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Abstract

Large Language Models (LLMs) have achieved
substantial advances in code generation, but
they still struggle in specific code generation
scenarios. These scenarios often require LLMs
to be adapted to meet specific needs, but the lim-
ited training data available in practice leads to
poor code generation performance. Therefore,
how to effectively adapt LLMs to new scenarios
with less training data is a major challenge for
current code generation. In this paper, we pro-
pose a novel and effective adaptation method
called DEED, which stands for Data-Efficient
adaptation based on Error-Driven learning for
code generation. DEED leverages the errors
made by LLM as learning opportunities and
overcomes its own shortcomings through er-
ror revision, thereby achieving efficient learn-
ing. Specifically, DEED includes identifying
the erroneous code generated by LLM, using
SELF-REVISE for code revision, optimizing
the model with the revised code, and iteratively
adapting the process for continuous improve-
ment. Experimental results show that DEED
achieves superior performance compared with
mainstream fine-tuning and prompting meth-
ods using only a small amount of training
data, with an average relative improvement of
54.7% on Pass@1 on multiple code generation
datasets. We also verify the effectiveness of
SELF-REVISE, which generates revised code
that optimizes the model more efficiently com-
pared to the code samples from datasets. More-
over, DEED consistently shows strong perfor-
mance across various LLMs, highlighting its
generalizability.

1 Introduction

Code generation is an important technology that
can improve the efficiency and quality of software
development. Given the human requirement ex-
pressed in natural language, code generation allows
machines to generate executable programs that sat-
isfy this requirement. Code generation has been a
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Figure 1: The performance of direct generation, fine-
tuning, and our proposed DEED on MBPP dataset with
few training data. The numbers on the bars indicate the
training data used by different methods.

research hot topic in the fields of artificial intelli-
gence, software engineering, and natural language
processing. Recently, code generation technolo-
gies have made significant advancements in both
academia and industry (Chen et al., 2021; Shen
et al., 2022; Roziere et al., 2023). In particular,
large language models (LLMs) demonstrate great
potential in code generation tasks (Zheng et al.,
2023; Nijkamp et al., 2023; Fried et al., 2022; Chen
etal.,2023b; Zhang et al., 2023b; Jiang et al., 2023).
However, LLMs still face significant challenges in
code generation for some specific scenarios or do-
mains (Ahmed et al., 2024; Chen et al., 2023d).

For specific code generation scenarios, fine-
tuning is an essential adaptation method to ensure
LLMs fulfill particular needs (Shi et al., 2023; Liu
et al., 2024; Chakraborty et al., 2022; Ciniselli
et al., 2022). However, in these specific scenar-
ios, it is difficult to obtain sufficient training data
for fine-tuning LLMs, due to common reasons such
as industry secrecy and scarcity of resources. For
example, in safety-critical scenarios like aerospace,
medical devices, and transportation industries, the
generated code must adhere to specific security



specifications, and accessing relevant data is of-
ten extremely difficult due to high confidentiality
and strict access control. Under the circumstance
of limited data, mainstream fine-tuning methods
might not enable LLMs to achieve the desired code
generation performance and may even lead to a
degradation in model performance (Aghajanyan
et al., 2021; Xu et al., 2021b; Zhang et al., 2022),
as shown in Figure 1. Consequently, how to ef-
fectively adapt LLMs to specific scenarios with
limited data available is a major challenge for code
generation in practice.

The mainstream fine-tuning methods use a large
number of data gathered under specific scenarios
for training (Xu et al., 2021a). They enable the
model to exhaustively learn the features present
in these data and thus adapt to the specific scenar-
i0s. However, they have two disadvantages. First,
compelling LLMs to relearn the entire code data
of new scenarios is inefficient. Considering that
LLMs are pre-trained on large-scale and diverse
data, it’s reasonably assumed that they possess a
certain level of general knowledge, lacking only
particular information for application in specific
scenarios. Second, when faced with insufficient
data volume or data drift, the model may learn
certain undesirable features (such as inaccurate or
irrelevant programming knowledge and patterns),
thereby affecting its learning efficiency and nega-
tively impacting its final performance.

To overcome the disadvantages of mainstream
fine-tuning methods, we take inspiration from the
error-driven learning observed in humans. 1) Error-
driven learning requires learners to identify their
errors through testing. It helps learners to iden-
tify what they have mastered and what they still
need to learn, allowing them to narrow the scope of
learning and avoid wasting efforts on irrelevancies.
2) Through error revision, learners can understand
their deficiencies and make targeted improvements,
thus enhancing learning efficiency and effective-
ness. This motivates us to explore methods to
achieve data-efficient adaptation of LLMs for code
generation guided by error-driven learning.

In this paper, we propose DEED, a Data-
Efficient adaptation based on Error-Driven learn-
ing for code generation. DEED aims to alleviate
the problem of poor code generation performance
of fine-tuning LLMs in scenarios with few train-
ing data. Following the error-driven learning, our
method proceeds in four steps: @ Error Code Col-
lection. We identify and collect error codes gener-

ated by LLMs, aiming to mine the weaknesses of
LLMs. ® Automatic Code Revision. To obtain re-
visions of error codes in a low-cost way, we design
SELF-REVISE to realize automatic revision lever-
aging information in the original dataset and code
execution feedback. ® Model Optimization. We
optimize the LLMs using the revised code, mak-
ing them focus on learning the revision of these
critical errors, thereby improving the learning ef-
ficiency of LLMs. @ Iterative Adaptation. We
adopt an iterative strategy, which involves repeating
the preceding three steps, to continuously optimize
and improve the performance of LLMs. Extensive
experimental results demonstrate the superiority
and generalizability of DEED in the data-efficient
adaptation of LLMs for specific code generation
scenarios. To summarize, the main contributions
of this paper are:

* We propose error-driven learning for LLMs
adaptation is better, i.e., utilizing revisions
of LLMs’ erroneous outputs for training has
higher learning efficiency than original data.

* Based on the principle of error-driven learn-
ing, we propose a data-efficient adaptation
method of LLMs for code generation, named
DEED, which can effectively adapt model to
specific scenarios with limited data.

* DEED outperforms the mainstream fine-
tuning and prompting methods on three code
generation datasets across various LLMs.

2 Methodology

In this section, we describe our proposed DEED
in detail. Specifically, given a code generation sce-
nario/domain with a limited-sample training dataset
Dirain = {(r,¢)}, where each data pair (r, ¢) con-
sists of an input requirement r and an associated
example of desired output code c. For a pre-trained
LLM My with parameter 6, we aim to adapt My
to the specific scenario of Dy,qi,. DEED achieves
data-efficient adaptation of LLMs through four
steps: Error Code Collection (§2.1), Automatic
Code Revision (§2.2), Model Optimization (§2.3),
and Iterative Adaptation (§2.4). The overview of
DEED and its differences from traditional fine-
tuning are shown in Figure 2.

2.1 Error Code Collection

In this step, we systematically identify and collect
erroneous output of LLMs using testing as criteria.
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Figure 2: An overview of the proposed DEED and its differences from traditional fine-tuning methods.

We employ rejection sampling (Casella et al.,
2004) to draw error code samples from the distri-
bution produced by My. For each requirement
7 € Dyirain, We sample

!~ Mo(r) | —f, (D
where we sample multiple times and employ the cri-
terion function f to determine the retention of the
code sample. Specifically, the error code sample ¢/
is retained when f(r,¢’) = 0, where f(r,c) =0
if the rejection condition is satisfied, otherwise 1.

We define f as a test evaluation function since
testing is the criterion for judging the correctness
of code in practice:

0,
L,

if ¢ fails S,
otherwise,

TESTEVAL(r, ) == { (2)

where S, is a suit of test cases under the require-
ment r and is equipped by code generation datasets.
When collecting error codes for test failures, we
can keep the failed test cases and error messages
simultaneously for further error diagnosis.

To gain insights into the propensity of My to
make certain errors, it is advisable to select error
code sample ¢ for which the model demonstrates
relatively high confidence. Therefore, among mul-
tiple error codes collected for the same r, we select
the one with the highest generation probability '.

2.2 Automatic Code Revision

In this step, we perform automatic revision for er-
ror codes using our SELF-REVISE method. Based
on the LLM My itself, SELF-REVISE revises the

'We determine the probability of the generated code by
averaging the probabilities of each generated token.

error code by providing the information in the orig-
inal dataset and pointing out the error with code
execution feedback. Our objective is to derive a
revised code that fixes the critical bug of the error
code. As illustrated by examples (a), (b), and (c) in
Figure 2, although there is already a correct code ¢
in the dataset, it may differ significantly from the
error code, leading to the critical bug being unclear.
The pipeline of automatic code revision is shown
in Figure 3.

Specifically, we leverage the following parts as
the input of SELF-REVISE: 1) Requirement (r):
Clarify the requirement that needs to be addressed;
2) Correct Solution (g): Provide a type of correct
solution as a reference to reduce the difficulty of
revision. The correct solution used here is the code
sample c in the training dataset; 3) Error Code (c’):
Give the error code that needs to be revised. The
error code is generated by My under r; 4)Error
Messages (m) and Failed Test Cases (t): Point
out the error messages received during execution
and the specific test cases where the error code
fails, allowing for more focused troubleshooting
and revision. These parts are combined as the input
of SELF-REVISE according to the template:

T = Template(r, g, ', m,t) 3)

where Template is shown in Figure 3.

Following previous work (Zhang et al., 2023a;
Dong et al., 2023b), we use two settings for SELF-
REVISE, i.e., fine-tuning (FT) and few-shot prompt-
ing (FSP), to get MRevise for revising error codes.

SELF-REVISE (FT) entails the process of fine-
tuning My with a small number of data for the
purpose of automatic code revision. The training
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Figure 3: Illustration of automatic code revision

objective is to minimize L(0):

L(0) = che(MemLc;‘) 4)

where [, represents the standard cross-entropy loss,
and we update the parameters initialized with M
to obtain MRevise in SELE-REVISE (FT).

SELF-REVISE (FSP) adopts the few-shot
prompting technique and leverages k examples of
T; and c; to construct the prompt P for aligning
My to automatic code revision. In SELF-REVISE
(FSP), MRevise(-) is defined as My(P || - ), where
|| denotes the concatenation operation.

In contrast to the previous error code collection
step, for each error code ¢/, we construct 7" and use
acceptance sampling to obtain the revised code c*:

c* o~ MRevise(T) ’ f (5)

where ¢* is retained if TESTEVAL(r, ¢*) = 1in Eq.

(2), i.e., the revised code c* passes its test cases.
We sample multiple times and it is sufficient if

MRevise could correctly revise the error code once.

To prevent MRevise from simply replicating the
provided correct solution g, we exclude the output
identical to g. Subsequently, for each requirement
r, and select the version that is most similar to the
error code among the remaining code revisions.

2.3 Model Optimization

In this step, we employ pairs of the requirement
r and its revised code c* to further fine-tune the
model My. This process leads to the enhanced
version of My, referred to as My, in the specific
scenario of dataset Dy,qin.

For fine-tuning (Devlin et al., 2019), we update
all parameter 6 of LLMs as

0" = argmin Y lee(My(r), "), (6)

(r,c*)

When the computational resources are insuffi-
cient, we employ Low-Rank Adaptation (LoRA)
(Hu et al., 2022) to fine-tune LLMs. For a weight
matrix W € R%* LoRA represents its update
with a low-rank decomposition:

W+ AW =W + AaWaounWap, (1)

where « is a tunable scalar hyperparameter,
Waown € RI*T, Wup € R™F and r <<
min(r, k). In LORA, we update parameter 6* as

0" =0+ A9, (8)

AQ = argmin | Lee(Mosao(r).c").  (9)

(7‘70* )
2.4 [Iterative Adaptation

The preceding three steps can go through multi-
ple iterations until a certain number of rounds is
reached or the revised code no longer increases.
For [-th iteration that [ > 1, we initialize its ini-
tial model My, as the enhanced model of the previ-
ous iteration My~ . Based on My,, we repeat the
process in steps of error code collection and auto-
matic code revision to sample error codes {¢'}; and
revised codes {c*};, respectively. Inspired by expe-
rience replay (Mnih et al., 2015) in reinforcement
learning, we use the union of collected data in each
iteration {(r, ¢*)}1, to stabilize learning process
and improve data utilization efficiency, that is,

{<T7 C*)}l U---u {(7’, C*)}l U {(7’, C*)}h (10)

to update parameters in the model optimization
step, thereby yielding the enhanced model of the
[-th iteration Mgl*. At each iteration, the model is
trained to convergence.

This iteration is a step-by-step optimization de-
signed to continuously improve the adaptability
of models to the specific scenario. The complete
process of DEED is summarized in Appendix, Al-
gorithm 1.



3 Evaluation

We present extensive experiments that span three
representative code generation datasets, two fine-
tuning settings, and five different LLMs of varying
sizes or series. We aim to investigate six research
questions: 1) How does DEED perform compared
to the mainstream baselines? 2) How does DEED
perform when applied to various LLMs? 3) What
kind of training data has the better training effect?
4) How does the number of iterations affect the ef-
fectiveness of DEED? 5) What is the impact of im-
plementing the automatic code revision component
of DEED in conjunction with alternative LLMs? 6)
How does each input component of SELF-REVISE
contribute to the effectiveness?

Datasets We use three public code generation
datasets, i.e., MBPP (Austin et al., 2021), Hu-
manEval (Chen et al., 2021), and DS-pandas (Lai
et al., 2023), to simulate the specific scenario with
limited data. We sample min(200,40% * D) prob-
lems from all datasets as Dy;q4in, While the remain-
ing problems serve as Dyest.

Implementation Details We use a single A6000
GPU to conduct all experiments. Our base model is
selected as CodeGen-2B (Nijkamp et al., 2023) by
default, which is a well-known open-source LLM
for code and is suitable for full fine-tuning within
our computational resource constraints. My is ini-
tialized to our base model, and MReyige is derived
from My though SELF-REVISE (§2.2).

Metrics In final evaluations, we set temperature
to 0.8 and generate n = 50 samples, which are then
used to calculate unbiased Pass@k (Chen et al.,
2021) in all experiments. All evaluation results are
averaged over five test runs.

Detailed descriptions of datasets, implementa-
tion details, and metrics can be found in Appendix
C, D, and E, respectively.

3.1 Effectiveness of DEED

Baselines. In this section, we evaluate the effec-
tiveness of DEED by comparing it against other
six methods, including Direct Generation, Fine-
tuning (Full), Fine-tuning (LoRA), Few-shot
Prompting, Self-refine (Madaan et al., 2023) and
Self-debug (Chen et al., 2023e). Among them,
Self-refine and Self-debug iteratively refine the gen-
erated code through prompting techniques. Consid-
ering some baselines involve full-parameter fine-
tuning, CodeGen-2B is uniformly selected as the

base model in this experiment. For DEED, we use
30%*Dyyqin for SELF-REVISE (FT)2, while the
remaining 70%*D;y;q4rn 1s employed for model opti-
mization, where we use full-parameter fine-tuning.

Table 1: Pass@k (%) of DEED and baselines on MBPP,
HumanEval, and DS-pandas datasets, and the teal num-
ber after 1 denotes the relative improvement of DEED
over the second-highest score.

Datasets Method Pass@1 Pass@5 Pass@10
Direct Generation 15.6% 314%  40.2%
Fine-tuning (Full) 25.8% 46.2% 57.6%
MBPP Fine-tuning (LoRA)  19.8% 39.8% 55.2%
Few-shot Prompting  24.4% 38.0%  49.4%
Self-Refine 25.6% 388%  50.2%
Self-Debug 20.2% 345%  40.6%
"DEED 32.8% (127.2%) 468% 64.0%
Direct Generation 24.8% 44.7% 51.8%
Fine-tuning (Full) 29.8% 479%  56.4%
HumanEval Fine-tuning (LoRA)  27.4% 46.9%  53.9%
Few-shot Prompting  25.2% 458%  53.1%
Self-Refine 25.3% 452%  51.9%
Self-Debug 26.4% 46.4%  54.2%
"DEED 38.6% (132.9%) 547% 622%
Direct Generation 0.8% 3.1% 5.6%
Fine-tuning (Full) 2.6% 6.5% 9.6%
Fine-tuning (LoRA) 2.2% 6.0% 8.9%
DS-pandas Few-shot Prompting  1.9% 4.5% 5.7%
Self-Refine 2.1% 4.7% 5.8%
Self-Debug 1.2% 2.8% 4.1%
"DEED 53% (1103.9%) 95%  123%

Results. We conducted experiments on three public
datasets, i.e., MBPP, HumanEval, and DS-pandas.
The experimental results are summarized in Ta-
ble 1. This comparison yielded four insightful ob-
servations: 1) Significant superiority of DEED:
Our proposed DEED performs significantly better
than the other six baselines on the three datasets.
Notably, DEED exhibits significant relative im-
provements of 27.2%, 32.9%, and 103.9%, respec-
tively, when compared to the best-performing base-
line Fine-tuning (Full). Self-refine and Self-debug
underperform on small LLMs like codegen-2B.
Self-debug excels over Self-refine only on the Hu-
manEval dataset, where public test cases and re-
sults are available. On other datasets, Self-debug
relies on the LLM’s generated code explanations
and feedback. Moreover, we find that DEED not
only surpasses Self-refine and Self-debug in terms
of performance but also in speed. These meth-
ods have a significant disadvantage in speed as
they require iterative refinements for each sample.
Their time cost is directly proportional to the num-
ber of samples and the number of iterations, while

%In addition to MBPP dataset, for other two datasets (i.e.,
HumanEval and DS-pandas), we generate one error code per
sample in a subset comprising 30% of the training set, using

CodeGen-2B. Subsequently, authors collaboratively apply the
minimal necessary revisions to correct these error codes.



DEED is free of these two factors. 2) Worst per-
formance of Direct Generation: The performance
of Direct Generation is significantly lower than
the Fine-tuning (Full), Fine-tuning (LoRA), and
Prompt baselines. This result suggests that directly
applying LLMs for evaluation may be less suitable
for specific scenarios, resulting in performance dif-
ferences. 3) Fine-tuning (LoRA) is less effective
than Fine-tuning (Full): Although Fine-tuning
(LoRA) offers the advantage of reduced computa-
tional resource requirements for fine-tuning LLMs,
it trades off the performance. 4) Less improve-
ment of Few-shot Prompting: Few-shot prompt-
ing is the most commonly used prompting tech-
nique, but its main limitation lies in its difficulty in
imparting new knowledge or developing new capa-
bilities in the model. It primarily assists the model
in adjusting its outputs to better align with expected
results, therefore its adaptability is limited.

3.2 The Effect of Different LLMs

Baselines. We employ several different series and
sizes of representative LLMs to perform DEED,
including CodeGen-2B and CodeGen-6B (Ni-
jkamp et al., 2023), Llama-7B (Touvron et al.,
2023), and CodeLlama-7B (Roziére et al., 2023).
Among them, CodeGen-2B uses full fine-tuning,
and the remaining LLMs with larger parameters use
parameter-efficient fine-tuning with LoRA. Each
LLM has four baselines, i.e., Direct Generation,
Fine-tuning, and Few-shot Prompting.

Table 2: Pass@k (%) of DEED and baselines with
different LLMs, and the teal number after 1T denotes the
relative improvement of DEED over Fine-tuning.

Pass@5
31.4%
46.2%

Pass@10

40.2%
57.6%

Models Method Pass@1
15.6%

25.8%

Direct Generation
Fine-tuning (Full)
Few-shot Prompting

DEED (Full) 32.8% 1 27.2%

19.6%
26.6%

CodeGen-2B

Direct Generation
Fine-tuning (LoRA)
Few-shot Prompting

DEED (LoRA) 334% 1 25.6%

13.4%
15.2%

CodeGen-6B

Direct Generation
Fine-tuning (LoRA)
Few-shot Prompting

DEED (LoRA) 22.0% 1 44.7%

20.4%
19.9%

Llama-7B

43.8%
42.4%

Direct Generation
Fine-tuning (LoRA)
Few-shot Prompting

DEED (LoRA) 34.8% 1 74.9%

CodeLlama-7B

Results. The results of applying DEED to differ-
ent LLMs are shown in Table 2. From the results,
we observed that DEED consistently achieves
improvements across different series (CodeGen,

Llama, and Codel.lama) and various sizes (2B,
6B, and 7B), outperforming the Direct Generation,
Fine-tuning, and Few-shot Prompting baselines.
This indicates that DEED generalizes well to dif-
ferent LLMs.

3.3 The Effect of Training Data Variants

Baselines. We investigate the influence of different
training data on the final adapted model M-+ to val-
idate the effectiveness of using revisions of model’s
erroneous output for training. The different vari-
ants of training data include: W/o Training (Direct
generation without any training data), Raw Dyy.gin
(All raw samples in Dyygin), Dirain N DEED
(The samples of the same problem as DEED in
Dirain)s Dirain U DEED (Include not only sam-
ples of problems obtained through SELF-REVISE,
but also samples of other problems in Dyygin),
Human-revised D;,q ., (Samples obtained human
revision), and DEED (Samples obtained through
SELF-REVISE).

Table 3: Comparison of the effect of different training
data variants.

Variants Pass@1 Pass@5 Pass@10
W/o Training 15.6% 31.4% 40.2%
Raw Dirain 25.8% 46.2% 57.6%
Dirain N DEED 22.4% 33.8% 42.8%
DEED U Dyygin 29.2% 44.2% 58.0%
Human-revised Dirqin 28.0% 46.2% 59.8%
"DEED 32.8%  46.8%  64.0%

Results. As shown in Table 3, we discover that:
1) DEED exceeds Raw Dy, despite Raw
Dtrain having more training data. This proves
that training using revisions produced by SELF-
REVISE is more efficient compared to using sam-
ples in the dataset. 2) The effect of Dy,.qin, N
DEED is comparatively weaker, which reveals
that DEED is not simply improved by selecting
better problems. 3) DEED U Dy,.4;y is not as
effective as DEED, which shows that some data
in Dyrqin have negative effects with limited data.
4) The performance of DEED surpasses that
of the Human-revised D;,.q ;.. This finding may
be attributed to a disconnect between the revision
made by humans and the model’s learning expec-
tations. While human revisions are applied to all
code data in Dy,q;,,, Some data may inherently be
challenging for the current model. As such, forced
learning from these data may have counterproduc-
tive effects, highlighting a potential limitation in
human-revised Diygin, -



3.4 The Effect of Iterations

Baselines. We study the effect of iterations on
DEED. We analyze the progression of DEED’s ef-
fectiveness across different iterations, starting from
0 iterations (i.e., generated directly with LLMs)
and extending to one, and up to four iterations.

Table 4: Performance of DEED with the different num-
ber of iterations.

Iterations Pass@1 Pass@5 Pass@10 Num. of Revised Code
0 15.6% 31.4% 40.2% -
1 31.6%  46.3% 60.6% 31 (+31)
2 32.8%  46.8% 64.0% 41 (+10)
3 33.0%  46.7% 62.6% 43 (+2)
4 332%  47.1% 64.0% 44 (+1)

Results. We conduct this experiment on MBPP
dataset and its results are displayed in Table 4.
From the results we can observe a trend: as the
number of iteration rounds increases, the perfor-
mance of DEED in Pass@1 shows an increasing
trend, and the improvement is significant in the
first two iterations, achieving over 98% Pass@1
performance within this period. At the same time,
the amount of revised code in each iteration is also
increasing, indicating that errors are continuously
discovered, corrected, and learned. Considering
that Pass@10 has oscillations from the 2nd itera-
tion to the 4th iteration, we choose to end after the
second iteration as the final performance of DEED.

3.5 The Effect of Revision with Other LLMs

Baselines. We evaluate the performance of auto-
matic code revision and the impact on the final
model My~ obtained through DEED when us-
ing alternative LLMs to substitute the base model
as MRevise- The base model is set to CodeGen-
2B and alternative LLMs containing CodeGen-6B,
Llama-7B, CodeLlama-7B, and ChatGPT. In this
experiment, we obtain MReyise in both fine-tuning
and few-shot prompting settings for comparison,
and M- is consistently fixed as the base model.

Results. Table 5 illustrates the experimental re-
sults of automatic code revision based on differ-
ent models, and we can observe that: 1) SELF-
REVISE (FT) employing the same model as the
base model yields the best performance of M-.
For baselines using other LLMs in fine-tuning,
CodeLlama exhibits superior performance in terms
of Pass@k in MRevise, Dut its final effectiveness
is somewhat compromised. This limitation is at-
tributed to the divergence in training data and ar-
chitectural frameworks between CodeLlama and

Table 5: Comparison of automatic code revision based
on different LLMs in both fine-tuning and few-shot
prompting settings, where Mpevise is reported the raw
results on the 70% * Dyyqin part and Mg~ is fine-tuned
with filtered results as described in §2.2.

MRevise M-
Pass@10 Pass@any Pass@] Pass@10

Method

Pass@1

Few-shot Prompting
CodeGen-6B
Llama-7B
CodeLlama-7B
ChatGPT
“BaseModel o o
(SELF-REVISE (FSP))

59.0%
54.2%
59.6%

60.1%
67.7%
64.9%

70.8%
81.9%
75.0%

26.8%
20.8%
25.2%

19.4%
23.5%
20.2%

Fine-tuning

CodeGen-6B 5.0%
Llama-7B 2.7% 8.5%
CodeLlama-7B 5.1%

Base Model
(SELF-REVISE (FT))

29.4%
23.2%

the base model, leading to inconsistencies in the
revised code with the base model’s expectations.
In contrast, CodeGen-6B, which is the same se-
ries of the base model with a large parameter,
demonstrates slightly lower Pass@k in MRevise
than CodeLlama but still achieves commendable re-
sults for My-. 2) Although the Pass@k of SELF-
REVISE (FSP) is higher than SELF-REVISE (FT)
in MRevise, it does not perform as well on the ul-
timate My-. We find this discrepancy may be due
to the SELF-REVISE (FSP)’s tendency to learn su-
perficial forms, i.e., it often resorts to copying code
from the correct solution provided in the prompt,
even when explicitly instructed not to in the prompt,
as shown in Figure 5. Using ChatGPT as MRevise
results in substantially higher Pass@k compared
to using the base model, does not significantly en-
hance the final model M.

3.6 Ablation Study on SELF-REVISE

Baselines. We further perform the ablation study
to investigate the effectiveness of each input com-
ponent in SELF-REVISE. Requirements and er-
ror codes are the indispensable basic inputs for
performing automatic code revision. Therefore,
we perform ablation experiments on the remain-
ing three components, i.e., correct solution, failed
test cases, and error messages. By removing these
components individually, we observe their specific
impact on the performance of automatic code re-
vision and the final model, and thus evaluate the
effectiveness of these components.

Results. We conduct the ablation study on MBPP
dataset as shown in Table 6. First, we find that
removing the failed test cases resulted in the largest



Table 6: Results of ablation study on SELF-REVISE.

Method Meevise M-
Pass@]1 Pass@10 Pass@any Pass@] Pass@10
DEED 3.9% 18.9% 24.6% 32.8%  64.0%
- Correct Solution 3.4% 15.4% 19.8% 30.1% 61.9%
- Error Messages 3.1% 14.2% 17.3% 28.6% 58.7%
- Failed Test Cases  2.3% 5.1% 6.3% 26.1% 47.6%

drop in performance of all metrics. Failed test
cases can demonstrate the inconsistency between
the model-generated code output and the desired
output, allowing LL.Ms to reason about and correct
erroneous operations. Experimental results show
that this point is most helpful for automatic code
revision. Second, removing error messages or the
correct code solution also results in a loss of per-
formance. Error messages directly indicate surface
errors in the generated code (such as syntax errors
and runtime errors) and the location of the errors,
which is also helpful for LLMs to revise the code.
The correct code samples in the dataset can provide
some reference for revising errors of LLMs, thus
further reducing the difficulty of correction.

4 Related Work

Adaptation of LLMs. Numerous tasks rely on
adapting LLMs to multiple downstream applica-
tions. Such adaptation is usually done via fine-
tuning, which updates all the parameters of LLMs.
Considering LLMs contain a large number of
model parameters, performing full parameter tun-
ing would be extremely expensive (Ding et al.,
2023). Therefore, some parameter-efficient fine-
tuning methods have been developed, including
Adapter Tuning (Houlsby et al., 2019; Hu et al.,
2023), Prompt Tuning (Lester et al., 2021; Liu
et al., 2021b), Prefix Tuning (Li and Liang, 2021;
Liu et al., 2021a), and Low-rank adaptation (Hu
etal., 2022). They primarily optimize the efficiency
of training model parameters but are not directly
targeted at improving the efficiency of data usage.
Another type of adaptation that does not require
training is prompting (Liu et al., 2023), which de-
pends on in-context learning (Dong et al., 2023a;
Brown et al., 2020a). However, a limitation of them
is that models often merely mimic the surface form
of prompt, struggling to deeply understand or adapt
to complex and abstract task requirements.

Our method is orthogonal to the aforementioned
adaptation techniques, allowing for its concurrent
application with these methods to enhance overall
effectiveness.

Code Generation with LLM. The rise of pre-
training techniques has brought new momentum to
the field of code generation. Against this backdrop,
LLMs such as Codex (Chen et al., 2021), Code-
Gen (Nijkamp et al., 2022), AlphaCode (Li et al.,
2022), CodeGeeX (Zheng et al., 2023) and CodeL-
lama (Roziere et al., 2023) have emerged, greatly
enhancing the performance of code generation.
For LLMs-based code generation, there are some
methods to refine the outputs produced by LLMs.
Self-refine (Madaan et al., 2023) enables LLMs
to provide feedback on and correct their own gen-
erated content. Self-debug (Chen et al., 2023e)
allows the LLMs to explain and refine their gener-
ated code based on execution results. They belong
to prompting methods that are constrained by input
length and highly sensitive to prompts (Zhao et al.,
2021). Moreover, Self-edit (Zhang et al., 2023a)
involves training an additional editor. This category
of methods treats refinement as a post-processing
step after code generation, whereas we utilize a
self-revise to assist model in efficient training and
thereby enhance the model itself. Compared to
these post-processing methods, DEED only re-
quires test cases during training. When training
is complete, DEED can be directly used without
incurring any additional resource or time costs.
Recently, Chen et al. (Chen et al., 2023a) pro-
pose an ILF method focused on using human feed-
back to refine model results. However, it necessi-
tates continuous human involvement and the provi-
sion of feedback throughout the model’s training
phase, which incurs significant costs in practical ap-
plications. Further, Chen et al. (Chen et al., 2023c)
propose a distillation method that employs Chat-
GPT (OpenAl, 2022) to generate a large amount
of refinement to train small models. However, this
method presents two primary limitations. Firstly, it
necessitates a highly performant “teacher” model,
significantly surpassing the capabilities of the “stu-
dent” model. Secondly, commercial constraints and
other factors likely prohibit its implementation.

5 Conclusion

In this work, we have proposed DEED, a Data-
Efficient adaptation with Error-Driven learning for
code generation, substantially improving the code
generation performance of LLMs in specific sce-
narios with limited data. We reveal that LLMs are
more efficient in learning from the revisions of their
errors than the original code samples in datasets.



6 Limitations

Our work has several limitations, which we aim to
address in our future work:

First, Due to the constraints in computational
resources, our experiments were merely conducted
on LLMs with parameters less than 7B. In the fu-
ture, we plan to extend our research to larger LLMs
as more resources become available.

Second, considering that no public dataset is
entirely unfamiliar to LLMs and sourcing high-
quality data for such a scenario is challenging,
we employ public benchmarks to simulate specific
code generation scenarios. However, the adapta-
tions of LLMs to these scenarios still achieve sig-
nificant improvement.

Third, our method introduces additional over-
head by collecting erroneous outputs and their re-
visions compared to using original training data,
but it does not impact the efficiency of the actual
inference process. Moreover, compared to the huge
overhead of training LLLM, this additional overhead
is acceptable.
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A Algorithm of DEED

The complete process of DEED is listed in Algo-
rithm 1.

Algorithm 1 Pseudocode of DEED.

Require: Dataset Dirqin = {(7, )}, initial LLM M.
Ensure: LLM M.

1: Initial iteration index [ = 0 and My, , = M.

2: # Iterative Adaptation

3: repeat

4:  Updatel =1+ 1.
5: # Error Code Collection
6:  Perform rejection sampling to collect error codes {c'};
based on My, via Eq. (1) and (2).
7: # Automatic Code Revision
8:  Perform acceptance sampling to collect revised codes
{c"}: based on My, and SELF-REVISE via Eq. (2),
(3), and (5).
9:  Calculate the union of {(r, c*)}1. via Eq. (10).
10: # Model Optimization
11:  Fine-tune My, to yield Mg, via Eq. (6) if the compu-
tational resources are sufficient, otherwise via Eq. (7),
(8), and (9).
12: Update M91+1 = Mgf.
13: until End condition is satisfied
14: return MG?
B Motivation Example

Aligning LL.Ms with specific scenarios and address-
ing their unique challenges by learning samples in
the dataset is difficult, especially when training
data are limited. We present a motivation example
in Figure 4 to clarify the advantages of using error-
driven learning in the LL.Ms adaptation process of
code generation.

By observing the output (a) generated by LLMs,
we can find that LLMs generate a basically cor-
rect code that adopts a commonly-used function
‘reduce’ (Dean and Ghemawat, 2008). However,
this code still fails due to a critical error: it does
not take dependencies into account, i.e., without
importing the correct libraries and functions. This
observation demonstrates that LLMs have most of
the capabilities to solve the problem, but also re-
veals a shortcoming in dealing with dependencies,
which is related to the code generation scenario®.
This shortcoming can be overcome just by boot-
strapping LLMs to import the correct dependencies,
as shown in revision (b). However, in traditional

SMaking LLMs generate code with dependencies that
match the development environment can be viewed as a code
generation scenario. The required dependencies are usually
different in different development environments. For exam-
ple, if the development environment is Python2, "reduce" is a
built-in function, but if it is Python3, it must be imported from
the standard library "functools" in order to be used.

12

4 N\
Requirement
Write a function to multiply all the numbers in a list and divide with
the length of the list.
(a) Output of the LLM b 4
def multiply_num(numbers):
1type numbers: List[int]
:rtype: float
if not numbers:
return @
return reduce(lambda x, y: x * y, numbers) / len(numbers)
(b) Revision to the output LV 4
def multiply_num(numbers):
:type numbers: List[int]
:rtype: float
from functools import reduce
if not numbers:
return @
return reduce(lambda x, y: x * y, numbers) / len(numbers)
(c) Sample in the dataset
def multiply_num(numbers):
total = 1
for x in numbers:
total *= x
return total/len(numbers)
& J

Figure 4: A motivation example of DEED.

fine-tuning methods, it is challenging to overcome
the shortcoming through learning samples in the
dataset. Because sample (c) in the dataset proposed
a different solution from output (a), it did not use
the ‘reduce’ function. LLM needs to put in more ef-
fort to learn the new solution from scratch and also
misses the opportunity to overcome its shortcom-
ings. Furthermore, there is a potential risk when
training LLMs with sample (c): LLMs may incor-
rectly infer that sample (c) is the optimal solution
for this requirement, resulting in the omission of
the Guard Clause “if not numbers\n return @~
in output (a). Omitting the Guard Clause is an inad-
visable programming pattern, which is undesirable
to learn. Due to the absence of the Guard Clause as
a safeguard for handling edge cases, an error could
occur in the edge case where the input list is empty.
Therefore, using revision (b) to train LLMs is
a better choice, which allows LLMs to focus on
and learn to solve the critical error, while simul-
taneously avoiding the inherent disadvantages
of original data.

Further, we explore the effectiveness of adopting
error-driven learning from the perspective of model
optimization. We consider the potential significant
discrepancy between the model-generated output
and the sample in the dataset. By learning the re-
visions of the model’s erroneous outputs, we can
find more effective navigation in the optimization
process. This might provide a shorter, smoother



Case I Requirement Case I Requirement
Write a function to perform index wise addition of tuple elements in the given Write a function to check if the common elements between
two nested tuples. two given lists are in the same order or not.
Revision of error code Revision of error code
—_— def add_nested_tuples(test_tupl, test_tup2): def same_order(11, 12):
% - return tuple(map(lambda x, y: (x[@] + y[o], x[1] + y[1]), test_tupl, - if len(11) != len(12):
'S test_tup2)) = return False
; - - for i in range(len(11)):
" -if __name__ == "__main__": - if WIlil != 12[il:
> = import doctest = return False
g = doctest. testmod() = return True
o + return tuple(tuple(map(sum, zip(tupl, tup2))) for tupl, tup2 in + common_elements = set(11) & set(12)
T, zip(test_tupl, test_tup2)) + 11 = [e for e in 11 if e in common_elements]
[, + 12 = [e for e in 12 if e in common_elements]
+ return 11 == 12
Sample code in dataset Sample code indataset copy
def add_nested_tuples(test_tupl, test_tup2): def same_order(11, 12):
res = tuple(tuple(a + b for a, b in zip(tupl, tup2)) for common_elements = set(11) & set(12)
tupl, tup2 in zip(test_tupl, test_tup2)) 11 = [e for e in 11 if e in common_elements]
return (res) 12 = [e for e in 12 if e in common_elements]
return 11 == 12
Case I Requirement Case I Requirement
Write a function to extract all the pairs which are symmetric in the given tuple list. Write a function to remove odd characters in a string.
Revision of error code Revision of error code
—_ def extract_symmetric(test_list): def remove_odd(stri):
- symmetric_pairs = set() new str = "
[ ii i . .
= for i in range(len(test_list)): for i in range(len(strl)):
) = for j in range(i+l, len(test_list)): = if i %2 == 0:
K] - if test_list[i] == test_list[jl: + if not i % 2 == 0:
5 = symmetric_pairs.add((test_list[i], test _list[jl)) new_str += stril[il
o + if test_list[il[::-1] in test_list: return new_str
o + symmetric_pairs.add(tuple(sorted(test_list[il)))
E return symmetric_pairs
(%]
Sample code in dataset Sample code in dataset
def extract_symmetric(test_list): def remove_odd(strl):
temp = set(test_list) & {(b, a) for a, b in test_list} str2 = !
res = {(a, b) for a, b in temp if a < b} for i in range(1, len(strl) + 1):
return (res) if(i % 2 ==10):
str2 = str2 + strili - 1]
return str2

[T3RL)

Figure 5: Cases for two settings of self-revise, where
revision.

path to a good local minimum compared to learning
from samples in the dataset, rather than attempt-
ing to direct it toward a distant area that may not
align well with its existing knowledge or biases.
We conduct the statistical analysis of the discrep-
ancies in the model’s latent representations*. The
findings reveal that the average distance between
the model’s erroneous outputs and the dataset’s
samples is 12.35, whereas the average distance be-
tween the erroneous outputs and their revisions is
significantly lower, at 6.39. These experimental
results suggest that within the model’s represen-
tation space, revised codes are closer and similar
to the erroneous output codes than the original
code samples. This evidence lends support to
our hypothesis of why the error-driven learning

*Specifically, on MBPP dataset, we obtain erroneous out-
puts of CodeGen-2B, revisions of the outputs, and samples in
MBPP. We concatenate the requirements with their code, input
them into CodeGen-2B, and extract the hidden representations
from the model’s final layer. Then, we compute the Euclidean
distances within the model’s representational space to quantify
the disparities between these three elements.

and “+” respectively indicate lines of code before and after
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method is more efficient.

Therefore, our work is determined to explore
the use of error-driven learning to achieve a data-
efficient adaptation method, aimed at enhancing the
performance of LLMs in specific code generation
scenarios.

C Detailed Datasets

MBPP (Austin et al., 2021) contains crowd-
sourced Python programming problems, covering
programming fundamentals. We selected the ver-
sion in the work (Chen et al., 2023a), which con-
sists of 276 problems and some generated error
codes alongside their human-revised counterparts,
thus facilitating subsequent experiments.
HumanEval (Chen et al., 2021) is a widely-used
code generation benchmark, containing 164 hand-
written programming problems, proposed by Ope-
nAl. Each programming problem includes a func-
tion signature, a NL description, use cases, a cor-
rect solution in Python, and several test tests.
DS-pandas (Lai et al., 2023) comprises 291



data science problems utilizing Pandas libraries,
sourced from real-world problems posted by devel-
opers on StackOverflow. This dataset can evaluate
the ability of LLMs to utilize specific data-analysis
libraries for code generation.

D Detailed Implementation Details

For full parameter fine-tuning, i.e., Fine-tuning
(Full) (Devlin et al., 2019), we use the AdamW opti-
mizer (Loshchilov and Hutter, 2017), with hyperpa-
rameters 51 = 0.9 and B3 = 0.9, accompanied by
a linear learning rate schedule. The initial learning
rate is set to 5e-6, with a batch size of 1 and gra-
dient accumulation of 32 steps for training across
10 epochs. For parameter-efficient fine-tuning, i.e.,
Fine-tuning (LoRA) (Hu et al., 2022), the learn-
ing rate is set to 2e-4. Additionally, the rank 7 is
adjusted to 128, and the scaling factor « is set at
8. All other hyperparameters remain aligned with
Fine-tuning (Full). For few-shot prompting (Brown
et al., 2020b), we set the number of examples in
prompt to 4. All baselines in the experiments use
consistent settings.

In the error code collection step (§2.1) and the
automatic code revision step (§2.2), we use temper-
ature (Holtzman et al., 2020; Ackley et al., 1985)
sampling to generate multiple samples: 5 samples
in the former and 30 in the latter, with the temper-
ature set to 0.8. To obtain the final revised code
in the automatic code revision step, we choose the
one of revised code exhibiting the minimum Lev-
enshtein distance (Levenshtein et al., 1966) to the
error code. The number of iterations is set to 2.

E Detailed Metrics

Following the practice of real software develop-
ment which utilizes testing for evaluation (Rupar-
elia, 2010; Abrahamsson et al., 2002), we employ
the Pass @k (Li et al., 2022) metric to measure the
functional correctness of the generated code by ex-
ecuting test cases. We use the unbiased version
(Chen et al., 2021) of Pass@k, where n >= k
samples are generated for each problem, count the
number of correct samples ¢ <= n which pass test
cases and calculate the following estimator,

5]

Pass@Qk = E

Problems

1)

(&)
For automatic code revision, we add the
pass@any metric which refers to the percentage
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of tasks for which the model generates at least one
correct code that passed all test cases.

F Case Study

We use the case study to qualitatively assess the
effectiveness of automatic code revision (§2.2),
i.e., SELF-REVISE (FSP) and SELF-REVISE (FT)
employed by DEED, examples of which are pre-
sented in Figure 5. Upon manual inspection of
the outcomes produced by SELF-REVISE (FSP),
two prevalent modification patterns are identified.
First, the removal of redundant code is a common
alteration. This includes the deletion of unneces-
sary blocks such as “if name == ‘main’ ” and other
test codes, which are often extraneous in the con-
text of the desired output. Second, SELF-REVISE
(FSP) exhibits a tendency to directly copy correct
code samples from the prompt. In contrast, SELF-
REVISE (FT) is capable of making minimal yet
effective modifications to the model’s initial error
code outputs, thereby generating the correct code.
Based on the observations, SELF-REVISE (FT) is
recommended as the more preferable method for
automatic code revision within DEED.
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