
Dynamic Neural Regeneration: Enhancing Deep
Learning Generalization on Small Datasets

Vijaya Raghavan T Ramkumar1,, Elahe Arani1,2,∗, & Bahram Zonooz1,*

1Eindhoven University of Technology 2Wayve
raghavijay95@gmail.com, e.arani@tue.nl, b.zonooz@tue.nl

Abstract

The efficacy of deep learning techniques is contingent upon access to large volumes
of data (labeled or unlabeled). However, in practical domains such as medical
applications, data availability is often limited. This presents a significant challenge:
How can we effectively train deep neural networks on relatively small datasets
while improving generalization? Recent works have explored evolutionary or
iterative training paradigms, which reinitialize a subset of parameters to enhance
generalization performance for small datasets. However, these methods typically
rely on randomly selected parameter subsets and maintain fixed masks throughout
training, potentially leading to suboptimal outcomes. Inspired by neurogenesis in
the brain, we propose a novel iterative training framework, Dynamic Neural Regen-
eration (DNR), that employs a data-aware dynamic masking scheme to eliminate
redundant connections by estimating their significance. This approach increases
the model’s capacity for further learning through random weight reinitialization.
Experimental results demonstrate that our approach outperforms existing methods
in accuracy and robustness, highlighting its potential for real-world applications
where data collection is challenging. 2

1 Introduction

Deep neural networks (DNNs) have become essential for solving complex problems in various
fields, such as image and speech recognition, natural language processing, and robotics (1). With
the increasing availability of data, DNNs have achieved unprecedented performance, surpassing
human-level performance in some applications (2). However, the success of DNNs is limited when
dealing with small datasets, where the model tends to overfit and fails to generalize to new data.
For example, it is often difficult to obtain a large amount of data in medical diagnosis due to the
complexity and high cost of the procedures involved. In such cases, lack of generalization can be
dangerous, which can lead to incorrect diagnosis and treatment.

Recently, several studies based on weight reinitialization methods (3; 4) have been proposed in the
literature to improve generalization by iteratively refining the learned solution through partial weight
reinitialization. These methods select and retain a subset of parameters while randomly reinitializing
the rest of the network during iterative/evolutionary training schemes. For example, a state-of-the-art
method named Knowledge Evolution (KE) (5) improves generalization by randomly splitting the
network into fit and reset subnetworks and constantly reinitializing the reset subnetwork after each
iteration. However, the KE approach is limited by its reliance on a predetermined mask creation,
where a random subset of parameters is selected and kept constant throughout the iterative training
process. This constraint may impede the model’s ability to learn effectively from small datasets,
ultimately limiting its generalization capabilities. These limitations raise two important questions:

∗Equal contribution.
2Code is available at https://github.com/NeurAI-Lab/Dynamic-Neural-Regeneration

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/NeurAI-Lab/Dynamic-Neural-Regeneration

1) Can we leverage an evolutionary training paradigm to evolve or adapt the mask over generations,
instead of using a fixed mask, in order to enhance the generalization performance of deep learning
models trained on small datasets? 2) Can we utilize the available data and the internal state of the
model to dynamically determine the important parameters for each generation, rather than randomly
presetting them?

In our quest to address these questions, we draw inspiration from the phenomenon of neurogenesis in
the brain. Neurogenesis, the process of dynamically generating or eliminating neurons in response to
environmental demands, has been found to play a crucial role in learning and memory consolidation
(6; 7; 8). This intricate process enables the brain to adapt to new experiences and stimuli, enhancing
generalizability. Recent advances in neuroscience have shed light on the non-random integration of
new neurons within the brain (9). For instance, in rodents, neurogenesis-dependent refinement of
synaptic connections has been observed in the hippocampus, where the integration of new neurons
leads to the elimination of less active synaptic connections (10; 11). Selective neurogenesis is critical
to improving generalization ability by providing a diverse pool of neurons with distinct properties
that can integrate into existing neural networks and contribute to adaptive learning (12). Although
the precise mechanisms that govern selective neurogenesis are not fully understood, these findings
suggest that selective neurogenesis in the human brain enhances generalization capabilities through
its dynamic and selective nature. Thus, by emulating the characteristics of selective neurogenesis, we
unlock its potential to improve generalization in deep neural networks.

Therefore, we present a novel iterative training approach called Dynamic Neural Regeneration
(DNR), which distinguishes itself from the conventional Knowledge Evolution (KE) method through
its mask computation. Unlike a predetermined fixed mask, DNR utilizes a data-aware dynamic
masking criterion that evolves and adapts the mask over generations. Through extensive experiments
on multiple datasets, we demonstrate that our proposed training paradigm greatly improves the
performance and generalization of the models. Furthermore, DNR effectively addresses overfitting
on relatively small datasets, alleviating the need for extensive data collection. The main contributions
of the paper are as follows.

• Dynamic Neural Regeneration (DNR) is an evolutionary training paradigm that incorporates
data-aware dynamic masking to selectively transfer knowledge across generations.

• Our proposed training paradigm facilitates the learning of generalizable features and in-
creases the overall performance of DNNs across small datasets.

• DNR exhibits robustness in solving more common challenges in real-world problems,
including class imbalance, natural corruption, and adversarial attacks.

2 Related work

Iterative training and weight reinitialization for DNNs is a prominent area of research (5; 4; 13; 14)
that focuses mainly on improving generalization performance by partially refining the learned solution
or fully iterating the learned solution. Dense-Sparse-Dense (DSD) (3) propose a three-phase approach
where weights with small magnitudes are pruned after initial training to induce sparsity and retrain
the network by reinitializing the pruned weights to zero. Zaidi et al. (15) conducted an extensive
investigation into the conditions under which reinitialization proves beneficial. BANs (Born Again
Neural Networks) (4) is a knowledge-distillation-based method that follows a similar iterative training
paradigm. However, the critical difference between our work and BANs is that it employs the class-
logits distribution instead of the network weights to transfer knowledge between successive networks.
Recently, Zhou et al. (16) (LLF) propose the forget and relearn hypothesis, which aims to harmonize
various existing iterative algorithms by framing them through the lens of forgetting. This approach
operates on the premise that initial layers capture generalized features, while subsequent layers tend to
memorize specific details. Accordingly, they advocate for the repeated reinitialization and retraining
of later layers, effectively erasing information related to challenging instances. Similarly, the LW
(17) approach progressively reinitializes all layers. However, these weight reinitialization methods
rely on architecture-specific assumptions that do not take the data into account. They are based on
presumed properties inherent to the model and its learning process. Consequently, these methods lack
prior knowledge of which features, layers, or parameters should be reinitialized in a general context.
Moreover, research indicates that memorization in neural networks is not confined to final layers but
involves neurons distributed throughout the model (18). Knowledge Evolution (KE) (5) splits model

2

Neurons removedTask-specific neuronsTrained Parameters Randomly initialized

(a) Data aware dynamic masking (b) Neuron deletion (c) Neuron creation

trained for N generations

Dataset

Evolutionary training paradigm

Figure 1: Schematics of proposed Dynamic Neural Regeneration (DNR) framework. Our framework
utilizes a data-aware dynamic masking scheme to remove redundant connections and increase
the network’s capacity for further learning by incorporating random weight reinitialization. Thus,
effectively improving the performance and generalization of deep neural networks on small datasets.

weights into fit and reset parts randomly and iteratively reinitializes the reset part during training.
The splitting method can be arbitrary (weight-level splitting (WELS)) or structured (Kernel-level
convolutional-aware splitting (KELS)). This approach involves perturbing the reset hypothesis to
evolve the knowledge within the fit hypothesis over multiple generations. Our framework (DNR)
distinguishes itself from the conventional Knowledge Evolution (KE) method through its mask
computation. DNR utilizes data-aware dynamic masking that adapts the mask over generations and
transfers selective knowledge.

Moreover, we differentiate our study from current literature on neural architecture search (NAS) (19)
and growing neural networks (20). Our emphasis is on a consistent network architecture, maintaining
fixed connections and parameter count throughout our analysis. Notably, our work sets itself apart
from the dynamic sparse training literature (21; 22), as our objective is not to achieve sparsity but
rather to enhance generalization on small datasets.

3 Methodology

3.1 Evolutionary training paradigm

We first introduce the evolutionary/iterative training paradigm as envisioned in KE (5). Evolutionary
training paradigms allow neural networks to be trained for many generations, where each generation
focuses on optimizing the model to converge towards a local minimum while progressively improving
generalization. Each generation within the training process is denoted as g, where g ranges from 1 to
the total number of generations, N .

We define a deep neural network f with L layers and is characterized by the set of parameters Θ. We
assume a dataset D consisting of n input-output pairs, denoted {(xi, yi)}ni=1. For a classification
task, we define the cross entropy loss for training the network as:

Lce = −
1

n

n∑
i=1

[yi log(softmax(f(xi; Θ))) + (1− yi) log(1− softmax(f(xi; Θ)))] (1)

where ŷi = f(xi) is the network’s predicted output for input xi. We initialize the weights and biases
of the network randomly.

KE starts by introducing a binary mask M , which partitions the weights of the neural network into
two hypotheses before starting training: the fit hypothesis Hfit and the reset hypothesis Hreset. This
partitioning is expressed as follows:

Hfit = M⊙Θ and Hreset = (1−M)⊙Θ (2)

Here, the element-wise multiplication operator ⊙ is applied to the mask M and the parameter set Θ
to obtain the fit hypothesis Hfit. Similarly, the reset hypothesis Hreset is obtained by element-wise

3

multiplying the complement of the mask (1 −M) with the parameter set Θ. These parameters
are chosen at random before the start of the first generation. This binary mask M is kept constant
throughout the evolutionary training; i.e., the parameters belonging to the fit and reset hypotheses
remain in that category across all generations.

We use the stochastic gradient descent (SGD) algorithm to train the network with a learning rate α.
We run SGD for e epochs on the dataset D. The beginning of every new generation is characterized
by introducing perturbations applied to the network weights to induce a high loss. This is done by
reinitializing the parameters in the reset hypothesis while transferring or retaining the parameters
belonging to the fit hypothesis. This dynamic process triggers a subsequent round of optimization,
guiding the neural network toward the search for a new minimum in the parameter space. The
initialization of the network f for the next generation fg is as follows:

Θg ←M⊙Θg−1 + (1−M)⊙ΘReinit (3)

where Θg−1 and Θg are the parameters of the network f belonging to the previous generation and
current generation, respectively. ΘReinit corresponds to the randomly initialized tensor sampled from
a uniform distribution. We then train the next generation of the network fg using SGD with the same
hyperparameters and epochs as the first generation.

3.2 Dynamic Neural Regeneration (DNR) with Data-aware Dynamic Masking

Unlike KE, we propose a methodology that offers a distinct advantage regarding binary mask compu-
tation and parameter reinitialization. Motivated by the symbiotic link between generalization and
selective neurogenesis in biological neural networks (9), we introduce a Data-aware Dynamic Mask-
ing (DDM) that emulates the process of selective neurogenesis in evolutionary training. The benefits
of DDM’s way of reinitialization are two-fold. 1) It takes advantage of the evolutionary training
paradigm and adapts the mask dynamically in each generation rather than using a predetermined
mask. This introduces flexibility in the network and improves the generalization performance of
deep learning models trained on small datasets. 2) Our masking scheme leverages a model’s data
and internal state to dynamically determine the important parameters for a given task, rather than
relying on random pre-setting, to enhance the performance of deep learning models on small datasets.
Our way of masking offers a priori knowledge of where and what parameters and layers should be
reinitialized in the general case.

The mask M is calculated at the beginning of each generation in a data-dependent manner. We assess
the importance or sensitivity of each connection in the network to the specific task by employing the
SNIP method (23). SNIP decouples the connection weight from the loss function to identify relevant
connections. We randomly sample a small subset of data (π) from the current dataset to evaluate
connection sensitivity. We define a connection sensitivity mask M ∈ {0, 1}|Θ|, where |Θ| denotes
the number of parameters in the network. The mask is designed to maintain a sparsity constraint k,
which specifies the percentage of parameters to retain. The computation of connection sensitivity is
performed as follows:

Gj(Θ;π) = lim
δ→0

Lce(M⊙Θ;π)− Lce ((M− δej)⊙Θ;π)

δ

∣∣∣∣
M=1

(4)

where j corresponds to the parameter index and ej is the mask vector of the index j, where the
magnitude of the derivatives is then used to calculate the saliency criteria (sj):

sj =
|Gj(Θ;π)|∑m
k=1 |gk(Θ;π)|

. (5)

After calculating the saliency values, we apply the sparsity constraint k to the connection sensitivity
mask, which ensures that only the top-k task-specific connections are retained. The sparsity constraint
k is defined as follows:

Mj = 1 [sj − s̃κ ≥ 0] , ∀j ∈ {1 . . .m}, (6)

where s̃k is the kth largest element in the saliency vector s, 1[.] is the indicator function and m
represents the total number of parameters in the neural network. Subsequently, using the saliency
values obtained from the connection sensitivity analysis, we select and preserve the top-k important
connections. The parameters associated with the connections deemed less important for the current

4

Table 1: Compares the results of our method with the other weight reinitialization methods on
ResNet18. g in fg indicates the number of generations the model is trained.

Methods Small Datasets

CUB Aircraft Dog Flower MIT Mean

CE (f1) 53.57 ±0.20 51.28 ±0.65 63.83±0.12 48.48±0.65 55.28±0.19 54.49

DSD 53.00±0.32 57.24±0.21 63.58±0.14 51.39±0.19 53.21±0.37 55.68
BAN (f10) 53.71±0.35 53.19±0.22 64.16±0.13 48.53±0.17 55.65±0.28 55.05
KE (f10) 58.11±0.25 53.21±0.43 64.56±0.31 56.15±0.19 58.33±0.43 58.07
DNR (f10) 59.72±0.21 55.87±0.47 65.76±0.13 58.10±0.24 61.78±0.36 60.25

Smth (f1) 58.92 ±0.24 57.16 ±0.91 63.64 ±0.16 51.02 ±0.09 57.74±0.39 57.70

Smth + LW (f8) 70.50 ±0.26 67.10 ±0.32 65.76 ±0.36 66.92 ±0.20 61.67 ±0.30 66.39
Smth + LLF (f8) 71.30 ±0.14 68.87 ±0.12 66.35 ±0.22 67.20 ±0.24 63.14 ±0.18 67.37
Smth + DNR (f8) 70.95 ±0.16 66.10 ±0.25 66.56 ±0.18 68.50 ±0.27 63.94 ±0.21 67.21

Smth + LB (f10) 69.80±0.13 65.29±0.51 66.19±0.03 66.89±0.23 61.29±0.49 65.89
Smth + KE (f10) 66.51±0.070 63.32±0.30 63.86±0.21 62.56±0.17 59.58±0.62 63.17
Smth + DNR (f10) 71.37±0.22 66.63±0.37 66.81±0.20 68.36±0.14 64.10±0.58 67.45

generation are then reinitialized. This process effectively induces selective neurogenesis, allowing the
network to adapt and free up its capacity for learning more generalized representations in subsequent
generations. Finally, the network for subsequent generation is initialized as shown in Equation 3.

Intuitively, we incorporated selective neurogenesis as a replacement mechanism, reinitializing the
input and output synaptic weights of specific subsets of network parameters dynamically during the
evolutionary training process (24). Due to the challenges associated with where, how, and when to
create neurons (20), we explore data-aware dynamic masking to drive neuron creation and removal,
which could improve learning. We first select the crucial parameters based on the computed saliency
mask. Ideally, we would like the mask to keep the knowledge learned from the previous generation
as much as possible and to have enough learning capacity to accommodate the learning happening
in the new generation. The additional learning capacity facilitates the fast adoption of generalized
knowledge and reinforces the knowledge retained from the previous generation. In this way, selective
neurogenesis is achieved that inherently adapts the network connectivity patterns in a data-dependent
way to learn generalized representations without altering overall network size.

The network with the new initialization undergoes next-generation training with the same data for
the e epochs, where e is kept the same for each generation. The network is trained with the loss
function shown in Equation 1. Thus, we favor the preservation of the task-specific connections more
precisely than the mask criteria used in KE that can guide the network towards those desirable traits
that efficiently improve the performance and generalization of DNNs in small datasets.

4 Experimental Setup

Here, we provide the details on the experimental setup, implementation details, and datasets used in
our empirical evaluation.

Datasets: We evaluate the proposed method using five datasets: Flower102 (25), CUB-200-2011
(26), MIT64 (27), Stanford Dogs (28), FGVC-Aircraft (29). The summaries of the statistics of the
data set are mentioned in Appendix, Table 10.

Implementation Details: Since our framework is a direct extension of the KE, we follow the same
experimental setup. The efficacy of our framework is demonstrated in two widely used architectures:
ResNet18 and ResNet50 (30). We randomly initialize the networks and optimize them with stochastic
gradient descent (SGD) with momentum 0.9 and weight decay 1e− 4. We use the cosine learning
rate decay with an initial learning rate lr = {0.1, 0.256} on specific datasets. The networks are trained
iteratively for N generations (N=11) with a batch size b=32 for e=200 epochs without early stopping.
The standard data augmentation techniques, such as flipping and random cropping, are used. We
employ SNIP (23) with network sparsity k to find the critical subset of parameters at the end of each

5

generation. For the importance estimation, we use 20% of the whole dataset as a subset (π). For all
our experiments, we reinitialize a fixed 20% parameters of the network globally. All training settings
(lr, b, e) are constant throughout generations.

Baselines: To evaluate and benchmark the effectiveness of our proposed approach, we conduct a
comprehensive evaluation by comparing it against several existing methods that involve iterative
retraining and reinitialization. Specifically, we benchmark our method against the following tech-
niques: 1) Dense-Sparse-Dense Networks (DSD) (3); 2) Born Again Networks (BANs) (4); and
3) Knowledge Evolution (KE) with its variant, KELS (5). We also compare our method against a
non-iterative approach known as the Long Baseline (LB), which undergoes training for the same
number of epochs as the corresponding iterative methods. Since our framework is built on top of KE,
we follow the same procedure in all our experiments unless specified.

5 Results

In this section, we conduct comprehensive experimental evaluations of our method across multiple
datasets and ablation studies. For an in-depth analysis, extended robustness experiments, including
robustness to 15 types of natural corruptions at varying severity levels, adversarial attacks, and class
imbalance, are provided in Appendix.

5.1 Evaluation on Small Datasets

Table 1 presents the quantitative classification evaluation results using ResNet18. fg denotes the
result at the end of gth generation. We compare DNR with two different configurations: (1) using
naive cross-entropy loss (CE), and (2) incorporating label smoothing (Smth) regularizer with a
hyperparameter α = 0.1 (31).

The Dynamic Neural Regeneration (DNR) framework demonstrates flexibility and consistently im-
proves performance over the considered baselines across datasets. Interestingly, KE underperforms in
terms of performance compared to long baseline (LB) with equal computation cost. This discrepancy
may be attributed to the use of fixed masking criteria throughout evolutionary training, limiting
the model’s adaptability. In contrast, DNR outperforms both longer baselines and KE, consistently
improving generalization performance across all datasets.

Similarly, we compare the performance of our method with the label smoothing regularizer (Smth)
applied to the baselines. Table 1 shows that our method consistently outperforms LB and KE on
all datasets. DNR showcases slightly better performance compared to LW and LLF, with a key
advantage being its independence from architecture-specific assumptions. Unlike LLF and LW,
which lack prior knowledge of which features, layers, or parameters to reinitialize, DNR uses data-
aware dynamic masking to selectively remove redundant connections. This reduces complexity and
improves scalability as the model grows. Moreover, research indicates that memorization in neural
networks is not confined to final layers but involves neurons distributed throughout the model (18),
highlighting the limitations of architecture-specific assumptions and underscoring the effectiveness
of our approach. Additionally, in real-world settings where data arrives in batches (32), DNR can
dynamically iterate over each batch, optimizing performance. These results demonstrate the efficacy
of the data-aware dynamic masking and selective reinitialization employed by DNR. By adapting
task-specific parameters in each generation, DNR achieves superior performance and enhances the
model’s generalization.

5.2 Evaluation on Large Datasets

Our work is a direct extension of KE (5), which focuses explicitly on improving generalization in
the low data regime. However, we also thoroughly evaluate our method on large datasets such as
Tiny-ImageNet (33), CIFAR10, and CIFAR100 (34) using ResNet50 to assess its scalability. Table 2
compares the effectiveness of our method (DNR) with Knowledge Evolution (KE) and longer baseline
(LB) in larger data sets. For each model, we trained it on top of the baseline for a specific number
of generations (f10), where N indicates the number of generations. The proposed approach exhibits
promising performance and generalization across various large-scale datasets, such as TinyImageNet,
when compared to KE and longer baselines. Furthermore, while the performance of KE and longer
baselines (LB) falls below the normal standard training (f1), the DNR framework demonstrates

6

1 2 3 4 5

1-2
2-3
3-4
4-5
5-6
6-7
7-8
8-9

9-10

Ge
ne

ra
tio

ns

98.5 92.7 89.4 83.5 78.7
99.2 93.1 88.8 88.2 75.1
99.8 96.6 91.1 89.0 78.0
97.7 95.1 89.3 90.9 76.5
98.6 96.3 90.6 92.9 83.0
99.6 96.7 94.1 94.2 85.2
97.4 97.5 91.8 95.0 87.5
98.4 97.5 93.9 95.5 91.6
98.8 97.6 95.3 94.0 89.5

Block-1

6 7 8 9

92.2 88.6 83.5 79.1
93.3 89.9 91.5 88.2
95.2 92.2 94.8 93.4
95.7 92.6 95.6 93.3
96.8 94.1 96.9 95.6
97.5 95.1 97.3 96.2
97.9 95.4 97.4 96.4
98.5 95.9 97.9 97.2
98.6 96.1 97.8 96.9

Block-2

10 11 12 13

89.4 83.6 84.2 82.2
95.3 92.1 91.6 90.9
96.8 95.0 94.1 93.1
97.5 95.9 94.7 93.6
98.0 96.9 95.2 94.1
98.3 97.2 95.9 94.6
98.4 97.5 96.1 94.8
98.7 97.8 96.5 94.9
98.6 97.8 96.4 95.2

Block-3

14 15 16 17 18

89.4 78.0 79.0 77.5 93.7
92.7 83.4 75.6 67.3 95.0
93.4 84.2 75.9 65.8 95.8
93.5 85.1 76.9 66.9 96.1
94.4 86.2 77.3 67.3 96.2
94.6 86.7 77.3 67.9 96.3
94.9 87.7 78.1 69.0 96.7
95.0 88.4 80.5 71.1 97.1
95.3 89.2 82.0 73.1 96.9

Block-4 & FC

Layers in ResNet18

Figure 2: Layer-wise percentage overlap of the retained parameters in consecutive generations.

Table 2: Compares the results of the DNR framework with the KE and longer baselines for ResNet50
on large datasets. g in fg indicates the number of generations the model is trained.

Methods Large datasets

CIFAR10 CIFAR100 TinyImageNet Mean

Smth (f1) 94.32±0.38 73.83±0.23 54.15±0.18 74.10
Smth + LB (f10) 93.60±0.29 74.21±0.28 51.16 ±0.21 72.99
Smth + KE (f10) 93.50±0.22 73.92±0.31 52.56 ±0.17 73.33
Smth + DNR (f10) 94.61±0.30 75.05±0.23 54.50 ±0.26 74.72

comparable or slightly improved performance in this scenario. This suggests that a selective way of
reinitializing benefits iterative training and can effectively handle the complexities and challenges
associated with larger datasets and architectures.

5.3 Robustness of Connection Selection across Training Steps

Unlike KE, which employs a randomly predetermined and fixed masking strategy, DNR provides a
notable advantage through the utilization of Data-aware Dynamic Masking (DDM) for parameter
reinitialization. Therefore, it is crucial to investigate whether DNR fully leverages the benefits of the
evolutionary training paradigm by dynamically adapting the mask in each generation.

The proposed DNR framework employs SNIP (23) as a masking criterion to selectively regulate the
parameters that have the least impact on performance in each generation of training. To examine this,
we analyze the CUB200 dataset using the ResNet18 architecture. We save the mask generated by
SNIP after the end of every generation. Visualizing the mask generated by the DNR framework can
be challenging due to the large number of parameters in each layer of the backbone. To assess the
consistency of connections across generations, we adopt a metric based on the percentage of overlap
of retained parameters between the masks created in consecutive generations. This metric provides a
quantitative analysis of the degree of flexibility induced by DNR in the evolutionary training process.

Figure 2 illustrates the layer-wise percentage overlap of retained parameters between consecutive
generations in the DNR framework. The results reveal that the earlier layers consistently exhibit a
high overlap percentage across all generations, indicating a consistent selection of connections.

The overlap percentage decreases in the later layers (specifically, layer 4 in ResNet) as the model
learns class-specific information. This observation suggests that the mask adapts to capture task-
specific features while maintaining stability in the earlier layers. Interestingly, we observe that
the overlap percentage of the mask progressively increases as the evolutionary training progresses.
Specifically, the overlap between the 9th and 10th generations is higher compared to the overlap
between the 1st and 2nd generations. This observation suggests that the mask becomes more saturated
and stable as the model state converges to a lower-loss landscape. This flexible nature of the DNR
framework, allowing for the regulation of connections in both early and later layers, contributes to its
effectiveness in improving generalization performance.

7

Table 3: Comparative analysis of DNR and transfer learning across diverse datasets.
Baselines CUB Aircraft Dog Flower MIT

Smth + transfer learning (f3) 65.63 ±0.21 61.02 ±0.23 63.84 ±0.17 57.62 ±0.19 58.04 ±0.31

Smth + DNR (f3) 68.56 ±0.24 64.37 ±0.19 65.72 ±0.15 62.13 ±0.23 62.62 ±0.51

5.4 Comparison with Transfer Learning

Our approach using DNR, indeed differs widely from the domain of transfer learning. Unlike transfer
learning, which primarily focuses on leveraging pre-trained models trained on large datasets from
different domains to boost task performance on downstream tasks, DNR is intricately designed to
tackle the intricate challenge of enhancing generalization in the presence of inherently limited or
small datasets. A key issue with transfer learning arises when the pre-trained model’s source domain
vastly differs from the target domain of interest. This discrepancy between domains often leads to
domain shifts, where the knowledge transferred from the pre-trained model fails to adapt well to the
specificities of the target domain, thereby resulting in suboptimal performance.

In particular, in scenarios like medical applications, obtaining sufficient labeled data that closely
aligns with the task at hand is exceptionally challenging. Though transfer learning is predominantly
used in this field, the need for domain expertise, privacy concerns, and the uniqueness of each applica-
tion domain make it exceedingly difficult to find a pre-trained model that seamlessly fits. Furthermore,
the presence of domain shift between the source and target might lead to compromised perfor-
mance, affecting the accuracy and generalization of the model on a specific task with limited data.

0 2 4 6 8 10
Generation

60

62

64

66

68

70

Ac
cu

ra
cy

Transfer Learning (Vanilla Fine-tuning)
DNR

Figure 3: Convergence behavior: evaluating per-
formance across generations in DNR and trans-
fer learning with ResNet18 architecture trained on
CUB dataset.

DNR, on the other hand, offers a novel solution
to these intricate challenges. By employing data-
aware dynamic masking and selective reinitial-
ization, DNR fosters the gradual evolution of the
network, enabling it to adapt more effectively to
the characteristics of the specific dataset. This
process circumvents the problems of domain
shifts that often plague transfer learning meth-
ods. Thus, while transfer learning remains valu-
able in contexts with abundant and well-aligned
data, DNR stands out as a specialized approach
to address the unique hurdles faced in scenarios
of limited data availability, where the domain-
shift problem can severely hinder model perfor-
mance and generalization.

Furthermore, we have included a comparative
analysis in Table 3 that involves an instance of
transfer learning within the iterative training pro-
cess, a process we refer to as vanilla fine-tuning.
In this particular case, weights are directly transferred from one generation to the next without
undergoing reinitialization.

This comparison serves to highlight the unique effectiveness of the DNR method. Our results distinctly
demonstrate that DNR enhances the process of generalization, showcasing superior performance in
comparison to the approach of directly transferring the complete network’s weights across generations.
This outcome further underscores the distinct advantage of DNR in evolving the network’s capacity
for better adaptation and learning in the evolutionary training paradigm.

5.5 Analyzing Convergence Patterns: A Comparative Study between DNR and Transfer
Learning

In Figure 3, we present the convergence behavior of our proposed DNR algorithm juxtaposed with
vanilla fine-tuning. The x-axis delineates different generations during the training process, while the
y-axis represents the performance at the end of each generation. We observe that the convergence
of vanilla fine-tuning unfolds at a more gradual pace. In contrast, DNR demonstrates a faster

8

convergence rate. Across generations, DNR consistently surpasses vanilla fine-tuning, delivering
a heightened performance level within a shorter training duration. The utilization of data-aware
dynamic masking through SNIP in DNR amplifies this efficiency, enabling the model to concentrate
on the most pertinent information for effective generalization.

5.6 Effect of Importance Estimation Method

Table 4: Evaluating the performance of DNR with
different importance estimation.
Importance Criteria CUB200 Flower

LB 69.80 ±0.13 66.89 ±0.23

Random (KE) 66.51 ±0.07 62.56 ±0.17

FIM 67.73 ±0.28 65.96 ±0.20

Weight Magnitude 64.18 ±0.19 66.90 ±0.11

SNIP 71.87 ±0.22 68.36 ±0.14

We conduct an investigation into the effective-
ness of different methods to estimate the impor-
tance of parameters within our proposed train-
ing paradigm. Specifically, we explore Fisher
Importance (FIM), weight magnitude, random
selection, and SNIP (23) criteria. In Table 4,
we present the performance and generalization
results of the model trained with these various
selection methods on the CUB200 dataset using
the ResNet18 architecture.

Our findings demonstrate that the use of SNIP
as data-aware dynamic masking yields superior
performance compared to all other baseline methods. Surprisingly, the importance criteria based on
weight magnitude exhibited inferior performance compared to random selection. However, the lottery
ticket hypothesis (35) suggests the existence of sparse subnets within neural networks. Remarkably,
when these subnets are trained in isolation, they can achieve a final performance accuracy comparable
to that of the entire network in the same or even fewer training epochs. In particular, neurons within
these winning subnets demonstrate higher rates of weight changes relative to other neurons. This
observation raises the possibility of selectively reinitializing neurons that undergo minimal weight
changes during training, as they contribute the least to loss function. Merely relying on the ℓ1 norm,
which fails to capture the rate of weight changes, as described by the lottery ticket hypothesis, may
not adequately capture the notion of importance. Therefore, our findings suggest that the utilization
of SNIP for data-aware dynamic masking proves to be more effective, as it considers the rate of
weight changes in determining the importance of parameters. This approach aligns better with the
lottery ticket hypothesis and leads to improved performance and enhanced generalization capabilities
in our experimental evaluations.

6 Conclusion

We presented Dynamic Neural Regeneration (DNR), an iterative/evolutionary training paradigm
designed to improve the generalization of deep networks on small datasets. Our framework incor-
porates selective reinitialization at the end of each generation, employing a data-aware dynamic
masking scheme to remove redundant connections based on their importance. This enables the model
to increase its capacity for further learning, emphasizing the acquisition of generalizable features.
Empirical results demonstrate that the proposed framework substantially enhances performance and
generalization across small datasets compared to other reinitializing techniques. Moreover, DNR
exhibits improved robustness in challenging real-world scenarios, including adversarial attacks and
learning with class imbalances, while enhancing generalization on natural corruption data.

As a direction for future research, delving into the possibilities offered by growing networks (36)
presents an intriguing path worth exploring. Our primary aim was to demonstrate the practical
effectiveness of DNR, laying the foundation for theoretical exploration in this domain. We envision
future studies to delve deeper into elucidating the theoretical underpinnings of DNR’s success and
exploring its application in diverse domains beyond those examined in this study. One possible
limitation that emerged from our empirical evaluation is the sensitivity of our method to the choice
of parameter selection. Addressing this limitation in future work could involve developing a robust
parameter selection or importance estimation technique. This enhancement would improve our
method’s overall performance and deepen our understanding of overfitting dynamics by disentangling
the contributions of different parameters. Finally, we believe the development of techniques like
DNR holds the potential to advance the capabilities of deep learning models, paving the way for
robust, adaptable, and generalizable artificial intelligence systems.

9

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444,

2015.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda, M. Paluri, J. Tran, et al.,
“Dsd: Dense-sparse-dense training for deep neural networks,” arXiv preprint arXiv:1607.04381,
2016.

[4] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar, “Born again neural
networks,” in International Conference on Machine Learning, pp. 1607–1616, PMLR, 2018.

[5] A. Taha, A. Shrivastava, and L. S. Davis, “Knowledge evolution in neural networks,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12843–
12852, 2021.

[6] T. J. Shors, G. Miesegaes, A. Beylin, M. Zhao, T. Rydel, and E. Gould, “Neurogenesis in the
adult is involved in the formation of trace memories,” Nature, vol. 410, no. 6826, pp. 372–376,
2001.

[7] A. Garthe, I. Roeder, and G. Kempermann, “Mice in an enriched environment learn more
flexibly because of adult hippocampal neurogenesis,” Hippocampus, vol. 26, no. 2, pp. 261–271,
2016.

[8] G. Kempermann, H. Song, and F. H. Gage, “Neurogenesis in the adult hippocampus,” Cold
Spring Harbor perspectives in biology, vol. 7, no. 9, p. a018812, 2015.

[9] M. Yasuda, E. M. Johnson-Venkatesh, H. Zhang, J. M. Parent, M. A. Sutton, and H. Umemori,
“Multiple forms of activity-dependent competition refine hippocampal circuits in vivo,” Neuron,
vol. 70, no. 6, pp. 1128–1142, 2011.

[10] J. B. Aimone, Y. Li, S. W. Lee, G. D. Clemenson, W. Deng, and F. H. Gage, “Regulation and
function of adult neurogenesis: from genes to cognition,” Physiological reviews, 2014.

[11] K. C. Vadodaria and F. H. Gage, “Snapshot: adult hippocampal neurogenesis,” Cell, vol. 156,
no. 5, pp. 1114–1114, 2014.

[12] N. Toni, D. A. Laplagne, C. Zhao, G. Lombardi, C. E. Ribak, F. H. Gage, and A. F. Schinder,
“Neurons born in the adult dentate gyrus form functional synapses with target cells,” Nature
neuroscience, vol. 11, no. 8, pp. 901–907, 2008.

[13] J. Oh, S. Kim, N. Ho, J.-H. Kim, H. Song, and S.-Y. Yun, “Refine: Re-randomization before
fine-tuning for cross-domain few-shot learning,” in Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pp. 4359–4363, 2022.

[14] S. Zaidi, T. Berariu, H. Kim, J. Bornschein, C. Clopath, Y. W. Teh, and R. Pascanu, “When does
re-initialization work?,” in Proceedings on, pp. 12–26, PMLR, 2023.

[15] S. Zaidi, T. Berariu, H. Kim, J. Bornschein, C. Clopath, Y. W. Teh, and R. Pascanu, “When does
re-initialization work?,” arXiv preprint arXiv:2206.10011, 2022.

[16] H. Zhou, A. Vani, H. Larochelle, and A. Courville, “Fortuitous forgetting in connectionist
networks,” arXiv preprint arXiv:2202.00155, 2022.

[17] I. Alabdulmohsin, H. Maennel, and D. Keysers, “The impact of reinitialization on generalization
in convolutional neural networks,” arXiv preprint arXiv:2109.00267, 2021.

[18] P. Maini, M. C. Mozer, H. Sedghi, Z. C. Lipton, J. Z. Kolter, and C. Zhang, “Can neural network
memorization be localized?,” arXiv preprint arXiv:2307.09542, 2023.

10

[19] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi, “Morphnet: Fast &
simple resource-constrained structure learning of deep networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1586–1595, 2018.

[20] U. Evci, B. van Merrienboer, T. Unterthiner, M. Vladymyrov, and F. Pedregosa, “Gradmax:
Growing neural networks using gradient information,” arXiv preprint arXiv:2201.05125, 2022.

[21] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging the lottery: Making all tickets
winners,” in International Conference on Machine Learning, pp. 2943–2952, PMLR, 2020.

[22] S. Liu, T. Chen, X. Chen, Z. Atashgahi, L. Yin, H. Kou, L. Shen, M. Pechenizkiy, Z. Wang,
and D. C. Mocanu, “Sparse training via boosting pruning plasticity with neuroregeneration,”
Advances in Neural Information Processing Systems, vol. 34, pp. 9908–9922, 2021.

[23] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network pruning based on connection
sensitivity,” arXiv preprint arXiv:1810.02340, 2018.

[24] L. M. Tran, A. Santoro, L. Liu, S. A. Josselyn, B. A. Richards, and P. W. Frankland, “Can
neurogenesis act as a neural regularizer?,” bioRxiv, pp. 2022–04, 2022.

[25] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large number of
classes,” in 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729, IEEE, 2008.

[26] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd birds-200-2011
dataset,” 2011.

[27] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 413–420, IEEE, 2009.

[28] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li, “Novel dataset for fine-grained image
categorization: Stanford dogs,” in Proc. CVPR workshop on fine-grained visual categorization
(FGVC), vol. 2, Citeseer, 2011.

[29] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-grained visual classification
of aircraft,” arXiv preprint arXiv:1306.5151, 2013.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[31] R. Müller, S. Kornblith, and G. E. Hinton, “When does label smoothing help?,” Advances in
neural information processing systems, vol. 32, 2019.

[32] L. Caccia, J. Xu, M. Ott, M. Ranzato, and L. Denoyer, “On anytime learning at macroscale,” in
Conference on Lifelong Learning Agents, pp. 165–182, PMLR, 2022.

[33] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, no. 7, p. 3,
2015.

[34] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.

[35] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable neural
networks,” arXiv preprint arXiv:1803.03635, 2018.

[36] X. Dai, H. Yin, and N. K. Jha, “Nest: A neural network synthesis tool based on a grow-and-prune
paradigm,” IEEE Transactions on Computers, vol. 68, no. 10, pp. 1487–1497, 2019.

[37] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corrup-
tions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.

[38] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

11

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[40] A. Chrysakis and M.-F. Moens, “Online continual learning from imbalanced data,” in Interna-
tional Conference on Machine Learning, pp. 1952–1961, PMLR, 2020.

[41] O. Kovalyk, J. Morales-Sánchez, R. Verdú-Monedero, I. Sellés-Navarro, A. Palazón-Cabanes,
and J.-L. Sancho-Gómez, “Papila: Dataset with fundus images and clinical data of both eyes of
the same patient for glaucoma assessment,” Scientific Data, vol. 9, no. 1, p. 291, 2022.

12

A Appendix/ Supplemental Material

A.1 Broader Impact

We believe that the research work presented herein has the potential to significantly impact the field
of deep learning by facilitating the development of models on small datasets, thus reducing the
necessity for extensive data collection. This contribution is of particular significance in specific
domains like autonomous navigation and medical imaging, as data acquisition can be cost-prohibitive,
even in cases where labeling is unnecessary. By mitigating overfitting on small datasets, the proposed
approach can improve the accuracy and reliability of deep learning models in these areas, ultimately
leading to improved patient outcomes and safer autonomous systems. Moreover, this work has the
potential to usher in a more efficient and sustainable use of resources in a diverse range of domains
where data collection is a bottleneck.

A.2 Evolution of Mask across Generations

In this section, we present the evolutionary process of the mask over multiple generations and its
impact on the performance and generalization capabilities of the DNNs. We evaluate the effectiveness
of DNR in dynamically adapting and evolving the mask throughout the training process. The
ResNet18 architecture with CUB200 is used for this evaluation.

Figure 4 illustrates the evolution of the mask between generations. As training progresses, the mask
undergoes iterative updates based on the data-aware dynamic masking criteria employed by DNR.
The mask becomes more refined and selective with each generation, preserving important connections
while pruning less relevant ones.

1 2 3 4 5

1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

1-10

Ge
ne

ra
tio

ns

98.5 92.7 89.4 83.5 78.7
99.8 92.5 87.5 82.5 75.2
99.8 92.9 87.0 81.3 73.4
99.8 92.4 85.2 80.6 70.8
99.8 92.4 84.9 80.4 68.4
99.8 92.3 84.9 81.0 69.2
99.8 91.9 84.6 80.8 68.6
99.8 92.0 84.2 80.9 68.7
99.8 92.1 84.1 80.5 68.3

Block-1

6 7 8 9

92.2 88.6 83.5 79.1
91.3 87.1 82.0 76.4
90.7 86.5 81.5 75.7
90.6 85.9 81.3 75.0
90.3 85.5 81.3 74.9
90.3 85.6 81.3 74.7
90.2 85.3 81.3 74.6
90.2 85.2 81.3 74.7
90.3 85.0 81.6 75.0

Block-2

10 11 12 13

89.4 83.6 84.2 82.2
89.1 82.7 83.6 81.7
88.8 82.4 83.4 81.5
88.8 82.3 83.4 81.5
88.8 82.2 83.2 81.3
88.8 82.2 83.2 81.4
88.8 82.2 83.1 81.3
88.8 82.2 83.2 81.4
88.8 82.2 83.2 81.3

Block-3

14 15 16 17 18

89.4 78.0 79.0 77.5 93.7
89.4 77.9 78.6 77.4 93.8
89.3 77.9 78.5 77.4 93.7
89.3 77.8 78.6 77.4 93.7
89.3 77.9 78.6 77.2 93.7
89.3 77.9 78.6 77.3 93.7
89.3 77.8 78.7 77.4 93.8
89.3 77.8 78.4 77.1 93.7
89.3 77.9 78.6 77.3 93.7

Block-4 & FC

Layers in ResNet18

Figure 4: Layer-wise percentage overlap of the retained parameters between first and corresponding
generations.

To quantify the evolution of the mask, we measure the percentage of overlap of parameters retained
between the first and the corresponding generations. We observe a gradual decrease in overlap from
the initial generation to subsequent generations, indicating the emergence of masks in an evolutionary
training scenario. This progressive mask evolution contributes to the network’s enhanced capacity for
learning and generalization, evident from the test accuracy.

In conclusion, our results highlight the evolutionary nature of the mask throughout generations in the
DNR framework. The dynamic adaptation and refinement of the mask lead to effective masking and
improved performance and generalization of the DNN. These findings support the effectiveness of our
approach in leveraging the evolutionary training paradigm to enhance the learning and generalization
capabilities of deep neural networks compared to KE.

A.3 Robustness to Natural Corruptions

In practical applications, deep neural networks often operate in dynamic environments characterized
by variations such as lighting and weather conditions. Consequently, it is crucial to assess the robust-
ness of DNNs to data distributions that undergo natural corruption. We investigate the robustness

13

mCA

Gau
ssi

an Sh
ot

Im
plu

se

Sp
eck

le

LB

KE

23.4 22.9 24.3 21.8 23.8

16.0 19.9 19.8 19.1 19.2

27.7 23.5 27.6 31.8 28.3

Noise

Defo
cus Glas

s

Gau
ssi

an
Moti

on
Zoo

m

20.5 18.8 18.9 21.6 17.8

12.4 12.5 11.8 10.7 10.3

22.4 21.1 20.2 18.0 17.6

Blur

Brig
htn

ess Sn
ow Fro

st Fog

Sp
att

er

33.1 28.5 24.5 20.1 27.7

21.3 21.0 15.7 11.8 21.0

49.6 35.3 29.2 19.5 41.0

Weather

Con
tra

st
Ela

stic JPE
G

Pix
ela

te

Sa
tur

ate

18.1 21.3 26.2 21.1 32.9

10.8 12.1 16.8 15.7 22.5

16.0 20.9 25.3 31.0 48.4

Digital

DNR

Figure 5: Robustness to natural corruptions on CIFAR10-C (37). DNR is more robust against the
majority of corruptions compared to the baselines.

of DNNs to 15 common types of corruptions using the CIFAR-10-C dataset (37). Our models are
trained on clean images of the CUB dataset and evaluated on CIFAR-10-C (37). To quantify the
performance under natural corruption, we use the Mean Corruption Accuracy (mCA) metric.

mCA =
1

Nc ×Ns

Nc∑
c=1

Ns∑
s=1

Ac,s (7)

where Nc and Ns represent the number of corruptions (in this case, 19) and the number of severity
levels (in this case, 5), respectively. Figure 5 illustrates the average accuracy of the models across
19 different corruptions at five severity levels. In particular, our proposed method (DNR) achieves
a higher mCE (27.7%) compared to the longer baseline (23.4%) and KE (16%), demonstrating its
effectiveness in improving the robustness to various types of corruption. These findings highlight
the benefits of selectively reinitializing network parameters using a data-aware masking approach,
resulting in enhanced robustness to natural corruptions.

A.4 Computational Cost

In our experiments, we consistently maintained a fixed training duration of 200 epochs for each
generation, with the number of generations set at 10 to ensure a fair comparison. The computational
cost of evolutionary training methods, including KE, LLF and DNR, scales linearly with the number
of generations (T). For instance, if KE is trained for 5 generations, the total computational cost
becomes 5T times that of training a single generation. To ensure a fair comparison, we trained a long
baseline for the same number of epochs. The additional computational cost incurred by DNR for
computing data-aware dynamic masking with SNIP is minimal. For example, on the CUB dataset
with a 20% subset, this process takes approximately 20.3 seconds per generation. This calculation is
performed once at the end of each generation and can be further optimized by using just 128 samples
to estimate the importance without compromising performance. Appendix Table 7 demonstrates that
DNR’s performance is minimally sensitive to changes in the subset size.

A.5 Robustness to Adversarial Attacks

DNNs are vulnerable to adversarial attacks, where imperceptible perturbations are added to the input
during inference to deceive the network and induce false predictions (38). Therefore, we investigate
the robustness of DNNs trained against adversarial attacks using the PGD-10 attack (39) on models
trained on the CIFAR10 dataset. We vary the intensity of the PGD attack and evaluate the models’
performance. As shown in Figure 6, our proposed framework (DNR) exhibits greater robustness to
adversarial attacks at different attack strengths compared to KE and the long baseline. This highlights
the efficacy of our framework in training models that can learn high-level abstractions robust to small
perturbations in the input data.

14

0 1 2 3 4 5 6
Attack Strength (Epsilon)

0

10

20

30

40

50

60

70

80

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y

Adversarial perturbation

78

80

82

84

86

88

90

C
la

ss
 b

al
an

ce
d

Ac
cu

ra
cy

Robustness to class imbalance

LB
KE
SKE

Figure 6: Robustness to adversarial attacks

LB KE
78

79

80

81

82

83

84

85

C
la

ss
 b

al
an

ce
d

Ac
cu

ra
cy

Robustness to class imbalance

DNR

Figure 7: Robustness to class imbalance

A.6 Robustness to Class Imbalance Dataset

In real-world applications, class imbalance is a common characteristic of the input distribution, where
certain classes are more prevalent than others.

This inherent class imbalance can affect the training of DNNs, as they tend to be biased towards
the majority classes, thereby neglecting the minority classes (40). To address this issue, we explore
the contribution of reinitialization to model training with class imbalance. We incorporate class
imbalance using the power-law model on CIFAR10. The number of training samples for a class c
is determined by nc = a/(b + c)γ , where γ represents the imbalance ratio, and a and b are offset
parameters specifying the largest and smallest class sizes. We set a fixed gamma value of 1 in our
experiments to maintain a power law class distribution. The offset parameters a and b are chosen
such that the maximum and minimum class counts are 5000 and 250, respectively. We used balanced
accuracy as a metric to measure the robustness of the model under the class imbalance scenario. Our
findings in Figure 7 demonstrate that the DNR framework consistently outperforms KE and longer
baselines in scenarios with class imbalance. This highlights the effectiveness of DNR in addressing
the challenges posed by imbalanced class distributions and underscores its potential for practical
applications.

Table 5: Performance evaluation with varying the percentage of reinitialized parameters during
training using ResNet18. Test accuracy at the end of 10 generations is reported on Aircraft and CUB
datasets.

Reinit. Params (%) Aircraft CUB

5 65.34 69.95
10 66.10 70.15
20 66.63 71.37
30 64.13 68.42
40 62.79 66.87

A.7 Effect of Adjusting Reinitialized Parameter Ratios

Table 5 shows the effect of varying the number of reinitialized parameters on the performance and
generalization of the model. We train the model in evolutionary settings using the DNR framework
by varying different percentages of reinitialized parameters (5%, 10%, 20%, 30%, and 40%). The
experiments were carried out with ResNet18. The results show that the reinitialization of a 5%
percentage of parameters has no impact on performance, while the reinitialization of more than 30%
has less impact on test accuracy. We find that reinitialization 20% of the parameters results in the
best performance.

15

Table 6: Evaluating the effectiveness of the sparse model.

Method Full model Sparse model

KE (f10) 66.51 66.21
DNR (f10) 71.37 70.08

A.8 Evaluating the Effectiveness of the Sparse Model

In this section, we assess the effectiveness of the sparse model (containing 20% fewer parameters than
the full/dense model) obtained through the selective neurogenesis process during the inference phase.
We examine the sparse and dense models’ test performance compared to the original KE framework.
For this, we measure the performance of the ResNet18 model trained on CUB200. Table 6 presents the
accuracy results obtained by the sparse model compared to the dense model. Surprisingly, despite the
considerable reduction in the number of parameters, the sparse model achieves comparable accuracy
compared to the dense model in the DNR framework. Furthermore, DNR demonstrates superior
performance in both the full and sparse model scenarios compared to the KE. This indicates that the
selective neurogenesis process successfully retains the critical connections necessary for accurate
predictions while eliminating redundant or less informative connections. Our evaluation demonstrates
that the sparse model obtained through the selective neurogenesis process offers several benefits
during inference. It maintains high accuracy while achieving improved computational efficiency
compared to the KE. These results highlight the practicality and efficacy of leveraging selective
neurogenesis to create efficient and compact deep learning models that can be readily deployed in
real-world scenarios.

A.9 Varying the quantity of data used for Importance estimation

In our experiments, we randomly sampled 20% of the dataset to estimate the importance of the
parameters after the end of each generation. Here, we analyze the impact of the number of data used
to determine the important estimation on the final performance. Similar to Lee et al. (23), we used as
few as 128 samples to estimate the important parameters using SNIP. Table 7 shows that DNR is not
sensitive to the variation in the input data used to estimate the importance as the final performance
remains unchanged.

Table 7: Evaluation with varying the quantity of data for importance estimation. Test accuracy at the
end of 10 generations is shown on Aircraft and CUB datasets.

samples Aircraft CUB

DNR 0.2 |D| 66.63 71.37
128 66.45 71.26

A.10 Experiments on Medical dataset

To explore the performance of deep learning in low-data medical settings, we conducted experiments
using ResNet-50 on the Papila dataset(41). This dataset, with its limited size and complex features, is
representative of the challenges in medical imaging. The Papila dataset is a medical imaging dataset
focused on analyzing and identifying ocular structures, particularly the optic disc and retinal layers.
We conducted this experiment using ResNet-50 with a learning rate of 0.001, batch size of 32, and
trained for 3 generations (1 generation = 200 epochs). For DNR 20% of the parameter is reinitialized
using SNIP. Our preliminary results suggest that Dynamic Network Reconfiguration (DNR) shows
promise in the medical domain when compared to baseline training. However, further hyperparameter
tuning is necessary to fully optimize performance.

While initial findings are encouraging, we highlight the need for more detailed studies in
reinitialization-based methods within the medical domain on different datasets. Future work should
address these challenges to improve generalizability across low-data medical imaging datasets.

16

Table 8: Performance of ResNet-50 on Papila Dataset: Comparison of DNR and Baseline in terms of
Sensitivity, Specificity, and Accuracy.

Sensitivity Specificity Accuracy

Baseline (f3) 56.11 58.68 56.90
DNR (f3) 57.03 57.83 58.20

Table 9: Performance of DNR across generations on the Flower dataset

Generations Accuracy (%)
10 68.36
20 72.10
30 73.56

A.11 Performance of DNR Across Generations on Flower Dataset

As the number of training generations increases, the performance of DNR begins to saturate. This
indicates diminishing returns in accuracy improvement with extended training. This saturation effect
is corroborated by our analysis of the mask evolution across generations, as illustrated in Figure 2.
The overlap percentage of the mask progressively increases, with a higher overlap observed between
the 9th and 10th generations compared to the 1st and 2nd generations. This trend suggests that the
mask becomes more saturated and stable, aligning with the model’s convergence to a lower-loss
landscape.

A.12 Summary of Datasets and Implementation Details

Taha et al. (5) employs various image resizing techniques for different datasets; however, they
do not provide specific details about the resizing parameters in their paper. To ensure consistency
across our experiments, we resize all datasets to a fixed size of (256, 256). Moreover, to fine-tune
the hyperparameters, we utilize a validation split, and the reported results are based on the test set
whenever it is available.

Table 10: Details of the five used classification datasets.

Datasets Classes Train Validation Test Total

CUB-200 (26) 200 5994 N/A 5794 11788
Flower-102 (25) 102 1020 1020 6149 8189
MIT67 (27) 67 5360 N/A 1340 6700
Aircraft (29) 100 3334 3333 3333 10000
Standford-Dogs (28) 120 12000 N/A 8580 20580

For experiments on large datasets, we used the following settings. The experiments were conducted
on three different datasets: CIFAR-10/100, Tiny-ImageNet. For CIFAR-10/100, the training was
performed for 160 epochs. A batch size of 64 was used, along with a step-based learning rate
scheduler. The learning rate decay was applied between epochs 80 and 120, with a decay factor of
10. The momentum was set to 0.9, and l2 regularization was applied with a coefficient of 5e-4. The
initial learning rate used was 0.1. There were no warmup epochs in this case.

For the Tiny-ImageNet dataset, the training was also conducted for 160 epochs. The batch size
was reduced to 32, and a step-based learning rate scheduler was used. Similar to CIFAR-10/100,
the learning rate decay occurred between epochs 80 and 120, with a decay factor of 10. The
momentum and l2 regularization were set to 0.9 and 5e-4, respectively. Additionally, 20 warmup
epochs were applied. Throughout all experiments, a resetting ratio of 20% is used for all generations.
All the training and evaluation are done on the NVIDIA RTX-2080 Ti GPU. The time required
to approximately train 10 generations of DNR on CUB200 with ResNet18 is approximately 1.68
hours. It is worth mentioning that to compare our method with other baselines, we utilized the results

17

presented in the KE paper (5) as a point of reference. For the hyperparameters used in training small
datasets, please refer to Section 4.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It is mentioned as a part of conclusion section
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

19

Justification: This is an experimental study.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental details to reproduce the results are mentioned in the
Experimental setup section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [Yes]
Justification: Public datasets are used for this paper. The code will be publically available
upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have mentioned all the training details and evaluation settings in the
Experimental setup section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experimental results are done for 3 runs across 8 different set of datasets to
ensure statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The type of compute workers, memory, time of execution is mentioned in
appendix section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, code of ethics are follwed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential impact of the method is discussed in the broder impact section in
Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not any which we forsee

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: No new assets are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiments using human subjects is performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Related work
	Methodology
	Evolutionary training paradigm
	Dynamic Neural Regeneration (DNR) with Data-aware Dynamic Masking

	Experimental Setup
	Results
	Evaluation on Small Datasets
	Evaluation on Large Datasets
	Robustness of Connection Selection across Training Steps
	Comparison with Transfer Learning
	Analyzing Convergence Patterns: A Comparative Study between DNR and Transfer Learning
	Effect of Importance Estimation Method

	Conclusion
	Appendix/ Supplemental Material
	Broader Impact
	Evolution of Mask across Generations
	Robustness to Natural Corruptions
	Computational Cost
	Robustness to Adversarial Attacks
	Robustness to Class Imbalance Dataset
	Effect of Adjusting Reinitialized Parameter Ratios
	Evaluating the Effectiveness of the Sparse Model
	Varying the quantity of data used for Importance estimation
	Experiments on Medical dataset
	Performance of DNR Across Generations on Flower Dataset
	Summary of Datasets and Implementation Details

