
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CACHE WHAT LASTS: TOKEN RETENTION FOR
MEMORY-BOUNDED KV CACHE IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory and computation remain core bottlenecks in long-horizon LLM inference
due to the quadratic cost of self-attention and the ever-growing key-value (KV)
cache. Existing strategies for memory-bounded inference, such as quantization,
offloading, or heuristic KV eviction, either incur high orchestration costs or rely
on unreliable attention-based proxies of importance. We propose TRIM-KV, a
novel approach that learns each token’s intrinsic importance at creation time via a
lightweight retention gate. Each gate predicts a scalar retention score that decays
over time, reflecting the long-term utility of the token for a specific layer and head.
Tokens with low scores are evicted when the memory budget is exceeded, ensuring
that the cache always contains the most critical tokens. TRIM-KV is trained
efficiently through distillation from a frozen LLM combined with a capacity loss,
requiring only gate fine-tuning and adding negligible inference overhead. Across
mathematical reasoning (GSM8K, MATH-500, AIME24), procedural generation
(LongProc), and conversational long-memory benchmarks (LongMemEval), TRIM-
KV consistently outperforms strong eviction and learnable retrieval baselines,
especially in low-memory regimes. Remarkably, it even surpasses full-cache
models in some settings, showing that selective retention can serve as a form of
regularization, suppressing noise from uninformative tokens. Qualitative analyses
further reveal that learned retention scores align with human intuition, naturally
recovering heuristics such as sink tokens, sliding windows, and gist compression
without explicit design. Beyond efficiency, retention scores provide insights into
layer- and head-specific roles, suggesting a new path toward LLM interpretability.

1 INTRODUCTION

Modern large language models (LLMs) can, in principle, handle extremely long input contexts –
some recent models support context windows of 128k tokens or more (Yang et al., 2025; Gao et al.,
2024). Yet, extending context length comes with steep computational costs. The self-attention
mechanism has quadratic time complexity in sequence length, and storing the key-value (KV) cache
for thousands of tokens can quickly exhaust GPU memory (Wang et al., 2025; Li et al., 2024a). In
practical deployments, the KV cache, which saves past key and value vectors to avoid re-computation,
becomes a major memory and latency bottleneck for long-context inference. Decoupling resource
usage from context length is therefore critical for enabling efficient and scalable applications such as
long-horizon reasoning (Chen et al., 2025) and lifelong agents (Zheng et al., 2025; Li et al., 2024d).

To address this challenge, recent work has explored memory-bounded LLMs that can operate effec-
tively under constrained KV budgets (Li et al., 2024a). One line of research focuses on compression
and quantization, aiming to reduce memory footprint by learning compact representations of past
tokens rather than storing all keys and values explicitly (Hooper et al., 2024; Saxena et al., 2024).
These techniques are mostly effective during the prefill phase but scale poorly with generation
length. Another line leverages attention sparsity to offload most of the cache to CPU or secondary
storage, and retrieve only relevant segments on demand via similarity search (Tang et al., 2024) or
learned indices (Gao et al., 2025). While offloading lowers the on-GPU footprint, it incurs nontrivial
orchestration overhead that accumulates over long generations, undermining end-to-end throughput.

A more common and direct approach to enforce a fixed memory budget is KV cache eviction, which
directly drops certain tokens from the KV cache (Xiao et al., 2023). Many KV eviction strategies

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

have been proposed to decide which tokens to remove. However, most of them are attention-guided
heuristics: they track attention from new queries to cached tokens and retain those that are recently
or frequently attended, adapting the cache to the current focus (Zhang et al., 2023; Li et al., 2024c;
Wang et al., 2025; Liu et al., 2025; Ghadia et al., 2025; Cai et al., 2025). While being efficient, these
methods assume that recent attention is a reliable proxy for future importance. This assumption often
breaks for long-horizon generation and reasoning tasks: a token might be crucial much later, even if
it has not been attended to in the recent past (Jiang et al., 2024). Moreover, attention-based eviction
can suffer from attention bias, e.g., the model might temporarily overlook a needed token due to a
distracting context (Shi et al., 2023), causing it to be evicted prematurely. While some recent studies
have attempted to learn better eviction decisions (Chen et al., 2024; Zeng et al., 2024), these methods
typically scale poorly with sequence length and are therefore limited to the prefilling stage.

In this work, we take a new perspective on the KV eviction problem. Rather than relying on the
attention-guided importance, we propose to learn each token’s intrinsic importance at the time of
its creation and use that as the basis for eviction. Intuitively, not all tokens are created equal: some
carry significant semantic or task-related weight (e.g. a critical fact, a question being answered, or
the first few “sink” tokens that often encode the topic or instructions), while others are relatively
inconsequential (e.g. filler words, stopwords, or trivial arithmetic steps in a chain-of-thought).
Moreover, the importance of tokens is not uniform across the network, but it varies systematically by
layers and heads, reflecting their functional specializations (Voita et al., 2019; Wu et al., 2024b).

We posit that the contextual embedding of a token already encodes much of its long-term utility. We
therefore introduce a retention gate that maps the token’s embedding and produces a scalar retention
score β ∈ [0, 1] reflecting the token’s inherent importance for a specific layer and head. Especially,
we design this retention score to decay exponentially as the context grows, mimicking the gradual
forgetting of old information in human brains (Ebbinghaus, 2013). Thus, a highly important token
will have β ≈ 1 and retain a high score for a long time, whereas a token deemed unimportant will have
β closer to 0 and its influence will vanish quickly. We leverage this score to drive a simple eviction
policy: whenever the number of cached tokens exceeds the budget M , we evict the token with the
smallest current retention score. This approach, which we call Token RetentIon for Memory-bounded
KV Cache (TRIM-KV), ensures that at all times, the cache is filled with the M tokens judged most
intrinsically important, with a preference toward more recently generated tokens.

Implementing retention-based caching in an existing LLM only requires adding a few lightweight
components. We integrate the retention gates into each self-attention layer of a pretrained model to
modulate attention weights by token importance during training. We then train only the gates with
a two-part loss: a distillation loss that compels the modified model to mimic the original model’s
outputs, thus preserving quality, and a capacity loss that penalizes exceeding the target memory
budget, thus encouraging sparseness in attention via eviction. Importantly, by training the gates across
all layers jointly, the model can learn a coordinated, globally optimal caching policy rather than
greedy layer-wise decisions. At inference time, the learned retention gates produce per-token scores
on the fly, and eviction is implemented with a simple score comparison, adding minimal overhead.

Results and Contributions. Through extensive experiments on long-context and long-generation
benchmarks, we demonstrate that our learnable token retention approach substantially improves the
performance of memory-bounded LLMs. On challenging mathematical reasoning datasets, GSM8K,
MATH, AIME, a long procedural generation benchmark, LongProc, and a long-memory chat assistant
benchmark, LongMemEval, our method consistently outperforms eviction baselines, even when
those baselines use 4× more KV budget, and deliver 58.4% pass@1 gain compared to the SOTA
learnable KV retrieval baseline (Gao et al., 2025), especially in low-memory regimes. Remarkably,
in several settings, TRIM-KV even surpasses a full-cache model, suggesting that selective retention
can function as an effective regularizer by suppressing noise from uninformative tokens.

We also present qualitative evidence that learned retention scores align with human intuition: the
model tends to assign high scores to initial tokens and problem descriptions, and low scores to less
meaningful punctuation. Notably, many behaviors reminiscent of common heuristics, such as keeping
sink tokens, sliding windows, and gist tokens Mu et al. (2023), emerge naturally and adaptively from
our learned policy, without being hard-coded. Finally, we show that these learned retention scores can
also act as a diagnostic tool for probing layer- and head-specific dynamics, providing a lightweight
means to analyze and ultimately improve the interpretability of attention patterns.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 RELATED WORK

KV Cache Compression. As model sizes and context windows grow, optimizing KV-cache memory
is increasingly critical. Prior work largely falls into three directions: (i) token eviction/merging (Xiao
et al., 2023; Li et al., 2024c; Zhang et al., 2023; Nawrot et al., 2024; Zhang et al., 2024; Qin
et al., 2025; Wang et al., 2025; Liu et al., 2025; Park et al., 2025; Cai et al., 2025), (ii) vector
compression/quantization (Hooper et al., 2024; Liu et al., 2024b; Yue et al., 2024; Sun et al., 2024a),
and (iii) token retrieval (Tang et al., 2024; Liu et al., 2024a; Gao et al., 2025). While effective in
many settings, vector compression and retrieval either discard fine-grained information or introduce
nontrivial systems overhead (e.g., coordination and data movement) (Li et al., 2024a). Moreover, their
memory and computation still scale with sequence length, making them inefficient for long-horizon
generation applications. Token eviction offers a simple, memory-bounded alternative; however,
most existing policies are heuristic and can significantly degrade performance, especially on long
reasoning trajectories. Recent work has introduced learnable eviction policies (Chen et al., 2024;
Zeng et al., 2024), but these are primarily designed for the pre-filling stage and thus are not well suited
to sustained long-horizon generation. We bridge this gap by introducing a learnable and efficient
eviction policy designed for long-horizon LLM inference under fixed memory budgets.

Forgetting in Language Models. A key limitation of vanilla self-attention is the lack of an explicit
forgetting mechanism, forcing the model to carry potentially irrelevant information and making
long-context processing inefficient. Early work tackled this by replacing quadratic attention with
linearized and recurrent variants (Katharopoulos et al., 2020; Wang et al., 2020; Sun et al., 2023;
Yang et al., 2023; 2024) that summarize the past into a fixed-size state, often a single vector. While
computationally attractive, such heavy compression can degrade performance on tasks requiring
long-range memory. More recent approaches (Behrouz et al., 2024; Sun et al., 2024b; Karami et al.;
Karami and Mirrokni, 2025) replace the hidden vector with a neural network to increase memory
capacity, but at the cost of training complexity and uncertain scalability to contemporary LLM sizes.
In contrast, we introduce a plug-in forgetting mechanism for pretrained LLMs that converts them into
memory-bounded models, delivering efficiency for long generation without retraining from scratch.

3 PRELIMINARIES

3.1 TRANSFORMERS WITH SELF-ATTENTION

Given a sequence of d-dimensional input vectors x1, . . . ,xT , a (causal) self-attention layer attends
only to past positions. For each t = 1, . . . , T , the attention output ot is computed as

qt = WQxt,kt = WKxt,vt = WV xt, ot =

t∑
i=1

exp
(
q⊤
t ki

)∑t
j=1 exp

(
q⊤
t kj

)vi,

where q,k,v are query, key, and value states, respectively, and WQ,WK ,WV ∈ Rd×d are linear
transformation weights. Here, we assume a single-head attention layer and omit the scaling factor
1/
√
d for simplicity. The sequence of key-value pairs {(ki,vi)}i is the in-context memory of the

LLM. During the autoregressive decoding, we typically generate one token at a time and cache the
running key-value pair (kt,vt) to our in-context memory to avoid recomputation. However, this
vanilla caching approach leads to a linear increase in memory footprint with the sequence length,
while computation grows quadratically (Keles et al., 2023). This reduces efficiency when handling
long-context inputs and extended generation tasks.

3.2 REVISITING KV CACHE EVICTION

A common method to address the linear growth in the memory is to prune or compress the running
key-value pairs into fixed-size (slot) memory. As new tokens arrive, we evict un-(or less-)important
tokens from our memory and append the new ones. To understand this procedure, we revisit and
rewrite the attention computation with eviction at inference step t as follows:

o′
t =

t∑
i=1

exp
(
αtiq

⊤
t ki

)∑t
j=1 exp

(
αtjq⊤

t kj

)vi where αti ∈ {0, 1} and αti ≤ αt+1,i, ∀i, t. (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 1: Attention
with eviction.

In Equation (1), we introduce a binary variable αti ∈ 0, 1 indicating whether
key–value pair i has been evicted at time t and the monotonicity constraint
αti ≤ αt+1,i ensures that we cannot retrieve a token once it is evicted (Fig-
ure 1). The goal is to choose a decision variable α so that the attention output
deviates as little as possible from the full KV cache (all αti = 1, ∀i, t).

min
α
Lbase(o

′
t;ot) s. t.

t∑
i=1

αti ≤M. (2)

Here, L penalizes differences between attention with and without eviction, and
the constraint enforces keeping at most M tokens at any inference step t.

Solving the above constrained optimization at every time step t is impractical due to its combinatorial
nature and efficiency requirements of LLM inference in real-world applications. Most existing
approaches (Xiao et al., 2023; Han et al., 2023; Zhang et al., 2023; Li et al., 2024c; Cai et al., 2025;
Ghadia et al., 2025) opt to determine α heuristically while we focus on a learnable eviction method.

4 METHODOLOGY

In this section, we propose a learning-based eviction policy that prunes the KV cache based on
the intrinsic importance of the tokens at each layer and head. The policy ranks tokens by relative
importance to decide which should be evicted from the KV memory. To learn token importance, we
introduce a small neural network that takes token embeddings as input and produces a scalar retention
score. We then integrate this retention score into the attention computation to modulate the attention
weights. We term this proxy attention mechanism a retention-gated attention. We train the LLM
with retention-gated attention against a baseline model with standard attention, using a combination
of distillation and hinge-like regularization losses to enforce memory capacity constraints while
preserving response quality. A visualization is shown in Figure 2.

4.1 SELECTIVE IN-CONTEXT MEMORY VIA RETENTION-GATED ATTENTION

We introduce retention-gated attention, a trainable mechanism that mimics the information loss
induced by inference-time eviction. From the formulation (1), the sequence αii, α(i+1)i, . . . , αti

represents how token i is retained in the attention computation over time. Retention begins at 1 and
then abruptly drops to 0 once the token is evicted. While this binary behavior matches the inference
stage, it poses challenges for learning: the signal is discrete, non-differentiable, and provides no
gradients for optimization. To remedy this, we replace the hard binary variable α with a smooth,
monotonically decreasing function that models the gradual decay of importance while enabling
gradient-based training. A natural candidate is the sigmoid function, ᾱti = 1/(1 + exp(f(xi, t))),
which models the time at which the token is evicted. However, this design suffers from two drawbacks:
(i) the domain of f is unnormalized since the sequence length is unknown during decoding, and
(ii) the sigmoid flattens across most of its range, producing negligible variation between steps and
leading to vanishing gradients during training.

To overcome these limitations, we adopt an exponential decay formulation, ᾱti = βt−i
i where

βi ∈ [0, 1], to model the retention rate of token i over time. Larger values of βi correspond to higher
intrinsic importance, implying slower decay and stronger memory retention. Substituting this design
for α in Equation (1) yields our proposed retention-gated attention:

qt = WQxt,kt = WKxt,vt = WV xt, βt = g(xt), ot =

t∑
i=1

exp
(
βt−i
i q⊤

t ki

)∑t
j=1 exp

(
βt−j
j q⊤

t kj

)vi. (3)

Here, we propose a retention gate g, which is a lightweight network, to parametrize the token
importance βt. The retention gate can be a linear projection, i.e., g(x) = σ(Wβxt+b),Wβ ∈ R1×d,
or a simple MLP, i.e., g(x) = σ(MLP(x) + b). The sigmoid function σ squashes the output of g
to the range [0, 1], while b is a learnable bias. When all βt = 1,∀t, our retention-gated attention
recovers the vanilla attention. Our ablation studies show that an MLP with a single hidden layer
provides a more powerful retention estimation than a linear projection.

Brain-inspired Interpretation. Our proposed retention-gated attention bears a natural connection to
the classical Ebbinghaus’s forgetting curve theory (Ebbinghaus, 2013), which models human memory

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

retention as an exponential decay over time. A common approximation of human retention rate is
R = exp(−tS), where t is the time and S is the memory strength determining how fast R decays
over time in the absence of training (Woźniak et al., 1995).

In a similar spirit, our retention-gated attention models the contribution of past tokens as an exponen-
tially decreasing function of their temporal distance from the current step, i.e., exp((t− i) log βi).
Each token begins with full weight (ᾱii = 1), akin to a newly encoded memory, and its influence
decays as more tokens arrive, mirroring the drop in recall probability described by the forgetting
curve. The parameter β acts analogously to memory strength S: larger values yield more persistent,
durable memories, while smaller values indicate weaker memories that fade quickly.

This connection provides an intuitive justification for our design. By embedding a forgetting mecha-
nism into attention, we enable the model to dynamically prioritize recent or intrinsically important
tokens while gradually discarding less informative context, mirroring how humans manage limited
memory capacity in practice. Note that Zhong et al. (2024) also drew on Ebbinghaus’s forgetting
curve to construct a long-term memory bank, but their focus was on retrieval-augmented generation,
whereas our approach integrates forgetting directly into the attention mechanism.

4.2 TRAINING

Figure 2: Training architecture.

Our goal is to train the retention gate g so that
the LLM can preserve response quality under
a memory constraint, thereby bridging the gap
with the inference stage. Instead of training a
separate gate for each layer and head, as for-
mulated in Problem (2), we optimize all reten-
tion gates jointly in an end-to-end fashion. This
holistic approach mitigates error propagation,
allowing the model to learn a coordinated, glob-
ally optimal caching policy rather than greedy
layer-wise decisions. Starting from a pretrained
LLM, we replace every standard attention block
with our proposed retention-gated attention. Each block is equipped with a lightweight retention gate
g that maps token representations to retention scores βt ∈ [0, 1], which are then used to modulate
attention weights according to Equation (3). We call this proxy LLM a retention-gated LLM.

Objectives. To train these retention gates, we formulate the training objective that balances two
goals: (i) preserving the predictive quality of the original pretrained LLM, and (ii) enforcing memory
capacity constraints by controlling the sum of retention scores at each step.

For the first objective, we use a combination of the distillation and standard next-token prediction
losses. The distillation loss encourages the proxy LLM to align its output distribution with that of the
baseline LLM using standard attention. In parallel, the next-token prediction loss enables the model
to uncover sparsity patterns directly from the data, extending beyond the constraints of the pretrained
LLM. Let p(·) and qθ(·) be the output distribution of the pretrained LLM and retention-gated LLM,
respectively, where θ denotes the parameters of all retention gates. The quality loss is given by

Lquality = LKL + LNTP = DKL

(
p(· |x) ∥ qθ(· |x)

)
+ E(x,y)[− log qθ(y|x)] . (4)

Here, DKL is the standard forward Kullback-Leibler divergence (Kullback and Leibler, 1951).

For the second objective, we impose a hinge-like regularization penalty, which discourages the model
from exceeding the available KV memory slots at each step. For a retention gate within a given layer
and KV head, the memory capacity loss is defined as:

Lcap =
1

T (T −M)

T∑
t=1

max {0,
t∑

i=1

βt−i
i −M}, (5)

where T is the sequence length and M is the predefined memory capacity. Here, M acts as a soft
hyperparameter, primarily intended to prevent over-optimization during the early decoding stage
when the sequence remains short. Training is performed with a fixed value of M , while inference
can flexibly accommodate different KV budgets. This regularization is applied uniformly across all

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

layers and KV heads of the transformer. The combined training objective is then:

min
θ
Lquality + λcapLcap, (6)

where λcap is a hyperparameter balancing between quality and capacity loss. Note that during
training, only the retention gate parameters are updated, while all other model weights remain frozen.

Hardware-aware Computation. Retention-gated attention is fully parallelizable and compatible
with FlashAttention-style kernels (Dao, 2023). We implement it with FlexAttention (Dong et al.,
2024) plus a custom Triton kernel for the capacity loss Lcap, performing forward/backward without
materializing the full attention or β matrices. This enables long-context training (up to 128K tokens
on four H100 GPUs) with minor overhead versus standard parameter-efficient fine-tuning.

4.3 INFERENCE

At inference time, the base LLM is augmented with the retention gates learned during training
(Section 4.2). These gates provide token-level intrinsic importance scores βi, which quantify how
strongly each past token should be retained for future computations. Unlike training, where the
retention gates are used to modulate the attention weights, at inference, they act purely as decision-
makers for eviction, operating alongside but independently of attention computation.

The eviction process is designed to ensure that the KV cache respects a predefined memory budget.
Let St ⊆ {1, . . . , t} denote the set of tokens currently stored in the KV cache at decoding step t.
When a new token t+ 1 is generated, it is provisionally added to the cache. If this addition causes
the cache size to exceed the memory capacity M , an eviction is triggered. The eviction rule is simple
yet principled: we remove the token with the lowest retention score, i.e.,

jevic = argmin
j∈St

{βt−j
j |j ∈ St}.

Intuitively, this favors retaining tokens deemed globally important by the learned retention gates
while discarding those with little long-term value. In practice, this makes inference both memory-
efficient and adaptive: as new context arrives, the model continually re-evaluates the importance of
older tokens, enabling long-context generation while keeping memory usage bounded. Algorithm 1
illustrates a single decoding step, where attention computation is coupled with token eviction.

Complexity. Our inference is simpler and more efficient than existing works, including pure heuristic
baselines (Li et al., 2024c). Throughput and runtime comparisons are in Appendix A.2.

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the performance advantages of our
method on both long-context and long generation tasks.

5.1 LONG GENERATION EVALUATION

Benchmarks. Following prior work (Gao et al., 2025; Cai et al., 2025), we evaluate on standard
math-reasoning suites—AIME24 (Art of Problem Solving, 2024), GSM8K (Cobbe et al., 2021),
and MATH-500 (Hendrycks et al., 2021). To assess performance beyond math reasoning and under
long-context settings, we also report results on LongProc (Ye et al., 2025). Following (Gao et al.,
2025), we report average pass@1 accuracy over 64 samples for AIME24 and 8 samples for GSM8K,
MATH-500. We use greedy decoding for LongProc as the default in the benchmark.

Base models. Following (Gao et al., 2025), we mainly use Qwen3’s family models (Yang et al.,
2025), including Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B and DeepSeek R1 Distill (Guo
et al., 2025) variants including, DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Lllam-8B.
We report the results with Qwen3 models in the main paper, and the remaining is in Appendix B.

Baselines. We compare our method against SeerAttn-R (Gao et al., 2025), R-KV (Cai et al., 2025),
SnapKV (Li et al., 2024c), H2O (Zhang et al., 2023), StreamingLLM (Xiao et al., 2023). R-KV,
SnapKV, H2O, and StreamingLLM are heuristic, recency-driven KV eviction policies for long-form
generation under a fixed memory budget. SeerAttn-R is a learnable KV retrieval approach for
reasoning tasks: rather than evicting, it offloads the full KV cache to host memory and uses recent

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 3: Patero frontiers of competing algorithms with different budgets on math benchmarks.

queries to fetch relevant blocks for attention. KV retrieval methods preserve all past information
but require nontrivial CPU–GPU orchestration and incur offloading overhead. We therefore treat
SeerAttn-R as a strong learnable baseline, and R-KV/SnapKV as representative eviction baselines.

Implementation details. We train the retention gates using OpenR1-MATH-220k (Hugging Face)
dataset, similar to (Gao et al., 2025). Note that we only train the retention gates’ weights while
keeping the original model parameters frozen. We set the objective hyperparameters λcap = 1.0 and
the memory capacity M = 512. Each transformer block has a retention gate g, which is a single
MLP layer with the hidden dimension of 512, thus having dimensions of d→ 512→ h, where h is
the number of KV heads. We use the activation function as the default activation function in MLP
layers of the base model. We initialize the bias in the retention gates to a large value (e.g., b = 8.0) to
begin training with minimal forgetting or compression. All trainings are on 4 H100 80G GPUs.

5.1.1 QUANTITATIVE RESULT

Math Reasoning Tasks. Figure 3 shows our method outperforming all baselines by a large margin,
especially in low-budget regimes. Notably, TRIM-KV surpasses attention-guided methods (R-KV,
SnapKV) even when they are given 4× KV budget. Under the same budget, i.e.1024 for AIME24 and
128 for GSM8K/MATH-500, it yields a 198% relative improvement over these baselines. Against the
SOTA learnable KV retrieval baseline, TRIM-KV outperforms SeerAttn-R across all settings, yielding
a 58.4% pass@1 gain at the same budget. Crucially, TRIM-KV operates in a pure KV-eviction regime,
a stricter setting than the KV retrieval methods such as SeerAttn-R, and thus avoids CPU–GPU
offloading overhead. In some settings, like for Qwen3-4B model and AIME24 dataset, our method
can even surpass the standard full KV cache. These results suggest that a large fraction of KV-cache
tokens in reasoning models is redundant and can be discarded without degrading performance.

Long Procedural Generation Tasks. We evaluate
KV-eviction methods on tasks that require both long-
context comprehension and extended generation. Ta-
ble 1 reports results with Qwen3-4B model. Over-
all, TRIM-KV consistently outperforms all other evic-
tion baselines and, in several settings, even surpasses
the full-cache model. Moreover, this result highlights
that TRIM-KV with retention gates trained on math-
reasoning data generalizes well to non-math tasks. Full
results and analysis are provided in Appendix B.

MethodKV budget CountDown Pseudo to Code
0.5k 2k 8k 0.5k 2k

FullKV 96.0 90.0 69.0 50.8 25.0

StreamingLLM2048 7.0 5.0 5.0 20.6 1.5
H2O2048 12.0 7.5 2.5 33.7 0.5
SnapKV2048 57.0 49.0 13.0 42.7 4.5
R-KV2048 88.5 81.0 63.0 48.2 2.5
TRIM-KV2048 97.5 93.5 66.0 49.2 19.0

Table 1: Qwen3-4B on LongProc. Bold is for
the best, underline is for the best KV eviction.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Visualization of token retention score βt−i
i (top) and eviction decisions αti (bottom).

5.1.2 QUALITATIVE RESULT

To examine the eviction policy learned by our retention gates, we run TRIM-KV on Qwen3-4B
for the first example in AIME24 (see Figure 13 for a visualization of the example). Figure 5a–b
show the mean retention score—averaged over all layers and heads—for each token in the example
sequence. Aligning with our intuition, retention gates assign high scores to task-relevant tokens (e.g.,
ometer, shop, walk, minutes) and to the initial token <|im start|>, which often serves
as an attention sink. In contrast, whitespace and punctuation receive low retention scores and are
discarded early, yielding short lifespans in the KV cache. Next, we examine retention scores and
eviction decisions at layer–head granularity.

Emergent Eviction Heuristics. Figure 4 visualizes the retention scores βt−i
i and eviction decisions

αti for selected layers and heads. Many eviction heuristics, such as attention sinks (Xiao et al., 2023),
sliding windows (Zhu et al., 2021), A-shape (Jiang et al., 2024), emerge naturally from our learned
policy without being hard-coded, and they adapt to the functional roles of individual layers and heads.
For instance, sliding-window behavior is more common in early layers, whereas attention sinks
appear more frequently in later layers (see Figure 11 and 12 for a comprehensive view). Moreover,
TRIM-KV adapts the window size by layer and head: in Layer 1/Head 1, tokens receive nearly
uniform retention scores, so the KV cache behaves like a recency-biased window that keeps the
most recent tokens; in Layer 0/Head 0, multiple sliding windows of varying widths emerge from the
learned policy; in Layer 15/Head 2, no sliding window is observed because certain tokens receive
substantially higher retention than others, suggesting a specialized functional role for this head. The
A-shaped pattern typically appears in layers that emphasize instruction/problem-statement tokens
(e.g., Layer 20/Head 5 and Layer 30/Head 4) or chain-of-thought/reasoning prompts (e.g., Layer
35/Head 1). These heads also exhibit context switching, where small, dense lower-triangular blocks
emerge and then fade quickly when the context changes or a sentence completes. To the best of
our knowledge, the absence of a sliding window, the presence of multiple coexisting windows, and
context switching are newly observed eviction patterns that arise naturally from our learned policy.

Token Retention Enables Interpretability. Beyond guiding eviction policy, token-level retention
scores provide a diagnostic tool for analyzing the functional roles of individual KV heads in the base
LLM. Visualizing retention scores alongside the tokens preserved in the KV cache after generation
reveals distinct specializations: some heads emphasize a recency window (Figure 16), whereas
others preferentially retain mathematical tokens-numbers and operators (Figures 13 and 19)-or
variables (Figure 22), as well as problem-description tokens (Figures 18 and 24) and chain-of-thought
instructions (Figure 25). Even function or filler words, such as pronouns, prepositions, conjunctions,
wait and let, tend to be kept by specific heads (Figures 17 and 23). In particular, heads that exhibit
context-switching patterns (e.g., Layer 30/Head 4 and Layer 16/Head 6) tend to retain the period
token while discarding others (Figures 21 and 20). We hypothesize that, in these heads, periods act as
implicit gist tokens (Mu et al., 2023), summarizing the information in the preceding sentences.

Our analyses indicate that KV heads in LLM develop different functional roles and therefore keep
different types of tokens. These tokens are often dispersed across the context rather than forming
contiguous chunks, as each already captures contextual information. This observation contrasts with
existing approaches (Yuan et al., 2025; Gao et al., 2025) that advocate chunk- or block-based KV-
cache. Instead, we show that keeping a small number of high-context tokens is more budget-effective.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5: a) Average retention scores across all layers and heads of Qwen3-4B on tokens of an
AIME24 example. b) Top 10 tokens with the highest (left table) and lowest (right table) average
retention. c) The layer- and head-wise sparsity level estimated by token retentions.

Budget Allocation. Figure 5c reports head- and layer-wise sparsity estimated from the scores via i.e.,
1− 2

T (T+1)

∑
i<t β

t−i
i . We observe that later layers are typically sparser than earlier ones, consistent

with prior findings in (Cai et al., 2024). Practically, these scores enable heterogeneous budgets across
KV heads under a global constraint by evicting tokens with low global retention. However, existing
KV-cache and FlashAttention implementations assume uniform sequence lengths across heads within
a layer; enabling efficient per-head variable-length caches is left to future work.

5.2 LONG MEMORY EVALUATION

To further stress-test our approach on long-context tasks, we evaluate it on
LongMemEvalS (Wu et al., 2024a), a benchmark for assessing chat assistants’
long-term interactive memory (contexts up to 123K tokens with Qwen3). We
use Qwen3-4B-Instruct (Qwen3, 2025) as the base model and train the retention
gates on the SynthLong dataset (Lazarevich et al., 2025). All other settings
follow Section 5.1. As shown in Table 2, TRIM-KV outperforms baselines by a
significant margin. Especially, TRIM-KV can maintain the performance of a
full cache while using just 25% of the KV budget. These results highlight our
method’s advantage on both long-context and long-generation tasks, whereas
most prior work targets either the prefill or the generation stage, but not both.
More details and results for this experiment are provided in Appendix B.

MethodKV budget Acc

Full KV131072 49.4
StreamingLLM32768 27.6
SnapKV32768 27.8
TRIM-KV32768 48.2
StreamingLLM16384 19.0
SnapKV16384 18.2
TRIM-KV16384 42.6
StreamingLLM4096 10.2
SnapKV4096 13.4
TRIM-KV4096 30.2

Table 2: Results on
LongMemEvalS .

5.3 ABLATION STUDIES

We ablate the objective by training the Qwen3-4B retention gates with
different loss combinations and report AIME24 pass@1 at a 4096-
token budget in Table 3. Both forward KL and next-token prediction
perform well on their own, and their combination further improves
accuracy. The memory capacity loss is essential for compression, and
removing it leads to a sharp drop. We provide comprehensive ablations
with reversed KL, generalization with different training datasets, gate’s
architecture, and other hyperparameters such as M in Appendix B.3.

MethodKV budget pass@1

Full KV32768 65.5
TRIM-KV4096 74.0
(TRIM-KV −LKL)4096 71.4
(TRIM-KV −LNTP)4096 70.7
(TRIM-KV −Lcap)4096 42.9

Table 3: Objective ablation.

6 CONCLUSION AND FUTURE WORK

We introduced TRIM-KV, a learnable, retention-gated approach to KV cache management that
prioritizes tokens by intrinsic importance rather than recent attention. By training lightweight gates
with distillation and a capacity loss, our method enforces strict memory budgets with a simple and
efficient eviction policy. Extensive experiments across math reasoning, long-procedural generation,
and conversational long-memory benchmarks demonstrate that our method outperforms strong
eviction and retrieval baselines—sometimes even surpassing full-cache models. Analyses show that
the learned retention scores align with human intuitions and reveal layer- and head-specific dynamics,
offering a simple probe for interpretability. Building on these results, we plan to extend retention
gating to multimodal inputs and develop adaptive budgets that allocate memory across layers, heads,
and tasks to further improve both performance and efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

This work aims to improve the efficiency of large language models by reducing their memory and
computational footprint. Our method can make long-context reasoning more accessible by lowering
hardware costs, which may democratize access to advanced LLM capabilities. However, efficiency
improvements may also accelerate the deployment of LLMs in high-stakes or resource-limited settings
where risks around misinformation, bias, or misuse persist. We stress that our method does not
mitigate these broader societal risks and should be paired with ongoing efforts in safety, fairness, and
responsible deployment.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing detailed descriptions of the model architecture, training
objectives, and evaluation benchmarks in the main text and appendix. Hyperparameters, training
schedules, and implementation details are included for all experiments. All datasets we use are
publicly available, and we will release code, model checkpoints, and scripts for training and evaluation
upon publication. Together, these materials allow independent researchers to fully reproduce and
verify our results.

The authors used large language models to help refine and polish the writing of this manuscript.

REFERENCES

Art of Problem Solving. AIME problems and solutions, 2024. URL https:
//artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne Xiong,
Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-
Wen Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free
reasoning models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
Wang, Yu Sun, Dianhai Yu, and Hua Wu. Nacl: A general and effective kv cache eviction
framework for llms at inference time. arXiv preprint arXiv:2408.03675, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Hermann Ebbinghaus. [image] memory: A contribution to experimental psychology. Annals of
neurosciences, 20(4):155, 2013.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language
models (effectively). arXiv preprint arXiv:2410.02660, 2024.

10

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao Sun,
Tianzhu Ye, Li Dong, et al. Seerattention-r: Sparse attention adaptation for long reasoning. arXiv
preprint arXiv:2506.08889, 2025.

Ravi Ghadia, Avinash Kumar, Gaurav Jain, Prashant Nair, and Poulami Das. Dialogue without limits:
Constant-sized kv caches for extended responses in llms. arXiv preprint arXiv:2503.00979, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models. arXiv preprint
arXiv:2308.16137, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1. URL https://github.
com/huggingface/open-r1.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024.

Mahdi Karami and Vahab Mirrokni. Lattice: Learning to efficiently compress the memory. arXiv
preprint arXiv:2504.05646, 2025.

Mahdi Karami, Ali Behrouz, Praneeth Kacham, and Vahab Mirrokni. Trellis: Learning to compress
key-value memory in attention models. In Second Conference on Language Modeling.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pages 5156–5165. PMLR, 2020.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International conference on algorithmic learning theory, pages
597–619. PMLR, 2023.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization. 2021.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathemati-
cal statistics, 22(1):79–86, 1951.

Ivan Lazarevich, David Bick, Harsh Gupta, Srinjoy Mukherjee, Nishit
Neema, Gokul Ramakrishnan, and Ganesh Venkatesh. Extending llm con-
text with 99% less training tokens. https://cerebras.ai/blog/
extending-llm-context-with-99-less-training-tokens, February 2025.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management. arXiv preprint arXiv:2412.19442, 2024a.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
long-context methods. arXiv preprint arXiv:2412.10319, 2024b.

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://cerebras.ai/blog/extending-llm-context-with-99-less-training-tokens
https://cerebras.ai/blog/extending-llm-context-with-99-less-training-tokens

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2024c.

Zhuoling Li, Xiaogang Xu, Zhenhua Xu, SerNam Lim, and Hengshuang Zhao. Larm: Large
auto-regressive model for long-horizon embodied intelligence. arXiv preprint arXiv:2405.17424,
2024d.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024a.

Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu,
and Xiaowen Chu. Can llms maintain fundamental abilities under kv cache compression? arXiv
preprint arXiv:2502.01941, 2025.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36:19327–19352, 2023.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dynamic
memory compression: Retrofitting llms for accelerated inference. arXiv preprint arXiv:2403.09636,
2024.

Junyoung Park, Dalton Jones, Matthew J Morse, Raghavv Goel, Mingu Lee, and Chris Lott. Keydiff:
Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
environments. arXiv preprint arXiv:2504.15364, 2025.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. arXiv preprint
arXiv:2503.12491, 2025.

Qwen3. Qwen/qwen3-4b-instruct-2507, 2025. URL https://huggingface.co/Qwen/
Qwen3-4B-Instruct-2507.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
International Conference on Machine Learning, pages 31210–31227. PMLR, 2023.

Chaitanya Singhal. Introducing buddhi: Open-source chat model with a 128k context window. AI
Planet (Medium), April 2024. URL https://huggingface.co/datasets/aiplanet/
buddhi-dataset. Accessed: 2025-08-23.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024a.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024b.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

12

https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/datasets/aiplanet/buddhi-dataset
https://huggingface.co/datasets/aiplanet/buddhi-dataset

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Guangtao Wang, Shubhangi Upasani, Chen Wu, Darshan Gandhi, Jonathan Li, Changran Hu, Bo Li,
and Urmish Thakker. Llms know what to drop: Self-attention guided kv cache eviction for efficient
long-context inference. arXiv preprint arXiv:2503.08879, 2025.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Piotr Woźniak, Edward Gorzelańczyk, and Janusz Murakowski. Two components of long-term
memory. Acta neurobiologiae experimentalis, 55(4):301–305, 1995.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
Benchmarking chat assistants on long-term interactive memory. arXiv preprint arXiv:2410.10813,
2024a.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024b.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation.
arXiv preprint arXiv:2501.05414, 2025.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zihao Zeng, Bokai Lin, Tianqi Hou, Hao Zhang, and Zhijie Deng. In-context kv-cache eviction for
llms via attention-gate. arXiv preprint arXiv:2410.12876, 2024.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first International Conference
on Machine Learning, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and
Qianli Ma. Lifelong learning of large language model based agents: A roadmap. arXiv preprint
arXiv:2501.07278, 2025.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19724–19731, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in neural information processing systems, 34:17723–17736, 2021.

A METHODOLOGY

A.1 INFERENCE ALGORITHM.

Algorithm 1 illustrates the attention computation with KV eviction using retention gates for a single
decoding step. We mark the parts that are different from the standard attention computation in blue.

Algorithm 1: Attention computation with KV eviction (single decoding step)
Input :current hidden xt; KV cache Kt−1,Vt−1,Bt−1 indexed by St−1; retention gate g
Param :capacity M ;
Output :attention output ot; updated (Kt,Vt,Bt); updated index set St

// 1) Project to Q/K/V for the current token
1 qt ←WQxt; kt ←WKxt; vt ←WV xt; βt = g(xt);
// 2) Append current token to the KV cache

2 Kt ← Kt−1 ∪ kt; Vt ← Vt−1 ∪ vt; Bt ← Bt−1 ∪ βt; St ← St−1 ∪ {t};
// 3) Compute attention over currently cached keys/values

(restricted to St)
3 ot ← FLASHATTN(qt,Kt,Vt);
// 4) If capacity exceeded, evict the least important token

4 if |St| > M then
5 jevic ← argmin {βt−j

j |j ∈ St};
6 Remove Kt[jevic], Vt[jevic], Bt[jevic];
7 St ← St \ {jevic};
8 end

A.2 COMPLEXITY

Memory efficiency. Like other KV-eviction schemes, TRIM-KV uses a fixed-size cache withO(M)
slots, independent of sequence length T . For each token (per head), it stores a single scalar retention
score βi, adding only ≈ 1/dh overhead, where dh is the dimension of the key and vector states,
relative to the KV states, which is negligible in practice. Unlike R-KV (Cai et al., 2025), TRIM-KV
does not store queries.

Method Context Length Gen Length Batch Size Throughput (tok/sec) Decode Time (s)

FullKV
32786 1024 4

68.44 59.84
SeerAttn-R 68.93 59.41
SnapKV 124.67 33.00
TRIM-KV 130.48 31.39
FullKV

16378 1024 4
114.39 35.8

SeerAttn-R 100.45 40.77
SnapKV 153.21 26.73
TRIM-KV 151.04 27.11
FullKV

16378 1024 8
138.97 58.94

SeerAttn-R 139.34 58.78
SnapKV 244.60 33.49
TRIM-KV 279.90 29.26

Table 4: Throughput and decoding time comparisons of different KV cache methods on a single
H200 GPU.

Computational efficiency. For each generated token, TRIM-KV computes a scalar retention
score βi via a lightweight MLP that can be fused with QKV projections; scores are cached and not
recomputed each step. During compression, it applies a temporal discount (elementwise power) and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

evicts the argmin; both costs only O(M). This is cheaper than heuristics like R-KV, which require
key–key similarity scoring over the cache. Table 4 reports throughput and latency: at 32K context,
TRIM-KV achieves ∼2× higher decoding throughput than full-cache decoding and even faster than
SnapKV, a purely heuristic method. SeerAttn-R does not provide any computation advantage over
full cache model.

B ADDITIONAL EXPERIMENTS

B.1 LONG GENERATION EVALUATION

We provide more comprehensive experiment details in this section.

Experiment settings. For the training, we set the maximum training length to be 16384. We train the
retention gates with a learning rate of 2× 10−4 and a weight decay of 0.01. Other hyperparameters
are set to the default in Huggingface Trainer.

Benchmarks. AIME24 (Art of Problem Solving, 2024), GSM8K (Cobbe et al., 2021), and MATH-
500 (Hendrycks et al., 2021) are standard math reasoning benchmarks. LongProc (Ye et al., 2025)
is a long-context benchmark of six procedural-generation tasks that require integrating dispersed
information and producing structured long-form outputs (up to ∼ 8K tokens)—from extracting
tables from HTML to executing multi-step search to build feasible travel itineraries. The suite spans
varied access patterns (sequential vs. targeted retrieval), deductive reasoning demands, and search
execution, enabling stress tests of long-range coherence and procedure following. Each task includes
deterministic solution procedures and structured outputs, allowing rule-based evaluation (row-level F1
for HTML→TSV, unit tests for pseudocode→code, exact-match traces for Path/ToM, and validators
for Countdown/Travel). To probe generation length, we use three difficulty tiers targeting 0.5K, 2K,
and 8K output tokens.

Figure 6: Patero frontiers of competing algorithms with different budgets on AIME24.

Math reasoning results. Figure 6 reports AIME24 performance for Qwen3-1.7B and DeepSeek-R1-
Distill variants. Across both families, TRIM-KV consistently outperforms eviction baselines. The
gains over heuristic baselines are smaller on DeepSeek-R1-Distill–Llama-8B, which we hypothesize
reflects lower attention sparsity in this model compared to the Qwen3 family.

Results on LongProc. Table 5 reports KV-eviction results on long procedure–generation tasks.
Across tasks and budgets, TRIM-KV achieves the best performance, and it even surpasses the
full-cache baseline on COUNTDOWN (0.5K/2K) and HTML TO TSV (0.5K). Under tighter memory
budgets, its margin over heuristic baselines widens.

B.2 LONG MEMORY EVALUATION

Experimental settings. We adopt Qwen3-4B-Instruct (Qwen3, 2025) as the base model, which
supports a context window of up to 256K tokens. Retention gates are trained on a mixture of
SynthLong-32K (Lazarevich et al., 2025), BookSum (Kryściński et al., 2021), and Buddhi (Singhal,
2024), covering sequence lengths from 32K to 128K tokens. We shuffle the combined corpus and
train for 10,000 steps (i.e., 10,000 randomly sampled examples), with a maximum training sequence
length of 128K and memory capacity M = 4096. All other settings follow Section 5.1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

MethodKV budget HTML to TSV Thought of Mind Travel Planning
0.5k 2k 8k 0.5k 2k 8k 2k 8k

FullKV 49.0 41.6 13.9 33.0 10.5 0.0 0.0 0.0

SnapKV8192 37.1 9.3 0.1 26.0 7.0 0.0 0.0 0.0
H2O8192 28.3 6.4 0.4 38.0 7.0 0.0 0.0 0.0
R-KV8192 38.0 7.1 0.5 26.0 7.5 0.0 0.0 0.0
TRIM-KV8192 58.2 36.0 12.5 32.5 10.5 0.0 0.0 0.0
StreamingLLM2048 1.2 0.0 0.0 2.0 0.0 0.0 0.0 0.0
SnapKV2048 1.5 0.2 0.0 15.0 0.0 0.0 0.0 0.0
H2O2048 0.4 0.8 0.0 7.6 0.0 0.0 0.0 0.0
R-KV2048 1.6 0.1 0.0 3.0 0.0 0.0 0.0 0.0
TRIM-KV2048 34.6 7.1 0.3 17.5 0.5 0.0 0.0 0.0

Table 5: Results of Qwen3-4B across LongProc tasks: F1-score for HTML to TSV task and accuracies
(%) for the remaining tasks. Best per task column in bold.

MethodKV budget Overall Multi Knowledge SS-User SS-Pref SS-Assist Temporal

Full KV131072 49.4 25.6 68.0 62.9 93.3 85.7 30.1

StreamingLLM32768 27.8 15.8 50.0 32.9 56.7 33.9 15.0
SnapKV32768 27.6 15.8 42.3 24.3 73.3 28.6 21.8
TRIM-KV32768 48.2 23.3 68.0 58.6 80.0 85.5 32.3
StreamingLLM16384 19.0 12.8 35.9 24.3 26.7 17.9 11.3
SnapKV16384 18.2 9.0 25.6 17.1 70.0 12.5 14.3
TRIM-KV16384 42.6 21.8 62.8 42.9 80.0 69.6 31.6
StreamingLLM12288 17.2 13.5 32.1 20.0 33.3 14.3 8.3
SnapKV12288 17.0 9.8 20.5 14.3 73.3 12.5 12.8
TRIM-KV12288 36.8 19.6 59.0 35.7 66.7 50.0 29.3
StreamingLLM8192 13.0 9.0 25.6 15.7 16.7 10.7 8.3
SnapKV8192 15.8 9.8 19.2 12.9 70.0 7.1 12.8
TRIM-KV8192 33.2 15.0 55.1 34.3 70.0 46.4 24.1
StreamingLLM4096 10.2 9.8 14.1 14.3 16.7 7.1 6.0
SnapKV4096 13.8 11.3 14.1 14.3 56.7 7.1 9.0
TRIM-KV4096 30.2 12.8 35.9 24.3 80.0 46.4 29.3

Table 6: Results on LongMemEvalS : overall and partial accuracies (%).

Benchmark Dataset. We evaluate chat-assistant capabilities under strict memory budgets using
LongMemEvalS (Wu et al., 2024a). This subset provides contexts up to 123k tokens (measured with
the Qwen3 tokenizer) and includes six question types that probe long-term memory: single-session-
user (SS-User) and single-session-assistant (SS-Assist), which test recall of facts stated by the user or
assistant within a session; single-session-preference (SS-Pref), which requires personalized responses
from stored personal information; multi-session (Multi), which aggregates or compares information
across sessions; knowledge-update (Knowledge), which tracks and answers with the most recent,
changed user information; temporal-reasoning (Temporal), which reasons over timestamps and time
references.

To evaluate KV-cache eviction methods on this benchmark, we follow the multi-turn, multi-session
protocol of (Li et al., 2024b). Specifically, before each query, the eviction-based model must
compress the accumulated dialogue into a fixed-size, reusable KV cache—mirroring real-world
assistants that maintain state across turns and sessions under strict memory budgets. We use Qwen3-
4B-Instruct (Qwen3, 2025) to assess whether model outputs match the ground-truth responses.

Results. The results in Table 6 show that our method outperforms baseline eviction strategies by a
significant margin. Especially, TRIM-KV can match the performance of a full cache while using just
25% of the KV budget.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

B.3 ADDITIONAL ABLATION STUDIES

Figure 7: Generation Ablation.

Ablation on training datasets. In Section 5.1, we train the retention gates on a reasoning
dataset—OpenR1-Math (Hugging Face)—and evaluate on AIME24, MATH-500, and GSM8K.
This follows standard practice and matches the setting of (Gao et al., 2025), ensuring a fair com-
parison. To assess cross-domain generalization, we instead train the gates on general long-context
datasets (SynthLong, BookSum, Buddhi), similar to Section 5.2, and then evaluate on math reasoning
benchmarks to test whether retention scores learned from general data transfer to long chain-of-
thought tasks. As shown in Figure 7, gates trained on general datasets generalize well and even
surpass math-specific training at a 2048 KV budget. However, their performance degrades more
quickly under tighter KV budgets. Overall, these results are promising and suggest that scaling the
training of the retention gates by combining all datasets could yield further improvements.

Figure 8: Ablating different objective components.

Ablation for the objective function. We ablate the objective by training the Qwen3-4B retention
gates with different loss combinations and report AIME24 pass@1 at a 4096-token KV budget in
Figure 8. Here, we consider both forward KL divergence and reversed KL divergence for distillation
loss. Generally, all distillation losses perform well on their own. However, reversed KL underperforms
when compared to forward KL. Both show benefits in combination with next token prediction. The
memory capacity loss is essential for compression, and removing it leads to a sharp drop.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 9: Ablating the retention gate’s architecture.

Ablation for the retention gate’s architecture. We evaluate several retention-gate architectures and
report the performance of Qwen3 1.7B on AIME24 in Figure 9. Due to computational constraints,
this ablation uses greedy decoding. For the MLP gate, we use a single-hidden-layer MLP with width
512. We find that the MLP gate outperforms a simple linear projection, and that a large positive
initial bias is crucial for stable training by keeping the gate’s output nearly 1 at initialization to ensure
minimal early forgetting.

Figure 10: Ablating the training memory capacity M .

Ablation on training memory capacity M . We evaluate multiple settings of M in Figure 10. With
M =∞, there is no capacity penalty, which hurts performance due to the absence of sparsity pressure.
Setting M = 128 outperforms attention-guided heuristics but shows signs of over-optimizing for
sparsity. In practice, we recommend choosing M to match the expected deployment-time memory
budget.

C ADDITIONAL QUALITATIVE RESULTS

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 11: A visualization of token retention matrices of Qwen3-4B when answering a math question
in the AIME24 dataset. Each subplot is a token retention matrix {βt−i

i }ti in a specific layer and head.
Observations: earlier layers often exhibit sliding-window-like patterns, while later layers develop
clearer functional specializations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 12: A visualization of eviction decisions of Qwen3-4B when answering a math question in the
AIME24 dataset. Each subplot is a matrix of eviction decisions αti in a specific layer and head.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 13: Visualization of token retention scores βi from the retention gate in layer 15, head 2 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observation: This head consistently assigns a high retention to the problem description and tokens
expressing mathematical operations, suggesting a specialization for task-critical content. In contrast,
filler phrases (e.g., ‘wait’, ‘let me think’) receive very low retention. Moreover, for a multi-digit
number, retaining only the hidden state of the final digit suffices to maintain performance, suggesting
that the last digit’s representation already captures the semantic information of the whole number.

Figure 14: Visualization of token retention scores βi from the retention gate in layer 9, head 7 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observations: This head exhibits a retention pattern similar to layer 15, head 2, but places greater
emphasis on arithmetic operators (e.g., +,−, /).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 15: Visualization of token retention scores βi from the retention gate in layer 35, head 2 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observation: Unlike layer 15, head 2 and layer 9, head 7, this head assigns elevated retention
to general-purpose tokens that support coherence and instruction following; for example, LATEX
commands and the directive boxed{) receive high scores, while tokens associated with mathematical
operations receive low retention.

Figure 16: Visualization of tokens retained in the layer 0 head 3 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 17: Visualization of tokens retained in the layer 0 head 6 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

Figure 18: Visualization of tokens retained in the layer 9 head 7 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 19: Visualization of tokens retained in the layer 15 head 2 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

Figure 20: Visualization of tokens retained in the layer 16 head 6 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 21: Visualization of tokens retained in the layer 30 head 4 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

Figure 22: Visualization of tokens retained in the layer 34 head 1 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 23: Visualization of tokens retained in the layer 35 head 3 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

Figure 24: Visualization of tokens retained in the layer 35 head 5 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 25: Visualization of tokens retained in the layer 35 head 7 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

27

	Introduction
	Related Work
	Preliminaries
	Transformers with Self-Attention
	Revisiting KV Cache Eviction

	Methodology
	Selective In-Context Memory via Retention-Gated Attention
	Training
	Inference

	Experiments
	Long Generation Evaluation
	Quantitative Result
	Qualitative Result

	Long Memory Evaluation
	Ablation Studies

	Conclusion and Future Work
	Methodology
	Inference Algorithm.
	Complexity

	Additional Experiments
	Long Generation Evaluation
	Long Memory Evaluation
	Additional Ablation Studies

	Additional Qualitative Results

