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ABSTRACT

Federated learning (FL) has attracted significant attention for enabling collaborative
learning without exposing private data. Among the primary variants of FL, verti-
cal federated learning (VFL) addresses feature-partitioned data held by multiple
institutions, each holding complementary information for the same set of users.
However, existing VFL methods often impose restrictive assumptions such as a
small number of participating parties, fully aligned data, or only using labeled data.
In this work, we reinterpret alignment gaps in VFL as missing data problems and
propose a unified framework that accommodates both training and inference under
arbitrary alignment and labeling scenarios, while supporting diverse missingness
mechanisms. In the experiments on 168 configurations spanning four benchmark
datasets, six training-time missingness patterns, and seven testing-time missingness
patterns, our method outperforms all baselines in 160 cases with an average gap of
9.6 percentage points over the next-best competitors. To the best of our knowledge,
this is the first VFL framework to jointly handle arbitrary data alignment, unlabeled
data, and multi-party collaboration all at once.

1 INTRODUCTION

With the rapid development of technology, concerns about data privacy and security have been rising,
highlighting the importance of research in these areas. Although individuals are reluctant to disclose
their personal information for model training, it is indispensable for building more accurate machine
learning models. To reconcile these competing interests, federated learning (FL) (McMahan et al.,
2017; Zhang et al., 2021) has emerged as a promising paradigm for privacy-preserving model training,
leading to the development of numerous methods that address a variety of related challenges.

From a broader perspective, FL can be categorized into three main types: horizontal federated
learning (HFL), vertical federated learning (VFL), and federated transfer learning (FTL). Whereas
HFL deals with scenarios in which data is distributed across different samples, VFL (Liu et al., 2024;
Yang et al., 2023) focuses on cases where data is partitioned by features rather than by samples. For
instance, financial institutions and e-commerce platforms, hospitals and pharmaceutical companies,
or insurance firms and automobile manufacturers often hold distinct yet complementary information
about the same set of users. In such situations where collaborative learning is desired to achieve
their respective goals, VFL provides a good framework for training a joint model without directly
revealing raw data, thereby preserving privacy.

Building on the VFL paradigm, researchers have explored various strategies to enhance its utility
such as improving communication efficiency (Castiglia et al., 2023a;b; Feng, 2022; Liu et al., 2022;
Wu et al., 2022), strengthening privacy through advanced security mechanisms (Fu et al., 2022; Kang
et al., 2022a; Sun et al., 2024; Zou et al., 2022), and, crucially, boosting the effectiveness (Ganguli
et al., 2023; He et al., 2024; Huang et al., 2023; Kang et al., 2022b; Li et al., 2022). A key part of
this effort involves fully leveraging available information under restricted data. Unlike conventional
machine learning algorithms, VFL typically requires data to be aligned, which is a condition that
becomes harder to satisfy as more institutions participate. Although there may be overlap in users
across different institutions, their overall user sets are rarely identical, leaving some users unaligned
and even limiting the number of aligned samples. A recent survey on VFL (Wu et al., 2025) reports
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that only 0.2% of potential VFL pairs are fully alignable. Moreover, in healthcare, banking, or
insurance sectors that demand VFL, acquiring labeled data is particularly challenging due to strict
privacy regulations and the sensitive nature of the information. Hence, effectively utilizing unaligned
or unlabeled data becomes crucial.

Several studies have attempted to address these issues, but frequently rely on restrictive assump-
tions. Some works are tailored to a small and fixed number of parties (most commonly two) (Kang
et al., 2022a;b; Li et al., 2022; Yang et al., 2022), while others do not fully exploit partially aligned
data (Feng, 2022; He et al., 2024; Huang et al., 2023), thereby wasting potentially valuable infor-
mation. In addition, many approaches restrict inference to fully aligned data or specific parties
only (Feng, 2022; He et al., 2024; Huang et al., 2023; Kang et al., 2022b), limiting real-world
applicability. On the other hand, some researches (Ganguli et al., 2023; Sun et al., 2024) focus on
inference with any type of unaligned data but do not consider training on unaligned data.

Before introducing our method, we distinguish two kinds of unaligned data: (a) Potentially alignable
yet currently unlinked records caused by imperfect identifiers, which can often be addressed
via privacy-preserving record-linkage techniques (Hardy et al., 2017; Nock et al., 2021; Wu et al.,
2024); and (b) Inherently unalignable records that have no genuine counterparts across parties,
making alignment fundamentally impossible. Our primary focus is the latter that parallels blockwise
missingness in the classical missing data literature. This distinction motivates the following discussion
on missingness mechanisms.

Beyond VFL, many studies in machine learning have investigated to tackle missing or incomplete
data. A fundamental first step in this line of work is to identify the underlying missingness mechanism,
generally categorized into three types (Ghahramani & Jordan, 1995; Little & Rubin, 2019):

• MCAR (Missing Completely at Random): Missingness occurs entirely independent of both
observed and unobserved values.

• MAR (Missing at Random): Missingness may depend on observed values but not on
unobserved ones.

• MNAR (Missing Not at Random): Missingness may depend on both observed and unob-
served values.

Viewing alignment in VFL through the lens of missingness, we can treat unaligned data as in a
standard missing data scenario. For example, recent work (Valdeira et al., 2024) applies the MCAR
assumption to address arbitrary types of unaligned data, but it does not incorporate unlabeled data.
Inspired by prior research (Ipsen et al., 2022), we propose a novel algorithm, FALSE-VFL (Flexible
Alignment and Labeling Scenarios Enabled Vertical Federated Learning), a unified framework for
VFL under diverse alignment and labeling scenarios.

Contributions. FALSE-VFL (i) supports both training and inference under arbitrary alignment
and labeling conditions in multi-party VFL, (ii) accommodates all three missingness mechanisms
(MCAR, MAR, MNAR), and (iii) surpasses all baselines in 160 out of 168 configurations with a
substantial performance gap, average of 9.6 percentage points over the next-best competitors. To the
best of our knowledge, it is the first framework that simultaneously addresses these challenges in
practice.

2 RELATED WORK

Vertical Federated Learning Models. A variety of VFL approaches have been proposed to handle
unaligned or unlabeled data across different institutions. Two-party methods such as VFed-SSD (Li
et al., 2022) and FedCVT (Kang et al., 2022b) leverage semi-supervised or psuedo-label training, but
cannot scale beyond two parties.

For multi-party settings, subsequent work explores feature selection (VFLFS (Feng, 2022)), rep-
resentation transfer (VFedTrans (Huang et al., 2023)), self-supervised objectives (FedHSSL (He
et al., 2024)), and robustness to dropped parties (MAGS (Ganguli et al., 2023), PlugVFL (Sun et al.,
2024)). LASER-VFL (Valdeira et al., 2024) fully exploits aligned and unaligned samples but ignores
unlabeled ones.
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Table 1: Flexibility of various VFL algorithms.

VFL Algorithms
Training Data Unaligned

Inference # PartiesLabeled Unlabeled

Aligned Unaligned Aligned Unaligned

VFed-SSD (Li et al., 2022) ✓ ✓ ✓ 2
FedCVT (Kang et al., 2022b) ✓ ✓ ✓ 2
VFLFS (Feng, 2022) ✓ △ ≥ 2
VFedTrans (Huang et al., 2023) △ ✓ ≥ 2
MAGS (Ganguli et al., 2023) ✓ ✓ ≥ 2
PlugVFL (Sun et al., 2024) ✓ ✓ ≥ 2
FedHSSL (He et al., 2024) ✓ ✓ △ △ ≥ 2
LASER-VFL (Valdeira et al., 2024) ✓ ✓ ✓ ≥ 2
FALSE-VFL (Ours) ✓ ✓ ✓ ✓ ✓ ≥ 2

In Table 1, we summarize the flexibility of these VFL algorithms and our proposed model in terms of
data usage, unaligned inference, and the number of parties each method can accommodate. Here,
unaligned inference refers to whether an algorithm can perform inference on partially and fully
unaligned data (see Section 3.1 for the definitions of partially aligned and fully unaligned). A
✓indicates that the algorithm fully exploits the corresponding data type, while △ indicates partial
exploitation. For example, some approaches may treat partially aligned data as fully unaligned. Also,
△ for unaligned inference indicates the algorithm can perform it but require constructing 2n − 1
predictors where n is the number of parties. As shown in the table, our proposed model can handle
all forms of training data and inference scenarios.

Deep Latent Variable Models. Deep latent variable models (DLVMs) (Kingma & Welling, 2014;
Rezende et al., 2014) have demonstrated their utility in capturing complex and high-dimensional data
structures including datasets with missing values. While these models are widely used in tasks like
generative modeling (Burda et al., 2016; Kingma & Welling, 2014; Rezende & Mohamed, 2015),
they are also known to be effective in data imputation (Ipsen et al., 2021; Ivanov et al., 2019; Mattei
& Frellsen, 2019) which is crucial for handling missing values.

For instance, MIWAE (Mattei & Frellsen, 2019) leverages DLVMs for imputing missing values under
the assumption of MAR mechanism, while not-MIWAE (Ipsen et al., 2021) extends it to handle
MNAR scenarios. Furthermore, supMIWAE (Ipsen et al., 2022) introduces a supervised learning
framework for incomplete datasets, imputing missing values under MAR assumption.

These advances in DLVMs illustrate the flexibility and power of probabilistic models in addressing
missing data challenges, enabling effective imputation strategies depending on the nature of the
missingness mechanism.

3 OUR METHOD: FALSE-VFL

3.1 DATA SETTING AND NOTATIONS

We consider a vertical federated learning (VFL) setting with one active party which possesses labels
and K − 1 passive parties. Each party k ∈ [K] := {1, 2, · · · ,K} holds a set of observations
{xki ∈ Rdk}Ni=1. For each sample i, the complete observation across all parties is denoted by
xi := [x1

i ,x
2
i , · · · ,xKi ]. Only the active party K owns the labels {yi ∈ R}Ni=1 which correspond to

the complete observations {xi ∈ Rd}Ni=1 where d =
∑K
k=1 dk. Critically, both the observations and

labels are private, meaning that they cannot be shared directly among the parties.

In real-world scenarios, data may be incomplete with missing labels or unaligned observations across
parties. We address this by introducing the following assumptions regarding data availability. Let
mk
i ∈ {0, 1} indicate whether the data xki is observed in party k, i.e., mk

i = 0 denotes it is observed
and mk

i = 1 denotes it is not. Define mi := [m1
i ,m

2
i , · · · ,mK

i ] to represent the availability of
observations across all parties. Similarly, let ui ∈ {0, 1} indicate whether the label yi is available
with ui = 1 representing a missing label.
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Each sample xi can be split into [xobsi ,xmisi ] where xobsi denotes the observed parts (i.e., the set
of xki where mk

i = 0) and xmisi denotes the missing parts. Importantly, we only have access to
xobsi and the missing data xmisi is not available. Additionally, if ui = 1, the corresponding label
yi = NA. Under this framework, the set {xobsi | ui = 1, i ∈ [N ]} represents the unlabeled data,
while {xobsi | ui = 0, i ∈ [N ]} represents the labeled data.

The alignment of observations across parties can be represented with our missingness nota-
tion. Fully aligned observations where all parties contribute to the data, are represented as
{xi |

∑K
k=1m

k
i = 0, i ∈ [N ]}. Fully unaligned observations where data from all but one party

is missing, are represented as {xobsi |
∑K
k=1m

k
i = K − 1, i ∈ [N ]}. The remaining observations

where 0 <
∑K
k=1m

k
i < K − 1, are considered partially aligned. We assume that no observation

has
∑K
k=1m

k
i = K as it would imply a completely missing or “dummy" sample. For simplicity,

we refer to fully aligned observations as “aligned" and consider both fully unaligned and partially
aligned observations as “unaligned".

This formulation provides a unified framework for addressing incomplete data, accommodating both
unlabeled and unaligned observations.

3.2 PROBLEM AND APPROACH

In this work our goal is to solve supervised learning tasks including regression or classification tasks
with deep neural architectures on the training dataset {xobsi , yi,mi, ui}Ni=1 including unlabeled data
and incomplete observations. If complete observations were available, the standard approach would
involve maximizing the log-likelihood function

∑
ui=0,i∈[N ] log pΘ(yi|xi). However, due to the

significant presence of unlabeled data and incomplete observations, more sophisticated procedures
are required.

Inspired by the methodology in Ipsen et al. (2022), we leverage deep latent variable models
(DLVMs) (Burda et al., 2016; Kingma & Welling, 2014; Rezende et al., 2014) to build a new
predictive model pΘ,ψ(y|xobs,m) where ψ parameterizes the function between x and m, while
incorporating unlabeled data into the training process. Under the MAR assumption, we have
pΘ,ψ(y|xobs,m) = pΘ(y|xobs) as shown in Appendix A.1. We therefore present two version of our
method:

• FALSE-VFL-I: assumes MAR mechanism and is detailed in Sections 3.3 to 3.5;

• FALSE-VFL-II: relaxes assumption MAR to MNAR mechanism and is described in
Appendix A.2.

Below we outline how the approach of Ipsen et al. (2022) is integrated into FALSE-VFL-I (MAR
case).

To effectively utilize the large amount of unlabeled data, as a pretraining step we first consider
the marginal log-likelihood

∑
i∈[N ] log pΘg (x

obs
i ) and maximize it where Θg ⊂ Θ represents the

generative model parameters. To model the generation of observations, we introduce a sequence of
stochastic hidden layers with latent variables h = {h1, · · · ,hL} as described in Burda et al. (2016):

pΘg (x) =

∫
pΘg (h

L)pΘg (h
L−1|hL) · · · pΘg (x|h1) dh.

Next, as a training step we leverage the labeled data to maximize the log-likelihood function∑
ui=0,i∈[N ] log pΘ(yi|xobsi ). Since raw observations xobsi cannot be shared across parties due

to privacy constraint, we rely on the latent variable h1, the output of the stochastic layer preceding
the observations, to generate the corresponding labels. This structure results in a graphical model
illustrated in Fig. 1 where h := h1 and z := hL.1 The detailed explanation of Fig. 1 will be provided
in Section 3.3. Note that, for reasons of computational tractability, we fix the parameters Θg after
pretraining and maximize the conditional log-likelihood

∑
ui=0,i∈[N ] log pΘ(yi|xobsi ) with fixed Θg ,

1In the whole remaining context, we use L = 2 for simplicity. However, note that we can use any L ≥ 2
with a small effort.
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which is shown to be equivalent to maximizing the joint log-likelihood
∑
ui=0,i∈[N ] log pΘ(yi,x

obs
i ).

We will explain how the pretraining and training steps can achieve our goal effectively in Section 4.

3.3 MODEL ARCHITECTURE

From a broader perspective, our model is divided into feature-side
and label-side modules. Each party k ∈ [K] has its own encoder
(parameterized by γkc ) and decoder (parameterized by θkc ), which we
collectively refer to as the feature-side modules. Meanwhile, the ac-
tive party which holds the labels additionally has a global encoder
(parameterized by γs), a global decoder (parameterized by θs), and a
discriminator (parameterized by ϕ) which form the label-side modules.
For simplicity, we define the collections of feature-side parameters as
γc = {γ1c , · · · , γKc } and θc = {θ1c , · · · , θKc }. Thus, we can express
the overall model parameters Θ and Θg as

Θ = {γc, θc, γs, θs, ϕ} and Θg = {γc, θc, γs, θs}.

x y

h

z γs

γc θs

θc ϕ

N

Figure 1: Graphical model
for FALSE-VFL-I.

All encoders and decoders produce parameters for pre-
defined distributions (e.g., mean and variance for Gaus-
sian distributions). Specifically, we assume that the
prior distribution p(z) is a standard Gaussian, while
pθs(h|z) and pθc(x|h) =

∏
k∈[K] pθkc (x

k|h) are mod-
eled as Gaussian distributions.
We employ amortized variational inference to approx-
imate the posterior distributions. Specifically, the ap-
proximate posterior qγc(h|xobs) for the latent variable
h is given by Gaussian distribution

N

(
1

|obs|
∑
k∈obs

µγkc (x
k),

(∑
k∈obs

Σ−1

γkc
(xk)

)−1)
, (1)

where µγk
c
(xk) and Σγk

c
(xk) denote the outputs of en-

coder from party k. The approximate posterior qγs(z|h)
for z is also assumed to be Gaussian. The rationale
behind the formulation in (1) will be explained in
Appendix B. For the discriminative part, we assume
pϕ(y|h) to be a Gaussian distribution for regression
tasks and to be a categorical distribution for classifica-
tion tasks. The complete computational flow is summa-
rized in Fig. 2. With this setup, we are now ready to
explain the whole algorithm including pretraining and
prediction.

(µ̃h, Σ̃h)

Global Decoder θs

z ∼ N (µz, Σz)

(µz, Σz)

Global Encoder γs

h ∼ N
(∑

k µhk , (
∑
kΣ

−1
hk

)−1
)

Party k Encoder γkc

xk

(µhk , Σhk )

Party k Decoder θkc

(µ̃xk , Σ̃xk )

Party k ∈ obs

Discriminator ϕ

y ∼ Cat(πy)

πy

Figure 2: Computational structure for
FALSE-VFL-I.

3.4 ALGORITHM

Our method consists of three steps: pretraining, training, and prediction. We present the details of
our algorithm below and provide its overview in Algorithm 1 of Appendix D.3.

Pretraining with Marginal Likelihood Maximization. From our graphical model assumption,
the log-likelihood of the observed features can be written as:

log pΘg
(xobs) = log

∫
pθc(x

obs|h)pθs(h|z)p(z) dhdz.

This integral is intractable, so we approximate it using κ-sample importance-weighted estima-
tor (Burda et al., 2016) with the approximate posterior. First, define

Rκ(x
obs) :=

1

κ

κ∑
j=1

pθc(x
obs|hj)pθs(hj |zj)p(zj)

qγc(hj |xobs)qγs(zj |hj)
.
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where {(hj , zj)} are i.i.d. random variables with distribution qγc(h|xobs)qγs(z|h). By construction,
Rκ(x

obs) is an unbiased estimator of pΘg
(xobs). Applying Jensen’s inequality to logE[Rκ(xobs)],

we get the lower bound Lκ(Θg) of the log-likelihood of the observed features:∑
i∈[N ]

log pΘg (x
obs
i ) ≥ Lκ(Θg) :=

∑
i∈[N ]

E{(hj ,zj)}κ
j=1∼qγc (h|xobs

i )qγs (z|h)

[
logRκ(x

obs
i )

]
.

Finally, we just maximize Lκ with respect to Θg .

Training with Conditional Likelihood Maximization. After we pretrain our model with marginal
likelihood maximization, we fix the parameters Θg . Similarly as above, let

R
′

κ(y,x
obs) =

1

κ

κ∑
j=1

pϕ(y|hj)pθc(xobs|hj)pθs(hj |zj)p(zj)
qγc(hj |xobs)qγs(zj |hj)

.

Then, we also get the lower bound L′

κ(ϕ) of the log-likelihood of the labeled data:∑
ui=0,i∈[N ]

log pΘ(yi,x
obs
i ) ≥ L

′

κ(ϕ) :=
∑
ui=0,
i∈[N ]

E{(hj ,zj)}κ
j=1∼qγc (h|xobs

i )qγs (z|h)

[
logR

′

κ(yi,x
obs
i )

]
.

Finally, we maximize L′

κ with respect to ϕ.

Prediction. After all training steps are done, we can predict the label of new (incomplete) observa-
tions with self-normalized importance sampling method as in Ipsen et al. (2022):

pΘ(y|xobs) ≈
L∑
l=1

wlpϕ(y|hl), where wl =
rl

r1 + · · ·+ rL
, rl =

pθc(x
obs|hl)pθs(hl|zl)p(zl)

qγc(hl|xobs)qγs(zl|hl)
,

and (h1, z1), · · · , (hL, zL) are i.i.d. samples from qγc(h|xobs)qγs(z|h).

Convergence Properties. We summarize here convergence properties of Lκ and L′

κ. The formal
statement with the mild regularity conditions and the proof are given in Appendix C.

Theorem 3.1. Lκ
(
L′

κ, resp.
)

increases as κ increases, and bounded above by log p(xobs)(
log p(y,xobs), resp.

)
. In addition, Lκ

(
L′

κ, resp.
)

converges to log p(xobs)
(
log p(y,xobs), resp.

)
as k →∞ under mild regularity conditions.

3.5 COMMUNICATION BETWEEN PARTIES

In the pretraining and training steps, each party computes the mean and variance of its approximate
posterior and sends this local latent representation to the active party. The active party aggregates
the local latent representations into a global latent distribution, samples latent variables h from this
distribution, and broadcasts them to the participating parties so that they can evaluate pθc(x

obs|h)
via their local decoders. Each passive party returns the scalar probabilities to the active party which
uses them to compute the loss and sends back gradients for the local model parameters of each party.

In the inference step, we follow the same forward communication pattern as in the pretraining and
training phases, but no gradients are exchanged.

Thus, compared to the standard VFL, FALSE-VFL-I follows the same basic communication pattern
where local representations are sent from the passive parties to the active party and the gradients are
sent in the reverse direction, but with two additional steps: sampled latent variables from the global
posterior sent from the active party to the others, and scalar probabilities sent back to the active party.

4 MAXIMIZING CONDITIONAL LIKELIHOOD THROUGH TWO-STAGE
OPTIMIZATION

The primary objective of our work is to predict target variables y (either continuous or discrete)
based on observed features xobs. To achieve it, we aim to maximize the conditional log-likelihood

6
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∑
ui=0,i∈[N ] log pΘ(yi|xobsi ). However, this objective is intractable even with variational approx-

imation. To address this issue, we propose a detour by maximizing the joint log-likelihood∑
ui=0,i∈[N ] log pΘ(yi,x

obs
i ) which can be optimized using variational approximations.

The connection between the joint and conditional log-likelihoods is expressed as:

log pΘ(y,x
obs) = log pΘ(y|xobs) + log pΘg

(xobs)

This relationship indicates that maximizing the joint likelihood pΘ(y,xobs) inherently involves both
the conditional term pΘ(y|xobs) and the marginal term pΘg

(xobs). Due to the high dimensionality of
xobs where dobs ≫ 1, the term pΘg

(xobs) may dominate the learning process, leading to implicit
modeling bias as discussed in Zhao et al. (2019). This imbalance can result in a model focusing more
on the marginal likelihood and less on the conditional likelihood, ultimately limiting the performace
of pΘ(y|xobs).

Two-Stage Optimization Strategy To mitigate this imbalance, we introduce a two-stage optimiza-
tion process:

• Stage 1 - Pretraining with Marginal Likelihood Maximization: To avoid the implicit mod-
eling bias, we first maximize the marginal likelihood pΘg

(xobs) which constitutes the
dominant part of the joint likelihood pΘ(y,xobs).

• Stage 2 - Training with Conditional Likelihood Maximization: Once pΘg
(xobs) is optimized,

we freeze the parameters Θg and proceed to maximize the joint likelihood pΘ(y,xobs).
Since Θg is fixed, this step effectively focuses on maximizing the conditional likelihood
pΘ(y|xobs), aligning directly with our goal of optimizing conditional predictions.

Freezing Θg not only reduces the implicit modeling bias from pΘg
(xobs), but also makes the objective

of maximizing pΘ(y,xobs) equivalent to maximizing pΘ(y|xobs). This two-stage approach provides
a more focused path towards optimizing the conditional likelihood. Moreover, it also has the following
important properties.

Interpretation as Feature Learning The two-stage optimization process can be also interpreted in
terms of feature learning. In this view, the first step (maximizing pΘg

(xobs)) serves as a pretraining
phase where the generative model learns a robust representation of the feature space. Once this
representation is well-learned, the second step leverages this generative model to facilitate the
maximization of pΘ(y|xobs), improving the conditional prediction.

Incorporating Unlabeled Data An additional advantage of this two-stage approach is the ability
to incorporate unlabeled data. Given the abundance of unlabeled data in many practical scenarios,
optimizing pΘg (x

obs) allows the model to utilize them, even though labels are absent. While
unlabeled data cannot directly optimize pΘ(y|xobs), it plays a crucial role in optimizing the marginal
likelihood pΘg

(xobs), thus ensuring the model effectively leverages all available data during training.

5 EXPERIMENTS

In this section, we compare FALSE-VFL with several baseline algorithms on four benchmark datasets.

Baselines. Vanilla VFL, LASER-VFL (Valdeira et al., 2024), PlugVFL (Sun et al., 2024), and
FedHSSL (He et al., 2024) are evaluated; implementation specifics for each baseline are provided in
Appendix D.1.

Datasets and Models. We use Isolet (Cole et al., 1990), HAPT (Reyes-Ortiz et al., 2016), Fash-
ionMNIST (Xiao, 2017), and ModelNet10 (Wu et al., 2015). Isolet and HAPT are tabular, whereas
FashionMNIST and ModelNet10 are image datasets. For tabular tasks we employ simple multilayer
perceptrons, while for image tasks we adopt ResNet-18 backbone (He et al., 2016) as the feature
extractors and two fully-connected layers for the fusion models. More detailed explanations on
datasets and models appear in Appendix D.2.

7
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Setup. Isolet, HAPT, and FashionMNIST are partitioned across eight parties, and ModelNet10
across six; exact feature splits are explained in Appendix D.2. We provide 500 labeled samples for
each tabular dataset and 1,000 for each image dataset, treating all remaining samples as unlabeled.
Since Vanilla VFL, PlugVFL, and FedHSSL originally require fully aligned data during training, we
reserve 100 (tabular) or 200 (image) of the labeled samples as fully aligned and render the remainder
partially aligned according to the designated train data missing mechanisms. All test samples are
partially aligned, using the designated test data missing mechanisms. Section 5.1 explains the missing
mechanisms we adopt.

5.1 MISSING MECHANISMS

We evaluate all algorithms under MCAR, MAR, and MNAR assumptions for data alignment.

MCAR: To generate unaligned data with the MCAR mechanism, we impose a missing probability
p for each sample in each party. We experiment with p ∈ {0.0, 0.2, 0.5} and denote as MCAR 0,
MCAR 2, and MCAR 5, respectively.

MAR: We designs two MAR mechanisms, MAR 1 and MAR 2, motivated by real-world scenarios in
which subsequent observations depend on what has already been seen. MAR 1 is designed to seek for
single highly informative party, whereas MAR 2 is designed to seek multiple moderately informative
parties. Precise formulas are given in Appendix D.4.

MNAR: After normalizing each dataset, let x̄k be the mean of features held by party k in a given
sample. If x̄k < 0, the party is dropped with probability p; otherwise it is dropped with probability
1− p. We experiment with p ∈ {0.7, 0.9} and denote as MNAR 7 and MNAR 9, respectively.

5.2 EXPERIMENTAL RESULTS

We train every method on the four benchmarks under six training missingness regimes (MCAR 2,
MCAR 5, MAR 1, MAR 2, MNAR 7, MNAR 9) and evaluate them on seven test patterns (MCAR 0,
MCAR 2, MCAR 5, MAR 1, MAR 2, MNAR 7, MNAR 9). The results are shown in Fig. 3, and exact
numerical values are reported in Tables 13 to 18. Although FALSE-VFL-I does not model the mask
distribution explicitly, its performance is consistently close to, and occasionally higher than, that of
FALSE-VFL-II. To provide a concise overview, we compare the best-performing FALSE-VFL variant
with the strongest baseline for each dataset, training mechanism, and test mechanism in Table 2.
As shown in Table 2c, the performace gap widens as the test missingness rate increases. In all
comparisons, FALSE-VFL achieves a clear lead.

Table 2: Average accuracy gap (%) between the best FALSE-VFL variant and the best competing
baseline.

(a) Per dataset

Isolet HAPT F-MNIST ModelNet

Gap 15.7 7.3 4.5 9.1

(b) Per training missing data mechanism

MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9

Gap 5.3 10.4 9.2 9.6 11.4 8.9

(c) Per test missing data mechanism

MCAR 0 MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9

Gap 1.8 5.4 9.6 10.9 12.3 10.8 13.1

Overall, FALSE-VFL exceeds the strongest baseline by an average of 9.1 percentage points across all
168 configurations. This average differs slightly from 9.6 reported in the abstract since the value is
calculated on 160 cases.

Robustness to higher missing rates. To assess the impact of more severe missingness, we compare
models trained under MCAR 5 with those trained under MCAR 2. Table 19 reports, for each setting,
the ratio of mean accuracy obtained when training under MCAR 5 to that obtained under MCAR 2.
FALSE-VFL exhibits the smallest performance decrease in 23 of 28 cases and even improves on most
test sets, demonstrating markedly stronger robustness to missingness than the competing methods.

8
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(a) Isolet (b) HAPT (c) FashionMNIST (d) ModelNet10

Figure 3: Mean accuracy (%) of six VFL methods trained under six missingness mechanisms
and evaluated across seven test patterns. The columns correspond to the datasets: Isolet, HAPT,
FashionMNIST, and ModelNet10 from left to right; the rows correspond to the training mechanisms:
MCAR 2, MCAR 5, MAR 1, MAR 2, MNAR 7, and MNAR 9 from top to bottom. Bars show mean
over five independent runs; error bars show ±1 standard deviation.

Robustness to the number of parties. We further evaluate robustness with respect to the number
of parties K, varying it from 4 to 12. We do not include MAR in the ablation since the missingness
of party i depends on the other parties, so changing K alters the mechanism itself and prevents a fair
comparison. We therefore report only MCAR 2 and MNAR 7 in Fig. 4. Recall that we fix a small
subset of labeled samples to be fully aligned (e.g., 100 when the total is 500), and the remaining
labeled samples follow the specified missingness mechanism. As a result, the expected number of
additional fully aligned labeled samples falls quickly as K grows.

Under MCAR 2, Vanilla VFL and FedHSSL tend to decline as K increases because the probability
that a labeled sample is simultaneously observed by all parties drops rapidly with larger K, and these
methods train only on the fully aligned labeled data. Under MNAR 7, the missing rate is high, so
beyond the fixed fully aligned labeled subset the expected number of additional fully aligned labeled
samples is negligible for K > 4. In this regime, these two methods often stay flat or improve as K
grows. This effect arises since splitting the same total features across more parties makes a complete
loss of informative features much less likely, and the fraction of observed parties per sample varies
less around its mean, which makes the fused representation more consistent.

PlugVFL and our method can learn from unaligned labeled samples, so they do not rely only on the
fully aligned labeled subset. As K increases they benefit from the same effect, namely a much lower
chance that all informative features are missing at once and a more stable observed party fraction per
sample, so their performance generally improves or remains stable under both MCAR 2 and MNAR
7.

9
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LASER-VFL can effectively leverage unaligned samples, but assumes a batch-wise missingness
mask. As K grows, the space of possible missingness patterns explodes, making it increasingly
difficult to assemble mini-batches that share a single mask and effectively lowering batch utilization.
Consequently, its performance tends to degrade. Across all configurations, FALSE-VFL consistently
outperforms all baselines regardless of the number of parties.

(a) Isolet-C (b) Isolet-N (c) HAPT-C (d) HAPT-N (e) FMNIST-C (f) FMNIST-N

Figure 4: Mean accuracy (%) with varying numbers of parties for six VFL methods. Panels with
suffix “C” (Isolet-C, HAPT-C, FMNIST-C) are trained and evaluated under MCAR 2, and panels
with suffix “N” (Isolet-N, HAPT-N, FMNIST-N) are trained and evaluated under MNAR 7. Solid
lines show mean accuracy over five independent runs; shaded bands show ±1 standard deviation.

Robustness to data heterogeneity. We provide an additional ablation on data heterogeneity. In an
eight-party setting, we draw a party specific missing rate vector ω from Dirichlet distribution Dir(α)
and set the per party missing probabilities to p = 1.6ω ∈ [0, 1]8 so that the average missing rate is
0.2; if any entry of p exceeds 1, we resample ω. we consider α ∈ {∞, 10, 1, 0.1}. When α = ∞
we obtain ω = (1/8, · · · , 1/8) and hence p = (0.2, · · · , 0.2), which corresponds to MCAR 2. To
quantify heterogeneity, we report the entropy of the sampled ω for each α in Table 3. Test accuracies
are shown in Fig. 5. Across all datasets, LASER-VFL improves as α decreases (i.e., heterogeneity
increases). This is expected since uneven per-party missing rates make the mask distribution more
concentrated over a smaller set of configurations, which simplifies forming mini-batches that share
a single mask and thus improves batch utilization in LASER-VFL. By contrast, Vanilla VFL and
FedHSSL decreases as α decreases, since lower entropy reduces the fraction of aligned samples and
shrinks the effective training set. FALSE-VFL remains robust, staying flat and highest across all α.

Table 3: Entropy of ω sampled from
Dir(α) for each α. Larger entropy im-
plies closer to uniform.

α ∞ 10 1 0.1
Isolet 2.08 2.02 1.74 1.11
HAPT 2.08 2.05 1.78 1.16
FMNIST 2.08 2.07 1.47 0.73

(g) Isolet (h) HAPT (i) FashionMNIST

Figure 5: Mean accuracy (%) of six VFL methods
trained and evaluated under four heterogeneous missing-
ness mechanisms sampled from a Dirichlet distribution.
Solid lines show mean accuracy over five independent
runs; shaded bands show ±1 standard deviation.

6 CONCLUSIONS

We introduce FALSE-VFL, a vertical federated learning framework that utilizes both unlabeled and
unaligned data, supports inference on unaligned data, and accommodates all three missing data
mechanisms (MCAR, MAR, MNAR) in both theory and practice. Extensive experiments covering six
training and seven test missingness settings show that FALSE-VFL surpasses the existing methods in
almost every configuration with a clear gap. Additional ablations on missing rates, the number of
parties, and data heterogeneity further validates its robustness.

These findings demonstrate that FALSE-VFL is a practical step toward privacy-preserving collab-
oration in real-world feature-partitioned settings where labels are scarce and perfect alignment is
rare.
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A MISSING DATA MECHANISMS
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∑
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Party k Encoder γkc

xk

(µhk , Σhk )

Party k Decoder θkc

(µ̃xk , Σ̃xk )
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Discriminator ϕ

y ∼ Cat(πy)

πy

xk

Missing Indicator ψk
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mk ∼ Bernoulli(pxk )

Party k ∈ [K]

Figure 6: Left: Graphical model for FALSE-VFL-II. The left dotted box groups feature-side modules,
while the right dotted box groups label-side modules. Right: Computational structure for FALSE-
VFL-II.

A.1 MAR MECHANISM

Assume that missing data occurs with the MAR mechanism. Then,

log pΘ,ψ(y|xobs,m) = log pΘ,ψ(y,x
obs,m)− log pψ(x

obs,m)

= log

∫
pϕ(y|h)pψ(m|xobs,xmis)pΘg (x

obs,xmis,h) dhdxmis − log pψ(x
obs,m)

= log

(
pψ(m|xobs)

∫
pϕ(y|h)pΘg (x

obs,xmis,h) dhdxmis
)
− log pψ(x

obs,m)

= log pψ(m|xobs) + log pΘ(y,x
obs)− log pψ(x

obs,m)

= log pΘ(y|xobs),

where the MAR assumption is used in the third equality.

A.2 MNAR MECHANISM

Under the MNAR mechanism, we need to model the mask explicitly through an additional component
pψ(m|x). In addition to the existing models in the MAR case, each party k ∈ [K] has its own
missing indicator parameterized by ψk which maps xk to pxk , a parameter of Bernoulli distribution.
Note that ψ = {ψk}k∈[K] and pψ(m|x) =

∏
k∈[K] pψk(mk|xk). The complete computational

structure is shown in Fig. 6. Under the graphical model depicted in Fig. 6, we can adopt a procedure
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analogous to our original algorithm by first maximizing Lκ(Θg, ψ) as a pretraining step where∑
i∈[N ]

log pΘg,ψ(x
obs
i ,mi) ≥ Lκ(Θg, ψ)

:=
∑
i∈[N ]

E{(hj ,zj ,xmis
j )}κ

j=1∼qγc (h|xobs
i )qγs (z|h)pθc (x

mis|h)

[
logRκ(x

obs
i ,mi)

]
,

with

Rκ(x
obs,m) =

1

κ

κ∑
j=1

pψ(m|xobs,xmisj )pθc(x
obs|hj)pθs(hj |zj)p(zj)

qγc(hj |xobs)qγs(zj |hj)
.

This follows from

log pΘg,ψ(x
obs,m) = log

∫
pψ(m|xobs,xmis)pθc(xobs|h)pθc(xmis|h)pθs(h|z)p(z) dhdzdxmis.

We assumed here pθc(x|h) is fully factorized, so that pθc(x|h) = pθc(x
obs|h)pθc(xmis|h).

After the pretraining step, we fix the parameters Θg, ψ and proceed with an analogous training as
in our main algorithm. In summary, to handle the MNAR case, we only need an additional model
pψ(m|x) and the sampling of xmis.

We also describe what information is communicated between the parties in FALSE-VFL-II.

In the pretraining and training steps, there is an additional exchange for samples with missing parties,
in addition to the communication in FALSE-VFL-I. The active party sends sampled latent variables
from the global posterior to the missing parties. Each such party uses the received samples with its
local decoder and missing indicator to compute the missingness probabilities, and sends them back to
the active party.

In the inference step, we follow the same forward communication pattern as in the pretraining and
training phases, but no gradients are exchanged.

B FEATURE-SIDE CONTRIBUTIONS TO POSTERIOR APPROXIMATION

As defined in Section 3.3, the variational posterior qγc(h|xobs) in (1) is modeled as a Gaussian
distribution where both mean and variance are derived from feature-side encoder outputs. This
section explains the rationale behind this formulation.

B.1 PARTY MEAN AGGREGATION

The latent variable h is inferred by aggregating contributions from multiple parties, each providing
a mean µγk

c
(xk) based on its local observation xk. The overall posterior mean is computed as the

average of these feature-side means, forming a global latent representation. By averaging only the
contributions from observed parties, the scale remains consistent regardless of the number of missing
parties. Consequently, only the participating parties influence the latent variable.

B.2 PRECISION-BASED VARIANCE AGGREGATION

The posterior variance is determined by the inverse of the sum of precision matrices Σ−1
γk
c
(xk) from

each party. As more parties contribute data, the total precision increases, reducing the uncertainty
about the latent variable. Parties that do not provide data are implicitly treated as having infinite
variance, meaning their absence does not affect the overall precision. This aggregation ensures that
as more parties participate, the model becomes more confident (i.e., the variance decreases), leading
to a more precise estimate of h.
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C THEORETICAL PROPERTIES

Theorem C.1. Let

Lκ = E{(hj ,zj)}κ
j=1∼q(h|xobs)q(z|h)

[
logRκ(x

obs)
]
,

L
′

κ = E{(hj ,zj)}κ
j=1∼q(h|xobs)q(z|h)

[
logR

′

κ(y,x
obs)

]
where

Rκ(x
obs) =

1

κ

κ∑
j=1

p(xobs|hj)p(hj |zj)p(zj)
q(hj |xobs)q(zj |hj)

,

R
′

κ(y,x
obs) =

1

κ

κ∑
j=1

p(y|hj)p(xobs|hj)p(hj |zj)p(zj)
q(hj |xobs)q(zj |hj)

.

Then, Lκ
(
L′

κ, resp.
)

increases as κ increases, and bounded above by log p(xobs)(
log p(y,xobs), resp.

)
. In addition, if log p(xobs,h,z)

q(h,z|xobs)

(
log p(y,xobs,h,z)

q(h,z|xobs)
, resp.

)
is bounded, then

Lκ
(
L′

κ, resp.
)

converges to log p(xobs)
(
log p(y,xobs), resp.

)
as k →∞.

Proof. We apply Theorem 1 in Burda et al. (2016). Here, we give the proof for L′

κ. We can prove the
upper bound using Jensen’s inequality as

L
′

κ = E{(hj ,zj)}κ
j=1∼q(h|xobs)q(z|h)

log 1

κ

κ∑
j=1

p(y|hj)p(xobs|hj)p(hj |zj)p(zj)
q(hj |xobs)q(zj |hj)


≤ logE{(hj ,zj)}κ

j=1∼q(h|xobs)q(z|h)

 1

κ

κ∑
j=1

p(y,xobs,hj , zj)

q(hj |xobs)q(zj |hj)

 = log p(y,xobs).

To prove monotonic increase, let I be a uniformly chosen subset of size m from [κ]. Using Jensen’s
inequality again, we get

L
′

κ = E{(hj ,zj)}κ
j=1

log 1

κ

κ∑
j=1

p(y,xobs,hj , zj)

q(hj , zj |xobs)


= E{(hj ,zj)}κ

j=1

logEI
 1

m

m∑
j=1

p(y,xobs,hj , zj)

q(hj , zj |xobs)


≥ E{(hj ,zj)}κ

j=1

EI
log 1

m

m∑
j=1

p(y,xobs,hj , zj)

q(hj , zj |xobs)


= E{(hj ,zj)}m

j=1

log 1

m

m∑
j=1

p(y,xobs,hj , zj)

q(hj , zj |xobs)

 = L
′

m.

Lastly, assume that log p(y,xobs,h,z)
q(h,z|xobs)

is bounded. Then, R
′

κ(y,x
obs) converges to p(y,xobs) by the

strong law of large numbers. Take log on both sides and by the dominated convergence theorem, L′

κ
converges to log p(y,xobs).

D EXPERIMENTAL DETAILS

D.1 BASELINES

To ensure a fair comparison, we apply a unified two-stage protocol to the baselines that do not
natively exploit unlabeled data: Vanilla VFL, LASER-VFL, and PlugVFL. First, every local model
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is pretrained with SimSiam (Chen & He, 2021), one of the representative self-supervised learning
methods, which He et al. (2024) report to outperform BYOL and MoCo on VFL benchmarks. The
pretrained networks are then finetuned on the available labeled subset. The baselines considered are
summarized below.

Vanilla VFL: Since Vanilla VFL requires fully aligned data, we train it only on aligned data. For
prediction, we employ the simple zero-imputation strategy for unaligned data which is more effective
than a random prediction.

LASER-VFL (Valdeira et al., 2024): In the original LASER-VFL, each party has its own repre-
sentation model and a fusion model. However, the fusion model only works for parties that hold
labels. Since we consider the single active party scenario, which is the most general setting in VFL
framework, we employ a version of LASER-VFL with only one fusion model.

PlugVFL (Sun et al., 2024): PlugVFL was originally designed for fully aligned data in training, so
we again use zero-imputation for unaligned parties in both training and inference. We set p = 0.5
for the probability of dropping each passive party, and disable the label IP protection objective
which enhances label privacy but can reduce performance. Since this version of PlugVFL is well
implemented in the work of LASER-VFL, we adopt it.

FedHSSL (He et al., 2024): FedHSSL supports three SSL methods: SimSiam, BYOL, and MoCo.
Since SimSiam achieves the best performance in the authors’ experiments, we adopt it in all runs.
FedHSSL also need fully aligned data for finetuning, so we apply zero-imputation for inference
similarly.

D.2 DATASETS AND MODELS

Datasets. Isolet is a speech recognition dataset containing 7,797 audio recordings of 150 speakers
pronouncing each 26-letter English alphabet twice. Each recording is represented by 617 acoustic
features extracted from the raw audio waveform. We partition these 617 features evenly across eight
parties by assigning each party 77 features (one feature is discarded).

HAPT (Human Activities and Postural Transitions) dataset comprises smartphone accelerometer and
gyroscope signals collected from 30 volunteers performing 12 daily activities. Each data sample is
represented as a 561-dimensional feature vector. We evenly distribute these features across eight
parties, assigning each party 70 features (one feature is discarded).

FashionMNIST is a widely-used benchmark consisting of grayscale images of fashion items divided
into 10 classes. For VFL settings, we partition each 28× 28 image into eight segments of size 14× 7,
with each segment assigned to one of the eight parties.

ModelNet10 is a dataset of 3,991 training and 908 test samples of 3D CAD models belonging to
10 classes, commonly used in multi-view shape recognition. In our experiments, each 3D model is
converted into 12 distinct 2D views by rotating the object 360◦, capturing one view every 30◦. To
create a challenging VFL task, we group adjacent pairs of views, forming six pairs that correspond to
six parties. For each sample, we randomly select one view from each pair, providing each party with
a single 224× 224 image per sample. To further increase task difficulty, images are resized to 32 ×
32 pixels. This random selection process is repeated 6 times for the training set and 2 times for the
test set, resulting in 23,946 training samples and 1,816 test samples.

Models. Tables 4 to 6 show detailed model architectures for each baseline. Tables 7 to 11 report
hyperparameters used in our experiments.

Table 4: Model architecture details for each component of Vanilla VFL, LASER-VFL, and PlugVFL.

Component Structure
Feature Extractor ResNet-18 or 3-layer MLP
Projector 3-layer MLP
Predictor 2-layer MLP
Discriminator 2-layer MLP
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Table 5: Model architecture details for each component of FedHSSL.

Component Structure
Local Bottom Encoder Lower layers of ResNet-18 or 1-layer MLP
Local Top Encoder Upper layers of ResNet-18 or 1-layer MLP
Cross-Party Encoder ResNet-18 or 2-layer MLP
Projector 3-layer MLP
Predictor 2-layer MLP
Discriminator 2-layer MLP

Table 6: Model architecture details for each component of FALSE-VFL.

Component Structure
Party Encoder (γkc ) ResNet-18 or 2-layer MLP
Party Decoder (θkc ) Transposed CNN or 2-layer MLP
Party Missing Indicator (ψk) 3-layer MLP
Global Encoder (γs) 3-layer MLP
Global Decoder (θs) 3-layer MLP
Discriminator (ϕ) 2-layer MLP

Table 7: Hyperparameters for Vanilla VFL. Values for pretraining are shown in parentheses.

Hyperparameter Isolet HAPT FashionMNIST ModelNet10
Optimizer Adam (SGD) Adam (SGD) Adam (SGD) Adam (SGD)
Learning Rate 5e-4 (0.025) 5e-3 (0.02) 1e-4 (0.02) 1e-4 (0.025)
Batch Size 32 (512) 64 (512) 128 (1024) 128 (1024)
Epochs 500 (100) 100 (150) 150 (100) 100 (50)
Weight Decay 1e-4 (3e-5) 1e-4 (3e-5) 1e-4 (3e-5) 1e-4 (3e-5)
Latent Dimension 128 128 196 256

Table 8: Hyperparameters for LASER-VFL. Values for pretraining are shown in parentheses.

Hyperparameter Isolet HAPT FashionMNIST ModelNet10
Optimizer Adam (SGD) Adam (SGD) Adam (SGD) Adam (SGD)
Learning Rate 5e-5 (0.025) 1e-3 (0.02) 1e-4 (0.02) 5e-4 (0.025)
Batch Size 64 (512) 128 (512) 128 (1024) 128 (1024)
Epochs 200 (100) 100 (150) 100 (100) 10 (50)
Weight Decay 1e-4 (3e-5) 1e-4 (3e-5) 1e-4 (3e-5) 1e-4 (3e-5)
Latent Dimension 128 128 196 256

Table 9: Hyperparameters for PlugVFL. Values for pretraining are shown in parentheses.

Hyperparameter Isolet HAPT FashionMNIST ModelNet10
Optimizer Adam (SGD) Adam (SGD) Adam (SGD) Adam (SGD)
Learning Rate 5e-5 (0.025) 5e-4 (0.02) 1e-4 (0.02) 1e-4 (0.025)
Batch Size 32 (512) 64 (512) 128 (1024) 128 (1024)
Epochs 100 (100) 100 (150) 150 (100) 50 (50)
Weight Decay 1e-4 (3e-5) 1e-4 (3e-5) 1e-4 (3e-5) 1e-4 (3e-5)
Latent Dimension 128 128 196 256
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Table 10: Hyperparameters for FedHSSL. Values for pretraining are shown in parentheses.

Hyperparameter Isolet HAPT FashionMNIST ModelNet10
Optimizer Adam (SGD) Adam (Adam) Adam (SGD) Adam (SGD)
Learning Rate 2e-3 (0.025) 5e-4 (0.025) 1e-4 (0.02) 5e-4 (0.025)
Batch Size 64 (512) 64 (512) 128 (1024) 128 (1024)
Epochs 300 (150) 500 (100) 100 (150) 100 (150)
Weight Decay 1e-4 (3e-5) 1e-4 (1e-5) 1e-4 (3e-5) 1e-4 (3e-5)
Latent Dimension 128 128 196 256

Table 11: Hyperparameters for FALSE-VFL. Values for pretraining are shown in parentheses. We
use κ = 10 and L = 50 for all datasets.

Hyperparameter Isolet HAPT FashionMNIST ModelNet10
Optimizer Adam (Adam) Adam (Adam) Adam (Adam) Adam (Adam)
Learning Rate 2e-4 (5e-4) 2e-4 (2e-3) 2e-4 (5e-5) 2e-4 (1e-4)
Batch Size 128 (512) 128 (512) 128 (1024) 128 (1024)
Epochs 300 (300) 300 (500) 200 (150) 200 (300)
Weight Decay 1e-4 (1e-4) 1e-4 (1e-4) 1e-4 (1e-4) 1e-4 (1e-4)
h Dimension 128 128 196 256
z Dimension 64 64 32 64

D.3 ALGORITHM

Algorithm 1 FALSE-VFL-I: two-stage training and inference

1: Hyperparameters: K: the number of clients, κ/L: the number of importance samples for training / test,
ηpre/ηtrain: learning rates for pretraining / training, Tpre/Ttrain: epochs for pretraining / training

2: Parameters: γkc /θkc : encoder / decoder for client k ∈ [K], γs/θs/ϕ: encoder / decoder / discriminator for
active client, γc = {γ1

c , · · · , γKc },θc = {θ1c , · · · , θKc }, Θg = {γc, θc, γs, θs}, Θ = {Θg, ϕ}
3:
4: Stage 1 – Pretraining: maximize marginal likelihood pΘg (x

obs)
5: for t = 1 to Tpre do
6: for all minibatch B do
7: for all client k ∈ {obs} in parallel do
8: (µk,Σk)← ENCγkc (x

k
B)

9: Send (µk,Σk) to active client
10: end for
11: Active client forms qγc(h|B) via Eq. (1); sample {(hj ,zj)}κj=1 from qγc(h|B)qγs(z|h)
12: Compute Lκ(Θg) and ascend Θg ← Θg + ηpre∇ΘgLκ
13: end for
14: end for
15: Freeze Θg
16:
17: Stage 2 – Training: maximize conditional likelihood pΘ(y|xobs)
18: for t = 1 to Ttrain do
19: for all labeled minibatch B do
20: for all client k ∈ {obs} in parallel do
21: (µk,Σk)← ENCγkc (x

k
B)

22: Send (µk,Σk) to active client
23: end for
24: Active client forms qγc(h|B) via Eq. (1); sample {(hj ,zj)}κj=1 from qγc(h|B)qγs(z|h)
25: Compute L′

κ(ϕ) and ascend ϕ← ϕ+ ηtrain∇ϕL′
κ

26: end for
27: end for
28:
29: Inference on a new incomplete sample xobs

30: Gather (µk,Σk) from observed parties; sample {(hℓ,zℓ)}Lℓ=1 from q

31: Compute importance weights wℓ and predict ŷ =
∑L
ℓ=1 wℓ pϕ(y|hℓ)
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D.4 MAR MECHANISMS

We introduce two MAR mechanisms inspired by real-world scenarios in which the decision to collect
further observations depend on the information of previously observed data.

For instance, a patient may choose whether to visit additional hospitals after reviewing one hospital’s
examination results. Likewise, an individual viewing an image piece by piece might stop as soon as
the observed portion is sufficiently informative. In our simulation, we measure “information” by the
variance of a piece: low variance implies a near-uniform region (hence little information), whereas
high variance implies richer details. All datasets are normalized to ensure scale consistency across
features.

Type 1: Stop at the First Highly Informative Piece. We begin by randomly selecting one piece.
If its variance exceeds a predefined threshold, we consider it “sufficiently informative” and do not
observe any additional pieces. Otherwise, we slightly lower the threshold and randomly select another
piece. See Algorithm 2 for details.

Type 2: Accumulate Multiple Moderately Informative Pieces. We start with a variance threshold
T and an “excessive variance” budget B. Whenever the variance v of an observed piece exceeds T ,
we subtract (v − T ) from B. If B falls below zero, we stop observing further pieces. Otherwise, we
reduce T slightly and continue. Conceptually, this simulates gathering several moderately informative
pieces until reaching a certain limit. See Algorithm 3 for details.

These procedures systematically generate partially aligned data across multiple parties by emulating
natural decision processes. To the best of our knowledge, no prior work has addressed MAR-based
alignment in the VFL setting. Our methods are designed to reflect realistic user behaviors and can be
viewed as a concrete instantiation of the “Threshold method" described in Zhou et al. (2024).

Algorithm 2 MAR Mechanism Type 1: Single High-Informative Piece

Require: A set of parties (pieces) P ; initial variance threshold T = 1.1; threshold decrement
∆ = 0.15.

1: Choose an initial piece randomly from P .
2: while there are unvisited pieces in P do
3: Compute variance v of the chosen piece.
4: if v > T then
5: Stop (no more pieces are observed).
6: else
7: T ← T −∆ {Lower the threshold}
8: Randomly choose the next unvisited piece from P .
9: end if

10: end while

Algorithm 3 MAR Mechanism Type 2: Multiple Moderate-Informative Pieces

Require: A set of parties (pieces) P ; initial variance threshold T = 0.5; total “excessive variance”
budget B = 0.7(0.5 for ModelNet10); threshold decrement ∆ = 0.15.

1: Choose an initial piece randomly from P .
2: while there are unvisited pieces in P do
3: Compute variance v of the chosen piece.
4: if v > T then
5: B ← B − (v − T ) {Consume part of the budget}
6: end if
7: if B ≤ 0 then
8: Stop (no more pieces are observed).
9: else

10: T ← T −∆ {Lower the threshold}
11: Randomly choose the next unvisited piece from P .
12: end if
13: end while
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D.5 IMPLEMENTATION

The experiments are implemented in PyTorch. We simulate a decentralized environment using a
single deep learning workstation equipped with an Intel(R) Xeon(R) Gold 6348 CPU, one NVIDIA
GeForce RTX 3090 GPU, and 263 GB of RAM. The runtime of FALSE-VFL for each dataset is
reported in Table 12.

Table 12: Execution time (in minutes) of FALSE-VFL on each dataset. Times are separated into
pretraining and main training phases.

Dataset Pretraining Time (min) Training Time (min)
Isolet 3 2
HAPT 6 2
FashionMNIST 60 30
ModelNet10 860 90

E ADDITIONAL EXPERIMENTAL RESULTS

Table 13: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
six VFL methods trained under MCAR 2 conditions and evaluated on seven test patterns. Boldface
highlights the best result in each column. An asterisk (*) marks accuracy computed with labeled data
only, as including unlabeled data led to lower accuracy.

Test Data MCAR 0 MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9
Isolet

Vanilla VFL 76.6 (0.3) 64.5 (0.9) 40.1 (1.6)* 28.3 (1.0)* 28.5 (1.9)* 41.3 (1.4)* 41.4 (0.8)*

LASER-VFL 69.3 (4.0) 63.1 (3.5) 51.0 (3.8) 44.0 (3.0) 45.1 (2.2) 52.5 (2.9) 51.7 (2.9)
PlugVFL 84.5 (0.7) 75.8 (0.7) 52.8 (1.4) 40.4 (1.4) 39.4 (1.5) 53.9 (1.2) 53.5 (1.3)
FedHSSL 75.1 (0.3) 68.2 (0.3) 46.5 (0.6) 34.4 (2.5)* 35.3 (2.1)* 48.2 (0.8) 48.3 (1.2)

FALSE-VFL-I 86.3 (0.1) 82.6 (0.4) 65.2 (0.9) 52.0 (0.5) 55.4 (0.5) 65.5 (0.5) 64.7 (0.7)
FALSE-VFL-II 86.2 (0.2) 82.6 (0.3) 65.4 (0.8) 52.2 (0.6) 55.2 (0.7) 66.0 (0.7) 64.0 (0.8)

HAPT

Vanilla VFL 85.4 (0.3) 76.3 (0.8)* 59.7 (2.4)* 62.2 (1.7)* 60.4 (1.8)* 51.5 (3.3)* 43.9 (2.9)*

LASER-VFL 47.3 (9.9) 49.9 (8.6) 47.6 (3.6) 51.7 (4.3) 50.0 (3.5) 43.9 (4.9)* 42.2 (5.1)*

PlugVFL 87.0 (0.4) 74.0 (1.0)* 52.6 (2.1) 60.1 (1.5) 55.2 (1.9) 51.4 (2.2)* 51.8 (5.1)*

FedHSSL 85.3 (0.2) 80.8 (0.2) 69.8 (0.3) 71.4 (0.4) 69.3 (0.6) 65.7 (0.5) 59.0 (3.1)
FALSE-VFL-I 89.0 (0.2) 85.4 (0.2) 73.3 (0.4) 73.8 (0.4) 73.7 (0.3) 69.8 (0.6) 68.5 (0.3)
FALSE-VFL-II 88.6 (0.1) 83.7 (0.4) 70.3 (0.4) 71.8 (0.7) 71.0 (0.3) 69.3 (0.4) 70.4 (0.4)

FashionMNIST

Vanilla VFL 76.7 (0.2) 71.0 (0.3) 55.9 (1.2) 53.2 (1.3) 54.2 (1.5) 53.4 (1.0) 49.2 (3.2)*

LASER-VFL 75.6 (2.3) 72.5 (2.1) 65.2 (2.4) 65.1 (2.5) 66.0 (2.4) 64.7 (2.6) 63.7 (3.0)
PlugVFL 78.3 (1.0) 74.3 (1.1) 65.5 (1.0) 65.2 (1.3) 65.8 (1.1) 63.8 (1.4) 58.2 (2.1)
FedHSSL 78.5 (0.2) 76.1 (0.3) 66.7 (1.8) 64.5 (2.6) 67.0 (2.1) 65.2 (1.9) 61.0 (2.9)

FALSE-VFL-I 82.9 (0.1) 79.9 (0.1) 68.4 (0.3) 65.2 (0.3) 67.8 (0.4) 66.8 (0.3) 65.6 (0.4)
FALSE-VFL-II 82.5 (0.3) 79.1 (0.2) 67.5 (0.3) 64.7 (0.3) 67.2 (0.3) 66.3 (0.3) 64.9 (0.3)

ModelNet10
Vanilla VFL 86.1 (0.6) 78.7 (1.0) 57.3 (2.0) 50.8 (2.1) 46.6 (2.1) 59.5 (2.3) 60.1 (1.9)
LASER-VFL 80.4 (4.7) 77.3 (4.9) 68.6 (5.2) 61.4 (3.9) 59.0 (4.2) 67.7 (4.2) 70.5 (4.4)

PlugVFL 85.7 (0.5) 73.2 (1.4) 54.6 (2.2) 51.0 (2.9) 45.1 (3.3) 50.9 (2.9) 51.1 (2.9)
FedHSSL 86.9 (0.4) 85.2 (0.5) 72.8 (3.5) 61.6 (5.3) 59.3 (5.4) 71.6 (3.9) 67.1 (4.0)

FALSE-VFL-I 86.6 (0.2) 84.6 (0.2) 78.5 (1.2) 70.1 (0.9) 67.8 (0.4) 76.7 (0.7) 78.3 (0.6)
FALSE-VFL-II 86.3 (0.3) 84.8 (0.2) 79.1 (0.4) 70.8 (0.6) 69.3 (0.4) 77.4 (0.5) 78.9 (0.6)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 14: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
six VFL methods trained under MCAR 5 conditions and evaluated on seven test patterns. Boldface
highlights the best result in each column. An asterisk (*) marks accuracy computed with labeled data
only, as including unlabeled data led to lower accuracy.

Test Data MCAR 0 MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9
Isolet

Vanilla VFL 62.5 (1.1) 53.1 (1.1)* 33.9 (0.7)* 23.2 (0.6)* 23.9 (0.4)* 35.1 (1.0)* 35.0 (1.0)*

LASER-VFL 61.0 (5.2) 55.6 (4.0) 45.1 (2.4) 38.9 (2.1) 39.9 (2.4) 45.4 (2.7) 46.2 (3.1)
PlugVFL 81.7 (0.5) 71.3 (0.6) 50.5 (1.0) 40.1 (1.3) 39.6 (1.2) 52.1 (1.5) 53.1 (1.2)
FedHSSL 65.2 (0.5) 58.5 (0.5) 40.1 (0.9) 30.5 (0.9) 31.2 (0.7) 42.6 (0.7) 41.3 (0.7)

FALSE-VFL-I 83.4 (0.2) 80.2 (0.5) 69.3 (0.5) 60.4 (0.9) 62.5 (0.9) 69.5 (0.8) 70.0 (0.4)
FALSE-VFL-II 82.2 (0.2) 79.2 (0.5) 67.7 (0.2) 59.9 (0.4) 61.4 (0.6) 68.0 (0.8) 68.9 (0.6)

HAPT

Vanilla VFL 79.4 (0.5)* 70.2 (0.6)* 54.4 (1.5)* 58.0 (0.8)* 55.4 (0.7)* 49.2 (2.9)* 43.5 (5.0)*

LASER-VFL 60.2 (10.9) 57.6 (7.5) 50.5 (3.6) 53.7 (4.3) 50.9 (3.4) 49.8 (3.7) 52.1 (4.9)
PlugVFL 85.0 (0.5) 71.5 (0.7)* 50.3 (0.9)* 57.5 (0.6) 51.8 (0.8) 49.2 (2.9)* 49.4 (5.8)*

FedHSSL 78.9 (0.2) 73.5 (0.4) 63.8 (0.4) 64.2 (0.4) 62.4 (0.5) 59.3 (1.0)* 56.0 (0.6)*

FALSE-VFL-I 86.5 (0.3) 83.0 (0.2) 74.3 (0.7) 76.1 (0.4) 74.9 (0.6) 71.1 (0.3) 71.2 (0.2)
FALSE-VFL-II 86.8 (0.5) 84.0 (0.3) 75.5 (0.5) 76.4 (0.3) 75.5 (0.3) 72.2 (0.4) 72.3 (0.3)

FashionMNIST
Vanilla VFL 73.5 (0.2) 68.0 (0.3) 53.2 (1.2) 50.7 (1.5) 52.1 (1.6) 50.7 (1.3) 47.2 (1.2)
LASER-VFL 72.3 (1.4)* 69.2 (1.9) 62.6 (1.6) 62.6 (1.6) 63.1 (1.7) 61.7 (1.9) 60.0 (2.0)

PlugVFL 76.9 (0.6) 72.7 (0.4) 64.0 (0.5) 64.8 (0.5) 65.0 (0.5) 60.8 (0.5) 54.7 (0.7)
FedHSSL 72.3 (0.5) 69.3 (0.7) 59.4 (1.7) 58.1 (2.3) 60.3 (1.7) 57.0 (2.1) 52.6 (2.8)

FALSE-VFL-I 80.9 (0.1) 78.8 (0.2) 70.9 (0.2) 67.8 (0.3) 70.0 (0.2) 69.0 (0.2) 66.5 (0.2)
FALSE-VFL-II 81.2 (0.2) 78.6 (0.2) 70.4 (0.2) 68.0 (0.3) 69.9 (0.2) 68.6 (0.0) 66.0 (0.1)

ModelNet10
Vanilla VFL 85.2 (0.3) 76.0 (0.8) 55.5 (0.9) 47.7 (2.2) 43.8 (2.0) 56.8 (1.6) 56.5 (1.1)
LASER-VFL 80.7 (2.0) 75.3 (2.7) 65.4 (4.5) 61.9 (4.5) 59.5 (4.9) 65.6 (5.0) 69.2 (5.1)

PlugVFL 84.3 (0.4) 71.6 (1.9) 52.3 (3.7) 48.6 (3.2) 42.7 (3.8) 48.3 (3.6) 47.1 (4.7)
FedHSSL 84.9 (0.5) 82.6 (1.2) 68.8 (2.5) 55.7 (4.3) 52.5 (5.3) 68.7 (2.9) 67.2 (2.5)

FALSE-VFL-I 86.3 (0.3) 84.7 (0.2) 80.9 (0.3) 73.7 (0.5) 73.4 (0.6) 79.4 (0.5) 80.5 (0.6)
FALSE-VFL-II 86.7 (0.2) 85.8 (0.2) 80.9 (0.6) 75.4 (0.9) 74.1 (0.4) 79.8 (0.6) 79.9 (0.4)

Table 15: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
six VFL methods trained under MAR 1 conditions and evaluated on seven test patterns.

Test Data MCAR 0 MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9
Isolet

Vanilla VFL 62.1 (2.2) 53.8 (0.5)* 35.7 (0.8)* 26.1 (1.0)* 26.9 (1.8)* 37.7 (1.2)* 38.1 (0.7)*

LASER-VFL 40.8 (11.3) 38.6 (8.3) 33.3 (4.5) 28.0 (2.3) 29.9 (2.3) 34.3 (4.3) 34.5 (3.9)
PlugVFL 79.3 (1.0) 69.2 (0.6) 47.2 (1.1) 35.3 (1.0) 35.7 (1.3) 47.3 (0.9) 46.8 (1.6)
FedHSSL 65.8 (0.6) 58.6 (0.9) 40.2 (0.3) 30.9 (0.5) 30.8 (0.8) 43.5 (0.6) 42.4 (0.4)

FALSE-VFL-I 75.7 (0.3) 73.8 (0.3) 64.3 (0.7) 61.4 (0.6) 61.6 (0.3) 65.4 (0.9) 65.5 (0.8)
FALSE-VFL-II 76.3 (0.3) 73.6 (0.7) 64.6 (0.5) 61.3 (0.4) 61.8 (0.4) 65.3 (0.7) 66.5 (0.9)

HAPT

Vanilla VFL 79.7 (0.8)* 70.4 (1.1)* 53.6 (1.7)* 57.8 (1.2)* 54.7 (1.4)* 47.9 (1.8) 42.7 (4.1)
LASER-VFL 53.1 (11.2) 54.0 (8.9) 48.9 (5.8) 51.0 (5.9) 49.8 (5.9) 48.3 (4.9) 48.1 (6.0)

PlugVFL 84.3 (0.2) 72.0 (1.3) 51.4 (1.8) 58.0 (1.4) 53.2 (1.5) 48.1 (2.6)* 48.3 (5.4)*

FedHSSL 78.9 (0.4) 72.9 (0.5) 63.1 (0.5) 63.7 (0.4) 60.8 (0.6) 58.6 (0.5) 54.9 (0.5)
FALSE-VFL-I 84.7 (0.1) 81.2 (0.7) 71.3 (0.4) 76.0 (0.1) 74.1 (0.5) 67.1 (0.7) 67.5 (0.6)
FALSE-VFL-II 85.1 (0.1) 81.7 (0.4) 71.3 (0.1) 75.3 (0.3) 73.3 (0.3) 68.0 (0.6) 68.1 (0.1)

FashionMNIST

Vanilla VFL 66.6 (2.3) 58.5 (0.9) 42.8 (1.9) 41.5 (1.4) 41.9 (1.4) 42.0 (4.0)* 41.7 (3.0)*

LASER-VFL 73.5 (1.2) 70.8 (0.9) 64.1 (0.6) 63.7 (0.7) 64.8 (1.0) 63.3 (0.6) 61.8 (1.5)
PlugVFL 76.0 (0.4) 72.5 (0.6) 64.6 (0.8) 65.0 (0.8) 65.4 (0.8) 62.1 (1.4) 55.8 (2.1)
FedHSSL 71.8 (1.6) 67.1 (1.6) 55.5 (1.7) 54.4 (2.1) 56.3 (1.8) 53.6 (2.0) 50.7 (2.5)

FALSE-VFL-I 80.6 (0.1) 78.1 (0.3) 67.9 (0.2) 65.4 (0.3) 67.5 (0.3) 66.3 (0.2) 63.3 (0.3)
FALSE-VFL-II 80.5 (0.2) 77.7 (0.2) 67.6 (0.4) 64.7 (0.3) 67.2 (0.1) 65.9 (0.3) 63.4 (0.2)

ModelNet10
Vanilla VFL 83.9 (0.8) 76.4 (1.3) 56.4 (1.7) 42.2 (2.1) 39.5 (2.0) 58.6 (1.4) 60.5 (1.3)
LASER-VFL 76.3 (2.8) 73.2 (3.3) 65.2 (4.9) 55.5 (4.2) 54.6 (4.4) 62.9 (4.7) 64.6 (5.1)

PlugVFL 84.6 (0.5) 71.8 (2.1) 51.2 (3.1) 45.5 (3.2) 40.5 (3.6) 47.8 (3.4) 45.8 (3.3)
FedHSSL 84.1 (0.8) 81.9 (0.9) 70.9 (2.7) 56.3 (5.4) 53.8 (6.6) 71.5 (2.2) 70.6 (2.4)

FALSE-VFL-I 86.8 (0.3) 85.2 (0.4) 79.3 (0.4) 72.1 (0.9) 70.1 (0.8) 77.5 (0.7) 78.3 (0.5)
FALSE-VFL-II 86.9 (0.5) 85.7 (0.1) 78.9 (0.5) 71.9 (0.6) 70.6 (1.0) 78.7 (0.7) 79.2 (0.4)
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Table 16: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
six VFL methods trained under MAR 2 conditions and evaluated on seven test patterns. Boldface
highlights the best result in each column. An asterisk (*) marks accuracy computed with labeled data
only, as including unlabeled data led to lower accuracy.

Test Data MCAR 0 MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9
Isolet

Vanilla VFL 63.8 (1.1) 54.9 (0.6) 35.7 (0.8)* 26.1 (1.0)* 26.9 (1.8)* 37.7 (1.2)* 38.1 (0.7)*

LASER-VFL 55.3 (6.3) 50.1 (4.9) 39.6 (2.6) 31.6 (2.3) 32.7 (2.1) 39.5 (3.3) 39.7 (2.7)
PlugVFL 78.4 (1.0) 68.5 (1.0) 46.7 (0.9) 35.4 (1.5) 35.7 (1.0) 46.4 (1.2) 46.6 (1.3)
FedHSSL 65.2 (0.6) 58.3 (0.6) 40.3 (0.3) 30.4 (0.4) 30.4 (0.5) 43.2 (0.3) 41.7 (0.7)

FALSE-VFL-I 76.7 (0.3) 74.1 (0.3) 65.1 (0.7) 62.1 (0.8) 62.1 (0.7) 65.5 (0.8) 64.8 (0.8)
FALSE-VFL-II 78.0 (0.2) 75.4 (0.2) 65.4 (0.2) 60.8 (0.4) 61.6 (0.6) 66.0 (1.0) 66.3 (0.5)

HAPT

Vanilla VFL 81.2 (0.8)* 72.1 (0.9)* 55.7 (2.1)* 59.4 (1.8)* 56.9 (1.5)* 51.2 (1.4)* 46.6 (4.5)*

LASER-VFL 46.9 (12.9) 49.0 (10.6) 46.2 (5.1) 47.9 (6.7) 46.2 (5.8) 45.1 (7.2) 43.6 (11.2)
PlugVFL 84.6 (0.5) 72.1 (0.6) 51.1 (0.9) 57.5 (1.4) 52.7 (1.2) 48.5 (3.0) 48.1 (5.8)*

FedHSSL 79.2 (0.3) 74.3 (0.3) 64.6 (0.2) 65.5 (0.4) 62.7 (0.6) 59.4 (0.6) 55.9 (0.3)*

FALSE-VFL-I 86.2 (0.2) 81.8 (0.2) 69.6 (0.3) 74.0 (0.3) 73.4 (0.6) 68.0 (0.4) 68.7 (0.4)
FALSE-VFL-II 85.1 (0.3) 80.5 (0.2) 69.1 (0.3) 73.7 (0.6) 72.1 (0.3) 66.7 (0.3) 67.6 (0.4)

FashionMNIST
Vanilla VFL 72.9 (0.4) 67.6 (0.7) 53.4 (2.0) 51.0 (2.5) 52.2 (2.2) 49.8 (2.0) 45.2 (1.4)
LASER-VFL 73.4 (2.5) 70.9 (2.3) 64.2 (1.9) 63.5 (1.6) 64.4 (1.7) 63.3 (2.7) 61.3 (3.6)

PlugVFL 76.8 (0.8) 73.3 (0.9) 64.8 (0.7) 65.0 (0.8) 65.4 (0.8) 62.5 (0.9) 56.8 (0.8)
FedHSSL 71.8 (0.5) 68.5 (0.8) 58.6 (2.1) 56.2 (2.8) 58.5 (2.6) 56.1 (2.4) 51.6 (3.1)

FALSE-VFL-I 80.7 (0.2) 77.9 (0.1) 67.5 (0.1) 65.2 (0.4) 67.6 (0.4) 66.7 (0.2) 63.2 (0.3)
FALSE-VFL-II 80.4 (0.1) 77.2 (0.2) 67.3 (0.4) 65.3 (0.3) 67.1 (0.4) 65.6 (0.4) 62.4 (0.3)

ModelNet10
Vanilla VFL 85.3 (0.2) 76.5 (0.6) 55.2 (1.2) 42.3 (0.9) 39.1 (1.1) 55.7 (1.3) 57.4 (1.7)
LASER-VFL 56.6 (9.4)* 54.3 (7.6)* 48.2 (6.9) 42.2 (6.2) 40.2 (6.0) 45.2 (7.1) 42.2 (7.8)*

PlugVFL 84.2 (0.4) 71.3 (1.7) 51.0 (2.9) 42.4 (1.9) 37.2 (1.8) 45.8 (2.8) 44.2 (1.8)*

FedHSSL 85.3 (0.4) 81.8 (0.9) 67.8 (3.3) 53.7 (4.9) 51.0 (5.4) 66.1 (4.2) 64.5 (4.9)
FALSE-VFL-I 86.3 (0.5) 84.6 (0.6) 78.6 (0.4) 71.3 (0.5) 69.7 (0.3) 77.8 (0.6) 79.1 (0.7)
FALSE-VFL-II 86.6 (0.2) 85.2 (0.2) 78.2 (0.5) 70.9 (0.6) 69.7 (0.5) 77.7 (0.6) 79.1 (0.4)

Table 17: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
six VFL methods trained under MNAR 7 conditions and evaluated on seven test patterns.

Test Data MCAR 0 MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9
Isolet

Vanilla VFL 61.8 (1.7) 52.0 (1.2) 31.2 (1.9) 20.2 (3.0)* 20.6 (1.6) 31.7 (2.1)* 32.1 (1.7)*

LASER-VFL 61.7 (5.7) 56.3 (4.1) 44.6 (2.3) 38.7 (2.6) 39.5 (2.7) 46.3 (3.0) 45.6 (3.1)
PlugVFL 81.1 (0.4) 70.5 (1.3) 47.7 (2.5)* 35.5 (2.6)* 36.9 (3.1)* 49.4 (1.4)* 49.4 (1.0)
FedHSSL 65.6 (0.7) 58.8 (0.7) 40.9 (1.1) 30.9 (0.7) 31.3 (1.0) 43.5 (0.7) 42.3 (0.7)

FALSE-VFL-I 83.6 (0.5) 81.2 (0.5) 69.7 (0.6) 62.3 (1.0) 64.4 (1.2) 70.6 (0.5) 72.1 (0.5)
FALSE-VFL-II 83.3 (0.4) 80.9 (0.5) 69.7 (0.4) 62.1 (0.7) 63.6 (1.3) 71.0 (0.5) 71.9 (0.6)

HAPT

Vanilla VFL 81.7 (0.6) 72.5 (1.5)* 55.9 (1.3)* 59.3 (1.1)* 56.6 (1.3)* 50.8 (2.6)* 44.1 (1.3)
LASER-VFL 61.9 (13.8) 58.1 (9.3) 48.9 (3.5) 54.2 (5.9) 50.8 (4.8) 46.5 (3.4) 49.8 (3.3)

PlugVFL 85.6 (0.3) 71.6 (0.8) 50.6 (1.7)* 58.1 (1.1) 52.9 (1.4)* 46.7 (0.9) 43.9 (0.7)
FedHSSL 80.9 (0.1) 76.3 (0.4) 65.8 (0.4) 66.4 (0.6) 63.8 (0.5) 61.6 (0.3) 58.0 (0.3)

FALSE-VFL-I 85.2 (0.3) 81.7 (0.3) 72.8 (0.4) 73.8 (0.6) 72.4 (0.5) 71.3 (0.3) 72.7 (0.4)
FALSE-VFL-II 84.9 (0.2) 81.9 (0.6) 73.6 (0.4) 73.6 (0.3) 73.0 (0.5) 71.4 (0.6) 72.7 (0.6)

FashionMNIST
Vanilla VFL 74.1 (0.1) 68.8 (0.8) 55.8 (1.8) 53.2 (2.3) 54.8 (2.5) 53.3 (1.8) 48.6 (1.3)
LASER-VFL 71.0 (4.9) 67.6 (4.8) 59.8 (4.5) 60.9 (4.8) 60.6 (4.6) 58.2 (4.8) 56.5 (5.5)

PlugVFL 76.0 (0.6) 72.1 (0.7) 62.9 (1.1) 63.6 (1.1) 63.6 (1.0) 60.9 (0.9) 56.5 (1.7)
FedHSSL 72.9 (0.4) 69.5 (0.6) 59.1 (2.5) 57.0 (3.5) 59.6 (2.9) 56.5 (2.4) 51.9 (2.3)

FALSE-VFL-I 81.1 (0.2) 78.9 (0.3) 70.3 (0.3) 68.1 (0.4) 70.1 (0.2) 70.6 (0.3) 69.7 (0.2)
FALSE-VFL-II 81.1 (0.2) 78.9 (0.1) 70.4 (0.3) 67.5 (0.2) 69.9 (0.3) 70.6 (0.2) 69.7 (0.3)

ModelNet10
Vanilla VFL 84.5 (0.5) 77.3 (1.0) 55.8 (1.4) 50.5 (1.7) 44.9 (1.9) 54.4 (2.1) 53.1 (3.3)
LASER-VFL 79.4 (1.3)* 73.6 (2.1)* 63.8 (3.4) 59.9 (4.6) 57.1 (4.6) 63.8 (4.2) 67.1 (2.5)*

PlugVFL 84.5 (0.5) 75.0 (1.6) 56.0 (3.7) 51.2 (3.7) 45.5 (4.2) 53.9 (4.3) 53.9 (4.9)
FedHSSL 86.6 (0.7) 83.3 (0.7) 68.2 (2.8) 58.7 (2.1) 55.3 (3.1) 64.5 (3.1) 61.0 (3.1)

FALSE-VFL-I 87.2 (0.2) 85.1 (0.4) 80.9 (0.4) 74.6 (0.7) 73.5 (0.3) 80.5 (0.3) 82.0 (0.4)
FALSE-VFL-II 87.9 (0.4) 86.0 (0.4) 81.9 (0.4) 75.4 (1.0) 74.4 (0.6) 81.3 (0.3) 82.8 (0.4)
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Table 18: Mean accuracy (%) and standard deviation (in parentheses) over five independent runs for
six VFL methods trained under MNAR 9 conditions and evaluated on seven test patterns. Boldface
highlights the best result in each column. An asterisk (*) marks accuracy computed with labeled data
only, as including unlabeled data led to lower accuracy.

Test Data MCAR 0 MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9
Isolet

Vanilla VFL 63.2 (0.9) 53.4 (1.0)* 34.5 (1.4)* 24.2 (1.8)* 24.0 (2.1)* 36.3 (1.5)* 36.2 (1.2)*

LASER-VFL 51.8 (6.9) 48.4 (4.8) 40.3 (3.1) 35.0 (1.5) 36.2 (2.0) 42.6 (2.7) 43.5 (3.3)
PlugVFL 82.9 (0.2) 72.3 (0.8) 48.1 (1.2) 35.4 (1.1) 35.1 (1.4) 49.7 (1.3) 51.4 (1.0)
FedHSSL 65.5 (0.2) 58.5 (0.7) 40.0 (0.5) 29.8 (0.7) 29.2 (1.0) 43.2 (0.3) 41.6 (0.4)

FALSE-VFL-I 85.6 (0.2) 81.9 (0.2) 69.3 (0.4) 61.0 (0.4) 63.7 (0.1) 72.7 (0.5) 74.9 (0.3)
FALSE-VFL-II 85.2 (0.2) 82.0 (0.3) 69.6 (0.5) 61.0 (0.5) 63.6 (0.6) 72.5 (0.4) 75.1 (0.6)

HAPT

Vanilla VFL 85.4 (0.6)* 75.4 (1.1)* 56.0 (1.0)* 60.8 (1.3)* 58.1 (0.9)* 49.7 (2.2)* 44.2 (1.9)*

LASER-VFL 59.4 (6.0)* 56.8 (6.0)* 53.0 (4.9)* 57.7 (4.7)* 55.8 (4.4)* 52.3 (4.8)* 55.9 (5.9)*

PlugVFL 86.5 (0.7)* 73.9 (1.1)* 53.1 (1.2) 59.9 (0.7) 54.7 (0.7) 49.3 (1.1) 46.6 (0.8)
FedHSSL 86.4 (0.3) 81.4 (0.6) 68.6 (0.7) 70.6 (0.6) 68.1 (0.8) 62.5 (0.6) 52.9 (0.8)

FALSE-VFL-I 83.0 (0.3) 78.6 (0.7) 66.9 (0.4) 67.4 (0.6) 65.6 (0.2) 68.1 (0.6) 72.3 (0.6)
FALSE-VFL-II 84.5 (0.5) 80.2 (0.3) 69.2 (0.4) 69.1 (0.3) 68.3 (0.5) 69.5 (0.3) 73.2 (0.5)

FashionMNIST
Vanilla VFL 74.4 (0.4) 68.7 (0.6) 52.3 (2.1) 48.7 (2.2) 50.5 (2.4) 50.0 (2.1) 47.4 (1.7)
LASER-VFL 62.8 (2.9)* 59.3 (2.4)* 51.1 (1.9)* 51.5 (2.5) 51.9 (2.6) 50.4 (2.2) 49.5 (2.5)

PlugVFL 74.9 (0.4) 70.4 (0.7) 60.1 (1.9) 60.4 (1.3) 60.6 (1.6) 58.8 (1.3) 54.8 (1.1)
FedHSSL 74.2 (0.5) 71.1 (1.0) 60.3 (3.0) 57.6 (4.2) 60.1 (3.7) 57.8 (2.9) 53.6 (2.7)

FALSE-VFL-I 79.2 (0.2) 76.3 (0.1) 65.2 (0.1) 60.8 (0.4) 63.9 (0.4) 68.1 (0.3) 70.2 (0.2)
FALSE-VFL-II 79.6 (0.2) 76.6 (0.4) 65.3 (0.4) 60.2 (0.5) 63.2 (0.5) 68.0 (0.2) 70.1 (0.2)

ModelNet10

Vanilla VFL 84.5 (0.7) 76.7 (0.5) 54.3 (1.8) 48.6 (1.4) 41.2 (1.0) 50.0 (1.3) 45.1 (3.0)*

LASER-VFL 78.6 (4.9) 74.1 (6.0) 63.8 (6.6) 60.1 (4.9) 55.5 (4.6) 62.9 (7.0) 65.8 (8.8)
PlugVFL 85.8 (0.6) 74.0 (0.9) 54.4 (2.9) 49.6 (4.8)* 44.1 (5.1)* 52.7 (3.6) 53.4 (3.6)
FedHSSL 85.9 (0.4) 83.7 (0.7) 73.6 (1.3) 63.8 (2.5) 60.8 (3.2) 70.1 (2.0) 64.9 (2.4)

FALSE-VFL-I 87.1 (0.4) 85.0 (0.3) 77.4 (0.4) 72.1 (0.8) 70.5 (0.4) 78.2 (0.4) 81.3 (0.6)
FALSE-VFL-II 86.9 (0.2) 84.9 (0.2) 77.6 (0.4) 71.5 (0.7) 71.3 (0.9) 79.7 (0.3) 81.5 (0.2)
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Table 19: Relative robustness of each method to severe missingness. Each entry is the ratio (in %) of
the mean accuracy obtained when training under MCAR 5 to that obtained under MCAR 2, evaluated
on seven test patterns. A ratio above 100% means that training with the harsher MCAR 5 mechanism
yields higher accuracy than with MCAR 2. Boldface highlights the best ratio in each column.

Test Data MCAR 0 MCAR 2 MCAR 5 MAR 1 MAR 2 MNAR 7 MNAR 9
Isolet

Vanilla VFL 81.6 81.7 81.7 75.3 77.8 79.4 78.3
LASER-VFL 88.0 88.1 88.4 88.4 88.5 86.5 89.4

PlugVFL 96.7 94.2 95.6 99.2 100.4 96.6 99.2
FedHSSL 86.7 85.9 86.1 89.7 93.0 88.4 85.5

FALSE-VFL-I 96.6 97.1 106.2 116.1 112.8 106.2 108.2
FALSE-VFL-II 95.3 95.8 103.5 114.6 111.2 103.0 107.6

HAPT
Vanilla VFL 92.5 92.4 97.1 93.9 95.0 100.6 96.2
LASER-VFL 127.2 115.6 106.1 103.8 101.8 114.0 124.7

PlugVFL 97.7 95.8 94.0 95.8 93.7 92.7 93.0
FedHSSL 92.5 90.9 91.5 89.9 90.1 89.9 94.6

FALSE-VFL-I 97.2 97.2 101.4 103.1 101.7 101.9 103.9
FALSE-VFL-II 97.9 100.4 107.4 106.3 106.3 104.2 102.7

FashionMNIST
Vanilla VFL 95.8 95.7 95.2 95.3 96.2 94.8 96.5
LASER-VFL 95.4 95.4 96.0 96.2 95.6 95.4 94.2

PlugVFL 98.3 97.8 97.6 99.3 98.9 95.3 93.8
FedHSSL 92.1 91.0 89.1 90.1 90.0 87.4 86.2

FALSE-VFL-I 97.6 98.6 103.6 103.9 103.1 103.2 101.4
FALSE-VFL-II 98.4 99.3 104.3 105.2 104.1 103.5 101.8

ModelNet10
Vanilla VFL 98.9 96.6 96.9 93.9 94.2 95.4 93.9
LASER-VFL 100.3 97.5 95.4 100.8 100.8 96.9 98.1

PlugVFL 98.4 97.8 95.8 95.4 94.7 94.9 92.3
FedHSSL 97.7 97.0 94.5 90.5 88.5 96.0 100.2

FALSE-VFL-I 99.7 100.2 103.1 105.2 108.3 103.6 102.9
FALSE-VFL-II 100.4 101.2 102.2 106.4 106.9 103.2 101.3

F LIMITATIONS AND FUTURE WORK

In FALSE-VFL-II, the mask distribution is modeled as pψ(m|x) =
∏
k∈[K] pψk(mk|xk). This

formulation supports the MNAR mechanism, where missingness depends on both observed and
unobserved values. However, under this model, each feature vector xk can only influence the
missingness of its own entry mk, and not that of other parties, i.e., ml for l ̸= k. In this sense, the
current model cannot capture inter-party dependencies in the MNAR mechanism.

Extending our approach to model such inter-party dependencies would be a natural next step. However,
doing so poses a significant challenge, as direct sharing of xk across parties is generally prohibited
due to privacy constraints. We leave the development of such models that account for inter-party
MNAR dependencies while preserving privacy as an important direction for future work.

G LLM USAGE

To improve clarity, parts of text were refined with assistance from a large language model; all content
was reviewed and verified by the authors.
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