
Structure Based Dataset on SAT Solving with
Graph Neural Networks

Yi Fu
The University of New South Wales
yi.fu.1@student.unsw.edu.au

Anthony Tompkins
The University of New South Wales
anthony.tompkins@unsw.edu.au

Yang Song
The University of New South Wales

yang.song1@unsw.edu.au

Maurice Pagnucco
The University of New South Wales

morri@cse.unsw.edu.au

Abstract

Satisfiability (SAT) solvers based on techniques such as conflict driven clause
learning (CDCL) have produced excellent performance on both synthetic and
real world industrial problems. While these CDCL solvers only operate on a per-
problem basis, graph neural network (GNN) based solvers bring new benefits to
the field by allowing practitioners to exploit knowledge gained from previously
solved problems to expedite solving of new SAT problems. However, one specific
area that is often studied in the context of CDCL solvers, but largely overlooked in
GNN solvers, is the relationship between graph theoretic measure of structure in
SAT problems and the generalisation ability of GNN solvers. To bridge the gap
between structural graph properties (e.g., modularity) and the generalisability (or
lack thereof) of GNN based SAT solvers, we present StructureSAT: a curated
dataset, along with code to further generate novel examples, containing a diverse
set of SAT problems from well known problem domains. Furthermore, we also
utilise a novel splitting method that focuses on deconstructing the families into
more detailed hierarchies based on their structural properties. With the new dataset,
we aim to help explain problematic generalisation in existing GNN SAT solvers,
and demonstrate an alternative approach to expedite GNN training efficiency by
exploiting knowledge of structural graph properties. We conclude with multiple
future directions that can help researchers in GNN based SAT solving develop
more effective and generalisable SAT solvers.

1 Introduction

The satisfiability (SAT) [10] problem is a hallmark of computer science research with remarkable
real-world utility, especially in solving combinatorial optimisation problems. SAT has formed the
basis of the study of computational complexity especially around the complexity class of NP problems.
Moreover, as a theoretical tool, it has facilitated research into the nature of computation and solving
difficult computational problems. On the practical side, SAT has been applied to many interesting real
world problems such as logistics planning [36], product configuration [56], and software verification
[34], retaining its high relevance today.

Advances over the last decade in SAT solving have appeared to converge on conflict driven clause
learning (CDCL) methods [46] for the best general problem solving performance. While it is widely
believed that CDCL solvers are performant towards various aspects of problems [2], such solvers
almost exclusively operate on a per-problem basis. That is to say they do not explicitly reuse
knowledge from different problems. Alternatively, graph neural networks (GNNs) have emerged as a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

complementary approach to representing and solving SAT problems by incorporating the benefits of
deep learning [26]. Using an optimisation based approach, as opposed to a pure search like algorithm
in CDCL, GNN-based solvers have the potential to adapt useful information from training problems
to accelerate solving unseen novel problems.

However, SAT problems largely reside in NP-hard problems. In reality, for machine learning methods
such as GNNs, prior works have demonstrated provably negative results on challenges that are
NP-hard [62]. Although deep neural networks have the ability to ingest large datasets [39, 55], there
lacks a dataset that facilitates sufficiently large and unbiased training for SAT problems, and existing
SAT datasets with higher difficulties generally have a limited number of problems. Indeed, currently
the largest benchmarks SATLIB [32] and SATCOMP [33] contain less than 10k industrial problems.
While we can generate synthetic datasets to train GNNs [53], the resulting models would struggle
to generalise to more diverse and challenging, or real-world problems [44], limiting the application
of GNN-based solvers. Moreover, we believe generalisation in the context of SAT problems has
currently been greatly underrated and oversimplified. More specifically, SAT problems in prior work
are typically generated in a random manner without delving into what makes instances difficult or
useful for training, potentially limiting the models from generalising to more challenging datasets,
especially to industrial instances. For example, the largest SAT dataset on GNN – G4SATBench [44],
which is constructed with 7 generators, only considers generalisation on the numbers of variables
as a measure of performance vs. complexity. However, the impact of the quality of a dataset is
greatly overlooked and remains a less explored area. In particular, problem difficulty can be strongly
influenced by the intrinsic graph structure of each problems, as shown experimentally on traditional
solver [2]. No prior work has shown if the same structural properties studied in SAT so far could
influence GNN’s performance, especially their ability to generalise.

To bridge the gap between structural measures and generalisability of GNNs on SAT, we propose
StructureSAT, a large-scale dataset containing diverse problem domains and structural measures. In
this work, we are not interested in the set of all possible SAT problems, but rather existing, well
studied, SAT problem domains which we aim to analyse through the lens of graph theoretic structure.
Thus, we focus on small, easy-to-generate synthetic training datasets for developing GNN models that
can better generalise. StructureSAT contains 11 SAT domains from 4 high level categories: random,
crafted, pseudo-industrial and industrial, within which we study 9 structural properties that have
proven to be influential to traditional SAT solvers, including both conjunctive normal form (CNF)
based and graph based properties [2]. We carefully deconstruct each problem domains based on their
structural properties, and split each domain into low-value property subsets and high-value property
subsets for each of the properties. Details of the dataset can be found in Appendix B. Moreover,
to capture the relationship between the SAT problem structures and generalisation ability of GNN
solvers, we conduct thorough experiments using 3 GNN baselines and benchmark their generalisation
performance on a diverse set of in-domain and out-domain problems. Our results highlight the
existing challenge and potential future directions on improving the generalisation performance of
current GNN-based solvers. We bring light to training set to test set generalisation in GNN-based
SAT solvers, and graph theoretic notions of structure, which have been well studied in the CDCL
SAT literature but only lightly touched on for GNN-based SAT solving.

2 StructureSAT

StructureSAT consists of multiple problem domains, for each of which we control the corresponding
attribute values. In this section, we briefly explain SAT problems and present the structure properties
measured in the dataset. Then, we introduce the types of data and generators used for raw data
generation. Lastly, we detail our structure-based splitting method. Detailed explanations of our
dataset are presented in Appendix B.

2.1 SAT preliminaries

In propositional logic, the SAT problem is the problem of finding an assignment of truth values (true or
false) to propositional variables that make a Boolean formula satisfiable (i.e., true). Boolean formulae
are typically expressed in conjunctive normal form (CNF). We denote the set of propositional variables
by V . A literal l is either a variable v ∈ V or its negation ¬v (or v). A clause c is a disjunction of
literals (l1 ∨ l2 ∨ ..ln), where ∨ denotes propositional logic “or". A formula f is a conjunction of

2

clauses (c1 ∧ c2 ∧ ...cn), where ∧ denotes propositional logic “and". Generally speaking classical
SAT solvers can be divided into complete solvers and incomplete solvers. A complete solver is able to
prove unsatisfiability or find a satisfying assignment if they exist for a problem. Most complete solvers
are based on the Davis–Putnam–Logemann–Loveland (DPLL) algorithm [18, 17], a backtracking
search algorithm. Two popular variations of DPLL solver are the Conflict-Driven Clause Learning
(CDCL) solvers [46], which learn and add new conflict clauses to the original formula, and look-ahead
solvers [31], which do lookahead for a selected decision variable. In contrast, an incomplete solver
cannot prove unsatisfiability such as the Moser-Tardos (MT) solver [12] and WalkSAT solver [51]
that are derived from the stochastic local search (SLS) algorithm, which repeatedly selects variable
and changes its value until an assignment or a limit is reached.

SAT formulas have been expressed using various graphs focusing on different structural properties [2].
Traditional SAT community usually encodes SAT formulas as undirected weighted graph including
variable incidence graph (VIG) and clause-variable incidence graph (CVIG) [7]. VIG is a graph
with literals as nodes and two literals are connected with edges if and only if they occur in the same
clauses. CVIG is a bipartite graph having the set of variables and clauses as vertices. They are
connected if a variable occurs inside a clause. Another commonly used set of graphs are unweighted
graphs including VIG, variable clause graphs (VCG), literal incidence graphs (LIG), and literal
clause graphs (LCG). LIG extends VIG through extra edges between literals and their negations.
VCG and LCG are bipartite graphs similar to CVIG, but without weights. LCG also has an extra
edge between literals and their complements. Among all the graphs, LCG has been used most in
GNN based SAT solving as others either lose important information of clause (LIG and VIG), or
information of polarity (VCG). As prior research [44] has shown that the particular bipartite graph
construction (LCG or VCG) does not have much effect on model accuracy while non-bipartite graphs
(LIG or VIG) , we will be focusing on LCG only.

2.2 SAT structure properties

In this work we classify structural properties of SAT problems into two classes based on the embedding
methods: CNF based properties and graph based properties [1]. These properties are used as splitting
method for training and testing in the dataset.

Given a SAT problem P , the CNF based properties are related to the CNF encoding of P . The most
popular ones are Backbone [37] and Phase transition [14]. Graph based properties are structural
properties from embeddings of a LCG graph G. Given a problem with set of variables V and set of
clauses C, the LCG graph G with vertex X and weight w is defined as G = (X,x|x ∈ C ∧ V ,w)
and the weight is either 1/|X| if variable is in clause, 1/|V | for weights between variables and their
negations, or 0 if nodes are not connected. Each node x in graph has degree degx. Included graph
properties in StructureSAT are Self-similary [3], Scale-free [6], Treewidth [47], Centrality [22],
Community structure [5], Small-world [58] and Entropy [66].

2.3 StructureSAT composition

We use various existing SAT generators and datasets to produce original SAT formulas in 11 domains.
These include Random-3-SAT generated using CNFgen [40], SR(n) [53], Combinatorial problems
(5 domains) from CNFgen[40], Community Attachment (CA) from [24], Popularity-Similarity
(PS) [25], industrial problems SATCOMP from SATCOMP2007 and psudo-industrial problems
from Graph Generative Models G2SAT [63].

2.4 Structure-aware splitting and generalisation selection

We also propose a novel splitting method for StructureSAT and focus on 3 types of generalisation
tasks. After generating the raw datasets, instead of randomly splitting them to train/valid/test sets,
we divide each raw datasets based on specific structural values. Specifically, for each domain, we
select the average value Z from every calculated graph-based properties, as shown in Table 3, and
split each domain into a low-value subset and a high-value subset, producing a total of 16 subsets (8
structures ∗ 2 ranges) per domain. Each subsets contains 80k training data and 10k validation data.1

1Our dataset and codebase are available here.

3

https://drive.google.com/drive/folders/1ZrhRlRqQUTrYExVzVbXaocjvNIi2Os25?usp=sharing.

For different testing sets, we focus on 3 aspects of test problems: in-domain larger problems,
in-domain problems with different properties, and out-of-distribution problems. Specifically, for
in-domain larger problems, we follow the random generation process and generate larger problem
sets for all the synthetic generators. For example, for training with SR problems, the training and
validation sets contain problems with 10-40 number of variables, while the testing sets contain
problems with 40-100 and 100-200 number of variables, each with 10k pairs.

To test generalisation on in-domain problems with different structures, we are interested in random
3-SAT with different c/v ratios and different backbone values on all domains. For analysing the CNF
based property - c/v ratio on random 3-SAT, the training and validation sets are problems with 10-40
number of variables, and a c/v ratio of roughly 4.7. Our testing set contain random 3-SAT problems
with same number of variables, but different number of clauses. Specifically the test set has a c/v
ratio of 3.5, 4, 5.5 and 6, with each ratio having 10k pairs of problems.

For out-of-distribution problems, we randomly generate 10k problem pairs from each synthetic
generators without property split, while also including small-size industrial and application problems
from SATCOMP and generated G2SAT problems.

We also empirically analyze the effect of augmentation to generalization, since this might cause the
destroying of structure during the addition of learned clauses [5]. Prior work [44] has shown that
training on problems with adding learned clauses from CDCL solvers could lead to better accuracy
on augmented SAT domains than training on raw problems. Thus, we gather learned clauses from
produced DRAT-trim proofs [60] after running problems with the CadiCal solver [21], then augment
our dataset with the collected learned clauses.

3 Experiment

In this section, we experimentally evaluate the out-of-distribution generalisation ability of GNN-based
SAT solvers with StructureSAT. Specifically, we investigate the following questions: Q1: How does
the structure influence generalisation to larger size problems; Q2: Could GNNs generalise to the
same domain but for problems with different structure; Q3: How much does structure influence out
of distribution generalisation; Q4: Does training on augmented problems influence out of distribution
generalisation? Due to the limit in space, we will present the experiment on Q3 and Q4 only in the
following section. All other experiments can be found in Appendix F.

3.1 Evaluation setup

With the newly developed dataset, with details we conduct several experiments on the task of
predicting satisfiablity of SAT problems, which is considered as supervised binary graph-classification
task. We consider 3 baseline GNN models NeuroSAT [53], GCN [38] and GIN [61] in our experiments
and follow the implementation of G4SATBench [44]. We refer the reader to Appendix E for more
implementation details. As prior work has shown that different GNN models perform similarly in
general [44], we want to emphasise that the main focus of this paper is to find the general trend on
generalisation performance of GNN-based SAT solvers with regard to various structural measures,
which can guide future development of robust GNN-based solvers applicable to challenging problems.

3.2 Generalisation to other domains

Out-of-distribution generalisation without augmentation To answer Q3, we train NeuroSAT on
the small and big split of SR(10-40), and test on different domains without splits. As presented in
Table 1, the results differ vastly across the structures and domains. Taking Df as an example, both
k-clique and PS have similar Df values. However, testing results on PS are significantly better than
on k-clique. Furthermore, models trained on larger Df group seems to do better on PS, while PS has
a larger Df value than SR(10-40) on average. This suggests that training on problems with similar
metric as testing problems could possibly increase GNN performance. However, it contradicts the
fact that smaller αv reaches better performance on CA, as CA dataset has bigger αv value than SR(n).
One possible reasons for this contradiction would be that the performance of GNN is not determined
by one single metric property, but rather a combination of properties.

4

Table 1: Accuracy of NeuroSAT trained on SR(10-40) with different structural splits.

Metric Split
Testing Domains

SR R3 KCL KD KV KCO AM CA PS G2 IN

Df
small 94.49 91.75 55.86 60.36 64.31 44.66 45.66 82.33 91.54 95.83 58.33
big 95.43 93.36 50.00 50.22 50.00 44.47 49.31 71.2 95.98 91.67 75.00

αv
small 94.40 91.72 48.76 66.03 74.89 44.70 46.98 90.28 94.44 95.83 50.00
big 93.05 91.40 51.60 53.21 53.64 56.14 58.37 70.51 91.11 83.33 50.00

αc
small 95.41 92.99 51.85 59.27 68.10 55.97 43.85 92.36 96.04 87.50 58.33
big 95.31 92.82 48.83 56.14 54.97 51.75 45.79 93.31 96.06 91.67 75.00

Tw
small 95.04 91.79 51.15 54.49 57.60 52.37 44.42 74.56 94.05 91.67 66.67
big 95.33 92.79 44.46 65.40 55.61 51.85 47.41 50.01 94.14 91.67 66.67

Q
small 93.76 91.87 56.30 71.76 51.9 55.89 49.75 89.08 95.75 79.00 50.00
big 94.81 92.74 51.61 61.06 60.80 61.64 46.57 89.99 93.00 83.33 58.33

H
small 94.00 91.72 52.44 66.79 60.48 50.39 36.97 89.88 91.41 91.67 50.00
big 95.77 92.27 48.62 68.4 58.27 55.97 41.93 77.89 92.18 87.50 58.33

Table 2: Augmented experiments. Top: NeuroSAT trained on augmented datasets. Testing dataset is
split to augmented and raw. Bottom: Average graph based properties before and after augmenting.

Domain Split SR R3 KCL KV KD KCO CA PS G2 IN

SR augment 99.99 99.99 50.00 58.90 64.00 94.40 70.40 99.58 4.17 66.67
raw 50.00 50.00 50.00 55.96 54.00 57.40 50.00 51.05 4.17 41.67

Domain Split Df αc αv Q Tw Be H

SR augment 2.46 4.24 9.78 0.39 39.16 0.013 5.03
raw 3.39 4.25 10.03 0.38 39.12 0.012 5.01

Augmented problem generalisation. To get insights from Q4, we augment SR(10-40) with learned
clauses from Cadical solver. Then, we test the results on different domains. Both training and testing
data here are not splitted with structural properties. Although models trained on augmented datasets
reach high accuracy in other augmented domains, with only a few learned clauses added (on average
the ratio between learned clause and original clause is roughly 15.9% in training data), they could not
solve any raw data well in any domains. While most structural parameters remain the same before
and after augmentation, the relatively large change in Df could be one reason for this result.

4 Discussion and Conclusion

This paper presents StructureSAT, a structure-based SAT dataset with various domains and property
measures. We aim to help analyze GNN based generalisation in SAT solving by adapting a variety
of structural properties. Through our extensive cross-domain experiments using StructureSAT,
we produced useful insights in GNN generalisation with empirical analysis. As suggested from
our experiments, certain properties are more influential on generalisability than other properties.
Furthermore, the diverse GNN generalisation abilities on different domains could be the result of a
combination of properties. We hope StructureSAT brings interest into the role of structural properties
for future research into GNN based SAT solving.

LLM: With the emergent of LLM in logic and reasoning, a large dataset with various domains are
needed for training and testing in the field. StructureSAT could help LLM on the task of solving
SAT problems by providing data with large quantity covering wide domains, and the task of structure
prediction on SAT, which can be further combined with traditional SAT solving on solver selection.

References
[1] Tasniem Nasser Alyahya, Mohamed El Bachir Menai, and Hassan Mathkour. On the structure

of the Boolean satisfiability problem: A survey. ACM Computing Surveys (CSUR), 55(3):1–34,
2022.

5

[2] Tasniem Nasser Alyahya, Mohamed El Bachir Menai, and Hassan Mathkour. On the structure
of the boolean satisfiability problem: A survey. ACM Computing Surveys, 2023.

[3] C. Ansótegui, M. L. Bonet, J. Giráldez-Cru, and J. Levy. The fractal dimension of SAT formulas.
In 7th International Joint Conference on Automated Reasoning (IJCAR-2014), 2014.

[4] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and Jordi Levy. Structure features
for SAT instances classification. Journal of Applied Logic, September 2017.

[5] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, Jordi Levy, and Laurent Simon.
Community structure in industrial SAT instances. Journal of Artificial Intelligence Research,
2019.

[6] Carlos Ansótegui, María Luisa Bonet, and Jordi Levy. On the structure of industrial SAT
instances. In Proceedings of the 15th International Conference on Principles and Practice of
Constraint Programming, Lecture Notes in Computer Science. Springer, 2009.

[7] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community structure of SAT
formulas. In Theory and Applications of Satisfiability Testing – SAT 2012, Lecture Notes, 2012.

[8] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers. In
Twenty-first international joint conference on artificial intelligence. Citeseer, 2009.

[9] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.
IOS press, 2009.

[10] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of Satisfiability.
IOS Press, 2009.

[11] Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting propositional
satisfiability via end-to-end learning. The AAAI Conference on Artificial Intelligence, 2020.

[12] Jan Dean Catarata, Scott Corbett, Harry Stern, Mario Szegedy, Tomas Vyskocil, and Zheng
Zhang. The Moser-Tardos Resample algorithm: Where is the limit? (an experimental inquiry).
In 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments
(ALENEX). Society for Industrial and Applied Mathematics, 2017.

[13] Wenjing Chang, Hengkai Zhang, and Junwei Luo. Predicting propositional satisfiability based
on graph attention networks. International Journal of Computational Intelligence Systems,
2022.

[14] Peter C Cheeseman, Bob Kanefsky, William M Taylor, et al. Where the really hard problems
are. In Ijcai, volume 91, pages 331–337, 1991.

[15] Xinyan Chen, Yang Li, Runzhong Wang, and Junchi Yan. From matching to mixing: A graph
interpolation approach for sat instance generation. In The Twelfth International Conference on
Learning Representations, 2023.

[16] James M Crawford and Larry D Auton. Experimental results on the crossover point in random
3-sat. Artificial intelligence, 81(1-2):31–57, 1996.

[17] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 1962.

[18] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of
the ACM, 1960.

[19] Haonan Duan, Pashootan Vaezipoor, Max B. Paulus, Yangjun Ruan, and Chris Maddison.
Augment with care: Contrastive learning for combinatorial problems. In Proceedings of the
39th International Conference on Machine Learning. PMLR, 2022.

[20] Niklas Eén and Armin Biere. Effective preprocessing in sat through variable and clause
elimination. In International conference on theory and applications of satisfiability testing,
pages 61–75. Springer, 2005.

6

[21] ABKFM Fleury and Maximilian Heisinger. Cadical, Kissat, Paracooba, Plingeling and treen-
geling entering the SAT competition 2020. SAT Competition, 2020.

[22] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pages
35–41, 1977.

[23] Iván Garzón, Pablo Mesejo, and Jesús Giráldez-Cru. On the performance of deep generative
models of realistic sat instances. In 25th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2022.

[24] Jesús Giráldez-Crú and Jordi Levy. A modularity-based random sat instances generator. In
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
(IJCAI 2015). AAAI Press, 2015.

[25] Jesús Giráldez-Cru and Jordi Levy. Locality in random SAT instances. In Twenty-Sixth
International Joint Conference on Artificial Intelligence (IJCAI-17), 2017.

[26] Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, and
Junchi Yan. Machine learning methods in solving the boolean satisfiability problem. Machine
Intelligence Research, 20(5):640–655, 2023.

[27] Aric Hagberg and Drew Conway. Networkx: Network analysis with python. URL:
https://networkx. github. io, 2020.

[28] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[29] Jesse Michael Han. Enhancing SAT solvers with glue variable predictions, 2020.

[30] Jason Hartford, Devon Graham, Kevin Leyton-Brown, and Siamak Ravanbakhsh. Deep models
of interactions across sets. In Proceedings of the 35th International Conference on Machine
Learning. PMLR, 2018.

[31] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and Conquer:
Guiding CDCL SAT solvers by lookaheads. In Hardware and Software: Verification and Testing.
Springer Berlin Heidelberg, 2012.

[32] Holger H Hoos and Thomas Stützle. SATLIB: An online resource for research on SAT. In
I.P.Gent, H.v. Maaren, and T. Walsh, editors, SAT 2000, 2023. Last accessed 1/2/2024.

[33] The international SAT competition web page. http://www.satcompetition.org. Last
accessed 1/2/2024.

[34] Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Efficient
SAT-based bounded model checking for software verification. Theoretical Computer Science,
2008.

[35] George Katsirelos and Laurent Simon. Eigenvector centrality in industrial sat instances. In
International Conference on Principles and Practice of Constraint Programming, pages 348–
356. Springer, 2012.

[36] Henry Kautz and Bart Selman. Unifying SAT-based and Graph-based Planning. International
Joint Conference on Artificial Intelligence, 1999.

[37] Philip Kilby, John Slaney, Sylvie Thiébaux, Toby Walsh, et al. Backbones and backdoors in
satisfiability. In Proceedings of AAAI, volume 5, pages 1368–1373, 2005.

[38] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

7

http://www.satcompetition.org

[40] Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals. CNFgen: A generator of
crafted benchmarks. In Theory and Applications of Satisfiability Testing – SAT 2017. Springer
International Publishing, 2017.

[41] Chunxiao Li, Jonathan Chung, Soham Mukherjee, Marc Vinyals, Noah Fleming, Antonina
Kolokolova, Alice Mu, and Vijay Ganesh. On the hierarchical community structure of practical
boolean formulas. In Theory and Applications of Satisfiability Testing–SAT 2021: 24th Interna-
tional Conference, Barcelona, Spain, July 5-9, 2021, Proceedings 24, pages 359–376. Springer,
2021.

[42] Yang Li, Xinyan Chen, Wenxuan Guo, Xijun Li, Wanqian Luo, Junhua Huang, Hui-Ling Zhen,
Mingxuan Yuan, and Junchi Yan. Hardsatgen: Understanding the difficulty of hard sat formula
generation and a strong structure-hardness-aware baseline. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4414–4425, 2023.

[43] Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

[44] Zhaoyu Li, Jinpei Guo, and Xujie Si. G4SATBench: Benchmarking and advancing sat solving
with graph neural networks, 2023.

[45] Zhaoyu Li and Xujie Si. NSNet: A general neural probabilistic framework for satisfiability
problems. Advances in Neural Information Processing Systems, 2022.

[46] Joao Marques-Silva, Ines Lynce, and Sharad Malik. Chapter 4. Conflict-Driven Clause Learning
SAT Solvers. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021.

[47] Robert Mateescu. Treewidth in industrial sat benchmarks. Technical report, Technical Report
MSR-TR-2011-22, Microsoft Research, 2011.

[48] Mark Newman. Networks. Oxford university press, 2018.

[49] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent Simon.
Impact of community structure on sat solver performance. In Theory and Applications of
Satisfiability Testing–SAT 2014: 17th International Conference, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings 17, pages 252–268.
Springer, 2014.

[50] Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs
Kozlovics. Goal-aware neural SAT solver. In International Joint Conference on Neural
Networks, 2022.

[51] Bart Selman, Henry Kautz, and Bram Cohen. Noise strategies for improving local search. In
The AAAI Conference on Artificial Intelligence, 1994.

[52] Daniel Selsam and Nikolaj Bjørner. Guiding high-performance SAT solvers with unsat-core
predictions. In Theory and Applications of Satisfiability Testing – SAT 2019, Lecture Notes in
Computer Science. Springer International Publishing, 2019.

[53] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision, 2019.

[54] Zhengyuan Shi, Min Li, Sadaf Khan, Hui-Ling Zhen, Mingxuan Yuan, and Qiang Xu. SAT-
former: Transformers for SAT solving, 2022.

[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015.

[56] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Formal methods for the validation of
automotive product configuration data. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 2003.

[57] Tomohiro Sonobe. Cbpenelope2016, ccspenelope2016, gulch at the sat competition 2016. SAT
Competition, page 25, 2016.

8

[58] Toby Walsh et al. Search in a small world. In Proceedings of IJCAI, volume 99, pages
1172–1177. Citeseer, 1999.

[59] Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Miikku-
lainen. NeuroBack: Improving cdcl sat solving using graph neural networks, 2023.

[60] Nathan Wetzler, Marijn JH Heule, and Warren A Hunt Jr. Drat-trim: Efficient checking
and trimming using expressive clausal proofs. In International Conference on Theory and
Applications of Satisfiability Testing, pages 422–429. Springer, 2014.

[61] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[62] Gal Yehuda, Moshe Gabel, and Assaf Schuster. It’s not what machines can learn, it’s what we
cannot teach. In International Conference on Machine Learning. arXiv, 2020.

[63] Jiaxuan You, Haoze Wu, Clark Barrett, Raghuram Ramanujan, and Jure Leskovec. G2SAT:
Learning to generate SAT formulas. In Advances in Neural Information Processing Systems,
2019.

[64] Chenhao Zhang, Yanjun Zhang, Jeff Mao, Weitong Chen, Lin Yue, Guangdong Bai, and Miao
Xu. Towards better generalization for neural network-based SAT solvers. In Pacific-Asia
Conference on Advances in Knowledge Discovery and Data Mining, 2022.

[65] Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang.
NLocalSAT: Boosting local search with solution prediction. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, 2020.

[66] Zaijun Zhang, Daoyun Xu, and Jincheng Zhou. A structural entropy measurement principle of
propositional formulas in conjunctive normal form. Entropy, 23(3):303, 2021.

[67] Edward Zulkoski, Ruben Martins, Christoph M Wintersteiger, Jia Hui Liang, Krzysztof Czar-
necki, and Vijay Ganesh. The effect of structural measures and merges on sat solver performance.
In Principles and Practice of Constraint Programming: 24th International Conference, CP
2018, Lille, France, August 27-31, 2018, Proceedings 24, pages 436–452. Springer, 2018.

9

A Related work

SAT dataset. SAT problems can be classified into different categories, mainly as random, crafted, and
industrial [1]. Research studies related to SAT either generate synthetic instances using generators
or use existing datasets. Most generators focus on similar type of problems like random k-SAT and
combinatorial problem generators like CNFgen [40]. The largest established datasets are SATLIB
[32] and the yearly SAT Competitions (SATCOMP) [33]. To overcome the limitation on number
of instances in existing industrial dataset, new generators have been proposed to generate pseudo-
industrial SAT instances, including hand-crafted generators Community Attachment (CA) [24] and
Popularity-Similarity (PS) [25], or graph-generative models generators [63, 43, 42, 15, 23]. For
GNN based SAT solving, [53] proposed random generator SR(n) and [11] generated uniform-random
3-SAT instances as datasets. G4SATBench [44] produced a dataset including 7 types of synthetic
generators with varying variable sizes. Following G4SATBench, our dataset extend to 10 types
of synthetic generators with better quality and hardness measures from structural values. We also
include industrial dataset for more generalisation test and analysis on real-world application.

SAT structural properties. As traditional SAT solvers perform differently over random, crafted, and
industrial instances, it is believed that different SAT domains have distinct underlying properties [2].
Results in this filed have been wildy used in improving traditional solvers [8] and portfolio based
solvers [57], classifying benchmark [4], generating instances [25], and defining problem hardness [49].
Thus, many attempts have been made to define, prove, and analyze the structural measures within
SAT, including problem-based properties and solver-based properties. Problem-based properties are
further divided to CNF-based, including phase-transition [14], backdoor [37] and backbones [37], and
graph-based, including scale-free [6], self-similar [3], centrality [35], treewidth [47], entropy [66],
small-worlds [58] and community structure [5]. Solver-based properties are directly related to SAT
solver such as: mergeability and resolvability [67]. These measures are either proved mathematically,
or analyzed through solver-related parameters such as solving time. However, all the works are
experimented with traditional SAT solver. Furthermore, there is little work on multiple properties
[41, 67] while most works only focus on single measure and benchmark. In this work, we select
several related measures from [1], and calculate their values on each of our selected domains. We
also propose new splitting method of our dataset to high-value subset and low-value subset of each
structure, while analyzing them against cross-domain generalisation result on GNN, concluding the
important and hard features for GNN to capture.

GNN for SAT solving. GNN has been applied to SAT solving mainly as problem solvers, including
standalone solvers and hybrid solvers. Standalone solvers are networks trained to classify problems as
satisfiable or unsatisfiable themselves, which mainly encodes the formula as LCG graphs [53, 64, 13,
54, 11, 30, 19, 50]. On the other hand, hybrid solvers treat GNN as a guidance to traditional solvers by
replacing their heuristics with network predictions. These solvers focuses on predicting specific tasks
such as UNSAT core [52], glue clauses [29], backbone variables [59], for CDCL solvers and initial
assignment [65, 45] for SLS solvers. Although hybrid solvers generally achieve better results than
standalone solvers, they acts as modifications of traditional solvers instead of discussing solvability
of GNNs, which is out of scope of our work. Furthermore, for most GNN-based solvers, only the
ability to generalise to larger in-distribution problems is discussed, which ignores the underlying
structure of each domain. In this work we train several GNNs as standalone solvers from [44], and
combine the structure properties of SAT with out-of-distribution generalisation on GNN.

B Dataset description

StructureSAT consists of multiple problem domains, for each of which we control the corresponding
attribute values. In this section, we start by presenting the structure properties measured in the dataset.
Next, we introduce the types of data and generators used for raw data generation. Last but not
least, we detail the construction process of our dataset, our structure-based splitting method, and the
generalisation tasks we focus on.

B.1 SAT structure properties

In this work we classify structural properties of SAT problems into two classes based on the embedding
methods: CNF based properties and graph based properties [1]. These properties are used as splitting

10

method for training and testing in the dataset. While there are usually 4 types of graphs to represent
SAT problems Fig. 1, we use the LCG graph in this work due to having the most amount of information
among all 4 types.

Figure 1: Different Graph representation of SAT problems.

CNF based properties. Given a problem P with set of variables V , the CNF based properties are
related to the CNF encoding of a problem.

• Backbone [37] refers to the set of literals of a problem which are true in all satisfying assignments.
The value of each literals in the set is fixed in all assignments of the problem. StructureSAT
calculates the size of the backbones(Bb) of satisfiable instances only.

• Phase transition [14] is a phenomenon measured by clause to variable ratio (nc/nv), where nc

and nv represents number of clauses and variables respectively. It is evident that an easy-hard-
easy pattern occurs for random k-SAT where transition for random 3-SAT is at c = 4.258 ∗ n+
58.26 ∗ n−1/2 [16]. Although the phenomenon has been observed in both random k-SAT and
peudo-industrial instances, we will only be focusing it on random 3-SAT in this dataset.

Graph based properties are structural properties from embeddings of a LCG graph G. The definition
is extended from the CVIG definition from [7]. Given a problem with set of variables V and set of
clauses C, the LCG graph G with vertex X and weight w is defined as G = (X,x|x ∈ C ∧ V ,w)
and the weight is either 1/|X| if variable is in clause, 1/|V | for weights between variables and their
negations, or 0 if nodes are not connected. Each node x in graph has degree degx.

• Self-similary [3] is measured by fractal dimension(Df). G is self-similar if the minimum number
of boxes of size s required to cover G decreases polynomially for some Df .

• Scale-free [6] can be measured by frequency of variables (αv) or clauses size (αc). A graph is
scale-free if the arity of nodes is characterized by a random variable N that follows a power-law
distribution.

• Treewidth (Tw) [47] measures the tree-likeness of graphs. It is the minimum width over all possible
tree decomposition of G. In this work we calculate treewidth using treewidth−min− degree
function from NetworkX [27], which calculates using the Minimum Degree heuristic.

• Centrality specifies how important a node is within a graph. Following [22], Betweeness Centrality

BE =
∑

jk

pxj
,xk(xi)

pxj
,xk

is studied, where pxj
, xk(xi) is the number of paths that pass through xi

,and pxj
, xkis the total number of shortest paths from node xj to xk.

• Community structure [5] is measured by modularity(Q). The modularity Q of G is a value from
0 to 1, computed with respect to a given partition C of the same graph and is a measure of the
fraction of within-community edges in relation to another random graph that has an equal number
of vertices and degree. A graph’s modularity score corresponds to the maximal modularity of any
possible partition in C: Q(G) = max{Q(G,C)|C}. While computing the exact value of Q is
NP-hard, it is possible to approximate lower-bounds to Q, which can be calculated as

Q(G,C) =
∑
Ci∈C

∑
x,y∈Ci

w(x, y)∑
x,y∈V w(x, y)

−

(∑
x∈Ci

deg(x)
)∑

x∈V deg(x)

)2

, (1)

where w(x, y) is the weight between vertex x and y.

• Small-world [58] measures the extent of graph topology. It is approximated using Proximity Ratio
(Pr). A graph is considered small-world if Pr ≥ 1. In this work we use the sigma function from
NetworkX [27] for calculation, which is only an approximation of the Pr value due to the need for
random graph generation.

11

10 0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

De
ns

ity

Value

v

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Value

Df

0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

160

Value

Q

3-sat G2SAT SATCOMP ca k-clique k-color k-domset k-isomo k-vercov ps sr

Figure 2: Distributions of various structural graph properties from different problem domains. Left:
scale-free measure by variable αv , Middle: fractal dimension Df , Right: modularity Q.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

Value 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Be

0

50

100

150

200

250

300

350

Value 4 6 8 10 12 14 16

H

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Value
3-sat G2SAT ca industrial k-clique k-color k-domset k-isomo k-vercov ps sr

Figure 3: Distribution of various structural graph properties from different problem domains. Left:
scale-free measure by clause αc. Middle: centrality measureBE. Right: entropy measure H .

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Pr

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

Value 0 5 10 15 20 25 30

c/v

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Value 0 20 40 60 80 100 120 140

Tw

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Value
3-sat G2SAT ca industrial k-clique k-color k-domset k-isomo k-vercov ps sr

Figure 4: Distribution of various stuctural graph properties from different problem domains. Left:
Proximity:Pr. Middle: ratio c/v. Right: Treediwth Tw.

• Entropy [66] measures the uncertainty of random systems. Given volume of the graph volG, we
measure the One-dimensional Entropy (H) following [66], which can be defined as

H = −
|X|∑

i=1,xi∈X

deg(xi)

volG
log

deg(xi)

volG
. (2)

B.2 StructureSAT composition

B.2.1 Dataset generation

We use various existing SAT generators and datasets to produce original SAT formulas in 11 domains.
To analyse the property distributions in different domains, we generate 10k problem pairs for selected
domains, with each pair containing 50% satisfiable and 50% unsatisfiable problems. Although the
generated problems are easy for traditional SAT solvers to solve, they contain a variety of properties
and are efficient for modern GNNs to learn on, which provide enough insight for our purpose. Fig. 2
shows the distributions of various structural properties described in Appendix B.1 from calculating
the statistical values on raw data pairs with a 60 seconds timeout. For industrial SAT problems and

12

graph generative model generators, less than 100 pairs are selected. In the next section we detail the
provided domains in StructureSAT, including important parameters used for generation.

Random-3-SAT: Uniform random 3-SAT (r-3SAT) is a special case for Random k-SAT where each
clause contains exactly 3 literals. The problems are generated using CNFgen [40] with 10 − 40
number of variables at the phase transition point.

SR(n): SR(n) [53] is a special expression of random k-SAT that consists of a balanced dataset with
pairs, with k as the maximum number of variables in the problem. Each pair contains one satisfiable
problem and one unsatisfiable problem, differing by 1 single literal in one clause. In this work we use
problem with 10− 40 number of variables as main training data, represented as SR(10-40).

Combinatorial problems (5 domains): For most combinatorial problems, the goal is to find some
combination of elements in a solution space while respecting defined constraints. A valid solution
would correspond to a satisfying assignment in the SAT encoding of the problem [9]. In StructureSAT,
we generate 5 combinatorial problems using CNFgen [40]. Each problem is related to solving
constraints over a graph. Thus, we generate random graphs using the Erdős–Rényi model [48]

with edge probability
(
v
k

)−1/(v2), where v representing number of vertex. The selected parameters
and problems include k-coloring, 3 ≤ k ≤ 4, k-dominating-set, 2 ≤ k ≤ 3, k-clique-detection,
3 ≤ k ≤ 4, k-vertex-cover, 3 ≤ k ≤ 5, and automorphism in graph G.

CA: Community Attachment (CA) is a seminal work generated from [24] to mimic the community
structure of industrial problems, i.e., value of modularity Q on a SAT instance’s VIG graph. In
StuctureSAT, we select 0.7-0.9 as the value of Q. The generator uniformly and randomly selects 4
to 5 literals inside the same community with probability P = Q+ 1/co, where co is the number of
communities, and 4 to 5 literals in distinct community with probability 1 − P . These process are
done iteratively to form a formula.

PS: Popularity-Similarity (PS) [25] is a problem generation algorithm developed on the idea of
locality, which is a measure of both community structure and scale-free structure on a SAT instance’s
VCG graph. PS randomly samples variable v in clause c with the probability P = 1/(1 + nβ

v ∗ nβ1
c ∗

θnv∗nc
/R)T , where β is the power-law distribution, θ is random angle assigned to v and c, T is the

temperature between 0.75 and 1.5, and R is an approximate normalisation constant.

SATCOMP: StructureSAT uses industrial instances from SATCOMP 2007.

G2SAT: To overcome the limiting number of instances in industrial problem, graph generative
models have been used as problem generator. In this work we mainly use G2SAT [63] as generator.
Following previous work, we select 20 problems from the industrial dataset, standadise with SatElite
preprocessor[20], and generate similar instances using GraphSAGE [28] and a two-phase generation
process. Both industrial and G2SAT datasets are used mainly as testing set in the dataset.

B.3 Augmented problems

This section describes augmented dataset setup that might affect the generalisation ability of GNN.
CDCL-based SAT solvers produce conflict clauses during searching and add learned clauses, which
are reverse of conflict clauses, to the original problems. Prior work [44] has shown that training on
augmented SAT problems with the learned clauses added could lead to better accuracy on augmented
SAT domains than training on raw problems. Since this might be caused by the destroying of structure
during the addition of learned clauses [5], we are interested in an empirical analysis on the structural
difference and their effect on out-of-distribution generalisation in this work. Thus, we gather learned
clauses from produced DRAT-trim proofs [60] after running problems with the CadiCal solver [21],
then augment our dataset with the collected learned clauses.

B.4 Structure-aware splitting and generalisation selection

We also propose a novel splitting method for StructureSAT and focus on 3 types of generalisation
tasks. After generating the raw datasets, instead of randomly splitting them to train/valid/test sets,
we divide each raw datasets based on specific structural values. Specifically, for each domain, we
select the average value Z from every calculated graph-based properties, as shown in Table 3, and

13

Table 3: Mean structural properties of StructureSAT domains. N/A indicates unavailable.
Df αv αc Tw Be Q H

SR (10-40) 3.39 4.25 10.03 39.12 0.012 0.38 5.01

r-3SAT 2.90 7.54 N/A 26.53 0.018 0.45 4.92

k-clique 3.67 13.44 N/A 28.19 0.005 0.47 5.51

k-dominating-set 3.19 5.44 2.95 25.03 0.006 0.49 5.46

k-vertex-cover 3.18 6.29 N/A 25.24 0.006 0.50 5.58

k-coloring 2.38 2.92 N/A 17.73 0.02 0.64 5.13

automorph 3.78 17.47 N/A 51.25 0.0025 0.49 6.28

CA 3.19 12.13 N/A 29.39 0.009 0.73 5.56

PS 3.68 5.49 3.87 38.66 0.01 0.36 5.06

G2SAT 3.06 5.30 5.56 116.87 N/A 0.87 8.09

industrial 2.68 10.09 3.50 N/A N/A 0.87 12.49

split each domain into a low-value subset and a high-value subset, producing a total of 16 subsets (8
structures ∗ 2 ranges) per domain. Each subsets contains 80k training data and 10k validation data.2

To test the generalisation GNNs, we focus on 3 aspects: in-domain larger problems, in-domain
problems with different properties, and out-of-distribution problems. For all the synthetic generators,
we follow the generation process described in Appendix B.2.1 and randomly generate problems with
10-40, 100-200, and 200-300 number of variables, each with 10k pairs. To test generalisation on
uniform size problems with different structures, we are interested in random 3-SAT with different c/v
ratios and different backdoor/graph properties evaluation on all domains. When calculating phase
transition on random 3-SAT with 10-40 number of variables, the ratio value is roughly 4.7. To make
the generation process easier, our generated test set has a c/v ratio of 3.5, 4, 5.5 and 6, as the further
away from phase transition point, the harder it is to generate balanced dataset. For out-of-distribution
problems, we randomly generate 10k problem testing data from each synthetic generators without
property split, thus holding the structural range as in Fig. 2, Fig. 3 and Fig. 4. Small-size industrial
and G2SAT problems are also selected as part of testing set.

C Full analysis on Dataset

To get a comprehensive understanding of base dataset domains without splitting, we extend Fig. 2
and plot 6 other graph property distributions in Fig. 3 and Fig. 4 including αc, H , BE, Pr, Tw and
c/v ratio. Since LCG is a bipartite graph, some calculations have been adjusted to accommodate its
bipartite characteristics. For example, the clustering coefficient in Pr has been modified to use the
bipartite clustering coefficient calculation.

The figures show a wide variety of distributions over graph properties among different domains. Some
distinguishable differences can be seen within Q in Fig. 2, where random, crafted, and industrial
problems have low, medium, and high values, respectively. Additionally, industrial and crafted
domains have a wider range of Df values than random domains. In Fig. 3, the value range of Be

ranks from lowest to highest in crafted, industrial, and random domains, while industrial problems
have highest H values. For available Pr values in Fig. 4, the values from random domains 3-SAT
and SR are close to 1, while the pseudo-industrial problems CA and PS have higher Pr. All the
distinct characteristics within the dataset highlight potential of affecting generalisation differently
with GNNs.

D Limitations

Despite being the first dataset to more deeply analyze SAT structure in terms of GNN generalisa-
tion, there are still a few limitations and many possibilities to consider for future work. Firstly,

2Our dataset and codebase are available here.

14

https://drive.google.com/drive/folders/1ZrhRlRqQUTrYExVzVbXaocjvNIi2Os25?usp=sharing.

Table 4: NeuroSAT testing results. For each metric, we train NeuroSAT on the small and big split
of the corresponding SR(10-40) training sets. We then test the trained model on the testing data of
10-40, 40-100, and 100-200 variables for each metric. Better training split performance in bold.

Train Split on SR(10-40) Test Metric

Df αv αc Tw Q H

small 10-40 94.49 94.40 95.41 95.04 93.76 94.00
big 95.43 93.05 95.31 95.33 94.81 95.77

small 40-100 68.51 69.68 70.78 65.45 70.83 64.82
big 72.41 67.09 73.22 72.14 73.32 73.78

small 100-200 57.04 56.78 57.74 54.72 57.93 53.77
big 56.98 54.5 58.98 56.47 57.78 57.98

StructureSAT is separated into subsets, where each subset has one domain and focuses on one type
of feature only. While useful for identifying individual factors of influence at a property level, a
multivariate analysis of features and domains could be considered in future work. Secondly, due
to certain problems being fundamentally intractable, we do not consider CNF based features like
backdoor[37]. The structure calculations in Fig. 2 are limited to a 60 seconds timeout as most
industrial and G2SAT generative processes are computationally hard to compute. Exploring effective
algorithms of computing the structural properties on SAT, especially large problems, could be a
potential future direction. Thirdly, although we include SATCOMP2007 in our dataset and calculate
structural values of individual problems, the models we trained could not be efficiently tested on large
industrial and G2SAT problems. Thus we only test on 24 G2SAT problems and 12 small industrial
problems used to generate the G2SAT problems inside experiment. However, either better models
or larger training sets could be included in future work for GNNs to solve large industrial problems.
Lastly, as we only generated 100k pairs of data for each domain and divided inside the base dataset,
there is overlap between different property split groups. Potential future work could be generating
datasets with more controllable feature values as what CA generator do [24].

E More experiment details

E.1 GNN baseline

Models used in this work include NeuroSAT [53], GCN [38] and GIN [61].

E.2 Code Base, experiment set up, and license

Our Dataset and Code base are available in StructureSAT1. The link also include detailed instruction
on downloading and running experiment with the dataset.

Experiments with GNN are done using existing work from [44]. Experimental parameters include
1e− 04 learning rate, 1e− 08 weight decay and 32 number of message passing iterations. All the
experiments are run on a machine with a NVIDIA A4500.

StructureSAT is openly licensed via CC BY 4.0.

F Additional Experiment Results

This section details some additional experiments. In this section, for simplicity, we make SR stand
for SR(10-40), R3 stand for Random-3-SAT, KCL stand for k-clique, KD stand for k-dominating-set,
KV stand for k-vertex-cover, KCO stand for k-coloring, AM stand for automorphism, G2 stand for
G2SAT, and IN stand for industrial problems. Note that for simple computation, we select 24 small
problems from G2SAT. 12 industrial problems used to train G2SAT are used as industrial problems
in this section.

1https://drive.google.com/drive/folders/1ZrhRlRqQUTrYExVzVbXaocjvNIi2Os25?usp=sharing.

15

https://creativecommons.org/licenses/by/4.0/

F.1 Generalisation to in-domain problems

Table 5: r-3SAT testing re-
sults with different ratios.

Metric Accuracy

3.5 97.6
4 95.87
4.7 95.5
5.5 98.7
6 99.37

Large size generalisation. To answer Q1, we train a NeuroSAT on
a small SAT problem set and test its performance on varying number
of variables. Table 4 shows the testing result of NeuroSAT trained on
SR(10-40), which is SR(n) problems with 10-40 number of variables.
In general, NeuroSAT struggles to generalise to larger problems with
more variables (e.g. 40-100 and 100-200). Although there is no major
difference among most structure measures, models trained on larger
property values (e.g. the big (10-40) splits) generalise better to large
problems in the same domain compared to the small splits. We hypoth-
esize this may due to the increase in relevant metric values in larger
problems. Thus, generating problems with property values in the upper range, especially larger H
and αc values as seen in Table 4 has the potential to enable GNNs solve larger in-domain problems.

Different ratio generalisation. Table 5 shows the result of NeuroSAT trained on random 3-SAT
and tested on a varying c/v ratio, through which we try to answer Q2. Surprisingly, although models
are trained at the phase transition, which is the "hardest" point for random 3-SAT as discussed in
Appendix B.1, testing at the phase transition point has the lowest accuracy. Furthermore, the further
away c/v is from the phase transition point, the better their testing accuracy. This signals that GNNs
are not always better at solving problems with similar properties to the training data.

Out-of-domain generalisation Below are extended results for out-of-domain generalisation.

Table 6 shows the result of GCN model trained on SR(10-40), splitted by 3 graph properties, while
Table 8 shows the result of GIN model with same training set.

Table 7 shows the result of NeuroSAT model trained on random 3-SAT problems splitted by 5 graph
properties.

Table 9 shows the result of NeuroSAT model trained on SR problems while predicting satisfying
assignment.

Table 6: Accuracy of GCN trained on SR(10-40) with different structural splits.

Metric Split
Testing Domains

SR R3 KCL KD KV KCO AM CA PS G2 IN

αv
small 93.20 86.42 51.16 53.96 58.42 45.51 52.95 60.84 94.67 79.17 58.33
big 92.25 84.72 50.10 49.91 50.01 50.00 50.00 55.69 94.69 87.50 50.00

αc
small 95.41 92.99 51.85 59.27 68.10 55.97 43.85 92.36 96.04 87.50 58.33
big 95.31 92.82 48.83 56.14 54.97 51.75 45.79 93.31 96.06 91.67 75.00

Q
small 85.39 71.8 50.93 56.69 58.88 49.89 47.61 52.16 89.32 95.80 66.67
big 88.12 72.65 49.55 48.71 48.89 49.62 50.64 54.83 91.01 95.80 50.00

Comparison with Traditional Solver In the following section we compare the performance of
traditional solver CDCL with one of the NeuroSAT models trained on SR(10-40) splitted on small αc,
and show the results in Table 10. The NeuroSAT model was tested with a batch size of 212 on the
AM domain, 412 on KCL, and 512 on all other domains. Both the CDCL and NeuroSAT solvers were
tested on the same machine to ensure consistency in comparisons. Regarding solving accuracy, for the
tested datasets generated by random generators, the traditional CDCL solver achieved 100% accuracy,
while NeuroSAT, trained on SR(n), reached approximately 50% accuracy on certain domains. In
terms of solving time, NeuroSAT, with appropriately selected batch sizes, demonstrated the potential
to solve problems faster than CDCL solvers on both random and crafted instances. Additionally,
CDCL’s solving time are generally similar, with variations occurring depending on the domain
type (random vs. crafted), while the GNN solver’s performance was more sensitive to the domains
themselves. For instance, the CDCL solver exhibited similar solving times across random problems
SR and R3, while solving times across combinatorial domains (KCL, KD, KV) were consistent
yet distinct from random domains. In contrast, NeuroSAT solved R3 significantly faster than SR,
despite both being categorized as random domains, which is likely due to differences in the size and
complexity of the input graphs across domains. This also suggest the complete different solving

16

Table 7: Accuracy of NeuroSAT trained on R-3SAT with different structural splits.

Metric Split
Testing Domains

SR R3 KCL KD KV KCO AM CA PS G2 IN

Df
small 58.55 95.02 51.78 49.69 48.76 50.00 47.70 69.06 69.89 37.5 75.00
big 56.77 96.19 50.00 48.19 50.00 40.42 50.00 69.93 73.93 20.83 66.67

αv
small 59.80 94.84 50.00 50.00 50.00 42.22 50.00 47.32 77.92 91.67 75.00
big 58.07 95.48 50.00 49.86 50.00 40.83 50.00 62.79 73.54 20.83 75.00

Tw
small 57.58 93.77 51.70 49.82 50.00 43.89 46.97 50.00 63.62 37.50 50.00
big 55.23 95.29 50.00 48.99 50.00 41.41 46.35 57.33 58.34 66.67 75.00

Q
small 56.68 92.12 50.35 50.00 50.00 50.00 64.15 48.16 72.15 29.17 50.00
big 55.93 95.80 50.05 48.99 50.00 44.50 59.79 48.69 57.29 16.67 75.00

H
small 57.33 94.26 48.83 49.21 50.00 40.97 54.79 50.00 71.67 50.00 41.67
big 57.28 95.24 50.00 49.99 50.00 47.75 50.00 78.16 69.74 33.33 75.00

Table 8: Average accuracy of GIN trained on SR(10-40) with different structural splits.

Metric Split
Testing Domains

R3 KCL KD KV KCO AM CA PS G2 IN

Df
small 92.0 53.3 64.6 65.0 49.0 50.4 75.7 91.5 47.2 86.1
big 88.3 57.2 62.5 59.2 52.2 46.8 64.6 88.1 61.1 63.9

αv
small 93.5 51.6 55.3 55.9 47.6 47.4 65.5 93.8 50.0 80.6
big 92.3 53.4 59.0 65.5 50.0 52.3 70.5 93.7 50.0 63.9

αc
small 93.3 54.3 60.1 65.5 59.6 50.3 68.0 95.4 58.3 79.2
big 93.4 51.7 54.8 59.0 56.7 49.0 65.0 92.1 52.8 57.0

Q
small 90.8 48.8 59.9 60.8 49.4 53.6 63.6 91.6 50.0 86.1
big 89.9 53.2 63.2 62.5 50.0 52.7 65.6 86.9 38.7 68.1

Table 9: Accuracy of NeuroSAT trained on SR(10-40) with different structural splits, task is satisfying
assignment prediction.

Metric Split
Testing Domains

SR R3 KCL KD KV KCO AM CA PS G2 IN

αv
small 94.40 91.72 48.76 66.03 74.89 44.70 46.98 90.28 94.44 95.83 50.00
big 93.05 91.40 51.60 53.21 53.64 56.14 58.37 70.51 91.11 83.33 50.00

αc
small 95.41 92.99 51.85 59.27 68.10 55.97 43.85 92.36 96.04 87.50 58.33
big 95.31 92.82 48.83 56.14 54.97 51.75 45.79 93.31 96.06 91.67 75.00

Q
small 93.76 91.87 56.30 71.76 51.9 55.89 49.75 89.08 95.75 19/24 50.00
big 94.81 92.74 51.61 61.06 60.80 61.64 46.57 89.99 93.00 83.33 58.33

Table 10: Solving time (in seconds) comparison between traditional solver and NeuroSAT.

SolverMetric
Testing Domains

SR R3 KCL KD KV KCO AM CA PS

CDCL Time 57.92 56.90 61.87 61.58 63.31 58.25 64.40 61.78 59.92
GNN Time 45.56 16.52 44.92 31.00 40.54 21.07 93.80 33.24 22.35

heuristics between CDCL and GNN models, and for GNN model performance, analysing on each
individual domains, instead of a general type of domain, is necessary.

17

	Introduction
	StructureSAT
	SAT preliminaries
	SAT structure properties
	StructureSAT composition
	Structure-aware splitting and generalisation selection

	Experiment
	Evaluation setup
	Generalisation to other domains

	Discussion and Conclusion
	Related work
	Dataset description
	SAT structure properties
	StructureSAT composition
	Dataset generation

	Augmented problems
	Structure-aware splitting and generalisation selection

	Full analysis on Dataset
	Limitations
	More experiment details
	GNN baseline
	Code Base, experiment set up, and license

	Additional Experiment Results
	Generalisation to in-domain problems

