CACHE WHAT LASTS: TOKEN RETENTION FOR
MEMORY-BOUNDED KV CACHE IN LLLMSs

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory and computation remain core bottlenecks in long-horizon LLM inference
due to the quadratic cost of self-attention and the ever-growing key-value (KV)
cache. Existing strategies for memory-bounded inference, such as quantization,
offloading, or heuristic KV eviction, either incur high orchestration costs or rely
on unreliable attention-based proxies of importance. We propose TRIM-KYV, a
novel approach that learns each token’s intrinsic importance at creation time via a
lightweight retention gate. Each gate predicts a scalar retention score that decays
over time, reflecting the long-term utility of the token for a specific layer and head.
Tokens with low scores are evicted when the memory budget is exceeded, ensuring
that the cache always contains the most critical tokens. TRIM-KYV is trained
efficiently through distillation from a frozen LLM combined with a capacity loss,
requiring only gate fine-tuning and adding negligible inference overhead. Across
mathematical reasoning (GSM8K, MATH-500, AIME24), procedural generation
(LongProc), and conversational long-memory benchmarks (LongMemEval), TRIM-
KV consistently outperforms strong eviction and learnable retrieval baselines,
especially in low-memory regimes. Remarkably, it even surpasses full-cache
models in some settings, showing that selective retention can serve as a form of
regularization, suppressing noise from uninformative tokens. Qualitative analyses
further reveal that learned retention scores align with human intuition, naturally
recovering heuristics such as sink tokens, sliding windows, and gist compression
without explicit design. Beyond efficiency, retention scores provide insights into
layer- and head-specific roles, suggesting a new path toward LLM interpretability.

1 INTRODUCTION

Modern large language models (LLMs) can, in principle, handle extremely long input contexts —
some recent models support context windows of 128k tokens or more (Yang et al.||[2025; |Gao et al.,
2024). Yet, extending context length comes with steep computational costs. The self-attention
mechanism has quadratic time complexity in sequence length, and storing the key-value (KV) cache
for thousands of tokens can quickly exhaust GPU memory (Wang et al., 2025; |L1 et al., [2024a). In
practical deployments, the KV cache, which saves past key and value vectors to avoid re-computation,
becomes a major memory and latency bottleneck for long-context inference. Decoupling resource
usage from context length is therefore critical for enabling efficient and scalable applications such as
long-horizon reasoning (Chen et al.,|2025) and lifelong agents (Zheng et al., 2025} |Li et al., 2024d).

To address this challenge, recent work has explored memory-bounded LLMs that can operate effec-
tively under constrained KV budgets (Li et al., 2024a). One line of research focuses on compression
and quantization, aiming to reduce memory footprint by learning compact representations of past
tokens rather than storing all keys and values explicitly (Hooper et al.l|[2024; Saxena et al.| [2024).
These techniques are mostly effective during the prefill phase but scale poorly with generation
length. Another line leverages attention sparsity to offload most of the cache to CPU or secondary
storage, and retrieve only relevant segments on demand via similarity search (Tang et al.,[2024) or
learned indices (Gao et al., [2025). While offloading lowers the on-GPU footprint, it incurs nontrivial
orchestration overhead that accumulates over long generations, undermining end-to-end throughput.

A more common and direct approach to enforce a fixed memory budget is KV cache eviction, which
directly drops certain tokens from the KV cache (Xiao et al.,[2023). Many KV eviction strategies

have been proposed to decide which tokens to remove. However, most of them are attention-guided
heuristics: they track attention from new queries to cached tokens and retain those that are recently
or frequently attended, adapting the cache to the current focus (Zhang et al., 2023} [Li et al.l 2024c]
Wang et al.| 2025} [Liu et al.} 2025} |Ghadia et al., 20255 |Cai et al.| 2025). While being efficient, these
methods assume that recent attention is a reliable proxy for future importance. This assumption often
breaks for long-horizon generation and reasoning tasks: a token might be crucial much later, even if
it has not been attended to in the recent past (Jiang et al.,[2024). Moreover, attention-based eviction
can suffer from attention bias, e.g., the model might temporarily overlook a needed token due to a
distracting context (Shi et al.,|2023)), causing it to be evicted prematurely. While some recent studies
have attempted to learn better eviction decisions (Chen et al.|[2024} [Zeng et al.,2024), these methods
typically scale poorly with sequence length and are therefore limited to the prefilling stage.

In this work, we take a new perspective on the KV eviction problem. Rather than relying on the
attention-guided importance, we propose to learn each token’s intrinsic importance at the time of
its creation and use that as the basis for eviction. Intuitively, not all tokens are created equal: some
carry significant semantic or task-related weight (e.g. a critical fact, a question being answered, or
the first few “sink” tokens that often encode the topic or instructions), while others are relatively
inconsequential (e.g. filler words, stopwords, or trivial arithmetic steps in a chain-of-thought).
Moreover, the importance of tokens is not uniform across the network, but it varies systematically by
layers and heads, reflecting their functional specializations (Voita et al., 2019 [Wu et al.| | 2024b).

We posit that the contextual embedding of a token already encodes much of its long-term utility. We
therefore introduce a retention gate that maps the token’s embedding and produces a scalar retention
score 3 € [0, 1] reflecting the token’s inherent importance for a specific layer and head. Especially,
we design this retention score to decay exponentially as the context grows, mimicking the gradual
forgetting of old information in human brains (Ebbinghaus| |2013)). Thus, a highly important token
will have 8 = 1 and retain a high score for a long time, whereas a token deemed unimportant will have
B closer to 0 and its influence will vanish quickly. We leverage this score to drive a simple eviction
policy: whenever the number of cached tokens exceeds the budget M, we evict the token with the
smallest current retention score. This approach, which we call Token Retentlon for Memory-bounded
KYV Cache (TRIM-KYV), ensures that at all times, the cache is filled with the M tokens judged most
intrinsically important, with a preference toward more recently generated tokens.

Implementing retention-based caching in an existing LLM only requires adding a few lightweight
components. We integrate the retention gates into each self-attention layer of a pretrained model to
modulate attention weights by token importance during training. We then train only the gates with
a two-part loss: a distillation loss that compels the modified model to mimic the original model’s
outputs, thus preserving quality, and a capacity loss that penalizes exceeding the target memory
budget, thus encouraging sparseness in attention via eviction. Importantly, by training the gates across
all layers jointly, the model can learn a coordinated, globally optimal caching policy rather than
greedy layer-wise decisions. At inference time, the learned retention gates produce per-token scores
on the fly, and eviction is implemented with a simple score comparison, adding minimal overhead.

Results and Contributions. Through extensive experiments on long-context and long-generation
benchmarks, we demonstrate that our learnable token retention approach substantially improves the
performance of memory-bounded LLMs. On challenging mathematical reasoning datasets, GSM8K,
MATH, AIME, a long procedural generation benchmark, LongProc, and a long-memory chat assistant
benchmark, LongMemEval, our method consistently outperforms eviction baselines, even when
those baselines use 4x more KV budget, and deliver 58.4% pass@1 gain compared to the SOTA
learnable KV retrieval baseline (Gao et al.,|2025), especially in low-memory regimes. Remarkably,
in several settings, TRIM-KYV even surpasses a full-cache model, suggesting that selective retention
can function as an effective regularizer by suppressing noise from uninformative tokens.

We also present qualitative evidence that learned retention scores align with human intuition: the
model tends to assign high scores to initial tokens and problem descriptions, and low scores to less
meaningful punctuation. Notably, many behaviors reminiscent of common heuristics, such as keeping
sink tokens, sliding windows, and gist tokens |Mu et al.| (2023)), emerge naturally and adaptively from
our learned policy, without being hard-coded. Finally, we show that these learned retention scores can
also act as a diagnostic tool for probing layer- and head-specific dynamics, providing a lightweight
means to analyze and ultimately improve the interpretability of attention patterns.

2 RELATED WORK

KV Cache Compression. As model sizes and context windows grow, optimizing KV-cache memory
is increasingly critical. Prior work largely falls into three directions: (i) token eviction/merging (Xiao
et al. 2023 [L1 et al., |2024c; |[Zhang et al., |2023; [Nawrot et al. [2024; |[Zhang et al., [2024; |Qin
et al.l 2025 |Wang et al., 2025} [Liu et al., [2025}; [Park et al.l 2025} |Cai et al.l [2025)), (ii) vector
compression/quantization (Hooper et al.| 2024} |L1u et al.,|2024b; |Yue et al., 2024; |Sun et al., [2024a)),
and (iii) token retrieval (Tang et al.| [2024} Liu et al.,|2024a}; (Gao et al., 2025). While effective in
many settings, vector compression and retrieval either discard fine-grained information or introduce
nontrivial systems overhead (e.g., coordination and data movement) (Li et al.,2024al). Moreover, their
memory and computation still scale with sequence length, making them inefficient for long-horizon
generation applications. Token eviction offers a simple, memory-bounded alternative; however,
most existing policies are heuristic and can significantly degrade performance, especially on long
reasoning trajectories. Recent work has introduced learnable eviction policies (Chen et al., [2024;
Zeng et al.,|2024), but these are primarily designed for the pre-filling stage and thus are not well suited
to sustained long-horizon generation. We bridge this gap by introducing a learnable and efficient
eviction policy designed for long-horizon LLM inference under fixed memory budgets.

Forgetting in Language Models. A key limitation of vanilla self-attention is the lack of an explicit
forgetting mechanism, forcing the model to carry potentially irrelevant information and making
long-context processing inefficient. Early work tackled this by replacing quadratic attention with
linearized and recurrent variants (Katharopoulos et al., |2020; Wang et al., [2020; [Sun et al.| 2023}
Yang et al., 2023;2024)) that summarize the past into a fixed-size state, often a single vector. While
computationally attractive, such heavy compression can degrade performance on tasks requiring
long-range memory. More recent approaches (Behrouz et al., [2024} Sun et al., | 2024b; Karami et al.;
Karami and Mirrokni, 2025) replace the hidden vector with a neural network to increase memory
capacity, but at the cost of training complexity and uncertain scalability to contemporary LLM sizes.
In contrast, we introduce a plug-in forgetting mechanism for pretrained LLMs that converts them into
memory-bounded models, delivering efficiency for long generation without retraining from scratch.

3 PRELIMINARIES

3.1 TRANSFORMERS WITH SELF-ATTENTION

Given a sequence of d-dimensional input vectors X1, ..., X7, a (causal) self-attention layer attends
only to past positions. Foreach ¢t = 1,..., T, the attention output o; is computed as

(2]

t T
exp (q; k;)
q:WQX,k = Wgkxi, vi = WyXy, 0 =
t t; Ke t; Vi t ¢ 72:22211 po (thkj)

where q, k, v are query, key, and value states, respectively, and Wgo, W, Wy, € RI%4d gre linear
transformation weights. Here, we assume a single-head attention layer and omit the scaling factor
1/+/d for simplicity. The sequence of key-value pairs {(k;, v;)}; is the in-context memory of the
LLM. During the autoregressive decoding, we typically generate one token at a time and cache the
running key-value pair (k;, v;) to our in-context memory to avoid recomputation. However, this
vanilla caching approach leads to a linear increase in memory footprint with the sequence length,
while computation grows quadratically (Keles et al.,|2023)). This reduces efficiency when handling
long-context inputs and extended generation tasks.

3.2 REVISITING KV CACHE EVICTION

A common method to address the linear growth in the memory is to prune or compress the running
key-value pairs into fixed-size (slot) memory. As new tokens arrive, we evict un-(or less-)important
tokens from our memory and append the new ones. To understand this procedure, we revisit and
rewrite the attention computation with eviction at inference step ¢ as follows:

t T
exp (a9, k;
O; = E P (19 l) V; where Qg € {0, 1} and Qg < At 41,3y Vl,t (1)
S ex (ovjai k;) '
i=1 2wj=1XP \ Q¥ d; K;

In Equation (T)), we introduce a binary variable a; € 0,1 indicating whether
key—value pair ¢ has been evicted at time ¢ and the monotonicity constraint
ay; < oy41,; ensures that we cannot retrieve a token once it is evicted (Fig-
ure|[T). The goal is to choose a decision variable « so that the attention output
deviates as little as possible from the full KV cache (all ay; = 1, Vi, t).

: o | o
min Lpase(0y; 04) S-t-zatiSM- @ [ofo o]
@ .

Figure 1: Attention
with eviction.

=
Here, £ penalizes differences between attention with and without eviction, and
the constraint enforces keeping at most M tokens at any inference step ¢.

Solving the above constrained optimization at every time step ¢ is impractical due to its combinatorial
nature and efficiency requirements of LLM inference in real-world applications. Most existing
approaches (Xiao et al., 2023} |Han et al.,[2023} Zhang et al., 2023 Li et al., [2024c; |Cai et al., 2025}
Ghadia et al.|[2025) opt to determine « heuristically while we focus on a learnable eviction method.

4 METHODOLOGY

In this section, we propose a learning-based eviction policy that prunes the KV cache based on
the intrinsic importance of the tokens at each layer and head. The policy ranks tokens by relative
importance to decide which should be evicted from the KV memory. To learn token importance, we
introduce a small neural network that takes token embeddings as input and produces a scalar retention
score. We then integrate this retention score into the attention computation to modulate the attention
weights. We term this proxy attention mechanism a retention-gated attention. We train the LLM
with retention-gated attention against a baseline model with standard attention, using a combination
of distillation and hinge-like regularization losses to enforce memory capacity constraints while
preserving response quality. A visualization is shown in Figure [2]

4.1 SELECTIVE IN-CONTEXT MEMORY VIA RETENTION-GATED ATTENTION

We introduce retention-gated attention, a trainable mechanism that mimics the information loss
induced by inference-time eviction. From the formulation (I, the sequence a;;, Qg 1)ir -+ Ot
represents how token ¢ is retained in the attention computation over time. Retention begins at 1 and
then abruptly drops to 0 once the token is evicted. While this binary behavior matches the inference
stage, it poses challenges for learning: the signal is discrete, non-differentiable, and provides no
gradients for optimization. To remedy this, we replace the hard binary variable o with a smooth,
monotonically decreasing function that models the gradual decay of importance while enabling
gradient-based training. A natural candidate is the sigmoid function, ay; = 1/(1 + exp(f(x:,t))),
which models the time at which the token is evicted. However, this design suffers from two drawbacks:
(i) the domain of f is unnormalized since the sequence length is unknown during decoding, and
(ii) the sigmoid flattens across most of its range, producing negligible variation between steps and
leading to vanishing gradients during training.

To overcome these limitations, we adopt an exponential decay formulation, &;; = ﬂfﬂ where
B; € [0, 1], to model the retention rate of token 4 over time. Larger values of 3; correspond to higher
intrinsic importance, implying slower decay and stronger memory retention. Substituting this design
for « in Equation (T)) yields our proposed retention-gated attention:

t t— L
exp ﬁ
q: = WQXt,kt =Wgxy, vi = WyXy, 5 = g Xt g p . 1_2 vi. (3)
i=1 Z —1 €Xp (/3 th k;)

Here, we propose a retention gate g, which is a lightweight network, to parametrize the token
importance /3;. The retention gate can be a linear projection, i.e., g(x) = o(Wgx; +b), Wz € R1*X4,
or a simple MLP, i.e., g(x) = o(MLP(x) 4 b). The sigmoid function ¢ squashes the output of g
to the range [0, 1], while b is a learnable bias. When all 8; = 1, V¢, our retention-gated attention
recovers the vanilla attention. Our ablation studies show that an MLP with a single hidden layer
provides a more powerful retention estimation than a linear projection.

Brain-inspired Interpretation. Our proposed retention-gated attention bears a natural connection to
the classical Ebbinghaus’s forgetting curve theory (Ebbinghaus| [2013)), which models human memory

retention as an exponential decay over time. A common approximation of human retention rate is
R = exp(—tS), where ¢ is the time and S is the memory strength determining how fast R decays
over time in the absence of training (WoZniak et al., |1995).

In a similar spirit, our retention-gated attention models the contribution of past tokens as an exponen-
tially decreasing function of their temporal distance from the current step, i.e., exp((t — i) log ;).
Each token begins with full weight (a;; = 1), akin to a newly encoded memory, and its influence
decays as more tokens arrive, mirroring the drop in recall probability described by the forgetting
curve. The parameter 3 acts analogously to memory strength S: larger values yield more persistent,
durable memories, while smaller values indicate weaker memories that fade quickly.

This connection provides an intuitive justification for our design. By embedding a forgetting mecha-
nism into attention, we enable the model to dynamically prioritize recent or intrinsically important
tokens while gradually discarding less informative context, mirroring how humans manage limited
memory capacity in practice. Note that|Zhong et al.|(2024) also drew on Ebbinghaus’s forgetting
curve to construct a long-term memory bank, but their focus was on retrieval-augmented generation,
whereas our approach integrates forgetting directly into the attention mechanism.

4.2 TRAINING Lagite Lew
Our goal is to train the retention gate g so that | | C
the LLM can preserve response quality under T Tanstormer iock_|

a memory constraint, thereby bridging the gap e e

with the inference stage. Instead of training a T T

separate gate for each layer and head, as for- Standard Attention Retention-Gated Attention
mulated in Problem , we optimize all reten- I T T TQ 1K TV T pd
tion gates jointly in an end-to-end fashion. This R R IR IR R S
holistic approach mitigates error propagation, t T t t ¢t t ¢
allowing the model to learn a coordinated, glob- |x

ally optimal caching policy rather than greedy t t A
layer-wise decisions. Starting from a pretrained T T

LLM, we replace every standard attention block Figure 2: Training architecture.

with our proposed retention-gated attention. Each block is equipped with a lightweight retention gate
g that maps token representations to retention scores 3; € [0, 1], which are then used to modulate
attention weights according to Equation (3). We call this proxy LLM a retention-gated LLM.

Objectives. To train these retention gates, we formulate the training objective that balances two
goals: (i) preserving the predictive quality of the original pretrained LLM, and (ii) enforcing memory
capacity constraints by controlling the sum of retention scores at each step.

For the first objective, we use a combination of the distillation and standard next-token prediction
losses. The distillation loss encourages the proxy LLM to align its output distribution with that of the
baseline LLM using standard attention. In parallel, the next-token prediction loss enables the model
to uncover sparsity patterns directly from the data, extending beyond the constraints of the pretrained
LLM. Let p(-) and go(-) be the output distribution of the pretrained LLM and retention-gated LLM,
respectively, where 6 denotes the parameters of all retention gates. The quality loss is given by

Lauatity = Lxr + Lxrp = Dru(p(- 2) 1 go(-12)) + E(a) [~ log go(ylz)] . 4
Here, Dxj, is the standard forward Kullback-Leibler divergence (Kullback and Leibler, [1951}).

For the second objective, we impose a hinge-like regularization penalty, which discourages the model
from exceeding the available KV memory slots at each step. For a retention gate within a given layer
and KV head, the memory capacity loss is defined as:

t

_ 1 Z t—1
Ecap = m ; max {O, Z BZ —]\/[}7 (5)

i=1

where T is the sequence length and M is the predefined memory capacity. Here, M acts as a soft
hyperparameter, primarily intended to prevent over-optimization during the early decoding stage
when the sequence remains short. Training is performed with a fixed value of M, while inference
can flexibly accommodate different KV budgets. This regularization is applied uniformly across all

layers and KV heads of the transformer. The combined training objective is then:

Hgl’l Equality + Acap‘ccapa (6)

where A,p is a hyperparameter balancing between quality and capacity loss. Note that during
training, only the retention gate parameters are updated, while all other model weights remain frozen.

Hardware-aware Computation. Retention-gated attention is fully parallelizable and compatible
with FlashAttention-style kernels (Dao, 2023). We implement it with FlexAttention (Dong et al.,
2024) plus a custom Triton kernel for the capacity loss L., performing forward/backward without
materializing the full attention or 5 matrices. This enables long-context training (up to 128K tokens
on four H100 GPUs) with minor overhead versus standard parameter-efficient fine-tuning.

4.3 INFERENCE

At inference time, the base LLM is augmented with the retention gates learned during training
(Sectiond.2). These gates provide token-level intrinsic importance scores 3;, which quantify how
strongly each past token should be retained for future computations. Unlike training, where the
retention gates are used to modulate the attention weights, at inference, they act purely as decision-
makers for eviction, operating alongside but independently of attention computation.

The eviction process is designed to ensure that the KV cache respects a predefined memory budget.
Let S; C {1,...,t} denote the set of tokens currently stored in the KV cache at decoding step t.
When a new token ¢ + 1 is generated, it is provisionally added to the cache. If this addition causes
the cache size to exceed the memory capacity M, an eviction is triggered. The eviction rule is simple
yet principled: we remove the token with the lowest retention score, i.e.,

jevic = arg min{ﬁ;7J ‘.7 S St}
JES:
Intuitively, this favors retaining tokens deemed globally important by the learned retention gates
while discarding those with little long-term value. In practice, this makes inference both memory-
efficient and adaptive: as new context arrives, the model continually re-evaluates the importance of
older tokens, enabling long-context generation while keeping memory usage bounded. Algorithm|I]
illustrates a single decoding step, where attention computation is coupled with token eviction.

Complexity. Our inference is simpler and more efficient than existing works, including pure heuristic
baselines (Li et al., 2024c). Throughput and runtime comparisons are in Appendix [A.2]

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the performance advantages of our
method on both long-context and long generation tasks.

5.1 LONG GENERATION EVALUATION

Benchmarks. Following prior work (Gao et al., 2025; |Cai et al., 2025), we evaluate on standard
math-reasoning suites—AIME24 (Art of Problem Solving} [2024), GSM8K (Cobbe et al.| [2021]),
and MATH-500 (Hendrycks et al., [2021). To assess performance beyond math reasoning and under
long-context settings, we also report results on LongProc (Ye et al.l 2025). Following (Gao et al.|
2025)), we report average pass@ 1 accuracy over 64 samples for AIME24 and 8 samples for GSMS8K,
MATH-500. We use greedy decoding for LongProc as the default in the benchmark.

Base models. Following (Gao et al., 2025), we mainly use Qwen3’s family models (Yang et al.|
2025)), including Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B and DeepSeek R1 Distill (Guo
et al., [2025) variants including, DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Lllam-8B.
We report the results with Qwen3 models in the main paper, and the remaining is in Appendix [B]

Baselines. We compare our method against SeerAttn-R (Gao et al.}|2025)), R-KV (Cai et al., 2025)),
SnapKV (Li et al.} [2024c), H20 (Zhang et al., 2023)), Streamingl.LM (Xiao et al., 2023). R-KV,
SnapKV, H20, and Streamingl.LM are heuristic, recency-driven KV eviction policies for long-form
generation under a fixed memory budget. SeerAttn-R is a learnable KV retrieval approach for
reasoning tasks: rather than evicting, it offloads the full KV cache to host memory and uses recent

=== Full KV TRIM-KV (ours) R-KV —&— SnapkV SeerAttn-R

AIME24 GSM8K MATH-50
————————— — v T e v
__________________________ = 1] it
o 507 7 v 75 80 #
<+5 60 1
=N
@ % 40 y 501
2o 409
&< 20 251
/ 20
01e—% 0l1® 0
250 512 124088 090 516° 100 6 128 512 (2800 \’63% 6 128 12 q2had \’63@
80 f-mmm g -~V Ealalaly CLEES B ¥ }emcpe—we— y — e
_—— 80 r
o _ 60 / 75 1
© o 60 -
=
3
2> 40 50
g3 40
&< 20 25 1
/ 20]
0le—e 01® 0
250 512 40289008 4090 37_16% ok 29 5V2,024088 x@sA ok 429 5324028008 x639’5‘
80 e gl v 100F---a— F=—0 v R > — ¥
80] &
@ _ 60 75 7/
R 7 60 4
25 40 50 4
g4 / 40
o 204 %]
7 -]
0e 0
250 511 1028083 4000 510® ok 123 1\ q2hond N ok 128 5\2aq2H08 NE
KV Budget KV Budget KV Budget

Figure 3: Patero frontiers of competing algorithms with different budgets on math benchmarks.

queries to fetch relevant blocks for attention. KV retrieval methods preserve all past information
but require nontrivial CPU-GPU orchestration and incur offloading overhead. We therefore treat
SeerAttn-R as a strong learnable baseline, and R-KV/SnapKYV as representative eviction baselines.

Implementation details. We train the retention gates using OpenR1-MATH-220k (Hugging Face))
dataset, similar to (Gao et al.,[2025). Note that we only train the retention gates’ weights while
keeping the original model parameters frozen. We set the objective hyperparameters Ac,p = 1.0 and
the memory capacity M = 512. Each transformer block has a retention gate g, which is a single
MLP layer with the hidden dimension of 512, thus having dimensions of d — 512 — h, where h is
the number of KV heads. We use the activation function as the default activation function in MLP
layers of the base model. We initialize the bias in the retention gates to a large value (e.g., b = 8.0) to
begin training with minimal forgetting or compression. All trainings are on 4 H100 80G GPUs.

5.1.1 QUANTITATIVE RESULT

Math Reasoning Tasks. Figure [3|shows our method outperforming all baselines by a large margin,
especially in low-budget regimes. Notably, TRIM-KV surpasses attention-guided methods (R-KV,
SnapKV) even when they are given 4x KV budget. Under the same budget, i.e.1024 for AIME24 and
128 for GSM8K/MATH-500, it yields a 198 % relative improvement over these baselines. Against the
SOTA learnable KV retrieval baseline, TRIM-KV outperforms SeerAttn-R across all settings, yielding
a58.4% pass@1 gain at the same budget. Crucially, TRIM-KYV operates in a pure KV-eviction regime,
a stricter setting than the KV retrieval methods such as SeerAttn-R, and thus avoids CPU-GPU
offloading overhead. In some settings, like for Qwen3-4B model and AIME24 dataset, our method
can even surpass the standard full KV cache. These results suggest that a large fraction of KV-cache
tokens in reasoning models is redundant and can be discarded without degrading performance.

Long Procedural Generation Tasks. We evaluate

L. . Methodgy budget CountDown Pseudo to Code
KV-eviction methods on tasks that require both long- 05k 2k 8k 05k 2k
context comprehension.and extended generation. Ta- v 960 900 690 508 250
ble [I] reports results with Qwen3-4B model. Over- StroamingLLMs 70 50 50 206 15
all, TRIM-KYV consistently outperforms all other evic- 50, 120 75 25 337 05
tion baselines and, in several settings, even Surpasses SnapKVaus 570 49.0 130 427 45
the full-cache model. Moreover, this result highlights R-KVaoss 88.5 810 630 482 25
that TRIM-KV with retention gates trained on math- _TRIM-KVz0ss ¥S 85 660 #H2 1950
reasoning data generalizes well to non-math tasks. Full Table 1: Qwen3-4B on LongProc. Bold is for
results and analysis are provided in Appendix [B] the best, underline is for the best KV eviction.

Layer 0 Head O Layer 1 Head 1 Layer 15 Head 2 Layer 20 Head 5 Layer 30 Head 4 Layer 35 Head 1

Figure 4: Visualization of token retention score Bf —i (top) and eviction decisions ay; (bottom).

1.0

t—i
i

Qg

0.2

0.0

5.1.2 QUALITATIVE RESULT

To examine the eviction policy learned by our retention gates, we run TRIM-KV on Qwen3-4B
for the first example in AIME24 (see Figure [13]for a visualization of the example). Figure [Sa-b
show the mean retention score—averaged over all layers and heads—for each token in the example
sequence. Aligning with our intuition, retention gates assign high scores to task-relevant tokens (e.g.,
ometer, shop, walk, minutes) and to the initial token <|im_start | >, which often serves
as an attention sink. In contrast, whitespace and punctuation receive low retention scores and are
discarded early, yielding short lifespans in the KV cache. Next, we examine retention scores and
eviction decisions at layer—head granularity.

Emergent Eviction Heuristics. Figure 4] visualizes the retention scores 3/~ * and eviction decisions
ay; for selected layers and heads. Many eviction heuristics, such as attention sinks (Xiao et al., [2023)),
sliding windows (Zhu et al.,|2021)), A-shape (Jiang et al.,|2024), emerge naturally from our learned
policy without being hard-coded, and they adapt to the functional roles of individual layers and heads.
For instance, sliding-window behavior is more common in early layers, whereas attention sinks
appear more frequently in later layers (see Figure[TT)and [I2]for a comprehensive view). Moreover,
TRIM-KYV adapts the window size by layer and head: in Layer I/Head 1, tokens receive nearly
uniform retention scores, so the KV cache behaves like a recency-biased window that keeps the
most recent tokens; in Layer 0/Head 0, multiple sliding windows of varying widths emerge from the
learned policy; in Layer 15/Head 2, no sliding window is observed because certain tokens receive
substantially higher retention than others, suggesting a specialized functional role for this head. The
A-shaped pattern typically appears in layers that emphasize instruction/problem-statement tokens
(e.g., Layer 20/Head 5 and Layer 30/Head 4) or chain-of-thought/reasoning prompts (e.g., Layer
35/Head 1). These heads also exhibit context switching, where small, dense lower-triangular blocks
emerge and then fade quickly when the context changes or a sentence completes. To the best of
our knowledge, the absence of a sliding window, the presence of multiple coexisting windows, and
context switching are newly observed eviction patterns that arise naturally from our learned policy.

Token Retention Enables Interpretability. Beyond guiding eviction policy, token-level retention
scores provide a diagnostic tool for analyzing the functional roles of individual KV heads in the base
LLM. Visualizing retention scores alongside the tokens preserved in the KV cache after generation
reveals distinct specializations: some heads emphasize a recency window (Figure , Whereas
others preferentially retain mathematical tokens-numbers and operators (Figures Egmd [19)-or
variables (Figure[22)), as well as problem-description tokens (Figures[T8|and 24) and chain-of-thought
instructions (Figure 23). Even function or filler words, such as pronouns, prepositions, conjunctions,
wait and let, tend to be kept by specific heads (Figures[I7]and 23). In particular, heads that exhibit
context-switching patterns (e.g., Layer 30/Head 4 and Layer 16/Head 6) tend to retain the period
token while discarding others (Figures [21]and 20). We hypothesize that, in these heads, periods act as
implicit gist tokens (Mu et al.l 2023)), summarizing the information in the preceding sentences.

Our analyses indicate that KV heads in LLM develop different functional roles and therefore keep
different types of tokens. These tokens are often dispersed across the context rather than forming
contiguous chunks, as each already captures contextual information. This observation contrasts with
existing approaches (Yuan et al., [2025} |Gao et al.| [2025) that advocate chunk- or block-based KV-
cache. Instead, we show that keeping a small number of high-context tokens is more budget-effective.

Original Order Sorted (descending)

|7 [Toen | 3]
0.9994 <space> 05936

0.9993
0.9993
0.9991
0.9991
0.9991
0.9990
0.9989
0.9989
0.9988

0 500 1000 1500 2000 2500 3000 3500 4000
Token position
a) b))

2 4 6
Key-Value Head

Figure 5: a) Average retention scores across all layers and heads of Qwen3-4B on tokens of an
AIME24 example. b) Top 10 tokens with the highest (left table) and lowest (right table) average
retention. ¢) The layer- and head-wise sparsity level estimated by token retentions.

Budget Allocation. Figure e reports head- and layer-wise sparsity estimated from the scores via i.e.,
1—- ﬁ Dict Bit_i. We observe that later layers are typically sparser than earlier ones, consistent
with prior findings in 2024). Practically, these scores enable heterogeneous budgets across
KV heads under a global constraint by evicting tokens with low global retention. However, existing
KV-cache and FlashAttention implementations assume uniform sequence lengths across heads within
a layer; enabling efficient per-head variable-length caches is left to future work.

5.2 LONG MEMORY EVALUATION

To further stress-test our approach on long-context tasks, we evaluate it On “Methodgy g Acc
LongMemEvalg (Wu et al.,[2024a)), a benchmark for assessing chat assistants’ rui KV, 494

long-term interactive memory (contexts up to 123K tokens with Qwen3). We = StreamingLLMsa76s 27.6
use Qwen3-4B-Instruct (Qwen3, 2023) as the base model and train the retention ety s

TRIM-KV 32768

gates on the SynthLong dataset (Lazarevich et all, 2025). All other settings ~SteamingLLM g5 19.0

follow Section[5.1] As shown in Table 2] TRIM-KV outperforms baselines by a SrapKVisss 182
S : . L TRIM-K V364 42.6
significant margin. Especially, TRIM-KV can maintain the performance of a ~ sqcamingliMyp; ~ 102~
full cache while using just 25% of the KV budget. These results highlight our SnapKVass 13.4

method’s advantage on both long-context and long-generation tasks, whereas _TRIMKVaon 302

most prior work targets either the prefill or the generation stage, but not both. Table 2: Results on
More details and results for this experiment are provided in Appendix LongMemEvals.

5.3 ABLATION STUDIES

We ablate the objective by training the Qwen3-4B retention gates with

- o Methodky budge @1
different loss combinations and report AIME24 pass@1 at a 4096- = ; I:VKW et paﬁssss
: _ 1ot u 32768 -
token budget in Table[3] Both forward KL and next-token prediction TRIM-KY s s

perform well on their own, and their combination further improves (TRIM-KV — L1) 1006 71.4
accuracy. The memory capacity loss is essential for compression, and (TRIM-KV —Lxrp)aes 707
removing it leads to a sharp drop. We provide comprehensive ablations (TRIM-KV —Lcap)4006 42.9
with reversed KL, generalization with different training datasets, gate’s
architecture, and other hyperparameters such as M in Appendix[B3] Table 3: Objective ablation.

6 CONCLUSION AND FUTURE WORK

We introduced TRIM-KYV, a learnable, retention-gated approach to KV cache management that
prioritizes tokens by intrinsic importance rather than recent attention. By training lightweight gates
with distillation and a capacity loss, our method enforces strict memory budgets with a simple and
efficient eviction policy. Extensive experiments across math reasoning, long-procedural generation,
and conversational long-memory benchmarks demonstrate that our method outperforms strong
eviction and retrieval baselines—sometimes even surpassing full-cache models. Analyses show that
the learned retention scores align with human intuitions and reveal layer- and head-specific dynamics,
offering a simple probe for interpretability. Building on these results, we plan to extend retention
gating to multimodal inputs and develop adaptive budgets that allocate memory across layers, heads,
and tasks to further improve both performance and efficiency.

ETHICS STATEMENT

This work aims to improve the efficiency of large language models by reducing their memory and
computational footprint. Our method can make long-context reasoning more accessible by lowering
hardware costs, which may democratize access to advanced LLM capabilities. However, efficiency
improvements may also accelerate the deployment of LLMs in high-stakes or resource-limited settings
where risks around misinformation, bias, or misuse persist. We stress that our method does not
mitigate these broader societal risks and should be paired with ongoing efforts in safety, fairness, and
responsible deployment.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing detailed descriptions of the model architecture, training
objectives, and evaluation benchmarks in the main text and appendix. Hyperparameters, training
schedules, and implementation details are included for all experiments. All datasets we use are
publicly available, and we will release code, model checkpoints, and scripts for training and evaluation
upon publication. Together, these materials allow independent researchers to fully reproduce and
verify our results.

The authors used large language models to help refine and polish the writing of this manuscript.

REFERENCES

Art of Problem Solving. AIME problems and solutions, 2024. URL |https:
//artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne Xiong,
Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-
Wen Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free
reasoning models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
Wang, Yu Sun, Dianhai Yu, and Hua Wu. Nacl: A general and effective kv cache eviction
framework for 1lms at inference time. arXiv preprint arXiv:2408.03675, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Hermann Ebbinghaus. [image] memory: A contribution to experimental psychology. Annals of
neurosciences, 20(4):155, 2013.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language
models (effectively). arXiv preprint arXiv:2410.02660, 2024.

10

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao Sun,
Tianzhu Ye, Li Dong, et al. Seerattention-r: Sparse attention adaptation for long reasoning. arXiv
preprint arXiv:2506.08889, 2025.

Ravi Ghadia, Avinash Kumar, Gaurav Jain, Prashant Nair, and Poulami Das. Dialogue without limits:
Constant-sized kv caches for extended responses in llms. arXiv preprint arXiv:2503.00979, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models. arXiv preprint
arXiv:2308.16137, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length 1lm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl. URL https://github,
com/huggingface/open—-rl.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481-52515, 2024.

Mahdi Karami and Vahab Mirrokni. Lattice: Learning to efficiently compress the memory. arXiv
preprint arXiv:2504.05646, 2025.

Mahdi Karami, Ali Behrouz, Praneeth Kacham, and Vahab Mirrokni. Trellis: Learning to compress
key-value memory in attention models. In Second Conference on Language Modeling.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine

learning, pages 5156-5165. PMLR, 2020.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International conference on algorithmic learning theory, pages
597-619. PMLR, 2023.

Wojciech KrySciniski, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization. 2021.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathemati-
cal statistics, 22(1):79-86, 1951.

Ivan Lazarevich, David Bick, Harsh Gupta, Srinjoy = Mukherjee, Nishit
Neema, Gokul Ramakrishnan, and Ganesh Venkatesh. Extending Ilm con-
text with 99% less training tokens. https://cerebras.ai/blog/
extending—llm-context-with-99-less-training-tokens) February 2025.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management. arXiv preprint arXiv:2412.19442, 2024a.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
long-context methods. arXiv preprint arXiv:2412.10319, 2024b.

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://cerebras.ai/blog/extending-llm-context-with-99-less-training-tokens
https://cerebras.ai/blog/extending-llm-context-with-99-less-training-tokens

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947-22970, 2024c.

Zhuoling Li, Xiaogang Xu, Zhenhua Xu, SerNam Lim, and Hengshuang Zhao. Larm: Large
auto-regressive model for long-horizon embodied intelligence. arXiv preprint arXiv:2405.17424,
2024d.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024a.

Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu,
and Xiaowen Chu. Can llms maintain fundamental abilities under kv cache compression? arXiv
preprint arXiv:2502.01941, 2025.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36:19327—-19352, 2023.

Piotr Nawrot, Adrian Ladcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dynamic
memory compression: Retrofitting 1lms for accelerated inference. arXiv preprint arXiv:2403.09636,
2024.

Junyoung Park, Dalton Jones, Matthew J Morse, Raghavv Goel, Mingu Lee, and Chris Lott. Keydiff:
Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
environments. arXiv preprint arXiv:2504.15364, 2025.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. arXiv preprint
arXiv:2503.12491, 2025.

Qwen3. Qwen/qwen3-4b-instruct-2507, 2025. URL https://huggingface.co/Qwen/
Qwen3-4B-Instruct—-2507.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schirli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
International Conference on Machine Learning, pages 31210-31227. PMLR, 2023.

Chaitanya Singhal. Introducing buddhi: Open-source chat model with a 128k context window. Al
Planet (Medium), April 2024. URL https://huggingface.co/datasets/aiplanet/
buddhi-dataset. Accessed: 2025-08-23.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024a.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024b.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context Ilm inference. arXiv preprint arXiv:2406.10774,
2024.

12

https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/datasets/aiplanet/buddhi-dataset
https://huggingface.co/datasets/aiplanet/buddhi-dataset

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Guangtao Wang, Shubhangi Upasani, Chen Wu, Darshan Gandhi, Jonathan Li, Changran Hu, Bo Li,
and Urmish Thakker. Llms know what to drop: Self-attention guided kv cache eviction for efficient
long-context inference. arXiv preprint arXiv:2503.08879, 2025.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Piotr WozZniak, Edward Gorzelaniczyk, and Janusz Murakowski. Two components of long-term
memory. Acta neurobiologiae experimentalis, 55(4):301-305, 1995.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
Benchmarking chat assistants on long-term interactive memory. arXiv preprint arXiv:2410.10813,
2024a.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024b.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation.
arXiv preprint arXiv:2501.05414, 2025.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqgiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zihao Zeng, Bokai Lin, Tiangi Hou, Hao Zhang, and Zhijie Deng. In-context kv-cache eviction for
Ilms via attention-gate. arXiv preprint arXiv:2410.12876, 2024.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first International Conference
on Machine Learning, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o0: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661-34710, 2023.

Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and
Qianli Ma. Lifelong learning of large language model based agents: A roadmap. arXiv preprint
arXiv:2501.07278, 2025.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19724—-19731, 2024.

13

IS

SN

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in neural information processing systems, 34:17723-17736, 2021.

A METHODOLOGY

A.1 INFERENCE ALGORITHM.

Algorithm [T)illustrates the attention computation with KV eviction using retention gates for a single
decoding step. We mark the parts that are different from the standard attention computation in blue.

Algorithm 1: Attention computation with KV eviction (single decoding step)

Input :current hidden x;; KV cache K;_1,V;_1,B;_; indexed by S;_1; retention gate g
Param :capacity M;
Output : attention output o;; updated (K;, V¢, B;); updated index set .Sy

// 1) Project to Q/K/V for the current token
qr — Woxy;, ki Wgxy, v Wyxy; 0= g(x);
// 2) Append current token to the KV cache
K, K, 1Uky; ViV, 1Uvy By« B 1UB; Sp« S U{th
// 3) Compute attention over currently cached keys/values
(restricted to S})
0; < FLASHATTN(q;, Ky, Vy);
// 4) If capacity exceeded, evict the least important token
if |S;| > M then
Jevie ¢ argmin {ﬁ;ﬁﬂ |7 € St}
Remove K, [jevic]a V, [,].evic}a Bt[jevic];
Sy = Se \ {Jevic }s
end

A.2 COMPLEXITY

Memory efficiency. Like other KV-eviction schemes, TRIM-KV uses a fixed-size cache with O (M)
slots, independent of sequence length 7'. For each token (per head), it stores a single scalar retention
score (;, adding only ~ 1/d}, overhead, where d}, is the dimension of the key and vector states,
relative to the KV states, which is negligible in practice. Unlike R-KV (Cai et al.|, [2025)), TRIM-KV
does not store queries.

Method Context Length Gen Length Batch Size Throughput (tok/sec) Decode Time (s)

FullKV 68.44 59.84
SeerAttn-R 32786 1024 4 68.93 59.41
SnapKV 124.67 33.00
TRIM-KV 130.48 31.39
“FulkV 11439 358
SeerAttn-R 16378 1024 4 100.45 40.77
SnapKV 153.21 26.73
TRIM-KV 151.04 27.11
“FulkV 13897 5894
SeerAttn-R 16378 1024 8 139.34 58.78
SnapKV 244.60 33.49
TRIM-KV 279.90 29.26

Table 4: Throughput and decoding time comparisons of different KV cache methods on a single
H200 GPU.

Computational efficiency. For each generated token, TRIM-KV computes a scalar retention
score (; via a lightweight MLP that can be fused with QKV projections; scores are cached and not
recomputed each step. During compression, it applies a temporal discount (elementwise power) and

14

evicts the argmin; both costs only O(M). This is cheaper than heuristics like R-KV, which require
key—key similarity scoring over the cache. Table 4 reports throughput and latency: at 32K context,
TRIM-KYV achieves ~2x higher decoding throughput than full-cache decoding and even faster than
SnapKYV, a purely heuristic method. SeerAttn-R does not provide any computation advantage over
full cache model.

B ADDITIONAL EXPERIMENTS

B.1 LONG GENERATION EVALUATION

We provide more comprehensive experiment details in this section.

Experiment settings. For the training, we set the maximum training length to be 16384. We train the
retention gates with a learning rate of 2 x 10~ and a weight decay of 0.01. Other hyperparameters
are set to the default in Huggingface Trainer.

Benchmarks. AIME24 (Art of Problem Solving, [2024), GSM8K (Cobbe et al.2021]), and MATH-
500 (Hendrycks et al.,|[2021) are standard math reasoning benchmarks. LongProc (Ye et al., [2025)
is a long-context benchmark of six procedural-generation tasks that require integrating dispersed
information and producing structured long-form outputs (up to ~ 8K tokens)—from extracting
tables from HTML to executing multi-step search to build feasible travel itineraries. The suite spans
varied access patterns (sequential vs. targeted retrieval), deductive reasoning demands, and search
execution, enabling stress tests of long-range coherence and procedure following. Each task includes
deterministic solution procedures and structured outputs, allowing rule-based evaluation (row-level F1
for HTML—TSYV, unit tests for pseudocode—code, exact-match traces for Path/ToM, and validators
for Countdown/Travel). To probe generation length, we use three difficulty tiers targeting 0.5K, 2K,
and 8K output tokens.

=== Full KV TRIM-KV (ours) R-KV ~ —@— SnapKV

Qwen3 1.7B R1 Distill Qwen 7B R1 Distill Llama 8B
______________________ =¥ o T R aatt bl ——— W

40 30 /

+ =
N 30 201
=Y 204
<<g 204

4 10 i

10 10
0]e—¢ 0 1 ‘4/ 0%
250 5\ lolAlQA% A096 1 [250 s\ x07—A7_0A?’ M)g() 1 [250 12 \,Q’LA ’LOA% A096 1 [
KV Budget KV Budget KV Budget

Figure 6: Patero frontiers of competing algorithms with different budgets on AIME24.

Math reasoning results. Figure[6|reports AIME24 performance for Qwen3-1.7B and DeepSeek-R1-
Distill variants. Across both families, TRIM-KV consistently outperforms eviction baselines. The
gains over heuristic baselines are smaller on DeepSeek-R1-Distill-Llama-8B, which we hypothesize
reflects lower attention sparsity in this model compared to the Qwen3 family.

Results on LongProc. Table [5] reports KV-eviction results on long procedure—generation tasks.
Across tasks and budgets, TRIM-KV achieves the best performance, and it even surpasses the
full-cache baseline on COUNTDOWN (0.5K/2K) and HTML 10 TSV (0.5K). Under tighter memory
budgets, its margin over heuristic baselines widens.

B.2 LONG MEMORY EVALUATION

Experimental settings. We adopt Qwen3-4B-Instruct (Qwen3|, [2025) as the base model, which
supports a context window of up to 256K tokens. Retention gates are trained on a mixture of
SynthLong-32K (Lazarevich et al.,|2025), BookSum (Kryscinski et al., 2021)), and Buddhi (Singhal,
2024)), covering sequence lengths from 32K to 128K tokens. We shuffle the combined corpus and
train for 10,000 steps (i.e., 10,000 randomly sampled examples), with a maximum training sequence
length of 128K and memory capacity M = 4096. All other settings follow Section[5.1}

15

Methodky pudget HTML to TSV Thought of Mind Travel Planning

05k 2k 8 05k 2k 8k 2k 8k
FullKV 490 41.6 139 330 105 00 00 0.0
SnapK Vg2 37.1. 93 01 260 70 00 00 0.0
H20g192 283 64 04 380 70 00 00 0.0
R-KVg19s 380 71 05 260 75 00 00 0.0
TRIM-K V195 582 360 125 325 105 00 0.0 0.0

- StreamingLLMyys 1.2 0.0 00 20 00 00 00 00

SnapK V45 5 02 00 150 00 00 00 0.0
H2002048 04 08 00 76 00 00 00 0.0
R-KVa0us 1.6 01 00 30 00 00 00 0.0
TRIM-K Vaous 346 7.1 03 175 05 00 00 0.0

Table 5: Results of Qwen3-4B across LongProc tasks: F1-score for HTML to TSV task and accuracies
(%) for the remaining tasks. Best per task column in bold.

Methodky pugget Overall Multi Knowledge SS-User SS-Pref SS-Assist Temporal
Full KVi31072 49.4 25.6 68.0 62.9 93.3 85.7 30.1
StreamingLLM3276s 27.8 15.8 50.0 329 56.7 33.9 15.0
SnapKV3a76s 27.6 15.8 423 243 73.3 28.6 21.8
TRIM-KV 32768 48.2 233 68.0 58.6 80.0 85.5 323

~ StreamingLLMyg334 190 128 359 243 267 179 113
SnapKV 384 18.2 9.0 25.6 17.1 70.0 12.5 14.3
TRIM-K V16384 42.6 21.8 62.8 42.9 80.0 69.6 31.6

" StreamingLLM208s 172 13.5 321 200 333 143 83
SnapKV 2088 17.0 9.8 20.5 14.3 73.3 12.5 12.8
TRIM-KV 19288 36.8 19.6 59.0 35.7 66.7 50.0 29.3

~ StreamingLLMg19o 130 9.0 256 157 167 107 83
SnapKVgigo 15.8 9.8 19.2 12.9 70.0 7.1 12.8
TRIM-KVgi92 33.2 15.0 55.1 343 70.0 46.4 24.1

© StreamingLLMyp96 102~ 98 141 143 167 71« 6.0
SnapKV 4096 13.8 11.3 14.1 14.3 56.7 7.1 9.0
TRIM-KV 4996 30.2 12.8 35.9 24.3 80.0 46.4 29.3

Table 6: Results on LongMemEvalg: overall and partial accuracies (%).

Benchmark Dataset. We evaluate chat-assistant capabilities under strict memory budgets using
LongMemEvalg (Wu et al., [2024a)). This subset provides contexts up to 123k tokens (measured with
the Qwen3 tokenizer) and includes six question types that probe long-term memory: single-session-
user (SS-User) and single-session-assistant (SS-Assist), which test recall of facts stated by the user or
assistant within a session; single-session-preference (SS-Pref), which requires personalized responses
from stored personal information; multi-session (Multi), which aggregates or compares information
across sessions; knowledge-update (Knowledge), which tracks and answers with the most recent,
changed user information; temporal-reasoning (Temporal), which reasons over timestamps and time
references.

To evaluate KV-cache eviction methods on this benchmark, we follow the multi-turn, multi-session
protocol of (Li et al., [2024b). Specifically, before each query, the eviction-based model must
compress the accumulated dialogue into a fixed-size, reusable KV cache—mirroring real-world
assistants that maintain state across turns and sessions under strict memory budgets. We use Qwen3-
4B-Instruct (Qwen3| 2025) to assess whether model outputs match the ground-truth responses.

Results. The results in Table [6|show that our method outperforms baseline eviction strategies by a
significant margin. Especially, TRIM-KV can match the performance of a full cache while using just
25% of the KV budget.

16

B.3 ADDITIONAL ABLATION STUDIES

Qwen3 8B | AIME24

80 === —————————p ~V-

60
S
o 401
Q
< == Full KV

R-KV
20 SnapKV
=& TRIM-KV (Reasoning Dataset 16K)
0] TRIM-KV (General Dataset 128K)
250 12 4028 5088 A09° 321 6
KV Budget

Figure 7: Generation Ablation.

Ablation on training datasets. In Section we train the retention gates on a reasoning
dataset—OpenR 1-Math (Hugging Face)—and evaluate on AIME24, MATH-500, and GSM8K.
This follows standard practice and matches the setting of (Gao et al., 2025), ensuring a fair com-
parison. To assess cross-domain generalization, we instead train the gates on general long-context
datasets (SynthLong, BookSum, Buddhi), similar to Section@ and then evaluate on math reasoning
benchmarks to test whether retention scores learned from general data transfer to long chain-of-
thought tasks. As shown in Figure[7] gates trained on general datasets generalize well and even
surpass math-specific training at a 2048 KV budget. However, their performance degrades more
quickly under tighter KV budgets. Overall, these results are promising and suggest that scaling the
training of the retention gates by combining all datasets could yield further improvements.

Qwen3 4B | AIME24

— ey A ——— p—r
9 —— FullkV
E LowkL + Lntp + Leap
< Lntp + Lcap
204 == Lowke + Leap
LewkL + Lntp
== Lk + Leap
0] =¥ LewkL + LrvkL + Lcap
290 5\ a2k 08® 90 519%

KV Budget

Figure 8: Ablating different objective components.

Ablation for the objective function. We ablate the objective by training the Qwen3-4B retention
gates with different loss combinations and report AIME24 pass@1 at a 4096-token KV budget in
Figure 8] Here, we consider both forward KL divergence and reversed KL divergence for distillation
loss. Generally, all distillation losses perform well on their own. However, reversed KL underperforms
when compared to forward KL. Both show benefits in combination with next token prediction. The
memory capacity loss is essential for compression, and removing it leads to a sharp drop.

17

Qwen3 1.7B | AIME24

________________________________ '_.
301
g 201
o
|}
< == Full KV
10 R-KV
TRIM-KV (g = MLP, b=28)
=&— TRIM-KV (g = Linear, b=38)
o] TRIM-KV (g = MLP, b=0)
Y A
5\ 402 1082 2090 163®

KV Budget

Figure 9: Ablating the retention gate’s architecture.

Ablation for the retention gate’s architecture. We evaluate several retention-gate architectures and
report the performance of Qwen3 1.7B on AIME24 in Figure[9] Due to computational constraints,
this ablation uses greedy decoding. For the MLP gate, we use a single-hidden-layer MLP with width
512. We find that the MLP gate outperforms a simple linear projection, and that a large positive

initial bias is crucial for stable training by keeping the gate’s output nearly 1 at initialization to ensure
minimal early forgetting.

Qwen3 4B | AIME24

R TS - X T
60
)
< 40
8 == Full KV
<< TRIM-KV (M =512)
204 TRIM-KV (M =128)
=&~ TRIM-KV (M =, no Lcap)
R-KV
0- =#— SnapKV
250 5\2 \07—A ')_OD*% A096 371 6®
KV Budget

Figure 10: Ablating the training memory capacity M.

Ablation on training memory capacity M/. We evaluate multiple settings of M in Figure[T0] With
M = oo, there is no capacity penalty, which hurts performance due to the absence of sparsity pressure.
Setting M = 128 outperforms attention-guided heuristics but shows signs of over-optimizing for

sparsity. In practice, we recommend choosing M to match the expected deployment-time memory
budget.

C ADDITIONAL QUALITATIVE RESULTS

18

Layer 1 Layer 0

Layer 5

1.0

Layer 10

0.8

Layer 15

0.6

Token Position

Layer 20

0.2

0.0

Layer 34 Layer 30 Layer 25

Layer 35

Token Position

Figure 11: A visualization of token retention matrices of Qwen3-4B when answering a math question
in the AIME24 dataset. Each subplot is a token retention matrix { ﬂf _Z}f in a specific layer and head.
Observations: earlier layers often exhibit sliding-window-like patterns, while later layers develop
clearer functional specializations.

19

Layer 15 Layer 10 Layer 5 Layer 1 Layer 0

Token Position

Layer 20

0.4

0.2

0.0

Layer 34 Layer 30 Layer 25

Layer 35

Token Position

Figure 12: A visualization of eviction decisions of Qwen3-4B when answering a math question in the
AIME?24 dataset. Each subplot is a matrix of eviction decisions «ay; in a specific layer and head.

20

ﬂlim,s«anb You are given problem Every morning Aya goes for = ©9$ kilometer-long minutes. hours is 180 minutes, 4 4 minutes. \

walk and stops at - coffee shop afterwards. she walks at - constant speed of $s5 kilometers per hour, answer - “04 minutes.
walk takes "< 4 hours, including $t' minutes spent in the coffee shop. When /- walks $s+2§ kilometers X
per hour, " walk takes - 2 hours and 24 minutes, including “t- minutes shop. Suppose 5 2-25 3
ya walks at “s+\frac| ' {2)$ kilometers - hour. Find "~ number - minutes - walk takes her, including : time = 9/3 - 3 hours. minutes 0
t5 minutes shop. You by step : 404204
ought answer Final : : 2
) ya walks 9 : 5 4.) 0 54+0)+ P410=045+04 "+ .4 hours.
kilometers every moming, stops shop long - walk when H 4 4
at - speed o' s +1/2 i/, time shop. :
two scenarios given. first scenario at s X
ki/h, (- total time walk cotfee shop) is 4 hours. second scenario 218 km/h, the walking 3 hours 0 minutes. 4
+2 /i, e total and “4 minutes, tminutes shop. : 4 s expects hours?
total time 120m number - minutes",
cases. shop i= t minutes. difference and - boxed ~(4} To scenarios
walking time is t . walking time (' minutes spends when
time t time coffee shop s) fixed © t X 1
minutes. hours scenario H Variable ations s$'s walking speed in [/h. - t time
sk, 4 hours. time walking is (012 time minus t minutes. shop ' minutes. scenario 4 hours
minutes. t hours. : t). 9)s}+ 10} -4 ation 1)}
time. 9km sis 9/s hours. i “Second scenario 428 4 .
is 9/ + /60 hours. +2 o0}y -24 2 2 t Subtract
km/h, 4 hours X . : 2 1) - 9
walking + coffee shop = 101-! time. walking is /< hours, : -\frac(OKs + 2} = 1.6 ¥e)- X
is tminutes, 0 hours. 9/5 +1/:°0 = 4. Equation 1. second scenario +2 cdot \frac2):
+2kmh, walking is 9/(s +2) hours. is : 8 8} 8 cdot5 =)
Let 2 4 to hours “4 is 74/50 = 0.4 hours, 4 hours. 8 6s 0-0 452 + 8 0 3
9/ +2) +¥°0=24. 2. equations /(1 two sandt. atic formula 55 s sqrt 1)
sandt time 2 km/h N 8 4 o
19/5+1°0=4. 29/ +2)+t°0="4. subtract 2 5 4 t$ 5%
from 1, terms /1| cancel out. 1- 2:[9/5+160] -9/ + 2) i 1 5 36+ 4 t
+000]=4-24 ~9/(-+2) =160 9[1/s-1/(- +2)]= 1 6 -1) Thetis 3 5 Time 2-3
+2)-8]/ (s 2)] -2/ (s)] 9% 2/ s+ N=16 8/(s =16 H } hours: 0 minutes’ fixed time 404
8/ 8/5(61:8/5) ultip: 85=8"s(s) H boxed
90=8:2+ 16s side 8:7+ 165-°0 -0
2:4:2485-45 -0 45 +85-15-0 .
formula s = [-8 & sqrt(82 - 4*4%(-'5)) [~ 4) discriminant D - 4 - 1*)=54 4720
4sqrto4) - 8 s [8+8]/8 solutions s - (& +8)/3 - 208 =52 - °.5
MOrs = (5 <6/% 450/, negative, 25k, 25
t 5into 1:9/5 4150 -4509/25+
5750502, 5/2is * 2/5= 18/5 - 3.6 hours. 6+¥°0-4 ¥60=4-36
4 hours 4 minutes 0= "4 minutes. t="4 minutes. 4
/2 km/h, minutes takes her
t X 25 12is 25+ 05 -3 kmh.
new speed = 3 /h. time </ - takes 9km =13/, /3=3 hours.
add the t minutes shop, 4 minutes. time = 3 hours + “4 minutes,

\ minutes ” :)

Figure 13: Visualization of token retention scores 3; from the retention gate in layer 15, head 2 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observation: This head consistently assigns a high retention to the problem description and tokens
expressing mathematical operations, suggesting a specialization for task-critical content. In contrast,
filler phrases (e.g., ‘wait’, ‘let me think’) receive very low retention. Moreover, for a multi-digit
number, retaining only the hidden state of the final digit suffices to maintain performance, suggesting
that the last digit’s representation already captures the semantic information of the whole number.

ﬂim,s«anbuser You are given a math problem. Problem: Every morning Aya goes for a 9-kilometer-long convert (- total time 111> minutes. 2 hours = 180 minutes. plus 24 04 minutes \
walk and stops at a coffee shop afterwards. When she walks at a constant speed of s kilometers per hour, 204 minutes.
the walk takes her 4 hours, including t minutes spent in the coffee shop. When she walks $s+2$ kilometers s 4s2+8s-45-0 discrimin. 784 4.8 8+
per hour, the walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose | 88 - “0/2 - ° 5 4 speed ©s+12-254+05-3
Aya walks at $s+\frac{1}2}$ kilometers per hour. Find the number of minutes the walk takes her, including the : km/h time © 9/3 hours. +4 80 minutes
t minutes spent in the coffee shop. You need (o solve the by step. First, you provide 80+ 24 - 204 4
chain ought final answer. Provide the format: Final answer: equations 2
boxed{}<lim ¢ <lim_startl>assistant <think> Okay. ya walks 9 5 t-24. /(s +2) + 160 - 9/(2.5 + 2) + 24/60 45+ .4 +04 4 hours
Kilometers every morning, stops ! a coffee shop long her walk takes when 24 minutes 04 minutes
walks at a speed o s + 1/2 km/h, including the time she spends in the coffee shop. 4 minutes
two scenarios first scenario constant speed ' s t minutes shop. walking time plus t
km/h total time ' the walk time in the coffee shop) - 4 hours. | the second scenario 3kmh 9/3 - 3 hours. 80 minutes 4 minul +
s+20/h 2 hours = 24 minutes including t coffee shop 04 hours
total time when </ walks = s + 1/2 km/h. Wait both 04
cases pent coffee shop /- t minutes. difference total time and **Final Answer 204) </think> scenarios ya
walking time - t equations walking time total : walking -/ coffee shop time total time (1 minutes when
time. denote. variables t1 the time spent coffee shop speed s+ frac ({2} © kmh fixed © t © minutes shop. --- ### 1
minutes. convert hours o minutes scenario walk ations s ya speed I km/h -t time
speed - s km/h 4 hours walking - total time minus t minutes. coffee shop ' minutes. scenario s 5 km/h 4 hours
t hours. t $ frac 9s) + frac/t{60) - 4 ation 1
equations time. taken ' walk 9 km at speed s i« 9/s hours. Second +2 4 4 hours
coffee shop ' 9/s + /60 hours. s s+2 4 2 2 inate © t Subtracting
m/h 4 hours. including t coffee shop. 4 ations 2 1 0 . +2 +
walking + time in coffee shop time. 9/s hours coffee shop 4-24 - Mo +2 left(Hs - Hs+2
t minutes, 160 hours 9/s + /60 = 4. Equation 1 second scenario {(s+2) -sHs(s +2 Hs(s +2
+200h walking '~ 9/(s + 2) hours 2 24 8)s(s + s 8Y5. 5-8s(s +
2 24 minutes 4 4/60 - 0.4 hours 4 hours 0=55'2+ 168 -90 $'2+ 85 - 45 3
Ol(s +2 +160 - 2.4 2 equations /1" two variables s and t. atic Equation formula ¢ s = frac(-8 'pm 'sqrt/8/2 - 4(4)(-45))1/2(4
sandt use total time when - walks ' s + 1/2 km/h. pm 57164 + 720))(8 pm \sqrt(784 pm 28 OX
equations 1 9/s +1/60 - 4. 2 9/(s+2)+1°0 - 24. subtract equation 2 5 positive 4 t$ 5
from 1.1 150 terms I cancel - Equation 2: (9/s + 1/50] - [9/(s +2 1 5 0 -4 6+ 0.4
+ 4-24 Is-9s+2 =16 [1/s-1/(s+2)]=16 Is-Ns+2) 4 minutes 5 Total Time at © s + frac ' {2} = 3 § km/h
s+2 -s]/[s(s+2)] - 2/[s(s +2)] 9%[2/(s(s+2 16 8/[s(s+2)=16 hours; 80 minutes’ coffee shop time: 404
8/[s(s+2) - 8/5(8/5 ultip! 8'5-8"s(s+2) 04
90 = 8s? + 168 terms side 8s?+ 6s-90 =0
2 4s?+8s-45=0 quadratic equation 4s? + 8s - 46 - 0 quadratic equation
formula s = [-8 + sqrt(82 - 4°4*(-45))/(2"4, discriminant D = 64 - 5 +720
784 84 - 28 8+28 /8 solutions s - (-8 + 78)/8 - 20/8 - 5/2 - 2.5
km/h O s -28)/8 - -36/8 - -4.5 speed negative 25km/. 25
/h t substitute s - 2.5 equation 1: 9/s + /60 - 4 125 +160 -4
5 52 52 *2/5 - 18/5 - 3.6 hours. 36+1°0-4 t°0-4-36
0.4 hours 4 minutes 60 - 24 minutes 24 minutes 4 minutes.
Suppose Aya walks 21 s + 1/2 km/h. Find 1 number of minutes - walk takes her
including (- t minutes spent in 11> coffee shop 25kmm +1/21:25+0.5 =3 km/.
new speed - 3 km/h. time takes ' walk 9 km at 3 km/h. 9/3 - 3 hours
t minutes coffee shop 24 minutes 3 hours + 24 minutes.

in ing the t shop. /
Figure 14: Visualization of token retention scores [3; from the retention gate in layer 9, head 7 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observations: This head exhibits a retention pattern similar to layer 15, head 2, but places greater
emphasis on arithmetic operators (e.g., +, —, /).

21

/<|im,s«an|>use, You are given a math problem. Problem: Every morning Aya goes for a 9-kilometer-long
walk and stops at a coffee shop afterwards. When she walks at a constant speed of s kilometers per hour,
the walk takes her 4 hours, including t minutes spent in the coffee shop. When she walks $s+2$ kilometers

t minutes spent in the coffee shop. You need to solve the problem step by step. First, you need to provide
the chain-of " ought, then provide the final answer. Provide the final answer in the format: Final answer:
\boxed{}<lim_endl> <lim_starti>assistant <think> Okay, let's try to solve this problem. So, Aya walks 9
kilometers every morning, stops at a coffee shop, and we need to find out how long her walk takes when she
walks at a speed of s + 1/2 km/h, including the time she spends in the coffee shop. First, let me parse the
problem again. There are two scenarios given. In the first scenario, when she walks at a constant speed of s
km/h, the total time for the walk (including time in the coffee shop) is 4 hours. In the second scenario, when
she walks at s +2 - /h, the total time is 2 hours and ~4 minutes, again including t minutes in the coffee shop.
We need to find the total time when she walks at s + 1/2 ki/h. Wait, so the problem mentions that in both
cases, the time spent in the coffee shop is t minutes. So, the difference between the total time and the
walking time is t minutes. Therefore, maybe we can set up equations based on the walking time and the total
time. Let me think. Let me denote: Let me define variables. Let me let t be the time spent in the coffee shop in
minutes. But maybe | need to convert everything to hours or minutes? Let me see. First scenario: walking
speed is s km/h. The total time is 4 hours. So, the time spent walking is total time minus t minutes. Wait, but t
is in minutes. So, maybe | need to convert t minutes to hours. Let me think. Alternatively, maybe | can write
equations for the walking time. Let me think. The time taken to walk 9 km at speed s is 9/s hours. Then, the
total time including the coffee shop is 9/s + /50 hours. Wait, but the problem says that when she walks at s

/h, the walk takes her 4 hours, including t minutes in the coffee . So, that total time is 4 hours.
Therefore: Time walking + time in coffee shop = total . So, time walking is 9/s hours. Time in coffee shop
is t minutes, which is /60 . Therefore: 9/s + /60 = 4. Equation 1. Similarly, in the second scenario, when

she walks at s + 2 /h, the time walking is 9/() hours. Then, the total time is 2 hours and -4 minutes.
Let me convert 2 hours ~4 minutes to hours. 24 minutes is 24/°0 = 0.4 hours, so total time is .4 hours.
Therefore: 9/(+ /50 =~ 4. Equation 2. So, now we have two equations with two variables: s and t. We

the equations again: Equation 1: 9/s + t/:0 = 4. Equation 2: 9/(/50 =24 So, if | subtract equation 2
from equation 1, the t/-0 terms will cancel out. Let me try that. Equation 1 - Equation 2: [5/5 + /50] - [2/(

equalto[(- +2)-s]/[s(s + 2)]=2/[s(s - 2)] Therefore: 9 * [2/ (s(s - 2))] - & So: 18/ M- 6Let
me write that as: 18 /[s(s +)] = °/5 (since | 6 is £/5) Therefore: Cross-multiplying: 18 * = = & * s(s + *) So:
s+ s Bring all terms to one side: s 0 Simplify the equation. Let me divide both sides
by 2: s So, quadratic equation: s 0 Let me solve this quadratic equation. Using
the quadratic formula: s = [-8 + Sqrt(82 - 4*4*(-"“))}/(>") Compute discriminant: D = - - *4*(-1%) = 54 + 720
= 724 sqri(724) = 25 Therefore: s =[-4 - “8] / = We have two solutions: s 8)/5=20/8=52=25
km/h Or s = (-5 28)/8 = -30/8 = -4 5 kin/h. Since speed can't be negative, we take s = 2 .So0,5=25
km/h. Now, let's find t. Now, substitute s = 2.5 into equation 1: 9/s + 1/ So, +1 Compute
5.251s 5/2, 50 9 divided by 5/2 is 9 * 2/5 = 16/5 = .6 hours. So, * & + 1/ L E0=4-36=
hours Convert 0 hours to minutes: ©* * _ Therefore, t .So,tis .
Now, the problem asks: Suppose Aya walks at s + /2 km/h. Find the number of minutes the walk takes her,
including the t minutes spent in the coffee shop. So, s is /S0 +1/2i825 405 = . S0, her

new speed is 3 /1. Let's compute the time she takes to walk 9 km at 3 k1/h. Thatis 9 /3 = = hours. Then,
add the t minutes in the coffee shop, is 24 . So total time is * hours + > minutes. But the
Queslicn says "the of minutes the walk takes her, including the t minutes spent in the coffee shop."

per hour, the walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose
Aya walks at $s+\frac(1}2)$ kilometers per hour. Find the number of minutes the walk takes her, including the

need to solve for s and t, then use those to find the total time when she walks at s + 1/2 km/h. So, let me write :

1= Simplify: 9/s - 9/(- -) = & So, 9[1/s - /(= + 2)] - 1 6 Let me compute /s - /(- - 2): Thatis

So, we need to convert the total time into minutes. 3 hours is 170 minutes, plus is204r .
Therefore, the answer is “04 minutes. Wait, but |- me check again. Let me verify the steps again to make
sure. First, solving for s: we had 4s Then discriminant was 784, s/i(7)= -
/5 = 2018 = 2 5. Correct. was found as Then, when speed s s + 12225 +0.5 =
Walking time is /' = hours. Then total is © hours + hours is minutes, so total
is 180 So answer . But |- me check if there's another way to approach this, or if |
made any miscalc ations. Alternatively, maybe | can check the equations again. | < me check 2
with s =25 and = 1. Ol - 2) + 150 =9l2 +24160 =9/4.5 +0.4= hours.
is 2 hours 2 minutes. Correct. So 114 checks .. So, the answer is final
is 204. But I=' me think again. The says "the number of the walk takes her, including
the t minutes spent in the coffee shop." <, the total time is walking time plus t So, she walks
at 3 k/h, the walking time is 9/ = = hours, . Then adding t = , total is 180
So yes, that's . Alternatively, maybe the problem expects the answer in hours?
, the question says "number of minutes”, minutes is Therefore. | .
Final Answer** \boxed{" (1} </thin> To solve the problem, we are given two scenarios involving Aya's
walking and coffee shop time, and we are to determine the total time (in minutes) she spends when walking at
aspeed of $ 5 + \=o{ 117} § knvh, including the fixed $ § spent in the coffee shop. -—- ### Step 1
Define Variables and Equations Let: - $ s § be Aya's walking speed in km/h. - § t $ be the time spent in the
coffee shop in minutes. From (1= problem: - **First scenario**: Walking at § s § /i, total time is 4 hours
(including $ t in the coffee </107). $8 \rac{ K<) + \ra{ \quad \text{(Equation 1)} $$ -
**Second scenario”: Walking at $ < + 2 /1, total time is 2 hours and 4 minutes (i.e., > 4 hours). $
{ \quad \tex{(Equation 2)) §§ - ### Eliminate $ t $ by Subtracting
Equations Equation 2 frorm Equation 1: $$ \ef(\rac(o}) +\rac{ 10}V \er(\
A% $8 88 \rac{O) -\ $8 9 \ef(Vrac{ A
$5 9 \eft(V- o{(X M $5 8% 9 \odot \ 12X $$
X $$ (10K {215} 55 Cross-multiplying: $8 18 \ s(s +2)
$$$$ Z §§ 5on Divide by 7: §$ /A
Solve the atic Equation Use formula: $§ - -\ \om \sqri{8A2 - 4(4)(-45)}{2(4)}
{ \ {7}8888s -\ \ $8 5 = \iaf
\quad \text{(since speed must be)} 55 == :Find $ 15 Substitute $ $
Equation 1: $$ { $5 5% { $ \rc{50) = 0.4 \Rightarrow
\text Find Total Time at$ < + \ac{ (2 = 3§ ki/h Walking time at :§$
\rac{9}7) - 3 Mext! hours} \text $$ Add the fixed coffee shop 20 \text
$$ -/ Final Answer $$ boxed(

/

Figure 15: Visualization of token retention scores 3; from the retention gate in layer 35, head 2 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observation: Unlike layer 15, head 2 and layer 9, head 7, this head assigns elevated retention
to general-purpose tokens that support coherence and instruction following; for example, XX
commands and the directive boxed{) receive high scores, while tokens associated with mathematical

operations receive low retention.

-

-

ultip
$$ by = §8 88—
the Equation |-~ the quadratic formula $§ - -\ o\ 2 m2
\ \pm \ 2 \ \pm \ $$88s -\ \pm 2 $$$Ss
\irac(2 2.5 \quad \text{(- - speed)} $6 — ### Step 4: Find S t $ Substitute $ s

25§ into Equation 1: $$ \frac{9)(2.5, - \frac{t) 60 = 4 $$ $$ 3.6 + \frac{t) 60} = 4 $ $$ \frac{t (60} = 0.4
\Rightarrow t = 24 \text{ minutes} $$ - ### Step 5: Find Total Time at § s +\frac{1}{2} =3 $ kmh
Walking time at 3 km/h: $$ \frac{9}{3} = 3 \text{ hours} = 180 \text{ minutes} $$ Add the fixed coffee
shop time: $$ 180 + 24 = 204 \text{ minutes} $$ — ### Final Answer $ \boxed(204} $$

)

Figure 16: Visualization of tokens retained in the layer 0 head 3 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.

22

ﬂlim,mnb

o

kil
Therefore Wait
discrimin Correct
Suppose Walking
iscal Alternatively
<im_endl> <lim_startl> <think> equations equation Equ
Correct
Therefore
Wait i Alternatively expects
: Therefore
Therefore equations i <fthink> scenarios
: spends
: Define Variables
¢ Equ
Wait : scenario Walking including © | © minutes
Alternatively. equations : coffee Equ scenario
Wait : Walking minutes
: Equ Eliminate Subtract © Equ
Therefore tract Equation Equation
Therefore Equation | Similarly
Cross 1 ultiplying cdot
Therefore Equation equations : $$ Divide 7 $§ Step
i Solve /"> Quadratic Equation quadratic formula: $$ {-7 pm sqrt N
equations Equ Equ {7 pm 'sqrt {-° 'pm 'sqrt $8 88 {-* pm $$$S
subtract equation equation Equ quad = {(since speed positive)} $§ - /' Step - Find § | § Substitute §
Equation implify i 258100 Equation |- $$ +\ $$$8 00 +\ $$ 58 0 -04
compute Therefore : \Rightarrow | - 24 text' minutes, $$ -— ### Step 5 Find Total Time -/ § s +\frac{1/2, - 3$ km/h
Therefore : Walking time = 3 km/h: $S \frac{9}{3' = 3 \text{ hours} = 180 \text{ minutes} $$ Add the fixed coffee
ultip Bring i shop time: $S 180 + 24 = 204 \tex{ minutes} $ - ### Final Answer $$ \boxed{204} $$
implify - equation quadratic equation :
quadratic equation quadratic formula
Compute discrimin Therefore
substitute
equation Compute
Therefore
Therefore Suppose
compute

J

Figure 17: Visualization of tokens retained in the layer 0 head 6 of the KV cache after generation,

where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

/dim,stanb

Every morning Aya goes

9$ kilometer-long walk - stops at - coffee shop afterwards When -~ walks at - constant speed 80 04 04
s$ kilometers - hour takes '~ 4 hours, including *t$ minutes spent n ("~ coffee shop. s
When 5428 kilometers - hour, 2 hours - 24 minutes, including °t 4
shop yawalks - “s+\frac/1{2}$ kilometers /- hour. 5
number of minutes (- walk takes -/, including the ‘t minutes spent " (' coffee shop
4 2050 -9/25
9 kilometers every morning shop A5 4
walk speed o' s +1/2 knvh_ including '~ time 4
shop scenarios
scenario sk h,
shop) - 4 hours second
4
2 t
time time,
s+ 2,5k
t minutes hours t
o 4 speed t
t
9km s < /s hours +1/60 hours N
Is t 0 4 (s
1 2 I+ (s
4 4 4 2
equations sandt sondt pm 5 4
24m s 104 2 5
2 24 t 5 6
4-24 6 Is I 4 2
2 35 kmvh
s 8 85 4 $$
s(s 052 6s
9 45
8 45
4
0/ -52->5kmh 5
1 0 5
6 hours 4
4 4 +
2m minutes shop
5 5-3:/m new speed :
9km :
o ’ :

J

Figure 18: Visualization of tokens retained in the layer 9 head 7 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

23

-

[dim startl> morning ya ometer minutes 0 minutes
walk shop afterwards. walks s kilometers 04 minutes.
hour. - walk takes -/ - hours, minutes <~ in ! coffee shop. walks ©-42§
kilometers hour, walk hours 24 minutes, t H 3
) hour. minutes (- walk takes
t : 4
2
5 45 + 4
9 kilometers morning, walk
s 200m
scenarios scenario
M, time) - 4 hours,
scenario 2:h t 4 hours?
2
t 3
time minutes
too e time t
minutes. hours speed 1 iii/h. -t
scenario walking t minutes.
. hours } (50 1
9 Is
hours. +100 2
+ .
hours +.°0 4. 1 second
2)
hours. 4
+U00=24, 2 s s
t time
+t°0 4. 2) 0 subtract t
from 1, 1 5)
~905:7)=18 1o 3
) N 92 8 n o minutes 4
8/5 5 $$
)50 90 - G2 4 168 0-0
+8 50 4s
formula s sart
s 8 s (o 52
5/h =15k 5
t 1 5+
X 5 5 6 hours. t
4hours minutes .
minutes
3
M. 3 time 9km 3 3
hours. .

Figure 19: Visualization of tokens retained in the layer 15 head 2 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

ﬂlim,s«anb You
answer - Wait
5-0. discrimin
You
ought cul
5
: answer - 204
i answer number
answer
. Wait : .
: answer < 204, * boxed (4 To problem,
:)
2}
. s t
Wait
Let :)- \ »
: 8% $).
Wait H - Subtract
2from : \
) $s \ } \
‘) K
: 8 5
BT 0 5000/ Step
H Quadratic Equation quadratic formula: s 8\ »
0 }$$is {8 } s 015}
Equ 5 - ts s-°5$
1 9.5} +\r2ct/00) - 4 $8 95 36 0 -18s 100} - 0.4V t
Total Time - © s +\/=c{1,2} =3 § /h Walking time - 3
Let /h: 9113} =3\iox{ hours} o\ } $$ Add (¢ fixed coffee shop time: 80+ 74
i =204\ minutes} $$ — ### Final Answer $S \boxed{204} $$
)
So
number /

\

Figure 20: Visualization of tokens retained in the layer 16 head 6 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

24

/<|im,s|an|> morning \
stops shop speed
the the coffee
{ per
s the coffee to the by in . that
to in
? check.
6
6
1
we scenarios involving /ya - walk
: shop to time to walk
i kilometers at - speed {1 /M time shop - ###
and s$ speed I (1/h time
: shop I *“minutes*. .
i walks M including coffee shop s 0-4 }
h $ \frac
\riac{116 {2 3 $ to Solve $ Subtract
60} { 6
: {
6 : { 4 compute
i Vfrac{ 2)} 8
ide
olve frac| 8 pm 'sqrt{8'2-4/4 \ sart{-4
D7 \ { 8 - frac{208 -
i s frac 70)(8) - -45 $ «/h (discard, since speed negative) .
i 2:Find o (¢ Using) Substitute © s
1 $s $$ frac = Rightarrow = °4 minutes 4: Find
: Total Timeat © s + ‘frac(1)"} /h 0w, Ayawalks at © s +\frac{1)2} =3 ¢ i/h. - Walking time: §
i frac9)3) hours - Coffee shop time: ~ minutes Total time in minutes: $$ 3 hours} =1:0
minutes} + “4 text{ minutes} = 204 text{ minutes} §§ - ### 155 \boxed(”(4}
i $8<lim_endl>
6

- .
Figure 21: Visualization of tokens retained in the layer 30 head 4 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.

ﬂim,smnb You Every morning Aya goes : \

$9° kilometer-long walk =" stops - a coffee shop afterwards When she walks - - constant speed o'
$s kilometers < hour, |- walk including $t- minutes When
walks $s+2 t : t
Suppose Aya walks - (s Find ("> number
minutes - walk including ("= “t You
chain final :
Final answer \ assistant Okay H s a
Aya walks 9 kilometers stops H
speed o' s + /2 km time : final
scenarios H walking
s time : t
8
t : 2 "
: | \ </think>
walking : A coffee
t : $s km St
? i ### Step -$siicA km t
s : :- “*First * $s
t : St $$\ \quad \'«{(Equation
$
- St
Equation 1§\
: Time : $$ $$ 0\ s
Equation : s {(s s$
: $$
$s i
:88s \
s : $$s $$s
t : quad st $s
subtract t : Equation ':$$ t $$ $$ t \ t
[[H \ - Total Time = $ 5 $km/ Walking km/:
] hours. coffee shop $$
-~ ### Final s\ $$
2
quadratic
s-[- D
5 km
s t
t t
t A s
s
speed
t

N

Figure 22: Visualization of tokens retained in the layer 34 head 1 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.

25

ﬂiim,snanb You A fora we
ata ata of
takes her we
the and the coffee
A at < frac{ per
s the coffee to <olv- the by
ya
walks © kilometers every ata and we how (1 her that
walks at a speed of - + including the in
parse There are In at a constant
in In
at and in that
We in 1
in) To we are
we 's and we are to
ata frac(
1 in
in From at
is frac frac text
and
$ { {6 Equ
that frac
6 frac frac{ frac frac
in frac frac
frac frac frac
A by A
6 we pm - 4
we sarto: + 720} pm sqrt
Equ frac{. text!(since stitute
. frac frac frac frac
6 text at frac{
That at frac text text Add the fixed coffee
is =004 text boxed{20'} $$
by
We
is
the

\

Figure 23: Visualization of tokens retained in the layer 35 head 3 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.

ﬂum,s\anb Every morning Aya goes for a

9$-kilometer-long - and stops at a coffee shop - When she walks at a constant of

$:$ per hour, the takes her 4 hours, including ©'$ in the coffee 3

When she walks < $ kilometers per /.1, the her 2 hours and °4 s

minutes in the coffee -0 Suppose Aya walks at {0 per the 2

of minutes the the ©1$ the coffee to 1
the by can
ya 9 kilometers every ata 450 2
how (1 her she ata s she
of the
she a constant
2 1
in
's
a {
's
in
4
2 2 B { e (Equ
(
{
1 9 9 frac X
9
1 A
0 602 Solve
sqrteAs (. + \ pm sqri
Equ pm frac 2 since
Find stitute 3
6 : 0 =2 at$ -+
: {12 =38 Walking /- at 3 3 text{ =190 text{ Add
i the fixed coffee shop +24 = 208 \tex{ } Answer * 'boxed{”(} $§
+
2 4
2
3 0
ya
the
of /

\ .
Figure 24: Visualization of tokens retained in the layer 35 head 5 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.

26

ﬁim,stanb You are given a math . : Aya a : \
‘ometer-long at a coffee at a constant of :
takes her 4 :
+ her and
A frac{
You
you
answer. \ assistant Okay, |='s try (© solve
problem. So, Aya walks 9 kilometers morning, stops at - coffee shop, and we need - find out hours
how walk takes when </~ walks at a speed of s + /2 /h, including the time she spends in
. First, - me parse There are In scenario
walks ata speed ' s time)
is . s is 2 hours and
in We s . hours
Wait :
Therefore we A
{
t
text{(
Elim
Equation : \ {
hours is
0 we
s we s
text
terms will
[text
is equal 0 [{ text.
(is : $$
Cross © boxed{ 0} $
by :
8- sqrt
we
is divided
s
is is

\ hours . /

Figure 25: Visualization of tokens retained in the layer 35 head 7 of the KV cache after generation,

where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.

27

	Introduction
	Related Work
	Preliminaries
	Transformers with Self-Attention
	Revisiting KV Cache Eviction

	Methodology
	Selective In-Context Memory via Retention-Gated Attention
	Training
	Inference

	Experiments
	Long Generation Evaluation
	Quantitative Result
	Qualitative Result

	Long Memory Evaluation
	Ablation Studies

	Conclusion and Future Work
	Methodology
	Inference Algorithm.
	Complexity

	Additional Experiments
	Long Generation Evaluation
	Long Memory Evaluation
	Additional Ablation Studies

	Additional Qualitative Results

