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Abstract

Federated training of Graph Neural Networks (GNN) has become popular in
recent years due to its ability to perform graph-related tasks under data isolation
scenarios while preserving data privacy. However, graph heterogeneity issues in
federated GNN systems continue to pose challenges. Existing frameworks address
the problem by representing local tasks using different statistics and relating them
through a simple aggregation mechanism. However, these approaches suffer from
limited efficiency from two aspects: low quality of task-relatedness quantification
and inefficacy of exploiting the collaboration structure. To address these issues, we
propose FedGKD, a novel federated GNN framework that utilizes a novel client-
side graph dataset distillation method to extract task features that better describe
task-relatedness, and introduces a novel server-side aggregation mechanism that
is aware of the global collaboration structure. We conduct extensive experiments
on six real-world datasets of different scales, demonstrating our framework’s
outperformance.

1 Introduction

Federated training of Graph Neural Networks (GNN) has gained considerable attention in recent years
due to its ability to apply a widely used privacy-preserving framework called Federated Learning (FL)
[31, 21] to GNN training. This approach facilitates collaborative training among isolated datasets
while preserving data privacy. The protocol generally follows a typical federated learning approach,
whereby the server broadcasts a global GNN model to each client. Upon receiving the model,
each client trains the model using its local graph and transmits its local model to the server, which
then aggregates the local weights to obtain a new global model and initiates another round of the
broadcast-training-aggregation procedure. Throughout the process, the client-side graphs are kept
locally, thus safeguarding privacy. Federated GNNs have successfully addressed the challenge of
isolating graph data in real-life scenarios where organizations and corporations collect their private
graphs, restricting others from accessing them while seeking a collaborative training approach to
improve their personalized model performance.
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However, the effectiveness of federated GNN frameworks is limited by graph heterogeneity issues.
The isolated graph datasets exhibit significant variation, and thus, simple aggregation of all local
models leads to a degradation of model performance [33]. The recent developments of personalized
federated learning (PFL) [36, 1, 43, 3] have explored mechanisms that adapt to client heterogeneity
by allowing each client to train their personalized model while encouraging inter-client collaboration
through properly handling the collaboration structure among clients.

Although the PFL framework is effective in mitigating statistical heterogeneity issues, it is noteworthy
that graph heterogeneity issues are more severe than that in the independent setting. This is primarily
due to the complex nature of graphs that incorporate topology information. In particular, graph
heterogeneity encompasses not only the distributional discrepancy of node features but also the
presence of disparate graph structures [33]. To address this challenge, a range of graph-related
solutions have been proposed. However, the existing solutions for graph heterogeneity issues suffer
from limited efficiency due to two reasons:

Quality of task-relatedness quantification: It has been shown in recent studies [3, 48] that high-
quality characterizations of the collaboration structure among clients are crucial for the generalization
performance in PFL. Existing works on PFL over graphs rely on weights and gradients [42] or
graph embeddings with random input graphs [2]. The former involves similarity computation of
high-dimensional random vectors, which may be imprecise due to the curse of dimensionality [15],
while the latter one discards information related to local labels and losses expressivity.

Efficacy of exploiting collaboration structure: Another reason for unsatisfactory efficiency is the
inadequate handling of the collaboration structure, which is typically reflected in the personalized
aggregation mechanisms. Previous works base their aggregation procedures on pairwise relationships
among client tasks [2], which only exploit inter-client task relatedness locally. It is therefore of
interest to explore mechanisms that operate from a global point of view in a principled way.

To address the problems, we propose a novel Federated Graph Neural Network with Kernelized
aggregation of Distilled information (FedGKD) that achieves better utilization of the collaboration
among clients. This framework comprises two modules: A task feature extractor that utilizes
a novel graph data distillation method and a task relator that aggregates local models through a
mechanism that is aware of the global property of the collaboration structure inferred from the outputs
of the task feature extractor. Specifically, the task feature extractor devises a novel dynamic graph
dataset distillation mechanism that represents each local task by distilling local graph datasets into
size-controlled synthetic graphs at every training round, enabling efficient similarity computation
between clients while sufficiently incorporating local task information. The task relator first constructs
a collaboration network from the distilled task features and relates tasks through a novel aggregation
mechanism based on the network’s global connectivity, which measures the task-relatedness in a
global sense. As a summary, our contributions are:

• We propose a task feature extractor based on a novel dynamic graph data distillation method,
representing each local task with a distilled synthetic graph generated from all the local model
weights trained at each round. The task features extracted from distilled graphs contain both data
and model information, while also allowing for efficient evaluation of task-relatedness.

• We propose a task relator that constructs a collaboration network from the distilled graphs and
relates tasks by operating a novel kernelized attentive aggregation mechanism upon local weights
that encodes the global connectivity of the collaboration network.

• We conduct extensive experiments to validate that our framework consistently outperforms state-
of-the-art personalized GNN frameworks on six real-world datasets of varying scales under both
overlapping and non-overlapping settings.

2 Related Work

2.1 Federated Graph Representation Learning

In [33], the authors showed that naively applying FedAvg to distributed GNN training will result in
irreducible error under distinct client-side graph structures, which hampers convergence. A recent
line of work has been attempting to adopt personalization strategies for federated learning of graph
neural networks. For instance, [37] uses client-side adaptation by sharing only a sub-structure of the
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Figure 1: Overview of two modules in the proposed FedGKD framework.

client-side GNN. [47] equips each client with an auxiliary neighborhood generation task. [42] applies
a server-side adaptation strategy that dynamically clusters clients using intermediate gradient updates.
Moreover, [2] combines client-side and server-side adaptation methods and measures task similarity
using GNN outputs based on a common input random graph.

2.2 Personalized Federated Learning

The learning procedures of homogeneous federated learning [31, 21] are often considered as special
forms of distributed optimization algorithms like local SGD [41]. However, these methods have
been shown to suffer from client heterogeneity in terms of both convergence [22] and client-side
generalization [7, 48]. Personalized federated learning approaches have primarily focused on ad-
dressing the latter issue by incorporating adaptation strategies that can be deployed at the client
side, server side, or both. Client-side adaptation methods typically utilize parameter decoupling
paradigms that enable flexible aggregation of partial parameters [1, 32] or control the optimization
of local objectives by regularizing towards the global optimum [27]. However, these methods often
overlook the overall collaboration structure among the clients [3, 48]. It has been shown that with
a correctly-informed collaboration structure that precisely describes the task-relatedness between
clients, simple procedures can achieve minimax optimal performance [48]. On the other hand,
server-side adaptation methods aim to measure the task-relatedness among clients and derive refined
aggregation mechanisms. [3] utilize tools from transfer learning theory to conduct an estimating
procedure that clusters clients into subgroups. [46, 43] propose to optimize collaboration among
clients on-the-fly by solving a quadratic program at the server-side during each aggregation step. It is
important to note that server-side adaptation methods often involve the transmission of additional
information other than the model parameters.

2.3 Dataset Distillation

The method of dataset distillation [40] was originally proposed as a way to improve training efficiency
by distilling a large dataset into a significantly smaller one while keeping model performance almost
intact. Later developments generalized the approach to graph-structured data [20, 19]. A notable
property of dataset distillation is that the distilled datasets are observed to exhibit good privacy
protection against empirically constructed adversaries [9]. This empirical property has also lead to
innovations in one-shot federated learning [49], which is very different from the setups in PFL and is
considered an orthogonal application.

3 Preliminaries

3.1 Graph Neural Network

Consider a graph G = (V,E), where V represents the node set and E represents the edge set. The
graph is associated with a node feature matrix X ∈ R|V |×D. We can use Graph Neural Networks
(GNN) to embed nodes in the graph with low dimensional vectors. An L-layer GNN in the message
passing form [12, 44] is recursively defined in (1), where hl

u represents the embedding of node u
output from the l−th GNN layer, UPD is a function that generates embeddings based on the former
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layer outputs, AGGR is a function that aggregates the embeddings together and N (u) represents the
set of neighboring nodes of node u.

hl
u = UPDl[hl−1

u , AGGl({hl−1
v : v ∈ N (u)})]. (1)

In general, the outputs of L−th GNN layers are passed through a customized READOUT layer to
accomplish various graph-related tasks. For instance, in node classification tasks, a simple READOUT
layer can be selected as a linear layer with the number of categories as the output dimension.

3.2 Federated Learning

Federated Learning (FL) was introduced to address data isolation issues while preserving privacy
[31]. It enables collaborative training among clients without exposing raw datasets. A typical FL
framework consists of three stages: (1) model initialization, where the server broadcasts initial model
weights to all clients; (2) local training, where each client trains a local model using the initial
model weights and its own dataset, and uploads the local model to the server; (3) global aggregation,
wherein the server aggregates the local models into one or more new models and broadcasts the result
to each client to initiate the next training round. The FL procedure typically alternates between stage
(2) and (3) until convergence.

4 Problem Formulation

A personalized federated GNN framework aims to collaboratively learn local GNN models in a
privacy-preserving manner. This allows the local models to fit their respective local datasets while
leveraging information from other clients to improve sample efficiency. In the system, there are
n clients and one server. Each client stores a local graph dataset Gi = (Vi, Ei,Xi), where Vi

represents the node set, Ei represents the edge set, Xi ∈ R|Vi|×D contains the node features, and [n]
denotes the set of positive integers from 1 to n. Within the system, the n clients train n GNN models
f(Gi;Wi), i ∈ [n], with the same structure but different parameters Wi, i ∈ [n]. Additionally, we
assume that the prediction function f = g ◦ h is composed of an L-layer message passing GNN
module h with a hidden dimension of d, and a READOUT module g that maps the node embedding
extracted by h to downstream task predictions. The goal of a personalized federated GNN framework
is formulated as

min
Wi∈Ωi,i∈[n]

n∑
i=1

L(f(Gi;Wi),yi) (2)

where L is the loss function, and yi contains all the labels belonging to client i. To encourage
collaboration among clients, the parameter spaces Ωi, i ∈ [n], are usually assumed to be related [10].
The precise structure of this relation is sometimes implicit and instead reflected in the optimization
procedure [6]. Under the graph representation learning setup, we require Ωi to capture the relatedness
between corresponding tasks, taking into account the topological structure of the graph [13], as
well as feature and label information. Additionally, we impose an extra constraint to ensure that
local models do not deviate significantly from each other. This is achieved by adding a proximal
regularization term that prevents overfitting to local data, which has been shown to benefit many
federated learning procedures [28, 27].

5 Design

5.1 Overview

In this section, we provide a detailed introduction to our personalized federated graph learning
framework, which aims to address two major problems:

• How to extract task features from the local dataset Gi and local model parameters Wi?
• How to relate local tasks with each other using the task features to aggregate Wi?

To address the first question, we propose a feature extractor based on dataset distillation, as illustrated
in Fig. 1a, that captures all the information within the local model. The feature extractor generates a
small graph in each round based on the current local model weights. To mitigate graph heterogeneity,
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the server distributes a common initial graph to all clients, preventing significant deviations among
the distilled graphs.

To address the second question, we draw insights from recent advancements in kernel formulations
of self-attention [38, 5]. We view the personalized aggregation process as an attentive mechanism
operating on the collaboration network among clients. We observe that several contemporary
aggregation schemes overlook the global task relatedness. Leveraging tools from kernel theory,
we derive a refined aggregation scheme based on exponential kernel construction that effectively
incorporates global information, as shown in Fig. 1b.

5.2 Task Feature Extractor

5.2.1 Motivation

It is well known in the theory of multi-task learning [14, 10] that correct specifications of task related-
ness may fundamentally impact the model performance, which has also been recently discovered in
PFL [48]. In hindsight, the ideal characterization of a (local) graph representation learning task might
be either the joint distribution of the local graph, feature and label variables; or the Bayes optimal
learner dervied from the joint distribution [48]. However, none of this information are available
during FL, and various surrogates have been proposed in the context of graph PFL that extracts task
features from the (local) empirical distribution and the learned model.

The most ad-hoc solution is to use weights [29, 46] and gradients [34], which are typically high-
dimensional (random) vectors. However, computing their relations using metrics like Euclidean or
cosine similarity can be unreliable due to the curse of dimensionality phenomenon [15], as empirically
validated in [2]. As a notable state-of-the-art model, FedPUB [2] uses low-dimensional graph
embeddings that are produced by passing a shared random graph between clients. However, since
the embedding computation only involves message passing GNN layers, the resulting embeddings
are incomplete, as they fail to represent the READOUT layer that follows these GNN layers. The
READOUT layer encodes label-related information. This limitation is significant when two datasets
share similar graph distributions but have divergent label distributions. This can result in two local
models with similar GNN layer weights but different READOUT layer weights. In such cases, the
embeddings, which are outputs of similar GNN layers, cannot distinguish between the two datasets.
We conducted a small experiment to validate this point, which is elaborated in Appendix C.

To address the challenges encountered in PFL frameworks, we leverage graph dataset distillation, a
method that simultaneously compresses the local data distribution and the learned local model into a
size-controlled small dataset that is comparable across all client tasks. In the following sections, we
will introduce dataset distillation and explain how we incorporate it into our framework.

5.2.2 Dataset Distillation

Dataset distillation [40] (DD) is a centralized knowledge distillation method that aims to distill large
datasets into smaller ones. For client i, a distilled dataset (Gs

i ,y
s
i ) is defined such that a neural

network model trained on Gs
i can achieve comparable performance to the one trained on the original

dataset Gi, as formulated in (3).

min
Gs

i ,y
s
i

L(f(Gi;W
s
i ),yi) s.t. Ws

i = min
W′

i

L(f(Gs
i ;W

′
i),y

s
i ) (3)

According to previous studies [20], many datasets can be distilled into condensed ones with sizes
that are only around 1% of the original dataset while still preserving model performance. Moreover,
it has been empirically reported that distilled datasets offer good privacy protection [9].

Based on this observation, we propose using statistics of the distilled local datasets as features that
describe local tasks and obtain task-relatedness by evaluating the similarities between distilled dataset
characteristics. As a straightforward adaptation of vanilla DD to federated settings, we may conduct
isolated distillation steps before the federated training and fix the estimated task-relatedness during
federated training. This strategy could be implemented using off-the-shelf DD algorithms on graphs
[20, 19]. However, the quality of the distilled local datasets may be affected by (local) sample quality
and quantity. Since PFL approaches typically improve local performance, we propose a refinement of
the aforementioned static distillation strategy that allows clients to distill their local datasets during
the federated training process, resulting in a series of distilled datasets Gs,t

i ,ys,t
i t ∈ [T ] for each
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client i, with its corresponding distillation objective at round t being:
min

Gs,t
i ,ys,t

i

L(f(Gs,t
i ;Wt

i),y
s,t
i ). (4)

Apart from its capability to adapt to the federated learning procedure, the objective (4) is com-
putationally more efficient than the vanilla DD objective (3) as it avoids the bi-level optimization
problem, which is difficult to solve [40]. Instead, the objective (4) leverages the strength of the
federated learning process, which usually produces performative intermediate results after a few
rounds of aggregations. We refer to (4) as a dynamic distillation strategy. Next, we present a detailed
implementation of the proposed dynamic distillation procedure.

5.2.3 Implementation

There are two algorithmic goals regarding the implementation of (4): Firstly, the distilled datasets
should allow efficient similarity comparisons. Secondly, the problem should be efficiently solved so
that the extra computation cost for each client is controllable. Note that both goals are non-trivial
since the optimization involves a graph-structured object that is not affected by permutations, resulting
in alignment issues when performing similarity computation. The solution is detailed in Algorithm 2
in Appendix A. Specifically, at each round t ∈ [T ], the size of the distilled graph across all clients
will be fixed at m × C, where m represents the number of representative nodes in each category.
The server first initializes node features X0, with each entry drawn independently from a standard
Gaussian distributionN (0, 1). The initial labels y0 are set to ensure that there are m nodes belonging
to each category. The tuple (X0,y0) is broadcast to each client as the initial value of their local
objectives, while the construction of the distilled graph structure is left to the clients’ side to reduce
communication cost. This common initialization technique alleviates the alignment issue between
distilled graphs.

After each client receives the initial features X0 and labels y0, it begins to update the features
and labels. Since directly optimizing the graph structure (i.e., among the space of possible binary
matrices) is computationally intractable, we use the following simple generative model that describes
the relationship between node features and edge adjacency for the distilled graph: For a pair of nodes
(regarding the distilled graph) u and v with features xs

u and xs
v , the probability of them being adjacent

is given by

P[As
uv = 1] =

e⟨x
s
u,x

s
v⟩−γ

1 + e⟨x
s
u,x

s
v⟩−γ

, (5)

where γ > 0 is a hyperparameter that controls edge sparsity. 1 Construction of the distilled
graph involves sampling from the above distribution, which is not differentiable. Hence we adopt
the Gumbel-softmax mechanism [18, 30] to generate approximate yet differentiable samples. In
particular, for each u, v, we first draw two independent samples ω and ω′ from the standard Gumbel
distribution. Next, we compute the following approximation:

puv(τg) =
e(⟨x

s
u,x

s
v⟩−γ+ω−ω′)/τg

1 + e(⟨x
s
u,x

s
v⟩−γ+ω−ω′)/τg

, (6)

which adopts a distribution limit limτg→0 puv(τg)
d
= As

uv. In practice, we use the straight-through
trick [18] to obtain discrete samples from (6) while allowing smooth differentiation. We denote the
distilled graph as Gs = (Xs,P) with P being the (approximated) adjacency matrix, with each entry
derived from (6).

We utilize the local model weights to assess how well the distilled dataset fits the model and update
Xs and ys based on the same classification loss as each client’s local learning objective. In practice,
we have found that a few steps of gradient updates suffice for the learning performance. After
obtaining the distilled graph, we extract task features M t

i i∈Vc
for client i at round t as follows:

Mt
i =

[
Xs,t

i

∥∥∥Hs,t
i

]
, Hs,t

i := h(Gs,t
i ,Wt

i). (7)

Note that although the distilled labels are not included in the task feature, the label information is
fused into Xs during the distillation process. We will present an empirical study regarding other
potential choices of task feature maps in section F.5.

1This construction is inherently homophilic. In principle, one could propose more sophisticated generative
mechanisms with learnable parameters, but this may increase the computational cost of distillation. Experimen-
tally, we have found this simple construction to be quite effective.

6



5.3 Task relator

5.3.1 Motivation

We represent the estimated relationship among tasks using a time-varying collaboration network
Gt

c = (Vc,R
t), where t ∈ [T ], Vc = [n], and Rt ∈ Rn×n represents the time-dependent task

relation matrix. The entry rtij measures the task-relatedness between client i and client j, obtained by
computing similarities of their corresponding task features Mt

i and Mt
j . This idea has been adopted

in some recent PFL proposals [6, 46].

Since the matrix Rt encodes pairwise relationships among client tasks, it offers great flexibility in
defining personalized aggregation protocols. We formulate the protocols as the following expectation:

Wt
i ← Ej∼qi

[
Wt

j

]
(8)

where qi is a client-specific distribution over [n], with a trivial case of uniform distribution that
corresponds to the aggregation rule in FedAVG. The above formulation is closely connected to
the self-attention mechanism [39]. In particular, inspired by recent developments that generalize
self-attention using kernel theory [38], we parameterize qi using a kernel-induced distribution:

qi[j] =
k(i, j)∑

j′∈[n] k(i, j
′)
, (9)

where k(·, ·) is a kernel function.

The most straightforward choice would be the softmax kernel [8] that uses the exponentiated edge
weights k(i, j) = erij . However, this method disregards other weights, resulting in a kernel function
that only takes local connectivity in the collaboration network into account, overlooking global
connectivity. We illustrate this point using the example in Fig. 2, where a collaboration network
with three vertices has weighted links of r12 < r23 = r13. If we directly use rij and normalize
them, the average local model weights Wt

1 will be very close to Wt
3 and far from Wt

2. However,
the relation between node 1 and 2 is much stronger than what the quantity r12 indicates, as they are
also linked by another two-hop path comprising two heavily-weighted edges (1, 3) and (2, 3). A
recent work [6] attempts to capture information beyond local task pairs by incorporating a GNN-like
mechanism over a sparsified collaboration network. This approach aims to integrate more information
through a few rounds of message passing. While the approach in [6] extends the scope of similarity
evaluation, it still operates in a local sense due to the finiteness of message passing rounds and
the inherent limitation of oversmoothing phenomenon. To address this limitation, our framework
proposes a novel kernel function that incorporates all the global connectivity. Specifically, our
kernel extracts connectivity at hops from 1 to infinity while favoring connectivity with fewer hops.

0.01

0.9 0.9

v1 v2

v3

(a) local connectivity

0.18

0.79 0.79

v1 v2

v3

(b) global connectivity

Figure 2: Comparison of local and global connectivity

5.3.2 Construction
of the task relator

According to the previous discussions,
implementing the task relator involves
the design of two modules: A collab-
oration graph construction procedure
based on the extracted task features
{M t

i }i∈Vc
and a global-connectivity-

aware aggregation mechanism.

To form the collaboration graph, we use the following feature-wise average correlation as the pairwise
task-relatedness:

rtij =
1

d+D

d+D∑
k=1

corr
(
Mt

i[:, k],M
t
j [:, k]

)
, (10)

where corr stands for Pearson’s correlation coefficient[26]. Next we discuss the construction of the
global-connectivity-aware aggregation mechanism. Inspired by the property of exponential kernels
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[25] that translates local structure into global ones, we use an element-wise exponentiated matrix
exponential with two temperature parameters τ and τs:

k(i, j) = eτssij ,S = {sij}i∈V,j∈V = eτR =

∞∑
κ=1

1

κ!
(τR)κ. (11)

From the right hand side of (11), we may interpret si,j as encoding the relatedness of client i and
j via conducting infinite rounds of message passing, thereby reflecting their global connectivity
structure. Then, k(i, j) scales the global connectivity into R+ range for further normalization into the
client-specific distribution qi over [n]. The parameter τ is used to control the level of personalization,
where τ → 0 indicates no personalization (FedAVG) and τ → ∞ indicates local training. The
parameter τs strikes a balance between the contribution of local and global information. It is worth
noting that there are other notions of global connectivity measures, such as effective resistance
[4], which are also applicable. However, here we stick to the matrix exponential due to its loose
requirements of arbitrary local similarity R. We will prove in appendix G that the function k in (11)
is a valid kernel over the domain [n].

6 Experiments

This section presents the empirical analysis of our framework, which includes a performance compar-
ison, convergence analysis, and multiple ablation studies.

6.1 Experiment Setup

6.1.1 Datasets

We have tested the performance on six different graph datasets of varying scales: Cora, CiteSeer,
PubMed, Amazon Computer, Amazon Photo, and Ogbn arxiv [45, 35, 17]. To split each graph
into subgraphs, we employed the Metis graph partition algorithm following the setup in [2]. Each
client stores one subgraph from the original graph. We have conducted a node classification task by
sampling the vertices into training, validation and testing vertices according to ratio 0.3, 0.35 and
0.35 before splitting. Appendix D.1 provides detailed descriptive statistics of the datasets.

6.1.2 Baselines

We compared our framework with eight different baselines, categorized into four types: (1) Local,
which serves as the standard baseline without federated learning; (2) Two traditional FL baselines,
including FedAvg [31] and FedProx [28]; (3) One state-of-the-art personalized FL baseline, FedPer
[1]; (4) Four state-of-the-art personalized federated GNN baselines, including FedPub [2], FedSage
[47], GCFL [42], and FedStar [37]. For detailed introductions of the baselines, please refer to
Appendix D.2.

6.2 Implementation Details

We utilize a two-layer GCN [24] followed by a linear READOUT layer. The dimension of the
embeddings is set to 128. To optimize learning, we employ the Adam optimizer with weight decay
10−6 [23]. The smoothing parameter τg in Gumbel-softmax is set to 1, following the technique in
[18]. To monitor the training progress, we use an early-stop mechanism. If the validation accuracy
decreases for 20 consecutive rounds, the FL framework stops immediately. Each experiment is
conducted over 3 runs with different random seeds. Implementation of all methods is done using
PyTorch Geometric [11] on an NVIDIA Tesla V100 GPU. For further details, please refer to Appendix
D.3.

6.3 Results

6.3.1 Performance Comparison

We evaluate the node classification performance of various frameworks using six real-world datasets
of differing scales. Table 1 present the average test accuracy and its standard deviation for non-
overlapping settings. As for the results on overlapping settings, please refer to Table 5 in Appendix
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E. Our framework consistently outperforms all other methods across all datasets. Traditional FL
baselines, such as FedAvg and FedProx, which lack local adaptation, are consistently inferior to our
Local framework in multiple scenarios. Despite using local task statistics for personalization, the
feature extraction schemes of FedPer, FedStar, FedSage, and GCFL are less effective and perform
worse than our framework. FedPub performs worse than our method due to the absence of information
contained in local READOUT layers when describing tasks and inefficient exploitation of the global
collaboration structure.

Dataset Cora CiteSeer PubMed

# Clients 5 10 20 5 10 20 5 10 20

Local 80.44±1.77 79.58±1.07 79.46±0.51 71.28±1.32 68.93±0.79 70.49±0.88 84.98±0.67 83.34±0.42 82.92±0.41

FedAvg 72.91±6.59 69.23±1.03 47.79±2.61 72.43±0.99 70.33±1.37 67.18±1.17 82.02±0.15 83.17±1.35 76.50±0.20
FedProx 63.96±3.07 71.39±4.16 70.88±5.90 73.63±0.85 42.86±2.59 42.31±3.18 83.99±0.17 83.57±0.09 83.93±0.89

FedPer 81.37±1.58 76.73±0.95 77.24±1.62 70.45±2.00 67.14±6.95 71.13±0.76 85.59±0.18 85.42±0.12 83.75±0.14

FedPub 82.33±1.46 78.27±1.46 79.15±1.08 74.11±1.58 72.12±1.83 68.16±1.41 86.22±0.21 85.58±0.31 84.79±0.46
FedSage 72.07±0.36 69.66±0.27 59.28±0.38 70.64±3.04 65.54±6.95 63.02±1.49 84.64±0.60 83.39±1.29 84.92±0.45
GCFL 79.91±1.93 73.25±4.39 76.37±1.82 71.37±2.54 67.58±0.61 63.54±3.34 84.24±0.57 83.47±0.29 83.72±0.47
FedStar 79.33±0.69 78.26±0.22 80.40±0.30 69.47±1.77 70.25±1.26 68.50±0.68 81.96±0.96 81.39±0.17 80.15±0.66

Ours 83.37±1.59 80.06±1.27 81.17±0.63 75.25±1.38 74.18±1.14 71.17±1.69 87.05±0.19 86.53±0.73 86.38±0.30

Dataset Amazon Photo Amazon Computers Ogbn Arxiv

# Clients 5 10 20 5 10 20 5 10 20

Local 77.97±0.29 86.14±1.05 86.37±0.17 65.90±0.29 74.41±1.51 81.81±0.50 56.93±0.89 56.54±0.37 57.79±0.89

FedAvg 53.49±5.87 45.82±1.88 35.15±1.03 46.03±1.93 39.04±3.68 43.74±8.15 55.84±0.88 61.02±0.32 59.30±0.18
FedProx 71.08±3.11 56.78±4.31 44.61±5.89 37.72±0.94 36.44±0.35 36.89±0.27 62.05±1.10 61.77±0.78 57.79±0.26

FedPer 68.19±1.68 77.15±0.14 78.96±0.68 64.30±0.34 64.47±0.20 70.44±0.57 61.57±0.50 61.52±0.37 62.73±0.26

FedPub 86.76±1.71 87.80±2.44 88.72±3.09 68.65±2.53 77.02±0.87 80.71±0.79 67.50±0.32 66.80±0.32 62.11±0.56
FedSage 51.28±7.30 51.68±7.28 51.39±7.22 42.88±5.23 50.41±7.84 57.06±0.42 58.63±1.29 61.65±0.45 54.86±1.77
GCFL 68.17±8.37 82.74±3.15 87.55±2.28 55.36±2.50 72.53±1.38 82.87±1.83 59.75±3.46 63.63±0.36 55.35±4.58
FedStar 85.67±0.31 86.85±0.09 87.60±0.68 71.88±1.70 78.81±1.41 83.42±0.73 58.96±0.82 60.77±0.46 61.36±0.14

Ours 89.16±0.04 88.83±0.85 89.53±0.73 72.75±2.16 82.68±0.73 84.23±0.41 68.52±0.14 67.87±0.27 65.27±0.51

Table 1: Node classification performance (%) on non-overlapping datasets

6.3.2 Convergence Analysis
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Figure 3: Convergence plot for the non-overlapping setting with 5 clients. We visualize the first 100
communication rounds.

Fig.3 illustrates the convergence behavior of the average test accuracy over the first 100 rounds
with 5 clients in the system. It is evident that our proposed framework exhibits a rapid convergence
rate towards the highest average test accuracy. This can be attributed to the framework’s ability to
efficiently capture the local task features and identify pairwise relationships.

6.3.3 Additional experiments

We conduct extensive sensitivity analysis and ablation studies for our framework in Appendix F,
which shows the outperformance of each module in our framework.

7 Conclusion

Our paper proposes a novel framework that overcomes the limitations of existing federated GNN
frameworks in local task featuring and task relating. We utilize graph distillation in task featuring,
and introduce a novel kernelized attentive aggregation mechanism based on a collaborated network
to incorporate global connectivity during model aggregation. The extensive experimental results
demonstrate that our framework outperforms state-of-the-art methods.
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Appendix

A Algorithm

We present the algorithm of FedGKD framework in Alg.1.

Algorithm 1 FedGKD Framework

Input: Local datasets {Gi};
Output: Personalized local models {WT

i };
1: Server
2: for t = 1, · · · , T do
3: if t > 1 then
4: Receive local GNN models {Wt

i}
5: Run task feature extractor;
6: Get distilled node features {Xs,t

i } and their embeddings Hs,t
i ;

7: Construct a collaboration network Gc,t;
8: Kernelize Gc,t to get a matrix S using (11);
9: Aggregate local parameters into {Wt

i}
10: end if
11: Send GNN models {Wt

i} to each client;
12: Request each client to train local models;
13: end for
14:
15: Client i
16: Receive Wt

i from the server;
17: W t

i ←Wt
i ;

18: for e = 1, · · · , Et do
19: Update Wt

i with the loss function L(f(Gi;W),yi) + λ||W −Wt
i ||22;

20: end for

Algorithm 2 Task Feature Extractor

Input: Local model weights {Wt
i};

Output: Distilled node features {Xs,t
i } and their embeddings Hs,t

i ;
1: Server
2: Receive local GNN models {Wt

i} from each client;
3: Initialize node features X0 ∼ N (0, 1);
4: Initialize labels y0;
5: Send X0,y0 to each client;
6: Receive distilled node features {Xs,t

i } and their embeddings Hs,t
i from each client;

7:
8: Client i
9: Receive X0 and y0 from the server;

10: Xs,t
i ← X0; ys,t

i ← y0;
11: Convert ys,t

i into one-encoding form;
12: for e = 1, · · · , Ed do
13: Use Gumbel-softmax to sample edges using (6);
14: Compute loss L(f(Gs,t

i ;Wt
i),y

s,t
i );

15: Update Xs,t
i and ys,t

i ;
16: end for
17: Send Xs,t

i and their embeddings to the server;
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B Complexity considerations

In comparison to vanilla FedAVG, the proposed framework requires additional local computations,
a server-side matrix exponential operation, as well as extra communication costs. Let us briefly
discuss the complexity of these procedures. Firstly, the dataset distillation procedure operates
on small-scale graphs, making the total computation cost negligible compared to local training.
Secondly, the matrix exponential operation upon R has a time complexity of O(n3). This complexity
is controllable in practice since the number of clients, n, is typically small or moderate. Finally,
the extra communication cost per client per aggregation step depends on the formulation of the
task feature map. According to (7), the extra communication cost is O(bmC(d +D)), where b is
the number of bits required to represent a floating-point number. This cost is comparable to the
communication cost of a GNN. It is noteworthy that since GNN models are typically shallow, the
communication cost of parameters is often dominated by the computation cost of local training.
Moreover, the communication cost can be further reduced if a more compact task feature, such as the
distilled graph embedding, is used. We will empirically investigate such alternatives in section F.5.

C Motivation study on limitation of embeddings

(a) Embeddings on Cora
with the original labels

(b) Embeddings on Cora
with relabelled nodes

Figure 4: Embedding spaces (depicted using two
leading principle components) trained on two same
graphs with divergent labels: vertices belonging to
the same community have the same color.

As discussed above, embeddings fail to rep-
resent the READOUT layers following GNN
layers in each model, discarding information.
We visualized the embeddings for GCN layers
trained on two datasets with similar graph distri-
butions but divergent label distributions in Fig.
4. To be more specific, we trained node em-
beddings on the original Cora graph [45] and a
revised Cora graph in which the label yv ∈ [C]
of any node v is modified to C + 1− yv , where
C = 7 is the number of classes in Cora. The
results show that the two embedding spaces are
similar, as vertices belonging to the same com-
munity are located in similar positions in the
space, as shown in Fig. 4.

D Experiment Setup

D.1 Datasets

We display the graph statistics in Table 2. The 6 graphs are of different scales and have different
clustering coefficients.

Dataset Cora CiteSeer PubMed Amazon Photo Amazon Computers Obgn Arxiv

# Nodes 2,485 2,120 19,717 7,487 13,381 169,343
# Edges 10,138 7,358 88,648 238,086 491,556 2,315,598
# Features 1,433 3,703 500 745 767 128
# Categories 7 6 3 8 10 40
Clustering 0.238 0.170 0.062 0.411 0.351 0.226

Table 2: Original Graph Statistics

For non-overlapping and overlapping datasets, we display their average clustering coefficents and
heterogeneity measured by medians of the client-wise label Jensen–Shannon divergences. Generally,
a larger number of clients in the federated system leads to more heterogeneous local graphs.

To create federated datasets with overlapping vertices, we first use Metis graph partitioning algorithm
to split the full graph into ⌊n5 ⌋ subgraphs. Then we randomly sample a half of the vertices from each
subgraph for 5 times to create 5 graphs with overlapping vertices. After operating the same procedures
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Dataset Cora CiteSeer PubMed

# Clients 5 10 20 5 10 20 5 10 20

# Nodes 497 249 124 424 212 106 3,943 1,972 986
# Edges 1,871 891 424 1,411 673 327 16,411 7,557 3,616
Clustering 0.250 0.261 0.266 0.176 0.177 0.181 0.063 0.066 0.068
Heterogeneity 0.304 0.358 0.391 0.142 0.229 0.255 0.087 0.097 0.119

Dataset Amazon Photo Amazon Computers Obgn Arxiv

# Clients 5 10 20 5 10 20 5 10 20

# Nodes 1,497 749 374 2,676 1,338 669 33,868 16,934 8,467
# Edges 42,930 19,294 8,300 84,202 35,589 24,577 406,896 182,758 86,150
Clustering 0.431 0.458 0.478 0.383 0.405 0.418 0.245 0.255 0.268
Heterogeneity 0.470 0.546 0.568 0.350 0.373 0.460 0.372 0.398 0.412

Table 3: Non-overlapping Dataset Statistics

for all the ⌊n5 ⌋ subgraphs, we consider the resulted n graphs belonging to different community but
with overlapping vertices as the n local datasets. The dataset statistics of the overlapping datasets are
shown in Table 4. Overlapping datasets suffer from great losses of edges compared with the global
graph. In general, a small number of clients leads to a large number of missing edges.

Dataset Cora CiteSeer PubMed

# Clients 10 30 50 10 30 50 10 30 50

# Nodes 621 207 124 530 176 106 4,929 1,643 986
# Edges 752 246 141 590 184 104 6,494 2,090 1,158
Clustering 0.069 0.087 0.080 0.053 0.056 0.050 0.020 0.021 0.022
Heterogeneity 0.176 0.310 0.358 0.230 0.215 0.225 0.153 0.090 0.089

Dataset Amazon Photo Amazon Computers Obgn Arxiv

# Clients 10 30 50 10 30 50 10 30 50

# Nodes 1,872 623 374 3,345 1,115 669 42,336 14,112 8,467
# Edges 18,311 5,591 2,987 36,597 10,283 5,516 175,717 51,520 28,487
Clustering 0.291 0.297 0.307 0.256 0.258 0.268 0.122 0.127 0.131
Heterogeneity 0.310 0.416 0.535 0.316 0.422 0.344 0.371 0.363 0.507

Table 4: Overlapping Dataset Statistics

D.2 Baselines

We have compared the performance of our framework with 8 baselines. We will introduce the
baselines briefly.

• Local: A local learning framework in which each client trains a model upon the local dataset
without any collaboration.

• FedAvg: Clients send the local weights to the server and the server averages all the weights to
initiate next round training.

• FedProx: Clients train the local models based on a local loss function added by a regularization
term with importance hyper-parameter 0.001.

• FedPer: Clients only send the GCN layers to the server without uploading READOUT layer
weights.

• FedPub: Server computes n graph embeddings from a randomized graph input to feature each task
and aggregates the weights according to the graph embeddings.
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• FedSage: Clients learn a GraphSage model and aggregate weights according to FedAvg framework.
• GCFL: Server cluster clients into groups so that clients belonging to the same groups aggregate

weights together. We use the recommended parameters in the paper [42].
• FedStar: Clients decouple the node embeddings into shared structural embeddings and local

embeddings. Clients only upload the GNN weights generating structural embeddings for server to
aggregate. We use the recommended parameters in the paper [37].

D.3 Parameter Configuration

We perform a hyperparameter tuning using a grid-search method within the following range:

• Learning rate: {0.005, 0.01};
• Number of local training epochs: {1, 3, 5, 7};
• Sparsity control γ: {0.001, 0.75, 1.5, 2.5, 5.0};
• Temperature on element-wise exponential τs: {1, 3, 5, 7, 9};
• Temperature on matrix exponential τ : {0.05, 0.1, 0.25, 0.5, 0.75, 1.0};
• Weights on proximal term λ: {10−5, 10−3}.

E Performance Comparison on Overlapping Datasets

Dataset Cora CiteSeer PubMed

# Clients 10 30 50 10 30 50 10 30 50

Local 46.88±1.23 66.45±0.81 70.32±0.68 51.42±1.75 59.06±1.64 61.40±1.45 76.75±0.20 77.46±0.20 76.02±0.33

FedAvg 49.75±1.32 46.20±2.67 43.48±3.97 54.79±2.86 54.14±1.41 57.52±1.98 78.53±0.68 80.99±0.26 79.53±0.06
FedProx 50.79±2.00 54.72±5.21 62.11±2.02 56.31±5.81 59.41±0.68 63.29±1.21 77.32±0.88 80.99±0.51 79.60±0.21

FedPer 52.83±0.55 67.15±0.85 70.27±0.34 57.14±1.45 62.21±1.80 63.26±1.95 79.85±0.31 80.59±0.06 80.28±0.13

FedPub 52.58±1.51 67.30±0.99 42.81±5.70 56.06±2.29 62.12±0.49 64.18±1.88 79.70±0.21 80.97±0.22 80.56±0.23
FedSage 49.25±0.50 59.42±1.03 59.99±0.23 55.54±6.95 55.63±7.00 62.73±1.09 77.87±0.50 80.97±0.24 79.36±0.73
GCFL 49.52±0.33 46.78±4.32 45.55±6.03 56.03±2.04 53.91±0.38 56.43±0.41 76.03±2.04 79.58±0.13 78.68±0.15
FedStar 43.09±0.72 61.60±0.30 67.77±1.25 46.45±0.17 54.78±2.12 58.96±1.81 75.45±0.14 76.45±0.43 74.71±0.52

Ours 53.26±1.42 67.88±1.09 70.41±0.51 58.19±1.82 62.30±1.33 64.58±0.55 79.90±0.53 81.65±0.34 80.82±0.20

Dataset Amazon Photo Amazon Computers Ogbn Arxiv

# Clients 10 30 50 10 30 50 10 30 50

Local 46.57±0.15 69.25±0.25 79.42±0.34 51.82±0.62 65.69±0.94 68.57±0.35 34.76±0.50 46.98±0.18 47.45±0.19

FedAvg 43.10±2.68 44.75±4.82 46.38±1.07 44.45±0.26 52.93±1.05 53.91±0.57 41.40±0.46 44.22±0.80 43.74±2.60
FedProx 43.58±2.05 45.29±0.53 42.76±5.23 42.59±4.17 53.58±1.56 53.91±0.57 41.35±0.20 44.68±0.62 47.02±0.52

FedPer 52.20±0.99 71.76±0.57 81.65±0.06 55.04±0.33 67.55±1.42 68.79±0.51 38.77±0.44 47.46±0.18 50.51±0.15

FedPub 45.69±2.10 64.50±0.48 76.58±0.85 50.15±1.57 60.81±0.52 63.82±0.62 42.18±0.36 50.58±0.21 51.11±0.56
FedSage 47.79±0.76 58.26±2.35 58.99±1.58 47.98±0.84 56.82±0.43 63.13±0.86 42.18±0.11 45.43±0.40 46.08±0.27
GCFL 46.93±0.55 48.95±0.48 40.76±8.08 56.02±1.04 58.38±2.16 52.97±1.74 41.32±0.23 46.26±1.12 46.16±0.34
FedStar 39.05±0.43 64.51±0.28 77.35±0.69 47.93±0.82 61.67±1.01 64.34±0.71 40.92±0.13 44.28±0.19 45.27±0.35

Ours 56.07±1.44 72.15±0.49 81.91±0.29 56.56±0.15 68.43±0.28 69.11±1.07 43.02±0.04 48.32±0.14 52.38±0.12

Table 5: Node classification performance (%) on overlapping datasets

F Sensitivity Analysis and Ablation Study

F.1 Effects of the proposed task relator

The primary goal of this study is to investigate the benefits of incorporating the global information.
Specifically, we tested with FedGKD along with two local variants obtained via replacing the matrix
S in (11) on the Cora dataset. The local variant corresponds to the standard softmax kernel that
sets S = R. The square variant corresponds to setting S = R2, which can be understood as
performing a two-layer message passing. As shown in Fig.5, we observe that incorporating global
information leads to improved federated learning performance, especially when the number of
clients is large. This implies that inter-client information is more complicated, and the proposed
task relater provides a more nuanced solution. Furthermore, we also compare these variations with
FedPub framework and observe that even using local connectivity generated from distilled datasets
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Figure 6: Effects of sparsity con-
trol coefficient γ
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Figure 7: Effects of temperature
on element-wise exponential τs

instead of graph embeddings on a random graph input to relate tasks, our framework outperforms
FedPub. This suggests that distilled graphs are more representative than graph embeddings due to
their incorporation of READOUT layers.

F.2 Effects of Sparsity-controlling Coefficient γ

We conduct an ablation study on Cora to assess the impact of the sparsity control coefficient
γ in distilled graphs. A larger γ generates a more sparse distilled graph. We vary γ across
{10−3, 0.75, 1.5, 2.5, 5} to test the effect. Our findings show that the optimum value for γ in
our framework is 0.75. We hypothesize that distilled graphs’ density is influenced by the constraint
of containing few nodes, as a sparse small graph results in almost no connections. This observation is
consistent with results from centralized graph distillation[20, 19].

F.3 Effects of Temperature on Element-wise Exponential τs

We investigate the impact of varying the temperature values on the element-wise exponential τs
defined in (11) on Cora dataset. τs is a metric that regulates the influence of the local model weights
W t

i on the aggregated weights W t
i . In a federated GNN system with significantly heterogeneous

local datasets, a large value of τs is required to achieve optimal performance. This idea is supported
by the results presented in Fig.7. In Appendix D.1, we demonstrate that the number of clients results
in more heterogeneous graphs within the system, necessitating a larger value of τs to attain optimal
performance in FedGKD.
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Figure 8: Effects of temperature
on local connectivity matrix ex-
ponential τ
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tures from distilled graphs
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Figure 10: Effects of static and
dynamic task feature extractor

F.4 Effects of Temperature on Matrix Exponential τ

We experiment with varying the values of τ in the exponential of the relation matrix, as defined in
(11) on Cora. τ is introduced to avoid the singularity of the matrix exponential. As shown in Fig.8, a
large τ may results in extremely low rank aggregation weight matrix thereby deteriorating model
performance. Therefore, it is essential to set an appropriate value of τ to guarantee non-singularity.
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F.5 Effects of Task Features from Distilled Graphs

We experiment with multiple choices of statistics obtained from distilled graphs to compute the
pairwise task-relatedness in (10) on Cora dataset. Fig.9 illustrates that choices of statistics are robust
to model performance but the concatenation of node feature X and embeddings H outperforms others
slightly. It is worth noting that if communication overhead is a major concern, we can further reduce
the extra communication cost by transmitting only H or even the distilled labels, which incurs only a
slight performance degradation.

F.6 Ablation Study on Dynamic Task Feature Extractor

We conducted a series of experiments in order to compare the effects of static and dynamic task
feature extractors within our framework. These experiments were carried out on Cora dataset using
non-overlapping settings. To accomplish this, we replaced our dynamic feature extractor, which
distilled graphs based on the current model weights during each communication round, with a static
extractor. This static extractor utilized a graph distillation method introduced in [19] to ensure
that the performance of the model training on the synthetic small graph closely approximated the
"final" performance achieved when training on the original, larger graph before the federated learning
procedures. In this way, the static extractor offers static representations of tasks, which remain
unchanged throughout the entire federated learning process. As shown in Fig. 10, the dynamic task
feature extractor is visually replaced by the static extractor for our experimental purposes. Notably,
this replacement results in a 2.4% degradation in performance. The inferior performance of static
task feature extractor comes from the unsatisfying local sample quality and quantity. Additionally,
we compared the performance of the static extractor with a local training baseline and found that the
static extractor still outperforms local learning.

G On the Validity of k in (11)

Below we state the result that k in (11) is a valid kernel:
Proposition G.1. The function k is a valid kernel over the domain [n].

Proof. Let {λ1, . . . , λn} be the eigenvalues of R. It then follows that the eigenvalues of S are
{etλ1 , . . . , etλn} which are non-negative, therefore S is positive semidefinite. The proposition
follows by [16, Theorem 7.5.9]
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