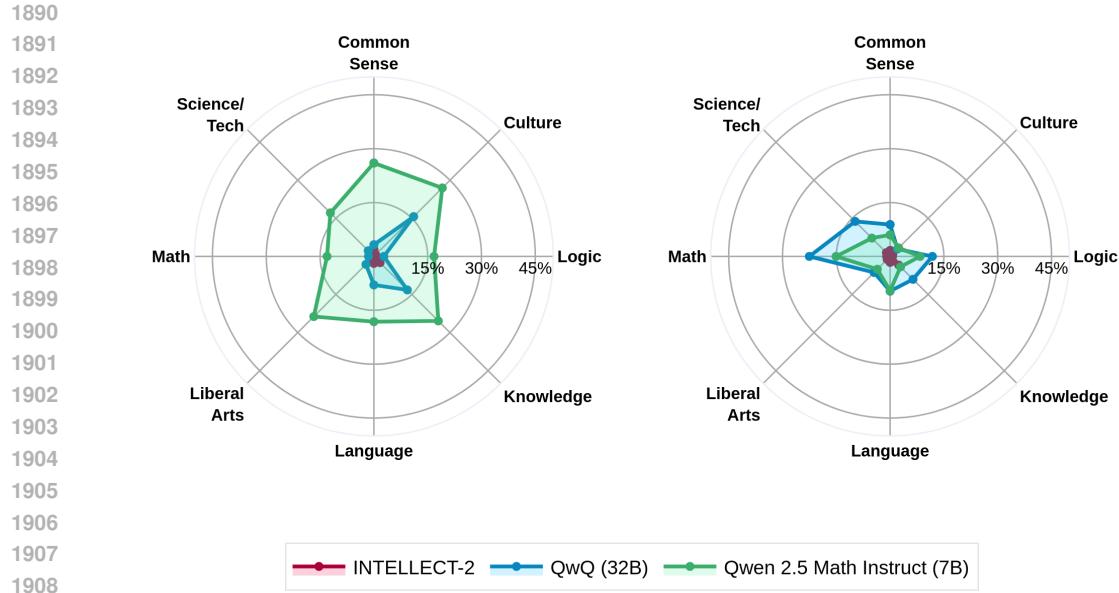


Figure 23: **Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with RL Data.**

E.3 DATA VOLUME

Data volume is another factor we consider in the forgetting and backward transfer dynamics. While low data volume is indicative of low forgetting and backward transfer (Figure 24), no trend is apparent in the case of high data volume (Figure 25).

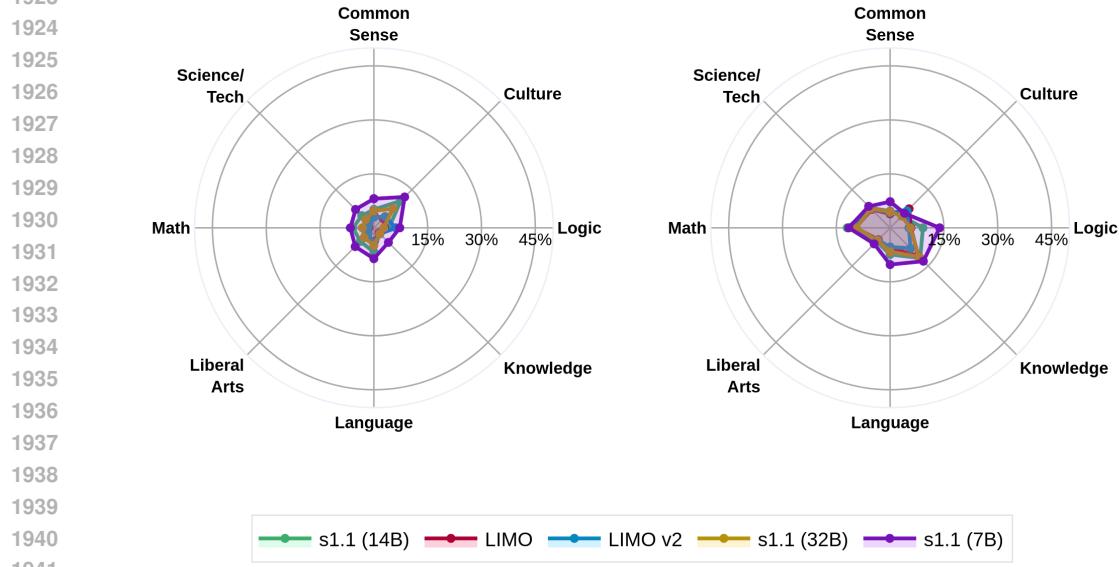


Figure 24: **Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with Low Data Volume.** Both metrics are generally low across categories.

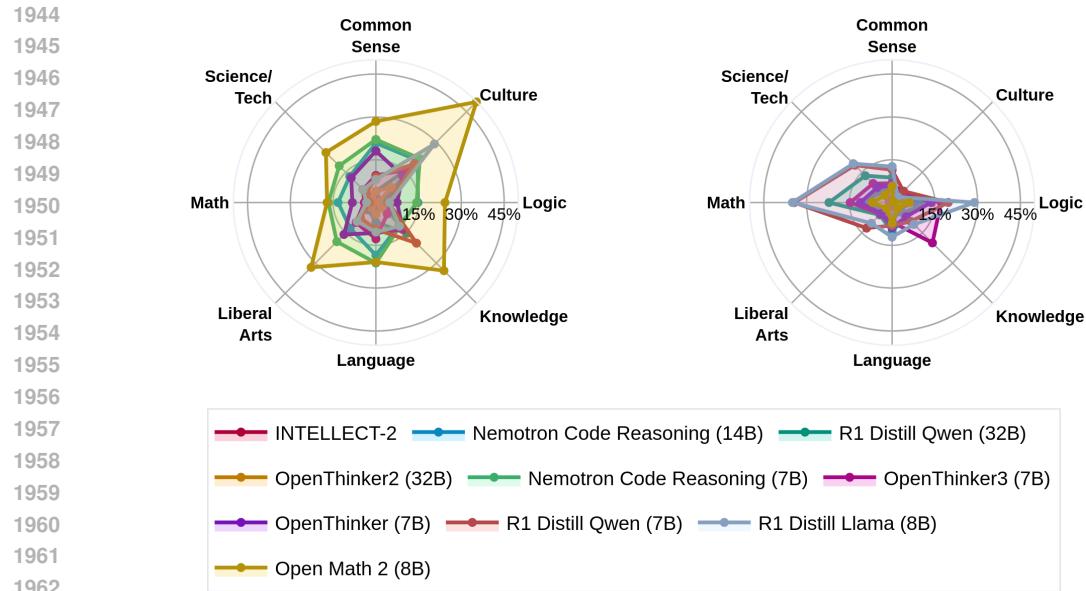


Figure 25: **Forgetting (left) and Backward Transfer (Right) of Reasoning Models Trained with High Data Volume.** Forgetting and backward transfer vary significantly between models.

F ADDITIONAL PLOTS

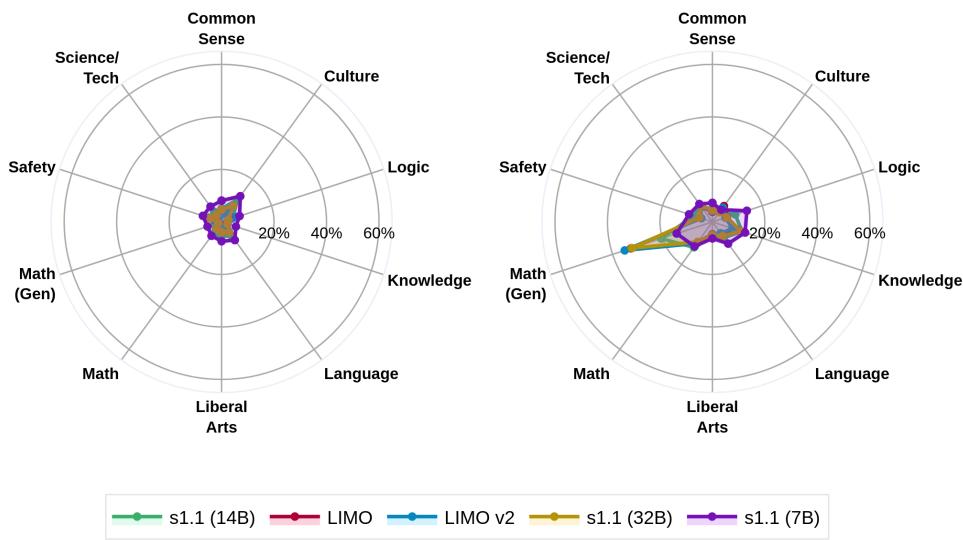


Figure 26: **Forgetting (left) and Backward Transfer (right) after reasoning training from instruct: low data scenario.** Yields little forgetting and backward transfer. Forgetting decreases with model scale.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052 **G QUANTIFYING FORGETTING ACCURATELY (TABLES FOR REFERENCING**
 2053 **PLOTS)³**
 2054

2055 Forgetting/backward transfer tables are listed with forgetting as the first number in each entry, standard
 2056 deviation after the "±", and maximum possible forgetting/backward transfer respectively in brackets.
 2057

2058 **G.1 INSTRUCTION TUNING**
 2059

2060 **Table 2: Instruction Tuning: Forgetting (Part 1 of 3)**
 2061

Category	Q2.5 Inst. (3B)	Q2.5 Inst. (7B)	Q2.5 Inst. (14B)	Q2.5 Inst. (32B)
Common Sense	7.0 ±0.3 (64.2)	5.4 ±0.1 (60.8)	3.9 ±0.6 (75.8)	3.7 ±0.5 (79.5)
Culture	11.7 ±0.9 (55.8)	16.5 ±2.8 (64.8)	14.0 ±0.1 (76.4)	15.2 ±0.6 (78.9)
Logic	10.9 ±0.5 (36.2)	8.4 ±0.2 (52.5)	5.5 ±0.4 (65.3)	4.6 ±0.6 (74.4)
Knowledge/QA	6.8 ±1.3 (47.3)	15.0 ±1.0 (58.4)	23.4 ±0.3 (76.9)	15.3 ±1.9 (69.4)
Language	8.7 ±0.8 (31.0)	9.2 ±0.6 (45.1)	9.5 ±0.8 (59.2)	8.6 ±1.0 (60.2)
Liberal Arts	8.7 ±0.7 (65.3)	6.6 ±0.7 (74.2)	5.3 ±0.4 (78.6)	5.3 ±0.3 (81.9)
Math	7.7 ±0.4 (35.4)	4.2 ±0.4 (47.3)	6.2 ±0.7 (57.9)	4.5 ±1.5 (64.4)
Science/Tech	6.5 ±0.3 (45.6)	5.4 ±0.4 (56.5)	4.5 ±0.5 (65.2)	4.4 ±0.3 (69.7)
Total	8.5 ±0.1 (50.2)	8.2 ±0.3 (58.6)	8.0 ±0.3 (69.7)	6.7 ±0.5 (72.3)

2072 **Table 3: Instruction Tuning: Forgetting (Part 2 of 3)**
 2073

Category	Q2.5 Coder Inst. (3B)	Q2.5 Coder Inst. (7B)	Q2.5 Coder Inst. (14B)	Q2.5 Coder Inst. (32B)
Common Sense	11.7 ±1.0 (59.5)	8.1 ±0.3 (67.2)	6.1 ±0.2 (70.7)	4.6 ±0.4 (77.9)
Culture	15.0 ±2.6 (45.7)	19.0 ±1.9 (60.8)	16.6 ±1.6 (66.9)	19.1 ±1.1 (73.8)
Logic	17.2 ±0.6 (41.2)	14.1 ±0.2 (51.9)	6.9 ±0.2 (64.0)	5.8 ±0.3 (69.8)
Knowledge/QA	12.6 ±0.1 (48.0)	14.4 ±0.3 (56.4)	14.3 ±0.3 (64.3)	17.6 ±1.0 (77.7)
Language	15.1 ±0.7 (36.4)	13.7 ±1.0 (43.2)	10.3 ±0.8 (52.7)	8.6 ±0.5 (59.2)
Liberal Arts	13.9 ±0.6 (59.2)	9.6 ±0.0 (67.6)	7.8 ±0.4 (74.6)	6.7 ±0.2 (77.7)
Math	8.9 ±0.9 (32.8)	6.8 ±0.2 (40.8)	6.2 ±0.4 (54.4)	4.9 ±0.6 (58.6)
Science/Tech	9.4 ±0.7 (40.5)	8.4 ±0.5 (52.0)	7.0 ±0.2 (59.9)	5.6 ±0.5 (65.1)
Total	13.0 ±0.2 (48.2)	10.9 ±0.3 (57.6)	8.9 ±0.3 (66.2)	8.4 ±0.1 (72.2)

2085 **Table 4: Instruction Tuning: Forgetting (Part 3 of 3)**
 2086

Category	Llama 3.1 Inst. (8B)
Common Sense	6.9 ±0.4 (64.5)
Culture	25.3 ±2.2 (79.1)
Logic	10.9 ±0.5 (42.5)
Knowledge/QA	20.6 ±0.8 (60.8)
Language	10.4 ±0.7 (39.9)
Liberal Arts	7.6 ±0.6 (64.6)
Math	7.3 ±0.9 (30.5)
Science/Tech	5.9 ±0.9 (45.5)
Total	10.8 ±0.3 (54.5)

2099 ³For brevity we shorten Qwen 2.5 to Q2.5 as well as the associated models (e.g. Qwen 2.5 Instruct to Q2.5 Inst.)

Table 5: Instruction Tuning: Backward Transfer (Part 1 of 3)

Category	Q2.5 Inst. (3B)	Q2.5 Inst. (7B)	Q2.5 Inst. (14B)	Q2.5 Inst. (32B)
Common Sense	10.8 \pm 0.4 (69.2)	17.5 \pm 0.3 (76.9)	8.7 \pm 0.1 (82.1)	7.5 \pm 0.3 (84.6)
Culture	7.9 \pm 2.4 (49.2)	5.2 \pm 1.9 (45.3)	5.3 \pm 0.3 (63.7)	3.0 \pm 1.1 (62.1)
Logic	10.2 \pm 0.7 (33.6)	14.6 \pm 0.5 (60.4)	13.3 \pm 0.5 (75.6)	9.0 \pm 0.3 (80.4)
Knowledge/QA	13.3 \pm 2.8 (55.8)	7.5 \pm 2.0 (52.5)	5.1 \pm 1.0 (57.9)	7.7 \pm 1.7 (61.3)
Language	7.7 \pm 0.5 (29.8)	8.3 \pm 0.4 (41.4)	7.2 \pm 0.0 (54.0)	8.3 \pm 2.4 (57.0)
Liberal Arts	7.2 \pm 1.4 (63.3)	5.7 \pm 0.6 (73.0)	5.6 \pm 0.9 (78.9)	4.6 \pm 1.1 (80.9)
Math	18.9 \pm 0.9 (51.0)	19.0 \pm 0.8 (67.3)	17.8 \pm 1.4 (73.8)	15.9 \pm 1.9 (80.0)
Science/Tech	11.4 \pm 0.8 (52.1)	11.9 \pm 0.9 (65.2)	10.4 \pm 1.0 (73.0)	9.5 \pm 0.8 (76.5)
Total	10.5 \pm 0.5 (52.7)	11.0 \pm 0.5 (62.1)	8.9 \pm 0.4 (71.3)	8.2 \pm 0.7 (74.3)

Table 6: Instruction Tuning: Backward Transfer (Part 2 of 3)

Category	Q2.5 Coder Inst. (3B)	Q2.5 Coder Inst. (7B)	Q2.5 Coder Inst. (14B)	Q2.5 Coder Inst. (32B)
Common Sense	10.9 \pm 0.1 (58.3)	10.6 \pm 1.0 (70.5)	10.2 \pm 0.8 (76.2)	6.9 \pm 0.1 (80.9)
Culture	4.8 \pm 0.9 (31.0)	4.2 \pm 0.7 (37.8)	2.8 \pm 0.5 (47.0)	2.7 \pm 0.7 (50.0)
Logic	6.6 \pm 0.3 (25.3)	11.7 \pm 0.7 (47.2)	11.5 \pm 0.3 (70.6)	10.8 \pm 0.1 (76.4)
Knowledge/QA	8.3 \pm 1.2 (43.4)	9.4 \pm 1.9 (52.5)	10.2 \pm 1.3 (60.6)	4.8 \pm 1.5 (64.2)
Language	4.7 \pm 0.4 (19.2)	5.6 \pm 1.2 (29.4)	7.9 \pm 0.2 (48.0)	6.5 \pm 0.7 (55.2)
Liberal Arts	5.8 \pm 1.1 (48.4)	6.4 \pm 0.7 (63.3)	5.5 \pm 1.1 (71.6)	5.1 \pm 0.8 (75.6)
Math	14.4 \pm 1.8 (41.0)	21.7 \pm 1.4 (61.2)	17.5 \pm 1.9 (69.6)	19.1 \pm 1.5 (77.8)
Science/Tech	8.7 \pm 1.6 (39.5)	10.2 \pm 0.5 (54.3)	10.4 \pm 1.0 (64.4)	9.8 \pm 0.4 (70.6)
Total	7.4 \pm 0.2 (40.4)	9.3 \pm 0.6 (54.9)	8.6 \pm 0.3 (65.8)	7.6 \pm 0.4 (71.2)

Table 7: Instruction Tuning: Backward Transfer (Part 3 of 3)

Category	Llama 3.1 Inst. (8B)
Common Sense	11.2 \pm 0.3 (70.3)
Culture	3.9 \pm 0.2 (46.2)
Logic	17.0 \pm 0.9 (49.6)
Knowledge/QA	10.8 \pm 2.3 (52.9)
Language	8.9 \pm 1.4 (36.3)
Liberal Arts	9.8 \pm 1.7 (67.5)
Math	19.3 \pm 0.7 (46.9)
Science/Tech	15.1 \pm 1.3 (57.8)
Total	11.4 \pm 1.0 (55.1)

2160 G.2 DOMAIN-CONTINUAL PRETRAINING
21612162 Table 8: Domain-Continual Pretraining: Forgetting (Part 1 of 2)
2163

Category	Q2.5 Coder (3B)	Q2.5 Coder (7B)	Q2.5 Coder (14B)	Q2.5 Coder (32B)
Common Sense	11.9 \pm 0.5 (64.2)	9.0 \pm 0.4 (60.8)	10.4 \pm 0.6 (75.8)	7.5 \pm 0.6 (79.5)
Culture	11.7 \pm 0.7 (55.8)	10.9 \pm 0.4 (64.8)	10.8 \pm 0.7 (76.4)	8.8 \pm 0.8 (78.9)
Logic	5.7 \pm 0.2 (36.2)	9.5 \pm 0.2 (52.5)	7.6 \pm 0.3 (65.3)	8.4 \pm 0.1 (74.4)
Knowledge/QA	5.6 \pm 0.5 (47.3)	6.0 \pm 0.8 (58.4)	13.7 \pm 0.2 (76.9)	3.8 \pm 0.5 (69.4)
Language	5.9 \pm 0.6 (31.0)	8.4 \pm 1.5 (45.1)	8.6 \pm 0.9 (59.2)	7.4 \pm 1.3 (60.2)
Liberal Arts	6.4 \pm 0.5 (65.3)	7.0 \pm 0.3 (74.2)	5.1 \pm 0.4 (78.6)	5.2 \pm 0.3 (81.9)
Math	3.8 \pm 0.9 (35.4)	7.4 \pm 1.0 (47.3)	6.2 \pm 0.2 (57.9)	7.8 \pm 0.5 (64.4)
Science/Tech	4.0 \pm 0.5 (45.6)	5.9 \pm 0.3 (56.5)	6.4 \pm 0.5 (65.2)	5.7 \pm 0.5 (69.7)
Total	6.8 \pm 0.0 (50.9)	7.6 \pm 0.2 (60.4)	8.0 \pm 0.1 (71.8)	6.4 \pm 0.2 (74.6)

2174 Table 9: Domain-Continual Pretraining: Forgetting (Part 2 of 2)
2175

Category	Q2.5 Math (7B)
Common Sense	13.6 \pm 0.8 (60.8)
Culture	17.8 \pm 0.3 (64.8)
Logic	9.8 \pm 0.4 (52.5)
Knowledge/QA	9.8 \pm 0.5 (58.4)
Language	11.3 \pm 0.9 (45.1)
Liberal Arts	20.0 \pm 1.3 (74.2)
Math	7.5 \pm 1.2 (47.3)
Science/Tech	14.4 \pm 0.5 (56.5)
Total	12.9 \pm 0.4 (60.4)

2188 Table 10: Domain-Continual Pretraining: Backward Transfer (Part 1 of 2)
2189

Category	Q2.5 Coder (3B)	Q2.5 Coder (7B)	Q2.5 Coder (14B)	Q2.5 Coder (32B)
Common Sense	8.3 \pm 0.4 (59.5)	13.8 \pm 0.3 (67.2)	6.6 \pm 0.3 (70.7)	6.3 \pm 0.5 (77.9)
Culture	6.3 \pm 2.1 (45.7)	10.0 \pm 1.3 (60.8)	5.8 \pm 0.4 (66.9)	5.6 \pm 0.2 (73.8)
Logic	9.4 \pm 0.5 (41.2)	9.7 \pm 0.2 (51.9)	7.7 \pm 0.8 (64.0)	5.3 \pm 0.4 (69.8)
Knowledge/QA	6.6 \pm 1.1 (48.0)	5.4 \pm 0.5 (56.4)	2.7 \pm 0.3 (64.3)	12.4 \pm 0.7 (77.7)
Language	8.9 \pm 0.9 (36.4)	7.6 \pm 0.8 (43.2)	5.3 \pm 0.5 (52.7)	7.8 \pm 2.2 (59.2)
Liberal Arts	2.0 \pm 0.2 (59.2)	2.2 \pm 0.3 (67.6)	2.3 \pm 0.3 (74.6)	2.1 \pm 0.1 (77.7)
Math	2.4 \pm 0.2 (32.8)	3.2 \pm 0.3 (40.8)	3.4 \pm 1.2 (54.4)	3.4 \pm 1.0 (58.6)
Science/Tech	1.0 \pm 0.3 (40.5)	2.8 \pm 0.0 (52.0)	2.6 \pm 0.1 (59.9)	2.4 \pm 0.2 (65.1)
Total	5.1 \pm 0.2 (48.2)	6.2 \pm 0.1 (57.6)	4.2 \pm 0.2 (66.2)	5.1 \pm 0.2 (72.2)

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236

Table 11: Domain-Continual Pretraining: Backward Transfer (Part 2 of 2)

Category	Q2.5 Math (7B)
Common Sense	12.7 \pm 0.5 (59.6)
Culture	6.9 \pm 0.8 (46.3)
Logic	11.9 \pm 0.2 (53.9)
Knowledge/QA	9.9 \pm 1.8 (55.3)
Language	6.1 \pm 0.2 (36.3)
Liberal Arts	1.6 \pm 0.3 (49.5)
Math	4.3 \pm 0.5 (43.1)
Science/Tech	3.2 \pm 0.7 (40.7)
Total	6.3 \pm0.2 (50.1)

2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268 G.3 TRAINED FROM BASE
22692270 Table 12: Trained from Base: Forgetting (Part 1 of 2)
2271

Category	Q2.5 Math Inst. (7B)	QwQ (32B)	R1 Distill Qwen (7B)	R1 Distill Llama (8B)
Common Sense	26.0 \pm 0.3 (59.6)	3.2 \pm 0.4 (79.5)	8.9 \pm 0.3 (59.6)	8.1 \pm 0.2 (64.5)
Culture	27.0 \pm 2.4 (46.3)	15.7 \pm 0.6 (78.9)	19.3 \pm 2.1 (46.3)	29.0 \pm 1.0 (79.1)
Logic	16.8 \pm 0.4 (53.9)	2.8 \pm 0.2 (74.4)	4.4 \pm 0.4 (53.9)	4.8 \pm 0.2 (42.5)
Knowledge/QA	25.4 \pm 2.0 (55.3)	13.2 \pm 2.1 (69.4)	20.1 \pm 0.7 (55.3)	11.7 \pm 0.7 (60.8)
Language	18.2 \pm 0.9 (36.3)	7.9 \pm 1.2 (60.2)	9.4 \pm 0.8 (36.3)	10.4 \pm 0.4 (39.9)
Liberal Arts	23.7 \pm 0.7 (49.5)	3.1 \pm 0.2 (81.9)	7.6 \pm 0.4 (49.5)	9.4 \pm 0.9 (64.6)
Math	13.1 \pm 0.3 (43.1)	1.5 \pm 0.3 (64.4)	2.2 \pm 0.4 (43.1)	3.3 \pm 0.3 (30.5)
Science/Tech	17.1 \pm 0.9 (40.7)	2.2 \pm 0.2 (69.7)	4.6 \pm 0.2 (40.7)	6.4 \pm 0.4 (45.5)
Total	21.4 \pm 0.5 (50.1)	5.4 \pm 0.3 (72.3)	8.7 \pm 0.1 (50.1)	9.3 \pm 0.3 (54.5)

2282 Table 13: Trained from Base: Forgetting (Part 2 of 2)
2283

Category	R1 Distill Qwen (32B)
Common Sense	3.9 \pm 0.3 (79.5)
Culture	18.8 \pm 0.7 (78.9)
Logic	2.3 \pm 0.3 (74.4)
Knowledge/QA	15.3 \pm 1.3 (69.4)
Language	6.9 \pm 1.4 (60.2)
Liberal Arts	3.6 \pm 0.3 (81.9)
Math	1.8 \pm 0.5 (64.4)
Science/Tech	2.4 \pm 0.3 (69.7)
Total	6.0 \pm 0.2 (72.3)

2295 Table 14: Trained from Base: Backward Transfer (Part 1 of 2)
2296

Category	Q2.5 Math Inst. (7B)	QwQ (32B)	R1 Distill Qwen (7B)	R1 Distill Llama (8B)
Common Sense	6.0 \pm 0.6 (32.9)	8.9 \pm 0.5 (87.0)	11.4 \pm 0.1 (63.0)	12.6 \pm 0.8 (70.5)
Culture	3.4 \pm 1.3 (9.0)	2.9 \pm 1.0 (59.8)	5.6 \pm 1.4 (23.1)	2.8 \pm 0.4 (36.5)
Logic	8.4 \pm 0.4 (42.8)	11.8 \pm 0.5 (86.7)	19.7 \pm 0.1 (74.9)	28.9 \pm 0.1 (74.6)
Knowledge/QA	4.1 \pm 1.4 (31.2)	9.0 \pm 1.6 (65.2)	9.3 \pm 2.4 (45.6)	10.8 \pm 1.8 (61.8)
Language	9.6 \pm 0.6 (20.9)	9.7 \pm 2.8 (60.6)	8.1 \pm 0.8 (33.7)	12.1 \pm 1.0 (42.2)
Liberal Arts	5.0 \pm 0.4 (24.5)	6.3 \pm 1.0 (86.1)	12.7 \pm 1.6 (56.2)	10.3 \pm 1.5 (65.8)
Math	15.1 \pm 1.6 (46.5)	22.5 \pm 2.2 (92.2)	34.3 \pm 2.4 (85.8)	35.0 \pm 0.5 (72.8)
Science/Tech	7.2 \pm 0.2 (27.4)	13.8 \pm 1.0 (85.0)	18.5 \pm 1.5 (59.3)	19.3 \pm 1.2 (62.7)
Total	6.7 \pm 0.2 (30.1)	10.3 \pm 0.6 (78.6)	14.3 \pm 1.0 (57.4)	15.4 \pm 0.6 (62.1)

2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344

Table 15: Trained from Base: Backward Transfer (Part 2 of 2)

Category	R1 Distill Qwen (32B)
Common Sense	8.7 \pm 0.3 (85.9)
Culture	2.5 \pm 0.6 (55.4)
Logic	11.7 \pm 0.4 (87.2)
Knowledge/QA	6.8 \pm 1.3 (60.6)
Language	10.2 \pm 2.7 (62.9)
Liberal Arts	6.1 \pm 1.0 (85.2)
Math	22.1 \pm 2.5 (91.4)
Science/Tech	13.3 \pm 1.0 (84.2)
Total	10.0 \pm 0.6 (77.5)

2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

2376 G.4 TRAINED FROM INSTRUCT - HIGH DATA SCENARIO
23772378 Table 16: Trained from Instruct - High Data Scenario: Forgetting (Part 1 of 2)
2379

Category	INTELLECT-2 (32B)	Open Math 2 (8B)	OpenThinker (7B)	OpenThinker2 (32B)
Common Sense	1.9 \pm 0.3 (87.0)	28.5 \pm 0.9 (64.5)	18.1 \pm 1.3 (76.9)	3.9 \pm 0.3 (84.6)
Culture	0.7 \pm 0.6 (60.2)	49.9 \pm 1.9 (79.1)	13.3 \pm 4.6 (45.3)	7.6 \pm 2.1 (62.1)
Logic	0.6 \pm 0.1 (87.4)	24.2 \pm 0.5 (42.5)	7.4 \pm 0.2 (60.4)	1.0 \pm 0.2 (80.4)
Knowledge/QA	2.5 \pm 0.6 (65.9)	33.8 \pm 1.4 (60.8)	13.4 \pm 1.1 (52.5)	2.8 \pm 0.5 (61.3)
Language	1.9 \pm 0.3 (62.7)	20.9 \pm 1.2 (39.9)	10.7 \pm 1.2 (41.4)	4.2 \pm 0.4 (57.0)
Liberal Arts	1.2 \pm 0.2 (86.1)	32.1 \pm 2.3 (64.6)	15.8 \pm 1.0 (73.0)	2.3 \pm 0.1 (80.9)
Math	0.9 \pm 0.1 (91.9)	17.1 \pm 1.4 (30.5)	8.3 \pm 0.8 (67.3)	1.0 \pm 0.3 (80.0)
Safety/Truth	0.9 \pm 0.2 (66.8)	19.5 \pm 0.7 (36.3)	8.6 \pm 0.5 (50.0)	3.3 \pm 0.2 (64.5)
Science/Tech	1.6 \pm 0.1 (85.0)	24.8 \pm 1.8 (45.5)	12.2 \pm 0.5 (65.2)	2.1 \pm 0.2 (76.5)
Total	1.3 \pm 0.1 (79.0)	28.8 \pm 0.8 (54.5)	12.6 \pm 1.5 (62.0)	2.9 \pm 0.2 (74.3)

2391 Table 17: Trained from Instruct - High Data Scenario: Forgetting (Part 2 of 2)
2392

Category	OpenThinker3 (7B)	Nemotron Code Reasoning (7B)	Nemotron Code Reasoning (14B)
Common Sense	9.5 \pm 0.4 (76.9)	22.1 \pm 0.1 (76.9)	20.9 \pm 2.4 (79.0)
Culture	16.4 \pm 4.5 (45.3)	21.8 \pm 3.1 (45.3)	20.9 \pm 0.7 (63.7)
Logic	5.2 \pm 0.2 (60.4)	14.3 \pm 0.4 (60.4)	14.7 \pm 0.3 (75.6)
Knowledge/QA	5.6 \pm 0.9 (52.5)	11.9 \pm 1.6 (52.5)	11.5 \pm 2.1 (57.9)
Language	12.7 \pm 0.8 (41.4)	21.2 \pm 1.4 (48.3)	18.4 \pm 1.2 (62.4)
Liberal Arts	9.8 \pm 0.6 (73.0)	19.4 \pm 0.7 (73.0)	12.8 \pm 1.0 (79.6)
Math	4.1 \pm 0.1 (67.3)	16.6 \pm 0.5 (67.3)	13.3 \pm 0.4 (73.8)
Safety/Truth	8.7 \pm 0.6 (50.0)	14.2 \pm 0.1 (50.0)	12.3 \pm 1.2 (63.0)
Science/Tech	6.4 \pm 0.3 (65.2)	18.2 \pm 0.4 (65.2)	13.0 \pm 0.2 (73.0)
Total	8.4 \pm 0.5 (62.1)	17.7 \pm 0.3 (62.4)	14.9 \pm 0.0 (72.1)

2405 Table 18: Trained from Instruct - High Data Scenario: Backward Transfer (Part 1 of 2)
2406

Category	INTELLECT-2 (32B)	Open Math 2 (8B)	OpenThinker (7B)	OpenThinker2 (32B)
Common Sense	1.7 \pm 0.1 (86.7)	5.7 \pm 0.4 (34.1)	6.1 \pm 0.8 (60.9)	4.2 \pm 0.5 (85.0)
Culture	1.1 \pm 0.3 (60.8)	0.5 \pm 0.4 (6.5)	5.7 \pm 1.6 (33.6)	2.9 \pm 0.3 (54.3)
Logic	0.7 \pm 0.1 (87.4)	6.0 \pm 0.4 (18.3)	13.7 \pm 0.6 (67.4)	6.2 \pm 0.4 (87.5)
Knowledge/QA	3.4 \pm 0.9 (67.5)	2.8 \pm 1.2 (25.3)	7.0 \pm 0.7 (43.0)	3.8 \pm 0.1 (62.3)
Language	1.7 \pm 0.2 (62.7)	7.2 \pm 0.8 (18.1)	8.8 \pm 1.6 (39.1)	6.4 \pm 0.7 (61.0)
Liberal Arts	1.2 \pm 0.1 (86.0)	2.9 \pm 0.2 (25.5)	5.5 \pm 0.5 (59.2)	5.6 \pm 0.3 (85.4)
Math	0.9 \pm 0.2 (92.1)	6.9 \pm 1.1 (15.0)	11.1 \pm 1.0 (71.3)	10.1 \pm 1.1 (91.7)
Safety/Truth	1.3 \pm 0.5 (67.2)	4.0 \pm 0.6 (15.9)	7.2 \pm 1.2 (48.1)	4.1 \pm 0.8 (65.5)
Science/Tech	1.5 \pm 0.1 (85.0)	3.6 \pm 0.9 (17.0)	7.4 \pm 0.4 (58.7)	7.6 \pm 0.3 (83.8)
Total	1.4 \pm 0.1 (79.2)	4.2 \pm 0.2 (21.1)	7.7 \pm 0.5 (55.1)	5.3 \pm 0.2 (77.3)

2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450

2451 Table 19: Trained from Instruct - High Data Scenario: Backward Transfer (Part 2 of 2)

2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483

Category	OpenThinker3 (7B)	Nemotron Code Reasoning (7B)	Nemotron Code Reasoning (14B)
Common Sense	6.7 \pm 0.2 (73.2)	5.2 \pm 0.4 (54.3)	3.6 \pm 1.2 (56.0)
Culture	4.0 \pm 1.0 (23.3)	5.1 \pm 2.3 (19.2)	5.2 \pm 0.5 (37.8)
Logic	17.2 \pm 0.9 (76.3)	13.7 \pm 0.7 (57.4)	8.1 \pm 0.3 (65.4)
Knowledge/QA	20.0 \pm 0.3 (66.6)	5.0 \pm 0.5 (42.6)	3.2 \pm 0.2 (46.6)
Language	6.8 \pm 0.7 (33.6)	4.9 \pm 0.8 (23.3)	7.6 \pm 0.8 (46.3)
Liberal Arts	5.7 \pm 0.2 (67.5)	4.3 \pm 0.1 (52.8)	4.2 \pm 0.5 (68.3)
Math	14.7 \pm 0.3 (81.2)	10.4 \pm 0.0 (56.4)	10.7 \pm 0.8 (69.4)
Safety/Truth	7.5 \pm 0.9 (48.5)	8.6 \pm 1.2 (42.5)	6.8 \pm 0.6 (55.6)
Science/Tech	9.4 \pm 0.5 (69.2)	5.2 \pm 0.0 (47.7)	6.4 \pm 0.1 (64.3)
Total	9.7 \pm 0.2 (62.8)	6.7 \pm 0.4 (46.5)	5.8 \pm 0.1 (59.0)

2484 G.5 TRAINED FROM INSTRUCT - LOW DATA SCENARIO
24852486 Table 20: Trained from Instruct - Low Data Scenario: Forgetting (Part 1 of 2)
2487

Category	s1.1 (7B)	s1.1 (14B)	s1.1 (32B)	LIMO (32B)
Common Sense	8.1 \pm 0.4 (76.9)	5.1 \pm 1.0 (82.1)	4.7 \pm 0.5 (84.6)	3.5 \pm 0.3 (84.6)
Culture	12.1 \pm 1.2 (45.3)	10.6 \pm 0.4 (63.7)	7.5 \pm 0.9 (62.1)	3.7 \pm 1.9 (62.1)
Logic	7.2 \pm 0.1 (60.4)	4.2 \pm 0.4 (75.6)	2.8 \pm 0.2 (80.4)	3.0 \pm 0.3 (80.4)
Knowledge/QA	5.7 \pm 1.1 (52.5)	2.3 \pm 0.1 (57.9)	2.3 \pm 1.2 (61.3)	2.0 \pm 0.4 (61.3)
Language	8.6 \pm 0.8 (41.4)	6.7 \pm 0.4 (54.0)	4.9 \pm 0.1 (57.0)	3.8 \pm 0.6 (57.0)
Liberal Arts	7.4 \pm 0.5 (73.0)	5.4 \pm 0.7 (78.9)	3.9 \pm 0.1 (80.9)	2.6 \pm 0.0 (80.9)
Math	6.6 \pm 0.8 (67.3)	5.8 \pm 0.9 (73.8)	3.2 \pm 0.4 (80.0)	1.3 \pm 0.1 (80.0)
Safety/Truth	7.5 \pm 0.9 (50.0)	5.3 \pm 0.3 (59.4)	4.5 \pm 0.4 (64.5)	2.9 \pm 0.3 (64.5)
Science/Tech	7.2 \pm 0.4 (65.2)	4.8 \pm 0.6 (73.0)	3.3 \pm 0.4 (76.5)	2.3 \pm 0.1 (76.5)
Total	7.7 \pm 0.2 (62.1)	5.3 \pm 0.2 (71.3)	3.9 \pm 0.1 (74.3)	2.6 \pm 0.1 (74.3)

2500 Table 21: Trained from Instruct - Low Data Scenario: Forgetting (Part 2 of 2)
2501

Category	LIMO v2 (32B)
Common Sense	3.0 \pm 0.3 (84.6)
Culture	4.4 \pm 0.9 (62.1)
Logic	6.1 \pm 0.4 (80.4)
Knowledge/QA	2.4 \pm 0.3 (61.3)
Language	4.2 \pm 0.6 (57.0)
Liberal Arts	2.3 \pm 0.3 (80.9)
Math	1.7 \pm 0.1 (80.0)
Safety/Truth	2.8 \pm 0.2 (64.5)
Science/Tech	1.9 \pm 0.2 (76.5)
Total	3.0 \pm 0.2 (74.3)

2513 Table 22: Trained from Instruct - Low Data Scenario: Backward Transfer (Part 1 of 2)
2514

Category	s1.1 (7B)	s1.1 (14B)	s1.1 (32B)	LIMO (32B)
Common Sense	7.3 \pm 0.5 (75.8)	4.6 \pm 0.3 (81.5)	4.5 \pm 0.2 (84.3)	3.9 \pm 0.4 (85.1)
Culture	5.7 \pm 0.5 (35.0)	4.6 \pm 0.4 (54.2)	4.6 \pm 0.4 (56.7)	7.5 \pm 0.8 (66.1)
Logic	13.8 \pm 0.6 (68.8)	9.2 \pm 0.5 (81.1)	5.7 \pm 0.4 (83.9)	5.8 \pm 0.3 (84.6)
Knowledge/QA	13.1 \pm 0.3 (59.3)	11.9 \pm 1.3 (69.0)	11.3 \pm 0.5 (71.2)	11.1 \pm 1.3 (71.2)
Language	10.2 \pm 0.7 (44.7)	7.4 \pm 1.2 (55.7)	6.6 \pm 0.5 (60.4)	5.6 \pm 0.7 (60.3)
Liberal Arts	6.3 \pm 0.7 (71.5)	5.3 \pm 0.6 (78.9)	5.0 \pm 0.1 (82.4)	4.7 \pm 0.2 (83.7)
Math	11.5 \pm 0.3 (74.2)	12.0 \pm 0.7 (81.9)	9.4 \pm 0.9 (87.8)	9.6 \pm 0.7 (90.7)
Safety/Truth	9.4 \pm 0.1 (52.5)	7.4 \pm 0.9 (62.2)	5.2 \pm 0.4 (65.4)	5.0 \pm 0.4 (67.1)
Science/Tech	8.5 \pm 0.1 (66.8)	7.9 \pm 0.3 (77.3)	7.6 \pm 0.5 (82.2)	7.2 \pm 0.3 (83.2)
Total	9.1 \pm 0.2 (63.5)	7.2 \pm 0.3 (73.5)	6.2 \pm 0.2 (76.9)	6.2 \pm 0.2 (78.8)

2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558

2559 Table 23: Trained from Instruct - Low Data Scenario: Backward Transfer (Part 2 of 2)
 2560

Category	LIMO v2 (32B)
Common Sense	4.2 \pm 0.2 (86.3)
Culture	6.7 \pm 0.8 (64.6)
Logic	5.3 \pm 0.6 (79.6)
Knowledge/QA	8.0 \pm 0.7 (67.7)
Language	5.3 \pm 0.3 (59.3)
Liberal Arts	4.9 \pm 0.2 (84.4)
Math	10.1 \pm 0.8 (90.8)
Safety/Truth	4.5 \pm 0.7 (66.7)
Science/Tech	7.5 \pm 0.2 (84.0)
Total	5.8 \pm0.3 (77.9)

2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591

2592 G.6 QWEN2.5 BASE AND CODER MERGE (RELATIVE TO QWEN2.5 BASE)
25932594 Table 24: Qwen2.5 Base and Coder Merge: Forgetting
2595

Category	Linear (0.2)	Linear (0.8)	Slerp (0.2)	Slerp (0.8)
Common Sense	8.2 \pm 0.6 (67.2)	11.3 \pm 0.7 (67.2)	13.9 \pm 2.2 (67.2)	16.2 \pm 6.4 (67.2)
Culture	12.0 \pm 2.0 (60.8)	15.8 \pm 1.8 (60.8)	21.1 \pm 3.4 (60.8)	41.3 \pm 3.3 (60.8)
Logic	11.6 \pm 0.4 (51.9)	19.4 \pm 1.0 (51.9)	23.4 \pm 1.1 (51.9)	17.7 \pm 0.9 (51.9)
Knowledge/QA	4.6 \pm 0.4 (56.4)	8.1 \pm 0.3 (56.4)	10.9 \pm 1.0 (56.4)	16.2 \pm 1.0 (56.4)
Language	7.8 \pm 0.4 (43.2)	11.2 \pm 0.2 (43.2)	14.0 \pm 0.5 (43.2)	12.7 \pm 0.4 (43.2)
Liberal Arts	2.5 \pm 0.5 (67.6)	4.1 \pm 0.9 (67.6)	5.8 \pm 1.6 (67.6)	8.9 \pm 0.5 (67.6)
Math	4.5 \pm 1.2 (44.9)	8.9 \pm 2.1 (44.9)	12.4 \pm 1.9 (44.9)	9.4 \pm 0.7 (44.9)
Safety/Truth	1.9 \pm 0.7 (49.9)	3.7 \pm 0.6 (49.9)	6.0 \pm 0.3 (49.9)	4.7 \pm 1.0 (60.4)
Science/Tech	2.6 \pm 0.6 (52.0)	5.2 \pm 0.7 (52.0)	6.7 \pm 1.3 (52.0)	4.4 \pm 0.9 (52.0)
Total	6.1 \pm 0.2 (58.0)	9.3 \pm 0.4 (58.0)	12.3 \pm 0.2 (58.0)	13.9 \pm 0.4 (59.0)

2608 Table 25: Qwen2.5 Base and Coder Merge: Backward Transfer
2609

Category	Linear (0.2)	Linear (0.8)	Slerp (0.2)	Slerp (0.8)
Common Sense	8.3 \pm 0.4 (67.4)	9.8 \pm 0.5 (65.2)	9.2 \pm 0.2 (61.0)	7.2 \pm 0.9 (55.3)
Culture	4.1 \pm 0.8 (46.8)	6.2 \pm 1.8 (46.1)	8.3 \pm 2.0 (44.0)	2.6 \pm 0.5 (15.1)
Logic	5.3 \pm 0.6 (43.7)	4.2 \pm 0.1 (31.0)	3.7 \pm 0.1 (24.6)	4.4 \pm 0.2 (33.3)
Knowledge/QA	8.3 \pm 0.4 (61.6)	9.2 \pm 0.4 (58.2)	8.2 \pm 0.8 (53.4)	5.1 \pm 0.6 (44.1)
Language	4.2 \pm 0.8 (39.1)	7.2 \pm 0.4 (37.4)	6.3 \pm 0.2 (32.1)	4.6 \pm 0.5 (30.7)
Liberal Arts	2.1 \pm 0.4 (67.3)	6.1 \pm 1.6 (70.2)	5.7 \pm 2.0 (67.6)	2.1 \pm 0.3 (58.7)
Math	5.5 \pm 1.0 (45.0)	6.5 \pm 1.6 (39.9)	5.8 \pm 2.9 (34.0)	4.6 \pm 1.4 (36.3)
Safety/Truth	2.4 \pm 0.7 (51.8)	5.0 \pm 1.9 (52.7)	6.8 \pm 3.0 (51.5)	3.0 \pm 1.0 (57.9)
Science/Tech	2.7 \pm 0.3 (51.4)	5.6 \pm 1.5 (52.3)	5.2 \pm 1.6 (49.7)	2.3 \pm 0.3 (48.1)
Total	4.8 \pm 0.1 (56.0)	6.5 \pm 0.7 (53.9)	6.4 \pm 0.9 (49.9)	4.0 \pm 0.1 (46.1)

2646 G.7 QWEN2.5 BASE AND CODER MERGE (RELATIVE TO QWEN2.5 CODER)
26472648 Table 26: Qwen2.5 Base and Coder Merge: Forgetting
2649

Category	Linear (0.2)	Linear (0.8)	Slerp (0.2)	Slerp (0.8)
Common Sense	10.2 \pm 0.7 (70.5)	12.7 \pm 0.8 (70.5)	15.2 \pm 2.5 (70.5)	18.2 \pm 7.0 (70.5)
Culture	6.8 \pm 1.9 (37.8)	10.6 \pm 1.4 (37.8)	15.8 \pm 2.3 (37.8)	28.5 \pm 3.2 (37.8)
Logic	15.1 \pm 0.9 (47.2)	20.4 \pm 0.7 (47.2)	23.2 \pm 0.5 (47.2)	18.8 \pm 0.3 (47.2)
Knowledge/QA	6.5 \pm 0.8 (52.5)	8.0 \pm 0.6 (52.5)	9.8 \pm 0.3 (52.5)	14.0 \pm 1.9 (52.5)
Language	6.6 \pm 0.6 (29.4)	8.1 \pm 0.5 (29.4)	9.5 \pm 1.1 (29.4)	9.2 \pm 0.9 (29.4)
Liberal Arts	6.6 \pm 0.1 (63.3)	6.1 \pm 1.0 (63.3)	7.6 \pm 1.7 (63.3)	12.3 \pm 0.3 (63.3)
Math	17.1 \pm 0.5 (58.9)	19.6 \pm 1.2 (58.9)	22.2 \pm 2.1 (58.9)	20.8 \pm 0.3 (58.9)
Safety/Truth	10.9 \pm 1.7 (42.0)	10.0 \pm 1.4 (42.0)	10.6 \pm 1.3 (42.0)	11.2 \pm 1.2 (43.4)
Science/Tech	10.3 \pm 0.4 (54.3)	10.3 \pm 0.9 (54.3)	11.6 \pm 1.9 (54.3)	11.9 \pm 0.3 (54.3)
Total	9.5 \pm 0.3 (54.0)	11.1 \pm 0.4 (54.0)	13.4 \pm 0.3 (54.0)	15.3 \pm 0.9 (54.1)

2661 Table 27: Qwen2.5 Base and Coder Merge: Backward Transfer
2662

Category	Linear (0.2)	Linear (0.8)	Slerp (0.2)	Slerp (0.8)
Common Sense	7.9 \pm 0.4 (67.4)	8.7 \pm 0.5 (65.2)	8.0 \pm 1.3 (61.0)	6.8 \pm 1.6 (55.3)
Culture	13.4 \pm 1.7 (46.8)	15.8 \pm 3.2 (46.1)	17.8 \pm 3.6 (44.0)	6.2 \pm 1.9 (15.1)
Logic	11.4 \pm 0.2 (43.7)	7.5 \pm 0.3 (31.0)	6.0 \pm 0.2 (24.6)	7.8 \pm 0.0 (33.3)
Knowledge/QA	15.6 \pm 1.0 (61.6)	14.3 \pm 0.2 (58.2)	12.2 \pm 1.2 (53.4)	8.7 \pm 1.5 (44.1)
Language	11.0 \pm 0.5 (39.1)	12.2 \pm 0.3 (37.4)	9.9 \pm 0.6 (32.1)	9.1 \pm 0.2 (30.7)
Liberal Arts	9.6 \pm 0.4 (67.3)	11.2 \pm 0.9 (70.2)	10.8 \pm 1.3 (67.6)	8.5 \pm 0.2 (58.7)
Math	7.7 \pm 1.0 (45.0)	7.0 \pm 0.9 (39.9)	5.1 \pm 1.5 (34.0)	5.2 \pm 0.8 (36.3)
Safety/Truth	8.7 \pm 1.7 (39.1)	10.3 \pm 1.3 (42.4)	9.1 \pm 1.7 (39.9)	9.2 \pm 0.4 (41.0)
Science/Tech	8.1 \pm 0.2 (51.4)	8.8 \pm 0.6 (52.3)	8.1 \pm 0.6 (49.7)	7.2 \pm 0.2 (48.1)
Total	10.0 \pm 0.3 (54.8)	10.2 \pm 0.6 (52.9)	9.3 \pm 0.7 (48.8)	7.5 \pm 0.1 (44.4)

2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

2700 G.8 QWEN2.5 INSTRUCT AND OPENTHINKER 7B MERGE (RELATIVE TO QWEN2.5
2701 INSTRUCT)
27022703 Table 28: Qwen2.5 Instruct and OpenThinker 7B Merge: Forgetting
2704

Category	Linear (0.2)	Linear (0.8)
Logic	8.7 \pm 1.5 (75.2)	3.6 \pm 0.4 (75.2)
Knowledge/QA	6.5 \pm 0.4 (60.3)	4.2 \pm 2.8 (60.3)
Liberal Arts	9.4 \pm 0.8 (73.0)	3.7 \pm 0.1 (73.0)
Math	10.5 \pm 0.6 (65.3)	3.3 \pm 0.5 (65.3)
Safety/Truth	7.7 \pm 1.3 (55.1)	2.8 \pm 0.4 (55.1)
Science/Tech	9.6 \pm 0.3 (67.4)	4.2 \pm 0.2 (67.4)
Total	8.7 \pm0.2 (66.1)	3.6 \pm0.5 (66.1)

2714 Table 29: Qwen2.5 Instruct and OpenThinker 7B Merge: Backward Transfer
2715

Category	Linear (0.2)	Linear (0.8)
Logic	6.0 \pm 0.7 (71.6)	4.6 \pm 1.3 (76.6)
Knowledge/QA	5.2 \pm 1.8 (58.6)	3.8 \pm 0.9 (59.8)
Liberal Arts	4.6 \pm 0.5 (66.6)	3.9 \pm 0.6 (73.3)
Math	8.8 \pm 0.3 (63.1)	6.8 \pm 0.5 (70.1)
Safety/Truth	5.8 \pm 0.3 (52.7)	3.4 \pm 0.6 (56.1)
Science/Tech	6.3 \pm 0.3 (62.9)	4.9 \pm 0.3 (68.1)
Total	6.1 \pm0.1 (62.6)	4.6 \pm0.2 (67.3)

2754 G.9 QWEN2.5 INSTRUCT AND OPENTHINKER 7B MERGE (RELATIVE TO OPENTHINKER)
27552756 Table 30: Qwen2.5 Instruct and OpenThinker 7B Merge: Forgetting
2757

Category	Linear (0.2)	Linear (0.8)
Logic	7.1 \pm 0.8 (64.0)	3.7 \pm 1.7 (64.0)
Knowledge/QA	7.3 \pm 1.6 (52.2)	7.0 \pm 1.2 (52.2)
Liberal Arts	8.5 \pm 0.2 (59.2)	5.5 \pm 0.4 (59.2)
Math	14.3 \pm 1.6 (72.1)	9.4 \pm 1.5 (72.1)
Safety/Truth	10.3 \pm 2.3 (52.2)	7.2 \pm 1.3 (52.2)
Science/Tech	9.2 \pm 0.2 (60.2)	6.8 \pm 0.6 (60.2)
Total	9.4 \pm 0.6 (60.0)	6.6 \pm 0.6 (60.0)

2767 Table 31: Qwen2.5 Instruct and OpenThinker 7B Merge: Backward Transfer
2768

Category	Linear (0.2)	Linear (0.8)
Logic	12.8 \pm 1.6 (71.6)	13.1 \pm 3.7 (76.6)
Knowledge/QA	12.1 \pm 2.5 (58.6)	12.6 \pm 2.0 (59.8)
Liberal Arts	14.1 \pm 0.2 (66.6)	16.1 \pm 0.6 (73.3)
Math	7.5 \pm 1.5 (63.1)	7.9 \pm 1.1 (70.1)
Safety/Truth	10.7 \pm 1.0 (52.7)	10.1 \pm 1.1 (56.1)
Science/Tech	11.2 \pm 0.8 (62.9)	12.7 \pm 0.4 (68.1)
Total	11.4 \pm 0.7 (62.6)	12.1 \pm 1.0 (67.3)

2808 **G.10 QWEN2.5 INSTRUCT AND OPENTHINKER3 7B MERGE (RELATIVE TO QWEN2.5**
 2809 **INSTRUCT)**

2811 Table 32: Qwen2.5 Instruct and OpenThinker3 7B Merge: Forgetting

Category	Linear (0.2)	Linear (0.8)
Logic	33.6 ± 2.7 (75.2)	28.1 ± 1.8 (74.2)
Knowledge/QA	25.7 ± 8.0 (60.3)	18.0 ± 5.2 (45.0)
Liberal Arts	35.0 ± 2.9 (74.4)	28.8 ± 1.7 (73.8)
Math	40.1 ± 6.1 (65.3)	30.0 ± 0.7 (65.3)
Safety/Truth	36.2 ± 2.8 (64.1)	22.8 ± 3.7 (61.0)
Science/Tech	30.1 ± 3.2 (67.4)	29.6 ± 0.9 (67.4)
Total	33.5 ± 3.7 (67.8)	26.0 ± 0.8 (63.8)

2822 Table 33: Qwen2.5 Instruct and OpenThinker3 7B Merge: Backward Transfer

Category	Linear (0.2)	Linear (0.8)
Logic	1.3 ± 2.0 (31.3)	2.3 ± 1.0 (39.9)
Knowledge/QA	1.9 ± 1.0 (28.8)	1.2 ± 1.4 (21.7)
Liberal Arts	1.9 ± 0.8 (30.2)	2.9 ± 0.1 (39.2)
Math	0.7 ± 0.8 (12.6)	1.6 ± 0.8 (27.0)
Safety/Truth	0.9 ± 1.1 (15.8)	2.9 ± 0.6 (34.6)
Science/Tech	2.5 ± 1.0 (30.4)	2.5 ± 0.2 (30.9)
Total	1.5 ± 1.1 (24.9)	2.2 ± 0.3 (31.7)

2862 G.11 QWEN2.5 INSTRUCT AND OPENTHINKER3 7B MERGE (RELATIVE TO OPENTHINKER3)
28632864 Table 34: Qwen2.5 Instruct and OpenThinker3 7B Merge: Forgetting
2865

2866 Category	2867 Linear (0.2)	2868 Linear (0.8)
2869 Logic	28.1 \pm 3.2 (65.4)	25.1 \pm 2.6 (66.9)
2870 Knowledge/QA	21.2 \pm 6.4 (54.3)	17.2 \pm 7.3 (38.6)
2871 Liberal Arts	31.3 \pm 2.9 (68.9)	27.2 \pm 1.7 (68.3)
2872 Math	52.3 \pm 6.9 (81.1)	41.8 \pm 1.8 (81.1)
2873 Safety/Truth	33.5 \pm 2.1 (59.8)	23.5 \pm 1.7 (58.6)
2874 Science/Tech	32.0 \pm 3.5 (70.7)	32.2 \pm 1.4 (70.5)
2875 Total	2876 33.1 \pm 3.8 (66.7)	2877 28.0 \pm 1.2 (63.8)

2878 Table 35: Qwen2.5 Instruct and OpenThinker3 7B Merge: Backward Transfer
2879

2880 Category	2881 Linear (0.2)	2882 Linear (0.8)
2883 Logic	3.0 \pm 5.0 (31.3)	4.9 \pm 0.9 (39.9)
2884 Knowledge/QA	2.2 \pm 0.7 (28.8)	4.5 \pm 2.3 (21.7)
2885 Liberal Arts	2.3 \pm 0.8 (30.2)	5.4 \pm 0.7 (39.2)
2886 Math	0.5 \pm 0.6 (12.6)	1.5 \pm 0.2 (27.0)
2887 Safety/Truth	1.0 \pm 0.8 (15.8)	5.5 \pm 0.4 (34.6)
2888 Science/Tech	2.0 \pm 0.7 (30.4)	2.8 \pm 0.3 (30.9)
2889 Total	2890 1.8 \pm 1.3 (24.9)	2891 4.0 \pm 0.4 (31.7)

2916 **DISCLAIMER FOR USE OF LLMs**
29172918 We primarily used LLMs in coding co-pilot applications to facilitate experimentation and help with
2919 plotting code for result presentation. LLMs were also used as writing tools to assist in refining the
2920 paper. However, the final version was carefully reviewed and finalized by the authors. No LLMs
2921 were used in ideation and experimental design.
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969