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Abstract

Zero-Shot Composed Image Retrieval (ZS-CIR) involves

diverse tasks with a broad range of visual content manipula-

tion intent across domain, scene, object, and attribute. The

key challenge for ZS-CIR tasks is to modify a reference im-

age according to manipulation text to accurately retrieve a

target image, especially when the reference image is miss-

ing essential target content. In this paper, we propose a

novel prediction-based mapping network, named PrediCIR,

to adaptively predict the missing target visual content in ref-

erence images in the latent space before mapping for accu-

rate ZS-CIR. Specifically, a world view generation module

first constructs a source view by omitting certain visual con-

tent of a target view, coupled with an action that includes

the manipulation intent derived from existing image-caption

pairs. Then, a target content prediction module trains a

world model as a predictor to adaptively predict the miss-

ing visual information guided by user intention in manip-

ulating text at the latent space. The two modules map an

image with the predicted relevant information to a pseudo-

word token without extra supervision. Our model shows

strong generalization ability on six ZS-CIR tasks. It obtains

consistent and significant performance boosts ranging from

1.73% to 4.45% over the best methods and achieves new

state-of-the-art results on ZS-CIR. Our code is available at

https://github.com/Pter61/predicir.

1. Introduction

Given a reference image and a human manipulation text,

Composed Image Retrieval (CIR) [41] aims to retrieve a

target image visually similar to the reference image while
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Figure 1. Illustration of our motivation. (a) Prediction-free visual

mapping. (b) Our prediction-based visual mapping. (c) ZS-CIR

process results from different strategies.

incorporating content modifications specified by the manip-

ulation text. Distinct from traditional content-based image

retrieval [10], in the CIR task, the content of the manipula-

tion text often does not appear in the reference images, as

illustrated in Figure 1(c). CIR enhances flexibility and im-

proves the accuracy of intent expression by allowing users

to integrate visual and textual information into their search

queries. This task has gained emerging attention in internet

searches and e-commerce applications [9, 33]. As shown in

Figure 1(c), CIR tasks include image domain transforma-

https://github.com/Pter61/predicir


tion for creative searches, object composition and manip-

ulation for natural image searches, and attribute modifica-

tions for fashion image searches.

There exist two core challenges of CIR: (1) accurately

modify the reference image guided by the manipulation text

for retrieving the target image, particularly when the neces-

sary visual content is missing in the reference images, and

(2) adaptively compose visual and textual content guided

by manipulation text for image retrieval. Various super-

vised [4, 29] and semi-supervised methods [14, 22] have

been proposed to address CIR problem, which requires an

extensive amount of annotated triplets, i.e., a reference im-

age, a manipulated text, and a target image, for training

task-specific retrieval models. These supervised methods

are labor-intensive or require large models (e.g., diffusion

[32]) for data annotation, which limits their generalizabil-

ity. To overcome this issue, recent studies have introduced

Zero-Shot Composed Image Retrieval (ZS-CIR) [5, 33] by

utilizing a pre-trained CLIP model [31] to treat ZS-CIR as

a traditional text-based image retrieval challenge. As de-

picted in Figure 1(c), these methods map the reference im-

age into a pseudo-token of CLIP’s language space, combin-

ing it with manipulation text to form a query. This query

retrieves target images from a shared semantic space in a

zero-shot mode by calculating semantic similarity. Despite

these advancements, the mapping networks are inadequate

for ZS-CIR tasks for the following reasons:

(1) The CLIP embedding, learned through contrastive

methods, is coarse-grained [13]. This leads to losing cru-

cial visual details in the pre-trained pseudo-token, which is

essential for CIR tasks. For instance, in the bottom right of

Figure 1(b), the CLIP embedding captures the main object

(e.g., rugby players) while missing fine-grained details of

relation (e.g., pass ball) and sense (e.g., grassy field).

(2) Existing ZS-CIR methods train a network to map

reference images into language space, ignoring its miss-

ing target content, as shown in Figure 1(a). This limits the

model’s ability to generate target image information for re-

trieval adaptively. In fact, key elements of the target images

are often missing from the reference images. Considering

the queries in Figure 1(c), existing methods struggle to han-

dle manipulations where relevant elements are missing in

the reference images, such as image domains (e.g., origami

style), objects/scene (e.g., dog among the flowers with tree),

and attributes (e.g., black with Earth logo).

In this paper, we propose a novel approach to Predict tar-

get image feature before retrieval for zero-shot Composed

Image Retrieval (PrediCIR). Unlike existing ZS-CIR ap-

proaches, PrediCIR trains a world model, an effective target

content predictor [13, 44], to adaptively predict key visual

elements (e.g., objects, senses, attributes, domain) missing

from reference images, guided by manipulation text, as il-

lustrated in Figure 1(b): the World View Generation mod-

ule first generates both source and target views from exist-

ing image-caption pairs without extra supervision for train-

ing. Specifically, we corrupt an image’s content via ran-

dom cropping, regarding these as the source view and the

original image as the target view, with the corresponding

description as the action. Subsequently, the Target Content

Predictor module trains a world model to adaptively predict

the key element of the target view guided by action, which is

missing in the source view. The two modules map an image

with the predicted target content to a pseudo-word, provid-

ing a high-quality feature with fine-grained visual details.

The main contributions are summarized as follows: (1)

We introduce a novel prediction-based image-to-word map-

ping network, leveraging the world model to simulate user

behavior. This facilitates the prediction of potential target

image features relevant to manipulation intent for retrieval,

offering new insights into the vision-to-language alignment

mechanism. (2) The proposed mapping network of Predi-

CIR adaptively predicts key elements (e.g., objects, senses,

attributes, and various details) of target visual content miss-

ing in reference images, proving advantageous for chal-

lenges such as object combination, foreground/background

editing, attribute adjustment, and domain conversion. (3)

Our PrediCIR is consistently effective for diverse ZS-CIR

tasks. It significantly improves CIR from 1.73% to 4.45%

across six CIR tasks with comparable inference times. It

establishes new state-of-the-art results and further impacts

a broader range of vision and language applications.

2. Related works

Composed Image Retrieval. Composed Image Retrieval

(CIR) combines image and text features for retrieval [41],

typically using late fusion to integrate visual and language

features separately while requiring extensively annotated

triplets CIR datasets. [4, 22, 29, 47]. Zero-shot CIR mod-

els [5, 12, 15, 21, 23, 33, 38, 39, 45], trained on image-text

pairs, avoid the need for extensive CIR datasets by mapping

reference images to text space for query formation. How-

ever, they often miss visual content specified by manipula-

tion text, resulting in less accurate queries. To address this,

we introduce a prediction-based word mapping, allowing

the text encoder to access potential target image features.

Unlike CompoDiff [14], which requires multi-step diffusion

model training with synthesizing triplets, our model pre-

dicts target content in latent space on a single step, enhanc-

ing performance without additional supervision. We cre-

ate pseudo triplets by cropping visual elements to preserve

full contextual embeddings under a frozen CLIP, avoiding

the mask-based CIR methods [8, 19, 46] that require CLIP

fine-tuning. Additionally, unlike diffusion [14], LLMs [23],

or external databases [27, 37] methods, which introduce

non-negligible computational overhead, our model remains

lightweight with comparable inference times.
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Figure 2. An overview of our PrediCIR model. Pre-training (left): Image to prediction-based word mapping aims to predict target-relevant

missing visual content in latent space and map it with reference image content to a pseudo-word token S∗. Inference (right): Map the

inference image to S∗ and form the composed query in a unified language space for ZS-CIR.

World Model in Vision Representation Learning. World

modeling has proven its effectiveness across several do-

mains [16, 44], showing clear benefits in prediction-based

representation learning. Masked Image Modeling (MIM)

approaches [17, 43] learn representations by predicting

masked image areas in pixel space, aligning their decoders

with world models. Similarly, leveraging the Joint Embed-

ding Predictive Architecture (JEPA) [24], I-JEPA [2] pre-

dicts masked parts of the image in the latent space. Re-

cent work [13] introduces an image world model that pre-

dicts cropped image region in latent space, focusing on fine-

grained visual details at the patch level instead of whole-

image diffusion [32]. Building on these advances, our work

first introduces a novel world model to predict target image

features guided by text for vision-language retrieval tasks.

Vision and Language Pre-training Models. Vision and

Language Pre-training (VLP) models, such as CLIP [31],

employ extensive image-text pair training to achieve im-

plicit alignment between visual and textual data. Recent

advancements in VLP [36, 48] have utilized static mod-

els to merge encoded image and text features, facilitating

a range of zero-shot tasks [1, 25, 26, 35, 36]. In our work,

we adapt VLP models for CIR tasks in a zero-shot manner.

Moreover, we uniquely leverage the pre-trained knowledge

of VLP models to encode world views and actions to train a

vision-language world model for prediction-based ZS-CIR.

3. Methodology

Given a reference image I and a manipulation text T , Zero-

Shot Composed Image Retrieval (ZS-CIR) aims to retrieve

images from an image database that are visually similar to

I while incorporating the visual modifications specified in

T . A detailed illustration of our model is provided in Fig-

ure 2. We first introduce a new approach for generating

world view from image-caption pairs. This process allows

us to provide source and target views with corresponding

actions for training a predictor based on the Joint Embed-

ding Predictive Architecture (JEPA) [24]. In this frame-

work, the predictor is the instantiation of the world model

[2, 13]. Then, we learn a prediction-based mapping network

of PrediCIR to predict visual elements of the target image

missing in the reference image guided by manipulation text

T and convert them into a pseudo-word token S∗ in the to-

ken embedding space. In this work, S∗ depicts the potential

visual content of the target image, combining the existing

content of the reference image with the predicted visual el-

ements specified by T . To effectively compose I and T
across different modalities for zero-shot image retrieval, we

construct a composed query in the form of a sentence P
“a photo of S∗, T ” and embed it using the frozen text en-

coder of CLIP. Given the composed query embedding, we

embed each candidate image Ii by the frozen image encoder

of CLIP and approach ZS-CIR as a traditional text-to-image

retrieval task by measuring the similarity between P and Ii.

3.1. World View Generation

Since images and captions in existing ZS-CIR training

datasets share the contextual elements, training a world

model to predict the absent visual elements in reference im-

ages poses a challenge. To address this, we construct im-

ages with missing visual elements by modifying existing

image-caption datasets, specifically by randomly cropping

existing images. This approach aligns better with the frozen

CLIP model than the masked-region CIR method [8], which

requires fine-tuning to interpret masked inputs. Given an

image I with width W and height H in an image-caption

pair, we obtain a cropped image Ic as follows:

Ic = Crop(I, (x, y,Wc, Hc))

= Crop(I, (x, y, x+
√

scrcWH, y +
√

scWH/rc))
(1)

where Crop(·) denotes the cropping operation, and (x, y)
denotes the top-left corner of the cropping region. These

coordinates are dynamically calculated to focus on areas of

interest within the image. Wc and Hc are the width and

height of the cropped image, respectively. Crop size sc and



aspect ratios rc ensure the cropping operation dynamically

adjusts to various image sizes. Subsequently, we utilize the

cropped image as the source view x, the original image as

the target view y, and the caption as the action ax→y for

training a world model for predicting the visual content of

a target view that missing in a source view.

As CLIP shows its strong capabilities, we employ the

CLIP model to encode the source/target views and the ac-

tions for prediction-based mapping. We utilize the visual

encoder of the frozen CLIP model to represent the cropped

image Ic as the source view x by a set of visual feature vec-

tors V x = {vxi
}mi=1 where m = 257 and d = 1024. Here,

the vx1
denotes the global source feature vxg

, and the sub-

sequent vectors {vxi
}mi=2 represent the local patch features

V xl
. Similarly, the original image I is encoded as the target

view y using a set of visual feature vectors V y = {vyi
}mi=1,

where vy1
acting as the global target feature vyg

.

In this work, we construct a dataset of triplets <source

view, action, target view> comprising <cropped image,

caption, original image> for training the PrediCIR network.

Subsequently, we utilize triplets <reference image, manipu-

lation text, target image> triplets for ZS-CIR. We treat both

captions and manipulation texts as actions ax→y , which

express the user’s intent to modify the source view (e.g.,

a rugby player) into the target view (e.g., a rugby player

pass the ball to his teammate on a grassy field) as illus-

trated in Figure 2. Our PrediCIR has two goals: First, it

predicts the visual content of the target view missing in the

source, guided by the action. Second, it adaptively com-

bines the predicted content with the source’s content for

mapping. To this end, we feed the caption to the frozen

CLIP language encoder, obtaining the [CLS] token em-

bedding t = {ti}di=1 ∈ R
d×1 as the action for predicting.

3.2. Image to Prediction­based Word Mapping

Given the constructed triplets <source view, action, target

view>, where the source view x = V xl
comprises the local

patch-level features of the cropped image, the target view

y = V y includes the patch-level features of the original im-

age, and the action ax→y = t encapsulates the user manip-

ulation intent. We introduce two modules to progressively

predict the target visual content that missing in the source

view, and map to a pseudo-token for accurate ZS-CIR: the

Target Content Predictor (TCP for short) first learns a world

model functioning as a user simulator to predict the target

visual content guided by the manipulation intent through

the JEPA framework. Subsequently, the Predictive Cross-

Modal Alignment (PMA for short) adaptively combines the

predicted and source visual contents, mapping them into the

word token space using cross-modal contrastive learning.

Target Content Predictor. Given the visual patch features

from the triplets <source view, action, target view>. This

module aims to predict the target visual content missing in

the source view, guided by the action. Specifically, we fed

with the target visual content in the form of mask tokens as

well as ax→y . We denote these mask tokens as ma, param-

eterized by a shared learnable vector with an added posi-

tional embedding, representing a randomly sampled block

B from the target patch features V y . These mask tokens

ma corresponding of the position of B by the target patch

features V ym
= {V yj

}j∈B . Specifically, we sample the

block using the same crop size and aspect ratios described

in Eq.1. Subsequently, as illustrated in Figure 2 (left), we

apply self-attention and combine the action ax→y , the em-

bedded source patches V xl
, and mask tokens ma as input

X = [ax→y,V xl
,ma]. First, we compute the query, key

and value through linear projections, i.e., Q = XWQ,

K = XWK , V = XW V . X denotes concatenating

the three matrices, which enhances the interaction between

mask tokens and source local patches guided by the manip-

ulation intent to achieve a high-quality representation with

fine-gained visual details crucial for CIR tasks. Then, the

mask token and source local patches from the current self-

attention block Xi are calculated as:

Xi
att = Att(Q,K,V ) = softmax

(

QK⊤

√
d

)

V (2)

Xi = FFW(Xi
att +Xi−1) +Xi

att (3)

where Xi−1 are mask tokens with source local patch fea-

tures from the previous block and FFW(·) denotes 2-layer

feed-forward networks. Finally, we calculate the squared

L2 loss to minimize the distance between the patch predic-

tion Ṽ ym
= Xout[select(ma)] as follow:

Lpred = L2(x,y) =
∑

i∈B

∥Ṽ i

ym
− V i

ym
∥22 (4)

where Xout denotes the output embeddings from N trans-

former blocks. select(·) is used to select the corresponding

indexes of features within Xout, Ṽ
i

ym
and V i

ym
are the ith

target patch prediction and the corresponding target patch

feature, respectively, and B is the target image block.

Predictive Cross-Modal Alignment. Given the target

patch prediction Ṽ ym
, enhanced source patch features

Ṽ xl
= Xout[select(xl)] that is high-quality representation,

and global source feature vxg
, the AI agent aims to form a

target embedding optimized for retrieval. When mapping

the visual content to a pseudo-word token, both the predict

and source content are complementary to form the complete

target information. To align the feature of JEPA and CLIP

and adaptively weight predicted information on the retrieval

process, we introduce a learnable scalar gate that decides

the contribution of the predicted information [Ṽ xl
, Ṽ ym

]
and integrates the global source information vxg

to form

the final target embedding S∗ as follows:

S∗ = fMp
(gate ·Avg([Ṽ xl

, Ṽ ym
])) + fMs

(vxg
) (5)



Dress Shrit TopTee Average

Backbones Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50

Pic2Word† CVPR 2023 20.0 40.2 26.2 43.6 27.9 47.4 24.7 43.7

SEARLE-XL† ICCV 2023 20.3 43.2 27.4 45.7 29.3 50.2 25.7 46.3

LinCIR† CVPR 2024 20.9 42.4 29.1 46.8 28.8 50.2 26.3 46.5

Context-I2W† AAAI 2024 23.1 45.3 29.7 48.6 30.6 52.9 27.8 48.9

ViT-L/14

PrediCIR – 25.4 49.5 31.8 52.0 33.1 55.4 30.1 52.3

CompoDiff† TMLR 2024 37.8 49.1 41.3 55.2 44.3 56.4 39.0 51.7

LinCIR† CVPR 2024 38.1 60.9 46.8 65.1 50.5 71.1 45.1 65.7ViT-G/14

PrediCIR – 39.7 62.4 48.2 67.4 53.7 73.6 47.2 67.8

Table 1. Results on Fashion-IQ for attribute manipulation. †indicates results from the original paper.

where Avg(·) denotes average pooling, fMp
(·) and fMs

(·)
respectively denote predict and source mapping of 3-layer

feed-forward networks. To map the pseudo token S∗ to the

word token space, we append S∗ to the end of the token

embeddings of the prompted sentence, “a photo of”,

and feed it to the language encoder of CLIP to obtain the

sentence embedding tp. We aim to match an image to its

paired prediction-based prompt sentence while separating

unpaired ones. We minimize the symmetric contrastive loss

between the global target visual feature vyg
and the prompt

sentence embedding tp as follows:

Lalign = Lt2i(tp,vyg
) + Li2t(tp,vyg

) (6)

The two contrastive loss terms with a temperature hyper-

parameter τ that controls the strength of penalties on hard

negative samples are defined as:

Lt2i(tp,vyg
) = − 1

|B|
∑

i∈B

log
e
τ(tip)

T
v
i
yg

∑

j∈B
eτ(t

i
p)

T v
j
yg

(7)

Li2t(tp,vyg
) = − 1

|B|
∑

i∈B

log
e
τ(vi

yg
)T t

i
p

∑

j∈B
e
τ(vi

yg
)T t

j
p

(8)

The final loss to optimize PrediCIR:

L = Lpred + Lalign (9)

3.3. Inference with PrediCIR

In the inference stage, we compose the reference image with

the paired manipulation text and compare the composed

query with candidate images for retrieval. As shown in Fig-

ure 2 (right), we first form a prompt sentence that includes

special token [*] and manipulation text, which is fed to

the language encoder of CLIP to obtain an action embed-

ding, followed by predicting through the PrediCIR network.

Then, we obtain the mapped pseudo-token embedding S∗

containing the predicted target-relevant information and re-

place the [*] token with S∗ to form a composed query. The

result is embedded by the language encoder and compared

to the visual features of candidate images.

Ours

is black t-shirt 

with Star Wars 

image print

Query

B00AN545PI.png

Context-I2W

is sexier and more 

form-fitting

is tropical, more 

aloha and colorful 

Figure 3. Results of attribute manipulation on FashionIQ.

Since our focus is on studying the prediction-based word

mapping for ZS-CIR, we utilize the same prompt in the

most recent works [33, 39] for a fair comparison. We

show prompt examples for different ZS-CIR tasks. In all

examples, [*] indicates the pseudo token from the map-

ping network: (a) Domain conversion aims to modify

the domain of the reference image. The prompt is de-

fined as a [domain tag] of [*]; (b) Object com-

position retrieves an image that contains an object in the

reference image and other object tags. The prompt is in

the format of a photo of [*], [obj1 tag] and

[obj2 tag], . . ., and [objn tag]; (c) Sentence

manipulation modifies the reference image based on a sen-

tence. We simply append the sentence with the special to-

ken as a photo of [*], [sentence].

4. Experiments

Datasets. We evaluate our model on four ZS-CIR datasets,

i.e., COCO [28] and GeneCIS [40] for object/attribute com-

position, ImageNet [11, 18] for domain conversion, CIRR

[29] and CIRCO [5] for object/scene manipulation, and

Fashion-IQ [42] for attribute manipulation. All the dataset

settings and evaluation metrics (Recall@K and mAP@R)

follow the recent works [5, 15, 33] for a fair comparison.

(1) Domain conversion. This dataset comprises 16,983

images of 200 classes from four domains, i.e., cartoon,

origami, toy, and sculpture. We use the prompt (a) in

inference. (2) Object/attribute composition. The COCO

dataset contains images with corresponding lists of object



Backbones Methods R1 R5 R10

Pic2Word† 23.9 51.7 65.3

SEARLE-XL† 24.2 52.4 66.3

LinCIR† 25.0 53.3 66.7

Context-I2W† 25.6 55.1 68.5

ViT-L/14

PrediCIR 27.2 57.0 70.2

CompoDiff† 26.7 55.1 74.5

LinCIR† 35.3 64.7 76.1ViT-G/14

PrediCIR 37.0 66.1 77.9

Table 2. Results on CIRR for object manipulation.

Backbones Methods mAP@5 mAP@10 mAP@25 mAP@50

Pic2Word 8.7 9.5 10.6 11.3

SEARLE-XL† 11.7 12.7 14.3 15.1

LinCIR† 12.6 13.6 15.0 15.9

Context-I2W 13.0 14.6 16.1 17.2

ViT-L/14

PrediCIR 15.7 17.1 18.6 19.3

CompoDiff† 15.3 17.7 19.5 21.0

LinCIR† 19.7 21.0 23.1 24.2ViT-G/14

PrediCIR 23.7 24.6 25.4 26.0

Table 3. Results on CIRCO for object manipulation.

Backbones Methods R1 R5 R10

Pic2Word† 11.5 24.8 33.4

SEARLE-XL 13.3 28.3 37.6

LinCIR 11.7 24.9 34.2

Context-I2W† 13.5 28.5 38.1

ViT-L/14

PrediCIR 15.1 33.0 42.8

LinCIR 14.8 30.6 40.5
ViT-G/14

PrediCIR 17.2 34.8 45.9

Table 4. Results on COCO for object composition.

labels and instance masks of query images. Similarly, the

GeneCIS dataset introduces four task variations, such as

changing a specific attribute or object. We use the prompt

(b) in inference. (3) Object/scene manipulation. A refer-

ence image is an instruction for manipulating an object or

the background. We apply the prompt (c) in inference. (4)

Attribute manipulation. This dataset includes various de-

scriptions for manipulating image attributes. We utilize the

prompt (c) in inference. Details are in the Supplementary.

Implementation Details. We adopt ViT-L/14 CLIP [31]

from OpenAI and ViT-G/14 CLIP [20] from OpenCLIP.

The crop sizes of random cropped images and blocked tar-

get images are the same in the (0.2, 0.25), and the aspect

ratios are (0.75, 1.5), respectively. For training PrediCIR,

we utilize the Conceptual Caption dataset [34], which com-

prises 3M images. The number of self-attention blocks is

12 with 384 dimensional embeddings. To improve train-

ing stability, we initialize the learnable scalar of tanh-gating

to 0 [3]. We employ AdamW [30] with a learning rate of

1×10−5, weight decay of 0.1, and a linear warmup of 10000
steps. The batch size is 1024. All models are trained on 4
NVIDIA A100 (80G) GPUs. To ensure reliable results, we

report the performance averaged over three trials.

Ours Context-I2WQuery

have written something 

in a notebook instead 

of pouring liquid

Remove one dog and 

make background 

with bedsheets

Show man hands 

handling dog rather 

making it to sit

Figure 4. Results of the object manipulation on CIRR.

4.1. Quantitative and Qualitative Results

We compare PrediCIR with several commonly bench-

marked ZS-CIR methods, including: 1) Pic2Word [33]:

maps a reference image into a pseudo-word token within

the CLIP token embedding space. 2) SEARLE [5]: In-

tegrates the pseudo-word token with the GPT caption [7].

3) Context-I2W [39]: Selectively extracts text description-

relevant visual information before mapping. 4) LinCIR

[15]: Masks subjects in captions for efficiency training. For

a fair comparison, we present the results of methods relying

on the ViT-L/14 and ViT-G/14 CLIP models without LLMs

[23] or external databases [27, 37]. We also compare with

the semi-supervised 5) CompoDiff [14]: Training a diffu-

sion model using 18M synthetic data for multi-step entire

target image prediction. We report results for CompoDiff

on ViT-G/14 CLIP, given its comparable inference times.

Since most baselines reported their results on ViT-L/14, we

primarily compare results on this backbone and explore the

generalization ability of our model on ViT-G/14.

PrediCIR surpasses existing ZS-CIR models on the ViT-

L/14 and ViT-G/14 backbones. Tables 1 to 6 present the

quantitative results, while Figures 3 to 5 illustrate the cor-

responding qualitative results of our model and the most

recent works, Context-I2W. The attribute manipulation task

requires accurately localizing specific attributes within the

fashion image. As indicated in Table 1, PrediCIR achieves

an average improvement of 2.85% on ViT-L/14, over the

State-of-the-Art (SoTA) model, Context-I2W. Context-I2W

struggles to retrieve a target image with accurately manipu-

lated fashion attributes, which are missing in the reference

images. PrediCIR tackles this challenge by effectively pre-

dicting fashion-relevant visual details guided by manipu-

lation text for CIR retrieval. As exemplified in Figure 3,

PrediCIR accurately predicts the missing fashion-relevant

attribute of sexier and form-fitting (row 1), Star Wars print

(row 2), and tropical with more aloha and colorful (row 3).

We further evaluate PrediCIRs’ capability in fore-

ground/background differentiation and fine-grained image

editing through the object/scene manipulation task (Table 2

and Table 3). PrediCIR consistently surpasses existing ZS-

CIR models, achieving an average performance improve-

ment of 1.73% over the best model on CIRR and 2.45%



Cartoon Origami Toy Sculpture Average

Backbones Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50 R10 R50

ViT-L/14

Pic2Word† CVPR 2023 8.0 21.9 13.5 25.6 8.7 21.6 10.0 23.8 10.1 23.2

SEARLE-XL ICCV 2023 9.6 24.9 16.1 27.3 7.6 25.4 11.3 26.4 11.2 26.0

LinCIR CVPR 2024 9.4 24.2 15.7 26.9 10.8 27.0 11.7 27.9 11.9 26.5

Context-I2W† AAAI 2024 10.2 26.1 17.5 28.7 11.6 27.4 12.1 28.2 12.9 27.6

PrediCIR – 14.2 31.9 20.4 34.3 14.7 30.8 16.3 34.9 16.4 33.0

ViT-G/14
LinCIR CVPR 2024 13.7 30.2 19.5 32.9 13.8 30.2 15.2 34.0 15.5 31.8

PrediCIR – 15.6 34.6 23.7 37.2 17.2 37.5 19.3 37.8 19.0 36.8

Table 5. Results on ImageNet for domain conversion. †indicates results from the original paper.

Ours

Origami

Toy

Query

Cartoon

Sculpture

Context-I2W

Figure 5. Retrieved results on the domain conversion task.

Backbones Methods R1 R2 R3

Pic2Word† 11.2 21.5 30.4

SEARLE-XL 12.3 22.1 31.3

LinCIR 12.2 22.8 32.4

Context-I2W 12.5 23.2 33.1

ViT-L/14

PrediCIR 16.6 26.7 35.8

LinCIR† 13.7 24.6 34.1

CompoDiff† 15.5 26.6 35.4ViT-G/14

PrediCIR 17.7 28.9 38.6

Table 6. Results on GeneCLS. The average R@1, R@2, R@3

for “Focus Attribute”, “Change Attribute”, “Focus Object”, and

“Change Object” are shown. The full table is in the supplementary.

on CIRCO. This improvement is attributed to PrediCIRs’

approach of predicting target elements that are missing

in reference images guided by manipulation intention be-

fore searching and mapping into a pseudo token with fine-

grained visual details, enhancing the ability of the CLIP lan-

guage encoder to compose target image information accu-

rately. In Figure 4, PrediCIR accurately predicts the absent

fine-grained visual content of a written notebook (row 1), a

bedsheet background (row 2), and a handing hand (row 3).

In the object/attribute composition experiments (Table

4 and 6), PrediCIR significantly outperforms the current

SoTA model by an average of 3.60% on COCO and 3.43%

on GeneCLS. These results underscore the remarkable ef-

fectiveness of our TCP module in predicting missing objects

relevant to manipulation text.

Moreover, in the domain conversion experiments (Table

5), PrediCIR consistently outperforms existing approaches

CIRR Fashion-IQ

Methods R1 R5 R10 R10 R50

1. full model 27.2 57.0 70.2 30.1 52.3

2. w/o cropped images 23.5 53.6 66.0 25.1 45.5

3. w/o action 22.4 52.7 64.9 24.5 43.2

4. w/o Target Predictor 20.2 44.5 56.3 22.5 41.9

5. w/o L2 loss 22.0 51.5 65.7 24.2 42.8

6. w/o gate 25.9 55.4 67.8 27.5 49.8

7. self-attention 18.2 42.4 55.8 21.3 40.5

8. mask images 22.3 52.2 64.3 24.2 42.8

9. predict entire images 25.1 54.3 66.8 26.5 49.0

Table 7. Ablation study on CIRR and FashionIQ.

and notably surpasses the SoTA Context-I2W by an aver-

age of 4.45%. As illustrated in Figure 5, PrediCIR accu-

rately converts image domains guided by manipulation text

while maintaining fidelity to the visual content of the ref-

erence image (e.g., man playing accordion, a hippo with

mouth open, the lighthouse on the island, and juicy burger).

In contrast, Context-I2W struggles to map images to other

domains as specified by manipulation texts while missing

fine-grained details in the contrastive representation.

4.2. Ablation Study

Following [5, 33, 39], we evaluate the contribution of the

core components in PrediCIR with ViT-L/14 backbone on

CIRR and Fashion-IQ in Table 7. (1) In models ‘2-3’, we

evaluate the importance of the world view generation

approach. Using the entire target image as the source view

without cropping images (model ‘2’), the performance sig-

nificantly declined by an average of 4.62%, indicating that

a corrupt original image as the source image is essential for

learning the ability to predict the target visual content that is

missing in the reference image. When removing the action

embedding ax→y (model ’3’) results in a significant drop of

5.82% on average. (2) In models ‘4-6’, we assess the im-

portance of key modules in the prediction-based image-

to-word mapping process. Removing PTC (model ‘4’) or

JEPA framework (model ‘5’) causes obvious performance

decrease of 10.28% and 6.12% on average, respectively. By

directly summing the predicted and original image features

instead of using the gating strategy in PMA (model ’6’), the

performance drops by 2.08%. It indicates the necessity to

capture complementary information from the two sources
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Figure 6. Analysis of the crop size for source/target view.

adaptively. (3) Models ‘7-10’ evaluate the effect of alter-

native solutions for key modules. In model ‘7’, we replace

the PrediCIR with a typical self-attention network with the

same input. The results drop significantly by 11.76% on

average, confirming the effectiveness of the PrediCIR map-

ping strategy. In model ‘8’, we employ random masking

for constructing source views. The results drop by 6.20%

on average, likely due to the frozen CLIP encoder strug-

gling with masked images, whereas our cropped images re-

tain coherent regional context. In model ‘9’, we predict the

entire target image, resulting in an average drop of 3.02%,

indicating that partial prediction reduces computation and

mitigates overfitting. Due to space constraints, please refer

to the supplementary (Section A) for more ablation studies.

4.3. Analysis

In this subsection, we provide detailed analyses of our de-

sign choices, efficiency, and common failure cases.

Analysis of the Crop Size of World View. We analyze the

influence of crop size for source and target views, as illus-

trated in Figure 6. A crop size range of (0.15, 0.2) fails

to learn sufficient target-relevant missing visual elements

due to inadequate context in the source view. Increasing

the crop size to (0.45, 0.5) proves redundant, leading to ex-

cessive context overlap with the caption. We choose the

crop size in the range (0.2, 0.25), which gives the best re-

sult among different settings.

Visualization of Predictor Representations. Following I-

JEPA [2], we freeze our model and train a decoder follow-

ing the RCDM framework [6] to map the average pool of

the predictor outputs back to pixel space. In Figure 7, we

show decoder outputs for various random seeds. The Predi-

CIR correctly predicts the target visual content missing in

reference images guided by manipulation texts (e.g., Stars

Wars print, open eyes, and origami style). For more details

and samples, please refer to our supplementary.

Effectiveness and Efficiency Analysis. Our approach

achieves significant improvements across six ZS-CIR tasks,

with performance gains ranging from 1.73% to 4.45% Over

SoTA models. Due to our predictor design for prediction-

Targets Query

is black t-shirt 

with Star Wars 

image print

make it open eyes 

with a blurred 

background

Origami

Our Predictions 

Figure 7. Visualization of our predictor representations. Green

bounding boxes contain samples from a generative model decod-

ing the output of our pretrained predictor.

Make cover picture of 

dog image with golden 

frame rather making with 

realistic image

Change to an indoor cafe, 

bakery setting, must include 

brightly pastel blue walls and 

brown wooden flooring

OursQuery

Change to a white 

carriage, must include 

man in a black suit and 

hat instead of a woman

Figure 8. Visualization of common failure cases.

based mapping, our model size is larger than the simple

MLP mapping of Pic2Word. As a result, in the same setting,

our training time (28 hours) is 6 hours longer than Pic2Word

and 18 hours longer than SEARLE. Moreover, PrediCIR

completes training 203 hours faster than the diffusion-based

semi-supervised CompoDiff, achieving significant perfor-

mance gains. Our inference time(0.03s) is only 0.01s slower

than LinCIR and four times faster than CompoDiff (0.12s).

Discussion on Common Failure Case. Figure 8 depicts

PrediCIR’s common failure cases, particularly with com-

plex and redundant manipulation texts. Challenges include

handling multiple objects and attributes (row 1), manipulat-

ing objects while converting image domains (row 2), and

extensive concurrent manipulation of attributes and scenes

(row 3). We believe these difficulties arise from the limita-

tions of the CLIP language encoder in interpreting abstract

or redundant intentions for retrieval.

5. Conclusion

In this paper, we propose a novel predicted-based image-

to-word mapping method that leverages existing image-

caption pairs to train a world model for predicting tar-

get visual content at latent space that is missing in refer-

ence guided by manipulation intention for accurate ZS-CIR.

PrediCIR shows strong generalization ability and remark-

ably improves the best performance of existing approaches

on six ZS-CIR tasks. It inspires the vision-to-language

alignment mechanism and impacts diverse word modal ap-

plications. How to design more lightweight and efficient

models with high performance will be the future work.
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