
Learning from Errors: A Data-Efficient Adaptation Method of Large
Language Models for Code Generation

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) have achieved002
substantial advances in code generation, but003
they still struggle in specific code generation004
scenarios. These scenarios often require LLMs005
to be adapted to meet specific needs, but the lim-006
ited training data available in practice leads to007
poor code generation performance. Therefore,008
how to effectively adapt LLMs to new scenarios009
with less training data is a major challenge for010
current code generation. In this paper, we pro-011
pose a novel and effective adaptation method012
called DEED, which stands for Data-Efficient013
adaptation based on Error-Driven learning for014
code generation. DEED leverages the errors015
made by LLM as learning opportunities and016
overcomes its own shortcomings through er-017
ror revision, thereby achieving efficient learn-018
ing. Specifically, DEED includes identifying019
the erroneous code generated by LLM, using020
SELF-REVISE for code revision, optimizing021
the model with the revised code, and iteratively022
adapting the process for continuous improve-023
ment. Experimental results show that DEED024
achieves superior performance compared with025
mainstream fine-tuning and prompting meth-026
ods using only a small amount of training027
data, with an average relative improvement of028
54.7% on Pass@1 on multiple code generation029
datasets. We also verify the effectiveness of030
SELF-REVISE, which generates revised code031
that optimizes the model more efficiently com-032
pared to the code samples from datasets. More-033
over, DEED consistently shows strong perfor-034
mance across various LLMs, highlighting its035
generalizability.036

1 Introduction037

Code generation is an important technology that038

can improve the efficiency and quality of software039

development. Given the human requirement ex-040

pressed in natural language, code generation allows041

machines to generate executable programs that sat-042

isfy this requirement. Code generation has been a043

Figure 1: The performance of direct generation, fine-
tuning, and our proposed DEED on MBPP dataset with
few training data. The numbers on the bars indicate the
training data used by different methods.

research hot topic in the fields of artificial intelli- 044

gence, software engineering, and natural language 045

processing. Recently, code generation technolo- 046

gies have made significant advancements in both 047

academia and industry (Chen et al., 2021; Shen 048

et al., 2022; Rozière et al., 2023). In particular, 049

large language models (LLMs) demonstrate great 050

potential in code generation tasks (Zheng et al., 051

2023; Nijkamp et al., 2023; Fried et al., 2022; Chen 052

et al., 2023b; Zhang et al., 2023b; Jiang et al., 2023). 053

However, LLMs still face significant challenges in 054

code generation for some specific scenarios or do- 055

mains (Ahmed et al., 2024; Chen et al., 2023d). 056

For specific code generation scenarios, fine- 057

tuning is an essential adaptation method to ensure 058

LLMs fulfill particular needs (Shi et al., 2023; Liu 059

et al., 2024; Chakraborty et al., 2022; Ciniselli 060

et al., 2022). However, in these specific scenar- 061

ios, it is difficult to obtain sufficient training data 062

for fine-tuning LLMs, due to common reasons such 063

as industry secrecy and scarcity of resources. For 064

example, in safety-critical scenarios like aerospace, 065

medical devices, and transportation industries, the 066

generated code must adhere to specific security 067

1

specifications, and accessing relevant data is of-068

ten extremely difficult due to high confidentiality069

and strict access control. Under the circumstance070

of limited data, mainstream fine-tuning methods071

might not enable LLMs to achieve the desired code072

generation performance and may even lead to a073

degradation in model performance (Aghajanyan074

et al., 2021; Xu et al., 2021b; Zhang et al., 2022),075

as shown in Figure 1. Consequently, how to ef-076

fectively adapt LLMs to specific scenarios with077

limited data available is a major challenge for code078

generation in practice.079

The mainstream fine-tuning methods use a large080

number of data gathered under specific scenarios081

for training (Xu et al., 2021a). They enable the082

model to exhaustively learn the features present083

in these data and thus adapt to the specific scenar-084

ios. However, they have two disadvantages. First,085

compelling LLMs to relearn the entire code data086

of new scenarios is inefficient. Considering that087

LLMs are pre-trained on large-scale and diverse088

data, it’s reasonably assumed that they possess a089

certain level of general knowledge, lacking only090

particular information for application in specific091

scenarios. Second, when faced with insufficient092

data volume or data drift, the model may learn093

certain undesirable features (such as inaccurate or094

irrelevant programming knowledge and patterns),095

thereby affecting its learning efficiency and nega-096

tively impacting its final performance.097

To overcome the disadvantages of mainstream098

fine-tuning methods, we take inspiration from the099

error-driven learning observed in humans. 1) Error-100

driven learning requires learners to identify their101

errors through testing. It helps learners to iden-102

tify what they have mastered and what they still103

need to learn, allowing them to narrow the scope of104

learning and avoid wasting efforts on irrelevancies.105

2) Through error revision, learners can understand106

their deficiencies and make targeted improvements,107

thus enhancing learning efficiency and effective-108

ness. This motivates us to explore methods to109

achieve data-efficient adaptation of LLMs for code110

generation guided by error-driven learning.111

In this paper, we propose DEED, a Data-112

Efficient adaptation based on Error-Driven learn-113

ing for code generation. DEED aims to alleviate114

the problem of poor code generation performance115

of fine-tuning LLMs in scenarios with few train-116

ing data. Following the error-driven learning, our117

method proceeds in four steps: ❶ Error Code Col-118

lection. We identify and collect error codes gener-119

ated by LLMs, aiming to mine the weaknesses of 120

LLMs. ❷ Automatic Code Revision. To obtain re- 121

visions of error codes in a low-cost way, we design 122

SELF-REVISE to realize automatic revision lever- 123

aging information in the original dataset and code 124

execution feedback. ❸ Model Optimization. We 125

optimize the LLMs using the revised code, mak- 126

ing them focus on learning the revision of these 127

critical errors, thereby improving the learning ef- 128

ficiency of LLMs. ❹ Iterative Adaptation. We 129

adopt an iterative strategy, which involves repeating 130

the preceding three steps, to continuously optimize 131

and improve the performance of LLMs. Extensive 132

experimental results demonstrate the superiority 133

and generalizability of DEED in the data-efficient 134

adaptation of LLMs for specific code generation 135

scenarios. To summarize, the main contributions 136

of this paper are: 137

• We propose error-driven learning for LLMs 138

adaptation is better, i.e., utilizing revisions 139

of LLMs’ erroneous outputs for training has 140

higher learning efficiency than original data. 141

• Based on the principle of error-driven learn- 142

ing, we propose a data-efficient adaptation 143

method of LLMs for code generation, named 144

DEED, which can effectively adapt model to 145

specific scenarios with limited data. 146

• DEED outperforms the mainstream fine- 147

tuning and prompting methods on three code 148

generation datasets across various LLMs. 149

2 Methodology 150

In this section, we describe our proposed DEED 151

in detail. Specifically, given a code generation sce- 152

nario/domain with a limited-sample training dataset 153

Dtrain = {(r, c)}, where each data pair (r, c) con- 154

sists of an input requirement r and an associated 155

example of desired output code c. For a pre-trained 156

LLM Mθ with parameter θ, we aim to adapt Mθ 157

to the specific scenario of Dtrain. DEED achieves 158

data-efficient adaptation of LLMs through four 159

steps: Error Code Collection (§2.1), Automatic 160

Code Revision (§2.2), Model Optimization (§2.3), 161

and Iterative Adaptation (§2.4). The overview of 162

DEED and its differences from traditional fine- 163

tuning are shown in Figure 2. 164

2.1 Error Code Collection 165

In this step, we systematically identify and collect 166

erroneous output of LLMs using testing as criteria. 167

2

Update parameters

Error Code
Collection

Automatic Code Revision

Model
Optimization

def remove_kth_element(list, k):
list.pop(k)
return list

𝒓：Remove the k'th element from a given list

𝒄!： def remove_kth_element(list, k):
list.pop(k-1)
return list

𝒓：Remove the k'th element from a given list

𝒄"：

ℳ!

ℳ"#$%&#

ℳ!∗

Iterative Adaptation

ℳ!

ℳ!∗
SE
ED

Tr
ad

iti
on

al
Fi
ne

-t
un

in
g

Model Optimization

def remove_kth_element(list, k):

return list[:k-1] + list[k:]

𝒓：Remove the k'th element from a given list

𝒄：

(c) Code Example in Dataset

(a) Error Code Generated by LLM (b) Revisions of Error Code

Figure 2: An overview of the proposed DEED and its differences from traditional fine-tuning methods.

We employ rejection sampling (Casella et al.,168

2004) to draw error code samples from the distri-169

bution produced by Mθ. For each requirement170

r ∈ Dtrain, we sample171

c′ ∼ Mθ(r) | ¬f, (1)172

where we sample multiple times and employ the cri-173

terion function f to determine the retention of the174

code sample. Specifically, the error code sample c′175

is retained when f(r, c′) = 0, where f(r, c′) = 0176

if the rejection condition is satisfied, otherwise 1.177

We define f as a test evaluation function since178

testing is the criterion for judging the correctness179

of code in practice:180

TESTEVAL(r, c′) =:=

{
0, if c′ fails Sr,
1, otherwise,

(2)181

where Sr is a suit of test cases under the require-182

ment r and is equipped by code generation datasets.183

When collecting error codes for test failures, we184

can keep the failed test cases and error messages185

simultaneously for further error diagnosis.186

To gain insights into the propensity of Mθ to187

make certain errors, it is advisable to select error188

code sample c′ for which the model demonstrates189

relatively high confidence. Therefore, among mul-190

tiple error codes collected for the same r, we select191

the one with the highest generation probability 1.192

2.2 Automatic Code Revision193

In this step, we perform automatic revision for er-194

ror codes using our SELF-REVISE method. Based195

on the LLM Mθ itself, SELF-REVISE revises the196

1We determine the probability of the generated code by
averaging the probabilities of each generated token.

error code by providing the information in the orig- 197

inal dataset and pointing out the error with code 198

execution feedback. Our objective is to derive a 199

revised code that fixes the critical bug of the error 200

code. As illustrated by examples (a), (b), and (c) in 201

Figure 2, although there is already a correct code c 202

in the dataset, it may differ significantly from the 203

error code, leading to the critical bug being unclear. 204

The pipeline of automatic code revision is shown 205

in Figure 3. 206

Specifically, we leverage the following parts as 207

the input of SELF-REVISE: 1) Requirement (r): 208

Clarify the requirement that needs to be addressed; 209

2) Correct Solution (g): Provide a type of correct 210

solution as a reference to reduce the difficulty of 211

revision. The correct solution used here is the code 212

sample c in the training dataset; 3) Error Code (c′): 213

Give the error code that needs to be revised. The 214

error code is generated by Mθ under r; 4)Error 215

Messages (m) and Failed Test Cases (t): Point 216

out the error messages received during execution 217

and the specific test cases where the error code 218

fails, allowing for more focused troubleshooting 219

and revision. These parts are combined as the input 220

of SELF-REVISE according to the template: 221

T = Template(r, g, c′,m, t) (3) 222

where Template is shown in Figure 3. 223

Following previous work (Zhang et al., 2023a; 224

Dong et al., 2023b), we use two settings for SELF- 225

REVISE, i.e., fine-tuning (FT) and few-shot prompt- 226

ing (FSP), to get MRevise for revising error codes. 227

SELF-REVISE (FT) entails the process of fine- 228

tuning Mθ with a small number of data for the 229

purpose of automatic code revision. The training 230

3

ℳ!"#$%"

Error Code (𝑐∗)Error Code (𝑐∗)Revised Code Set

Revised Code 𝑐∗

Requirement: {𝑟!}
Correct Solution: {g!}
Error Code: {𝑐!"}
Error Messages: {𝑚!}
Failed Test Cases: {𝑡!}
Revised Code : { }

Template 𝑻𝒊

Self-Revise (FT) Self-Revise (FST)

or

Prompt Construction

X

Acceptance Sampling

+

Prompt 𝑃

×	𝒌

𝑷||𝑻𝑻

Revised Code 𝑐(∗

ℳ!"#$%"

Figure 3: Illustration of automatic code revision

objective is to minimize L(θ):231

L(θ) =
∑
i

lce(Mθ(Ti), c
∗
i) (4)232

where lce represents the standard cross-entropy loss,233

and we update the parameters initialized with Mθ234

to obtain MRevise in SELF-REVISE (FT).235

SELF-REVISE (FSP) adopts the few-shot236

prompting technique and leverages k examples of237

Ti and c∗i to construct the prompt P for aligning238

Mθ to automatic code revision. In SELF-REVISE239

(FSP), MRevise(·) is defined as Mθ(P || ·), where240

|| denotes the concatenation operation.241

In contrast to the previous error code collection242

step, for each error code c′, we construct T and use243

acceptance sampling to obtain the revised code c∗:244

c∗ ∼ MRevise(T) | f. (5)245

where c∗ is retained if TESTEVAL(r, c∗) = 1 in Eq.246

(2), i.e., the revised code c∗ passes its test cases.247

We sample multiple times and it is sufficient if248

MRevise could correctly revise the error code once.249

To prevent MRevise from simply replicating the250

provided correct solution g, we exclude the output251

identical to g. Subsequently, for each requirement252

r, and select the version that is most similar to the253

error code among the remaining code revisions.254

2.3 Model Optimization 255

In this step, we employ pairs of the requirement 256

r and its revised code c∗ to further fine-tune the 257

model Mθ. This process leads to the enhanced 258

version of Mθ, referred to as Mθ∗ , in the specific 259

scenario of dataset Dtrain. 260

For fine-tuning (Devlin et al., 2019), we update 261

all parameter θ of LLMs as 262

θ∗ = argmin
θ

∑
(r,c∗)

lce(Mθ(r), c
∗), (6) 263

When the computational resources are insuffi- 264

cient, we employ Low-Rank Adaptation (LoRA) 265

(Hu et al., 2022) to fine-tune LLMs. For a weight 266

matrix W ∈ Rd×k, LoRA represents its update 267

with a low-rank decomposition: 268

W +∆W = W +∆αWdownWup, (7) 269

where α is a tunable scalar hyperparameter, 270

Wdown ∈ Rd×r, Wup ∈ Rr×k, and r << 271

min(r, k). In LoRA, we update parameter θ∗ as 272

θ∗ = θ +∆θ, (8) 273
274

∆θ = argmin
∆θ

∑
(r,c∗)

lce(Mθ+∆θ(r), c
∗). (9) 275

2.4 Iterative Adaptation 276

The preceding three steps can go through multi- 277

ple iterations until a certain number of rounds is 278

reached or the revised code no longer increases. 279

For l-th iteration that l > 1, we initialize its ini- 280

tial model Mθl as the enhanced model of the previ- 281

ous iteration Mθ∗l−1
. Based on Mθl , we repeat the 282

process in steps of error code collection and auto- 283

matic code revision to sample error codes {c′}l and 284

revised codes {c∗}l, respectively. Inspired by expe- 285

rience replay (Mnih et al., 2015) in reinforcement 286

learning, we use the union of collected data in each 287

iteration {(r, c∗)}1:l to stabilize learning process 288

and improve data utilization efficiency, that is, 289

{(r, c∗)}1 ∪ · · · ∪ {(r, c∗)}i · · · ∪ {(r, c∗)}l, (10) 290

to update parameters in the model optimization 291

step, thereby yielding the enhanced model of the 292

l-th iteration Mθ∗l
. At each iteration, the model is 293

trained to convergence. 294

This iteration is a step-by-step optimization de- 295

signed to continuously improve the adaptability 296

of models to the specific scenario. The complete 297

process of DEED is summarized in Appendix, Al- 298

gorithm 1. 299

4

3 Evaluation300

We present extensive experiments that span three301

representative code generation datasets, two fine-302

tuning settings, and five different LLMs of varying303

sizes or series. We aim to investigate six research304

questions: 1) How does DEED perform compared305

to the mainstream baselines? 2) How does DEED306

perform when applied to various LLMs? 3) What307

kind of training data has the better training effect?308

4) How does the number of iterations affect the ef-309

fectiveness of DEED? 5) What is the impact of im-310

plementing the automatic code revision component311

of DEED in conjunction with alternative LLMs? 6)312

How does each input component of SELF-REVISE313

contribute to the effectiveness?314

Datasets We use three public code generation315

datasets, i.e., MBPP (Austin et al., 2021), Hu-316

manEval (Chen et al., 2021), and DS-pandas (Lai317

et al., 2023), to simulate the specific scenario with318

limited data. We sample min(200, 40% ∗ D) prob-319

lems from all datasets as Dtrain, while the remain-320

ing problems serve as Dtest.321

Implementation Details We use a single A6000322

GPU to conduct all experiments. Our base model is323

selected as CodeGen-2B (Nijkamp et al., 2023) by324

default, which is a well-known open-source LLM325

for code and is suitable for full fine-tuning within326

our computational resource constraints. Mθ is ini-327

tialized to our base model, and MRevise is derived328

from Mθ though SELF-REVISE (§2.2).329

Metrics In final evaluations, we set temperature330

to 0.8 and generate n = 50 samples, which are then331

used to calculate unbiased Pass@k (Chen et al.,332

2021) in all experiments. All evaluation results are333

averaged over five test runs.334

Detailed descriptions of datasets, implementa-335

tion details, and metrics can be found in Appendix336

C, D, and E, respectively.337

3.1 Effectiveness of DEED338

Baselines. In this section, we evaluate the effec-339

tiveness of DEED by comparing it against other340

six methods, including Direct Generation, Fine-341

tuning (Full), Fine-tuning (LoRA), Few-shot342

Prompting, Self-refine (Madaan et al., 2023) and343

Self-debug (Chen et al., 2023e). Among them,344

Self-refine and Self-debug iteratively refine the gen-345

erated code through prompting techniques. Consid-346

ering some baselines involve full-parameter fine-347

tuning, CodeGen-2B is uniformly selected as the348

base model in this experiment. For DEED, we use 349

30%*Dtrain for SELF-REVISE (FT)2, while the 350

remaining 70%*Dtrain is employed for model opti- 351

mization, where we use full-parameter fine-tuning. 352

Table 1: Pass@k (%) of DEED and baselines on MBPP,
HumanEval, and DS-pandas datasets, and the teal num-
ber after ↑ denotes the relative improvement of DEED
over the second-highest score.

Datasets Method Pass@1 Pass@5 Pass@10

MBPP

Direct Generation 15.6% 31.4% 40.2%
Fine-tuning (Full) 25.8% 46.2% 57.6%
Fine-tuning (LoRA) 19.8% 39.8% 55.2%
Few-shot Prompting 24.4% 38.0% 49.4%
Self-Refine 25.6% 38.8% 50.2%
Self-Debug 20.2% 34.5% 40.6%
DEED 32.8% (↑ 27.2%) 46.8% 64.0%

HumanEval

Direct Generation 24.8% 44.7% 51.8%
Fine-tuning (Full) 29.8% 47.9% 56.4%
Fine-tuning (LoRA) 27.4% 46.9% 53.9%
Few-shot Prompting 25.2% 45.8% 53.1%
Self-Refine 25.3% 45.2% 51.9%
Self-Debug 26.4% 46.4% 54.2%
DEED 38.6% (↑ 32.9%) 54.7% 62.2%

DS-pandas

Direct Generation 0.8% 3.1% 5.6%
Fine-tuning (Full) 2.6% 6.5% 9.6%
Fine-tuning (LoRA) 2.2% 6.0% 8.9%
Few-shot Prompting 1.9% 4.5% 5.7%
Self-Refine 2.1% 4.7% 5.8%
Self-Debug 1.2% 2.8% 4.1%
DEED 5.3% (↑ 103.9%) 9.5% 12.3%

Results. We conducted experiments on three public 353

datasets, i.e., MBPP, HumanEval, and DS-pandas. 354

The experimental results are summarized in Ta- 355

ble 1. This comparison yielded four insightful ob- 356

servations: 1) Significant superiority of DEED: 357

Our proposed DEED performs significantly better 358

than the other six baselines on the three datasets. 359

Notably, DEED exhibits significant relative im- 360

provements of 27.2%, 32.9%, and 103.9%, respec- 361

tively, when compared to the best-performing base- 362

line Fine-tuning (Full). Self-refine and Self-debug 363

underperform on small LLMs like codegen-2B. 364

Self-debug excels over Self-refine only on the Hu- 365

manEval dataset, where public test cases and re- 366

sults are available. On other datasets, Self-debug 367

relies on the LLM’s generated code explanations 368

and feedback. Moreover, we find that DEED not 369

only surpasses Self-refine and Self-debug in terms 370

of performance but also in speed. These meth- 371

ods have a significant disadvantage in speed as 372

they require iterative refinements for each sample. 373

Their time cost is directly proportional to the num- 374

ber of samples and the number of iterations, while 375

2In addition to MBPP dataset, for other two datasets (i.e.,
HumanEval and DS-pandas), we generate one error code per
sample in a subset comprising 30% of the training set, using
CodeGen-2B. Subsequently, authors collaboratively apply the
minimal necessary revisions to correct these error codes.

5

DEED is free of these two factors. 2) Worst per-376

formance of Direct Generation: The performance377

of Direct Generation is significantly lower than378

the Fine-tuning (Full), Fine-tuning (LoRA), and379

Prompt baselines. This result suggests that directly380

applying LLMs for evaluation may be less suitable381

for specific scenarios, resulting in performance dif-382

ferences. 3) Fine-tuning (LoRA) is less effective383

than Fine-tuning (Full): Although Fine-tuning384

(LoRA) offers the advantage of reduced computa-385

tional resource requirements for fine-tuning LLMs,386

it trades off the performance. 4) Less improve-387

ment of Few-shot Prompting: Few-shot prompt-388

ing is the most commonly used prompting tech-389

nique, but its main limitation lies in its difficulty in390

imparting new knowledge or developing new capa-391

bilities in the model. It primarily assists the model392

in adjusting its outputs to better align with expected393

results, therefore its adaptability is limited.394

3.2 The Effect of Different LLMs395

Baselines. We employ several different series and396

sizes of representative LLMs to perform DEED,397

including CodeGen-2B and CodeGen-6B (Ni-398

jkamp et al., 2023), Llama-7B (Touvron et al.,399

2023), and CodeLlama-7B (Rozière et al., 2023).400

Among them, CodeGen-2B uses full fine-tuning,401

and the remaining LLMs with larger parameters use402

parameter-efficient fine-tuning with LoRA. Each403

LLM has four baselines, i.e., Direct Generation,404

Fine-tuning, and Few-shot Prompting.405

Table 2: Pass@k (%) of DEED and baselines with
different LLMs, and the teal number after ↑ denotes the
relative improvement of DEED over Fine-tuning.

Models Method Pass@1 Pass@5 Pass@10

CodeGen-2B

Direct Generation 15.6% 31.4% 40.2%
Fine-tuning (Full) 25.8% 46.2% 57.6%
Few-shot Prompting 24.4% 38.0% 49.4%
DEED (Full) 32.8% ↑ 27.2% 46.8% 64.0%

CodeGen-6B

Direct Generation 19.6% 40.2% 60.8%
Fine-tuning (LoRA) 26.6% 46.8% 63.0%
Few-shot Prompting 26.2% 45.2% 60.2%
DEED (LoRA) 33.4% ↑ 25.6% 47.4% 67.6%

Llama-7B

Direct Generation 13.4% 29.8% 37.4%
Fine-tuning (LoRA) 15.2% 27.4% 34.0%
Few-shot Prompting 16.6% 26.2% 33.8%
DEED (LoRA) 22.0% ↑ 44.7% 30.4% 40.8%

CodeLlama-7B

Direct Generation 20.4% 43.8% 52.8%
Fine-tuning (LoRA) 19.9% 42.4% 53.2%
Few-shot Prompting 27.8% 46.6% 64.8%
DEED (LoRA) 34.8% ↑ 74.9% 49.2% 65.8%

Results. The results of applying DEED to differ-406

ent LLMs are shown in Table 2. From the results,407

we observed that DEED consistently achieves408

improvements across different series (CodeGen,409

Llama, and CodeLlama) and various sizes (2B, 410

6B, and 7B), outperforming the Direct Generation, 411

Fine-tuning, and Few-shot Prompting baselines. 412

This indicates that DEED generalizes well to dif- 413

ferent LLMs. 414

3.3 The Effect of Training Data Variants 415

Baselines. We investigate the influence of different 416

training data on the final adapted model Mθ∗ to val- 417

idate the effectiveness of using revisions of model’s 418

erroneous output for training. The different vari- 419

ants of training data include: W/o Training (Direct 420

generation without any training data), Raw Dtrain 421

(All raw samples in Dtrain), Dtrain ∩ DEED 422

(The samples of the same problem as DEED in 423

Dtrain), Dtrain ∪ DEED (Include not only sam- 424

ples of problems obtained through SELF-REVISE, 425

but also samples of other problems in Dtrain), 426

Human-revised Dtrain (Samples obtained human 427

revision), and DEED (Samples obtained through 428

SELF-REVISE). 429

Table 3: Comparison of the effect of different training
data variants.

Variants Pass@1 Pass@5 Pass@10
W/o Training 15.6% 31.4% 40.2%
Raw Dtrain 25.8% 46.2% 57.6%
Dtrain ∩ DEED 22.4% 33.8% 42.8%
DEED ∪ Dtrain 29.2% 44.2% 58.0%
Human-revised Dtrain 28.0% 46.2% 59.8%
DEED 32.8% 46.8% 64.0%

Results. As shown in Table 3, we discover that: 430

1) DEED exceeds Raw Dtrain, despite Raw 431

Dtrain having more training data. This proves 432

that training using revisions produced by SELF- 433

REVISE is more efficient compared to using sam- 434

ples in the dataset. 2) The effect of Dtrain ∩ 435

DEED is comparatively weaker, which reveals 436

that DEED is not simply improved by selecting 437

better problems. 3) DEED ∪ Dtrain is not as 438

effective as DEED, which shows that some data 439

in Dtrain have negative effects with limited data. 440

4) The performance of DEED surpasses that 441

of the Human-revised Dtrain. This finding may 442

be attributed to a disconnect between the revision 443

made by humans and the model’s learning expec- 444

tations. While human revisions are applied to all 445

code data in Dtrain, some data may inherently be 446

challenging for the current model. As such, forced 447

learning from these data may have counterproduc- 448

tive effects, highlighting a potential limitation in 449

human-revised Dtrain. 450

6

3.4 The Effect of Iterations451

Baselines. We study the effect of iterations on452

DEED. We analyze the progression of DEED’s ef-453

fectiveness across different iterations, starting from454

0 iterations (i.e., generated directly with LLMs)455

and extending to one, and up to four iterations.456

Table 4: Performance of DEED with the different num-
ber of iterations.

Iterations Pass@1 Pass@5 Pass@10 Num. of Revised Code

0 15.6% 31.4% 40.2% -
1 31.6% 46.3% 60.6% 31 (+31)
2 32.8% 46.8% 64.0% 41 (+10)
3 33.0% 46.7% 62.6% 43 (+2)
4 33.2% 47.1% 64.0% 44 (+1)

Results. We conduct this experiment on MBPP457

dataset and its results are displayed in Table 4.458

From the results we can observe a trend: as the459

number of iteration rounds increases, the perfor-460

mance of DEED in Pass@1 shows an increasing461

trend, and the improvement is significant in the462

first two iterations, achieving over 98% Pass@1463

performance within this period. At the same time,464

the amount of revised code in each iteration is also465

increasing, indicating that errors are continuously466

discovered, corrected, and learned. Considering467

that Pass@10 has oscillations from the 2nd itera-468

tion to the 4th iteration, we choose to end after the469

second iteration as the final performance of DEED.470

3.5 The Effect of Revision with Other LLMs471

Baselines. We evaluate the performance of auto-472

matic code revision and the impact on the final473

model Mθ∗ obtained through DEED when us-474

ing alternative LLMs to substitute the base model475

as MRevise. The base model is set to CodeGen-476

2B and alternative LLMs containing CodeGen-6B,477

Llama-7B, CodeLlama-7B, and ChatGPT. In this478

experiment, we obtain MRevise in both fine-tuning479

and few-shot prompting settings for comparison,480

and Mθ∗ is consistently fixed as the base model.481

Results. Table 5 illustrates the experimental re-482

sults of automatic code revision based on differ-483

ent models, and we can observe that: 1) SELF-484

REVISE (FT) employing the same model as the485

base model yields the best performance of Mθ∗ .486

For baselines using other LLMs in fine-tuning,487

CodeLlama exhibits superior performance in terms488

of Pass@k in MRevise, but its final effectiveness489

is somewhat compromised. This limitation is at-490

tributed to the divergence in training data and ar-491

chitectural frameworks between CodeLlama and492

Table 5: Comparison of automatic code revision based
on different LLMs in both fine-tuning and few-shot
prompting settings, where MRevise is reported the raw
results on the 70% ∗ Dtrain part and Mθ∗ is fine-tuned
with filtered results as described in §2.2.

Method
MRevise Mθ∗

Pass@1 Pass@10 Pass@any Pass@1 Pass@10

Few-shot Prompting
CodeGen-6B 19.4% 60.1% 70.8% 26.8% 59.0%
Llama-7B 23.5% 67.7% 81.9% 20.8% 54.2%
CodeLlama-7B 20.2% 64.9% 75.0% 25.2% 59.6%
ChatGPT 61.4% 87.3% 92.1% 27.0% 62.4%
Base Model
(SELF-REVISE (FSP))

18.9% 57.1% 69.4% 26.2% 58.2%

Fine-tuning
CodeGen-6B 5.0% 20.3% 26.6% 29.4% 64.2%
Llama-7B 2.7% 8.5% 12.6% 23.2% 58.4%
CodeLlama-7B 5.1% 21.0% 34.6% 24.0% 60.2%
Base Model
(SELF-REVISE (FT))

3.9% 18.9% 24.6% 32.8% 64.0%

the base model, leading to inconsistencies in the 493

revised code with the base model’s expectations. 494

In contrast, CodeGen-6B, which is the same se- 495

ries of the base model with a large parameter, 496

demonstrates slightly lower Pass@k in MRevise 497

than CodeLlama but still achieves commendable re- 498

sults for Mθ∗ . 2) Although the Pass@k of SELF- 499

REVISE (FSP) is higher than SELF-REVISE (FT) 500

in MRevise, it does not perform as well on the ul- 501

timate Mθ∗ . We find this discrepancy may be due 502

to the SELF-REVISE (FSP)’s tendency to learn su- 503

perficial forms, i.e., it often resorts to copying code 504

from the correct solution provided in the prompt, 505

even when explicitly instructed not to in the prompt, 506

as shown in Figure 5. Using ChatGPT as MRevise 507

results in substantially higher Pass@k compared 508

to using the base model, does not significantly en- 509

hance the final model Mθ∗ . 510

3.6 Ablation Study on SELF-REVISE 511

Baselines. We further perform the ablation study 512

to investigate the effectiveness of each input com- 513

ponent in SELF-REVISE. Requirements and er- 514

ror codes are the indispensable basic inputs for 515

performing automatic code revision. Therefore, 516

we perform ablation experiments on the remain- 517

ing three components, i.e., correct solution, failed 518

test cases, and error messages. By removing these 519

components individually, we observe their specific 520

impact on the performance of automatic code re- 521

vision and the final model, and thus evaluate the 522

effectiveness of these components. 523

Results. We conduct the ablation study on MBPP 524

dataset as shown in Table 6. First, we find that 525

removing the failed test cases resulted in the largest 526

7

Table 6: Results of ablation study on SELF-REVISE.

Method
MRevise Mθ∗

Pass@1 Pass@10 Pass@any Pass@1 Pass@10

DEED 3.9% 18.9% 24.6% 32.8% 64.0%
- Correct Solution 3.4% 15.4% 19.8% 30.1% 61.9%
- Error Messages 3.1% 14.2% 17.3% 28.6% 58.7%
- Failed Test Cases 2.3% 5.1% 6.3% 26.1% 47.6%

drop in performance of all metrics. Failed test527

cases can demonstrate the inconsistency between528

the model-generated code output and the desired529

output, allowing LLMs to reason about and correct530

erroneous operations. Experimental results show531

that this point is most helpful for automatic code532

revision. Second, removing error messages or the533

correct code solution also results in a loss of per-534

formance. Error messages directly indicate surface535

errors in the generated code (such as syntax errors536

and runtime errors) and the location of the errors,537

which is also helpful for LLMs to revise the code.538

The correct code samples in the dataset can provide539

some reference for revising errors of LLMs, thus540

further reducing the difficulty of correction.541

4 Related Work542

Adaptation of LLMs. Numerous tasks rely on543

adapting LLMs to multiple downstream applica-544

tions. Such adaptation is usually done via fine-545

tuning, which updates all the parameters of LLMs.546

Considering LLMs contain a large number of547

model parameters, performing full parameter tun-548

ing would be extremely expensive (Ding et al.,549

2023). Therefore, some parameter-efficient fine-550

tuning methods have been developed, including551

Adapter Tuning (Houlsby et al., 2019; Hu et al.,552

2023), Prompt Tuning (Lester et al., 2021; Liu553

et al., 2021b), Prefix Tuning (Li and Liang, 2021;554

Liu et al., 2021a), and Low-rank adaptation (Hu555

et al., 2022). They primarily optimize the efficiency556

of training model parameters but are not directly557

targeted at improving the efficiency of data usage.558

Another type of adaptation that does not require559

training is prompting (Liu et al., 2023), which de-560

pends on in-context learning (Dong et al., 2023a;561

Brown et al., 2020a). However, a limitation of them562

is that models often merely mimic the surface form563

of prompt, struggling to deeply understand or adapt564

to complex and abstract task requirements.565

Our method is orthogonal to the aforementioned566

adaptation techniques, allowing for its concurrent567

application with these methods to enhance overall568

effectiveness.569

Code Generation with LLM. The rise of pre- 570

training techniques has brought new momentum to 571

the field of code generation. Against this backdrop, 572

LLMs such as Codex (Chen et al., 2021), Code- 573

Gen (Nijkamp et al., 2022), AlphaCode (Li et al., 574

2022), CodeGeeX (Zheng et al., 2023) and CodeL- 575

lama (Rozière et al., 2023) have emerged, greatly 576

enhancing the performance of code generation. 577

For LLMs-based code generation, there are some 578

methods to refine the outputs produced by LLMs. 579

Self-refine (Madaan et al., 2023) enables LLMs 580

to provide feedback on and correct their own gen- 581

erated content. Self-debug (Chen et al., 2023e) 582

allows the LLMs to explain and refine their gener- 583

ated code based on execution results. They belong 584

to prompting methods that are constrained by input 585

length and highly sensitive to prompts (Zhao et al., 586

2021). Moreover, Self-edit (Zhang et al., 2023a) 587

involves training an additional editor. This category 588

of methods treats refinement as a post-processing 589

step after code generation, whereas we utilize a 590

self-revise to assist model in efficient training and 591

thereby enhance the model itself. Compared to 592

these post-processing methods, DEED only re- 593

quires test cases during training. When training 594

is complete, DEED can be directly used without 595

incurring any additional resource or time costs. 596

Recently, Chen et al. (Chen et al., 2023a) pro- 597

pose an ILF method focused on using human feed- 598

back to refine model results. However, it necessi- 599

tates continuous human involvement and the provi- 600

sion of feedback throughout the model’s training 601

phase, which incurs significant costs in practical ap- 602

plications. Further, Chen et al. (Chen et al., 2023c) 603

propose a distillation method that employs Chat- 604

GPT (OpenAI, 2022) to generate a large amount 605

of refinement to train small models. However, this 606

method presents two primary limitations. Firstly, it 607

necessitates a highly performant “teacher” model, 608

significantly surpassing the capabilities of the “stu- 609

dent” model. Secondly, commercial constraints and 610

other factors likely prohibit its implementation. 611

5 Conclusion 612

In this work, we have proposed DEED, a Data- 613

Efficient adaptation with Error-Driven learning for 614

code generation, substantially improving the code 615

generation performance of LLMs in specific sce- 616

narios with limited data. We reveal that LLMs are 617

more efficient in learning from the revisions of their 618

errors than the original code samples in datasets. 619

8

6 Limitations620

Our work has several limitations, which we aim to621

address in our future work:622

First, Due to the constraints in computational623

resources, our experiments were merely conducted624

on LLMs with parameters less than 7B. In the fu-625

ture, we plan to extend our research to larger LLMs626

as more resources become available.627

Second, considering that no public dataset is628

entirely unfamiliar to LLMs and sourcing high-629

quality data for such a scenario is challenging,630

we employ public benchmarks to simulate specific631

code generation scenarios. However, the adapta-632

tions of LLMs to these scenarios still achieve sig-633

nificant improvement.634

Third, our method introduces additional over-635

head by collecting erroneous outputs and their re-636

visions compared to using original training data,637

but it does not impact the efficiency of the actual638

inference process. Moreover, compared to the huge639

overhead of training LLM, this additional overhead640

is acceptable.641

References642

Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and643
Juhani Warsta. 2002. Agile software development644
methods: Review and analysis.645

David H. Ackley, Geoffrey E. Hinton, and Terrence J.646
Sejnowski. 1985. A learning algorithm for boltz-647
mann machines. Cogn. Sci., 9(1):147–169.648

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,649
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.650
2021. Better fine-tuning by reducing representational651
collapse. In ICLR. OpenReview.net.652

Toufique Ahmed, Christian Bird, Premkumar Devanbu,653
and Saikat Chakraborty. 2024. Studying llm per-654
formance on closed-and open-source data. arXiv655
preprint arXiv:2402.15100.656

Jacob Austin, Augustus Odena, Maxwell I. Nye,657
Maarten Bosma, Henryk Michalewski, David Dohan,658
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,659
and Charles Sutton. 2021. Program synthesis with660
large language models. CoRR, abs/2108.07732.661

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie662
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind663
Neelakantan, Pranav Shyam, Girish Sastry, Amanda664
Askell, Sandhini Agarwal, Ariel Herbert-Voss,665
Gretchen Krueger, Tom Henighan, Rewon Child,666
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,667
Clemens Winter, Christopher Hesse, Mark Chen, Eric668
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,669
Jack Clark, Christopher Berner, Sam McCandlish,670

Alec Radford, Ilya Sutskever, and Dario Amodei. 671
2020a. Language models are few-shot learners. In 672
NeurIPS. 673

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 674
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 675
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 676
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 677
Gretchen Krueger, Tom Henighan, Rewon Child, 678
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 679
Clemens Winter, Christopher Hesse, Mark Chen, Eric 680
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 681
Jack Clark, Christopher Berner, Sam McCandlish, 682
Alec Radford, Ilya Sutskever, and Dario Amodei. 683
2020b. Language models are few-shot learners. In 684
NeurIPS. 685

George Casella, Christian P Robert, and Martin T Wells. 686
2004. Generalized accept-reject sampling schemes. 687
Lecture Notes-Monograph Series, pages 342–347. 688

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, 689
Premkumar T. Devanbu, and Baishakhi Ray. 2022. 690
Natgen: generative pre-training by "naturalizing" 691
source code. In ESEC/SIGSOFT FSE, pages 18–30. 692
ACM. 693

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, 694
Jon Ander Campos, Jun Shern Chan, Samuel R. Bow- 695
man, Kyunghyun Cho, and Ethan Perez. 2023a. Im- 696
proving code generation by training with natural lan- 697
guage feedback. CoRR, abs/2303.16749. 698

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, 699
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023b. 700
CodeT: Code generation with generated tests. In 701
ICLR. 702

Hailin Chen, Amrita Saha, Steven C. H. Hoi, and Shafiq 703
Joty. 2023c. Personalised distillation: Empowering 704
open-sourced llms with adaptive learning for code 705
generation. CoRR, abs/2310.18628. 706

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 707
Henrique Pondé de Oliveira Pinto, Jared Kaplan, 708
Harrison Edwards, Yuri Burda, Nicholas Joseph, 709
Greg Brockman, Alex Ray, Raul Puri, Gretchen 710
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 711
try, Pamela Mishkin, Brooke Chan, Scott Gray, 712
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 713
Kaiser, Mohammad Bavarian, Clemens Winter, 714
Philippe Tillet, Felipe Petroski Such, Dave Cum- 715
mings, Matthias Plappert, Fotios Chantzis, Eliza- 716
beth Barnes, Ariel Herbert-Voss, William Hebgen 717
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 718
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 719
William Saunders, Christopher Hesse, Andrew N. 720
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 721
Morikawa, Alec Radford, Matthew Knight, Miles 722
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 723
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 724
Sutskever, and Wojciech Zaremba. 2021. Evaluating 725
large language models trained on code. CoRR. 726

Meng Chen, Hongyu Zhang, Chengcheng Wan, Zhao 727
Wei, Yong Xu, Juhong Wang, and Xiaodong Gu. 728

9

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

2023d. On the effectiveness of large language729
models in domain-specific code generation. CoRR,730
abs/2312.01639.731

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and732
Denny Zhou. 2023e. Teaching large language models733
to self-debug. CoRR, abs/2304.05128.734

Matteo Ciniselli, Nathan Cooper, Luca Pascarella, An-735
tonio Mastropaolo, Emad Aghajani, Denys Poshy-736
vanyk, Massimiliano Di Penta, and Gabriele Bavota.737
2022. An empirical study on the usage of transformer738
models for code completion. IEEE Trans. Software739
Eng., 48(12):4818–4837.740

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapreduce:741
simplified data processing on large clusters. Com-742
mun. ACM, 51(1):107–113.743

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and744
Kristina Toutanova. 2019. BERT: pre-training of745
deep bidirectional transformers for language under-746
standing. In NAACL-HLT (1), pages 4171–4186. As-747
sociation for Computational Linguistics.748

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-749
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,750
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,751
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei752
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong753
Sun. 2023. Parameter-efficient fine-tuning of large-754
scale pre-trained language models. Nat. Mac. Intell.,755
5(3):220–235.756

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong757
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and758
Zhifang Sui. 2023a. A survey for in-context learning.759
CoRR, abs/2301.00234.760

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li.761
2023b. Self-collaboration code generation via chat-762
gpt. CoRR, abs/2304.07590.763

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,764
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,765
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:766
A generative model for code infilling and synthesis.767
CoRR, abs/2204.05999.768

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and769
Yejin Choi. 2020. The curious case of neural text770
degeneration. In ICLR. OpenReview.net.771

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,772
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-773
mundo, Mona Attariyan, and Sylvain Gelly. 2019.774
Parameter-efficient transfer learning for NLP. In775
ICML, volume 97 of Proceedings of Machine Learn-776
ing Research, pages 2790–2799. PMLR.777

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan778
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and779
Weizhu Chen. 2022. Lora: Low-rank adaptation of780
large language models. In ICLR. OpenReview.net.781

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee- 782
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po- 783
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters: An 784
adapter family for parameter-efficient fine-tuning of 785
large language models. In EMNLP, pages 5254– 786
5276. Association for Computational Linguistics. 787

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, 788
and Ge Li. 2023. Self-planning code generation with 789
large language model. CoRR, abs/2303.06689. 790

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 791
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih, 792
Daniel Fried, Sida I. Wang, and Tao Yu. 2023. DS- 793
1000: A natural and reliable benchmark for data 794
science code generation. In ICML, volume 202 of 795
Proceedings of Machine Learning Research, pages 796
18319–18345. PMLR. 797

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 798
The power of scale for parameter-efficient prompt 799
tuning. In EMNLP (1), pages 3045–3059. Associa- 800
tion for Computational Linguistics. 801

Vladimir I Levenshtein et al. 1966. Binary codes capa- 802
ble of correcting deletions, insertions, and reversals. 803
In Soviet physics doklady, volume 10, pages 707–710. 804
Soviet Union. 805

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 806
Optimizing continuous prompts for generation. In 807
ACL/IJCNLP (1), pages 4582–4597. Association for 808
Computational Linguistics. 809

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 810
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 811
James Keeling, Felix Gimeno, Agustin Dal Lago, 812
et al. 2022. Competition-level code generation with 813
alphacode. Science, 378(6624):1092–1097. 814

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 815
Hiroaki Hayashi, and Graham Neubig. 2023. Pre- 816
train, prompt, and predict: A systematic survey of 817
prompting methods in natural language processing. 818
ACM Comput. Surv., 55(9):195:1–195:35. 819

Shuo Liu, Jacky Keung, Zhen Yang, Fang Liu, Qilin 820
Zhou, and Yihan Liao. 2024. Delving into parameter- 821
efficient fine-tuning in code change learning: An 822
empirical study. CoRR, abs/2402.06247. 823

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin 824
Yang, and Jie Tang. 2021a. P-tuning v2: Prompt 825
tuning can be comparable to fine-tuning universally 826
across scales and tasks. CoRR, abs/2110.07602. 827

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 828
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT 829
understands, too. CoRR, abs/2103.10385. 830

Ilya Loshchilov and Frank Hutter. 2017. Fixing 831
weight decay regularization in adam. CoRR, 832
abs/1711.05101. 833

10

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler834
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,835
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,836
Shashank Gupta, Bodhisattwa Prasad Majumder,837
Katherine Hermann, Sean Welleck, Amir Yazdan-838
bakhsh, and Peter Clark. 2023. Self-refine: Iterative839
refinement with self-feedback. In NeurIPS.840

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,841
Andrei A. Rusu, Joel Veness, Marc G. Bellemare,842
Alex Graves, Martin A. Riedmiller, Andreas Fidje-843
land, Georg Ostrovski, Stig Petersen, Charles Beat-844
tie, Amir Sadik, Ioannis Antonoglou, Helen King,845
Dharshan Kumaran, Daan Wierstra, Shane Legg, and846
Demis Hassabis. 2015. Human-level control through847
deep reinforcement learning. Nat., 518(7540):529–848
533.849

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan850
Wang, Yingbo Zhou, Silvio Savarese, and Caiming851
Xiong. 2022. Codegen: An open large language852
model for code with multi-turn program synthesis.853
arXiv preprint arXiv:2203.13474.854

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan855
Wang, Yingbo Zhou, Silvio Savarese, and Caiming856
Xiong. 2023. Codegen: An open large language857
model for code with multi-turn program synthesis.858
In ICLR. OpenReview.net.859

OpenAI. 2022. ChatGPT.860

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten861
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,862
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom863
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-864
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,865
Wenhan Xiong, Alexandre Défossez, Jade Copet,866
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-867
las Usunier, Thomas Scialom, and Gabriel Synnaeve.868
2023. Code llama: Open foundation models for code.869
CoRR, abs/2308.12950.870

Nayan B. Ruparelia. 2010. Software development life-871
cycle models. ACM SIGSOFT Softw. Eng. years,872
35(3):8–13.873

Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo,874
Yankun Zhen, and Ge Li. 2022. Incorporating do-875
main knowledge through task augmentation for front-876
end javascript code generation. In ESEC/SIGSOFT877
FSE, pages 1533–1543. ACM.878

Ensheng Shi, Yanlin Wang, Hongyu Zhang, Lun Du,879
Shi Han, Dongmei Zhang, and Hongbin Sun. 2023.880
Towards efficient fine-tuning of pre-trained code mod-881
els: An experimental study and beyond. In ISSTA,882
pages 39–51. ACM.883

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-884
bert, Amjad Almahairi, Yasmine Babaei, Nikolay885
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti886
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-887
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,888
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,889

Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 890
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 891
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 892
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 893
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 894
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 895
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 896
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 897
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 898
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 899
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 900
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 901
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 902
Melanie Kambadur, Sharan Narang, Aurélien Ro- 903
driguez, Robert Stojnic, Sergey Edunov, and Thomas 904
Scialom. 2023. Llama 2: Open foundation and fine- 905
tuned chat models. CoRR, abs/2307.09288. 906

Haoran Xu, Seth Ebner, Mahsa Yarmohammadi, 907
Aaron Steven White, Benjamin Van Durme, and 908
Kenton Murray. 2021a. Gradual fine-tuning for low- 909
resource domain adaptation. In Proceedings of the 910
Second Workshop on Domain Adaptation for NLP, 911
pages 214–221. 912

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, 913
Baobao Chang, Songfang Huang, and Fei Huang. 914
2021b. Raise a child in large language model: To- 915
wards effective and generalizable fine-tuning. In 916
EMNLP (1), pages 9514–9528. Association for Com- 917
putational Linguistics. 918

Haojie Zhang, Ge Li, Jia Li, Zhongjin Zhang, Yuqi Zhu, 919
and Zhi Jin. 2022. Fine-tuning pre-trained language 920
models effectively by optimizing subnetworks adap- 921
tively. In NeurIPS. 922

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023a. 923
Self-edit: Fault-aware code editor for code genera- 924
tion. In ACL (1), pages 769–787. Association for 925
Computational Linguistics. 926

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike 927
Lewis, Wen-Tau Yih, Daniel Fried, and Sida Wang. 928
2023b. Coder reviewer reranking for code generation. 929
In ICML, volume 202 of Proceedings of Machine 930
Learning Research, pages 41832–41846. PMLR. 931

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and 932
Sameer Singh. 2021. Calibrate before use: Improv- 933
ing few-shot performance of language models. In 934
ICML, volume 139 of Proceedings of Machine Learn- 935
ing Research, pages 12697–12706. PMLR. 936

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 937
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 938
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023. 939
Codegeex: A pre-trained model for code generation 940
with multilingual evaluations on humaneval-x. CoRR, 941
abs/2303.17568. 942

11

https://openai.com/blog/chatgpt/

A Algorithm of DEED943

The complete process of DEED is listed in Algo-944

rithm 1.945

Algorithm 1 Pseudocode of DEED.
Require: Dataset Dtrain = {(r, c)}, initial LLM Mθ .
Ensure: LLM Mθ∗ .
1: Initial iteration index l = 0 and Mθl+1 = Mθ .
2: # Iterative Adaptation
3: repeat
4: Update l = l + 1.
5: # Error Code Collection
6: Perform rejection sampling to collect error codes {c′}l

based on Mθl via Eq. (1) and (2).
7: # Automatic Code Revision
8: Perform acceptance sampling to collect revised codes

{c∗}l based on Mθl and SELF-REVISE via Eq. (2),
(3), and (5).

9: Calculate the union of {(r, c∗)}1:l via Eq. (10).
10: # Model Optimization
11: Fine-tune Mθl to yield M∗

θl
via Eq. (6) if the compu-

tational resources are sufficient, otherwise via Eq. (7),
(8), and (9).

12: Update Mθl+1 = Mθ∗
l

.
13: until End condition is satisfied
14: return Mθ∗

l

B Motivation Example946

Aligning LLMs with specific scenarios and address-947

ing their unique challenges by learning samples in948

the dataset is difficult, especially when training949

data are limited. We present a motivation example950

in Figure 4 to clarify the advantages of using error-951

driven learning in the LLMs adaptation process of952

code generation.953

By observing the output (a) generated by LLMs,954

we can find that LLMs generate a basically cor-955

rect code that adopts a commonly-used function956

‘reduce’ (Dean and Ghemawat, 2008). However,957

this code still fails due to a critical error: it does958

not take dependencies into account, i.e., without959

importing the correct libraries and functions. This960

observation demonstrates that LLMs have most of961

the capabilities to solve the problem, but also re-962

veals a shortcoming in dealing with dependencies,963

which is related to the code generation scenario3.964

This shortcoming can be overcome just by boot-965

strapping LLMs to import the correct dependencies,966

as shown in revision (b). However, in traditional967

3Making LLMs generate code with dependencies that
match the development environment can be viewed as a code
generation scenario. The required dependencies are usually
different in different development environments. For exam-
ple, if the development environment is Python2, "reduce" is a
built-in function, but if it is Python3, it must be imported from
the standard library "functools" in order to be used.

Write a function to multiply all the numbers in a list and divide with
the length of the list.

Requirement

(a) Output of the LLM

def multiply_num(numbers):
"""
:type numbers: List[int]
:rtype: float
"""
if not numbers:

return 0
return reduce(lambda x, y: x * y, numbers) / len(numbers)

(b) Revision to the output

def multiply_num(numbers):
"""
:type numbers: List[int]
:rtype: float
"""
from functools import reduce
if not numbers:

return 0
return reduce(lambda x, y: x * y, numbers) / len(numbers)

(c) Sample in the dataset

def multiply_num(numbers):
total = 1
for x in numbers:

total *= x
return total/len(numbers)

Figure 4: A motivation example of DEED.

fine-tuning methods, it is challenging to overcome 968

the shortcoming through learning samples in the 969

dataset. Because sample (c) in the dataset proposed 970

a different solution from output (a), it did not use 971

the ‘reduce’ function. LLM needs to put in more ef- 972

fort to learn the new solution from scratch and also 973

misses the opportunity to overcome its shortcom- 974

ings. Furthermore, there is a potential risk when 975

training LLMs with sample (c): LLMs may incor- 976

rectly infer that sample (c) is the optimal solution 977

for this requirement, resulting in the omission of 978

the Guard Clause “if not numbers\n return 0” 979

in output (a). Omitting the Guard Clause is an inad- 980

visable programming pattern, which is undesirable 981

to learn. Due to the absence of the Guard Clause as 982

a safeguard for handling edge cases, an error could 983

occur in the edge case where the input list is empty. 984

Therefore, using revision (b) to train LLMs is 985

a better choice, which allows LLMs to focus on 986

and learn to solve the critical error, while simul- 987

taneously avoiding the inherent disadvantages 988

of original data. 989

Further, we explore the effectiveness of adopting 990

error-driven learning from the perspective of model 991

optimization. We consider the potential significant 992

discrepancy between the model-generated output 993

and the sample in the dataset. By learning the re- 994

visions of the model’s erroneous outputs, we can 995

find more effective navigation in the optimization 996

process. This might provide a shorter, smoother 997

12

CaseⅡ

def add_nested_tuples(test_tup1, test_tup2):
- return tuple(map(lambda x, y: (x[0] + y[0], x[1] + y[1]), test_tup1,

test_tup2))
-
-if __name__ == "__main__":
- import doctest
- doctest.testmod()
+ return tuple(tuple(map(sum, zip(tup1, tup2))) for tup1, tup2 in

zip(test_tup1, test_tup2))

CaseⅠ

Write a function to perform index wise addition of tuple elements in the given
two nested tuples.

Requirement

Sample code in dataset

def add_nested_tuples(test_tup1, test_tup2):
res = tuple(tuple(a + b for a, b in zip(tup1, tup2)) for

tup1, tup2 in zip(test_tup1, test_tup2))
return (res)

Write a function to check if the common elements between
two given lists are in the same order or not.

Requirement

Sample code indataset

def same_order(l1, l2):
common_elements = set(l1) & set(l2)
l1 = [e for e in l1 if e in common_elements]
l2 = [e for e in l2 if e in common_elements]
return l1 == l2

Se
lf-

Re
vi

se
 (F

SP
)

COPY

def same_order(l1, l2):
- if len(l1) != len(l2):
- return False
- for i in range(len(l1)):
- if l1[i] != l2[i]:
- return False
- return True
+ common_elements = set(l1) & set(l2)
+ l1 = [e for e in l1 if e in common_elements]
+ l2 = [e for e in l2 if e in common_elements]
+ return l1 == l2

Revision of error code Revision of error code

CaseⅠ CaseⅡ

Write a function to remove odd characters in a string.

Requirement

Sample code in dataset

def remove_odd(str1):
str2 = ''
for i in range(1, len(str1) + 1):

if(i % 2 == 0):
str2 = str2 + str1[i - 1]

return str2

Requirement

Sample code in dataset

Write a function to extract all the pairs which are symmetric in the given tuple list.

def extract_symmetric(test_list):
temp = set(test_list) & {(b, a) for a, b in test_list}
res = {(a, b) for a, b in temp if a < b}
return (res)

Se
lf-

Re
vi

se
 (F

T)

def extract_symmetric(test_list):
symmetric_pairs = set()
for i in range(len(test_list)):

- for j in range(i+1, len(test_list)):
- if test_list[i] == test_list[j]:
- symmetric_pairs.add((test_list[i], test_list[j]))
+ if test_list[i][::-1] in test_list:
+ symmetric_pairs.add(tuple(sorted(test_list[i])))

return symmetric_pairs

def remove_odd(str1):
new_str = ""
for i in range(len(str1)):

- if i % 2 == 0:
+ if not i % 2 == 0:

new_str += str1[i]
return new_str

Revision of error code Revision of error code

Figure 5: Cases for two settings of self-revise, where “-” and “+” respectively indicate lines of code before and after
revision.

path to a good local minimum compared to learning998

from samples in the dataset, rather than attempt-999

ing to direct it toward a distant area that may not1000

align well with its existing knowledge or biases.1001

We conduct the statistical analysis of the discrep-1002

ancies in the model’s latent representations4. The1003

findings reveal that the average distance between1004

the model’s erroneous outputs and the dataset’s1005

samples is 12.35, whereas the average distance be-1006

tween the erroneous outputs and their revisions is1007

significantly lower, at 6.39. These experimental1008

results suggest that within the model’s represen-1009

tation space, revised codes are closer and similar1010

to the erroneous output codes than the original1011

code samples. This evidence lends support to1012

our hypothesis of why the error-driven learning1013

4Specifically, on MBPP dataset, we obtain erroneous out-
puts of CodeGen-2B, revisions of the outputs, and samples in
MBPP. We concatenate the requirements with their code, input
them into CodeGen-2B, and extract the hidden representations
from the model’s final layer. Then, we compute the Euclidean
distances within the model’s representational space to quantify
the disparities between these three elements.

method is more efficient. 1014

Therefore, our work is determined to explore 1015

the use of error-driven learning to achieve a data- 1016

efficient adaptation method, aimed at enhancing the 1017

performance of LLMs in specific code generation 1018

scenarios. 1019

C Detailed Datasets 1020

MBPP (Austin et al., 2021) contains crowd- 1021

sourced Python programming problems, covering 1022

programming fundamentals. We selected the ver- 1023

sion in the work (Chen et al., 2023a), which con- 1024

sists of 276 problems and some generated error 1025

codes alongside their human-revised counterparts, 1026

thus facilitating subsequent experiments. 1027

HumanEval (Chen et al., 2021) is a widely-used 1028

code generation benchmark, containing 164 hand- 1029

written programming problems, proposed by Ope- 1030

nAI. Each programming problem includes a func- 1031

tion signature, a NL description, use cases, a cor- 1032

rect solution in Python, and several test tests. 1033

DS-pandas (Lai et al., 2023) comprises 291 1034

13

data science problems utilizing Pandas libraries,1035

sourced from real-world problems posted by devel-1036

opers on StackOverflow. This dataset can evaluate1037

the ability of LLMs to utilize specific data-analysis1038

libraries for code generation.1039

D Detailed Implementation Details1040

For full parameter fine-tuning, i.e., Fine-tuning1041

(Full) (Devlin et al., 2019), we use the AdamW opti-1042

mizer (Loshchilov and Hutter, 2017), with hyperpa-1043

rameters β1 = 0.9 and β2 = 0.9, accompanied by1044

a linear learning rate schedule. The initial learning1045

rate is set to 5e-6, with a batch size of 1 and gra-1046

dient accumulation of 32 steps for training across1047

10 epochs. For parameter-efficient fine-tuning, i.e.,1048

Fine-tuning (LoRA) (Hu et al., 2022), the learn-1049

ing rate is set to 2e-4. Additionally, the rank r is1050

adjusted to 128, and the scaling factor α is set at1051

8. All other hyperparameters remain aligned with1052

Fine-tuning (Full). For few-shot prompting (Brown1053

et al., 2020b), we set the number of examples in1054

prompt to 4. All baselines in the experiments use1055

consistent settings.1056

In the error code collection step (§2.1) and the1057

automatic code revision step (§2.2), we use temper-1058

ature (Holtzman et al., 2020; Ackley et al., 1985)1059

sampling to generate multiple samples: 5 samples1060

in the former and 30 in the latter, with the temper-1061

ature set to 0.8. To obtain the final revised code1062

in the automatic code revision step, we choose the1063

one of revised code exhibiting the minimum Lev-1064

enshtein distance (Levenshtein et al., 1966) to the1065

error code. The number of iterations is set to 2.1066

E Detailed Metrics1067

Following the practice of real software develop-1068

ment which utilizes testing for evaluation (Rupar-1069

elia, 2010; Abrahamsson et al., 2002), we employ1070

the Pass@k (Li et al., 2022) metric to measure the1071

functional correctness of the generated code by ex-1072

ecuting test cases. We use the unbiased version1073

(Chen et al., 2021) of Pass@k, where n >= k1074

samples are generated for each problem, count the1075

number of correct samples c <= n which pass test1076

cases and calculate the following estimator,1077

Pass@k = E
Problems

1 −

(
n − c

k

)
(
n
k

)
. (11)1078

For automatic code revision, we add the1079

pass@any metric which refers to the percentage1080

of tasks for which the model generates at least one 1081

correct code that passed all test cases. 1082

F Case Study 1083

We use the case study to qualitatively assess the 1084

effectiveness of automatic code revision (§2.2), 1085

i.e., SELF-REVISE (FSP) and SELF-REVISE (FT) 1086

employed by DEED, examples of which are pre- 1087

sented in Figure 5. Upon manual inspection of 1088

the outcomes produced by SELF-REVISE (FSP), 1089

two prevalent modification patterns are identified. 1090

First, the removal of redundant code is a common 1091

alteration. This includes the deletion of unneces- 1092

sary blocks such as “if name == ‘main’ ” and other 1093

test codes, which are often extraneous in the con- 1094

text of the desired output. Second, SELF-REVISE 1095

(FSP) exhibits a tendency to directly copy correct 1096

code samples from the prompt. In contrast, SELF- 1097

REVISE (FT) is capable of making minimal yet 1098

effective modifications to the model’s initial error 1099

code outputs, thereby generating the correct code. 1100

Based on the observations, SELF-REVISE (FT) is 1101

recommended as the more preferable method for 1102

automatic code revision within DEED. 1103

14

	Introduction
	Methodology
	Error Code Collection
	Automatic Code Revision
	Model Optimization
	Iterative Adaptation

	Evaluation
	Effectiveness of DEED
	The Effect of Different LLMs
	The Effect of Training Data Variants
	The Effect of Iterations
	The Effect of Revision with Other LLMs
	Ablation Study on Self-Revise

	Related Work
	Conclusion
	Limitations
	Algorithm of DEED
	Motivation Example
	Detailed Datasets
	Detailed Implementation Details
	Detailed Metrics
	Case Study

