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ABSTRACT

We present a novel geometric perspective on the latent space of diffusion models.
We first show that the standard pullback approach, utilizing the deterministic prob-
ability flow ODE decoder, is fundamentally flawed. It provably forces geodesics
to decode as straight segments in data space, effectively ignoring any intrinsic
data geometry beyond the ambient Euclidean space. Complementing this view,
diffusion also admits a stochastic decoder via the reverse SDE, which enables an
information geometric treatment with the Fisher-Rao metric. However, a choice
of xT as the latent representation collapses this metric due to memorylessness. We
address this by introducing a latent spacetime z = (xt, t) that indexes the family
of denoising distributions p(x0|xt) across all noise scales, yielding a nontrivial
geometric structure. We prove these distributions form an exponential family and
derive simulation-free estimators for curve lengths, enabling efficient geodesic
computation. The resulting structure induces a principled Diffusion Edit Distance,
where geodesics trace minimal sequences of noise and denoise edits between data.
We also demonstrate benefits for transition path sampling in molecular systems, in-
cluding constrained variants such as low-variance transitions and region avoidance.

1 INTRODUCTION

Diffusion models have emerged as a powerful paradigm for generative modeling, demonstrating
remarkable success in learning to model and sample data (Yang et al., 2023). While the underlying
mathematical frameworks of training and sampling are well-established (Sohl-Dickstein et al., 2015;
Kingma et al., 2021; Song et al., 2021; Lu et al., 2022; Holderrieth et al., 2025), analysing how
information evolves through the noisy intermediate states xt for t ∈ [0, T ] remains an open question.
Our work addresses this by defining and analyzing the geometric structure of diffusion models, which
provides a principled framework for understanding their inner workings.

Figure 1: A geodesic in spacetime is the short-
est path between denoising distributions.

In generative models, a common way to study the
intrinsic geometry of the data is to pull back the
ambient (Euclidean) metric onto the latent space
(Arvanitidis et al., 2018; 2022). Equipped with this
pullback metric, shortest paths (i.e., geodesics) in
the latent space decode to realistic transitions along
data that lie on a lower-dimensional submanifold.

In a diffusion model, a natural choice for the de-
coder is the reverse ODE x0(xT ), which allows us
to derive the pullback geometry of the latents xT .
Interestingly, we prove that this leads to latent short-
est paths always decoding to linear interpolations
in data space, which have little practical utility.

We then turn our attention to the decoding distri-
bution p(x0|xt) given by the reverse SDE. We propose an alternative Fisher-Rao geometry, which
measures how the denoising distribution p(x0|xt) changes when manipulating the latent xt. We
introduce the Fisher-Rao metric G(xt, t) that varies with both state and time over the latent spacetime
(xt, t) (Fig. 1).
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Estimating geodesics in information geometry is usually tractable only for analytic families. Although
denoising distributions in diffusion are complex and non-Gaussian, we show that they form an
exponential family. This simplifies the geometry and yields a practical method for computing
geodesics between any two samples through the spacetime. In the Fisher–Rao setting, curve lengths
can be evaluated without running the reverse SDE, which significantly reduces the computational cost.

We demonstrate the utility of the Fisher-Rao geometry in diffusion models in two ways. First, it
induces a principled Diffusion Edit Distance on data that admits a clear interpretation: the geodesic
between xa and xb traces the minimal sequence of edits, adding just enough noise to forget infor-
mation specific to xa and then denoising to introduce information specific to xb. The resulting
length quantifies the total edit cost. Second, spacetime geodesics allow generating transition paths in
molecular systems, where we obtain results competitive with specialized state-of-the-art methods and
can incorporate constraints such as avoidance of designated regions in data space.

2 BACKGROUND ON DIFFUSION MODELS

We assume a data distribution q defined on RD, and the forward process

p(xt|x0) = N (xt|αtx0, σ
2
t I), (1)

which gradually transforms q into pure noise pT ≈ N (0, σ2
T I) at time T , where αt, σt define the

forward drift ft and diffusion gt. There exists a denoising SDE reverse process (Anderson, 1982)

Reverse SDE: dx =
(
ftx− g2t∇ log pt(x)

)
dt+ gtdWt, xT ∼ pT , (2)

where pt is the marginal distribution of the forward process (Eq. 1) at time t, and W is a reverse Wiener
process. Somewhat unexpectedly, there exists a deterministic Probability Flow ODE (PF-ODE) with
matching marginals (Song et al., 2021):

PF ODE: dx =
(
ftx−

1

2
g2t∇ log pt(x)

)
dt, xT ∼ pT . (3)

Assuming we can approximate the score∇ log pt (Karras et al., 2024), we denote by xT 7→ x0(xT )
the deterministic denoiser of solving the PF-ODE from noise xT , while we denote by p(x0|xt) the
denoising distributions induced by stochastic sampling of the reverse SDE (Karras et al., 2022).

3 RIEMANNIAN GEOMETRY OF DIFFUSION MODELS

Riemannian geometry equips a latent space Z with a smoothly varying metric tensor G(z) for z ∈ Z .
This metric defines inner products and induces the notions of distance and curve length (Do Carmo &
Francis, 1992). Several works have developed diffusion models on top of Riemannian manifolds,
such as spheres, tori and hyperboloids (De Bortoli et al., 2022; Huang et al., 2022; Thornton et al.,
2022). In this paper, we instead study what kind of Riemannian geometries are implicitly induced by
the denoiser within a real vector space RD (e.g., images).

In Euclidean geometry, the space is flat, with distances given by the length of straight lines connecting
points. In Riemannian spaces, the shortest path between two points is no longer straight, but a
curved geodesic. A smooth curve γ : [0, 1] → Z between fixed endpoints γ0,γ1 is a geodesic if
it minimizes the length

ℓ(γ) =

∫ 1

0

∥γ̇s∥Gds =
∫ 1

0

√
γ̇Ts G(γs)γ̇sds, (4)

or, equivalently, the energy E(γ) = 1
2

∫ 1

0
∥γ̇s∥2Gds.

We introduce two interpretations of Riemannian geometry G for diffusion models, depending on
whether the decoder is deterministic or stochastic. In both cases, we first assume the latent space is
the noise space xT , and later relax this to cover the entire noisy sample space xt.
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Deterministic sampler: pullback geometry. Let xT 7→ x0(xT ) be a deterministic map given by
the PF-ODE (Eq. 3) mapping noise to data. We propose the pullback metric (Arvanitidis et al., 2022;
Park et al., 2023)

GPB(xT ) =

(
∂x0

∂xT

)⊤(
∂x0

∂xT

)
∈ RD×D, x0 := x0(xT ) ∈ RD (5)

which measures how an infinitesimal noise step dxT changes the decoded sample:∥∥x0(xT + dxT )− x0(xT )
∥∥2 = dx⊤

TGPB(xT )dxT + o(∥dxT ∥2). (6)

Stochastic sampler: information geometry. Alternatively, consider a stochastic decoder that, for
each latent xT defines a denoising distribution p(x0|xT ) by solving the Reverse SDE (Eq. 2). We
propose the information-geometric viewpoint via the Fisher-Rao metric (Amari, 2016)

GIG(xT ) = Ex0∼p(x0|xT )

[
∇xT

log p(x0|xT )∇xT
log p(x0|xT )⊤

]
∈ RD×D, (7)

which measures how an infinitesimal noise step dxT changes the entire denoising distribution:

KL
[
p(x0 | xT )

∥∥ p(x0 | xT + dxT )
]
=

1

2
dx⊤

TGIG(xT )dxT + o(∥dxT ∥2). (8)

For a helpful tutorial on information geometry, we refer to Mishra et al. (2023).

4 PULLBACK GEOMETRY COLLAPSES IN DIFFUSION MODELS

Both pullback and information geometries are, in principle, applicable. We will first show the pullback
geometry has fundamental theoretical limitations in diffusion models, rendering it practically useless.

Figure 2: The pullback geodesics curve in noise
space, but decode to straight lines in data space.

Assume we estimate a geodesic γ in the noise
space xT such that its endpoints decode to
x0(γ0) = xa and x0(γ1) = xb. The pullback
energy E(γ) (Eq. 4) can be shown to only de-
pend on the decoded curve x0(γs) in data space
(See Appendix B):

EPB(γ) =
1

2

∫ 1

0

∥∥∥∥ ddsx0(γs)

∥∥∥∥2 ds. (9)

The unique minimizer is the constant-speed
straight line xs = (1−s)xa+sxb in data space.
Since the ODE is bijective, this line has a unique
latent preimage γ⋆s = x−1

0 (xs) = xT (xs),
which is thus a pullback geodesic, and the en-
ergy reduces to Euclidean distance in data space:

EPB(γ) :=
1

2

∥∥xa − xb
∥∥2. (10)

Hence, all pullback geodesics decode to straight segments, ignoring the curvature of the data manifold
and undermining downstream applications (See Fig. 2). The same pathology applies for denoised
geodesics in the intermediate space xt as well. The core reason for this is that, in diffusion models,
the latent and data spaces have the same dimension. The decoder operates directly in the ambient
space and, without further dimensional constraints, it cannot capture the intrinsic structure of the data,
even if the data lie on a lower-dimensional submanifold. As a result, the standard pullback metric
provides no meaningful geometric information. A formal proof and discussion are in Appendix B.

5 INFORMATION GEOMETRY WITH DENOISING DECODERS

Under the stochastic view, the decoder is the denoising distribution p(x0|xT ) obtained by reversing
the diffusion process (Eq. 2). This yields a family of distributions on the data space parametrized
with noise vectors xT . The information geometry assigns the Fisher-Rao metric to the latent domain,
and geodesic energies/lengths are computed as in Section 3.
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The latent spacetime. Diffusion models are “memoryless” (Domingo-Enrich et al., 2025):

p(xT | x0) ≈ pT (xT ) ⇒ p(x0 | xT ) ≈ q(x0). (11)

Hence p(x0 | xT ) is (approximately) independent of xT , implying∇xT
log p(x0 | xT ) ≈ 0 and a

collapse of the Fisher–Rao metric, GIG ≈ 0 (Eq. 7). Consequently, if we identify the latent space
with z = xT , all xT become metrically indistinguishable. This could be avoided by choosing z = xt
for some t < T ; however, instead of choosing an arbitrary noise level t, we propose to model all
noise levels simultaneously by considering points in the (D + 1)-dimensional latent spacetime

z = (xt, t) ∈ RD × (0, T ], (12)

which define the family of all denoising distributions
{
p(x0|xt)

}
across all noise levels (Fig. 1).

Why include time? The resulting Fisher-Rao metric GIG(z) varies with state and time, restoring a
nontrivial geometry and enabling navigation across noise levels within a unified structure. Identifying
clean data with spacetime points (x, 0), for which p(x0 | x0 = x) = δx, lets geodesics connect
clean endpoints through noisy intermediates. This yields (i) a principled notion of distance between
data as the length of the shortest spacetime path (Diffusion Edit Distance), and (ii) a mechanism for
transition-path sampling via spacetime geodesics; both are demonstrated empirically in Section 6.

Tractable energy estimation. Usually, the information-geometric energy of a discretized curve
γ = {zn}N−1

n=0 is approximated via the local-KL approximation (Arvanitidis et al., 2022):

E(γ) ≈ (N − 1)

N−2∑
n=0

KL
[
p(· | zn)

∥∥ p(· | zn+1)
]
, (13)

but such KLs are generally intractable, unless p(·|z) is a simple analytic distribution such as multino-
mial or Gaussian, which is not the case for denoising distributions p(x0|xt). Nonetheless, we show
that in the specific case of the diffusion spacetime, the energy can be tractably estimated.

Proposition 5.1 (Spacetime energy estimation - informal). The energy of discretized spacetime curve
γ = {zn}N−1

n=0 with zn = (xtn , tn) admits an approximation

E(γ) ≈ N − 1

2

N−2∑
n=0

(
η(zn+1)− η(zn)

)⊤(
µ(zn+1)− µ(zn)

)
, (14)

where

η(xt, t) =

(
αt
σ2
t

xt, −
α2
t

2σ2
t

)
, µ(xt, t) =

(
E
[
x0 | xt

]
, E
[
∥x0∥2 | xt

])
. (15)

The proof (Appendix C) consists of showing that denoising distributions form an exponential family,
which admits a simplified energy formula. In practice, we calculate µ(xt, t) with Tweedie’s formula
over the approximate denoiser x̂0(xt) (See Appendix C.2 for details),

E
[
x0 | xt

]
≈ x̂0(xt)

E
[
∥x0∥2 | xt

]
≈
∥∥x̂0(xt)

∥∥2 + σ2
t

αt
divxt

x̂0(xt),
(16)

where both x̂0 and div x̂0 are computed efficiently via Hutchinson’s trick (Hutchinson, 1989; Grath-
wohl et al., 2019), enabling the esimation of µ(xt, t) with a single Jacobian-vector product (JVP).

Spacetime geodesics are simulation-free: the energy calculation requires only N JVPs of the
denoiser x̂0 for a curve discretized into N points.

4
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Figure 3: PF-ODE paths are similar to energy-minimizing geodesics. Left: Geodesics move in
straighter lines than PF-ODE trajectories in 1D toy density. Right: Geodesics are almost indistin-
guishable to PF-ODE sampling in ImageNet-512 EDM2 model.

Figure 4: Spacetime geodesics between images. Each row shows a geodesic γ between clean
images. The path passes through noisy states and then denoises, realizing the minimal total edit
between endpoints. Its length ℓ(γ) is the Diffusion Edit Distance (DiffED), which measures how
much the denoising distribution changes along the optimal traversal.

6 EXPERIMENTS

6.1 SAMPLING TRAJECTORIES

We compare the trajectories obtained by solving the PF-ODE x0(xT ) (Eq. 3) with geodesics between
the same endpoints x0,xT . For a toy example of 1D mixture of Gaussians, we observe the geodesics
curving less than the PF-ODE trajectories in the early sampling (high t), while being indistinguishable
for lower values of t (See Fig. 3 left and Appendix G.1 for details).

We find only marginal perceptual difference between the PF-ODE sampling trajectories and the
geodesics in the EDM2 ImageNet-512 model (Karras et al., 2024). The geodesic appears to generate
information slightly earlier, but the difference is minor (See Fig. 3 right, and Appendix G.2 for details).

We note that spacetime geodesics are not an alternative sampling method since they require knowing
the endpoints beforehand. An investigation into whether our framework can be used to improve
sampling strategies is an interesting future research direction.

6.2 DIFFUSION EDIT DISTANCE

The spacetime geometry yields a principled distance on the data space. We identify clean datum
x ∈ Rd with the spacetime point (x, 0), corresponding to the Dirac denoising distribution δx. Given
two points xa,xb, we define the Diffusion Edit Distance (DiffED) by

DiffED(xa,xb) = ℓ(γ), (17)

5
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where γ is the spacetime geodesic between (xa, 0) and (xb, 0). For numerical stability, we anchor
endpoints at a small tmin > 0 rather than at 0. See Algorithm 4 for DiffED pseudocode.

A spacetime geodesic links two clean data points through intermediate noisy states. It can be
interpreted as the minimal sequence of edits: add just enough noise to discard information specific to
xa, then remove noise to introduce information specific to xb. The path length is the total edit cost,
which is measured by how much the denoising distribution changes along the path. Fig. 4 visualizes
the spacetime geodesics: as endpoint similarity decreases, the intermediate points become noisier.

We quantitatively evaluate DiffED on image data. First, we ask whether DiffED correlates with
human perception as approximated by Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018). We randomly selected 10 classes in the ImageNet dataset and sampled 20 random
image pairs for each. We then evaluated the DiffED and LPIPS for each image pair, and found the
correlation to be very low at approximately -7%, suggesting that perceptual similarity and geometric
edit cost capture different notions of closeness. We found DiffED to be more closely related to the
structural similarity index measure (SSIM) (Wang et al., 2004), which correlates at 53% with DiffED.

To qualitatively compare different notions of image similarity, we order image pairs by their similarity
evaluated with multiple metrics: DiffED, LPIPS, SSIM, and Euclidean. We show the results in Fig. 8.

6.3 TRANSITION PATH SAMPLING

Figure 5: Spacetime geodesics enable sampling transition paths between low-energy states. Left:
Alanine Dipeptide energy landscape wrt two dihedral angles, with two energy minima x1

0,x
2
0. Middle:

Spacetime geodesic γ connecting x1
0 and x2

0. Right: Annealed Langevin transition path samples.

Another application of the spacetime geometry is the problem of transition-path sampling (Holdijk
et al., 2023; Du et al., 2024; Raja et al., 2025), whose goal is to find probable transition paths between
low-energy states. We assume a Boltzmann distribution

q(x) ∝ exp(−U(x)), (18)

where U is a known energy function, which is a common assumption in molecular dynamics. In this
setting, the denoising distribution follows a tractable energy function (See Eq. 60)

p(x0|xt) ∝ q(x0)p(xt|x0) ∝ exp

(
−U(x0)− 1

2SNR(t)
∥∥∥x0 − xt/αt

∥∥∥2︸ ︷︷ ︸
−U(x0|xt)

)
. (19)

To construct a transition path between two low-energy states x1
0 and x2

0, we estimate the spacetime
geodesic γ between them using a denoiser model x̂0(xt) ≈ E[x0|xt] with Proposition 5.1, as shown
in Fig. 5. At each interpolation point s ∈ [0, 1], the geodesic defines a denoising Boltzmann distribu-
tion p(x|γs) where U(x|γs) is the energy at that spacetime location. See Appendix G.3 for details.

Annealed Langevin Dynamics. To sample transition paths, we use Langevin dynamics

dx = −∇xU(x|γs)dt+
√
2dWt, (20)

whose stationary distributions are p(x | γs) ∝ exp(−U(x|γs)) for any s. To obtain the trajectories
from x1

0 to x2
0, we gradually increase s from 0 to 1 using annealed Langevin (Song & Ermon, 2019).

6
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Figure 6: Transition paths generated with a spacetime geodesic avoid high-energy regions
without collapsing to a single path. Compared with MCMC baselines, the spacetime-geodesic
method yields transition paths that better avoid high-energy areas, whereas Doob’s Lagrangian
collapses to generating nearly identical trajectories. Ten sample paths are shown for each method.

After discretizing the geodesic into N points γn, we alternate between taking K steps of Eq. 20
conditioned on γn and updating γn 7→ γn+1, as described in Algorithm 1. This approach assumes
that p(x|γn) is close to p(x|γn+1), and thus x ∼ p(x|γn) is a good starting point to Langevin
dynamics conditioned on γn+1.

Table 1: Spacetime geodesics outperform methods tailored to transition path sampling. Paren-
theses denote extra energy evaluations used to generate training data for the base diffusion model,
which do not scale with the number of generated paths. Baseline details in Appendix H.

MaxEnergy (↓) # Evaluations (↓)

Lower Bound 36.42 N/A

MCMC-fixed-length 42.54 ± 7.42 1.29B
MCMC-variable-length 58.11 ± 18.51 21.02M
Doob’s Lagrangian (Du et al., 2024) 66.24 ± 1.01 38.4M

Spacetime geodesic (Ours) 37.66 ± 0.61 128K (+16M)

Alanine dipeptide. We compute a spacetime geodesic connecting two molecular configurations of
Alanine Dipeptide, as in Holdijk et al. (2023). In Fig. 5, the energy landscape is visualized over the
dihedral angle space, with a neural network used to approximate the potential energy U . Using our
trained denoiser x̂0(xt), we estimate the expectation parameter µ, which allows us to compute and
visualize a geodesic trajectory through spacetime. Transition paths were generated using Algorithm 1.
See Appendix G.3 for details.

Baselines. We considered Holdijk et al. (2023); Du et al. (2024); Raja et al. (2025) and adopt
Doob’s Lagrangian (Du et al., 2024); the others were excluded due to reproducibility issues (see
Appendix H). We also evaluate two MCMC two-way shooting variants (Brotzakis & Bolhuis, 2016)-
uniform point selection with variable or fixed trajectory length-using transition paths from the official
Du et al. (2024) code release. For each method we generate 1,000 paths and report mean MaxEnergy
(lower is better) and its numerical lower bound minγ maxs U(γs), along with the number of energy
evaluations needed for 1,000 paths. To train a base diffusion model for our method, we generated
data using Langevin dynamics (16M1 energy evaluations), a one-time cost that does not scale with
the number of generated transition paths.

Results. We show in Table 1 that our method outperforms the baselines in the MaxEnergy obtained
along the transition paths. It is also considerably closer to the lower bound than to the next best
baseline (MCMC-fixed length) while requiring several orders of magnitude fewer energy function
evaluations. In Fig. 6, we show a qualitative comparison of transition paths generated with our
method and the baselines. Our proposed method shows improved efficiency in avoiding high-energy

116M is the number of energy function evaluations to generate the training set with Langevin dynamics for the
base diffusion model. We did not tune this number, and fewer evaluations may yield comparable performance.

7
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regions compared to MCMC. In contrast, the Doob’s Lagrangian method converged to a suboptimal
solution, producing nearly identical transition paths. We discuss this in more detail in Appendix H.

Algorithm 1 Transition Path Sampling with Annealed Langevin Dynamics

Require: xa,xb ∈ RD endpoints, Nγ > 0, T > 0, tmin, dt
1: γ ← SPACETIMEGEODESIC(xa,xb) ▷ Approximate spacetime geodesic with Algorithm 3
2: T ← {x := xa} ▷ Initialize chain T at xa
3: for n ∈ {0, . . . , Nγ − 1} do ▷ Iterate over the points on the geodesic γn
4: for t ∈ {1, . . . , T} do
5: ε ∼ N (0, I) ▷ Sample Gaussian noise
6: x← x−∇xU(x|γn)dt+

√
2dtε ▷ Langevin update

7: T ← T ∪ {x} ▷ Append state x to chain
8: end for
9: end for

10: return T ▷ Return chain

6.4 CONSTRAINED PATH SAMPLING

Suppose we would like to impose additional constraints along the geodesic interpolants. This
corresponds to penalized optimization

min
γ

{
E(γ) + λ

∫ 1

0

h(γs)ds, s.t. γ0 = (x1
0, 0),γ1 = (x2

0, 0)

}
, (21)

where h : R× RD → R is some penalty function with λ > 0. We demonstrate the principle by (i)
penalizing transition path variance, and (ii) imposing regions to avoid in the data space.

Low-variance transitions. Suppose we want the posterior p(x | γs) to have a low variance. This
concentrates the path around a narrower set of plausible states, more repeatable trajectories, albeit
at the cost of reduced coverage. By Eq. 56, higher SNR(t) yields lower denoising variance, so we
implement this by penalizing low SNR via h(x, t) = max(− log SNR(t), ρ) for some threshold ρ.

Avoiding restricted regions. Suppose we want to avoid certain regions in the data space in
the transition paths. We encode the region to avoid as a denoising distribution p(·|z∗) for some
z∗ = (x∗

t , t
∗) where larger the t∗, larger the restricted region. We encode the penalty as KL distance

between the denoising distributions (See Appendix D for the derivation)

KL
[
p(·|z∗)||p(·|γs)

]
=

∫ s

0

(
d
duη(γu)

)⊤
(µ(γu)− µ(z∗)) du+ C (22)

h(γs) = min
(
ρ,−KL

[
p(·|z∗)||p(·|γs)

])
. (23)

In Fig. 7, we compare spacetime geodesics (unconstrained) with low-variance, and region-avoiding
spacetime curves. We visualize both the curves and the corresponding transition paths generated with
Algorithm 1. This demonstrates that our framework with the penalized optimization (Eq. 21) can
incorporate various preferences on the transition paths.

7 RELATED WORKS

We review three directions of research related to ours: (i) studies of latent noise in diffusion models,
(ii) applications of information geometry in generative modeling, and (iii) geometric formulations for
sampling efficiency.

Latent–data geometry. Several works analyze the relation between latent noise xt and data x0. Yu
et al. (2025) define a geodesic density in diffusion latent space; Park et al. (2023) apply Riemannian
geometry to lower-dimensional latent codes; Karczewski et al. (2025) study how noise scaling affects
log-densities and perceptual detail. Our work also investigates the xt to x0 relationship but (a) uses
the Fisher–Rao metric rather than an inverse-density metric, (b) retains the full-dimensional latent
space without projection, and (c) analyzes the complete diffusion path across all timesteps.

8
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Figure 7: Vanilla transition paths can be constrained to have lower variance, or successfully
avoid a restricted region p(·|z∗). Left: geodesics γ. Right: transition paths T .

Information geometry in generative models. Lobashev et al. (2025) introduce the Fisher–Rao
metric on families p(x|θ) to study phase-like transitions, where θ is a low-dimensional variable
parametrizing a microstate x. In contrast, we place the geometry on diffusion’s explicit spacetime
coordinates z = (xt, t), induced by the denoising posterior p(x0|xt).

Geometric approaches to sampling. Two recent works also formulate diffusion models geomet-
rically to improve sampling efficiency. Das et al. (2023) optimize the forward noising process by
following the shortest geodesic between p0 and pt under the Fisher-Rao metric, assuming p0(x0) to
be Gaussian. Ghimire et al. (2023) model both the forward and reverse processes as Wasserstein
gradient flows. Our contribution differs: we use information geometry (not optimal transport), focus
on the reverse process (not the forward), and only require p0 to admit a density.

8 LIMITATIONS

Although our framework defines geodesics between any noisy samples, optimizing between nearly
clean ones is numerically unstable because their denoising distributions collapse to Dirac deltas,
making Fisher-Rao (via local KL) distances effectively infinite. Therefore, consistent with diffusion
practice (Song et al., 2021; Lu et al., 2022), we choose endpoints with non-negligible noise for
tractable optimization (details in Appendix G).

The proposed distance metric DiffED (Section 6.2) is considerably slower (details in Appendix G.2)
than established image similarity metrics such as LPIPS (Zhang et al., 2018), or SSIM (Wang et al.,
2004). Exploring a distillation strategy involving training a separate model trained to predict DiffED
is a possible future research direction.

9 CONCLUSION

We proposed a novel perspective on the latent space of diffusion models by viewing it as a (D + 1)-
dimensional statistical manifold, with the Fisher-Rao metric inducing a geometrical structure. By
leveraging the fact that the denoising distributions form an exponential family, we showed that we can
tractably estimate geodesics even for high-dimensional image diffusion models. We visualized our
methods for image interpolations and demonstrated their utility in molecular transition path sampling.

This work deepens our understanding of the latent space in diffusion models and has the potential to
inspire further research, including the development of novel applications of the spacetime geometric
framework, such as enhanced sampling techniques.

REPRODUCIBILITY STATEMENT

We include the source code in our submission, which allows for reproducing the results. Our claims
made in the main text are proven in the appendices. Experiment details can be found in Appendix G.

ETHICS STATEMENT

The use of generative models, especially those capable of producing images and videos, poses
considerable risks for misuse. Such technologies have the potential to produce harmful societal
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effects, primarily through the spread of disinformation, but also by reinforcing harmful stereotypes
and implicit biases. In this work, we contribute to a deeper understanding of diffusion models,
which currently represent the leading methodology in generative modeling. While this insight may
eventually support improvements to these models, thereby increasing the risk of misuse, it is important
to note that our research does not introduce any new ethical risks beyond those already associated
with generative AI.

We have used Large Language Models to polish writing on a sentence level.
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A NOTATION

We denote x = (x1, . . . , xD)⊤ ∈ RD a point in D-dimensional Euclidean space (a column vector),
Tr(A) =

∑
iAii - the trace operator of a square matrix A ∈ Rk×k.

Differential operators. For a scalar function f : RD → R,x 7→ f(x) ∈ R, we denote

gradient: ∇xf(x̃) =

(
∂f

∂x1
, . . . ,

∂f

∂xD

)⊤
∣∣∣∣∣
x=x̃

∈ RD

Hessian: ∇2
xf(x̃) =

[
∂2f

∂xi∂xj

]
i,j

∣∣∣∣∣
x=x̃

∈ RD×D

Laplacian: ∆xf(x̃) = Tr
(
∇2

xf(x̃)
)
=

D∑
i=1

∂2f

∂(xi)2

∣∣∣∣∣
x=x̃

∈ R.

For a curve γ : [0, 1]→ Rk, s 7→ γs ∈ Rk we denote

time derivative: γ̇s =
d

ds
γs ∈ Rk.

For a vector valued function f : Rk → Rm,x 7→ (f1(x), . . . , fm(x))⊤ ∈ Rm we denote

Jacobian:
∂f(x̃)

∂x
=

[
∂f i

∂xj

]
i,j

∣∣∣∣∣
x=x̃

∈ Rm×k

When k = m, we define

divergence: divxf(x̃) = Tr

(
∂f(x̃)

∂x

)
=

k∑
i=1

∂f i

∂xi

∣∣∣∣∣
x=x̃

∈ R

Functions with two arguments. For f : Rk1 × Rk2 → R, (x1,x2) 7→ f(x1,x2) ∈ R we define
(analogously w.r.t. second argument)

gradient w.r.t. first argument: ∇x1
f(x̃1, x̃2) =

(
∂f

∂x11
, . . . ,

∂f

∂xk11

)⊤ ∣∣∣∣∣
(x1,x2)=(x̃1,x̃2)

∈ Rk1

For f : Rk1 × Rk2 → Rm, (x1,x2) 7→ (f1(x1,x2), . . . , f
m(x1,x2))

⊤ ∈ Rm we define (analo-
gously w.r.t. second argument)

Jacobian w.r.t. first argument:
∂f(x̃1, x̃2)

∂x1
=

[
∂f i

∂xj1

]
i,j

∣∣∣∣∣
(x1,x2)=(x̃1,x̃2)

∈ Rm×k1

B PULLBACK GEOMETRY IN DIFFUSION MODELS

Lemma B.1. Let Z be a latent space, X = Rd a data space, and f : Z → X a decoder. Then the
length and energy of a curve γ : [0, 1]→ X under the pullback geometry are given by

ℓPB(γ) =

∫ 1

0

∥∥ d
dsf(γs)

∥∥ ds (24)

EPB(γ) =
1

2

∫ 1

0

∥∥ d
dsf(γs)

∥∥2 ds, (25)

where ∥ · ∥ is the Euclidean norm.
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Proof. For a general Riemannian metric G, the length, and energy are given by

ℓG(γ) =

∫ 1

0

∥γ̇s∥Gds (26)

EG(γ) =
1

2

∫ 1

0

∥γ̇s∥2Gds, (27)

where ∥γ̇s∥2G = γ̇⊤
s G(γs)γ̇s. For G = GPB induced by the decoder f , we have

GPB(z) =

(
∂f

∂z
(z)

)⊤(
∂f

∂z
(z)

)
, (28)

which leads to

∥γ̇s∥2GPB
= γ̇⊤

s

(
∂f

∂z
(γs)

)⊤(
∂f

∂z
(γs)

)
γ̇s =

(
∂f

∂z
(γs)γ̇s

)⊤(
∂f

∂z
(γs)γ̇s

)
(∗)
=
(
d
dsf(γs)

)⊤ ( d
dsf(γs)

)
=
∥∥ d
dsf(γs)

∥∥2 , (29)

where (∗) follows from the chain rule.

Proposition B.1 (Pullback geodesics decode to straight lines). Let Z be a latent space, X = Rd a
data space, and f : Z → X a bijective decoder. Fix za, zb ∈ Z and write xa = f(za), xb = f(zb).
Then any shortest path between za and zb in the pullback geometry decodes to the straight segment
from xa to xb.

Proof. Let xs = (1− s)xa + sxb for s ∈ [0, 1]. Because f is bijective, define its latent preimage

γ⋆s = f−1(xs), s ∈ [0, 1].

The pullback length of a latent curve γ is the Euclidean length of its image (Lemma B.1):

ℓPB(γ) =

∫ 1

0

∥∥∥ d
ds f(γs)

∥∥∥ ds.
For γ⋆, f(γ⋆s ) = xs has constant velocity ẋs = xb − xa, hence

ℓPB(γ
⋆) =

∫ 1

0

∥xb − xa∥ ds = ∥xb − xa∥.

For any other smooth latent curve γ from za to zb, using the triangle inequality:

ℓPB(γ) =

∫ 1

0

∥∥∥ d
ds f(γs)

∥∥∥ ds ≥ ∥∥∥∫ 1

0

d
ds f(γs) ds

∥∥∥ = ∥f(zb)− f(za)∥ = ∥xb−xa∥ = ℓf (γ
⋆).

Therefore ℓPB(γ) ≥ ℓPB(γ
⋆). Hence, any pullback geodesic decodes to the straight segment:

f(γ⋆s ) = f(f−1(xs)) = (1− s)xa + sxb.

In this proposition, we emphasize that any minimizing path in the latent space Z , when measured
with the pullback metric, will always decode to a straight line in the data space X . The reason is that
the bijective decoder acts only on the ambient coordinates of X = Rd, regardless of whether the
actual data lie on a lower-dimensional submanifold. In the denoising diffusion setting, this situation
is unavoidable, since the model enforces dim(Z) = dim(X ). This stands in contrast with prior
works using variational autoencoders (Arvanitidis et al., 2018), where latent geodesics live in a
lower-dimensional space and can decode to curved trajectories in the ambient space.

Unless the dimension of the latent space is reduced to the intrinsic dimension of the data, the pullback
metric carries no meaningful geometric information in the standard denoising diffusion setting, where
dim(Z) = dim(X ).

13
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C PROOF OF PROPOSITION 5.1

In this section, we prove Proposition 5.1. The proof consits of

1. Showing that curve energy E in exponential families simplifies (Appendix C.1).

2. Showing that the family of denoising distributions forms an exponential family (Ap-
pendix C.2).

3. Putting it together (Appendix C.4).

C.1 INFORMATION GEOMETRY IN EXPONENTIAL FAMILIES

We begin by defining an exponential family of distributions.

Definition C.1 (Exponential Family). A parametric family of probability distributions {p(·|z)} is
called an exponential family if it can be expressed in the form

p(x|z) = h(x) exp
(
η(z)⊤ T (x)− ψ(z)

)
, (30)

with x a random variable modelling the data and z the parameter of the distribution. In addition,
T (x) is called a sufficient statistic, η(z) natural (canonical) parameter, ψ(z) the log-partition
(cumulant) function and h(x) is a base measure independent of z, and

µ(z) = E [T (x) | z] (31)

is the expectation parameter.

In exponential families, the Riemannian metric tensor takes a specific form, which we show now.

Proposition C.1 (Fisher-Rao metric for an exponential family). Let {p(·|z)} be an exponential family.
We denote η(z) the natural parametrisation, T (x) the sufficient statistic and µ(z) = E[T (x)|z] the
expectation parameters. The Fisher-Rao metric is given by:

GIG(z) =

(
∂η(z)

∂z

)⊤(
∂µ(z)

∂z

)
. (32)

Proof. For p(x|z) = h(x) exp
(
η(z)⊤T (x)− ψ(z)

)
, we have

∇z log p(x|z) = ∇z

∑
k

ηk(z)T k(x)−∇zψ(z) =

(
∂η(z)

∂z

)⊤

T (x)−∇zψ(z). (33)

Note that

E [∇z log p(x|z) | z] =
∫
p(x|z)∇z log p(x|z)dx =

∫
∇zp(x|z)dx = ∇z

∫
p(x|z)dx = 0.

(34)
Therefore, by taking the expectation of both sides of Eq. 33, we get

∇zψ(z) =

(
∂η(z)

∂z

)⊤

µ(z), (35)

where µ(z) = E[T (x)|z]. Now we differentiate j-th component of both sides of Eq. 34 w.r.t zi, and
we get

0 =
∂

∂zi
0 =

∂

∂zi
E
[
∂ log p(x|z)

∂zj

∣∣∣∣ z] = ∂

∂zi

∫
p(x|z)∂ log p(x|z)

∂zj
dx

=

∫
∂p(x|z)
∂zi

∂ log p(x|z)
∂zj

dx+

∫
p(x|z)∂

2 log p(x|z)
∂zi∂zj

dx

= E
[
∂ log p(x|z)

∂zi
∂ log p(x|z)

∂zj

∣∣∣∣ z]+ E
[
∂2 log p(x|z)
∂zi∂zj

∣∣∣∣ z] .
(36)
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Therefore

[GIG(z)]ij = E
[
∂ log p(x|z)

∂zi
∂ log p(x|z)

∂zj

∣∣∣∣ z] = −E [∂2 log p(x|z)∂zi∂zj

∣∣∣∣ z] . (37)

Now using Eq. 33, we have

∂2 log p(x|z)
∂zi∂zj

=
∂

∂zi

(∑
k

∂ηk(z)

∂zj
T k(x)− ∂ψ(z)

∂zj

)
=
∑
k

∂2ηk(z)

∂zi∂zj
T k(x)− ∂2ψ(z)

∂zi∂zj
. (38)

Therefore, from Eq. 37:

[GIG(z)]ij =
∂2ψ(z)

∂zi∂zj
−
∑
k

∂2ηk(z)

∂zi∂zj
µk(z). (39)

Now using Eq. 35, we have

∂2ψ(z)

∂zi∂zj
=

∂

∂zj

(∑
k

∂ηk(z)

∂zi
µk(z)

)
=
∑
k

∂2ηk(z)

∂zj∂zi
µk(z) +

∑
k

∂ηk(z)

∂zi
∂µk(z)

∂zj
. (40)

Combining (Eq. 39) with (Eq. 40) yields:

[GIG(z)]ij =
∑
k

∂ηk(z)

∂zj
∂µk(z)

∂zi
=

[(
∂η(z)

∂z

)⊤(
∂µ(z)

∂z

)]
ij

. (41)

Corollary C.1 (Energy function for an exponential family). Let γ : [0, 1]→ Z be a smooth curve in
the parameter space Z of an exponential family. Then

EIG(γ) =
1

2

∫ 1

0

(
d
dsη(γs)

)⊤ ( d
dsµ(γs)

)
ds (42)

ℓIG(γ) =

∫ 1

0

√(
d
dsη(γs)

)⊤ ( d
dsµ(γs)

)
ds. (43)

For a curve discretized uniformly into N points, we have sn := n
N−1 , γn := γ(sn), and µn :=

µ(γn), ηn := η(γn), we have

EIG(γ) ≈
N − 1

2

N−2∑
n=0

(ηn+1 − ηn)
⊤
(µn+1 − µn) (44)

ℓIG(γ) ≈
N−2∑
n=0

√
(ηn+1 − ηn)

⊤
(µn+1 − µn) (45)

Proof. The energy of γ is given by EIG(γ) = 1
2

∫ 1

0
∥γ̇s∥2GIG

ds. We replace the Riemannian metric
GIG with the previously obtained expression of the Fisher-Rao metric (Eq. 32).

Using Eq. (32)), we have

∥γ̇s∥2GIG
= γ̇⊤

s GIG(γs)γ̇s = γ̇⊤
s

(
∂η(γs)

∂z

)⊤(
∂µ(γs)

∂z

)
γ̇s

=

(
∂η(γs)

∂z
γ̇s

)⊤(
∂µ(γs)

∂z
γ̇s

)
=
(
d
dsη(γs)

)⊤ ( d
dsµ(γs)

)
.

Therefore

EIG(γ) =
1

2

∫ 1

0

∥γ̇s∥2GIG
ds =

1

2

∫ 1

0

(
d
dsη(γs)

)⊤ ( d
dsµ(γs)

)
ds

ℓIG(γ) =

∫ 1

0

∥γ̇s∥GIGds =

∫ 1

0

√(
d
dsη(γs)

)⊤ ( d
dsµ(γs)

)
ds.
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For a discretized curve, the reasoning is similar to the proof of Proposition A.2 in Arvanitidis et al.
(2022). We have ds = sn+1 − sn = 1

N−1 and we can approximate d
dsη(γs))

∣∣
s=sn

≈ ηn+1−ηn

ds and
d
dsµ(γs))

∣∣
s=sn

≈ µn+1−µn

ds , and

EIG(γ) ≈
1

2

N−2∑
n=0

(
ηn+1 − ηn

ds

)⊤(
µn+1 − µn

ds

)
ds =

N − 1

2

N−2∑
n=0

(ηn+1 − ηn)
⊤
(µn+1 − µn)

ℓIG(γ) ≈
N−2∑
n=0

√(
ηn+1 − ηn

ds

)⊤(
µn+1 − µn

ds

)
ds =

N−2∑
n=0

√
(ηn+1 − ηn)

⊤
(µn+1 − µn)

C.2 DIFFUSION DENOISING DISTRIBUTIONS ARE EXPONENTIAL

A key observation is that the family of denoising distributions p(x0|xt) indexed by both space and
time (xt, t) is exponential, which we prove now.

Proposition C.2 (Exponential family of denoising). Let xt be a noisy observation corresponding to
diffusion time t, as introduced in Eq. 1. Then the denoising distribution can be written as

p(x0 | xt) = h(x0) exp
(
η(xt, t)

⊤T (x0)− ψ(xt, t)
)
, (46)

with h = q the data distribution density, ψ the log-partition function, and

η(xt, t) =

(
αt
σ2
t

xt,−
α2
t

2σ2
t

)
(natural parameter) (47)

T (x0) = (x0, ∥x0∥2) (sufficient statistic) (48)

µ(xt, t) =

(
E
[
x0|xt

]︸ ︷︷ ︸
‘space’

,
σ2
t

αt
divxt

E[x0|xt] +
∥∥E[x0|xt]

∥∥2︸ ︷︷ ︸
‘time’: E

[
∥x0∥2 |xt

]
)
, (49)

which means that the family of denoising distributions {p(x0 | xt)} indexed by (xt, t) is exponential
(Definition C.1).

Proof. Step 1: denoising is exponential. The denoising distribution is given by

p(x0|xt) =
p(xt|x0)q(x0)

pt(xt)
,

where q is the data distribution, p(xt|x0) = N (xt|αtx0, σ
2
t I) is the forward density (Eq. 1), and

pt(xt) =
∫
p(xt|x0)q(x0)dx0 is the marginal distribution at time t. Therefore

p(xt|x0) =
1

(2πσ2
t )
D/2

exp

(
−∥xt − αtx0∥2

2σ2
t

)
=

1

(2πσ2
t )
D/2

exp

(
−∥xt∥

2

2σ2
t

+
αt
σ2
t

xt
⊤x0 −

α2
t

2σ2
t

∥x0∥2
)

= exp

(
−D

2
log(2πσ2

t )−
∥xt∥2

2σ2
t

)
exp

(
− α2

t

2σ2
t

∥x0∥2 +
αt
σ2
t

xt
⊤x0

)
.

(50)

By substituting into the denoising density, we get

p(x0|xt) = q(x0) exp

{
− α2

t

2σ2
t

∥x0∥2 +
αt
σ2
t

xt
⊤x0 −

(
log pt(xt) +

D

2
log(2πσ2

t ) +
∥xt∥2

2σ2
t

)}
= h(x0) exp

(
η(xt, t)

⊤T (x0)− ψ(xt, t)
)
,

(51)
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where

η(xt, t) =

(
αt
σ2
t

xt,−
α2
t

2σ2
t

)
∈ RD+1 (52)

T (x0) =
(
x0, ∥x0∥2

)
∈ RD+1 (53)

h(x0) = q(x0) ∈ RD+1 (54)

ψ(xt, t) = log pt(xt) +
D

2
log(2πσ2

t ) +
∥xt∥2

2σ2
t

∈ RD+1, (55)

which proves that the denoising distributions form an exponential family.

Step 2: deriving the expectation parameter µ. The expectation parameter µ is given by µ(xt, t) =
E [T (x0) | xt] =

(
E[x0 | xt],E[∥x0∥2 | xt]

)
. The denoising covariance is known (Meng et al.,

2021):

Cov[x0 | xt] =
σ2
t

α2
t

(
I + σ2

t∇2
xt

log pt(xt)
)
. (56)

Therefore, from the definition of conditional variance, we can deduce the second denoising moment:

E
[
∥x0||2 | xt

]
= E

[∥∥∥x0 − E[x0 | xt]
∥∥∥2 | xt]+ ∥∥∥E[x0 | xt]

∥∥∥2
= Tr (Cov[x0 | xt]) +

∥∥∥E[x0 | xt]
∥∥∥2

(56)
=

σ2
t

α2
t

(
D + σ2

t∆ log pt(xt)
)
+
∥∥∥E[x0 | xt]

∥∥∥2
=
σ2
2

αt
divxt

(
xt + σ2

t∇xt log pt(xt)

αt

)
+
∥∥∥E[x0 | xt]

∥∥∥2
=
σ2
t

αt
divxtE[x0 | xt] +

∥∥∥E[x0 | xt]
∥∥∥2,

(57)

where we used the fact that (Efron, 2011)

E[x0 | xt] =
xt + σ2

t∇xt
log pt(xt)

αt
. (58)

Together, we have

µ(xt, t) =

(
E
[
x0 | xt

]
,
σ2
t

αt
divxt

E[x0|xt] +
∥∥E[x0 | xt]

∥∥2) (59)

C.3 BOLTZMANN DENOISING DISTRIBUTIONS

Note that, if the data distribution is Boltzmann, i.e. q(x0) ∝ exp(−U(x0)) for some energy function
U , we have:

p(x0|xt) ∝ q(x0)p(xt|x0) ∝ exp(−(U(x0)) exp

(
−∥xt − αtx0∥2

2σ2
t

)
= exp

(
−U(x0)− 1

2SNR(t)∥x0 − xt/αt∥2
)
.

This implies that p(x0|xt) is also a Boltzmann distribution with p(x0|xt) ∝ exp(−U(x0|xt)) for

U(x0|xt) = U(x0) +
1
2SNR(t)

∥∥∥x0 − xt/αt

∥∥∥2. (60)

C.4 PUTTING IT TOGETHER: PROPOSITION 5.1

The claim of Proposition 5.1 follows from Proposition C.2 and Corollary C.1.
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D KULLBACK-LEIBLER DIVERGENCE IN EXPONENTIAL FAMILIES

For any distribution family, the Fisher-Rao metric is the local approximation of the KL divergence,
i.e (Arvanitidis et al., 2022):

KL(p(·|z1)||p(·|z2)) ≈
1

2
(z1 − z2)

⊤
GIG(z1) (z1 − z2) .

In the case of exponential families, we have GIG(z) =
(
∂η(z)
∂z

)⊤ (
∂µ(z)
∂z

)
, and thus we can write

KL(p(·|z1)||p(·|z2)) ≈
1

2
(z1 − z2)

⊤
(
∂η(z1)

∂z

)⊤(
∂µ(z1)

∂z

)
(z1 − z2)

≈ 1

2
(η(z1)− η(z2))

⊤
(µ(z1)− µ(z2)) .

It turns out that the RHS always corresponds to a notion of distribution divergence (not only when z1
and z2 are close together), namely the symmetrized Kullback-Leibler divergence:

KLS(p||q) := 1

2
(KL(p||q) + KL(q||p)) . (61)

Lemma D.1 (KL in exponential families). Let P = {p(· | z) | z ∈ Z} be an exponential family with
p(x|z) = h(x) exp(η(z)⊤T (x)− ψ(z)), and µ(z) = Ex∼p(x | z)[T (x)]. Then

KL(z1||z2) = (η(z1)− η(z2))
⊤
µ(z1)− ψ(z1) + ψ(z2), (62)

where we abuse notation and write KL(z1||z2) instead of KL(p(· | z1)||p(· | z2)).

Proof.

KL(z1||z2) = Ex∼p(x | z1) [log p(x|z1)− log p(x|z2)]
= Ex∼p(x | z1)

[
η(z1)

⊤T (x)− η(z2)
⊤T (x)− ψ(z1) + ψ(z2)

]
= (η(z1)− η(z2))

⊤ Ex∼p(x | z1)[T (x)]− ψ(z1) + ψ(z2)

= (η(z1)− η(z2))
⊤
µ(z1)− ψ(z1) + ψ(z2).

Lemma D.2 (Symmetrized KL in exponential families). With assumptions of Lemma D.1, we have

KLS(z1||z2) =
1

2
(η(z1)− η(z2))

⊤
(µ(z1)− µ(z2)) . (63)

Proof.

2KLS(z1 | z2) = KL(z1||z2) + KL(z2||z1)

= (η(z1)− η(z2))
⊤
µ(z1)−���ψ(z1) +

H
HHψ(z2) + (η(z2)− η(z1))

⊤
µ(z2)−H

HHψ(z2) +���ψ(z1)

= (η(z1)− η(z2))
⊤
(µ(z1)− µ(z2)) .

The formula for KL in Lemma D.1 is not useful in practice, because it requires knowing ψ(z), which
can be unknown or expensive to evaluate. However, the gradients with respect to both arguments
depend only on η and µ.
Lemma D.3 (KL gradients). With assumptions of Lemma D.1, we have for any z1, z2

∇z1
KL(z1||z2) =

∂µ(z1)

∂z

⊤
(η(z1)− η(z2))

∇z2
KL(z1||z2) =

∂η(z2)

∂z

⊤
(µ(z2)− µ(z1))

(64)
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Proof. The proof is a straightforward calculation using Lemma D.1 and Eq. 35. We have

∇z1
KL(z1||z2) = ∇z1

(
(η(z1)− η(z2))

⊤
µ(z1)− ψ(z1) + ψ(z2)

)
=
∂η(z1)

∂z

⊤
µ(z1) +

∂µ(z1)

∂z

⊤
(η(z1)− η(z2))−∇zψ(z1)

(35)
= �������∂η(z1)

∂z

⊤
µ(z1) +

∂µ(z1)

∂z

⊤
(η(z1)− η(z2))−�������∂η(z1)

∂z

⊤
µ(z1)

=
∂µ(z1)

∂z

⊤
(η(z1)− η(z2))

and

∇z2 KL(z1||z2) = ∇z2

(
(η(z1)− η(z2))

⊤
µ(z1)− ψ(z1) + ψ(z2)

)
(35)
= −∂η(z2)

∂z

⊤
µ(z1) +

∂η(z2)

∂z

⊤
µ(z2) =

∂η(z2)

∂z

⊤
(µ(z2)− µ(z1))

Knowing the gradients allows for estimating the KL divergence along a curve without knowing ψ.
Proposition D.1 (KL along a curve). Let γ : [0, 1]→ Z be a smooth denoising curve, and z∗ ∈ Z .
Then:

KL(γs||z∗) = KL(γ0||z∗) +

∫ s

0

(
d

du
µ(γu)

)⊤

(η(γu)− η(z∗)) du

KL(z∗||γs) = KL(z∗||γ0) +

∫ s

0

(
d

du
η(γu)

)⊤

(µ(γu)− µ(z∗)) du

(65)

Proof.

KL(γs||z∗)−KL(γ0||z∗) =

=

∫ s

0

d

du
(KL(γu||z∗)) du // Fundamental theorem of calculus

=

∫ s

0

∇z1 KL(γu||z∗)⊤γ̇udu // Chain rule

=

∫ s

0

(
∂µ(γu)

∂z
γ̇u

)⊤

(η(γu)− η(z∗)) du // Lemma D.3

=

∫ s

0

(
d
duµ(γu)

)⊤
(η(γu)− η(z∗)) du // Chain rule.

Using the same reasoning we have

KL(z∗||γs)−KL(z∗||γ0) =

∫ s

0

d

du
(KL(z∗||γu)) du

=

∫ s

0

∇z2
KL(z∗||γu)⊤γ̇udu

=

∫ s

0

(
∂η(γu)

∂z
γ̇u

)⊤

(µ(γu)− µ(z∗)) du

=

∫ s

0

(
d
duη(γu)

)⊤
(µ(γu)− µ(z∗)) du
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E GEODESIC AND DIFFED PSEUDOCODE

Algorithm 2 Evaluate Curve

Require: Curve γ : [0, 1]→ RD+1, number of points Nγ
1: {sn}

Nγ−1
n=0 ← linspace(0, 1, Nγ) ▷ Uniformly discretized curve

2: for n = 0 to Nγ − 1 do
3: zn ← γ(sn)

4: Decompose zn = (x
(n)
t , tn)

5: ηn ← η(x
(n)
t , tn) using Eq. (15)

6: µn ← µ(x
(n)
t , tn) using Eq. (16)

7: end for
8: return {ηn}, {µn}

Algorithm 3 Spacetime Geodesic Estimation

Require: xa,xb ∈ RD, Nγ > 0 discretization points
Require: Niter > 0, tmin > 0, learning rate η > 0

1: za ← (xa, tmin), zb ← (xb, tmin) ▷ Embed points into Spacetime
2: Initialize cubic spline γθ with γθ(0) = za, γθ(1) = zb
3: for k = 0 to Niter − 1 do ▷ Optimization loop
4: {ηn}, {µn} ← EVALUATECURVE(γθ, Nγ)

5: E(γθ)← Nγ−1
2

∑
n(ηn+1 − ηn)

⊤(µn+1 − µn) ▷ Energy estimate Eq. (14)
6: g ← ∇θE(γθ)
7: θ ← θ − ηg ▷ Gradient descent update of curve’s parameters
8: end for
9: return γθ

Algorithm 4 Diffusion Edit Distance Estimation

Require: xa,xb ∈ RD, Nγ > 0, Niter > 0
Require: tmin > 0, learning rate η > 0

1: γθ ← SPACETIMEGEODESIC(xa,xb, Nγ , Niter, tmin, η) ▷ Use Algorithm 3
2: {ηn}, {µn} ← EVALUATECURVE(γθ, Nγ)

3: dDE(xa,xb)←
∑
n

√
(ηn+1 − ηn)⊤(µn+1 − µn) ▷ Length estimate Eq. (45)

4: return dDE(xa,xb)

F QUALITATIVE EXAMPLE OF DIFFED

In Fig. 8, we compare the Diffusion Edit Distance (DiffED) (Section 6.2) with LPIPS (Zhang et al.,
2018), SSIM (Wang et al., 2004), and the Euclidean distance between images. Specifically, for the
ImageNet class “Space bar”, we generate 20 random image pairs, estimate the similarity of each pair
with each method, and rank the pairs according to each method, from the most similar to the most
dissimilar.

G EXPERIMENTAL DETAILS

G.1 TOY GAUSSIAN MIXTURE

For the experiments with a 1D Gaussian mixture (Fig. 1, and Fig. 3 left), we define the data
distribution as p0 =

∑3
i=1 πiN (µi, σ

2) with µ1 = −2.5, µ2 = 0.5, µ3 = 2.5, π1 = 0.275, π2 =
0.45, π3 = 0.275, and σ = 0.75. We specify the forward process (Eq. 1) as Variance-Preserving
(Song et al., 2021), i.e. satisfying α2

t + σ2
t = 1, and assume as log-SNR linear noise schedule,
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Figure 8: Comparison of DiffED with other image similarity metrics. Each row corresponds to a
different image similarity measure, and images and sorted by their similarity, from most similar (left)
to most dissimilar (right). Images shown are 20 random image pairs from class “Space bar”.

i.e. λt = log SNR(t) = λmax + (λmin − λmax)t for λmin = −10, λmax = 10. Which implies:
α2
t = sigmoid(λt), σ

2
t = sigmoid(−λt).

Since p0 is a Gaussian mixture, all marginals pt are also Gaussian mixtures, and training a diffusion
model is unnecessary, as the score function∇x logt(x) is known analytically. In this example, the
data is 1D, and the spacetime is 2D.

To generate Fig. 1 we estimate the geodesic between z1 = (−2.3, 0.35), and z2 = (2, 0.4) by
parametrizing γ with a cubic spline (Arvanitidis et al., 2022) with two nodes, and discretizing it into
N = 128 points and taking 1000 optimization steps with Adam optimizer and learning rate η = 0.1,
which takes a few seconds on an M1 CPU.

To generate Fig. 3 left, we generate 3 PF-ODE sampling trajectories starting from x = 1, 0,−1 using
an Euler solver with 512 solver steps. We solve only until t = tmin = 0.1 (as opposed to t = 0),
because for t ≈ 0, the denoising distributions p(x0|xt) become closer to Dirac delta distributions
δxt

, which makes the energies very large. For each sampling trajectory, we take the endpoints
(x1, 1), (xtmin

, tmin) and estimate the geodesic between them using Proposition 5.1 with a cubic
spline with 10 nodes, discretizing it into 512 points, and taking 2000 gradient steps of AdamW
optimizer with learning rate η = 0.01. This takes roughly 10 seconds on an M1 CPU.

G.2 IMAGE DATA

For all experiments on image data, we use the pretrained EDM2 model trained on ImageNet512
(Karras et al., 2024) (specifically, the edm2-img512-xxl-fid checkpoint), which is a Variance-
Exploding model, i.e. αt = 1, and using the noise schedule σt = t. It is a latent diffusion model,
using a fixed StabilityVAE (Rombach et al., 2022) as the encoder/decoder.

Image interpolations. To interpolate between to images, we encode them with StabilityVAE
to obtain two latent codes x1

0,x
2
0, and encode them both with PF-ODE (Eq. 3) from t = 0 to

t = tmin = 0.368, corresponding to log SNR(tmin) = 2. This is to avoid very high values of energy
for t ≈ 0. We then optimize the geodesic between (x1

tmin
, tmin) and (x2

tmin
, tmin) by parametrizing it

with a cubic spline with 8 nodes, and minimizing the energy defined in Proposition 5.1 using AdamW
optimizer with learning rate η = 0.1. The curve is discretized into 16 points, and optimized for 200
gradient steps, which takes roughly 6 minutes on an A100 NVIDIA GPU per interpolation image
pair.

Note that in our experiments, we used the largest release model edm2-img512-xxl-fid. The
image interpolation time can be reduced to roughly a minute by considering the smallest model
version edm2-img512-xs-fid.
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PF-ODE sampling trajectories. To generate PF-ODE sampling trajectories, we use the 2nd order
Heun solver (Karras et al., 2022) with 64 steps, and solve from t = 80 to tmin = 0.135 corresponding
to log SNR(tmin) = 4. This is to avoid instabilities for small t. We parametrize the geodesic directly
with the entire sampling trajectory γt = (xt, t) for t = T, . . . , tmin, where the t schedule corresponds
to EDM2 model’s sampling schedule.

We then fix the endpoints of the trajectory, and optimize the intermediate points using AdamW
optimizer with learning rate η = 0.0001 (larger learning rates lead to NaN values) and take 600
optimization steps. This procedure took roughly 2 hours on an A100 NVIDIA GPU per a single
sampling trajectory.

To visualize intermediate noisy images at diffusion time t, we rescale them with σdata√
σ2
data+σ

2
t

before

decoding with the VAE deocoder, to avoid unrealistic color values, where we set σdata = 0.5 as in
Karras et al. (2022).

G.3 MOLECULAR DATA

Approximating the base energy function with a neural network. We follow Holdijk et al.
(2023) and represent the energy function of Alanine Dipeptide in the space of two dihedral angles
ϕ, ψ ∈ [−π, π). We use the code provided by the authors at github.com/LarsHoldijk/
SOCTransitionPaths, which estimates the energy U(ϕ, ψ). However, even though the values of
the energy U looked reasonably, we found that the provided implementation of ∂U∂ϕ , and ∂U

∂ψ yielded
unstable results due to discontinuities.

Instead, we trained an auxiliary feedforward neural network Uθ to approximate U . We parametrized
with two hidden layers of size 64 with SiLU activation functions, and trained it on a uniformly
discretized grid [−π, π]× [−π, π] into 16384 points. We trained the model with mean squared error
for 8192 steps using Adam optimizer with a learning rate η = 0.001 until the model converged to
an average loss of ≈ 1.5. This took approximately two and a half minutes on an M1 CPU. In the
subsequent experiments, we estimate ∇xU(x) with automatic differentiation on the trained auxiliary
model.

Generating samples from the energy landscape. To generate samples from the data distribution
p0(x0) ∝ exp(−U(x0)), we initialize the samples uniformly on the [−π, π]× [−π, π] grid, and use
Langevin dynamics

dx = −∇xU(x)dt+
√
2dWt (66)

with the Euler-Maruyama solver for dt = 0.001 and N = 1000 steps.

Training a diffusion model on the energy landscape. To estimate the spacetime geodesics, we
need a denoiser network approximating the denoising mean x̂0(xt, t) ≈ E[x0|xt]. We parametrize
the denoiser network with

from ddpm import MLP
model = MLP(

hidden_size=128,
hidden_layers=3,
emb_size=128,
time_emb="sinusoidal",
input_emb="sinusoidal"

)

using the TinyDiffusion implementation github.com/tanelp/tiny-diffusion. We trained
the model using the weighted denoising loss: w(λt)∥x̂0(xt, t) − x0∥2 with a weight function
w(λt) =

√
sigmoid(λt + 2) and an adaptive noise schedule (Kingma & Gao, 2023). We train the

model for 4000 steps using the AdamW optimizer with learning rate η = 0.001, which took roughly
1 minute on an M1 CPU.

Spacetime geodesics. With a trained denoiser x̂0(xt, t), we can estimate the expectation parameter
µ (Eq. 16) and thus curves energies in the spacetime geometry (Proposition 5.1).
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In Section 6.3, we want to interpolate between two low-energy states: x1
0 = (−2.55, 2.7) and

x2
0 = (0.95,−0.4). To avoid instabilities for t ≈ 0, we represent them on the spacetime manifold

as z1 = (−2.55, 2.7, tmin), and z2 = (0.95,−0.4, tmin), where log SNR(tmin) = 7. We then
approximate the geodesic between them, by parametrizing γ as a cubic spline with 10 nodes and fixed
endpoints γ0 = z1, and γ1 = z2 and discretize it into 512 points. We then optimize it by minimizing
Proposition 5.1 with the Adam optimizer with learning rate η = 0.1 and take 10000 optimization
steps, which takes roughly 6 minutes on an M1 CPU.

Annealed Langevin dynamics. To generate transition paths, we use Annealed Langevin dynamics
(Algorithm 1) with the geodesic discretized into N = 512 points, K = 128 Langevin steps for each
point on the geodesic γ, and use dt = 0.0001, i.e., requiring 65536 evaluations of the gradient of
the auxiliary energy function. We generate 8 independent paths in parallel, which takes roughly 27
seconds on an M1 CPU.

Constrained transition paths. Constrained transition paths were also parametrized with cubic
splines with 10 nodes, but discretized into 1024 points.

For the low-variance transition paths, we chose the threshold ρ = 3, and λ = 0 for the first 1200
optimization steps, and λ linearly increasing from 0 to 100 for the last 3800 optimization steps, for
the total of 5000 optimization steps with the Adam optimizer with a learning η = 0.01. This took
just under 6 minutes on an M1 CPU.

For the region-avoiding transition paths, we encode the restricted region with z∗ = (−0.8,−0.1, t∗)
with log SNR(t∗) = 4, and combine two penalty functions: h1 is the low-variance penalty described
above, but with ρ1 = 3.75 threshold, and h2 is the KL penalty with ρ2 = −4350 threshold. We
define λ1 as in the low-variance transitions, and fix λ2 = 1. The optimization was performed with
Adam optimizer, learning rate η = 0.1, and ran for 4000 steps for a runtime of just under 5 minutes
on an M1 CPU.

The reason we include the low-variance penalty in the region-avoiding experiment is because
KL(p(·|z∗) || p(·|γs)) can trivially be increased by simply increasing entropy of p(·|γs) which
would not result in avoiding the region defined by p(·|z∗).

H NOTE ON TRANSITION PATH SAMPLING BASELINES

For transition path experiments performed in Section 6.3, we considered Holdijk et al. (2023); Du et al.
(2024); Raja et al. (2025) as baselines. However, we encountered reproducibility issues. Specifically

• Holdijk et al. (2023) released the implementation: github.com/LarsHoldijk/
SOCTransitionPaths. However, it does not appear to be supported. Several issues in
the repository highlight failures to reproduce results, which have remained unresolved for
more than a year.

• Raja et al. (2025) released the implementation: github.com/ASK-Berkeley/
OM-TPS. However, it does not contain the code for the alanine dipeptide experiments,
and the authors did not respond to a request to release it.

• Du et al. (2024) released the implementation: github.com/plainerman/
Variational-Doob that we were able to use. However, we obtained results signif-
icantly worse than those reported in the original publication. We have contacted the authors,
who acknowledged our question but did not provide guidance on how to resolve the issue.

For Doob’s Lagrangian (Du et al., 2024), we experimented with: different numbers of epochs,
different numbers of Gaussians, first vs second order ODE, MLP vs spline, and internal vs external
coordinates. We reported the results of the configuration that was the best. Many configurations
either diverged completely (returned NaN values) or collapsed to completely straight transition paths,
oblivious to the underlying energy landscape. These issues persisted even after switching to double
precision (as advised in the official code repository).

I EXPECTATION PARAMETER ESTIMATION CODE
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1 import jax
2 import jax.random as jr
3 import jax.numpy as jnp
4

5 def f(x, t, key): # Implemenation of the expected denoising
6 pass
7

8 def sigma_and_alpha(t): # Depends on the choice of SDE and noise
schedule

9 pass
10

11 def mu(x, t, key):
12 model_key, eps_key = jr.split(key, 2)
13 eps = jr.rademacher(eps_key, (x.size,), dtype=jnp.float32)
14 def pred_fn(x_):
15 return f(x_, t, key=model_key)
16 f_pred, f_grad = jax.jvp(pred_f, (x,), (eps,))
17 div = jnp.sum(f_grad * eps)
18 sigma, alpha = sigma_and_alpha(t)
19 return sigma**2/alpha * div + jnp.sum(f_pred ** 2), f_pred

Listing 1: JAX Implementation of µ estimation

J LICENCES

• EDM2 model (Karras et al., 2024): Creative Commons BY-NC-SA 4.0 license
• ImageNet dataset (Deng et al., 2009): Custom non-commercial license
• SDVAE model (Rombach et al., 2022): CreativeML Open RAIL++-M license
• OpenM++ (OpenMP Architecture Review Board, 2008): MIT License
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