
AUGMENTING TRANSFORMER AUTOENCODERS WITH PHENOTYPE CLASSIFICATION
FOR ROBUST DETECTION OF PSYCHOTIC RELAPSES

N. Efthymiou1, G. Retsinas1, P. P. Filntisis1, and P. Maragos1,2

1Institute of Robotics, Athena Research and Innovation Center, Maroussi 15125, Greece
2School of ECE, National Technical University of Athens, 15773 Athens, Greece
{nefthymiou, george.retsinas, pfilntisis }@athenarc.gr, {maragos}@cs.ntua.gr

ABSTRACT

Recently, deep autoencoder architectures have received atten-
tion for the problem of unsupervised anomaly detection. De-
tecting psychotic relapses in mental health patients is a cru-
cial challenge, often framed as anomaly detection, given the
limited availability of data during relapsing states. In this pa-
per, motivated by the fact that during relapses patients tend
to undergo behavioral changes, we augment the classical au-
toencoder architecture with extra patient identification com-
ponents. We show that formulating the problem as one of
both signal reconstruction and patient identification largely
improves the overall precision and robustness of relapse de-
tection and significantly outperforms previous methods with
a relative improvement of 15%. In addition, we also explore
multiple ways to fuse the identification and reconstruction er-
rors into a unified anomaly score that outperforms the results
achieved by each error in isolation.

Index Terms— relapse detection, person identification,
psychotic disorder, biometrics, smartwatch

1. INTRODUCTION

Nowadays, a notable trend has emerged within the mental
health community. Practitioners, clinicians, and engineers
are increasingly collaborating to harness the power of dig-
ital phenotyping [1, 2]. By tapping into the extensive data
provided by wearables and smart devices, these professionals
aim to offer a more nuanced evaluation of mental health, with
an ultimate goal of predicting relapses [3]. Wearables offer
the advantage of being unintrusive, blending into daily life
and yielding authentic data without observation biases. Their
continuous “in situ” recording not only captures obvious be-
havioral changes but also highlights subtle, often overlooked
shifts, that potentially signal an impending relapse [4].

Typically, relapse detection can be tackled both as a su-
pervised problem (when enough data are available in both re-
lapse and non-relapse states) and as unsupervised (when lim-
ited data is available for relapsing states). Supervised learn-
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ing approaches for correlating the appearance of relapses with
physiological data have mostly focused on either statistical
significance testing or classification of hand-crafted features
using traditional machine learning algorithms. Consequently,
a variety of feature representations have been proposed in
such medical settings using data from wearables [5, 6]. Unsu-
pervised approaches for relapse detection using autoencoders
have been presented in [7, 8, 9], while in [10], clustering
models were used. A different paradigm was employed by
[11] where relapse detection was cast as a miss-classification
problem by networks trained to predict the identity of the
users from their biosignals, while in [12] a self-supervised
method was proposed using survival analysis. An important
milestone towards unsupervised relapse detection was the or-
ganization of the e-Prevention Challenge I in ICASSP 2023
which focused on relapse detection in patients with psychotic
disorders. The winning method of [13] constituted of an en-
semble of deep autoencoder architectures (based on CNNs,
LSTMs, and Transformers), trained in a personalized scheme
(one model per patient) and using the reconstruction error as
an anomaly score. Hamieh et al. [14] presented also a simpler
shallow autoencoder for tackling the problem. Finally, [15]
presented a method based on isolation forest that was trained
on carefully handcrafted features.

In this paper, we present a novel framework that aug-
ments the traditional autoencoder architectures that are used
for anomaly detection. More specifically, we propose to
seamlessly integrating autoencoder-based relapse detection
with misidentification methods [11, 5]. This integration can
be used during inference to create a robust anomaly detection
score. Overall, our contributions are summarized as follows:
1. We augment classical autoencoder architectures for
anomaly detection with extra patient identification compo-
nents. Specifically, we adopt a common “universal” archi-
tecture for all patients. The joint objective of reconstruction
and patient identification results in substantial improvement
in detecting relapses, even without taking into account the
identification predictions of the network.
2. We leverage the learned feature representations and train
patient-specific models to construct an identification anomaly
error that further improves relapse detection scores compared
to the classical reconstruction anomaly error.
3. Finally, we explore the fusion of the identification anomaly
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Fig. 1. Framework overview. A transformer autoencoder is first trained with reconstruction and identification losses. At inference, the final
anomaly score is calculated using the reconstruction error ECDF and the identification score from personalized one-class SVM models.

error and reconstruction anomaly error into a single joint
anomaly error that achieves significantly higher performance
compared to each error in isolation.

2. DATASET

We use the dataset of the Track 2 of the ICASSP 2023 e-
Prevention Grand Challenge I [16] which includes smart-
watch biosignals from 10 patients with psychotic disorders,
monitored over the course of 6 months, all of whom relapsed
at some time (once or more). User recordings are split into
separate days and the data for each day include continuous
signals of linear acceleration (from the accelerometer), angu-
lar velocity (from the gyroscope), heart-rate and RR-interval
(from photoplethysmography - PPG). The values of the sig-
nals were aggregated over 5 seconds to mitigate the effect of
each individual sensor noise in classification tasks, as pointed
out in [5]. The final training set of the dataset includes data
acquired only while the patients were stable (1906 days),
while the validation (533 days) and test sets (544 days) span
both stable and relapsing periods.

3. DETECTION OF PSYCHOTIC RELAPSES

Here we describe the motivation and architecture of our pro-
posed framework for psychotic relapse detection. In a nut-
shell, we borrow from two diverse, yet effective, approaches,
namely relapse detection as anomaly prediction [13] and re-
lapse detection as person miss-identification [11] and propose
a seamless way to combine these into a single efficient frame-
work. This combination is multifaceted: we include both
schemes to the training phase, with two separate losses form-
ing a multi-task loss, as well as during evaluation, with an
explored range of possible fusion approaches.

3.1. Framework Architecture

We base our method on the framework of [13]. First an
autoencoder-based architecture is trained on data during nor-
mal (non-relapse) periods. After training, a Cumulative Dis-
tribution Function (CDF) is computed for the reconstruction

error on the training data. Finally, at inference time the value
of the CDF is used as an anomaly score.

Architecture-wise, the underlying model is a transformer-
based autoencoder the detailed architecture of which is de-
picted in Fig. 2. Here, the input signals are projected to an
embedding space and a positional encoding is used to cap-
ture the temporal correlations. The Encoder and Decoder
sub-modules are multi-layered and multi-headed transform-
ers. Finally, the output of the decoder is projected into the
same size as the input. The experimental section includes an
ablation over the transformer’s hyper-parameters.

Note that in the initial work [13], multiple families of
neural networks were considered, including CNNs, where for
each patient the best model was selected via the validation set.
In contrast, in this work, we focus only on the transformer ar-
chitecture, aiming to showcasing its prominence, while avoid-
ing the more costly solution of multiple networks, one for
each person. Instead, we propose a “universal” model capa-
ble to predict anomalies across different persons. Our moti-
vation is two-fold: 1) cross-patient patterns for anomaly de-
tection - we may extrapolate useful information for a possible
relapse from other patients and 2) storage efficiency - a single
model should be trained and stored for all patients.

3.2. Introducing Phenotype Classification

We proceed to integrate the person identification concept in
the existing framework, following the success of our previous
works [5, 11]. To do this, we train the network to identify
patients from the encoder’s embedding (where all information
is distilled) using an additional identification head. We also
add the corresponding cross-entropy loss as an auxiliary loss
term during the framework’s training (Fig. 2).

In total, the autoencoder is now trained with the fol-
lowing joint criterion: L(x, y) = LMSE(d(e(x)),x) +
λLCE(c(e(x)), y), where x is the input signal, y the per-
son’s identity, while e , d and c are functions, implemented as
neural networks, that represent the encoder, the decoder and
the classification head, respectively. Moreover, LMSE is the
mean squared error loss, LCE the cross entropy loss and λ a
hyper-parameter that balances the contribution of the latter.
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Fig. 2. Visual example of the inability of classification to capture
outliers as anomaly. Here, the depicted hyperplane separates the two
classes. When an outlier is introduced, which may indicate a sudden
change in behavior, it is classified with high probability to be indeed
person #2. Nonetheless, unless a distribution model is considered,
this rationale cannot capture potential critical outliers.

Our key motivation behind this extra classification cri-
terion lies on the fact that under psychotic relapses patients
undergo considerable behavioral alterations which can “trig-
ger” a miss-classification of the person’s identity. Apart from
this end-goal aspect, the joint training of signal reconstruc-
tion and person classification could potentially enhance both
tasks, highlighting their correlation and further implicitly pro-
mote the generation of highly effective encoder embeddings.

3.3. Inference: Which Criterion to Use?

The system formulation of two simultaneous tasks leads to
the following questions: “which criterion to use?” and “how
can we combine both the task-related metrics?”.

First, since relapse-detection is done per-day, to generate
the corresponding anomaly scores we first extract 10-feature
sequences from 5-minute data slices and combine them into
four-hour windows. We use all of the available four-hour du-
ration windows in overlapped spans of three hours to provide
a robust representation.

Following the anomaly prediction rationale, the Recon-
struction error, processed by a CDF, is used as an anomaly
score. On the other hand, following the phenotype classifi-
cation rationale, a straightforward way to define an anomaly
score is to directly use the predicted probability p of the cor-
responding user for each sample (in fact, 1 − p). In simple
terms, as the probability drops, there is a stronger indication
of a possible anomaly. However, preliminary experimentation
showed that this metric led to under-performance and was not
a good indicator for behavioral changes.

This under-performance can be attributed to the classifi-
cation space, where classes are separated by hyper-planes, as
depicted in Fig. 2. Under this assumption, the introduction
of an outlier, in the sense that the new prediction is not close
to an existing one, can be faithfully classified to a specific
class with a high probability, following this hyper-plane sep-
aration rationale. On the other hand, if we model the distri-
bution of each class, after having them trained with the afore-
mentioned classification pipeline, we can potentially detect
anomalies which correspond to behavioral changes. To this
end, we proposed the following procedure: 1) we train for

Model Size Heads Layers AUROC AUPRC Mean

Base

32 8 2 0.6254 0.6343 0.6299
32 8 4 0.6206 0.6285 0.6246
32 16 4 0.6212 0.6368 0.6290
64 8 2 0.6224 0.6319 0.6271

128 8 2 0.6221 0.6296 0.6259

Augmented
with

Identification
Loss

32 8 2 0.6469 0.6565 0.6517
32 8 4 0.6223 0.6312 0.6267
32 16 4 0.6205 0.6300 0.6252
64 8 2 0.6290 0.6456 0.6373

128 8 2 0.6217 0.6305 0.6261

Table 1. Ablation study on various transformer architectures.
The evaluation is displayed on the validation set for the Mean Square
Reconstruction Error.

each user a one-class SVM on features extracted from the
transformer encoder on his samples. 2) Subsequently, we use
for each sample in the validation test the score of the one class
svm as a identification anomaly error. This pipeline acts as a
lightweight personalized post-processing, applied on the fea-
tures of the “universal” model. As we will show this method
significantly boosted relapse detection results.

Score Fusion: The proposed framework results to two
distinct anomaly scores. To further promote the effectiveness
of our method, we consider different techniques for fusing the
reconstruction anomaly score and the identification anomaly
score: 1) non-linear combination (i.e., product), 2) fitting a
linear model on the two scores, and 3) fitting a linear model on
the per-input-signal reconstruction anomaly score, combined
with the identification score.

4. EXPERIMENTAL ANALYSIS

Experimental Setup: Our models are trained and evaluated
using as input sequences of 10 features extracted from a slice
of 5 minutes data. These features are the mean norm of linear
and angular acceleration, the mean of RRintervals and heart
rate, the major axis of the Poincare ellipse, the normalized low
and high powers of the Lomb-Scargle periodogram, temporal
enconding of the recording time, and percentage of valid sam-
ple in the 5 minutes data. During testing, because every day
has a different number of windows, we use the mean anomaly
score for the final per-day anomaly score. We trained each
scheme three times for 80 epochs on the training dataset of
non-relapse days and used the validation set to select the best
model. As relapse detection metrics we use the Area Under
the Receiver Operating Characteristic Curve (AUROC), Area
Under the Precision-Recall Curve (AUPRC), and their har-
monic mean (averaged over the three runs).
Transformer Architecture Ablation: First, we examined
the impact of a single universal model with and without
the proposed identification loss, under different architec-
tural choices (encoder/decoder hidden size, #heads, #layers).
Evaluation is performed using only the reconstruction error.
Table 1 presents this architectural ablation for both training
variations (with and without the extra loss). Notably, identi-
fication loss, only as a training option, provides a consistent



Best Val. Reconstruction Error Best Val. Identification Error Best Val. Combination
Validation

AUROC AUPRC Mean AUROC AUPRC Mean AUROC AUPRC Mean
Reconstruction 0.6299 0.6360 0.6329 0.5486 0.5636 0.5562 0.6033 0.6139 0.6086
Identification Error 0.5945 0.6307 0.6125 0.6581 0.6882 0.6731 0.6407 0.6752 0.6579
Combination 0.6491 0.6940 0.6716 0.6539 0.6895 0.6717 0.6670 0.7129 0.6900

Test
Reconstruction Error 0.6592 0.6631 0.6611 0.5689 0.5889 0.5789 0.6314 0.6401 0.6357
Identification Error 0.5744 0.6139 0.5941 0.6430 0.6725 0.6578 0.6335 0.6595 0.6465
Combination 0.6598 0.7095 0.6847 0.6629 0.6940 0.6785 0.6865 0.7332 0.7099

Table 2. Relapse detection metrics (rows) when we select as final anomaly score: 1) the reconstruction error, 2) the identification error, 3)
their combination. Each super-column shows according to which criterion the final model was selected. For all metrics, higher is better.

Validation Test
λ AUROC AUPRC Mean AUROC AUPRC Mean

1.0 0.6670 0.7129 0.6900 0.6865 0.7332 0.7099
0.8 0.6816 0.7087 0.6951 0.7033 0.7395 0.7214
0.6 0.6923 0.7010 0.6966 0.7002 0.7158 0.7080
0.4 0.7017 0.7389 0.7203 0.7231 0.7667 0.7449
0.2 0.6678 0.6781 0.6730 0.6934 0.7113 0.7023
0.1 0.6628 0.6948 0.6788 0.6768 0.7161 0.6964

Table 3. Ablation study (combination score) on the scale λ of
the identification loss during training for the anomaly score of the
combination.

Global Pers. Global-Signal Pers.-Signal
0.7291 0.7758 0.7241 0.7812

Table 4. Mean AUROC-AUPRC when doing supervised fusion
of anomaly scores using ridge regression.

increase in relapse prediction. The best overall model (32
hidden size / 8 #heads / 2 # layers) exceeds the rest base mod-
els and achieves results comparable to the winning method of
the e-Prevention Challenge [13].

Evaluation Strategies & Metrics: Next we explore the per-
formance of our identification anomaly score on relapse de-
tection, as well as the formulation of a joint anomaly score.
Table 2 presents relapse detection results based on three dif-
ferent anomaly scores: 1) reconstruction error, 2) identifica-
tion error, and 3) their non-linear combination. Importantly,
during the training phase, we select the model with the best
detection metric. Nonetheless, in this setup we have three
distinct scores to be used for calculating the detection metric.
Thus it is not fair to select the best validation model according
to a specific score and then evaluate our system using another
scoring option. To this end, depending on which criterion is
used, three different models were selected from the validation
set and evaluated against all three scores. As it was expected,
the model selection affects significantly the final prediction
score. We observe that the use of the proposed identification
error results in higher performance, compared to using the
reconstruction error. In addition, for both the validation and
test set, using a criterion based on the combination further
improves the result in almost every case.

Moreover, for the sake of a thorough exploration, Table
3 presents an ablation study for the λ hyper-parameter that
scales the LCE cross entropy loss and as a result, controls the

Methods AUROC AUPRC Mean

Unsupervised

Avramidis et al.[15] 0.5839 0.6263 0.6051
Hamieh et al.[14] 0.6072 0.6347 0.6209
Calcagno et al. [13] 0.6469 0.6509 0.6489
Combination (Ours) 0.7231 0.7667 0.7449

Supervised/Fusion Pers.-Signal (Ours) 0.7343 0.8291 0.7812
Table 5. Final results on the e-Prevention Challenge I dataset.

contribution of the identification part of the framework. In
this experiment, the combination fusion technique is selected.
It should be noted that previous experiments have a predefined
scale of λ = 1.

Supervised Fusion: As a final exploratory experiment, we
explored a supervised fusion of the anomaly scores, by run-
ning ridge regression of positive values on the output anomaly
scores of the validation set and the corresponding labels, and
then testing. We considered four different methods: 1) one
global linear model, 2) personalized per-person linear models,
3) one global linear model which takes into account the per-
signal reconstruction error (instead of the mean reconstruc-
tion error as used till now), and 4) personalized per-person
models with per-signal reconstruction error weights. Our re-
sults, shown in Table 4 show that best fusion of scores is
achieved when taking into account the per-signal reconstruc-
tion error and using personalized linear models for each pa-
tient. These findings suggest the potential significance of in-
dividual signals in detecting relapses, prompting the need for
further investigation towards this direction in future works.

Final Results: Finally, in Table 5 we show comparison with
the other SoTA methods on the e-Prevention Challenge I
dataset. As we can see, our developed framework achieves
a relative improvement of almost 15% in the unsupervised
setting and 20% when using our supervised fusion.

5. CONCLUSION

We have presented a novel framework for relapse detection
that integrates traditional autoencoder architectures and per-
son identification. Our experiments showed that our dual
approach, focusing jointly on data reconstruction and patient
identification, significantly and consistently outperformed
previous methods by a large margin. This paves the way
for more tailored and timely interventions, highlighting the
evolving role of technology in patient monitoring and care.
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