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ABSTRACT

Memory and computation remain core bottlenecks in long-horizon LLM inference
due to the quadratic cost of self-attention and the ever-growing key-value (KV)
cache. Existing strategies for memory-bounded inference, such as quantization,
offloading, or heuristic KV eviction, either incur high orchestration costs or rely
on unreliable attention-based proxies of importance. We propose TRIM-KYV, a
novel approach that learns each token’s intrinsic importance at creation time via a
lightweight retention gate. Each gate predicts a scalar retention score that decays
over time, reflecting the long-term utility of the token for a specific layer and head.
Tokens with low scores are evicted when the memory budget is exceeded, ensuring
that the cache always contains the most critical tokens. TRIM-KYV is trained
efficiently through distillation from a frozen LLM combined with a capacity loss,
requiring only gate fine-tuning and adding negligible inference overhead. Across
mathematical reasoning (GSM8K, MATH-500, AIME24), procedural generation
(LongProc), and conversational long-memory benchmarks (LongMemEval), TRIM-
KV consistently outperforms strong eviction and learnable retrieval baselines,
especially in low-memory regimes. Remarkably, it even surpasses full-cache
models in some settings, showing that selective retention can serve as a form of
regularization, suppressing noise from uninformative tokens. Qualitative analyses
further reveal that learned retention scores align with human intuition, naturally
recovering heuristics such as sink tokens, sliding windows, and gist compression
without explicit design. Beyond efficiency, retention scores provide insights into
layer- and head-specific roles, suggesting a new path toward LLM interpretability.

1 INTRODUCTION

Modern large language models (LLMs) can, in principle, handle extremely long input contexts —
some recent models support context windows of 128k tokens or more (Yang et al.||[2025; |Gao et al.,
2024). Yet, extending context length comes with steep computational costs. The self-attention
mechanism has quadratic time complexity in sequence length, and storing the key-value (KV) cache
for thousands of tokens can quickly exhaust GPU memory (Wang et al., 2025; |L1 et al., [2024a). In
practical deployments, the KV cache, which saves past key and value vectors to avoid re-computation,
becomes a major memory and latency bottleneck for long-context inference. Decoupling resource
usage from context length is therefore critical for enabling efficient and scalable applications such as
long-horizon reasoning (Chen et al.,|2025) and lifelong agents (Zheng et al., 2025} |Li et al., 2024d).

To address this challenge, recent work has explored memory-bounded LLMs that can operate effec-
tively under constrained KV budgets (Li et al., 2024a). One line of research focuses on compression
and quantization, aiming to reduce memory footprint by learning compact representations of past
tokens rather than storing all keys and values explicitly (Hooper et al.l|[2024; Saxena et al.| [2024).
These techniques are mostly effective during the prefill phase but scale poorly with generation
length. Another line leverages attention sparsity to offload most of the cache to CPU or secondary
storage, and retrieve only relevant segments on demand via similarity search (Tang et al.,[2024) or
learned indices (Gao et al., [2025). While offloading lowers the on-GPU footprint, it incurs nontrivial
orchestration overhead that accumulates over long generations, undermining end-to-end throughput.

A more common and direct approach to enforce a fixed memory budget is KV cache eviction, which
directly drops certain tokens from the KV cache (Xiao et al.,[2023). Many KV eviction strategies
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have been proposed to decide which tokens to remove. However, most of them are attention-guided
heuristics: they track attention from new queries to cached tokens and retain those that are recently
or frequently attended, adapting the cache to the current focus (Zhang et al., 2023} [Li et al.l 2024c]
Wang et al.| 2025} [Liu et al.} 2025} |Ghadia et al., 20255 |Cai et al.| 2025). While being efficient, these
methods assume that recent attention is a reliable proxy for future importance. This assumption often
breaks for long-horizon generation and reasoning tasks: a token might be crucial much later, even if
it has not been attended to in the recent past (Jiang et al.,[2024). Moreover, attention-based eviction
can suffer from attention bias, e.g., the model might temporarily overlook a needed token due to a
distracting context (Shi et al.,|2023)), causing it to be evicted prematurely. While some recent studies
have attempted to learn better eviction decisions (Chen et al.|[2024} [Zeng et al.,2024), these methods
typically scale poorly with sequence length and are therefore limited to the prefilling stage.

In this work, we take a new perspective on the KV eviction problem. Rather than relying on the
attention-guided importance, we propose to learn each token’s intrinsic importance at the time of
its creation and use that as the basis for eviction. Intuitively, not all tokens are created equal: some
carry significant semantic or task-related weight (e.g. a critical fact, a question being answered, or
the first few “sink” tokens that often encode the topic or instructions), while others are relatively
inconsequential (e.g. filler words, stopwords, or trivial arithmetic steps in a chain-of-thought).
Moreover, the importance of tokens is not uniform across the network, but it varies systematically by
layers and heads, reflecting their functional specializations (Voita et al., 2019 [Wu et al.| | 2024b).

We posit that the contextual embedding of a token already encodes much of its long-term utility. We
therefore introduce a retention gate that maps the token’s embedding and produces a scalar retention
score 3 € [0, 1] reflecting the token’s inherent importance for a specific layer and head. Especially,
we design this retention score to decay exponentially as the context grows, mimicking the gradual
forgetting of old information in human brains (Ebbinghaus| |2013)). Thus, a highly important token
will have 8 = 1 and retain a high score for a long time, whereas a token deemed unimportant will have
B closer to 0 and its influence will vanish quickly. We leverage this score to drive a simple eviction
policy: whenever the number of cached tokens exceeds the budget M, we evict the token with the
smallest current retention score. This approach, which we call Token Retentlon for Memory-bounded
KYV Cache (TRIM-KYV), ensures that at all times, the cache is filled with the M tokens judged most
intrinsically important, with a preference toward more recently generated tokens.

Implementing retention-based caching in an existing LLM only requires adding a few lightweight
components. We integrate the retention gates into each self-attention layer of a pretrained model to
modulate attention weights by token importance during training. We then train only the gates with
a two-part loss: a distillation loss that compels the modified model to mimic the original model’s
outputs, thus preserving quality, and a capacity loss that penalizes exceeding the target memory
budget, thus encouraging sparseness in attention via eviction. Importantly, by training the gates across
all layers jointly, the model can learn a coordinated, globally optimal caching policy rather than
greedy layer-wise decisions. At inference time, the learned retention gates produce per-token scores
on the fly, and eviction is implemented with a simple score comparison, adding minimal overhead.

Results and Contributions. Through extensive experiments on long-context and long-generation
benchmarks, we demonstrate that our learnable token retention approach substantially improves the
performance of memory-bounded LLMs. On challenging mathematical reasoning datasets, GSM8K,
MATH, AIME, a long procedural generation benchmark, LongProc, and a long-memory chat assistant
benchmark, LongMemEval, our method consistently outperforms eviction baselines, even when
those baselines use 4x more KV budget, and deliver 58.4% pass@1 gain compared to the SOTA
learnable KV retrieval baseline (Gao et al.,|2025), especially in low-memory regimes. Remarkably,
in several settings, TRIM-KYV even surpasses a full-cache model, suggesting that selective retention
can function as an effective regularizer by suppressing noise from uninformative tokens.

We also present qualitative evidence that learned retention scores align with human intuition: the
model tends to assign high scores to initial tokens and problem descriptions, and low scores to less
meaningful punctuation. Notably, many behaviors reminiscent of common heuristics, such as keeping
sink tokens, sliding windows, and gist compression (Mu et al.| 2023)), emerge naturally and adaptively
from our learned policy, without being hard-coded. Finally, we show that these learned retention
scores can also act as a diagnostic tool for probing layer- and head-specific dynamics, providing a
lightweight means to analyze and ultimately improve the interpretability of attention patterns.
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2 RELATED WORK

KV Cache Compression. As model sizes and context windows grow, optimizing KV-cache memory
is increasingly critical. Prior work largely falls into three directions: (i) token eviction/merging (Xiao
et al.,[2023} |L1 et al., [2024¢} [Zhang et al.|, [2023; Nawrot et al., 2024; [Zhang et al.}|2024b; |Qin et al.,
2025; |Wang et al., 2025} |Liu et al., [2025; |Park et al., [2025} (Cai et al., 2025 |Park et al.| 2025} |Kim!
et al.| [2024)), (ii) vector compression/quantization (Hooper et al., 2024} Liu et al.| [2024b; |Yue et al.|
2024; Sun et al., 2024a)), and (iii) token retrieval (Tang et al., [2024; [Liu et al., 2024a}; |Gao et al.,
2025)). While effective in many settings, vector compression and retrieval either discard fine-grained
information or introduce nontrivial systems overhead (e.g., coordination and data movement) (Li
et al., [2024a)). Moreover, their memory and computation still scale with sequence length, making
them inefficient for long-horizon generation applications. Token eviction offers a simple, memory-
bounded alternative; however, most existing policies are heuristic and can significantly degrade
performance, especially on long reasoning trajectories. Recent work has introduced learnable eviction
policies (Chen et al.| [2024} Zeng et al., 2024} Huang et al.|[2024), but these are primarily designed for
the pre-filling stage and thus are not well suited to sustained long-horizon generation. We bridge this
gap by introducing a learnable and efficient eviction policy designed for long-horizon LLM inference
under fixed memory budgets.

Forgetting in Language Models. A key limitation of vanilla self-attention is the lack of an explicit
forgetting mechanism, forcing the model to carry potentially irrelevant information and making
long-context processing inefficient. Early work tackled this by replacing quadratic attention with
linearized and recurrent variants (Katharopoulos et al., |2020; Wang et al., |2020; [Sun et al.| 2023}
Yang et al., 2023;2024)) that summarize the past into a fixed-size state, often a single vector. While
computationally attractive, such heavy compression can degrade performance on tasks requiring
long-range memory. Follow-up studies (Behrouz et al.l 2024} |Sun et al., 2024b; |[Karami et al.;
Karami and Mirrokni, 2025) increase memory capacity by replacing this hidden vector with a more
expressive neural state. Complementary lines of work retain softmax attention but enforce forgetting
by modifying attention logits (Lin et al.,|2025)) or imposing trainable sparsity patterns (Yuan et al.,
2025). However, these approaches typically alter attention dynamics substantially and thus require
training models from scratch. This incurs significant training cost and leaves their scalability to
contemporary LLM sizes uncertain. In contrast, we introduce a plug-in forgetting mechanism for
pretrained LLMs that converts them into memory-bounded models, providing long-context efficiency
without retraining from scratch.

3 PRELIMINARIES

3.1 TRANSFORMERS WITH SELF-ATTENTION

Given a sequence of d-dimensional input vectors X1, . .., X7, a (causal) self-attention layer attends
only to past positions. Foreach ¢ = 1,..., T, the attention output o; is computed as

i exp (th ki)

— > exp (a]k;)

where q, k, v are query, key, and value states, respectively, and W, W, Wy € R4 are linear
transformation weights. Here, we assume a single-head attention layer and omit the scaling factor
1/+/d for simplicity. The sequence of key-value pairs {(k;, v;)}; is the in-context memory of the
LLM. During the autoregressive decoding, we typically generate one token at a time and cache the
running key-value pair (k¢, v;) to our in-context memory to avoid recomputation. However, this
vanilla caching approach leads to a linear increase in memory footprint with the sequence length,
while computation grows quadratically (Keles et al.,|2023)). This reduces efficiency when handling
long-context inputs and extended generation tasks.

ar = Wox, ki = Wixy, vi = Wyxg, oy =

(2]

3.2 REVISITING KV CACHE EVICTION

A common method to address the linear growth in the memory is to prune or compress the running
key-value pairs into fixed-size (slot) memory. As new tokens arrive, we evict un-(or less-)important
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tokens from our memory and append the new ones. To understand this procedure, we revisit and
rewrite the attention computation with eviction at inference step ¢ as follows:

v, where «ay; €{0,1}and oy > ayrq, Vi, )

_ zt: exp atz-q;rk»)

j 1 exp (aﬁqt k,; )

In Equation (TJ), we introduce a binary variable ay; € 0, 1 indicating whether
key—value pair ¢ has been evicted at time ¢ and the monotonicity constraint
o4; > uy1,; ensures that we cannot retrieve a token once it is evicted
(Figure[I). The goal is to choose a decision variable « so that the attention
output deviates as little as possible from the full KV cache (all ay; = 1, Vi, t).

oo
t
min Lyase(07;0;) s.t.ZatiSM. @ oo o]

Here, £ penalizes differences between attention with and without eviction, Figure 1: Attention
and the constraint enforces keeping at most M tokens at any inference step ¢. W/ eviction (M = 3).

Solving the above constrained optimization at every time step ¢ is impractical due to its combinatorial
nature and efficiency requirements of LLM inference in real-world applications. Most existing
approaches (Xiao et al., 2023 |Han et al., 2023} [Zhang et al., 2023 L1 et al., [2024c; |Cai et al., 2025}
Ghadia et al.||2025) opt to determine « heuristically while we focus on a learnable eviction method.

4 METHODOLOGY

In this section, we propose a learning-based eviction policy that prunes the KV cache based on
the intrinsic importance of the tokens at each layer and head. The policy ranks tokens by relative
importance to decide which should be evicted from the KV memory. To learn token importance, we
introduce a small neural network that takes token embeddings as input and produces a scalar retention
score. We then integrate this retention score into the attention computation to modulate the attention
weights. We term this proxy attention mechanism a retention-gated attention. We train the LLM
with retention-gated attention against a baseline model with standard attention, using a combination
of distillation and hinge-like regularization losses to enforce memory capacity constraints while
preserving response quality. A visualization is shown in Figure [2]

4.1 SELECTIVE IN-CONTEXT MEMORY VIA RETENTION-GATED ATTENTION

We introduce retention-gated attention, a trainable mechanism that mimics the information loss
induced by inference-time eviction. From the formulation (I, the sequence ;;, QU415 - - - Ot
represents how token ¢ is retained in the attention computation over time. Retention begins at 1 and
then abruptly drops to O once the token is evicted. While this binary behavior matches the inference
stage, it poses challenges for learning: the signal is discrete, non-differentiable, thus providing no
gradients for optimization. To remedy this, we replace the hard binary variable o with a smooth,
monotonically decreasing function that models the gradual decay of importance while enabling
gradient-based training. A natural candidate is the sigmoid function, ay; = 1/(1 + exp(f(x:,t))),
which models the time at which the token is evicted. However, this design suffers from two drawbacks:
(i) the domain of f is unnormalized since the sequence length is unknown during decoding, and
(ii) the sigmoid flattens across most of its range, producing negligible variation between steps and
leading to vanishing gradients during training.

To overcome these limitations, we adopt an exponential decay formulation, &;; = Bt ¢ where

B; € [0, 1], to model the retention rate of token 4 over time. Larger values of 3; correspond to higher
intrinsic importance, implying slower decay and stronger memory retention. Substituting this design
for o in Equation (T)) yields our proposed refention-gated attention:

~  oxp (8 e/ ki)
ar = Woxi, ki = Wiy, vi = Wy, B = g(xy), Z S vie )
i=1 D j—1 €XP (ﬂj ’q, kj)

Here, we propose a retention gate g, which is a lightweight network, to parametrize the token
importance /3;. The retention gate can be a linear projection, i.e., g(x) = o(Wgx; +b), Wz € R1*4,
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or a simple MLP, i.e., g(x) = o(MLP(x) + b). The sigmoid function o squashes the output of g
to the range [0, 1], while b is a learnable bias. When all 8; = 1, V¢, our retention-gated attention
recovers the vanilla attention. Our ablation studies show that an MLP with a single hidden layer
provides a more powerful retention estimation than a linear projection.

Token Retention vs. Attention Scores. In standard self-attention, the importance of a past token ¢
at decoding step ¢ is given by a; o exp(q, k;), which depends explicitly on the current query q.
These scores capture short-term utility for predicting the next token and are recomputed at every step,
making them local, myopic, and highly dependent on the transient decoding state.

KV cache eviction, in contrast, is a long-horizon decision: once a token is dropped, it cannot influence
any future prediction. An effective eviction policy should depend on a token’s intrinsic long-term
utility that reflects how useful it is expected to be over the remainder of the sequence and how long it
has already stayed in the cache, rather than on the current query alone.

Token retention provides a more suitable abstraction. Instead of asking “how much should token
1 contribute now?” it asks “how important is token 7 for the long run, and for how long should
it stay in the cache?” Concretely, each token 7 receives a scalar retention score 3; € [0, 1] based
only on information available at creation time (its representation, layer, and head), and its effective
contribution at future step ¢ decays as 3¢ ". This yields a smooth, exponentially decaying retention
curve that is aligned naturally with long-term utility under memory constraints.

Brain-inspired Interpretation. Our proposed retention-gated attention bears a natural connection to
the classical Ebbinghaus’s forgetting curve theory (Ebbinghaus| [2013)), which models human memory
retention as an exponential decay over time. A common approximation of human retention rate is
R = exp(—tS), where ¢ is the time and S is the memory strength determining how fast R decays
over time in the absence of training (WozZniak et al., |1995).

In a similar spirit, our retention-gated attention models the contribution of past tokens as an exponen-
tially decreasing function of their temporal distance from the current step, i.e., exp((t — i) log 3;).
Each token begins with full weight (&;; = 1), akin to a newly encoded memory, and its influence
decays as more tokens arrive, mirroring the drop in recall probability described by the forgetting
curve. The parameter /3 acts analogously to memory strength S: larger values yield more persistent,
durable memories, while smaller values indicate weaker memories that fade quickly.

This connection provides an intuitive justification for our design. By embedding a forgetting mecha-
nism into attention, we enable the model to dynamically prioritize recent or intrinsically important
tokens while gradually discarding less informative context, mirroring how humans manage limited
memory capacity in practice. Note thatZhong et al.| (2024) also drew on Ebbinghaus’s forgetting
curve to construct a long-term memory bank, but their focus was on retrieval-augmented generation,
whereas our approach integrates forgetting directly into the attention mechanism.

4.2 TRAINING

I Lqu?ality l Leap
Our goal is to train the retention gate g so that o
the LLM can preserve response quality under T P ]
a memory constraint, thereby bridging the gap i i
with the inference stage. Instead of training a T
separate gate for each layer and head, as for- Standard Attention
rpulated iq l"roble.:m (]ZI), we optimize gll retep- T T T A - o o
tion gates jointly in an end-to-end fashion. This iz e i Unear| [Linear| [Linear) | g
holistic approach mitigates error propagation, T_‘_T 1_T_’_T_T
allowing the model to learn a coordinated, glob- X
ally opt.imal crflc.hing poligy rather than gre.edy 4 4 -
layer-wise decisions. Starting from a pretrained z z
LLM, we replace every standard attention block Figure 2: Training architecture.

with our proposed retention-gated attention. Each block is equipped with a lightweight retention gate
¢ that maps token representations to retention scores 3; € [0, 1], which are then used to modulate
attention weights according to Equation (3. We call this proxy LLM a retention-gated LLM.
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Objectives. To train these retention gates, we formulate the training objective that balances two
goals: (i) preserving the predictive quality of the original pretrained LLM, and (ii) enforcing memory
capacity constraints by controlling the sum of retention scores at each step.

For the first objective, we use a combination of the distillation and standard next-token prediction
losses. The distillation loss encourages the proxy LLM to align its output distribution with that of the
baseline LLM using standard attention. In parallel, the next-token prediction loss enables the model
to uncover sparsity patterns directly from the data, extending beyond the constraints of the pretrained
LLM. Let p( - ) and gg( - ) be the output distribution of the pretrained LLM and retention-gated LLM,
respectively, where 6 denotes the parameters of all retention gates. The quality loss is given by

£qua1ity = Lk1 + LnTP = DKL(p(' \m) H qg( : |$)) + E(Ly) [— log qe(y|x)] . 4
Here, Dkq, is the standard forward Kullback-Leibler divergence (Kullback and Leibler, [1951}).

For the second objective, we impose a hinge-like regularization penalty, which discourages the model
from exceeding the available KV memory slots at each step. For a retention gate within a given layer
and KV head, the memory capacity loss is defined as:

t

1 a t—i
‘ccap = m;max {O,Zﬁi —M}7 ©)

i=1

where T is the sequence length and M is the predefined memory capacity. Here, M acts as a soft
hyperparameter, primarily intended to prevent over-optimization during the early decoding stage
when the sequence remains short. Training is performed with a fixed value of M, while inference
can flexibly accommodate different KV budgets. This regularization is applied uniformly across all
layers and KV heads of the transformer. The combined training objective is then:

mein »Cquality + /\capﬁcapv (6)

where A,p is a hyperparameter balancing between quality and capacity loss. Note that during
training, only the retention gate parameters are updated, while all other model weights remain frozen.

Hardware-aware Computation. Retention-gated attention is fully parallelizable and compatible
with FlashAttention-style kernels (Dao, 2023). We implement it with FlexAttention (Dong et al.,
2024) plus a custom Triton kernel for the capacity loss L., performing forward/backward without
materializing the full attention or 5 matrices. This enables long-context training (up to 128K tokens
on four H100 GPUs) with minor overhead versus standard parameter-efficient fine-tuning.

4.3 INFERENCE

At inference time, the base LLM is augmented with the retention gates learned during training
(Sectiond.2). These gates provide token-level intrinsic importance scores 3;, which quantify how
strongly each past token should be retained for future computations. Unlike training, where the
retention gates are used to modulate the attention weights, at inference, they act purely as decision-
makers for eviction, operating alongside but independently of attention computation.

The eviction process is designed to ensure that the KV cache respects a predefined memory budget.
Let S; C {1,...,t} denote the set of tokens currently stored in the KV cache at decoding step t.
When a new token ¢ + 1 is generated, it is provisionally added to the cache. If this addition causes
the cache size to exceed the memory capacity M, an eviction is triggered. The eviction rule is simple
yet principled: we remove the token with the lowest retention score, i.e.,

jevic — arg min{ﬂ;_j ‘j S St}
JESt
Intuitively, this favors retaining tokens deemed globally important by the learned retention gates
while discarding those with little long-term value. In practice, this makes inference both memory-
efficient and adaptive: as new context arrives, the model continually re-evaluates the importance of
older tokens, enabling long-context generation while keeping memory usage bounded. Algorithm T]
illustrates a single decoding step, where attention computation is coupled with token eviction.

Complexity. Our inference is simpler and more efficient than existing works, including pure heuristic
baselines (Li et al.l 2024c). Throughput and runtime comparisons are in Appendix [A.2]
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Figure 3: Patero frontiers of competing algorithms with different budgets on math benchmarks.

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the performance advantages of our
method on both long-context and long-generation tasks.

5.1 LONG GENERATION EVALUATION

Benchmarks. Following prior work (Gao et al., 2025; |Cai et al., 2025), we evaluate on standard
math-reasoning suites—AIME24 (Art of Problem Solving} [2024), GSM8K (Cobbe et al.| [2021]),
and MATH-500 (Hendrycks et al.| 2021). To assess performance beyond math reasoning and under
long-context settings, we also report results on LongProc (Ye et al., 2025). Following (Gao et al.,
2025)), we report average pass@1 accuracy over 64 samples for AIME24 and 8 samples for GSMS8K,
MATH-500. We use greedy decoding for LongProc as the default in the benchmark.

Base Models. Following (Gao et al., [2025), we mainly use Qwen3’s family models (Yang et al.|
2025)), including Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B and DeepSeek R1 Distill (Guo
et al., [2025) variants including, DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Lllam-8B.
We report the results with Qwen3 models in the main paper, and the remaining is in Appendix [B]

Baselines. We compare our method against SeerAttn-R (Gao et al.}|[2025), R-KV (Cai et al.} 2025)),
SnapKV (Li et al., [2024c), H20 (Zhang et al., 2023)), Streamingl.LLM (Xiao et al., [2023). R-KV,
SnapKV, H20, and Streamingl.LM are heuristic, recency-driven KV eviction policies for long-form
generation under a fixed memory budget. SeerAttn-R is a learnable KV retrieval approach for
reasoning tasks: rather than evicting, it offloads the full KV cache to host memory and uses recent
queries to fetch relevant blocks for attention. KV retrieval methods preserve all past information
but require nontrivial CPU-GPU orchestration and incur offloading overhead. We therefore treat
SeerAttn-R as a strong learnable baseline, and R-KV/SnapKYV as representative eviction baselines.

Implementation Details. We train the retention gates using OpenR1-MATH-220k (Hugging Face)
dataset, similar to (Gao et al.,|[2025). Note that we only train the retention gates’ weights while
keeping the original model parameters frozen. We set the objective hyperparameters Ac,, = 1.0 and
the memory capacity M = 512. Each transformer block has a retention gate g, which is a single
MLP layer with the hidden dimension of 512, thus having dimensions of d — 512 — h, where h is
the number of KV heads. We use the activation function as the default activation function in MLP
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Figure 4: Visualization of token retention score Bf - (top) and eviction decisions «;; (bottom).

layers of the base model. We initialize the bias in the retention gates to a large value (e.g., b = 8.0) to
begin training with minimal forgetting or compression. All trainings are on 4 H100 80G GPUs.

5.1.1 QUANTITATIVE RESULT

Math Reasoning Tasks. Figure [3]shows our method outperforming all baselines by a large margin,
especially in low-budget regimes. Notably, TRIM-KV surpasses attention-guided methods (R-KV,
SnapKV) even when they are given 4 x KV budget. Under the same budget, i.e. 1024 for AIME24 and
128 for GSM8K/MATH-500, it yields a 198 % relative improvement over these baselines. Against the
SOTA learnable KV retrieval baseline, TRIM-KV outperforms SeerAttn-R across all settings, yielding
a58.4% pass@1 gain at the same budget. Crucially, TRIM-KV operates in a pure KV-eviction regime,
a stricter setting than the KV retrieval methods such as SeerAttn-R, and thus avoids CPU-GPU
offloading overhead. In some settings, like for Qwen3-4B model and AIME24 dataset, our method
can even surpass the standard full KV cache. These results suggest that a large fraction of KV-cache
tokens in reasoning models is redundant and can be discarded without degrading performance.

Long Procedural Generation Tasks. We evaluate

L. . Methodky pudget CountDown Pseudo to Code
KV-eviction methods on tasks that require both long- 05k 2k 8 05k 2k
;:)i)ntext compreherllswn‘alrlld extergdi% gene(;raltlor(lj Ta- kv SISO oS50

e I] reports resu ts wit Qwen3-4B model. VO G rcamingLLMy;s 70 50 5.0 206 15
all, TRIM-KV consistently outperforms all other evic- 0, 120 75 25 337 05
tion baselines and, in several settings, even surpasses SnapKVaous 570 490 130 427 45
the full-cache model. Moreover, this result highlights R-KVa0s 88.5 81.0 63.0 482 25
that TRIM-KV with retention gates trained on math- _TRIM-KVz0s Y5 BS 660 H2 1O
reasoning data generalizes well to non-math tasks. Full Table 1: Qwen3-4B on LongProc. Bold is for
results and analysis are provided in Appendix [B] the best, underline is for the best KV eviction.

5.1.2 QUALITATIVE RESULT

To examine the eviction policy learned by our retention gates, we run TRIM-KV on Qwen3-4B
for the first example in AIME24 (see Figure [T4]for a visualization of the example). Figure Sa—b
show the mean retention score, averaged over all layers and heads, for each token in the example
sequence. Aligning with our intuition, retention gates assign high scores to task-relevant tokens (e.g.,
ometer, shop, walk, minutes) and to the initial token < | im_start | >, which often serves
as an attention sink. In contrast, whitespace and punctuation receive low retention scores and are
discarded early, yielding short lifespans in the KV cache. Next, we examine retention scores and
eviction decisions at layer—head granularity.

Emergent Eviction Heuristics. Figure visualizes the retention scores 5f ~* and eviction decisions
ay; for selected layers and heads. Many eviction heuristics, such as attention sinks (Xiao et al., [2023)),
sliding windows (Zhu et al.,[2021)), A-shape (Jiang et al., 2024), emerge naturally from our learned
policy without being hard-coded, and they adapt to the functional roles of individual layers and heads.
For instance, sliding-window behavior is more common in early layers, whereas attention sinks
appear more frequently in later layers (see Figure[T2]and [I3]for a comprehensive view). Moreover,
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Figure 5: a) Average retention scores across all layers and heads of Qwen3-4B on tokens of an
AIME24 example. b) Top 10 tokens with the highest (left table) and lowest (right table) average
retention. ¢) The layer- and head-wise sparsity level estimated by token retentions.

Method En.MultiChoice Retr.KV ICL.ManyShot Math.Find En.QA Code.RepoQA En.Sum Mix.Sum+NIAH Retr.MultiHop
Full KV 20.52 66.00 95.57 3260 2878 53.86 36.48 38.33 49.60
StreamingL.LM 496 5.68 2.20 100.00 13.20 6.84 2.96 29.21 28.25 0.00
H204096 4.80 0.00 100.00 8.00 3.70 0.46 8.97 6.51 0.27
SnapKV 4006 10.04 0.00 100.00 18.60  6.29 023 2790 29.28 031
TRIM-KV 4096 13.10 0.00 100.00 13.830  19.09 4.32 33.66 34.06 43.11

Table 2: Performance on long-context tasks from the SCBench benchmark.

TRIM-KYV adapts the window size by layer and head: in Layer 1/Head 1, tokens receive nearly
uniform retention scores, so the KV cache behaves like a recency-biased window that keeps the
most recent tokens; in Layer 0/Head 0, multiple sliding windows of varying widths emerge from the
learned policy; in Layer 15/Head 2, no sliding window is observed because certain tokens receive
substantially higher retention than others, suggesting a specialized functional role for this head. The
A-shaped pattern typically appears in layers that emphasize instruction/problem-statement tokens
(e.g., Layer 20/Head 5 and Layer 30/Head 4) or chain-of-thought/reasoning prompts (e.g., Layer
35/Head 1). These heads also exhibit context switching, where small, dense lower-triangular blocks
emerge and then fade quickly when the context changes or a sentence completes. To the best of
our knowledge, the absence of a sliding window, the presence of multiple coexisting windows, and
context switching are newly observed eviction patterns that arise naturally from our learned policy.

Token Retention Enables Interpretability. Beyond guiding eviction policy, token-level retention
scores provide a diagnostic tool for analyzing the functional roles of individual KV heads in the base
LLM. Visualizing retention scores alongside the tokens preserved in the KV cache after generation
reveals distinct specializations: some heads emphasize a recency window (Figure |17, whereas
others preferentially retain mathematical tokens-numbers and operators (Figures nd [20)-or
variables (Figure[23)), as well as problem-description tokens (Figures[T9]and 23)) and chain-of-thought
instructions (Figure 26). Even function or filler words, such as pronouns, prepositions, conjunctions,
wait and let, tend to be kept by specific heads (Figures[I8and[24). In particular, heads that exhibit
context-switching patterns (e.g., Layer 30/Head 4 and Layer 16/Head 6) tend to retain the period
token while discarding others (Figures 22)and 21)). We hypothesize that, in these heads, periods act as
implicit gist tokens 2023), summarizing the information in the preceding sentences.

Our analyses indicate that KV heads in LLM develop different functional roles and therefore keep
different types of tokens. These tokens are often dispersed across the context rather than forming
contiguous chunks, as each already captures contextual information. This observation contrasts with
existing approaches (Yuan et all, 2023}, [Gao et al},2023) that advocate chunk- or block-based KV-
cache. Instead, we show that keeping a small number of high-context tokens is more budget-effective.

Budget Allocation. Figure Sk reports head- and layer-wise sparsity estimated from the retention
scores i.e., 1 — ﬁ D i<t 5;71. We observe that later layers are typically sparser than earlier
ones, consistent with prior findings in (Cai et al., [2024). Practically, the retention scores enable
heterogeneous budgets across KV heads under a global constraint by evicting tokens with low
global retention. However, existing KV-cache and FlashAttention implementations assume uniform
sequence lengths across heads within a layer; enabling efficient per-head variable-length caches is

left to future work.

5.2 LONG-CONTEXT EVALUATION
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To further stress-test our approach on long-context tasks, we evaluate it on LongMemEvalg
[2024al), a benchmark for assessing chat assistants’ long-term interactive memory (contexts up to
123K tokens with Qwen3) and SCBench [2024D)), a benchmark adapted from RULER
2024) and InfiniteBench (Zhang et al.| 2024a) to evaluate long-context understanding of
KV cache compression methods under the same context but different queries. We use Qwen3-4B-
Instruct as the base model and train the retention gates on SynthLong
2025)), BookSum (Kryscinski et al., 2021), and Buddhi 2024), whose context lengths

extend up to 128K tokens. All other experimental settings follow Section[5.1]

As shown in Table E| and Table |Z| show the results on LongMemEval and  Methodgy ugee Acc
SCBench benchmarks respectively. On LongMemEval, TRIM-KV outper- ~rui kvis10ms 494

forms baselines by a significant margin. Especially, TRIM-KV can maintain StreamingLLMzs7¢s  27.6

the performance of a full cache while using just 25% of the KV budget, while i‘;ﬁf_\é’\im i;g
. .. 32768 ..
other baselines drop sharply. On SCBench, TRIM-KV also shows a competitive ~ StreamingLLMgsss 19.0
performance across most of the evaluated tasks. On challenging retrieval tasks i‘l‘;‘ll;/[K_‘lg\gw igﬁ
such as Retr.KV and Code.RepoQA, all KV eviction methods failed to give & ~ Sreamingl LMo ~ 102 °
reasonable performance because the context is incompressible. This is already  SnapKVioss 13.4

observed in 2024b). These results highlight our method’s advantage _SMKVios 302
on both long-context and long-generation tasks, whereas most prior work targets Table 3: Results on
either the prefill or the generation stage, but not both. More details and results LongMemEvalg.
for this experiment are provided in Appendix

5.3 ABLATION STUDIES

We ablate the objective by training the Qwen3-4B retention gates with

. . . Methodky pudge @1
different loss combinations and report AIME24 pass@1 at a 4096- = ; IZVKVb et pa;sss
: _ Tt u 32768 .
token budget in Table[d] Both forward KL and next-token prediction TRIMKY s e

perform well on their own, and their combination further improves  rpiv kv — £ 1008 714
accuracy. The memory capacity loss is essential for compression, and (TRIM-KV —Lxrp)ages 707
removing it leads to a sharp drop. We provide comprehensive ablations (TRIM-KV —Lcap)1096 42.9
with reversed KL, generalization with different training datasets, gate’s
architecture, and other hyperparameters such as M in Appendix Table 4: Objective ablation.

6 CONCLUSION AND FUTURE WORK

We introduced TRIM-KYV, a learnable, retention-gated approach to KV cache management that
prioritizes tokens by intrinsic importance rather than recent attention. By training lightweight gates
with distillation and a capacity loss, our method enforces strict memory budgets with a simple and
efficient eviction policy. Extensive experiments across math reasoning, long-procedural generation,
and conversational long-memory benchmarks demonstrate that our method outperforms strong
eviction and retrieval baselines, and sometimes even surpasses full-cache models. Analyses show that
the learned retention scores align with human intuitions and reveal layer- and head-specific dynamics,
offering a simple probe for interpretability.

Future Work. Our results indicate that retention-gated attention is an effective learnable proxy for
approximating standard attention with eviction during inference. In the current work, however, we
keep the backbone parameters frozen during training and still rely on standard attention at inference
time. A natural next step is to replace standard attention with retention-gated attention and train the
retention mechanism jointly with the attention layers during pretraining or post-training. This could
allow the retention scores to better cooperate with the learned query, key, and value states, shaping the
model’s ‘memory habitsﬂ from the outset rather than optimizing retention on top of a fixed attention
stack. Such a design would enable training objectives that explicitly trade off task performance and
memory usage, potentially yielding models that are inherently memory-bounded without requiring
any post hoc compression policy.

Besides, building on these results, we plan to extend retention gating to multimodal inputs, tool-
calling applications, and develop adaptive budgets that allocate memory across layers, heads, and
tasks to further improve both performance and efficiency.

"We borrow this term from the reviewer gKFH. We appreciate all reviewers for their constructive suggestions.
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ETHICS STATEMENT

This work aims to improve the efficiency of large language models by reducing their memory and
computational footprint. Our method can make long-context reasoning more accessible by lowering
hardware costs, which may democratize access to advanced LLM capabilities. However, efficiency
improvements may also accelerate the deployment of LLMs in high-stakes or resource-limited settings
where risks around misinformation, bias, or misuse persist. We stress that our method does not
mitigate these broader societal risks and should be paired with ongoing efforts in safety, fairness, and
responsible deployment.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing detailed descriptions of the model architecture, training
objectives, and evaluation benchmarks in the main text and appendix. Hyperparameters, training
schedules, and implementation details are included for all experiments. All datasets we use are
publicly available, and we will release code, model checkpoints, and scripts for training and evaluation
upon publication. Together, these materials allow independent researchers to fully reproduce and
verify our results.

The authors used large language models to help refine and polish the writing of this manuscript.
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A METHODOLOGY

A.1 INFERENCE ALGORITHM.

Algorithm T]illustrates the attention computation with KV eviction using retention gates for a single
decoding step. We mark the parts that are different from the standard attention computation in blue.
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Algorithm 1: Attention computation with KV eviction (single decoding step)

Input :current hidden x;; KV cache K;_1, V;_1,B;_; indexed by S;_1; retention gate g
Param :capacity M;
Output : attention output o; updated (K, V;, B;); updated index set .S;

// 1) Project to Q/K/V for the current token

qar — Woxy; ki « Wixy, v Wyxy [ = g(x¢);

// 2) Append current token to the KV cache

Ki+— Ki1Uky; ViV 1Uvy B« Bioi UB S+ Sim1 U{th

// 3) Compute attention over currently cached keys/values
(restricted to S;)

0; < FLASHATTN(qq, K¢, Vy);

// 4) If capacity exceeded, evict the least important token

while |S;| > M do

Jevic ¢ argmin {6§_] |7 € St};
Remove Kt [jevic]y Vt [jevic]y Bt[jevic];

S+ Sy \ {jevic};
end

Positional Encoding in KV Cache Eviction. Our retention mechanism is designed to be positional-
encoding agnostic and does not add any extra recency bias beyond what is already present in the
base model. The exponential decay in the retention-gated attention is a smooth approximation of
the decay process from 1 to O of the standard attention with eviction, not to encode the positional
information. Therefore, regardless of whether the base model uses absolute positions, RoPE, or no
positional encoding, that information is already folded into x, q, and k in the standard attention (see

Eq[I).

Implementation-wise, when using RoPE, we follow prior work (R-KV, SnapKV) and cache post-
rotated keys, so the eviction is orthogonal to the positional embeddings used.

A.2 COMPLEXITY

Memory efficiency. Like other KV-eviction schemes, TRIM-KYV uses a fixed-size cache with O(M)
slots, independent of sequence length 7'. For each token (per head), it stores a single scalar retention
score (3;, adding only ~ 1/d}, overhead, where dj, is the dimension of the key and vector states,
relative to the KV states, which is negligible in practice. Unlike R-KV (Cai et al.|[2025), TRIM-KV
does not store queries.

Method Context Length  Gen Length  Batch Size  Throughput (tok/sec) Decode Time (s)
FullKV 68.44 59.84
SeerAttn-R 32786 1024 4 68.93 59.41
SnapKV 124.67 33.00
TRIM-KV 130.48 31.39
“FulkV 11439 358
SeerAttn-R 16378 1024 4 100.45 40.77
SnapKV 153.21 26.73
TRIM-KV 151.04 27.11
“FullkV 13897 5894
SeerAttn-R 16378 1024 8 139.34 58.78
SnapKV 244.60 33.49
TRIM-KV 279.90 29.26

Table 5: Throughput and decoding time comparisons of different KV cache methods on a single
H200 GPU. The memory budget M is 1024.

Computational efficiency. For each generated token, TRIM-KV computes a scalar retention
score (3; via a lightweight MLP that can be fused with QKV projections; scores are cached and not
recomputed each step. During compression, it applies a temporal discount (elementwise power) and
evicts the argmin; both costs only O(M ). This is cheaper than heuristics like R-KV, which require
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key—key similarity scoring over the cache. Table [5|reports throughput and latency: at 32K context,
TRIM-KYV achieves ~2x higher decoding throughput than full-cache decoding and even faster than
SnapKYV, a purely heuristic method. SeerAttn-R does not provide any computation advantage over
full cache model.

B ADDITIONAL EXPERIMENTS

B.1 LONG GENERATION EVALUATION

We provide more comprehensive experiment details in this section.

Experiment settings. For the training, we set the maximum training length to be 16384. We train
the retention gates with a learning rate of 2 x 10~ and a weight decay of 0.01. For math reasoning
tasks, we follow SeerAttn-R (Gao et al., [2025) that uses OpenR1-Math-220K (Hugging Face)) dataset,
which has 564M tokens for training. During training, we use a batch size of 1 for each GPU, and
gradient accumulation is set to 4. Other hyperparameters are set to the default in Huggingface Trainer.
All training is conducted on 4 H100 GPUs.

Benchmarks. AIME24 (Art of Problem Solving, [2024)), GSM8K (Cobbe et al., 2021), and MATH-
500 (Hendrycks et al.| [2021])) are standard math reasoning benchmarks. LongProc (Ye et al.l 2025)
is a long-context benchmark of six procedural-generation tasks that require integrating dispersed
information and producing structured long-form outputs (up to ~ 8K tokens)—from extracting
tables from HTML to executing multi-step search to build feasible travel itineraries. The suite spans
varied access patterns (sequential vs. targeted retrieval), deductive reasoning demands, and search
execution, enabling stress tests of long-range coherence and procedure following. Each task includes
deterministic solution procedures and structured outputs, allowing rule-based evaluation (row-level F1
for HTML—TSYV, unit tests for pseudocode—code, exact-match traces for Path/ToM, and validators
for Countdown/Travel). To probe generation length, we use three difficulty tiers targeting 0.5K, 2K,
and 8K output tokens.

—-== Full KV TRIM-KV (ours) R-KV —&— SnapkV

Qwen3 1.7B R1 Distill Qwen 7B R1 Distill Llama 8B
______________________ =¥ - D et T T TP SR e et ==, o

401 30 /

<+
N 301 20
=y 204
<< 204

4 10 4

10 101
0de—¢ o-c/ 01%
250 €17 1q2R 083,090 216® 290 512 1q2hod 06 168 930 512 02h0h8 000 2168
KV Budget KV Budget KV Budget

Figure 6: Patero frontiers of competing algorithms with different budgets on AIME24.

Math reasoning results. Figure [f]reports AIME24 performance for Qwen3-1.7B and DeepSeek-R1-
Distill variants. Across both families, TRIM-KYV consistently outperforms eviction baselines. The
gains over heuristic baselines are smaller on DeepSeek-R1-Distill-Llama-8B, which we hypothesize
reflects lower attention sparsity in this model compared to the Qwen3 family.

Comparison to a query-agnostic baseline. We provide a comparison to KeyDiff (Park et al.|[2025),
a query-agnostic baseline that only considers a key diversity for eviction. The result in Figure[7]shows
that the performance of KeyDiff is significantly worse than that of other baselines. Note that R-KV
can be considered as a generalization of KeyDiff since it considers both key diversity and attention
scores for eviction heuristics.

Results on LongProc. Table [f] reports KV-eviction results on long procedure—generation tasks.
Across tasks and budgets, TRIM-KV achieves the best performance, and it even surpasses the
full-cache baseline on COUNTDOWN (0.5K/2K) and HTML TO TSV (0.5K). Under tighter memory
budgets, its margin over heuristic baselines widens.
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Figure 7: Comparison to KeyDiff, a query-agnostic baseline.

Methodky budget HTML to TSV Thought of Mind  Travel Planning
0.5k 2k 8 0.5k 2k 8k 2k 8k
FullKV 49.0 416 139 330 105 00 00 0.0
SnapKVsi92 371 93 01 260 7.0 00 0.0 0.0
H20g192 283 64 04 380 70 00 0.0 0.0
R-KVg192 38.0 7.1 05 260 7.5 00 0.0 0.0
TRIM-KVg192 58.2 36.0 125 325 105 0.0 0.0 0.0
" StreamingLLMyp4s 1.2 00 00 20 00 00 00 00
SnapKVapas 1.5 02 00 150 00 00 00 0.0
H205048 04 08 00 76 00 00 00 0.0
R-KVy04s 1.6 0.1 00 3.0 00 00 00 0.0
TRIM-KV 2045 346 71 03 175 05 0.0 0.0 0.0

Table 6: Results of Qwen3-4B across LongProc tasks: F1-score for HTML to TSV task and accuracies
(%) for the remaining tasks. Best per task column in bold.

B.2 LONG-CONTEXT EVALUATION

Methodgy budget Overall Multi Knowledge SS-User SS-Pref SS-Assist Temporal
Full KVi31072 49.4 25.6 68.0 62.9 93.3 85.7 30.1
StreamingLLM35765 27.8 15.8 50.0 329 56.7 339 15.0
SnapKV3a76s 27.6 15.8 423 243 73.3 28.6 21.8
TRIM-KV 32768 48.2 233 68.0 58.6 80.0 85.5 323

~ StreamingLLMg334 190 128 ~ 359 243 267 179 113
SnapKV 384 18.2 9.0 25.6 17.1 70.0 12.5 14.3
TRIM-K V6384 42.6 21.8 62.8 42.9 80.0 69.6 31.6

" StreamingLLM208s 172 13.5 321 200 333 143 83
SnapKV 29088 17.0 9.8 20.5 14.3 73.3 12.5 12.8
TRIM-KV 19288 36.8 19.6 59.0 35.7 66.7 50.0 29.3

~ StreamingLLMg19o 130 9.0 256 157 167 107 ¢ 83
SnapKVgigo 15.8 9.8 19.2 12.9 70.0 7.1 12.8
TRIM-KVgj92 33.2 15.0 55.1 34.3 70.0 46.4 24.1

~ StreamingLLMyp96 102~ 98 141 143 167 71« 60
SnapKV 4096 13.8 11.3 14.1 14.3 56.7 7.1 9.0
TRIM-KV 4996 30.2 12.8 35.9 24.3 80.0 46.4 29.3

Table 7: Results on LongMemEvalg: overall and partial accuracies (%).

Experimental settings. We adopt Qwen3-4B-Instruct (Qwen3|, [2025) as the base model, which
supports a context window of up to 256K tokens. Retention gates are trained on a mixture of
SynthLong-32K (Lazarevich et al.,|2025), BookSum (Kryscinski et al., 2021)), and Buddhi (Singhal)
2024)), covering sequence lengths from 32K to 128K tokens. We shuffle the combined corpus and
train for 10,000 steps (i.e., 10,000 randomly sampled examples), with a maximum training sequence
length of 128K and memory capacity M = 4096. All other settings follow Section[5.1}

Benchmark Dataset. We evaluate chat-assistant capabilities under strict memory budgets using
LongMemEvalg (Wu et al.,[2024a). This subset provides contexts up to 123k tokens (measured with
the Qwen3 tokenizer) and includes six question types that probe long-term memory: single-session-
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user (SS-User) and single-session-assistant (SS-Assist), which test recall of facts stated by the user or
assistant within a session; single-session-preference (SS-Pref), which requires personalized responses
from stored personal information; multi-session (Multi), which aggregates or compares information
across sessions; knowledge-update (Knowledge), which tracks and answers with the most recent,
changed user information; temporal-reasoning (Temporal), which reasons over timestamps and time
references.

To evaluate KV-cache eviction methods on this benchmark, we follow the multi-turn, multi-session
protocol of 2024b). Specifically, before each query, the eviction-based model must
compress the accumulated dialogue into a fixed-size, reusable KV cache—mirroring real-world
assistants that maintain state across turns and sessions under strict memory budgets. We use Qwen3-
4B-Instruct to assess whether model outputs match the ground-truth responses.

Results. The results in Table[7]show that our method outperforms baseline eviction strategies by a
significant margin. Especially, TRIM-KV can match the performance of a full cache while using just
25% of the KV budget.

B.3 CHUNKED-PREFILL EVALUATION

In this section, we evaluate our method in the chunked-prefill setting (Huang et al, [2024), which
enables long-context inference without exceeding memory limits. In this framework, long prompts
are split into multiple chunks; the model computes the KV cache for each chunk sequentially and
compresses the cache whenever it surpasses the memory budget. We compare our method against
LocRet (Huang et al}[2024)), a learnable KV eviction baseline that also assigns token-importance
scores for eviction. Following the experimental setup of LocRet, we evaluate TRIM-KV on the
LongBench and LongBench-V2 benchmarks. For LongBench-V2,
we restrict evaluation to examples with context length below 128K tokens, matching the maximum
context length advertised for Phi3-mini-128K. To train TRIM-KV, we use only LongAlpaca
[2023), as in LocRet, to ensure that improvements are not attributable to differences in training
data. In this setting, we set M = 2048, and keep all other hyperparameters identical to those in
Section

For a fair comparison, we adopt the hyperparameters used by LocRet: the chunk size is set to 3072
and the budget size to 6000. We evaluate performance on Phi-3-mini-128K (Abdin et al., 2024)),
reproducing Table 6 from the LocRet paper. Since the original LongBench experiments have not
been released, we use the default chat template of Phi-3-mini-128K for all runs. Table |§| andEl
report the results for LongBench and LongBench-V2 benchmarks,
respectively. We observe discrepancies in the full-KV performance, likely due to differences in chat
templates.

Overall, TRIM-KYV remains highly effective in the chunked-prefill setting. On LongBench, TRIM-KV
nearly matches full-K'V performance, whereas LocRet exhibits a 4.82% drop relative to full-KV
cache inference. Notably, on a more challenging benchmark, LongBench-V2, we even surpass the
performance of the full KV cache by 6.5%.

Conceptually, LocRet is designed for chunk prefilling in long-context inference, while our method
is general. The training paradigms also differ: LocRet predicts attention logits independently for
each KV head, whereas we train retention gates end-to-end, allowing importance scores across heads
to jointly optimize the eviction strategy. At inference time, LocRet further relies on a hand-crafted
sliding window to preserve the most recent tokens from the latest chunk, and they show that removing
this heuristic substantially degrades performance. In contrast, our method requires no such manually
designed mechanism: sliding-window-like behavior emerges automatically from the learned policy
when beneficial, and some heads (e.g., layer 15, head 2 in FigureE[) do not exhibit sliding-window
patterns at all.
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Method 2wikimga  gov_report hotpotga lcc multinews mfieldga musique narrativeqa pssg_count pssgretrv gasper gmsum repobench-p samsum triviaga A (%)
Full KV* 3337 33.35 43.06 51.86 26.57 49.82 19.82 18.21 2.97 93.50  41.07 19.51 58.02 23.15 86.38 =
LocRet 35.93 33.46 4870 5261 2641 5277 25.12 24.56 3.00 83.00 40.17 2335 57.16 26.37 82.39 -
TRUlKV T T 3701 "7 73335 T 5335 "3335° T 2602 5445 T 2590 T 2 2617 ~ 5000~ 79650~ 40.18 ~ 2408~~~ T 3408 ~ 3877 8550 ~ 0.00
LocRet 37.24 32.80 48.67 28.60 26.77 54.12 26.63 22.96 3.50 87.50  39.39 22.98 37.28 37.99 83.29 4.82
TRIM-KV 36.65 33.37 54.78 33.08 26.02 53125 2539 25.00 5.00 9450 40.17  23.59 37.46 36.82 8338  -0.64

Table 8: Performance on long-context tasks with Phi3-mini-128K on the LongBench benchmark,
including average relative change (Avg. A) compared to Full KV. * indicates that the numbers are
reported from (Huang et al., 2024] Table 6).

Method Acc. Short  Acc. Medium  Acc. Easy Acc. Hard  Avg. Acc A (%)

Full KV 33.71 18.60 34.44 25.86 28.79 0.00
LocRet 32.02 19.78 26.67 28.74 28.03 -2.64
TRIM-KV 35.39 20.93 34.44 28.74 30.68 +6.56

Table 9: Performance on long-context tasks of KV eviction methods with Phi3-mini-128K on the
LongBench-V2 benchmark, including average relative change (Avg. A) compared to Full KV.

B.4 ADDITIONAL ABLATION STUDIES
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Figure 8: Generation Ablation.

Ablation on training datasets. In Section we train the retention gates on a reasoning
dataset—OpenR1-Math (Hugging Face)—and evaluate on AIME24, MATH-500, and GSMS8K.
This follows standard practice and matches the setting of (Gao et al., 2025)), ensuring a fair com-
parison. To assess cross-domain generalization, we instead train the gates on general long-context
datasets (SynthLong, BookSum, Buddhi), similar to Section@], and then evaluate on math reasoning
benchmarks to test whether retention scores learned from general data transfer to long chain-of-
thought tasks. As shown in Figure |8} gates trained on general datasets generalize well and even
surpass math-specific training at a 2048 KV budget. However, their performance degrades more
quickly under tighter KV budgets. Overall, these results are promising and suggest that scaling the
training of the retention gates by combining all datasets could yield further improvements.
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Figure 9: Ablating different objective components.

Ablation for the objective function. We ablate the objective by training the Qwen3-4B retention
gates with different loss combinations and report AIME24 pass@1 at a 4096-token KV budget in
Figure[9] Here, we consider both forward KL divergence and reversed KL divergence for distillation
loss. Generally, all distillation losses perform well on their own. However, reversed KL underperforms
when compared to forward KL. Both show benefits in combination with next token prediction. The
memory capacity loss is essential for compression, and removing it leads to a sharp drop.
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Figure 10: Ablating the retention gate’s architecture.

Ablation for the retention gate’s architecture. We evaluate several retention-gate architectures and
report the performance of Qwen3 1.7B on AIME24 in Figure [I0} Due to computational constraints,
this ablation uses greedy decoding. For the MLP gate, we use a single-hidden-layer MLP with width
512. We find that the MLP gate outperforms a simple linear projection, and that a large positive

initial bias is crucial for stable training by keeping the gate’s output nearly 1 at initialization to ensure
minimal early forgetting.
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Figure 11: Ablating the training memory capacity M.

Ablation on training memory capacity /. We evaluate multiple settings of M in Figure[TT] With
M = oo, there is no capacity penalty, which hurts performance due to the absence of sparsity pressure.
Setting M = 128 outperforms attention-guided heuristics but shows signs of over-optimizing for
sparsity. In practice, we recommend choosing M to match the expected deployment-time memory
budget.

C ADDITIONAL QUALITATIVE RESULTS

In this section, we provide more qualitative results to illustrate the eviction decisions made by TRIM-
KV. All visualizations are from the first example in the AIME24 dataset. Please refer to Section[5.1.2]
for discussions.
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Figure 12: A visualization of token retention matrices of Qwen3-4B when answering a math question
in the AIME24 dataset. Each subplot is a token retention matrix { ﬂf _Z}f in a specific layer and head.
Observations: earlier layers often exhibit sliding-window-like patterns, while later layers develop
clearer functional specializations.
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Figure 13: A visualization of eviction decisions of Qwen3-4B when answering a math question in the
AIME?24 dataset. Each subplot is a matrix of eviction decisions «ay; in a specific layer and head.
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Figure 14: Visualization of token retention scores 3; from the retention gate in layer 15, head 2 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observation: This head consistently assigns a high retention to the problem description and tokens
expressing mathematical operations, suggesting a specialization for task-critical content. In contrast,
filler phrases (e.g., ‘wait’, ‘let me think’) receive very low retention. Moreover, for a multi-digit
number, retaining only the hidden state of the final digit suffices to maintain performance, suggesting
that the last digit’s representation already captures the semantic information of the whole number.

ﬂim,s«anbuser You are given a math problem. Problem: Every morning Aya goes for a $9$-kilometer-long convert (- total time 111> minutes. 2 hours = 180 minutes. plus 24 04 minutes \
walk and stops at a coffee shop afterwards. When she walks at a constant speed of $s$ kilometers per hour, 204 minutes.
the walk takes her 4 hours, including $t$ minutes spent in the coffee shop. When she walks $s+2$ kilometers s 4s2+8s-45-0 discrimin. 784 4.8 8+
per hour, the walk takes her 2 hours and 24 minutes, including $t$ minutes spent in the coffee shop. Suppose | 88 - “0/2 - ° 5 4 speed ©s+12-254+05-3
Aya walks at $s+\frac{1}2}$ kilometers per hour. Find the number of minutes the walk takes her, including the : km/h time © 9/3 hours. +4 80 minutes
$t$ minutes spent in the coffee shop. You need (o solve the by step. First, you provide 80+ 24 - 204 4
chain ought final answer. Provide the format: Final answer: equations 2
boxed{}<lim ¢ <lim_startl>assistant <think> Okay. ya walks 9 5 t-24. /(s +2) + 160 - 9/(2.5 + 2) + 24/60 45+ .4 +04 4 hours
Kilometers every morning, stops ! a coffee shop long her walk takes when 24 minutes 04 minutes
walks at a speed o s + 1/2 km/h, including the time she spends in the coffee shop. 4 minutes
two scenarios first scenario constant speed ' s t minutes shop. walking time plus t
km/h total time ' the walk time in the coffee shop) - 4 hours. | the second scenario 3kmh 9/3 - 3 hours. 80 minutes 4 minul +
s+20/h 2 hours = 24 minutes including t coffee shop 04 hours
total time when </ walks = s + 1/2 km/h. Wait both 04
cases pent coffee shop /- t minutes. difference total time and **Final Answer 204) </think> scenarios ya
walking time - t equations walking time total : walking -/ coffee shop time total time (1 minutes when
time. denote. variables t1 the time spent coffee shop speed s+ frac ({2} © kmh fixed © t © minutes shop. --- ### 1
minutes. convert hours o minutes scenario walk ations s ya speed I km/h -t time
speed - s km/h 4 hours walking - total time minus t minutes. coffee shop ' minutes. scenario s 5 km/h 4 hours
t hours. t $ frac 9s) + frac/t{60) - 4 ation 1
equations time. taken ' walk 9 km at speed s i« 9/s hours. Second +2 4 4 hours
coffee shop ' 9/s + /60 hours. s s+2 4 2 2 inate © t Subtracting
m/h 4 hours. including t coffee shop. 4 ations 2 1 0 . +2 +
walking + time in coffee shop time. 9/s hours coffee shop 4-24 - Mo +2 left( Hs - Hs+2
t minutes, 160 hours 9/s + /60 = 4. Equation 1 second scenario {(s+2) -sHs(s +2 Hs(s +2
+200h walking '~ 9/(s + 2) hours 2 24 8)s(s + s 8Y5. 5-8s(s +
2 24 minutes 4 4/60 - 0.4 hours 4 hours 0=55'2+ 168 -90 $'2+ 85 - 45 3
Ol(s +2 +160 - 2.4 2 equations /1" two variables s and t. atic Equation formula ¢ s = frac(-8 'pm 'sqrt/8/2 - 4(4)(-45))1/2(4
sandt use total time when - walks ' s + 1/2 km/h. pm 57164 + 720))(8 pm \sqrt(784 pm 28 OX
equations 1 9/s +1/60 - 4. 2 9/(s+2)+1°0 - 24. subtract equation 2 5 positive 4 t$ 5
from 1.1 150 terms I cancel - Equation 2: (9/s + 1/50] - [9/(s +2 1 5 0 -4 6+ 0.4
+ 4-24 Is-9s+2 =16 [1/s-1/(s+2)]=16 Is-Ns+2) 4 minutes 5 Total Time at © s + frac ' {2} = 3 § km/h
s+2 -s]/[s(s+2)] - 2/[s(s +2)] 9%[2/(s(s+2 16 8/[s(s+2)=16 hours; 80 minutes’ coffee shop time: 404
8/[s(s+2) - 8/5( 8/5 ultip! 8'5-8"s(s+2) 04
90 = 8s? + 168 terms side 8s?+ 6s-90 =0
2 4s?+8s-45=0 quadratic equation 4s? + 8s - 46 - 0 quadratic equation
formula s = [-8 + sqrt(82 - 4°4*(-45))/(2"4, discriminant D = 64 - 5 +720
784 84 - 28 8+28 /8 solutions s - (-8 + 78)/8 - 20/8 - 5/2 - 2.5
km/h O s -28)/8 - -36/8 - -4.5 speed negative 25km/. 25
/h t substitute s - 2.5 equation 1: 9/s + /60 - 4 125 +160 -4
5 52 52 *2/5 - 18/5 - 3.6 hours. 36+1°0-4 t°0-4-36
0.4 hours 4 minutes 60 - 24 minutes 24 minutes 4 minutes.
Suppose Aya walks 21 s + 1/2 km/h. Find 1 number of minutes - walk takes her
including (- t minutes spent in 11> coffee shop 25kmm +1/21:25+0.5 =3 km/.
new speed - 3 km/h. time takes ' walk 9 km at 3 km/h. 9/3 - 3 hours
t minutes coffee shop 24 minutes 3 hours + 24 minutes.

in ing the t shop. /
Figure 15: Visualization of token retention scores [3; from the retention gate in layer 9, head 7 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observations: This head exhibits a retention pattern similar to layer 15, head 2, but places greater
emphasis on arithmetic operators (e.g., +, —, /).
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im_starti>user You are given a math problem. Problem: Every morning Aya goes for a $9$-kilometer-long
walk and stops at a coffee shop afterwards. When she walks at a constant speed of $s$ kilometers per hour,
the walk takes her 4 hours, including $t$ minutes spent in the coffee shop. When she walks $s+2$ kilometers

Aya walks at $s+\frac(1}2)$ kilometers per hour. Find the number of minutes the walk takes her, including the
$t$ minutes spent in the coffee shop. You need to solve the problem step by step. First, you need to provide
the chain-of " ought, then provide the final answer. Provide the final answer in the format: Final answer:
\boxed{}<lim_endl> <lim_starti>assistant <think> Okay, let's try to solve this problem. So, Aya walks 9
kilometers every morning, stops at a coffee shop, and we need to find out how long her walk takes when she
walks at a speed of s + 1/2 km/h, including the time she spends in the coffee shop. First, let me parse the
problem again. There are two scenarios given. In the first scenario, when she walks at a constant speed of s
km/h, the total time for the walk (including time in the coffee shop) is 4 hours. In the second scenario, when
she walks at s +2
We need to find the total time when she walks at s + 1/2 ki/h. Wait, so the problem mentions that in both
cases, the time spent in the coffee shop is t minutes. So, the difference between the total time and the
walking time is t minutes. Therefore, maybe we can set up equations based on the walking time and the total

minutes. But maybe | need to convert everything to hours or minutes? Let me see. First scenario: walking
speed is s km/h. The total time is 4 hours. So, the time spent walking is total time minus t minutes. Wait, but t
is in minutes. So, maybe | need to convert t minutes to hours. Let me think. Alternatively, maybe | can write
equations for the walking time. Let me think. The time taken to walk 9 km at speed s is 9/s hours. Then, the
total time including the coffee shop is 9/s + /50 hours. Wait, but the problem says that when she walks at s
/h, the walk takes her 4 hours, including t minutes in the coffee <21 So, that total time is 4 hours.

Therefore: Time walking + time in coffee shop = total tire. So, time walking is 9/s hours. Time in coffee shop
is t minutes, which is /60
she walks at s + 2 :7/h, the time walking is 9/(= + 2) hours. Then, the total time is 2 hours and ~4 minutes.
Let me convert 2 hours -4 minutes to hours. 24 minutes is 24/°0 = 0.4 hours, so total time is .4 hours.
Therefore: 9/(- + ) + /50 = ~ 4. Equation 2. So, now we have two equations with two variables: s and t. We
the equations again: Equation 1: 9/s + /-0 = 4. Equation

19 /50 =24 So, if | subtract equation 2

add the t minutes in the coffee shop, is . So total time is * hours + > minutes. But the
Queslicn says "the of minutes the walk takes her, including the t minutes spent in the coffee shop."

: Therefore

per hour, the walk takes her 2 hours and 24 minutes, including $t$ minutes spent in the coffee shop. Suppose

©the t minutes spent in the coffee shop."

/h, the total time is 2 hours and ~4 minutes, again including t minutes in the coffee shop.

© walking and coffee shop time, and we are to determine the total time (in minutes) she spends when walking at
time. Let me think. Let me denote: Let me define variables. Let me let t be the time spent i the coffee shopin

. Therefore: 9/s + /60 = 4. Equation 1. Similarly, in the second scenario, when

need to solve for s and t, then use those to find the total time when she walks at s + 1/2 km/h. So, let me write :

coffee shop in minutes. From 1 problem: - **First scenario**: Walking at $ s $ 11/, total time is 4 hours
(including $ t in the coffee </107). $8 \rac{ K<) + \ra{ \quad \text{(Equation 1)} $$ -
**Second scenario” Walking at$ < + 2 $ /1, total time is 2 hours and ~ minutes (i.e., 4 hours). $
{ \quad \tex{(Equation 2)) §$ - ### : Eliminate $ t $ by Subtracting
Equations Equation 2 from Equation 1: $§ \efi(\rac{o}e) +\rac{ 1 E0)\ e\
} $8 88 \rac{O ) -\ $$ 9 \ef(Vraco{ K. A
$$ 9 Veft( \rcf( X M $5$8 9 \odot \i=c 2K $$
X $$ \rac{19K {97} 5% Cross-multiplying: $$ 18 \ s(s +2)
$$$$ Z $$ 5on Divide by 7: §8 /<A
Solve the atic Equation Use formula: $8 - - \ \om \sqri{8A2 - 4(4)(-45)}{2(4)}
\ {7}8888s -\ \ X $8 5 = \iaf
\quad \text{(since speed must be DEE :Find $ 15 Substitute $ $
from equation 1, the /-0 terms will cancel out. Let me try that. Equation 1 - Equation 2: [/ + /20] - [9/(: : Equation 1: $§ { $5 8% { $8 §8 \frac( = 0.4 \Rightarrow
1= Simplify: 9/s - 9/(= + ) = 1 6 So, 9[1/s - 1/(= + 2)] Let me compute /s - /(= + 2): Thatis \text Find Total at§ Vo 1 Walking time at 88
equalto[ (- < 2) s]/[s(s + 2)]=2/[s(s - 2)] Therefore: 9 * [2/ (s(s - 2)] - & So: 18/ M- 6Let © Vrac{o{) - \text! hours) \text $$ Add the fixed coffee shop time: $$ 20 text,
me write that as: '8 /[s(s - )] = /5 (since " 6 is 8/5) Therefore: Cross-multiplying: 18 * © = & * s(s ) So:
s+ s Bring all terms to one side: s 0 Simplify the equation. Let me divide both sides
by 2: s So, quadratic equation: s 0 Let me solve this quadratic equation. Using
the quadratic formula: s = [-8  sqrt(82 - 4*4*(~*))J{(>" /) Compute discriminant: D = ©4 - 1#4*(-15) = ©4 + 720
= 724 sqri(/24) = 25 Therefore: s = [ 8]/ We have two solutions: s = (-0 + “8)/ = 20/8=52="5
km/h Or's = (-5 28)/8 = -37/8 = /h. Since speed can't be negative, we take s = 2 .S0,5=25
km/h. Now, let's find t. Now, substitute s = 2.5 into equation 1: 9/s + 1/ So, +1 Compute
5.251s 5/2, 50 9 divided by 5/2 is 9 * 2/5 = 16/5 = .6 hours. So, * & + 1/ L 0=4-36=
hours Convert 0 hours to minutes: . Therefore, t = .So,tis .
Now, the problem asks: Suppose Aya walks at s + /2 km/h. Find the number of minutes the walk takes her,
including the t minutes spent in the coffee shop. So, s is /S0 +1/2i825 405 = . S0, her
new speed is 3 /1. Let's compute the time she takes to walk 9 km at 3 k1/h. Thatis 9 /3 = = hours. Then,

So, we need to convert the total time into minutes. 3 hours is 170 minutes, plus is204r .
answer is 04 minutes. Wait, but '+ me check again. Let me verify the steps again to make
sure. First, solving for s: we had 4s Then discriminant was 784, s/i(7 )= =
)& = 2018 = 2.5. Correct. was found as Then, when speed s s + 12225 +0.5 =
Walking time is /' = hours. Then total is © hours + hours is minutes, so total
is 180 So answer . But |- me check if there's another way to approach this, or if |
made any miscalc ations. Alternatively, maybe | can check the equations again. | < me check 2
with s =25 and = Ol - 2) + 150 =9l2 +24160 =9/4.5 +0.4= hours.
is 2 hours 24 minutes. Correct. So So, the answer is final
is 204. But I=' me think again. The says "the number of the walk takes her, including
. the total time is walking time plus t So, she walks
hours, . Then adding t = , total is 180
So yes, that's . Alternatively, maybe the problem expects the answer in hours?
, the question says "number of minutes”, minutes is Therefore. | .
Final Answer** \boxed{" (1} </thin> To solve the problem, we are given two scenarios involving Aya's

at 3 k/h, the walking time is 9/ =

aspeed of $ 5 + \=o{ 117} § knvh, including the fixed $  § spent in the coffee - ### Step 1
Define Variables and Equations Let: - $ s § be Aya's walking speed in km/h. - § t $ be the time spent in the

$$ - Final Answer $$ boxed(

/

Figure 16: Visualization of token retention scores 3; from the retention gate in layer 35, head 2 of
the Qwen3-4B model. Brighter colors denote higher retention; gray indicates near-zero retention.
Observation: Unlike layer 15, head 2 and layer 9, head 7, this head assigns elevated retention
to general-purpose tokens that support coherence and instruction following; for example, XX
commands and the directive boxed{) receive high scores, while tokens associated with mathematical

operations receive low retention.

-

-

ultip
$$ by~ $$ $8 -
the Equation < the quadratic formula: $$ < -\ % \or \sr(9/2 2
\ract5 \om \ Voo \pm $58Ss Vool o \pm 2717 §$ S s
Va2 2.5\quad \text{(- -~ speed )} $$ — ### Step 4: Find St § Substitute $ s

25§ into Equation 1: $$ \frac{9)(2.5, - \frac{t) 60 = 4 $$ $$ 3.6 + \frac{t) 60} = 4 $ $$ \frac{t (60} = 0.4
\Rightarrow t = 24 \text{ minutes} $$ - ### Step 5: Find Total Time at § s +\frac{1}{2} =3 $ kmh
Walking time at 3 km/h: $$ \frac{9}{3} = 3 \text{ hours} = 180 \text{ minutes} $$ Add the fixed coffee
shop time: $$ 180 + 24 = 204 \text{ minutes} $$ — ### Final Answer $ \boxed(204} $$

)

Figure 17: Visualization of tokens retained in the layer 0 head 3 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.
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<im_endl> <lim_startl> <think> H equations equation Equ
: Correct
Therefore
Wait i Alternatively expects
: Therefore
Therefore equations © </think> scenarios
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: Define Variables
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i Solve /"> Quadratic Equation quadratic formula: $$ {-7 pm sqrt N
equations Equ Equ : {2 pm 'sqrt {-° 'pm 'sqrt $$8S {-* pm $$88
subtract equation equation Equ : quad = {(since speed positive)} $§ - /' Step - Find § | § Substitute §
Equation implify i 258100 Equation |- $$ +\ $$$8 00 +\ $$ 88 0 -04
compute Therefore : \Rightarrow | - 24 text' minutes, $$ -— ### Step 5 Find Total Time -/ § s +\frac{1/2, - 3$ km/h
Therefore : Walking time = 3 km/h: $S \frac{9}{3' = 3 \text{ hours} = 180 \text{ minutes} $$ Add the fixed coffee
ultip Bring i shop time: $S 180 + 24 = 204 \tex{ minutes} $ - ### Final Answer $$ \boxed{204} $$
implify - equation quadratic equation :
quadratic equation quadratic formula
Compute discrimin Therefore
substitute
equation Compute
Therefore
Therefore Suppose
compute :

Figure 18: Visualization of tokens retained in the layer 0 head 6 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.
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Figure 19: Visualization of tokens retained in the layer 9 head 7 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.
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Figure 20: Visualization of tokens retained in the layer 15 head 2 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.
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Figure 21: Visualization of tokens retained in the

layer 16 head 6 of the KV cache after generati

on,

where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.
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Figure 22: Visualization of tokens retained in the layer 30 head 4 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the
KV cache, where gray indicates evicted tokens. Observations: This head mostly keeps period
tokens. This suggests that this head may implicitly perform gist tokens that summarize information
from the previous sentence. This contrasts with recent trends that advocate for saving a chunk of
tokens (Yuan et al.,[2025}; [Gao et al.l [2025). Our results suggest that it can be more budget-efficient to
save individual tokens because they already capture contextual information.
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Figure 23: Visualization of tokens retained in the layer 34 head 1 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.
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Figure 24: Visualization of tokens retained in the layer 35 head 3 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.
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Figure 25: Visualization of tokens retained in the layer 35 head 5 of the KV cache after generation,
where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV

cache, where gray indicates evicted tokens.
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Figure 26: Visualization of tokens retained in the layer 35 head 7 of the KV cache after generation,

where the KV budget is 256. The model is Qwen3-4B. Bold blue indicates tokens retained in the KV
cache, where gray indicates evicted tokens.
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