

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DEEP LATENT VARIABLE MODEL BASED VERTICAL FEDERATED LEARNING WITH FLEXIBLE ALIGNMENT AND LABELING SCENARIOS

Anonymous authors

Paper under double-blind review

ABSTRACT

Federated learning (FL) has attracted significant attention for enabling collaborative learning without exposing private data. Among the primary variants of FL, vertical federated learning (VFL) addresses feature-partitioned data held by multiple institutions, each holding complementary information for the same set of users. However, existing VFL methods often impose restrictive assumptions such as a small number of participating parties, fully aligned data, or only using labeled data. In this work, we reinterpret alignment gaps in VFL as missing data problems and propose a unified framework that accommodates both training and inference under arbitrary alignment and labeling scenarios, while supporting diverse missingness mechanisms. In the experiments on 168 configurations spanning four benchmark datasets, six training-time missingness patterns, and seven testing-time missingness patterns, our method outperforms all baselines in 160 cases with an average gap of 9.6 percentage points over the next-best competitors. To the best of our knowledge, this is the first VFL framework to jointly handle arbitrary data alignment, unlabeled data, and multi-party collaboration all at once.

1 INTRODUCTION

With the rapid development of technology, concerns about data privacy and security have been rising, highlighting the importance of research in these areas. Although individuals are reluctant to disclose their personal information for model training, it is indispensable for building more accurate machine learning models. To reconcile these competing interests, federated learning (FL) (McMahan et al., 2017; Zhang et al., 2021) has emerged as a promising paradigm for privacy-preserving model training, leading to the development of numerous methods that address a variety of related challenges.

From a broader perspective, FL can be categorized into three main types: horizontal federated learning (HFL), vertical federated learning (VFL), and federated transfer learning (FTL). Whereas HFL deals with scenarios in which data is distributed across different samples, VFL (Liu et al., 2024; Yang et al., 2023) focuses on cases where data is partitioned by features rather than by samples. For instance, financial institutions and e-commerce platforms, hospitals and pharmaceutical companies, or insurance firms and automobile manufacturers often hold distinct yet complementary information about the same set of users. In such situations where collaborative learning is desired to achieve their respective goals, VFL provides a good framework for training a joint model without directly revealing raw data, thereby preserving privacy.

Building on the VFL paradigm, researchers have explored various strategies to enhance its utility such as improving communication efficiency (Castiglia et al., 2023a,b; Feng, 2022; Liu et al., 2022; Wu et al., 2022), strengthening privacy through advanced security mechanisms (Fu et al., 2022; Kang et al., 2022a; Sun et al., 2024; Zou et al., 2022), and, crucially, boosting the effectiveness (Ganguli et al., 2023; He et al., 2024; Huang et al., 2023; Kang et al., 2022b; Li et al., 2022). A key part of this effort involves fully leveraging available information under restricted data. Unlike conventional machine learning algorithms, VFL typically requires data to be aligned, which is a condition that becomes harder to satisfy as more institutions participate. Although there may be overlap in users across different institutions, their overall user sets are rarely identical, leaving some users unaligned and even limiting the number of aligned samples. A recent survey on VFL (Wu et al., 2025) reports

054 that only 0.2% of potential VFL pairs are fully alignable. Moreover, in healthcare, banking, or
 055 insurance sectors that demand VFL, acquiring labeled data is particularly challenging due to strict
 056 privacy regulations and the sensitive nature of the information. Hence, effectively utilizing unaligned
 057 or unlabeled data becomes crucial.

058 Several studies have attempted to address these issues, but frequently rely on restrictive assumptions.
 059 Some works are tailored to a small and fixed number of parties (most commonly two) (Kang
 060 et al., 2022a;b; Li et al., 2022; Yang et al., 2022), while others do not fully exploit partially aligned
 061 data (Feng, 2022; He et al., 2024; Huang et al., 2023), thereby wasting potentially valuable infor-
 062 mation. In addition, many approaches restrict inference to fully aligned data or specific parties
 063 only (Feng, 2022; He et al., 2024; Huang et al., 2023; Kang et al., 2022b), limiting real-world
 064 applicability. On the other hand, some researches (Ganguli et al., 2023; Sun et al., 2024) focus on
 065 inference with any type of unaligned data but do not consider training on unaligned data.

066 Before introducing our method, we distinguish two kinds of unaligned data: (a) **Potentially alignable**
 067 **yet currently unlinked records** caused by imperfect identifiers, which can often be addressed
 068 via privacy-preserving record-linkage techniques (Hardy et al., 2017; Nock et al., 2021; Wu et al.,
 069 2024); and (b) **Inherently unalignable records** that have no genuine counterparts across parties,
 070 making alignment fundamentally impossible. Our primary focus is the latter that parallels blockwise
 071 missingness in the classical missing data literature. This distinction motivates the following discussion
 072 on missingness mechanisms.

073 Beyond VFL, many studies in machine learning have investigated to tackle missing or incomplete
 074 data. A fundamental first step in this line of work is to identify the underlying missingness mechanism,
 075 generally categorized into three types (Ghahramani & Jordan, 1995; Little & Rubin, 2019):

- 077 • **MCAR** (Missing Completely at Random): Missingness occurs entirely independent of both
 078 observed and unobserved values.
- 079 • **MAR** (Missing at Random): Missingness may depend on observed values but not on
 080 unobserved ones.
- 081 • **MNAR** (Missing Not at Random): Missingness may depend on both observed and unob-
 082 served values.

084 Viewing alignment in VFL through the lens of missingness, we can treat unaligned data as in a
 085 standard missing data scenario. For example, recent work (Valdeira et al., 2024) applies the MCAR
 086 assumption to address arbitrary types of unaligned data, but it does not incorporate unlabeled data.
 087 Inspired by prior research (Ipsen et al., 2022), we propose a novel algorithm, FALSE-VFL (**F**lexible
 088 **A**lignment and **L**abeling **S**cenarios **E**nabled **V**ertical **F**ederated **L**earning), a unified framework for
 089 VFL under diverse alignment and labeling scenarios.

090 **Contributions.** FALSE-VFL (i) supports both training and inference under arbitrary alignment
 091 and labeling conditions in multi-party VFL, (ii) accommodates all three missingness mechanisms
 092 (MCAR, MAR, MNAR), and (iii) surpasses all baselines in 160 out of 168 configurations with a
 093 substantial performance gap, average of 9.6 percentage points over the next-best competitors. To the
 094 best of our knowledge, it is the first framework that simultaneously addresses these challenges in
 095 practice.

097 2 RELATED WORK

100 **Vertical Federated Learning Models.** A variety of VFL approaches have been proposed to handle
 101 unaligned or unlabeled data across different institutions. Two-party methods such as VFed-SSD (Li
 102 et al., 2022) and FedCVT (Kang et al., 2022b) leverage semi-supervised or psuedo-label training, but
 103 cannot scale beyond two parties.

104 For multi-party settings, subsequent work explores feature selection (VFLFS (Feng, 2022)), rep-
 105 resentation transfer (VFedTrans (Huang et al., 2023)), self-supervised objectives (FedHSSL (He
 106 et al., 2024)), and robustness to dropped parties (MAGS (Ganguli et al., 2023), PlugVFL (Sun et al.,
 107 2024)). LASER-VFL (Valdeira et al., 2024) fully exploits aligned and unaligned samples but ignores
 unlabeled ones.

108
109
110
111 Table 1: Flexibility of various VFL algorithms.
112
113
114
115
116
117
118
119
120
121

VFL Algorithms	Training Data				Unaligned Inference	# Parties		
	Labeled		Unlabeled					
	Aligned	Unaligned	Aligned	Unaligned				
VFed-SSD (Li et al., 2022)	✓		✓		✓	2		
FedCVT (Kang et al., 2022b)	✓	✓		✓		2		
VFLFS (Feng, 2022)	✓			△		≥ 2		
VFedTrans (Huang et al., 2023)		△	✓			≥ 2		
MAGS (Ganguli et al., 2023)	✓				✓	≥ 2		
PlugVFL (Sun et al., 2024)	✓				✓	≥ 2		
FedHSSL (He et al., 2024)	✓		✓	△	△	≥ 2		
LASER-VFL (Valdeira et al., 2024)	✓	✓			✓	≥ 2		
FALSE-VFL (Ours)	✓	✓	✓	✓	✓	≥ 2		

122
123 In Table 1, we summarize the flexibility of these VFL algorithms and our proposed model in terms of
124 data usage, unaligned inference, and the number of parties each method can accommodate. Here,
125 *unaligned inference* refers to whether an algorithm can perform inference on partially and fully
126 unaligned data (see Section 3.1 for the definitions of *partially aligned* and *fully unaligned*). A
127 ✓ indicates that the algorithm fully exploits the corresponding data type, while △ indicates partial
128 exploitation. For example, some approaches may treat partially aligned data as fully unaligned. Also,
129 △ for unaligned inference indicates the algorithm can perform it but require constructing $2^n - 1$
130 predictors where n is the number of parties. As shown in the table, our proposed model can handle
131 all forms of training data and inference scenarios.

132
133 **Deep Latent Variable Models.** Deep latent variable models (DLVMs) (Kingma & Welling, 2014;
134 Rezende et al., 2014) have demonstrated their utility in capturing complex and high-dimensional data
135 structures including datasets with missing values. While these models are widely used in tasks like
136 generative modeling (Burda et al., 2016; Kingma & Welling, 2014; Rezende & Mohamed, 2015),
137 they are also known to be effective in data imputation (Ipsen et al., 2021; Ivanov et al., 2019; Mattei
138 & Frellsen, 2019) which is crucial for handling missing values.

139 For instance, MIWAE (Mattei & Frellsen, 2019) leverages DLVMs for imputing missing values under
140 the assumption of MAR mechanism, while not-MIWAE (Ipsen et al., 2021) extends it to handle
141 MNAR scenarios. Furthermore, supMIWAE (Ipsen et al., 2022) introduces a supervised learning
142 framework for incomplete datasets, imputing missing values under MAR assumption.

143 These advances in DLVMs illustrate the flexibility and power of probabilistic models in addressing
144 missing data challenges, enabling effective imputation strategies depending on the nature of the
145 missingness mechanism.

146 3 OUR METHOD: FALSE-VFL

147 3.1 DATA SETTING AND NOTATIONS

148
149 We consider a vertical federated learning (VFL) setting with one active party which possesses labels
150 and $K - 1$ passive parties. Each party $k \in [K] := \{1, 2, \dots, K\}$ holds a set of observations
151 $\{\mathbf{x}_i^k \in \mathbb{R}^{d_k}\}_{i=1}^N$. For each sample i , the complete observation across all parties is denoted by
152 $\mathbf{x}_i := [\mathbf{x}_i^1, \mathbf{x}_i^2, \dots, \mathbf{x}_i^K]$. Only the active party K owns the labels $\{y_i \in \mathbb{R}\}_{i=1}^N$ which correspond to
153 the complete observations $\{\mathbf{x}_i \in \mathbb{R}^d\}_{i=1}^N$ where $d = \sum_{k=1}^K d_k$. Critically, both the observations and
154 labels are private, meaning that they cannot be shared directly among the parties.

155
156 In real-world scenarios, data may be incomplete with missing labels or unaligned observations across
157 parties. We address this by introducing the following assumptions regarding data availability. Let
158 $m_i^k \in \{0, 1\}$ indicate whether the data \mathbf{x}_i^k is observed in party k , i.e., $m_i^k = 0$ denotes it is observed
159 and $m_i^k = 1$ denotes it is not. Define $\mathbf{m}_i := [m_i^1, m_i^2, \dots, m_i^K]$ to represent the availability of
160 observations across all parties. Similarly, let $u_i \in \{0, 1\}$ indicate whether the label y_i is available
161 with $u_i = 1$ representing a missing label.

162 Each sample \mathbf{x}_i can be split into $[\mathbf{x}_i^{obs}, \mathbf{x}_i^{mis}]$ where \mathbf{x}_i^{obs} denotes the observed parts (i.e., the set
 163 of \mathbf{x}_i^k where $m_i^k = 0$) and \mathbf{x}_i^{mis} denotes the missing parts. Importantly, we only have access to
 164 \mathbf{x}_i^{obs} and the missing data \mathbf{x}_i^{mis} is not available. Additionally, if $u_i = 1$, the corresponding label
 165 $y_i = \text{NA}$. Under this framework, the set $\{\mathbf{x}_i^{obs} \mid u_i = 1, i \in [N]\}$ represents the unlabeled data,
 166 while $\{\mathbf{x}_i^{obs} \mid u_i = 0, i \in [N]\}$ represents the labeled data.
 167

168 The alignment of observations across parties can be represented with our missingness nota-
 169 tion. **Fully aligned** observations where all parties contribute to the data, are represented as
 170 $\{\mathbf{x}_i \mid \sum_{k=1}^K m_i^k = 0, i \in [N]\}$. **Fully unaligned** observations where data from all but one party
 171 is missing, are represented as $\{\mathbf{x}_i^{obs} \mid \sum_{k=1}^K m_i^k = K - 1, i \in [N]\}$. The remaining observations
 172 where $0 < \sum_{k=1}^K m_i^k < K - 1$, are considered **partially aligned**. We assume that no observation
 173 has $\sum_{k=1}^K m_i^k = K$ as it would imply a completely missing or “dummy” sample. For simplicity,
 174 we refer to fully aligned observations as “aligned” and consider both fully unaligned and partially
 175 aligned observations as “unaligned”.

176 This formulation provides a unified framework for addressing incomplete data, accommodating both
 177 unlabeled and unaligned observations.
 178

179 3.2 PROBLEM AND APPROACH

181 In this work our goal is to solve supervised learning tasks including regression or classification tasks
 182 with deep neural architectures on the training dataset $\{\mathbf{x}_i^{obs}, y_i, \mathbf{m}_i, u_i\}_{i=1}^N$ including unlabeled data
 183 and incomplete observations. If complete observations were available, the standard approach would
 184 involve maximizing the log-likelihood function $\sum_{u_i=0, i \in [N]} \log p_\Theta(y_i | \mathbf{x}_i)$. However, due to the
 185 significant presence of unlabeled data and incomplete observations, more sophisticated procedures
 186 are required.

187 Inspired by the methodology in Ipsen et al. (2022), we leverage deep latent variable models
 188 (DLVMs) (Burda et al., 2016; Kingma & Welling, 2014; Rezende et al., 2014) to build a new
 189 predictive model $p_{\Theta, \psi}(y | \mathbf{x}^{obs}, \mathbf{m})$ where ψ parameterizes the function between \mathbf{x} and \mathbf{m} , while
 190 incorporating unlabeled data into the training process. Under the MAR assumption, we have
 191 $p_{\Theta, \psi}(y | \mathbf{x}^{obs}, \mathbf{m}) = p_\Theta(y | \mathbf{x}^{obs})$ as shown in Appendix A.1. We therefore present two version of our
 192 method:

- 194 • **FALSE-VFL-I**: assumes MAR mechanism and is detailed in Sections 3.3 to 3.5;
- 195 • **FALSE-VFL-II**: relaxes assumption MAR to MNAR mechanism and is described in
 196 Appendix A.2.

197 Below we outline how the approach of Ipsen et al. (2022) is integrated into FALSE-VFL-I (MAR
 198 case).

200 To effectively utilize the large amount of unlabeled data, as a pretraining step we first consider
 201 the marginal log-likelihood $\sum_{i \in [N]} \log p_{\Theta_g}(\mathbf{x}_i^{obs})$ and maximize it where $\Theta_g \subset \Theta$ represents the
 202 generative model parameters. To model the generation of observations, we introduce a sequence of
 203 stochastic hidden layers with latent variables $\mathbf{h} = \{\mathbf{h}^1, \dots, \mathbf{h}^L\}$ as described in Burda et al. (2016):
 204

$$205 p_{\Theta_g}(\mathbf{x}) = \int p_{\Theta_g}(\mathbf{h}^L) p_{\Theta_g}(\mathbf{h}^{L-1} | \mathbf{h}^L) \cdots p_{\Theta_g}(\mathbf{x} | \mathbf{h}^1) d\mathbf{h}.$$

207 Next, as a training step we leverage the labeled data to maximize the log-likelihood function
 208 $\sum_{u_i=0, i \in [N]} \log p_\Theta(y_i | \mathbf{x}_i^{obs})$. Since raw observations \mathbf{x}_i^{obs} cannot be shared across parties due
 209 to privacy constraint, we rely on the latent variable \mathbf{h}^1 , the output of the stochastic layer preceding
 210 the observations, to generate the corresponding labels. This structure results in a graphical model
 211 illustrated in Fig. 1 where $\mathbf{h} := \mathbf{h}^1$ and $\mathbf{z} := \mathbf{h}^L$.¹ The detailed explanation of Fig. 1 will be provided
 212 in Section 3.3. Note that, for reasons of computational tractability, we fix the parameters Θ_g after
 213 pretraining and maximize the conditional log-likelihood $\sum_{u_i=0, i \in [N]} \log p_\Theta(y_i | \mathbf{x}_i^{obs})$ with fixed Θ_g ,
 214

215 ¹In the whole remaining context, we use $L = 2$ for simplicity. However, note that we can use any $L \geq 2$
 216 with a small effort.

which is shown to be equivalent to maximizing the joint log-likelihood $\sum_{u_i=0, i \in [N]} \log p_{\Theta}(y_i, \mathbf{x}_i^{obs})$. We will explain how the pretraining and training steps can achieve our goal effectively in Section 4.

3.3 MODEL ARCHITECTURE

From a broader perspective, our model is divided into feature-side and label-side modules. Each party $k \in [K]$ has its own encoder (parameterized by γ_c^k) and decoder (parameterized by θ_c^k), which we collectively refer to as the feature-side modules. Meanwhile, the active party which holds the labels additionally has a global encoder (parameterized by γ_s), a global decoder (parameterized by θ_s), and a discriminator (parameterized by ϕ) which form the label-side modules. For simplicity, we define the collections of feature-side parameters as $\gamma_c = \{\gamma_c^1, \dots, \gamma_c^K\}$ and $\theta_c = \{\theta_c^1, \dots, \theta_c^K\}$. Thus, we can express the overall model parameters Θ and Θ_g as

$$\Theta = \{\gamma_c, \theta_c, \gamma_s, \theta_s, \phi\} \text{ and } \Theta_g = \{\gamma_c, \theta_c, \gamma_s, \theta_s\}.$$

All encoders and decoders produce parameters for pre-defined distributions (e.g., mean and variance for Gaussian distributions). Specifically, we assume that the prior distribution $p(z)$ is a standard Gaussian, while $p_{\theta_s}(\mathbf{h}|z)$ and $p_{\theta_c}(\mathbf{x}^k|\mathbf{h}) = \prod_{k \in obs} p_{\theta_c^k}(\mathbf{x}^k|\mathbf{h})$ are modeled as Gaussian distributions.

We employ amortized variational inference to approximate the posterior distributions. Specifically, the approximate posterior $q_{\gamma_c}(\mathbf{h}|\mathbf{x}^{obs})$ for the latent variable \mathbf{h} is given by Gaussian distribution

$$\mathcal{N} \left(\frac{1}{|obs|} \sum_{k \in obs} \boldsymbol{\mu}_{\gamma_c^k}(\mathbf{x}^k), \left(\sum_{k \in obs} \boldsymbol{\Sigma}_{\gamma_c^k}^{-1}(\mathbf{x}^k) \right)^{-1} \right), \quad (1)$$

where $\boldsymbol{\mu}_{\gamma_c^k}(\mathbf{x}^k)$ and $\boldsymbol{\Sigma}_{\gamma_c^k}(\mathbf{x}^k)$ denote the outputs of encoder from party k . The approximate posterior $q_{\gamma_s}(\mathbf{z}|\mathbf{h})$ for \mathbf{z} is also assumed to be Gaussian. The rationale behind the formulation in (1) will be explained in Appendix B. For the discriminative part, we assume $p_{\phi}(y|\mathbf{h})$ to be a Gaussian distribution for regression tasks and to be a categorical distribution for classification tasks. The complete computational flow is summarized in Fig. 2. With this setup, we are now ready to explain the whole algorithm including pretraining and prediction.

3.4 ALGORITHM

Our method consists of three steps: pretraining, training, and prediction. We present the details of our algorithm below and provide its overview in Algorithm 1 of Appendix D.3.

Pretraining with Marginal Likelihood Maximization. From our graphical model assumption, the log-likelihood of the observed features can be written as:

$$\log p_{\Theta_g}(\mathbf{x}^{obs}) = \log \int p_{\theta_c}(\mathbf{x}^{obs}|\mathbf{h}) p_{\theta_s}(\mathbf{h}|z) p(z) d\mathbf{h} dz.$$

This integral is intractable, so we approximate it using κ -sample importance-weighted estimator (Burda et al., 2016) with the approximate posterior. First, define

$$R_{\kappa}(\mathbf{x}^{obs}) := \frac{1}{\kappa} \sum_{j=1}^{\kappa} \frac{p_{\theta_c}(\mathbf{x}^{obs}|\mathbf{h}_j) p_{\theta_s}(\mathbf{h}_j|\mathbf{z}_j) p(\mathbf{z}_j)}{q_{\gamma_c}(\mathbf{h}_j|\mathbf{x}^{obs}) q_{\gamma_s}(\mathbf{z}_j|\mathbf{h}_j)}.$$

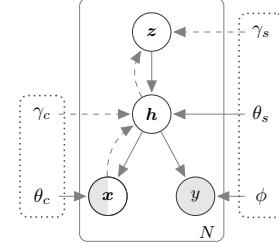


Figure 1: Graphical model for FALSE-VFL-I.

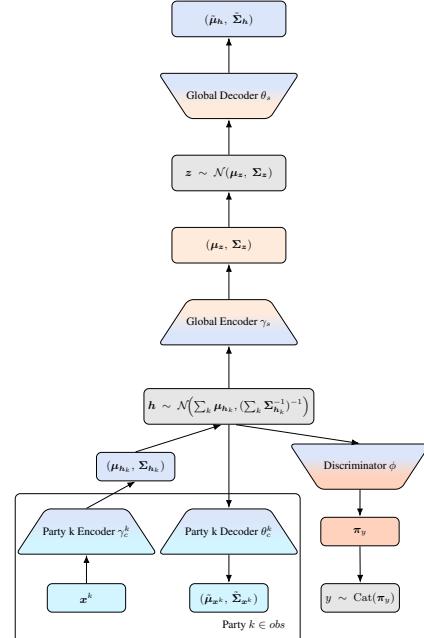


Figure 2: Computational structure for FALSE-VFL-I.

270 where $\{(\mathbf{h}_j, \mathbf{z}_j)\}$ are i.i.d. random variables with distribution $q_{\gamma_c}(\mathbf{h}|\mathbf{x}^{obs})q_{\gamma_s}(\mathbf{z}|\mathbf{h})$. By construction,
 271 $R_\kappa(\mathbf{x}^{obs})$ is an unbiased estimator of $p_{\Theta_g}(\mathbf{x}^{obs})$. Applying Jensen's inequality to $\log \mathbb{E}[R_\kappa(\mathbf{x}^{obs})]$,
 272 we get the lower bound $\mathcal{L}_\kappa(\Theta_g)$ of the log-likelihood of the observed features:
 273

$$274 \sum_{i \in [N]} \log p_{\Theta_g}(\mathbf{x}_i^{obs}) \geq \mathcal{L}_\kappa(\Theta_g) := \sum_{i \in [N]} \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa \sim q_{\gamma_c}(\mathbf{h}|\mathbf{x}_i^{obs})q_{\gamma_s}(\mathbf{z}|\mathbf{h})} [\log R_\kappa(\mathbf{x}_i^{obs})].$$

275 Finally, we just maximize \mathcal{L}_κ with respect to Θ_g .
 276

278 **Training with Conditional Likelihood Maximization.** After we pretrain our model with marginal
 279 likelihood maximization, we fix the parameters Θ_g . Similarly as above, let

$$280 \quad 281 \quad 282 R'_\kappa(y, \mathbf{x}^{obs}) = \frac{1}{\kappa} \sum_{j=1}^\kappa \frac{p_\phi(y|\mathbf{h}_j)p_{\theta_c}(\mathbf{x}^{obs}|\mathbf{h}_j)p_{\theta_s}(\mathbf{h}_j|\mathbf{z}_j)p(\mathbf{z}_j)}{q_{\gamma_c}(\mathbf{h}_j|\mathbf{x}^{obs})q_{\gamma_s}(\mathbf{z}_j|\mathbf{h}_j)}.$$

283 Then, we also get the lower bound $\mathcal{L}'_\kappa(\phi)$ of the log-likelihood of the labeled data:
 284

$$285 \sum_{u_i=0, i \in [N]} \log p_\Theta(y_i, \mathbf{x}_i^{obs}) \geq \mathcal{L}'_\kappa(\phi) := \sum_{u_i=0, i \in [N]} \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa \sim q_{\gamma_c}(\mathbf{h}|\mathbf{x}_i^{obs})q_{\gamma_s}(\mathbf{z}|\mathbf{h})} [\log R'_\kappa(y_i, \mathbf{x}_i^{obs})].$$

288 Finally, we maximize \mathcal{L}'_κ with respect to ϕ .
 289

290 **Prediction.** After all training steps are done, we can predict the label of new (incomplete) observations
 291 with self-normalized importance sampling method as in Ipsen et al. (2022):

$$292 \quad 293 \quad 294 p_\Theta(y|\mathbf{x}^{obs}) \approx \sum_{l=1}^L w_l p_\phi(y|\mathbf{h}_l), \quad \text{where } w_l = \frac{r_l}{r_1 + \dots + r_L}, \quad r_l = \frac{p_{\theta_c}(\mathbf{x}^{obs}|\mathbf{h}_l)p_{\theta_s}(\mathbf{h}_l|\mathbf{z}_l)p(\mathbf{z}_l)}{q_{\gamma_c}(\mathbf{h}_l|\mathbf{x}^{obs})q_{\gamma_s}(\mathbf{z}_l|\mathbf{h}_l)},$$

295 and $(\mathbf{h}_1, \mathbf{z}_1), \dots, (\mathbf{h}_L, \mathbf{z}_L)$ are i.i.d. samples from $q_{\gamma_c}(\mathbf{h}|\mathbf{x}^{obs})q_{\gamma_s}(\mathbf{z}|\mathbf{h})$.
 296

297 **Convergence Properties.** We summarize here convergence properties of \mathcal{L}_κ and \mathcal{L}'_κ . The formal
 298 statement with the mild regularity conditions and the proof are given in Appendix C.

300 **Theorem 3.1.** \mathcal{L}_κ (\mathcal{L}'_κ , resp.) increases as κ increases, and bounded above by $\log p(\mathbf{x}^{obs})$
 301 ($\log p(y, \mathbf{x}^{obs})$, resp.). In addition, \mathcal{L}_κ (\mathcal{L}'_κ , resp.) converges to $\log p(\mathbf{x}^{obs})$ ($\log p(y, \mathbf{x}^{obs})$, resp.)
 302 as $k \rightarrow \infty$ under mild regularity conditions.
 303

3.5 COMMUNICATION BETWEEN PARTIES

306 In the pretraining and training steps, each party computes the mean and variance of its approximate
 307 posterior and sends this local latent representation to the active party. The active party aggregates
 308 the local latent representations into a global latent distribution, samples latent variables \mathbf{h} from this
 309 distribution, and broadcasts them to the participating parties so that they can evaluate $p_{\theta_c}(\mathbf{x}^{obs}|\mathbf{h})$
 310 via their local decoders. Each passive party returns the scalar probabilities to the active party which
 311 uses them to compute the loss and sends back gradients for the local model parameters of each party.

312 In the inference step, we follow the same forward communication pattern as in the pretraining and
 313 training phases, but no gradients are exchanged.
 314

315 Thus, compared to the standard VFL, FALSE-VFL-I follows the same basic communication pattern
 316 where local representations are sent from the passive parties to the active party and the gradients are
 317 sent in the reverse direction, but with two additional steps: sampled latent variables from the global
 318 posterior sent from the active party to the others, and scalar probabilities sent back to the active party.
 319

4 MAXIMIZING CONDITIONAL LIKELIHOOD THROUGH TWO-STAGE 320 OPTIMIZATION

323 The primary objective of our work is to predict target variables y (either continuous or discrete)
 324 based on observed features \mathbf{x}^{obs} . To achieve it, we aim to maximize the conditional log-likelihood

324 $\sum_{u_i=0, i \in [N]} \log p_{\Theta}(y_i | \mathbf{x}_i^{obs})$. However, this objective is intractable even with variational approx-
 325 imation. To address this issue, we propose a detour by maximizing the joint log-likelihood
 326 $\sum_{u_i=0, i \in [N]} \log p_{\Theta}(y_i, \mathbf{x}_i^{obs})$ which can be optimized using variational approximations.
 327

328 The connection between the joint and conditional log-likelihoods is expressed as:

$$329 \log p_{\Theta}(y, \mathbf{x}^{obs}) = \log p_{\Theta}(y | \mathbf{x}^{obs}) + \log p_{\Theta_g}(\mathbf{x}^{obs})$$

331 This relationship indicates that maximizing the joint likelihood $p_{\Theta}(y, \mathbf{x}^{obs})$ inherently involves both
 332 the conditional term $p_{\Theta}(y | \mathbf{x}^{obs})$ and the marginal term $p_{\Theta_g}(\mathbf{x}^{obs})$. Due to the high dimensionality of
 333 \mathbf{x}^{obs} where $d^{obs} \gg 1$, the term $p_{\Theta_g}(\mathbf{x}^{obs})$ may dominate the learning process, leading to implicit
 334 modeling bias as discussed in Zhao et al. (2019). This imbalance can result in a model focusing more
 335 on the marginal likelihood and less on the conditional likelihood, ultimately limiting the performance
 336 of $p_{\Theta}(y | \mathbf{x}^{obs})$.
 337

338 **Two-Stage Optimization Strategy** To mitigate this imbalance, we introduce a two-stage optimiza-
 339 tion process:

- 340 • Stage 1 - Pretraining with Marginal Likelihood Maximization: To avoid the implicit mod-
 341 eling bias, we first maximize the marginal likelihood $p_{\Theta_g}(\mathbf{x}^{obs})$ which constitutes the
 342 dominant part of the joint likelihood $p_{\Theta}(y, \mathbf{x}^{obs})$.
- 343 • Stage 2 - Training with Conditional Likelihood Maximization: Once $p_{\Theta_g}(\mathbf{x}^{obs})$ is optimized,
 344 we freeze the parameters Θ_g and proceed to maximize the joint likelihood $p_{\Theta}(y, \mathbf{x}^{obs})$.
 345 Since Θ_g is fixed, this step effectively focuses on maximizing the conditional likelihood
 346 $p_{\Theta}(y | \mathbf{x}^{obs})$, aligning directly with our goal of optimizing conditional predictions.
 347

348 Freezing Θ_g not only reduces the implicit modeling bias from $p_{\Theta_g}(\mathbf{x}^{obs})$, but also makes the objective
 349 of maximizing $p_{\Theta}(y, \mathbf{x}^{obs})$ equivalent to maximizing $p_{\Theta}(y | \mathbf{x}^{obs})$. This two-stage approach provides
 350 a more focused path towards optimizing the conditional likelihood. Moreover, it also has the following
 351 important properties.
 352

353 **Interpretation as Feature Learning** The two-stage optimization process can be also interpreted in
 354 terms of feature learning. In this view, the first step (maximizing $p_{\Theta_g}(\mathbf{x}^{obs})$) serves as a pretraining
 355 phase where the generative model learns a robust representation of the feature space. Once this
 356 representation is well-learned, the second step leverages this generative model to facilitate the
 357 maximization of $p_{\Theta}(y | \mathbf{x}^{obs})$, improving the conditional prediction.
 358

359 **Incorporating Unlabeled Data** An additional advantage of this two-stage approach is the ability
 360 to incorporate unlabeled data. Given the abundance of unlabeled data in many practical scenarios,
 361 optimizing $p_{\Theta_g}(\mathbf{x}^{obs})$ allows the model to utilize them, even though labels are absent. While
 362 unlabeled data cannot directly optimize $p_{\Theta}(y | \mathbf{x}^{obs})$, it plays a crucial role in optimizing the marginal
 363 likelihood $p_{\Theta_g}(\mathbf{x}^{obs})$, thus ensuring the model effectively leverages all available data during training.
 364

365 5 EXPERIMENTS

366 In this section, we compare FALSE-VFL with several baseline algorithms on four benchmark datasets.
 367

368 **Baselines.** Vanilla VFL, LASER-VFL (Valdeira et al., 2024), PlugVFL (Sun et al., 2024), and
 369 FedHSSL (He et al., 2024) are evaluated; implementation specifics for each baseline are provided in
 370 Appendix D.1.
 371

372 **Datasets and Models.** We use Isolet (Cole et al., 1990), HAPT (Reyes-Ortiz et al., 2016), Fash-
 373 ionMNIST (Xiao, 2017), and ModelNet10 (Wu et al., 2015). Isolet and HAPT are tabular, whereas
 374 FashionMNIST and ModelNet10 are image datasets. For tabular tasks we employ simple multilayer
 375 perceptrons, while for image tasks we adopt ResNet-18 backbone (He et al., 2016) as the feature
 376 extractors and two fully-connected layers for the fusion models. More detailed explanations on
 377 datasets and models appear in Appendix D.2.

378 **Setup.** Isolet, HAPT, and FashionMNIST are partitioned across eight parties, and ModelNet10
 379 across six; exact feature splits are explained in Appendix D.2. We provide 500 labeled samples for
 380 each tabular dataset and 1,000 for each image dataset, treating all remaining samples as unlabeled.
 381 Since Vanilla VFL, PlugVFL, and FedHSSL originally require fully aligned data during training, we
 382 reserve 100 (tabular) or 200 (image) of the labeled samples as fully aligned and render the remainder
 383 partially aligned according to the designated train data missing mechanisms. All test samples are
 384 partially aligned, using the designated test data missing mechanisms. Section 5.1 explains the missing
 385 mechanisms we adopt.

386 **5.1 MISSING MECHANISMS**

387 We evaluate all algorithms under MCAR, MAR, and MNAR assumptions for data alignment.

388 **MCAR:** To generate unaligned data with the MCAR mechanism, we impose a missing probability
 389 p for each sample in each party. We experiment with $p \in \{0.0, 0.2, 0.5\}$ and denote as MCAR 0,
 390 MCAR 2, and MCAR 5, respectively.

391 **MAR:** We designs two MAR mechanisms, MAR 1 and MAR 2, motivated by real-world scenarios in
 392 which subsequent observations depend on what has already been seen. MAR 1 is designed to seek for
 393 single highly informative party, whereas MAR 2 is designed to seek multiple moderately informative
 394 parties. Precise formulas are given in Appendix D.4.

395 **MNAR:** After normalizing each dataset, let \bar{x}^k be the mean of features held by party k in a given
 396 sample. If $\bar{x}^k < 0$, the party is dropped with probability p ; otherwise it is dropped with probability
 397 $1 - p$. We experiment with $p \in \{0.7, 0.9\}$ and denote as MNAR 7 and MNAR 9, respectively.

402 **5.2 EXPERIMENTAL RESULTS**

403 We train every method on the four benchmarks under six training missingness regimes (MCAR 2,
 404 MCAR 5, MAR 1, MAR 2, MNAR 7, MNAR 9) and evaluate them on seven test patterns (MCAR 0,
 405 MCAR 2, MCAR 5, MAR 1, MAR 2, MNAR 7, MNAR 9). The results are shown in Fig. 3, and exact
 406 numerical values are reported in Tables 13 to 18. Although FALSE-VFL-I does not model the mask
 407 distribution explicitly, its performance is consistently close to, and occasionally higher than, that of
 408 FALSE-VFL-II. To provide a concise overview, we compare the best-performing FALSE-VFL variant
 409 with the strongest baseline for each dataset, training mechanism, and test mechanism in Table 2.
 410 As shown in Table 2c, the performance gap widens as the test missingness rate increases. In all
 411 comparisons, FALSE-VFL achieves a clear lead.

412 **Table 2: Average accuracy gap (%) between the best FALSE-VFL variant and the best competing
 413 baseline.**

(a) Per dataset				(b) Per <i>training</i> missing data mechanism							
	Isolet	HAPT	F-MNIST	ModelNet	MCAR 2	MCAR 5	MAR 1	MAR 2	MNAR 7	MNAR 9	
Gap	15.7	7.3	4.5	9.1	Gap	5.3	10.4	9.2	9.6	11.4	8.9

(c) Per <i>test</i> missing data mechanism								
	MCAR 0	MCAR 2	MCAR 5	MAR 1	MAR 2	MNAR 7	MNAR 9	
Gap	1.8	5.4	9.6	10.9	12.3	10.8	13.1	

424 Overall, FALSE-VFL exceeds the strongest baseline by an average of 9.1 percentage points across all
 425 168 configurations. This average differs slightly from 9.6 reported in the abstract since the value is
 426 calculated on 160 cases.

427 **Robustness to higher missing rates.** To assess the impact of more severe missingness, we compare
 428 models trained under MCAR 5 with those trained under MCAR 2. Table 19 reports, for each setting,
 429 the ratio of mean accuracy obtained when training under MCAR 5 to that obtained under MCAR 2.
 430 FALSE-VFL exhibits the smallest performance decrease in 23 of 28 cases and even improves on most
 431 test sets, demonstrating markedly stronger robustness to missingness than the competing methods.

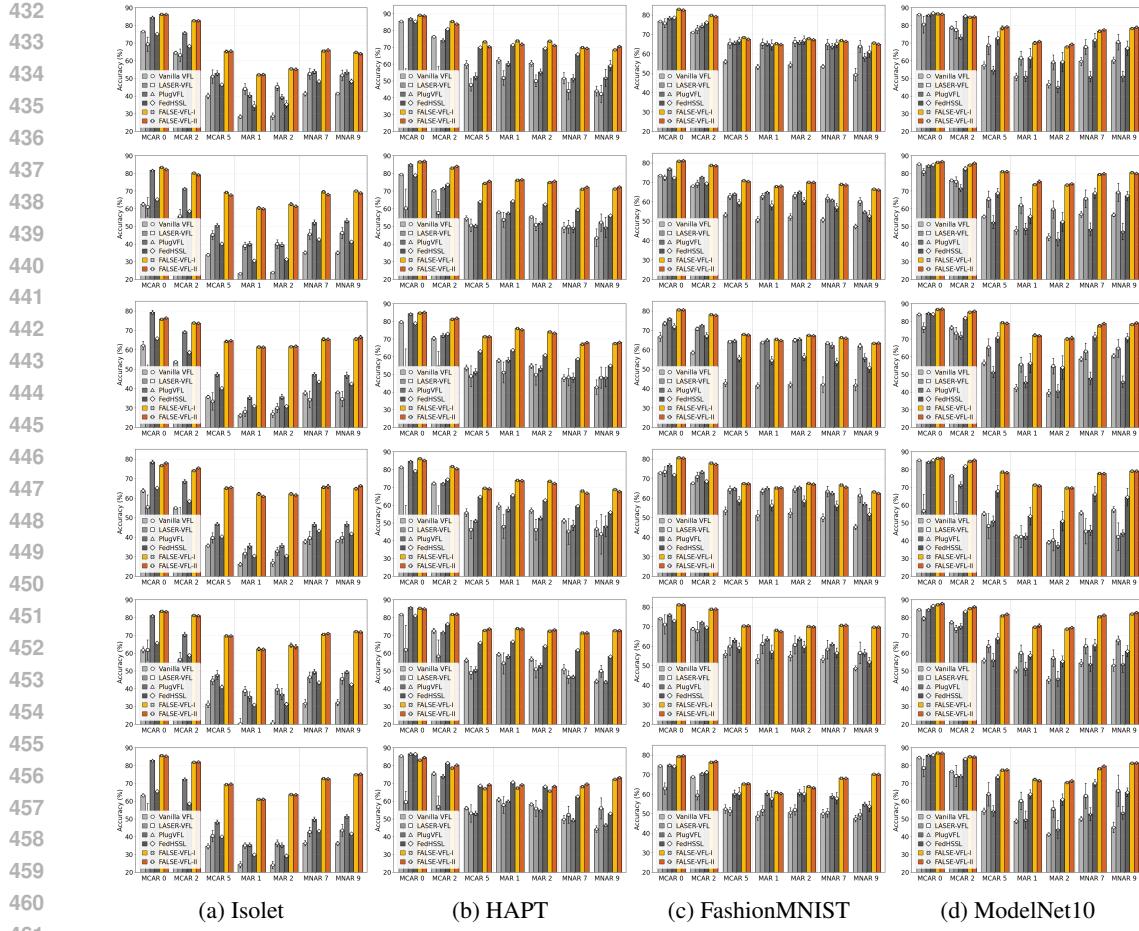


Figure 3: Mean accuracy (%) of six VFL methods trained under six missingness mechanisms and evaluated across seven test patterns. The columns correspond to the datasets: Isolet, HAPT, FashionMNIST, and ModelNet10 from left to right; the rows correspond to the training mechanisms: MCAR 2, MCAR 5, MAR 1, MAR 2, MNAR 7, and MNAR 9 from top to bottom. Bars show mean over five independent runs; error bars show ± 1 standard deviation.

Robustness to the number of parties. We further evaluate robustness with respect to the number of parties K , varying it from 4 to 12. We do not include MAR in the ablation since the missingness of party i depends on the other parties, so changing K alters the mechanism itself and prevents a fair comparison. We therefore report only MCAR 2 and MNAR 7 in Fig. 4. Recall that we fix a small subset of labeled samples to be fully aligned (e.g., 100 when the total is 500), and the remaining labeled samples follow the specified missingness mechanism. As a result, the expected number of additional fully aligned labeled samples falls quickly as K grows.

Under MCAR 2, Vanilla VFL and FedHSSL tend to decline as K increases because the probability that a labeled sample is simultaneously observed by all parties drops rapidly with larger K , and these methods train only on the fully aligned labeled data. Under MNAR 7, the missing rate is high, so beyond the fixed fully aligned labeled subset the expected number of additional fully aligned labeled samples is negligible for $K > 4$. In this regime, these two methods often stay flat or improve as K grows. This effect arises since splitting the same total features across more parties makes a complete loss of informative features much less likely, and the fraction of observed parties per sample varies less around its mean, which makes the fused representation more consistent.

PlugVFL and our method can learn from unaligned labeled samples, so they do not rely only on the fully aligned labeled subset. As K increases they benefit from the same effect, namely a much lower chance that all informative features are missing at once and a more stable observed party fraction per sample, so their performance generally improves or remains stable under both MCAR 2 and MNAR 7.

LASER-VFL can effectively leverage unaligned samples, but assumes a batch-wise missingness mask. As K grows, the space of possible missingness patterns explodes, making it increasingly difficult to assemble mini-batches that share a single mask and effectively lowering batch utilization. Consequently, its performance tends to degrade. Across all configurations, FALSE-VFL consistently outperforms all baselines regardless of the number of parties.

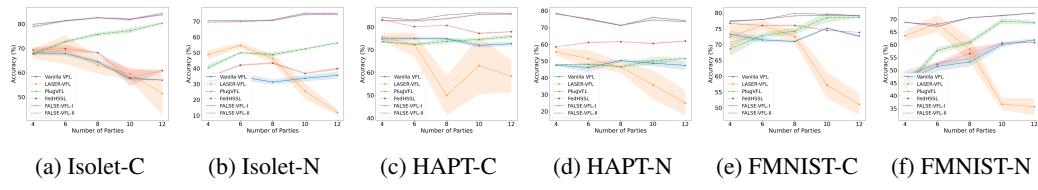


Figure 4: Mean accuracy (%) with varying numbers of parties for six VFL methods. Panels with suffix “C” (Isolet-C, HAPT-C, FMNIST-C) are trained and evaluated under MCAR 2, and panels with suffix “N” (Isolet-N, HAPT-N, FMNIST-N) are trained and evaluated under MNAR 7. Solid lines show mean accuracy over five independent runs; shaded bands show ± 1 standard deviation.

Robustness to data heterogeneity. We provide an additional ablation on data heterogeneity. In an eight-party setting, we draw a party specific missing rate vector ω from Dirichlet distribution $Dir(\alpha)$ and set the per party missing probabilities to $p = 1.6\omega \in [0, 1]^8$ so that the average missing rate is 0.2; if any entry of p exceeds 1, we resample ω . we consider $\alpha \in \{\infty, 10, 1, 0.1\}$. When $\alpha = \infty$ we obtain $\omega = (1/8, \dots, 1/8)$ and hence $p = (0.2, \dots, 0.2)$, which corresponds to MCAR 2. To quantify heterogeneity, we report the entropy of the sampled ω for each α in Table 3. Test accuracies are shown in Fig. 5. Across all datasets, LASER-VFL improves as α decreases (i.e., heterogeneity increases). This is expected since uneven per-party missing rates make the mask distribution more concentrated over a smaller set of configurations, which simplifies forming mini-batches that share a single mask and thus improves batch utilization in LASER-VFL. By contrast, Vanilla VFL and FedHSSL decreases as α decreases, since lower entropy reduces the fraction of aligned samples and shrinks the effective training set. FALSE-VFL remains robust, staying flat and highest across all α .

Table 3: Entropy of ω sampled from $Dir(\alpha)$ for each α . Larger entropy implies closer to uniform.

α	∞	10	1	0.1
Isolet	2.08	2.02	1.74	1.11
HAPT	2.08	2.05	1.78	1.16
FMNIST	2.08	2.07	1.47	0.73

6 CONCLUSIONS

We introduce FALSE-VFL, a vertical federated learning framework that utilizes both unlabeled and unaligned data, supports inference on unaligned data, and accommodates all three missing data mechanisms (MCAR, MAR, MNAR) in both theory and practice. Extensive experiments covering six training and seven test missingness settings show that FALSE-VFL surpasses the existing methods in almost every configuration with a clear gap. Additional ablations on missing rates, the number of parties, and data heterogeneity further validates its robustness.

These findings demonstrate that FALSE-VFL is a practical step toward privacy-preserving collaboration in real-world feature-partitioned settings where labels are scarce and perfect alignment is rare.

540 REFERENCES
541

542 Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In
543 *International Conference on Learning Representations*, 2016.

544 Timothy Castiglia, Shiqiang Wang, and Stacy Patterson. Flexible vertical federated learning with
545 heterogeneous parties. *IEEE Transactions on Neural Networks and Learning Systems*, 2023a.

546 Timothy Castiglia, Yi Zhou, Shiqiang Wang, Swanand Kadhe, Nathalie Baracaldo, and Stacy Pat-
547 terson. Less-vfl: Communication-efficient feature selection for vertical federated learning. In
548 *International Conference on Machine Learning*, pp. 3757–3781. PMLR, 2023b.

549

550 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of*
551 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15750–15758, 2021.

552

553 Ron Cole, Yeshwant Muthusamy, and Mark Fanty. *The ISOLET spoken letter database*. Oregon
554 Graduate Institute of Science and Technology, Department of Computer . . ., 1990.

555

556 Siwei Feng. Vertical federated learning-based feature selection with non-overlapping sample utiliza-
557 tion. *Expert Systems with Applications*, 208:118097, 2022.

558

559 Fangcheng Fu, Huanran Xue, Yong Cheng, Yangyu Tao, and Bin Cui. Blindfl: Vertical federated
560 machine learning without peeking into your data. In *Proceedings of the 2022 International*
561 *Conference on Management of Data*, pp. 1316–1330, 2022.

562

563 Surojit Ganguli, Zeyu Zhou, Christopher G Brinton, and David I Inouye. Fault-tolerant serverless vfl
over dynamic device environment. *arXiv preprint arXiv:2312.16638*, 2023.

564

565 Zoubin Ghahramani and Michael I Jordan. Learning from incomplete data. 1995.

566

567 Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume Smith,
568 and Brian Thorne. Private federated learning on vertically partitioned data via entity resolution
and additively homomorphic encryption. *arXiv preprint arXiv:1711.10677*, 2017.

569

570 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
571 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
572 pp. 770–778, 2016.

573

574 Yuanqin He, Yan Kang, Xinyuan Zhao, Jiahuan Luo, Lixin Fan, Yuxing Han, and Qiang Yang. A
575 hybrid self-supervised learning framework for vertical federated learning. *IEEE Transactions on*
Big Data, 2024.

576

577 Chung-ju Huang, Leye Wang, and Xiao Han. Vertical federated knowledge transfer via representation
578 distillation for healthcare collaboration networks. In *Proceedings of the ACM Web Conference*
2023, pp. 4188–4199, 2023.

579

580 Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. not-MIWAE: Deep generative mod-
581 elling with missing not at random data. In *International Conference on Learning Representations*,
582 2021.

583

584 Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. How to deal with missing data in
585 supervised deep learning? In *International Conference on Learning Representations*, 2022.

586

587 Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. Variational autoencoder with arbitrary condition-
588 ing. In *International Conference on Learning Representations*, 2019.

589

590 Yan Kang, Yuanqin He, Jiahuan Luo, Tao Fan, Yang Liu, and Qiang Yang. Privacy-preserving
591 federated adversarial domain adaptation over feature groups for interpretability. *IEEE Transactions*
on Big Data, 2022a.

592

593 Yan Kang, Yang Liu, and Xinle Liang. FedCVT: Semi-supervised vertical federated learning with
cross-view training. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 13(4):1–16,
2022b.

594 Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In *International Conference*
 595 *on Learning Representations*, 2014.

596

597 Wenjie Li, Qiaolin Xia, Junfeng Deng, Hao Cheng, Jiangming Liu, Kouying Xue, Yong Cheng,
 598 and Shu-Tao Xia. Semi-supervised cross-silo advertising with partial knowledge transfer. *arXiv*
 599 *preprint arXiv:2205.15987*, 2022.

600 Roderick JA Little and Donald B Rubin. *Statistical analysis with missing data*, volume 793. John
 601 Wiley & Sons, 2019.

602

603 Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, and Qiang Yang.
 604 Fedbcd: A communication-efficient collaborative learning framework for distributed features.
 605 *IEEE Transactions on Signal Processing*, 70:4277–4290, 2022.

606 Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin
 607 Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. *IEEE*
 608 *Transactions on Knowledge and Data Engineering*, 2024.

609

610 Pierre-Alexandre Mattei and Jes Frellsen. MIWAE: Deep generative modelling and imputation of
 611 incomplete data sets. In *International conference on machine learning*, pp. 4413–4423. PMLR,
 612 2019.

613 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 614 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence*
 615 and statistics, pp. 1273–1282. PMLR, 2017.

616 Richard Nock, Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Jakub Nabaglo, Giorgio Patrini,
 617 Guillaume Smith, and Brian Thorne. The impact of record linkage on learning from feature
 618 partitioned data. In *International Conference on Machine Learning*, pp. 8216–8226. PMLR, 2021.

619

620 Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. Transition-aware
 621 human activity recognition using smartphones. *Neurocomputing*, 171:754–767, 2016.

622

623 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International*
 624 *conference on machine learning*, pp. 1530–1538. PMLR, 2015.

625

626 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
 627 approximate inference in deep generative models. In *International conference on machine learning*,
 628 pp. 1278–1286. PMLR, 2014.

629

630 Jingwei Sun, Zhixu Du, Anna Dai, Saleh Baghersalimi, Alireza Amirshahi, David Atienza, and Yiran
 631 Chen. Plugvfl: Robust and ip-protecting vertical federated learning against unexpected quitting of
 632 parties. In *2024 IEEE International Conference on Big Data (BigData)*, pp. 1124–1133. IEEE,
 633 2024.

634

635 Pedro Valdeira, Shiqiang Wang, and Yuejie Chi. Vertical federated learning with missing features
 636 during training and inference. *arXiv preprint arXiv:2410.22564*, 2024.

637

638 Zhaomin Wu, Qinbin Li, and Bingsheng He. Practical vertical federated learning with unsupervised
 639 representation learning. *IEEE Transactions on Big Data*, 2022.

640

641 Zhaomin Wu, Junyi Hou, Yiqun Diao, and Bingsheng He. Federated transformer: Multi-party vertical
 642 federated learning on practical fuzzily linked data. *arXiv preprint arXiv:2410.17986*, 2024.

643

644 Zhaomin Wu, Zhen Qin, Junyi Hou, Haodong Zhao, Qinbin Li, Bingsheng He, and Lixin Fan. Vertical
 645 federated learning in practice: The good, the bad, and the ugly. *arXiv preprint arXiv:2502.08160*,
 646 2025.

647

648 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaou Tang, and Jianxiong
 649 Xiao. 3d shapenets: A deep representation for volumetric shapes. In *Proceedings of the IEEE*
 650 *conference on computer vision and pattern recognition*, pp. 1912–1920, 2015.

651

652 H Xiao. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv*
 653 *preprint arXiv:1708.07747*, 2017.

648 Liu Yang, Di Chai, Junxue Zhang, Yilun Jin, Leye Wang, Hao Liu, Han Tian, Qian Xu, and Kai
649 Chen. A survey on vertical federated learning: From a layered perspective. *arXiv preprint*
650 *arXiv:2304.01829*, 2023.

651 Yitao Yang, Xiucui Ye, and Tetsuya Sakurai. Multi-view federated learning with data collaboration.
652 In *Proceedings of the 2022 14th International Conference on Machine Learning and Computing*,
653 pp. 178–183, 2022.

654 Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
655 *Knowledge-Based Systems*, 216:106775, 2021.

656 Shengjia Zhao, Jiaming Song, and Stefano Ermon. InfoVAE: Balancing learning and inference
657 in variational autoencoders. In *Proceedings of the aaai conference on artificial intelligence*,
658 volume 33, pp. 5885–5892, 2019.

659 Youran Zhou, Sunil Aryal, and M Reda Bouadjenek. A comprehensive review of handling missing
660 data: Exploring special missing mechanisms. *arXiv preprint arXiv*, 2404, 2024.

661 Tianyuan Zou, Yang Liu, Yan Kang, Wenhan Liu, Yuanqin He, Zhihao Yi, Qiang Yang, and Ya-Qin
662 Zhang. Defending batch-level label inference and replacement attacks in vertical federated learning.
663 *IEEE Transactions on Big Data*, 2022.

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

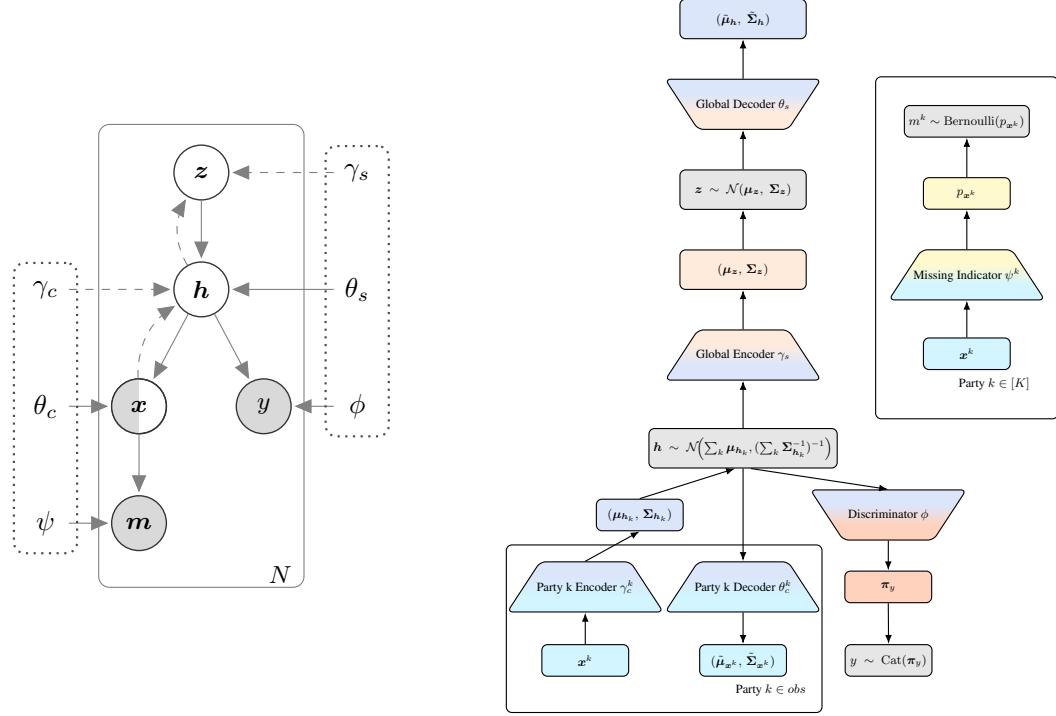
697

698

699

700

701

702 **A MISSING DATA MECHANISMS**
703729 **Left:** Graphical model for FALSE-VFL-II. The left dotted box groups feature-side modules,
730 while the right dotted box groups label-side modules. **Right:** Computational structure for FALSE-
731 VFL-II.732 **A.1 MAR MECHANISM**
733734 Assume that missing data occurs with the MAR mechanism. Then,
735

$$\begin{aligned}
 736 \log p_{\Theta, \psi}(y | \mathbf{x}^{obs}, \mathbf{m}) &= \log p_{\Theta, \psi}(y, \mathbf{x}^{obs}, \mathbf{m}) - \log p_{\psi}(\mathbf{x}^{obs}, \mathbf{m}) \\
 737 &= \log \int p_{\phi}(y | \mathbf{h}) p_{\psi}(\mathbf{m} | \mathbf{x}^{obs}, \mathbf{x}^{mis}) p_{\Theta_g}(\mathbf{x}^{obs}, \mathbf{x}^{mis}, \mathbf{h}) d\mathbf{h} d\mathbf{x}^{mis} - \log p_{\psi}(\mathbf{x}^{obs}, \mathbf{m}) \\
 738 &= \log \left(p_{\psi}(\mathbf{m} | \mathbf{x}^{obs}) \int p_{\phi}(y | \mathbf{h}) p_{\Theta_g}(\mathbf{x}^{obs}, \mathbf{x}^{mis}, \mathbf{h}) d\mathbf{h} d\mathbf{x}^{mis} \right) - \log p_{\psi}(\mathbf{x}^{obs}, \mathbf{m}) \\
 739 &= \log p_{\psi}(\mathbf{m} | \mathbf{x}^{obs}) + \log p_{\Theta}(y, \mathbf{x}^{obs}) - \log p_{\psi}(\mathbf{x}^{obs}, \mathbf{m}) \\
 740 &= \log p_{\Theta}(y | \mathbf{x}^{obs}),
 \end{aligned}$$

741 where the MAR assumption is used in the third equality.
742743 **A.2 MNAR MECHANISM**
744745 Under the MNAR mechanism, we need to model the mask explicitly through an additional component
746 $p_{\psi}(\mathbf{m} | \mathbf{x})$. In addition to the existing models in the MAR case, each party $k \in [K]$ has its own
747 missing indicator parameterized by ψ^k which maps \mathbf{x}^k to $p_{\mathbf{x}^k}$, a parameter of Bernoulli distribution.
748 Note that $\psi = \{\psi^k\}_{k \in [K]}$ and $p_{\psi}(\mathbf{m} | \mathbf{x}) = \prod_{k \in [K]} p_{\psi^k}(m^k | \mathbf{x}^k)$. The complete computational
749 structure is shown in Fig. 6. Under the graphical model depicted in Fig. 6, we can adopt a procedure
750

756 analogous to our original algorithm by first maximizing $\mathcal{L}_\kappa(\Theta_g, \psi)$ as a pretraining step where
 757

$$758 \quad \sum_{i \in [N]} \log p_{\Theta_g, \psi}(\mathbf{x}_i^{obs}, \mathbf{m}_i) \geq \mathcal{L}_\kappa(\Theta_g, \psi) \\ 759 \quad := \sum_{i \in [N]} \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j, \mathbf{x}_j^{mis})\}_{j=1}^\kappa \sim q_{\gamma_c}(\mathbf{h}|\mathbf{x}_i^{obs})q_{\gamma_s}(\mathbf{z}|\mathbf{h})p_{\theta_c}(\mathbf{x}^{mis}|\mathbf{h})} [\log R_\kappa(\mathbf{x}_i^{obs}, \mathbf{m}_i)], \\ 760 \\ 761 \\ 762$$

763 with
 764

$$765 \quad R_\kappa(\mathbf{x}^{obs}, \mathbf{m}) = \frac{1}{\kappa} \sum_{j=1}^\kappa \frac{p_\psi(\mathbf{m}|\mathbf{x}^{obs}, \mathbf{x}_j^{mis})p_{\theta_c}(\mathbf{x}^{obs}|\mathbf{h}_j)p_{\theta_s}(\mathbf{h}_j|\mathbf{z}_j)p(\mathbf{z}_j)}{q_{\gamma_c}(\mathbf{h}_j|\mathbf{x}^{obs})q_{\gamma_s}(\mathbf{z}_j|\mathbf{h}_j)}. \\ 766 \\ 767 \\ 768$$

769 This follows from
 770

$$771 \quad \log p_{\Theta_g, \psi}(\mathbf{x}^{obs}, \mathbf{m}) = \log \int p_\psi(\mathbf{m}|\mathbf{x}^{obs}, \mathbf{x}^{mis})p_{\theta_c}(\mathbf{x}^{obs}|\mathbf{h})p_{\theta_c}(\mathbf{x}^{mis}|\mathbf{h})p_{\theta_s}(\mathbf{h}|\mathbf{z})p(\mathbf{z}) d\mathbf{h}d\mathbf{z}d\mathbf{x}^{mis}. \\ 772$$

773 We assumed here $p_{\theta_c}(\mathbf{x}|\mathbf{h})$ is fully factorized, so that $p_{\theta_c}(\mathbf{x}|\mathbf{h}) = p_{\theta_c}(\mathbf{x}^{obs}|\mathbf{h})p_{\theta_c}(\mathbf{x}^{mis}|\mathbf{h})$.
 774

775 After the pretraining step, we fix the parameters Θ_g, ψ and proceed with an analogous training as
 776 in our main algorithm. In summary, to handle the MNAR case, we only need an additional model
 777 $p_\psi(\mathbf{m}|\mathbf{x})$ and the sampling of \mathbf{x}^{mis} .

778 We also describe what information is communicated between the parties in FALSE-VFL-II.
 779

780 In the pretraining and training steps, there is an additional exchange for samples with missing parties,
 781 in addition to the communication in FALSE-VFL-I. The active party sends sampled latent variables
 782 from the global posterior to the missing parties. Each such party uses the received samples with its
 783 local decoder and missing indicator to compute the missingness probabilities, and sends them back to
 784 the active party.

785 In the inference step, we follow the same forward communication pattern as in the pretraining and
 786 training phases, but no gradients are exchanged.

788 B FEATURE-SIDE CONTRIBUTIONS TO POSTERIOR APPROXIMATION

790 As defined in Section 3.3, the variational posterior $q_{\gamma_c}(\mathbf{h}|\mathbf{x}^{obs})$ in (1) is modeled as a Gaussian
 791 distribution where both mean and variance are derived from feature-side encoder outputs. This
 792 section explains the rationale behind this formulation.
 793

795 B.1 PARTY MEAN AGGREGATION

797 The latent variable \mathbf{h} is inferred by aggregating contributions from multiple parties, each providing
 798 a mean $\mu_{\gamma_c^k}(\mathbf{x}^k)$ based on its local observation \mathbf{x}^k . The overall posterior mean is computed as the
 799 average of these feature-side means, forming a global latent representation. By averaging only the
 800 contributions from observed parties, the scale remains consistent regardless of the number of missing
 801 parties. Consequently, only the participating parties influence the latent variable.

803 B.2 PRECISION-BASED VARIANCE AGGREGATION

805 The posterior variance is determined by the inverse of the sum of precision matrices $\Sigma_{\gamma_c^k}^{-1}(\mathbf{x}^k)$ from
 806 each party. As more parties contribute data, the total precision increases, reducing the uncertainty
 807 about the latent variable. Parties that do not provide data are implicitly treated as having infinite
 808 variance, meaning their absence does not affect the overall precision. This aggregation ensures that
 809 as more parties participate, the model becomes more confident (i.e., the variance decreases), leading
 to a more precise estimate of \mathbf{h} .

810 **C THEORETICAL PROPERTIES**
 811

812 **Theorem C.1.** *Let*

$$813 \quad \mathcal{L}_\kappa = \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa \sim q(\mathbf{h}|\mathbf{x}^{obs})q(\mathbf{z}|\mathbf{h})} [\log R_\kappa(\mathbf{x}^{obs})],$$

$$814 \quad \mathcal{L}'_\kappa = \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa \sim q(\mathbf{h}|\mathbf{x}^{obs})q(\mathbf{z}|\mathbf{h})} [\log R'_\kappa(y, \mathbf{x}^{obs})]$$

815 where

$$816 \quad R_\kappa(\mathbf{x}^{obs}) = \frac{1}{\kappa} \sum_{j=1}^\kappa \frac{p(\mathbf{x}^{obs}|\mathbf{h}_j)p(\mathbf{h}_j|\mathbf{z}_j)p(\mathbf{z}_j)}{q(\mathbf{h}_j|\mathbf{x}^{obs})q(\mathbf{z}_j|\mathbf{h}_j)},$$

$$817 \quad R'_\kappa(y, \mathbf{x}^{obs}) = \frac{1}{\kappa} \sum_{j=1}^\kappa \frac{p(y|\mathbf{h}_j)p(\mathbf{x}^{obs}|\mathbf{h}_j)p(\mathbf{h}_j|\mathbf{z}_j)p(\mathbf{z}_j)}{q(\mathbf{h}_j|\mathbf{x}^{obs})q(\mathbf{z}_j|\mathbf{h}_j)}.$$

818 Then, \mathcal{L}_κ (\mathcal{L}'_κ , resp.) increases as κ increases, and bounded above by $\log p(\mathbf{x}^{obs})$
 819 ($\log p(y, \mathbf{x}^{obs})$, resp.). In addition, if $\log \frac{p(\mathbf{x}^{obs}, \mathbf{h}, \mathbf{z})}{q(\mathbf{h}, \mathbf{z}|\mathbf{x}^{obs})}$ ($\log \frac{p(y, \mathbf{x}^{obs}, \mathbf{h}, \mathbf{z})}{q(\mathbf{h}, \mathbf{z}|\mathbf{x}^{obs})}$, resp.) is bounded, then
 820 \mathcal{L}_κ (\mathcal{L}'_κ , resp.) converges to $\log p(\mathbf{x}^{obs})$ ($\log p(y, \mathbf{x}^{obs})$, resp.) as $k \rightarrow \infty$.

821 *Proof.* We apply Theorem 1 in Burda et al. (2016). Here, we give the proof for \mathcal{L}'_κ . We can prove the
 822 upper bound using Jensen's inequality as

$$823 \quad \mathcal{L}'_\kappa = \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa \sim q(\mathbf{h}|\mathbf{x}^{obs})q(\mathbf{z}|\mathbf{h})} \left[\log \frac{1}{\kappa} \sum_{j=1}^\kappa \frac{p(y|\mathbf{h}_j)p(\mathbf{x}^{obs}|\mathbf{h}_j)p(\mathbf{h}_j|\mathbf{z}_j)p(\mathbf{z}_j)}{q(\mathbf{h}_j|\mathbf{x}^{obs})q(\mathbf{z}_j|\mathbf{h}_j)} \right]$$

$$824 \quad \leq \log \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa \sim q(\mathbf{h}|\mathbf{x}^{obs})q(\mathbf{z}|\mathbf{h})} \left[\frac{1}{\kappa} \sum_{j=1}^\kappa \frac{p(y, \mathbf{x}^{obs}, \mathbf{h}_j, \mathbf{z}_j)}{q(\mathbf{h}_j|\mathbf{x}^{obs})q(\mathbf{z}_j|\mathbf{h}_j)} \right] = \log p(y, \mathbf{x}^{obs}).$$

825 To prove monotonic increase, let I be a uniformly chosen subset of size m from $[\kappa]$. Using Jensen's
 826 inequality again, we get

$$827 \quad \mathcal{L}'_\kappa = \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa} \left[\log \frac{1}{\kappa} \sum_{j=1}^\kappa \frac{p(y, \mathbf{x}^{obs}, \mathbf{h}_j, \mathbf{z}_j)}{q(\mathbf{h}_j, \mathbf{z}_j|\mathbf{x}^{obs})} \right]$$

$$828 \quad = \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa} \left[\log \mathbb{E}_I \left[\frac{1}{m} \sum_{j=1}^m \frac{p(y, \mathbf{x}^{obs}, \mathbf{h}_j, \mathbf{z}_j)}{q(\mathbf{h}_j, \mathbf{z}_j|\mathbf{x}^{obs})} \right] \right]$$

$$829 \quad \geq \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^\kappa} \left[\mathbb{E}_I \left[\log \frac{1}{m} \sum_{j=1}^m \frac{p(y, \mathbf{x}^{obs}, \mathbf{h}_j, \mathbf{z}_j)}{q(\mathbf{h}_j, \mathbf{z}_j|\mathbf{x}^{obs})} \right] \right]$$

$$830 \quad = \mathbb{E}_{\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^m} \left[\log \frac{1}{m} \sum_{j=1}^m \frac{p(y, \mathbf{x}^{obs}, \mathbf{h}_j, \mathbf{z}_j)}{q(\mathbf{h}_j, \mathbf{z}_j|\mathbf{x}^{obs})} \right] = \mathcal{L}'_m.$$

831 Lastly, assume that $\log \frac{p(y, \mathbf{x}^{obs}, \mathbf{h}, \mathbf{z})}{q(\mathbf{h}, \mathbf{z}|\mathbf{x}^{obs})}$ is bounded. Then, $R'_\kappa(y, \mathbf{x}^{obs})$ converges to $p(y, \mathbf{x}^{obs})$ by the
 832 strong law of large numbers. Take log on both sides and by the dominated convergence theorem, \mathcal{L}'_κ
 833 converges to $\log p(y, \mathbf{x}^{obs})$. \square

834 **D EXPERIMENTAL DETAILS**
 835

836 **D.1 BASELINES**
 837

838 To ensure a fair comparison, we apply a unified two-stage protocol to the baselines that do not
 839 natively exploit unlabeled data: Vanilla VFL, LASER-VFL, and PlugVFL. First, every local model

864 is pretrained with SimSiam (Chen & He, 2021), one of the representative self-supervised learning
 865 methods, which He et al. (2024) report to outperform BYOL and MoCo on VFL benchmarks. The
 866 pretrained networks are then finetuned on the available labeled subset. The baselines considered are
 867 summarized below.

868 **Vanilla VFL:** Since Vanilla VFL requires fully aligned data, we train it only on aligned data. For
 869 prediction, we employ the simple zero-imputation strategy for unaligned data which is more effective
 870 than a random prediction.

872 **LASER-VFL (Valdeira et al., 2024):** In the original LASER-VFL, each party has its own repre-
 873 sentation model and a fusion model. However, the fusion model only works for parties that hold
 874 labels. Since we consider the single active party scenario, which is the most general setting in VFL
 875 framework, we employ a version of LASER-VFL with only one fusion model.

876 **PlugVFL (Sun et al., 2024):** PlugVFL was originally designed for fully aligned data in training, so
 877 we again use zero-imputation for unaligned parties in both training and inference. We set $p = 0.5$
 878 for the probability of dropping each passive party, and disable the label IP protection objective
 879 which enhances label privacy but can reduce performance. Since this version of PlugVFL is well
 880 implemented in the work of LASER-VFL, we adopt it.

881 **FedHSSL (He et al., 2024):** FedHSSL supports three SSL methods: SimSiam, BYOL, and MoCo.
 882 Since SimSiam achieves the best performance in the authors' experiments, we adopt it in all runs.
 883 FedHSSL also need fully aligned data for finetuning, so we apply zero-imputation for inference
 884 similarly.

886 D.2 DATASETS AND MODELS

888 **Datasets.** **Isolet** is a speech recognition dataset containing 7,797 audio recordings of 150 speakers
 889 pronouncing each 26-letter English alphabet twice. Each recording is represented by 617 acoustic
 890 features extracted from the raw audio waveform. We partition these 617 features evenly across eight
 891 parties by assigning each party 77 features (one feature is discarded).

892 **HAPT** (Human Activities and Postural Transitions) dataset comprises smartphone accelerometer and
 893 gyroscope signals collected from 30 volunteers performing 12 daily activities. Each data sample is
 894 represented as a 561-dimensional feature vector. We evenly distribute these features across eight
 895 parties, assigning each party 70 features (one feature is discarded).

896 **FashionMNIST** is a widely-used benchmark consisting of grayscale images of fashion items divided
 897 into 10 classes. For VFL settings, we partition each 28×28 image into eight segments of size 14×7 ,
 898 with each segment assigned to one of the eight parties.

900 **ModelNet10** is a dataset of 3,991 training and 908 test samples of 3D CAD models belonging to
 901 10 classes, commonly used in multi-view shape recognition. In our experiments, each 3D model is
 902 converted into 12 distinct 2D views by rotating the object 360° , capturing one view every 30° . To
 903 create a challenging VFL task, we group adjacent pairs of views, forming six pairs that correspond to
 904 six parties. For each sample, we randomly select one view from each pair, providing each party with
 905 a single 224×224 image per sample. To further increase task difficulty, images are resized to $32 \times$
 906 32 pixels. This random selection process is repeated 6 times for the training set and 2 times for the
 907 test set, resulting in 23,946 training samples and 1,816 test samples.

908 **Models.** Tables 4 to 6 show detailed model architectures for each baseline. Tables 7 to 11 report
 909 hyperparameters used in our experiments.

911 Table 4: Model architecture details for each component of Vanilla VFL, LASER-VFL, and PlugVFL.

913 Component	914 Structure
915 Feature Extractor	916 ResNet-18 or 3-layer MLP
916 Projector	917 3-layer MLP
Predictor	2-layer MLP
Discriminator	2-layer MLP

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 5: Model architecture details for each component of FedHSSL.

Component	Structure
Local Bottom Encoder	Lower layers of ResNet-18 or 1-layer MLP
Local Top Encoder	Upper layers of ResNet-18 or 1-layer MLP
Cross-Party Encoder	ResNet-18 or 2-layer MLP
Projector	3-layer MLP
Predictor	2-layer MLP
Discriminator	2-layer MLP

Table 6: Model architecture details for each component of FALSE-VFL.

Component	Structure
Party Encoder (γ_c^k)	ResNet-18 or 2-layer MLP
Party Decoder (θ_c^k)	Transposed CNN or 2-layer MLP
Party Missing Indicator (ψ^k)	3-layer MLP
Global Encoder (γ_s)	3-layer MLP
Global Decoder (θ_s)	3-layer MLP
Discriminator (ϕ)	2-layer MLP

Table 7: Hyperparameters for Vanilla VFL. Values for pretraining are shown in parentheses.

Hyperparameter	Isolet	HAPT	FashionMNIST	ModelNet10
Optimizer	Adam (SGD)	Adam (SGD)	Adam (SGD)	Adam (SGD)
Learning Rate	5e-4 (0.025)	5e-3 (0.02)	1e-4 (0.02)	1e-4 (0.025)
Batch Size	32 (512)	64 (512)	128 (1024)	128 (1024)
Epochs	500 (100)	100 (150)	150 (100)	100 (50)
Weight Decay	1e-4 (3e-5)	1e-4 (3e-5)	1e-4 (3e-5)	1e-4 (3e-5)
Latent Dimension	128	128	196	256

Table 8: Hyperparameters for LASER-VFL. Values for pretraining are shown in parentheses.

Hyperparameter	Isolet	HAPT	FashionMNIST	ModelNet10
Optimizer	Adam (SGD)	Adam (SGD)	Adam (SGD)	Adam (SGD)
Learning Rate	5e-5 (0.025)	1e-3 (0.02)	1e-4 (0.02)	5e-4 (0.025)
Batch Size	64 (512)	128 (512)	128 (1024)	128 (1024)
Epochs	200 (100)	100 (150)	100 (100)	10 (50)
Weight Decay	1e-4 (3e-5)	1e-4 (3e-5)	1e-4 (3e-5)	1e-4 (3e-5)
Latent Dimension	128	128	196	256

Table 9: Hyperparameters for PlugVFL. Values for pretraining are shown in parentheses.

Hyperparameter	Isolet	HAPT	FashionMNIST	ModelNet10
Optimizer	Adam (SGD)	Adam (SGD)	Adam (SGD)	Adam (SGD)
Learning Rate	5e-5 (0.025)	5e-4 (0.02)	1e-4 (0.02)	1e-4 (0.025)
Batch Size	32 (512)	64 (512)	128 (1024)	128 (1024)
Epochs	100 (100)	100 (150)	150 (100)	50 (50)
Weight Decay	1e-4 (3e-5)	1e-4 (3e-5)	1e-4 (3e-5)	1e-4 (3e-5)
Latent Dimension	128	128	196	256

972
973

Table 10: Hyperparameters for FedHSSL. Values for pretraining are shown in parentheses.

974
975
976
977
978
979
980
981

Hyperparameter	Isolet	HAPT	FashionMNIST	ModelNet10
Optimizer	Adam (SGD)	Adam (Adam)	Adam (SGD)	Adam (SGD)
Learning Rate	2e-3 (0.025)	5e-4 (0.025)	1e-4 (0.02)	5e-4 (0.025)
Batch Size	64 (512)	64 (512)	128 (1024)	128 (1024)
Epochs	300 (150)	500 (100)	100 (150)	100 (150)
Weight Decay	1e-4 (3e-5)	1e-4 (1e-5)	1e-4 (3e-5)	1e-4 (3e-5)
Latent Dimension	128	128	196	256

982
983Table 11: Hyperparameters for FALSE-VFL. Values for pretraining are shown in parentheses. We use $\kappa = 10$ and $L = 50$ for all datasets.984
985
986
987
988
989
990
991
992

Hyperparameter	Isolet	HAPT	FashionMNIST	ModelNet10
Optimizer	Adam (Adam)	Adam (Adam)	Adam (Adam)	Adam (Adam)
Learning Rate	2e-4 (5e-4)	2e-4 (2e-3)	2e-4 (5e-5)	2e-4 (1e-4)
Batch Size	128 (512)	128 (512)	128 (1024)	128 (1024)
Epochs	300 (300)	300 (500)	200 (150)	200 (300)
Weight Decay	1e-4 (1e-4)	1e-4 (1e-4)	1e-4 (1e-4)	1e-4 (1e-4)
h Dimension	128	128	196	256
z Dimension	64	64	32	64

993
994

D.3 ALGORITHM

995

Algorithm 1 FALSE-VFL-I: two-stage training and inference996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1: **Hyperparameters:** K : the number of clients, κ/L : the number of importance samples for training / test, $\eta_{\text{pre}}/\eta_{\text{train}}$: learning rates for pretraining / training, $T_{\text{pre}}/T_{\text{train}}$: epochs for pretraining / training

2: **Parameters:** γ_c^k/θ_c^k : encoder / decoder for client $k \in [K]$, $\gamma_s/\theta_s/\phi$: encoder / decoder / discriminator for active client, $\gamma_c = \{\gamma_c^1, \dots, \gamma_c^K\}$, $\theta_c = \{\theta_c^1, \dots, \theta_c^K\}$, $\Theta_g = \{\gamma_c, \theta_c, \gamma_s, \theta_s\}$, $\Theta = \{\Theta_g, \phi\}$

3:

4: *Stage 1 – Pretraining: maximize marginal likelihood $p_{\Theta_g}(\mathbf{x}^{\text{obs}})$*

5: **for** $t = 1$ **to** T_{pre} **do**

6: **for all** minibatch \mathcal{B} **do**

7: **for all** client $k \in \{\text{obs}\}$ **in parallel do**

8: $(\mu_k, \Sigma_k) \leftarrow \text{ENC}_{\gamma_c^k}(\mathbf{x}_{\mathcal{B}}^k)$

9: Send (μ_k, Σ_k) to active client

10: **end for**

11: Active client forms $q_{\gamma_c}(\mathbf{h}|\mathcal{B})$ via Eq. (1); sample $\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^{\kappa}$ from $q_{\gamma_c}(\mathbf{h}|\mathcal{B})q_{\gamma_s}(\mathbf{z}|\mathbf{h})$

12: Compute $\mathcal{L}_{\kappa}(\Theta_g)$ and ascend $\Theta_g \leftarrow \Theta_g + \eta_{\text{pre}} \nabla_{\Theta_g} \mathcal{L}_{\kappa}$

13: **end for**

14: **end for**

15: Freeze Θ_g

16:

17: *Stage 2 – Training: maximize conditional likelihood $p_{\Theta}(y|\mathbf{x}^{\text{obs}})$*

18: **for** $t = 1$ **to** T_{train} **do**

19: **for all** labeled minibatch \mathcal{B} **do**

20: **for all** client $k \in \{\text{obs}\}$ **in parallel do**

21: $(\mu_k, \Sigma_k) \leftarrow \text{ENC}_{\gamma_c^k}(\mathbf{x}_{\mathcal{B}}^k)$

22: Send (μ_k, Σ_k) to active client

23: **end for**

24: Active client forms $q_{\gamma_c}(\mathbf{h}|\mathcal{B})$ via Eq. (1); sample $\{(\mathbf{h}_j, \mathbf{z}_j)\}_{j=1}^{\kappa}$ from $q_{\gamma_c}(\mathbf{h}|\mathcal{B})q_{\gamma_s}(\mathbf{z}|\mathbf{h})$

25: Compute $\mathcal{L}'_{\kappa}(\phi)$ and ascend $\phi \leftarrow \phi + \eta_{\text{train}} \nabla_{\phi} \mathcal{L}'_{\kappa}$

26: **end for**

27: **end for**

28:

29: *Inference on a new incomplete sample \mathbf{x}^{obs}*

30: Gather (μ_k, Σ_k) from observed parties; sample $\{(\mathbf{h}_{\ell}, \mathbf{z}_{\ell})\}_{\ell=1}^L$ from q

31: Compute importance weights w_{ℓ} and predict $\hat{y} = \sum_{\ell=1}^L w_{\ell} p_{\phi}(y|\mathbf{h}_{\ell})$

1026 D.4 MAR MECHANISMS
10271028 We introduce two MAR mechanisms inspired by real-world scenarios in which the decision to collect
1029 further observations depend on the information of previously observed data.1030 For instance, a patient may choose whether to visit additional hospitals after reviewing one hospital’s
1031 examination results. Likewise, an individual viewing an image piece by piece might stop as soon as
1032 the observed portion is sufficiently informative. In our simulation, we measure “information” by the
1033 variance of a piece: low variance implies a near-uniform region (hence little information), whereas
1034 high variance implies richer details. All datasets are normalized to ensure scale consistency across
1035 features.1036 **Type 1: Stop at the First Highly Informative Piece.** We begin by randomly selecting one piece.
1037 If its variance exceeds a predefined threshold, we consider it “sufficiently informative” and do not
1038 observe any additional pieces. Otherwise, we slightly lower the threshold and randomly select another
1039 piece. See Algorithm 2 for details.1040 **Type 2: Accumulate Multiple Moderately Informative Pieces.** We start with a variance threshold
1041 T and an “excessive variance” budget B . Whenever the variance v of an observed piece exceeds T ,
1042 we subtract $(v - T)$ from B . If B falls below zero, we stop observing further pieces. Otherwise, we
1043 reduce T slightly and continue. Conceptually, this simulates gathering several moderately informative
1044 pieces until reaching a certain limit. See Algorithm 3 for details.1045 These procedures systematically generate partially aligned data across multiple parties by emulating
1046 natural decision processes. To the best of our knowledge, no prior work has addressed MAR-based
1047 alignment in the VFL setting. Our methods are designed to reflect realistic user behaviors and can be
1048 viewed as a concrete instantiation of the “Threshold method” described in Zhou et al. (2024).1049 1050 **Algorithm 2** MAR Mechanism Type 1: Single High-Informative Piece
10511052 **Require:** A set of parties (pieces) P ; initial variance threshold $T = 1.1$; threshold decrement
1053 $\Delta = 0.15$.
1054 1: Choose an initial piece randomly from P .
1055 2: **while** there are unvisited pieces in P **do**
1056 3: Compute variance v of the chosen piece.
1057 4: **if** $v > T$ **then**
1058 5: **Stop** (no more pieces are observed).
1059 6: **else**
1060 7: $T \leftarrow T - \Delta$ {Lower the threshold}
1061 8: Randomly choose the next unvisited piece from P .
1062 9: **end if**
1063 10: **end while**1064 1065 **Algorithm 3** MAR Mechanism Type 2: Multiple Moderate-Informative Pieces
10661067 **Require:** A set of parties (pieces) P ; initial variance threshold $T = 0.5$; total “excessive variance”
1068 budget $B = 0.7$ (0.5 for ModelNet10); threshold decrement $\Delta = 0.15$.
1069 1: Choose an initial piece randomly from P .
1070 2: **while** there are unvisited pieces in P **do**
1071 3: Compute variance v of the chosen piece.
1072 4: **if** $v > T$ **then**
1073 5: $B \leftarrow B - (v - T)$ {Consume part of the budget}
1074 6: **end if**
1075 7: **if** $B \leq 0$ **then**
1076 8: **Stop** (no more pieces are observed).
1077 9: **else**
1078 10: $T \leftarrow T - \Delta$ {Lower the threshold}
1079 11: Randomly choose the next unvisited piece from P .
12: **end if**
13: **end while**

1080 D.5 IMPLEMENTATION
1081

1082 The experiments are implemented in PyTorch. We simulate a decentralized environment using a
1083 single deep learning workstation equipped with an Intel(R) Xeon(R) Gold 6348 CPU, one NVIDIA
1084 GeForce RTX 3090 GPU, and 263 GB of RAM. The runtime of FALSE-VFL for each dataset is
1085 reported in Table 12.

1086
1087
1088
1089 Table 12: Execution time (in minutes) of FALSE-VFL on each dataset. Times are separated into
1090 pretraining and main training phases.

1092 Dataset	1093 Pretraining Time (min)	1094 Training Time (min)
Isolet	3	2
HAPT	6	2
FashionMNIST	60	30
ModelNet10	860	90

1100 E ADDITIONAL EXPERIMENTAL RESULTS
1101

1102
1103
1104
1105
1106
1107 Table 13: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
1108 six VFL methods trained under MCAR 2 conditions and evaluated on seven test patterns. Boldface
1109 highlights the best result in each column. An asterisk (*) marks accuracy computed with labeled data
1110 only, as including unlabeled data led to lower accuracy.

1111 Test Data	1112 MCAR 0	1113 MCAR 2	1114 MCAR 5	1115 MAR 1	1116 MAR 2	1117 MNAR 7	1118 MNAR 9
Isolet							
Vanilla VFL	76.6 (0.3)	64.5 (0.9)	40.1 (1.6)*	28.3 (1.0)*	28.5 (1.9)*	41.3 (1.4)*	41.4 (0.8)*
LASER-VFL	69.3 (4.0)	63.1 (3.5)	51.0 (3.8)	44.0 (3.0)	45.1 (2.2)	52.5 (2.9)	51.7 (2.9)
PlugVFL	84.5 (0.7)	75.8 (0.7)	52.8 (1.4)	40.4 (1.4)	39.4 (1.5)	53.9 (1.2)	53.5 (1.3)
FedHSSL	75.1 (0.3)	68.2 (0.3)	46.5 (0.6)	34.4 (2.5)*	35.3 (2.1)*	48.2 (0.8)	48.3 (1.2)
FALSE-VFL-I	86.3 (0.1)	82.6 (0.4)	65.2 (0.9)	52.0 (0.5)	55.4 (0.5)	65.5 (0.5)	64.7 (0.7)
FALSE-VFL-II	86.2 (0.2)	82.6 (0.3)	65.4 (0.8)	52.2 (0.6)	55.2 (0.7)	66.0 (0.7)	64.0 (0.8)
HAPT							
Vanilla VFL	85.4 (0.3)	76.3 (0.8)*	59.7 (2.4)*	62.2 (1.7)*	60.4 (1.8)*	51.5 (3.3)*	43.9 (2.9)*
LASER-VFL	47.3 (9.9)	49.9 (8.6)	47.6 (3.6)	51.7 (4.3)	50.0 (3.5)	43.9 (4.9)*	42.2 (5.1)*
PlugVFL	87.0 (0.4)	74.0 (1.0)*	52.6 (2.1)	60.1 (1.5)	55.2 (1.9)	51.4 (2.2)*	51.8 (5.1)*
FedHSSL	85.3 (0.2)	80.8 (0.2)	69.8 (0.3)	71.4 (0.4)	69.3 (0.6)	65.7 (0.5)	59.0 (3.1)
FALSE-VFL-I	89.0 (0.2)	85.4 (0.2)	73.3 (0.4)	73.8 (0.4)	73.7 (0.3)	69.8 (0.6)	68.5 (0.3)
FALSE-VFL-II	88.6 (0.1)	83.7 (0.4)	70.3 (0.4)	71.8 (0.7)	71.0 (0.3)	69.3 (0.4)	70.4 (0.4)
FashionMNIST							
Vanilla VFL	76.7 (0.2)	71.0 (0.3)	55.9 (1.2)	53.2 (1.3)	54.2 (1.5)	53.4 (1.0)	49.2 (3.2)*
LASER-VFL	75.6 (2.3)	72.5 (2.1)	65.2 (2.4)	65.1 (2.5)	66.0 (2.4)	64.7 (2.6)	63.7 (3.0)
PlugVFL	78.3 (1.0)	74.3 (1.1)	65.5 (1.0)	65.2 (1.3)	65.8 (1.1)	63.8 (1.4)	58.2 (2.1)
FedHSSL	78.5 (0.2)	76.1 (0.3)	66.7 (1.8)	64.5 (2.6)	67.0 (2.1)	65.2 (1.9)	61.0 (2.9)
FALSE-VFL-I	82.9 (0.1)	79.9 (0.1)	68.4 (0.3)	65.2 (0.3)	67.8 (0.4)	66.8 (0.3)	65.6 (0.4)
FALSE-VFL-II	82.5 (0.3)	79.1 (0.2)	67.5 (0.3)	64.7 (0.3)	67.2 (0.3)	66.3 (0.3)	64.9 (0.3)
ModelNet10							
Vanilla VFL	86.1 (0.6)	78.7 (1.0)	57.3 (2.0)	50.8 (2.1)	46.6 (2.1)	59.5 (2.3)	60.1 (1.9)
LASER-VFL	80.4 (4.7)	77.3 (4.9)	68.6 (5.2)	61.4 (3.9)	59.0 (4.2)	67.7 (4.2)	70.5 (4.4)
PlugVFL	85.7 (0.5)	73.2 (1.4)	54.6 (2.2)	51.0 (2.9)	45.1 (3.3)	50.9 (2.9)	51.1 (2.9)
FedHSSL	86.9 (0.4)	85.2 (0.5)	72.8 (3.5)	61.6 (5.3)	59.3 (5.4)	71.6 (3.9)	67.1 (4.0)
FALSE-VFL-I	86.6 (0.2)	84.6 (0.2)	78.5 (1.2)	70.1 (0.9)	67.8 (0.4)	76.7 (0.7)	78.3 (0.6)
FALSE-VFL-II	86.3 (0.3)	84.8 (0.2)	79.1 (0.4)	70.8 (0.6)	69.3 (0.4)	77.4 (0.5)	78.9 (0.6)

1134 Table 14: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
 1135 six VFL methods trained under MCAR 5 conditions and evaluated on seven test patterns. Boldface
 1136 highlights the best result in each column. An asterisk (*) marks accuracy computed with labeled data
 1137 only, as including unlabeled data led to lower accuracy.

Test Data	MCAR 0	MCAR 2	MCAR 5	MAR 1	MAR 2	MNAR 7	MNAR 9
Isolet							
Vanilla VFL	62.5 (1.1)	53.1 (1.1)*	33.9 (0.7)*	23.2 (0.6)*	23.9 (0.4)*	35.1 (1.0)*	35.0 (1.0)*
LASER-VFL	61.0 (5.2)	55.6 (4.0)	45.1 (2.4)	38.9 (2.1)	39.9 (2.4)	45.4 (2.7)	46.2 (3.1)
PlugVFL	81.7 (0.5)	71.3 (0.6)	50.5 (1.0)	40.1 (1.3)	39.6 (1.2)	52.1 (1.5)	53.1 (1.2)
FedHSSL	65.2 (0.5)	58.5 (0.5)	40.1 (0.9)	30.5 (0.9)	31.2 (0.7)	42.6 (0.7)	41.3 (0.7)
FALSE-VFL-I	83.4 (0.2)	80.2 (0.5)	69.3 (0.5)	60.4 (0.9)	62.5 (0.9)	69.5 (0.8)	70.0 (0.4)
FALSE-VFL-II	82.2 (0.2)	79.2 (0.5)	67.7 (0.2)	59.9 (0.4)	61.4 (0.6)	68.0 (0.8)	68.9 (0.6)
HAPT							
Vanilla VFL	79.4 (0.5)*	70.2 (0.6)*	54.4 (1.5)*	58.0 (0.8)*	55.4 (0.7)*	49.2 (2.9)*	43.5 (5.0)*
LASER-VFL	60.2 (10.9)	57.6 (7.5)	50.5 (3.6)	53.7 (4.3)	50.9 (3.4)	49.8 (3.7)	52.1 (4.9)
PlugVFL	85.0 (0.5)	71.5 (0.7)*	50.3 (0.9)*	57.5 (0.6)	51.8 (0.8)	49.2 (2.9)*	49.4 (5.8)*
FedHSSL	78.9 (0.2)	73.5 (0.4)	63.8 (0.4)	64.2 (0.4)	62.4 (0.5)	59.3 (1.0)*	56.0 (0.6)*
FALSE-VFL-I	86.5 (0.3)	83.0 (0.2)	74.3 (0.7)	76.1 (0.4)	74.9 (0.6)	71.1 (0.3)	71.2 (0.2)
FALSE-VFL-II	86.8 (0.5)	84.0 (0.3)	75.5 (0.5)	76.4 (0.3)	75.5 (0.3)	72.2 (0.4)	72.3 (0.3)
FashionMNIST							
Vanilla VFL	73.5 (0.2)	68.0 (0.3)	53.2 (1.2)	50.7 (1.5)	52.1 (1.6)	50.7 (1.3)	47.2 (1.2)
LASER-VFL	72.3 (1.4)*	69.2 (1.9)	62.6 (1.6)	62.6 (1.6)	63.1 (1.7)	61.7 (1.9)	60.0 (2.0)
PlugVFL	76.9 (0.6)	72.7 (0.4)	64.0 (0.5)	64.8 (0.5)	65.0 (0.5)	60.8 (0.5)	54.7 (0.7)
FedHSSL	72.3 (0.5)	69.3 (0.7)	59.4 (1.7)	58.1 (2.3)	60.3 (1.7)	57.0 (2.1)	52.6 (2.8)
FALSE-VFL-I	80.9 (0.1)	78.8 (0.2)	70.9 (0.2)	67.8 (0.3)	70.0 (0.2)	69.0 (0.2)	66.5 (0.2)
FALSE-VFL-II	81.2 (0.2)	78.6 (0.2)	70.4 (0.2)	68.0 (0.3)	69.9 (0.2)	68.6 (0.0)	66.0 (0.1)
ModelNet10							
Vanilla VFL	85.2 (0.3)	76.0 (0.8)	55.5 (0.9)	47.7 (2.2)	43.8 (2.0)	56.8 (1.6)	56.5 (1.1)
LASER-VFL	80.7 (2.0)	75.3 (2.7)	65.4 (4.5)	61.9 (4.5)	59.5 (4.9)	65.6 (5.0)	69.2 (5.1)
PlugVFL	84.3 (0.4)	71.6 (1.9)	52.3 (3.7)	48.6 (3.2)	42.7 (3.8)	48.3 (3.6)	47.1 (4.7)
FedHSSL	84.9 (0.5)	82.6 (1.2)	68.8 (2.5)	55.7 (4.3)	52.5 (5.3)	68.7 (2.9)	67.2 (2.5)
FALSE-VFL-I	86.3 (0.3)	84.7 (0.2)	80.9 (0.3)	73.7 (0.5)	73.4 (0.6)	79.4 (0.5)	80.5 (0.6)
FALSE-VFL-II	86.7 (0.2)	85.8 (0.2)	80.9 (0.6)	75.4 (0.9)	74.1 (0.4)	79.8 (0.6)	79.9 (0.4)

1161
 1162
 1163 Table 15: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
 1164 six VFL methods trained under MAR 1 conditions and evaluated on seven test patterns.

Test Data	MCAR 0	MCAR 2	MCAR 5	MAR 1	MAR 2	MNAR 7	MNAR 9
Isolet							
Vanilla VFL	62.1 (2.2)	53.8 (0.5)*	35.7 (0.8)*	26.1 (1.0)*	26.9 (1.8)*	37.7 (1.2)*	38.1 (0.7)*
LASER-VFL	40.8 (11.3)	38.6 (8.3)	33.3 (4.5)	28.0 (2.3)	29.9 (2.3)	34.3 (4.3)	34.5 (3.9)
PlugVFL	79.3 (1.0)	69.2 (0.6)	47.2 (1.1)	35.3 (1.0)	35.7 (1.3)	47.3 (0.9)	46.8 (1.6)
FedHSSL	65.8 (0.6)	58.6 (0.9)	40.2 (0.3)	30.9 (0.5)	30.8 (0.8)	43.5 (0.6)	42.4 (0.4)
FALSE-VFL-I	75.7 (0.3)	73.8 (0.3)	64.3 (0.7)	61.4 (0.6)	61.6 (0.3)	65.4 (0.9)	65.5 (0.8)
FALSE-VFL-II	76.3 (0.3)	73.6 (0.7)	64.6 (0.5)	61.3 (0.4)	61.8 (0.4)	65.3 (0.7)	66.5 (0.9)
HAPT							
Vanilla VFL	79.7 (0.8)*	70.4 (1.1)*	53.6 (1.7)*	57.8 (1.2)*	54.7 (1.4)*	47.9 (1.8)	42.7 (4.1)
LASER-VFL	53.1 (11.2)	54.0 (8.9)	48.9 (5.8)	51.0 (5.9)	49.8 (5.9)	48.3 (4.9)	48.1 (6.0)
PlugVFL	84.3 (0.2)	72.0 (1.3)	51.4 (1.8)	58.0 (1.4)	53.2 (1.5)	48.1 (2.6)*	48.3 (5.4)*
FedHSSL	78.9 (0.4)	72.9 (0.5)	63.1 (0.5)	63.7 (0.4)	60.8 (0.6)	58.6 (0.5)	54.9 (0.5)
FALSE-VFL-I	84.7 (0.1)	81.2 (0.7)	71.3 (0.4)	76.0 (0.1)	74.1 (0.5)	67.1 (0.7)	67.5 (0.6)
FALSE-VFL-II	85.1 (0.1)	81.7 (0.4)	71.3 (0.1)	75.3 (0.3)	73.3 (0.3)	68.0 (0.6)	68.1 (0.1)
FashionMNIST							
Vanilla VFL	66.6 (2.3)	58.5 (0.9)	42.8 (1.9)	41.5 (1.4)	41.9 (1.4)	42.0 (4.0)*	41.7 (3.0)*
LASER-VFL	73.5 (1.2)	70.8 (0.9)	64.1 (0.6)	63.7 (0.7)	64.8 (1.0)	63.3 (0.6)	61.8 (1.5)
PlugVFL	76.0 (0.4)	72.5 (0.6)	64.6 (0.8)	65.0 (0.8)	65.4 (0.8)	62.1 (1.4)	55.8 (2.1)
FedHSSL	71.8 (1.6)	67.1 (1.6)	55.5 (1.7)	54.4 (2.1)	56.3 (1.8)	53.6 (2.0)	50.7 (2.5)
FALSE-VFL-I	80.6 (0.1)	78.1 (0.3)	67.9 (0.2)	65.4 (0.3)	67.5 (0.3)	66.3 (0.2)	63.3 (0.3)
FALSE-VFL-II	80.5 (0.2)	77.7 (0.2)	67.6 (0.4)	64.7 (0.3)	67.2 (0.1)	65.9 (0.3)	63.4 (0.2)
ModelNet10							
Vanilla VFL	83.9 (0.8)	76.4 (1.3)	56.4 (1.7)	42.2 (2.1)	39.5 (2.0)	58.6 (1.4)	60.5 (1.3)
LASER-VFL	76.3 (2.8)	73.2 (3.3)	65.2 (4.9)	55.5 (4.2)	54.6 (4.4)	62.9 (4.7)	64.6 (5.1)
PlugVFL	84.6 (0.5)	71.8 (2.1)	51.2 (3.1)	45.5 (3.2)	40.5 (3.6)	47.8 (3.4)	45.8 (3.3)
FedHSSL	84.1 (0.8)	81.9 (0.9)	70.9 (2.7)	56.3 (5.4)	53.8 (6.6)	71.5 (2.2)	70.6 (2.4)
FALSE-VFL-I	86.8 (0.3)	85.2 (0.4)	79.3 (0.4)	72.1 (0.9)	70.1 (0.8)	77.5 (0.7)	78.3 (0.5)
FALSE-VFL-II	86.9 (0.5)	85.7 (0.1)	78.9 (0.5)	71.9 (0.6)	70.6 (1.0)	78.7 (0.7)	79.2 (0.4)

1188 Table 16: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
 1189 six VFL methods trained under MAR 2 conditions and evaluated on seven test patterns. Boldface
 1190 highlights the best result in each column. An asterisk (*) marks accuracy computed with labeled data
 1191 only, as including unlabeled data led to lower accuracy.

Test Data	MCAR 0	MCAR 2	MCAR 5	MAR 1	MAR 2	MNAR 7	MNAR 9
Isolet							
Vanilla VFL	63.8 (1.1)	54.9 (0.6)	35.7 (0.8)*	26.1 (1.0)*	26.9 (1.8)*	37.7 (1.2)*	38.1 (0.7)*
LASER-VFL	55.3 (6.3)	50.1 (4.9)	39.6 (2.6)	31.6 (2.3)	32.7 (2.1)	39.5 (3.3)	39.7 (2.7)
PlugVFL	78.4 (1.0)	68.5 (1.0)	46.7 (0.9)	35.4 (1.5)	35.7 (1.0)	46.4 (1.2)	46.6 (1.3)
FedHSSL	65.2 (0.6)	58.3 (0.6)	40.3 (0.3)	30.4 (0.4)	30.4 (0.5)	43.2 (0.3)	41.7 (0.7)
FALSE-VFL-I	76.7 (0.3)	74.1 (0.3)	65.1 (0.7)	62.1 (0.8)	62.1 (0.7)	65.5 (0.8)	64.8 (0.8)
FALSE-VFL-II	78.0 (0.2)	75.4 (0.2)	65.4 (0.2)	60.8 (0.4)	61.6 (0.6)	66.0 (1.0)	66.3 (0.5)
HAPT							
Vanilla VFL	81.2 (0.8)*	72.1 (0.9)*	55.7 (2.1)*	59.4 (1.8)*	56.9 (1.5)*	51.2 (1.4)*	46.6 (4.5)*
LASER-VFL	46.9 (12.9)	49.0 (10.6)	46.2 (5.1)	47.9 (6.7)	46.2 (5.8)	45.1 (7.2)	43.6 (11.2)
PlugVFL	84.6 (0.5)	72.1 (0.6)	51.1 (0.9)	57.5 (1.4)	52.7 (1.2)	48.5 (3.0)	48.1 (5.8)*
FedHSSL	79.2 (0.3)	74.3 (0.3)	64.6 (0.2)	65.5 (0.4)	62.7 (0.6)	59.4 (0.6)	55.9 (0.3)*
FALSE-VFL-I	86.2 (0.2)	81.8 (0.2)	69.6 (0.3)	74.0 (0.3)	73.4 (0.6)	68.0 (0.4)	68.7 (0.4)
FALSE-VFL-II	85.1 (0.3)	80.5 (0.2)	69.1 (0.3)	73.7 (0.6)	72.1 (0.3)	66.7 (0.3)	67.6 (0.4)
FashionMNIST							
Vanilla VFL	72.9 (0.4)	67.6 (0.7)	53.4 (2.0)	51.0 (2.5)	52.2 (2.2)	49.8 (2.0)	45.2 (1.4)
LASER-VFL	73.4 (2.5)	70.9 (2.3)	64.2 (1.9)	63.5 (1.6)	64.4 (1.7)	63.3 (2.7)	61.3 (3.6)
PlugVFL	76.8 (0.8)	73.3 (0.9)	64.8 (0.7)	65.0 (0.8)	65.4 (0.8)	62.5 (0.9)	56.8 (0.8)
FedHSSL	71.8 (0.5)	68.5 (0.8)	58.6 (2.1)	56.2 (2.8)	58.5 (2.6)	56.1 (2.4)	51.6 (3.1)
FALSE-VFL-I	80.7 (0.2)	77.9 (0.1)	67.5 (0.1)	65.2 (0.4)	67.6 (0.4)	66.7 (0.2)	63.2 (0.3)
FALSE-VFL-II	80.4 (0.1)	77.2 (0.2)	67.3 (0.4)	65.3 (0.3)	67.1 (0.4)	65.6 (0.4)	62.4 (0.3)
ModelNet10							
Vanilla VFL	85.3 (0.2)	76.5 (0.6)	55.2 (1.2)	42.3 (0.9)	39.1 (1.1)	55.7 (1.3)	57.4 (1.7)
LASER-VFL	56.6 (9.4)*	54.3 (7.6)*	48.2 (6.9)	42.2 (6.2)	40.2 (6.0)	45.2 (7.1)	42.2 (7.8)*
PlugVFL	84.2 (0.4)	71.3 (1.7)	51.0 (2.9)	42.4 (1.9)	37.2 (1.8)	45.8 (2.8)	44.2 (1.8)*
FedHSSL	85.3 (0.4)	81.8 (0.9)	67.8 (3.3)	53.7 (4.9)	51.0 (5.4)	66.1 (4.2)	64.5 (4.9)
FALSE-VFL-I	86.3 (0.5)	84.6 (0.6)	78.6 (0.4)	71.3 (0.5)	69.7 (0.3)	77.8 (0.6)	79.1 (0.7)
FALSE-VFL-II	86.6 (0.2)	85.2 (0.2)	78.2 (0.5)	70.9 (0.6)	69.7 (0.5)	77.7 (0.6)	79.1 (0.4)

1217 Table 17: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
 1218 six VFL methods trained under MNAR 7 conditions and evaluated on seven test patterns.

Test Data	MCAR 0	MCAR 2	MCAR 5	MAR 1	MAR 2	MNAR 7	MNAR 9
Isolet							
Vanilla VFL	61.8 (1.7)	52.0 (1.2)	31.2 (1.9)	20.2 (3.0)*	20.6 (1.6)	31.7 (2.1)*	32.1 (1.7)*
LASER-VFL	61.7 (5.7)	56.3 (4.1)	44.6 (2.3)	38.7 (2.6)	39.5 (2.7)	46.3 (3.0)	45.6 (3.1)
PlugVFL	81.1 (0.4)	70.5 (1.3)	47.7 (2.5)*	35.5 (2.6)*	36.9 (3.1)*	49.4 (1.4)*	49.4 (1.0)
FedHSSL	65.6 (0.7)	58.8 (0.7)	40.9 (1.1)	30.9 (0.7)	31.3 (1.0)	43.5 (0.7)	42.3 (0.7)
FALSE-VFL-I	83.6 (0.5)	81.2 (0.5)	69.7 (0.6)	62.3 (1.0)	64.4 (1.2)	70.6 (0.5)	72.1 (0.5)
FALSE-VFL-II	83.3 (0.4)	80.9 (0.5)	69.7 (0.4)	62.1 (0.7)	63.6 (1.3)	71.0 (0.5)	71.9 (0.6)
HAPT							
Vanilla VFL	81.7 (0.6)	72.5 (1.5)*	55.9 (1.3)*	59.3 (1.1)*	56.6 (1.3)*	50.8 (2.6)*	44.1 (1.3)
LASER-VFL	61.9 (13.8)	58.1 (9.3)	48.9 (3.5)	54.2 (5.9)	50.8 (4.8)	46.5 (3.4)	49.8 (3.3)
PlugVFL	85.6 (0.3)	71.6 (0.8)	50.6 (1.7)*	58.1 (1.1)	52.9 (1.4)*	46.7 (0.9)	43.9 (0.7)
FedHSSL	80.9 (0.1)	76.3 (0.4)	65.8 (0.4)	66.4 (0.6)	63.8 (0.5)	61.6 (0.3)	58.0 (0.3)
FALSE-VFL-I	85.2 (0.3)	81.7 (0.3)	72.8 (0.4)	73.8 (0.6)	72.4 (0.5)	71.3 (0.3)	72.7 (0.4)
FALSE-VFL-II	84.9 (0.2)	81.9 (0.6)	73.6 (0.4)	73.6 (0.3)	73.0 (0.5)	71.4 (0.6)	72.7 (0.6)
FashionMNIST							
Vanilla VFL	74.1 (0.1)	68.8 (0.8)	55.8 (1.8)	53.2 (2.3)	54.8 (2.5)	53.3 (1.8)	48.6 (1.3)
LASER-VFL	71.0 (4.9)	67.6 (4.8)	59.8 (4.5)	60.9 (4.8)	60.6 (4.6)	58.2 (4.8)	56.5 (5.5)
PlugVFL	76.0 (0.6)	72.1 (0.7)	62.9 (1.1)	63.6 (1.1)	63.6 (1.0)	60.9 (0.9)	56.5 (1.7)
FedHSSL	72.9 (0.4)	69.5 (0.6)	59.1 (2.5)	57.0 (3.5)	59.6 (2.9)	56.5 (2.4)	51.9 (2.3)
FALSE-VFL-I	81.1 (0.2)	78.9 (0.3)	70.3 (0.3)	68.1 (0.4)	70.1 (0.2)	70.6 (0.3)	69.7 (0.2)
FALSE-VFL-II	81.1 (0.2)	78.9 (0.1)	70.4 (0.3)	67.5 (0.2)	69.9 (0.3)	70.6 (0.2)	69.7 (0.3)
ModelNet10							
Vanilla VFL	84.5 (0.5)	77.3 (1.0)	55.8 (1.4)	50.5 (1.7)	44.9 (1.9)	54.4 (2.1)	53.1 (3.3)
LASER-VFL	79.4 (1.3)*	73.6 (2.1)*	63.8 (3.4)	59.9 (4.6)	57.1 (4.6)	63.8 (4.2)	67.1 (2.5)*
PlugVFL	84.5 (0.5)	75.0 (1.6)	56.0 (3.7)	51.2 (3.7)	45.5 (4.2)	53.9 (4.3)	53.9 (4.9)
FedHSSL	86.6 (0.7)	83.3 (0.7)	68.2 (2.8)	58.7 (2.1)	55.3 (3.1)	64.5 (3.1)	61.0 (3.1)
FALSE-VFL-I	87.2 (0.2)	85.1 (0.4)	80.9 (0.4)	74.6 (0.7)	73.5 (0.3)	80.5 (0.3)	82.0 (0.4)
FALSE-VFL-II	87.9 (0.4)	86.0 (0.4)	81.9 (0.4)	75.4 (1.0)	74.4 (0.6)	81.3 (0.3)	82.8 (0.4)

Table 18: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for six VFL methods trained under MNAR 9 conditions and evaluated on seven test patterns. Boldface highlights the best result in each column. An asterisk (*) marks accuracy computed with labeled data only, as including unlabeled data led to lower accuracy.

Test Data	MCAR 0	MCAR 2	MCAR 5	MAR 1	MAR 2	MNAR 7	MNAR 9
Isolet							
Vanilla VFL	63.2 (0.9)	53.4 (1.0)*	34.5 (1.4)*	24.2 (1.8)*	24.0 (2.1)*	36.3 (1.5)*	36.2 (1.2)*
LASER-VFL	51.8 (6.9)	48.4 (4.8)	40.3 (3.1)	35.0 (1.5)	36.2 (2.0)	42.6 (2.7)	43.5 (3.3)
PlugVFL	82.9 (0.2)	72.3 (0.8)	48.1 (1.2)	35.4 (1.1)	35.1 (1.4)	49.7 (1.3)	51.4 (1.0)
FedHSSL	65.5 (0.2)	58.5 (0.7)	40.0 (0.5)	29.8 (0.7)	29.2 (1.0)	43.2 (0.3)	41.6 (0.4)
FALSE-VFL-I	85.6 (0.2)	81.9 (0.2)	69.3 (0.4)	61.0 (0.4)	63.7 (0.1)	72.7 (0.5)	74.9 (0.3)
FALSE-VFL-II	85.2 (0.2)	82.0 (0.3)	69.6 (0.5)	61.0 (0.5)	63.6 (0.6)	72.5 (0.4)	75.1 (0.6)
HAPT							
Vanilla VFL	85.4 (0.6)*	75.4 (1.1)*	56.0 (1.0)*	60.8 (1.3)*	58.1 (0.9)*	49.7 (2.2)*	44.2 (1.9)*
LASER-VFL	59.4 (6.0)*	56.8 (6.0)*	53.0 (4.9)*	57.7 (4.7)*	55.8 (4.4)*	52.3 (4.8)*	55.9 (5.9)*
PlugVFL	86.5 (0.7)*	73.9 (1.1)*	53.1 (1.2)	59.9 (0.7)	54.7 (0.7)	49.3 (1.1)	46.6 (0.8)
FedHSSL	86.4 (0.3)	81.4 (0.6)	68.6 (0.7)	70.6 (0.6)	68.1 (0.8)	62.5 (0.6)	52.9 (0.8)
FALSE-VFL-I	83.0 (0.3)	78.6 (0.7)	66.9 (0.4)	67.4 (0.6)	65.6 (0.2)	68.1 (0.6)	72.3 (0.6)
FALSE-VFL-II	84.5 (0.5)	80.2 (0.3)	69.2 (0.4)	69.1 (0.3)	68.3 (0.5)	69.5 (0.3)	73.2 (0.5)
FashionMNIST							
Vanilla VFL	74.4 (0.4)	68.7 (0.6)	52.3 (2.1)	48.7 (2.2)	50.5 (2.4)	50.0 (2.1)	47.4 (1.7)
LASER-VFL	62.8 (2.9)*	59.3 (2.4)*	51.1 (1.9)*	51.5 (2.5)	51.9 (2.6)	50.4 (2.2)	49.5 (2.5)
PlugVFL	74.9 (0.4)	70.4 (0.7)	60.1 (1.9)	60.4 (1.3)	60.6 (1.6)	58.8 (1.3)	54.8 (1.1)
FedHSSL	74.2 (0.5)	71.1 (1.0)	60.3 (3.0)	57.6 (4.2)	60.1 (3.7)	57.8 (2.9)	53.6 (2.7)
FALSE-VFL-I	79.2 (0.2)	76.3 (0.1)	65.2 (0.1)	60.8 (0.4)	63.9 (0.4)	68.1 (0.3)	70.2 (0.2)
FALSE-VFL-II	79.6 (0.2)	76.6 (0.4)	65.3 (0.4)	60.2 (0.5)	63.2 (0.5)	68.0 (0.2)	70.1 (0.2)
ModelNet10							
Vanilla VFL	84.5 (0.7)	76.7 (0.5)	54.3 (1.8)	48.6 (1.4)	41.2 (1.0)	50.0 (1.3)	45.1 (3.0)*
LASER-VFL	78.6 (4.9)	74.1 (6.0)	63.8 (6.6)	60.1 (4.9)	55.5 (4.6)	62.9 (7.0)	65.8 (8.8)
PlugVFL	85.8 (0.6)	74.0 (0.9)	54.4 (2.9)	49.6 (4.8)*	44.1 (5.1)*	52.7 (3.6)	53.4 (3.6)
FedHSSL	85.9 (0.4)	83.7 (0.7)	73.6 (1.3)	63.8 (2.5)	60.8 (3.2)	70.1 (2.0)	64.9 (2.4)
FALSE-VFL-I	87.1 (0.4)	85.0 (0.3)	77.4 (0.4)	72.1 (0.8)	70.5 (0.4)	78.2 (0.4)	81.3 (0.6)
FALSE-VFL-II	86.9 (0.2)	84.9 (0.2)	77.6 (0.4)	71.5 (0.7)	71.3 (0.9)	79.7 (0.3)	81.5 (0.2)

1296 Table 19: Relative robustness of each method to severe missingness. Each entry is the ratio (in %) of
 1297 the mean accuracy obtained when training under MCAR 5 to that obtained under MCAR 2, evaluated
 1298 on seven test patterns. A ratio above 100% means that training with the harsher MCAR 5 mechanism
 1299 yields higher accuracy than with MCAR 2. Boldface highlights the best ratio in each column.

1301 Test Data	1302 MCAR 0	1303 MCAR 2	1304 MCAR 5	1305 MAR 1	1306 MAR 2	1307 MNAR 7	1308 MNAR 9
Isolet							
1309 Vanilla VFL	1310 81.6	1311 81.7	1312 81.7	1313 75.3	1314 77.8	1315 79.4	1316 78.3
1310 LASER-VFL	1311 88.0	1312 88.1	1313 88.4	1314 88.4	1315 88.5	1316 86.5	1317 89.4
1311 PlugVFL	1312 96.7	1313 94.2	1314 95.6	1315 99.2	1316 100.4	1317 96.6	1318 99.2
1312 FedHSSL	1313 86.7	1314 85.9	1315 86.1	1316 89.7	1317 93.0	1318 88.4	1319 85.5
1313 FALSE-VFL-I	1314 96.6	1315 97.1	1316 106.2	1317 116.1	1318 112.8	1319 106.2	1320 108.2
1314 FALSE-VFL-II	1315 95.3	1316 95.8	1317 103.5	1318 114.6	1319 111.2	1320 103.0	1321 107.6
HAPT							
1322 Vanilla VFL	1323 92.5	1324 92.4	1325 97.1	1326 93.9	1327 95.0	1328 100.6	1329 96.2
1323 LASER-VFL	1324 127.2	1325 115.6	1326 106.1	1327 103.8	1328 101.8	1329 114.0	1330 124.7
1324 PlugVFL	1325 97.7	1326 95.8	1327 94.0	1328 95.8	1329 93.7	1330 92.7	1331 93.0
1325 FedHSSL	1326 92.5	1327 90.9	1328 91.5	1329 89.9	1330 90.1	1331 89.9	1332 94.6
1332 FALSE-VFL-I	1333 97.2	1334 97.2	1335 101.4	1336 103.1	1337 101.7	1338 101.9	1339 103.9
1333 FALSE-VFL-II	1334 97.9	1335 100.4	1336 107.4	1337 106.3	1338 106.3	1339 104.2	1340 102.7
FashionMNIST							
1342 Vanilla VFL	1343 95.8	1344 95.7	1345 95.2	1346 95.3	1347 96.2	1348 94.8	1349 96.5
1343 LASER-VFL	1344 95.4	1345 95.4	1346 96.0	1347 96.2	1348 95.6	1349 95.4	1350 94.2
1344 PlugVFL	1345 98.3	1346 97.8	1347 97.6	1348 99.3	1349 98.9	1350 95.3	1351 93.8
1345 FedHSSL	1346 92.1	1347 91.0	1348 89.1	1349 90.1	1350 90.0	1351 87.4	1352 86.2
1352 FALSE-VFL-I	1353 97.6	1354 98.6	1355 103.6	1356 103.9	1357 103.1	1358 103.2	1359 101.4
1353 FALSE-VFL-II	1354 98.4	1355 99.3	1356 104.3	1357 105.2	1358 104.1	1359 103.5	1360 101.8
ModelNet10							
1362 Vanilla VFL	1363 98.9	1364 96.6	1365 96.9	1366 93.9	1367 94.2	1368 95.4	1369 93.9
1363 LASER-VFL	1364 100.3	1365 97.5	1366 95.4	1367 100.8	1368 100.8	1369 96.9	1370 98.1
1364 PlugVFL	1365 98.4	1366 97.8	1367 95.8	1368 95.4	1369 94.7	1370 94.9	1371 92.3
1365 FedHSSL	1366 97.7	1367 97.0	1368 94.5	1369 90.5	1370 88.5	1371 96.0	1372 100.2
1372 FALSE-VFL-I	1373 99.7	1374 100.2	1375 103.1	1376 105.2	1377 108.3	1378 103.6	1379 102.9
1373 FALSE-VFL-II	1374 100.4	1375 101.2	1376 102.2	1377 106.4	1378 106.9	1379 103.2	1380 101.3

F LIMITATIONS AND FUTURE WORK

In FALSE-VFL-II, the mask distribution is modeled as $p_\psi(\mathbf{m}|\mathbf{x}) = \prod_{k \in [K]} p_{\psi^k}(m^k|\mathbf{x}^k)$. This formulation supports the MNAR mechanism, where missingness depends on both observed and unobserved values. However, under this model, each feature vector \mathbf{x}^k can only influence the missingness of its own entry m^k , and not that of other parties, i.e., m^l for $l \neq k$. In this sense, the current model cannot capture inter-party dependencies in the MNAR mechanism.

Extending our approach to model such inter-party dependencies would be a natural next step. However, doing so poses a significant challenge, as direct sharing of \mathbf{x}^k across parties is generally prohibited due to privacy constraints. We leave the development of such models that account for inter-party MNAR dependencies while preserving privacy as an important direction for future work.

G LLM USAGE

To improve clarity, parts of text were refined with assistance from a large language model; all content was reviewed and verified by the authors.