

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 THE SPACETIME OF DIFFUSION MODELS: AN INFORMATION GEOMETRY PERSPECTIVE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We present a novel geometric perspective on the latent space of diffusion models.
 012 We first show that the standard pullback approach, utilizing the deterministic prob-
 013 ability flow ODE decoder, is fundamentally flawed. It provably forces geodesics
 014 to decode as straight segments in data space, effectively ignoring any intrinsic
 015 data geometry beyond the ambient Euclidean space. Complementing this view,
 016 diffusion also admits a stochastic decoder via the reverse SDE, which enables an
 017 information geometric treatment with the Fisher-Rao metric. However, a choice
 018 of \mathbf{x}_T as the latent representation collapses this metric due to memorylessness. We
 019 address this by introducing a latent spacetime $\mathbf{z} = (\mathbf{x}_t, t)$ that indexes the family
 020 of denoising distributions $p(\mathbf{x}_0|\mathbf{x}_t)$ across all noise scales, yielding a nontrivial
 021 geometric structure. We prove these distributions form an exponential family and
 022 derive simulation-free estimators for curve lengths, enabling efficient geodesic
 023 computation. The resulting structure induces a principled Diffusion Edit Distance,
 024 where geodesics trace minimal sequences of noise and denoise edits between data.
 025 We also demonstrate benefits for transition path sampling in molecular systems, in-
 026 cluding constrained variants such as low-variance transitions and region avoidance.

1 INTRODUCTION

030 Diffusion models have emerged as a powerful paradigm for generative modeling, demonstrating
 031 remarkable success in learning to model and sample data (Yang et al., 2023). While the underlying
 032 mathematical frameworks of training and sampling are well-established (Sohl-Dickstein et al., 2015;
 033 Kingma et al., 2021; Song et al., 2021; Lu et al., 2022; Holderith et al., 2025), analysing how
 034 information evolves through the noisy intermediate states \mathbf{x}_t for $t \in [0, T]$ remains an open question.
 035 Our work addresses this by defining and analyzing the geometric structure of diffusion models, which
 036 provides a principled framework for understanding their inner workings.

037 In generative models, a common way to study the
 038 intrinsic geometry of the data is to pull back the
 039 ambient (Euclidean) metric onto the latent space
 040 (Arvanitidis et al., 2018; 2022). Equipped with this
 041 pullback metric, shortest paths (i.e., *geodesics*) in
 042 the latent space decode to realistic transitions along
 043 data that lie on a lower-dimensional submanifold.

044 In a diffusion model, a natural choice for the
 045 decoder is the reverse ODE $\mathbf{x}_0(\mathbf{x}_T)$, which allows us
 046 to derive the pullback geometry of the latents \mathbf{x}_T .
 047 Interestingly, we prove that this leads to latent short-
 048 est paths always decoding to linear interpolations
 049 in data space, which have little practical utility.

050 We then turn our attention to the decoding distri-
 051 bution $p(\mathbf{x}_0|\mathbf{x}_t)$ given by the reverse SDE. We propose an alternative *Fisher-Rao geometry*, which
 052 measures how the denoising distribution $p(\mathbf{x}_0|\mathbf{x}_t)$ changes when manipulating the latent \mathbf{x}_t . We
 053 introduce the Fisher-Rao metric $\mathbf{G}(\mathbf{x}_t, t)$ that varies with both state and time over the *latent spacetime*
 (Fig. 1).

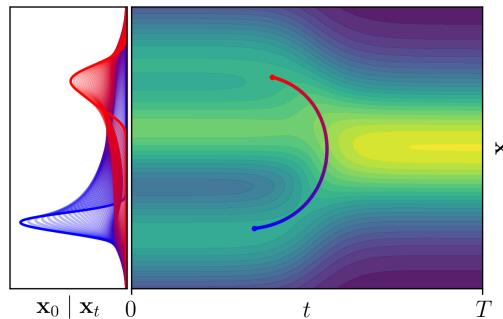


Figure 1: **A geodesic in spacetime** is the shortest path between denoising distributions.

054 Estimating geodesics in information geometry is usually tractable only for analytic families. Although
 055 denoising distributions in diffusion are complex and non-Gaussian, we show that they form an
 056 exponential family. This simplifies the geometry and yields a practical method for computing
 057 geodesics between any two samples through the spacetime. In the Fisher–Rao setting, curve lengths
 058 can be evaluated without running the reverse SDE, which significantly reduces the computational cost.

059 We demonstrate the utility of the Fisher–Rao geometry in diffusion models in two ways. First, it
 060 induces a principled *Diffusion Edit Distance* on data that admits a clear interpretation: the geodesic
 061 between \mathbf{x}^a and \mathbf{x}^b traces the minimal sequence of edits, adding just enough noise to forget infor-
 062 mation specific to \mathbf{x}^a and then denoising to introduce information specific to \mathbf{x}^b . The resulting
 063 length quantifies the total edit cost. Second, spacetime geodesics allow generating transition paths in
 064 molecular systems, where we obtain results competitive with specialized state-of-the-art methods and
 065 can incorporate constraints such as avoidance of designated regions in data space.

067 2 BACKGROUND ON DIFFUSION MODELS

069 We assume a data distribution q defined on \mathbb{R}^D , and the forward process

$$071 \quad p(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t | \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I}), \quad (1)$$

073 which gradually transforms q into pure noise $p_T \approx \mathcal{N}(\mathbf{0}, \sigma_T^2 \mathbf{I})$ at time T , where α_t, σ_t define the
 074 forward drift f_t and diffusion g_t . There exists a *denoising* SDE reverse process (Anderson, 1982)

$$076 \quad \text{Reverse SDE: } d\mathbf{x} = \left(f_t \mathbf{x} - \frac{1}{2} g_t^2 \nabla \log p_t(\mathbf{x}) \right) dt + g_t d\bar{\mathbf{W}}_t, \quad \mathbf{x}_T \sim p_T, \quad (2)$$

078 where p_t is the marginal distribution of the forward process (Eq. 1) at time t , and $\bar{\mathbf{W}}$ is a reverse Wiener
 079 process. Somewhat unexpectedly, there exists a deterministic Probability Flow ODE (PF-ODE) with
 080 matching marginals (Song et al., 2021):

$$082 \quad \text{PF ODE: } d\mathbf{x} = \left(f_t \mathbf{x} - \frac{1}{2} g_t^2 \nabla \log p_t(\mathbf{x}) \right) dt, \quad \mathbf{x}_T \sim p_T. \quad (3)$$

084 Assuming we can approximate the score $\nabla \log p_t$ (Karras et al., 2024), we denote by $\mathbf{x}_T \mapsto \mathbf{x}_0(\mathbf{x}_T)$
 085 the *deterministic* denoiser of solving the PF-ODE from noise \mathbf{x}_T , while we denote by $p(\mathbf{x}_0 | \mathbf{x}_t)$ the
 086 denoising distributions induced by *stochastic* sampling of the reverse SDE (Karras et al., 2022).

088 3 RIEMANNIAN GEOMETRY OF DIFFUSION MODELS

091 Riemannian geometry equips a latent space \mathcal{Z} with a smoothly varying *metric tensor* $\mathbf{G}(\mathbf{z})$ for $\mathbf{z} \in \mathcal{Z}$.
 092 This metric defines inner products and induces the notions of distance and curve length (Do Carmo &
 093 Francis, 1992). Several works have developed diffusion models *on top* of Riemannian manifolds,
 094 such as spheres, tori and hyperboloids (De Bortoli et al., 2022; Huang et al., 2022; Thornton et al.,
 095 2022). In this paper, we instead study what kind of Riemannian geometries are *implicitly induced* by
 096 the denoiser within a real vector space \mathbb{R}^D (e.g., images).

097 In Euclidean geometry, the space is flat, with distances given by the length of straight lines connecting
 098 points. In Riemannian spaces, the shortest path between two points is no longer straight, but a
 099 curved *geodesic*. A smooth curve $\gamma : [0, 1] \rightarrow \mathcal{Z}$ between fixed endpoints γ_0, γ_1 is a geodesic if
 100 it minimizes the length

$$101 \quad \ell(\gamma) = \int_0^1 \|\dot{\gamma}_s\|_{\mathbf{G}} ds = \int_0^1 \sqrt{\dot{\gamma}_s^T \mathbf{G}(\gamma_s) \dot{\gamma}_s} ds, \quad (4)$$

104 or, equivalently, the energy $\mathcal{E}(\gamma) = \frac{1}{2} \int_0^1 \|\dot{\gamma}_s\|_{\mathbf{G}}^2 ds$.

106 We introduce two interpretations of Riemannian geometry \mathbf{G} for diffusion models, depending on
 107 whether the decoder is *deterministic* or *stochastic*. In both cases, we first assume the latent space is
 the noise space \mathbf{x}_T , and later relax this to cover the entire noisy sample space \mathbf{x}_t .

108 **Deterministic sampler: pullback geometry.** Let $\mathbf{x}_T \mapsto \mathbf{x}_0(\mathbf{x}_T)$ be a deterministic map given by
 109 the PF-ODE (Eq. 3) mapping noise to data. We propose the pullback metric (Arvanitidis et al., 2022;
 110 Park et al., 2023)

$$111 \quad \mathbf{G}_{\text{PB}}(\mathbf{x}_T) = \left(\frac{\partial \mathbf{x}_0}{\partial \mathbf{x}_T} \right)^\top \left(\frac{\partial \mathbf{x}_0}{\partial \mathbf{x}_T} \right) \in \mathbb{R}^{D \times D}, \quad \mathbf{x}_0 := \mathbf{x}_0(\mathbf{x}_T) \in \mathbb{R}^D \quad (5)$$

114 which measures how an *infinitesimal noise step* $d\mathbf{x}_T$ changes the decoded sample:

$$115 \quad \|\mathbf{x}_0(\mathbf{x}_T + d\mathbf{x}_T) - \mathbf{x}_0(\mathbf{x}_T)\|^2 = d\mathbf{x}_T^\top \mathbf{G}_{\text{PB}}(\mathbf{x}_T) d\mathbf{x}_T + o(\|d\mathbf{x}_T\|^2). \quad (6)$$

117 **Stochastic sampler: information geometry.** Alternatively, consider a *stochastic* decoder that, for
 118 each latent \mathbf{x}_T defines a denoising distribution $p(\mathbf{x}_0|\mathbf{x}_T)$ by solving the Reverse SDE (Eq. 2). We
 119 propose the information-geometric viewpoint via the Fisher-Rao metric (Amari, 2016)

$$120 \quad \mathbf{G}_{\text{IG}}(\mathbf{x}_T) = \mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0|\mathbf{x}_T)} \left[\nabla_{\mathbf{x}_T} \log p(\mathbf{x}_0|\mathbf{x}_T) \nabla_{\mathbf{x}_T} \log p(\mathbf{x}_0|\mathbf{x}_T)^\top \right] \in \mathbb{R}^{D \times D}, \quad (7)$$

122 which measures how an *infinitesimal noise step* $d\mathbf{x}_T$ changes the *entire* denoising distribution:

$$123 \quad \text{KL} \left[p(\mathbf{x}_0 | \mathbf{x}_T) \parallel p(\mathbf{x}_0 | \mathbf{x}_T + d\mathbf{x}_T) \right] = \frac{1}{2} d\mathbf{x}_T^\top \mathbf{G}_{\text{IG}}(\mathbf{x}_T) d\mathbf{x}_T + o(\|d\mathbf{x}_T\|^2). \quad (8)$$

125 For a helpful tutorial on information geometry, we refer to Mishra et al. (2023).

4 PULLBACK GEOMETRY COLLAPSES IN DIFFUSION MODELS

129 Both pullback and information geometries are, in principle, applicable. We will first show the pullback
 130 geometry has fundamental theoretical limitations in diffusion models, rendering it practically useless.

132 Assume we estimate a geodesic γ in the noise
 133 space \mathbf{x}_T such that its endpoints decode to
 134 $\mathbf{x}_0(\gamma_0) = \mathbf{x}^a$ and $\mathbf{x}_0(\gamma_1) = \mathbf{x}^b$. The pullback
 135 energy $\mathcal{E}(\gamma)$ (Eq. 4) can be shown to only de-
 136 pend on the decoded curve $\mathbf{x}_0(\gamma_s)$ in data space
 137 (See Appendix B):

$$138 \quad \mathcal{E}_{\text{PB}}(\gamma) = \frac{1}{2} \int_0^1 \left\| \frac{d}{ds} \mathbf{x}_0(\gamma_s) \right\|^2 ds. \quad (9)$$

141 The unique minimizer is the constant-speed
 142 straight line $\mathbf{x}_s = (1-s)\mathbf{x}^a + s\mathbf{x}^b$ in data space.
 143 Since the ODE is bijective, this line has a unique
 144 latent preimage $\gamma_s^* = \mathbf{x}_0^{-1}(\mathbf{x}_s) = \gamma_s$,
 145 which is thus a pullback geodesic, and the en-
 146 ergy reduces to Euclidean distance in data space:

$$147 \quad \mathcal{E}_{\text{PB}}(\gamma) := \frac{1}{2} \|\mathbf{x}^a - \mathbf{x}^b\|^2. \quad (10)$$

149 Hence, *all* pullback geodesics decode to straight segments, ignoring the curvature of the data manifold
 150 and undermining downstream applications (See Fig. 2). The same pathology applies for denoised
 151 geodesics in the intermediate space \mathbf{x}_t as well. The core reason for this is that, in diffusion models,
 152 the latent and data spaces have the same dimension. The decoder operates directly in the ambient
 153 space and, without further dimensional constraints, it cannot capture the intrinsic structure of the data,
 154 even if the data lie on a lower-dimensional submanifold. As a result, the standard pullback metric
 155 provides no meaningful geometric information. A formal proof and discussion are in Appendix B.

5 INFORMATION GEOMETRY WITH DENOISING DECODERS

159 Under the stochastic view, the decoder is the denoising distribution $p(\mathbf{x}_0|\mathbf{x}_T)$ obtained by reversing
 160 the diffusion process (Eq. 2). This yields a family of distributions on the data space parametrized
 161 with noise vectors \mathbf{x}_T . The information geometry assigns the Fisher-Rao metric to the latent domain,
 and geodesic energies/lengths are computed as in Section 3.

162 **The latent spacetime.** Diffusion models are “memoryless” (Domingo-Enrich et al., 2025):
 163

$$164 \quad p(\mathbf{x}_T \mid \mathbf{x}_0) \approx p_T(\mathbf{x}_T) \Rightarrow p(\mathbf{x}_0 \mid \mathbf{x}_T) \approx q(\mathbf{x}_0). \quad (11)$$

166 Hence $p(\mathbf{x}_0 \mid \mathbf{x}_T)$ is (approximately) independent of \mathbf{x}_T , implying $\nabla_{\mathbf{x}_T} \log p(\mathbf{x}_0 \mid \mathbf{x}_T) \approx 0$ and a
 167 collapse of the Fisher–Rao metric, $\mathbf{G}_{\text{IG}} \approx \mathbf{0}$ (Eq. 7). Consequently, if we identify the latent space
 168 with $\mathbf{z} = \mathbf{x}_T$, all \mathbf{x}_T become metrically indistinguishable. This could be avoided by choosing $\mathbf{z} = \mathbf{x}_t$
 169 for some $t < T$; however, instead of choosing an arbitrary noise level t , we propose to model all
 170 noise levels simultaneously by considering points in the $(D + 1)$ -dimensional latent *spacetime*

$$171 \quad \mathbf{z} = (\mathbf{x}_t, t) \in \mathbb{R}^D \times (0, T], \quad (12)$$

173 which define the family of all denoising distributions $\{p(\mathbf{x}_0 \mid \mathbf{x}_t)\}$ across all noise levels (Fig. 1).
 174

175 **Why include time?** The resulting Fisher-Rao metric $\mathbf{G}_{\text{IG}}(\mathbf{z})$ varies with state and time, restoring a
 176 nontrivial geometry and enabling navigation across noise levels within a unified structure. Identifying
 177 clean data with spacetime points $(\mathbf{x}, 0)$, for which $p(\mathbf{x}_0 \mid \mathbf{x}_0 = \mathbf{x}) = \delta_{\mathbf{x}}$, lets geodesics *connect*
 178 *clean endpoints through noisy intermediates*. This yields (i) a principled notion of distance between
 179 data as the length of the shortest spacetime path (Diffusion Edit Distance), and (ii) a mechanism for
 180 transition-path sampling via spacetime geodesics; both are demonstrated empirically in Section 6.
 181

182 **Tractable energy estimation.** Usually, the information-geometric energy of a discretized curve
 183 $\gamma = \{\mathbf{z}_n\}_{n=0}^{N-1}$ is approximated via the local-KL approximation (Arvanitidis et al., 2022):
 184

$$185 \quad 186 \quad \mathcal{E}(\gamma) \approx (N-1) \sum_{n=0}^{N-2} \text{KL}\left[p(\cdot \mid \mathbf{z}_n) \parallel p(\cdot \mid \mathbf{z}_{n+1})\right], \quad (13)$$

188 but such KLs are generally intractable, unless $p(\cdot \mid \mathbf{z})$ is a simple analytic distribution such as multinomial
 189 or Gaussian, which is not the case for denoising distributions $p(\mathbf{x}_0 \mid \mathbf{x}_t)$. Nonetheless, we show
 190 that in the specific case of the diffusion spacetime, the energy can be tractably estimated.
 191

192 **Proposition 5.1** (Spacetime energy estimation - informal). *The energy of discretized spacetime curve*
 193 $\gamma = \{\mathbf{z}_n\}_{n=0}^{N-1}$ *with* $\mathbf{z}_n = (\mathbf{x}_{t_n}, t_n)$ *admits an approximation*

$$195 \quad 196 \quad \mathcal{E}(\gamma) \approx \frac{N-1}{2} \sum_{n=0}^{N-2} \left(\boldsymbol{\eta}(\mathbf{z}_{n+1}) - \boldsymbol{\eta}(\mathbf{z}_n) \right)^{\top} \left(\boldsymbol{\mu}(\mathbf{z}_{n+1}) - \boldsymbol{\mu}(\mathbf{z}_n) \right), \quad (14)$$

198 *where*

$$200 \quad 201 \quad \boldsymbol{\eta}(\mathbf{x}_t, t) = \left(\frac{\alpha_t}{\sigma_t^2} \mathbf{x}_t, -\frac{\alpha_t^2}{2\sigma_t^2} \right), \quad \boldsymbol{\mu}(\mathbf{x}_t, t) = \left(\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t], \mathbb{E}[\|\mathbf{x}_0\|^2 \mid \mathbf{x}_t] \right). \quad (15)$$

203 The proof (Appendix C) consists of showing that denoising distributions form an exponential family,
 204 which admits a simplified energy formula. In practice, we calculate $\boldsymbol{\mu}(\mathbf{x}_t, t)$ with Tweedie’s formula
 205 over the approximate denoiser $\hat{\mathbf{x}}_0(\mathbf{x}_t)$ (See Appendix C.2 for details),

$$207 \quad \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t] \approx \hat{\mathbf{x}}_0(\mathbf{x}_t) \\ 208 \quad \mathbb{E}[\|\mathbf{x}_0\|^2 \mid \mathbf{x}_t] \approx \|\hat{\mathbf{x}}_0(\mathbf{x}_t)\|^2 + \frac{\sigma_t^2}{\alpha_t} \text{div}_{\mathbf{x}_t} \hat{\mathbf{x}}_0(\mathbf{x}_t), \quad (16)$$

210 where both $\hat{\mathbf{x}}_0$ and $\text{div } \hat{\mathbf{x}}_0$ are computed efficiently via Hutchinson’s trick (Hutchinson, 1989; Grath-
 211 wohl et al., 2019), enabling the esimation of $\boldsymbol{\mu}(\mathbf{x}_t, t)$ with a single Jacobian-vector product (JVP).
 212

214 Spacetime geodesics are simulation-free: the energy calculation requires only N JVPs of the
 215 denoiser $\hat{\mathbf{x}}_0$ for a curve discretized into N points.

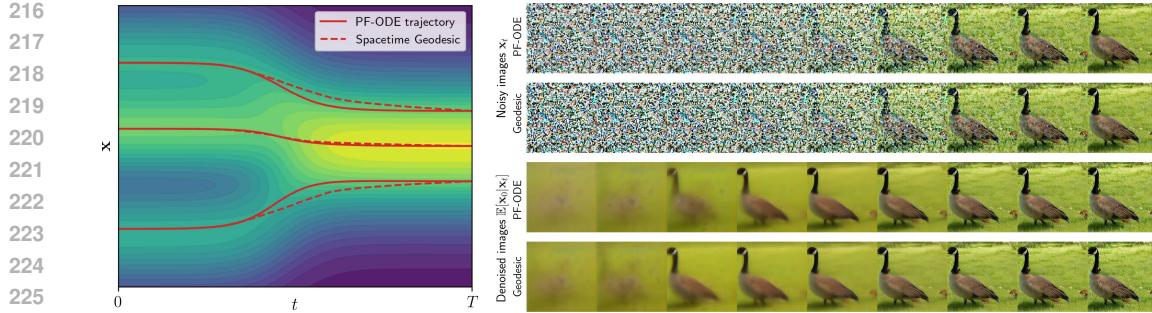


Figure 3: **PF-ODE paths are similar to energy-minimizing geodesics.** Left: Geodesics move in straighter lines than PF-ODE trajectories in 1D toy density. Right: Geodesics are almost indistinguishable to PF-ODE sampling in ImageNet-512 EDM2 model.

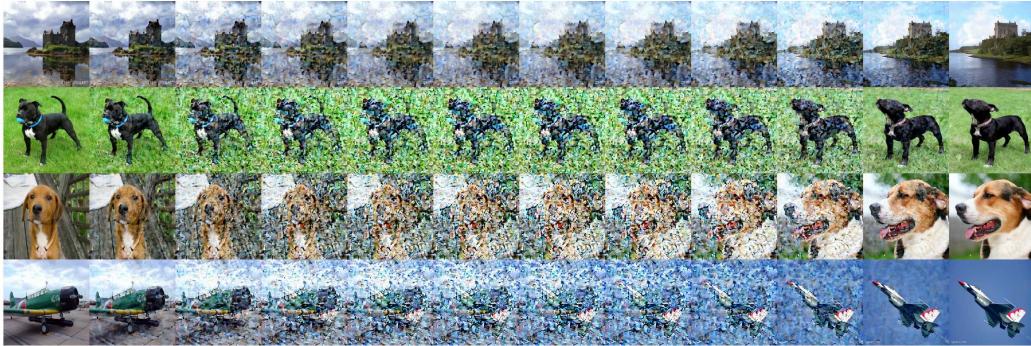


Figure 4: **Spacetime geodesics between images.** Each row shows a geodesic γ between clean images. The path passes through noisy states and then denoises, realizing the minimal total edit between endpoints. Its length $\ell(\gamma)$ is the Diffusion Edit Distance (DiffED), which measures how much the denoising distribution changes along the optimal traversal.

6 EXPERIMENTS

6.1 SAMPLING TRAJECTORIES

We compare the trajectories obtained by solving the PF-ODE $\mathbf{x}_0(\mathbf{x}_T)$ (Eq. 3) with geodesics between the same endpoints $\mathbf{x}_0, \mathbf{x}_T$. For a toy example of 1D mixture of Gaussians, we observe the geodesics curving less than the PF-ODE trajectories in the early sampling (high t), while being indistinguishable for lower values of t (See Fig. 3 left and Appendix G.1 for details).

We find only marginal perceptual difference between the PF-ODE sampling trajectories and the geodesics in the EDM2 ImageNet-512 model (Karras et al., 2024). The geodesic appears to generate information slightly earlier, but the difference is minor (See Fig. 3 right, and Appendix G.2 for details).

We note that spacetime geodesics are not an alternative sampling method since they require knowing the endpoints beforehand. An investigation into whether our framework can be used to improve sampling strategies is an interesting future research direction.

6.2 DIFFUSION EDIT DISTANCE

The spacetime geometry yields a principled distance on the data space. We identify clean datum $\mathbf{x} \in \mathbb{R}^d$ with the spacetime point $(\mathbf{x}, 0)$, corresponding to the Dirac denoising distribution $\delta_{\mathbf{x}}$. Given two points $\mathbf{x}^a, \mathbf{x}^b$, we define the *Diffusion Edit Distance* (DiffED) by

$$\text{DiffED}(\mathbf{x}^a, \mathbf{x}^b) = \ell(\gamma), \quad (17)$$

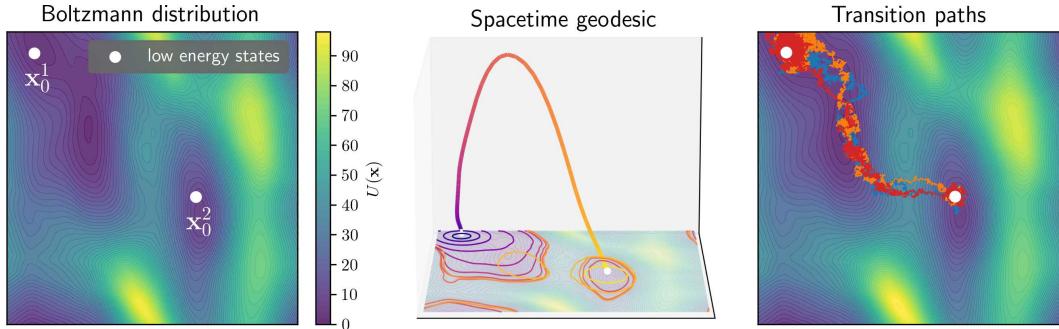
270 where γ is the spacetime geodesic between $(\mathbf{x}^a, 0)$ and $(\mathbf{x}^b, 0)$. For numerical stability, we anchor
271 endpoints at a small $t_{\min} > 0$ rather than at 0. See [Algorithm 4](#) for DiffED pseudocode.
272

273 A spacetime geodesic links two clean data points through intermediate noisy states. It can be
274 interpreted as the minimal sequence of edits: add just enough noise to discard information specific to
275 \mathbf{x}^a , then remove noise to introduce information specific to \mathbf{x}^b . The path length is the total edit cost,
276 which is measured by how much the denoising distribution changes along the path. [Fig. 4](#) visualizes
277 the spacetime geodesics: as endpoint similarity decreases, the intermediate points become noisier.
278

279 We quantitatively evaluate DiffED on image data. First, we ask whether DiffED correlates with
280 human perception as approximated by Learned Perceptual Image Patch Similarity (LPIPS) ([Zhang
281 et al., 2018](#)). We randomly selected 10 classes in the ImageNet dataset and sampled 20 random
282 image pairs for each. We then evaluated the DiffED and LPIPS for each image pair, and found the
283 correlation to be very low at approximately -7%, suggesting that perceptual similarity and geometric
284 edit cost capture different notions of closeness. We found DiffED to be more closely related to the
285 structural similarity index measure (SSIM) ([Wang et al., 2004](#)), which correlates at 53% with DiffED.
286

287 To qualitatively compare different notions of image similarity, we order image pairs by their similarity
288 evaluated with multiple metrics: DiffED, LPIPS, SSIM, and Euclidean. We show the results in [Fig. 8](#).
289

290 6.3 TRANSITION PATH SAMPLING



300 **Figure 5: Spacetime geodesics enable sampling transition paths between low-energy states.** Left:
301 Alanine Dipeptide energy landscape wrt two dihedral angles, with two energy minima x_0^1, x_0^2 . Middle:
302 Spacetime geodesic γ connecting x_0^1 and x_0^2 . Right: Annealed Langevin transition path samples.
303

304 Another application of the spacetime geometry is the problem of transition-path sampling ([Holdijk
305 et al., 2023; Du et al., 2024; Raja et al., 2025](#)), whose goal is to find probable transition paths between
306 low-energy states. We assume a Boltzmann distribution
307

$$308 q(\mathbf{x}) \propto \exp(-U(\mathbf{x})), \quad (18)$$

309 where U is a known energy function, which is a common assumption in molecular dynamics. In this
310 setting, the denoising distribution follows a tractable energy function (See [Eq. 60](#))

$$312 p(\mathbf{x}_0 | \mathbf{x}_t) \propto q(\mathbf{x}_0) p(\mathbf{x}_t | \mathbf{x}_0) \propto \exp \left(\underbrace{-U(\mathbf{x}_0) - \frac{1}{2} \text{SNR}(t) \|\mathbf{x}_0 - \mathbf{x}_t / \alpha_t\|^2}_{-U(\mathbf{x}_0 | \mathbf{x}_t)} \right). \quad (19)$$

315 To construct a transition path between two low-energy states \mathbf{x}_0^1 and \mathbf{x}_0^2 , we estimate the spacetime
316 geodesic γ between them using a denoiser model $\hat{x}_0(\mathbf{x}_t) \approx \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$ with [Proposition 5.1](#), as shown
317 in [Fig. 5](#). At each interpolation point $s \in [0, 1]$, the geodesic defines a denoising Boltzmann distribution
318 $p(\mathbf{x} | \gamma_s)$ where $U(\mathbf{x} | \gamma_s)$ is the energy at that spacetime location. See [Appendix G.3](#) for details.
319

320 **Annealed Langevin Dynamics.** To sample transition paths, we use Langevin dynamics

$$321 d\mathbf{x} = -\nabla_{\mathbf{x}} U(\mathbf{x} | \gamma_s) dt + \sqrt{2} d\mathbf{W}_t, \quad (20)$$

322 whose stationary distributions are $p(\mathbf{x} | \gamma_s) \propto \exp(-U(\mathbf{x} | \gamma_s))$ for any s . To obtain the trajectories
323 from \mathbf{x}_0^1 to \mathbf{x}_0^2 , we gradually increase s from 0 to 1 using annealed Langevin ([Song & Ermon, 2019](#)).

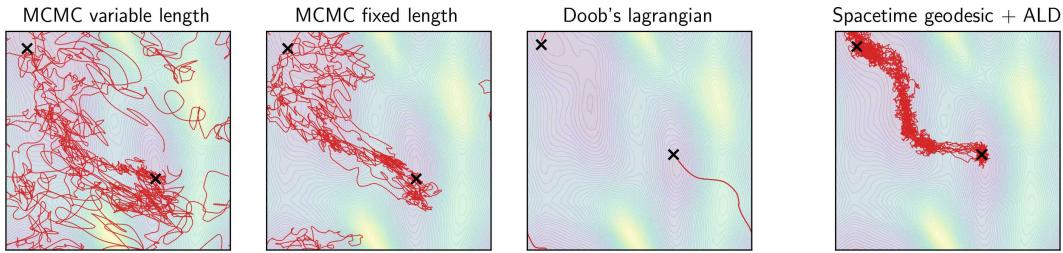


Figure 6: **Transition paths generated with a spacetime geodesic avoid high-energy regions without collapsing to a single path.** Compared with MCMC baselines, the spacetime-geodesic method yields transition paths that better avoid high-energy areas, whereas Doob’s Lagrangian collapses to generating nearly identical trajectories. Ten sample paths are shown for each method.

After discretizing the geodesic into N points γ_n , we alternate between taking K steps of Eq. 20 conditioned on γ_n and updating $\gamma_n \mapsto \gamma_{n+1}$, as described in Algorithm 1. This approach assumes that $p(\mathbf{x}|\gamma_n)$ is close to $p(\mathbf{x}|\gamma_{n+1})$, and thus $\mathbf{x} \sim p(\mathbf{x}|\gamma_n)$ is a good starting point to Langevin dynamics conditioned on γ_{n+1} .

Table 1: **Spacetime geodesics outperform methods tailored to transition path sampling.** Parentheses denote extra energy evaluations used to generate training data for the base diffusion model, which do not scale with the number of generated paths. Baseline details in Appendix H.

	MaxEnergy (↓)	# Evaluations (↓)
Lower Bound	36.42	N/A
MCMC-fixed-length	42.54 ± 7.42	1.29B
MCMC-variable-length	58.11 ± 18.51	21.02M
Doob’s Lagrangian (Du et al., 2024)	66.24 ± 1.01	38.4M
Spacetime geodesic (Ours)	37.66 ± 0.61	128K (+16M)

Alanine dipeptide. We compute a spacetime geodesic connecting two molecular configurations of Alanine Dipeptide, as in Holdijk et al. (2023). In Fig. 5, the energy landscape is visualized over the dihedral angle space, with a neural network used to approximate the potential energy U . Using our trained denoiser $\hat{x}_0(\mathbf{x}_t)$, we estimate the expectation parameter μ , which allows us to compute and visualize a geodesic trajectory through spacetime. Transition paths were generated using Algorithm 1. See Appendix G.3 for details.

Baselines. We considered Holdijk et al. (2023); Du et al. (2024); Raja et al. (2025) and adopt Doob’s Lagrangian (Du et al., 2024); the others were excluded due to reproducibility issues (see Appendix H). We also evaluate two MCMC two-way shooting variants (Brotzakis & Bolhuis, 2016)-uniform point selection with variable or fixed trajectory length-using transition paths from the official Du et al. (2024) code release. For each method we generate 1,000 paths and report mean MaxEnergy (lower is better) and its numerical lower bound $\min_{\gamma} \max_s U(\gamma_s)$, along with the number of energy evaluations needed for 1,000 paths. To train a base diffusion model for our method, we generated data using Langevin dynamics (16M¹ energy evaluations), a one-time cost that does not scale with the number of generated transition paths.

Results. We show in Table 1 that our method outperforms the baselines in the MaxEnergy obtained along the transition paths. It is also considerably closer to the lower bound than to the next best baseline (MCMC-fixed length) while requiring several orders of magnitude fewer energy function evaluations. In Fig. 6, we show a qualitative comparison of transition paths generated with our method and the baselines. Our proposed method shows improved efficiency in avoiding high-energy

¹16M is the number of energy function evaluations to generate the training set with Langevin dynamics for the base diffusion model. We did not tune this number, and fewer evaluations may yield comparable performance.

378 regions compared to MCMC. In contrast, the Doob’s Lagrangian method converged to a suboptimal
 379 solution, producing nearly identical transition paths. We discuss this in more detail in [Appendix H](#).
 380

381 Algorithm 1 Transition Path Sampling with Annealed Langevin Dynamics

382 **Require:** $\mathbf{x}_a, \mathbf{x}_b \in \mathbb{R}^D$ endpoints, $N_\gamma > 0$, $T > 0$, t_{\min} , dt
 383 1: $\gamma \leftarrow \text{SPACETIMEGEODESIC}(\mathbf{x}_a, \mathbf{x}_b)$ \triangleright Approximate spacetime geodesic with [Algorithm 3](#)
 384 2: $\mathcal{T} \leftarrow \{\mathbf{x} := \mathbf{x}_a\}$ \triangleright Initialize chain \mathcal{T} at \mathbf{x}_a
 385 3: **for** $n \in \{0, \dots, N_\gamma - 1\}$ **do** \triangleright Iterate over the points on the geodesic γ_n
 386 4: **for** $t \in \{1, \dots, T\}$ **do**
 387 5: $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ \triangleright Sample Gaussian noise
 388 6: $\mathbf{x} \leftarrow \mathbf{x} - \nabla_{\mathbf{x}} U(\mathbf{x} | \gamma_n) dt + \sqrt{2dt} \varepsilon$ \triangleright Langevin update
 389 7: $\mathcal{T} \leftarrow \mathcal{T} \cup \{\mathbf{x}\}$ \triangleright Append state \mathbf{x} to chain
 390 8: **end for**
 391 9: **end for**
 392 10: **return** \mathcal{T} \triangleright Return chain

393
394 6.4 CONSTRAINED PATH SAMPLING
 395

396 Suppose we would like to impose additional constraints along the geodesic interpolants. This
 397 corresponds to penalized optimization

398
$$\min_{\gamma} \left\{ \mathcal{E}(\gamma) + \lambda \int_0^1 h(\gamma_s) ds, \quad \text{s.t.} \quad \gamma_0 = (\mathbf{x}_0^1, 0), \gamma_1 = (\mathbf{x}_0^2, 0) \right\}, \quad (21)$$

400 where $h : \mathbb{R} \times \mathbb{R}^D \rightarrow \mathbb{R}$ is some penalty function with $\lambda > 0$. We demonstrate the principle by (i)
 401 penalizing transition path variance, and (ii) imposing regions to avoid in the data space.
 402

403 **Low-variance transitions.** Suppose we want the posterior $p(\mathbf{x} | \gamma_s)$ to have a low variance. This
 404 concentrates the path around a narrower set of plausible states, more repeatable trajectories, albeit
 405 at the cost of reduced coverage. By [Eq. 56](#), higher $\text{SNR}(t)$ yields lower denoising variance, so we
 406 implement this by penalizing low SNR via $h(\mathbf{x}, t) = \max(-\log \text{SNR}(t), \rho)$ for some threshold ρ .
 407

408 **Avoiding restricted regions.** Suppose we want to avoid certain regions in the data space in
 409 the transition paths. We encode the region to avoid as a denoising distribution $p(\cdot | \mathbf{z}^*)$ for some
 410 $\mathbf{z}^* = (\mathbf{x}_t^*, t^*)$ where larger the t^* , larger the restricted region. We encode the penalty as KL distance
 411 between the denoising distributions (See [Appendix D](#) for the derivation)

412
$$\text{KL} \left[p(\cdot | \mathbf{z}^*) || p(\cdot | \gamma_s) \right] = \int_0^s \left(\frac{d}{du} \boldsymbol{\eta}(\gamma_u) \right)^\top (\boldsymbol{\mu}(\gamma_u) - \boldsymbol{\mu}(\mathbf{z}^*)) du + C \quad (22)$$

414
$$h(\gamma_s) = \min \left(\rho, -\text{KL} \left[p(\cdot | \mathbf{z}^*) || p(\cdot | \gamma_s) \right] \right). \quad (23)$$

416 In [Fig. 7](#), we compare spacetime geodesics (unconstrained) with low-variance, and region-avoiding
 417 spacetime curves. We visualize both the curves and the corresponding transition paths generated with
 418 [Algorithm 1](#). This demonstrates that our framework with the penalized optimization ([Eq. 21](#)) can
 419 incorporate various preferences on the transition paths.
 420

421 **7 RELATED WORKS**
 422

423 We review three directions of research related to ours: (i) studies of latent noise in diffusion models,
 424 (ii) applications of information geometry in generative modeling, and (iii) geometric formulations for
 425 sampling efficiency.
 426

427 **Latent–data geometry.** Several works analyze the relation between latent noise \mathbf{x}_t and data \mathbf{x}_0 . [Yu](#)
 428 [et al. \(2025\)](#) define a geodesic density in diffusion latent space; [Park et al. \(2023\)](#) apply Riemannian
 429 geometry to lower-dimensional latent codes; [Karczewski et al. \(2025\)](#) study how noise scaling affects
 430 log-densities and perceptual detail. Our work also investigates the \mathbf{x}_t to \mathbf{x}_0 relationship but (a) uses
 431 the Fisher–Rao metric rather than an inverse-density metric, (b) retains the full-dimensional latent
 432 space without projection, and (c) analyzes the complete diffusion path across all timesteps.

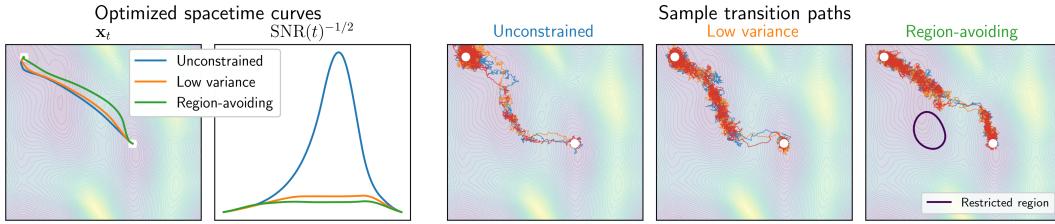


Figure 7: **Vanilla transition paths can be constrained to have lower variance, or successfully avoid a restricted region $p(\cdot|z^*)$.** Left: geodesics γ . Right: transition paths \mathcal{T} .

Information geometry in generative models. Lobašhev et al. (2025) introduce the Fisher–Rao metric on families $p(x|\theta)$ to study phase-like transitions, where θ is a low-dimensional variable parametrizing a microstate x . In contrast, we place the geometry on diffusion’s explicit spacetime coordinates $z = (x_t, t)$, induced by the denoising posterior $p(x_0|x_t)$.

Geometric approaches to sampling. Two recent works also formulate diffusion models geometrically to improve sampling efficiency. Das et al. (2023) optimize the forward noising process by following the shortest geodesic between p_0 and p_t under the Fisher-Rao metric, assuming $p_0(x_0)$ to be Gaussian. Ghimire et al. (2023) model both the forward and reverse processes as Wasserstein gradient flows. Our contribution differs: we use information geometry (not optimal transport), focus on the reverse process (not the forward), and only require p_0 to admit a density.

8 LIMITATIONS

Although our framework defines geodesics between any noisy samples, optimizing between nearly clean ones is numerically unstable because their denoising distributions collapse to Dirac deltas, making Fisher-Rao (via local KL) distances effectively infinite. Therefore, consistent with diffusion practice (Song et al., 2021; Lu et al., 2022), we choose endpoints with non-negligible noise for tractable optimization (details in Appendix G).

The proposed distance metric DiffED (Section 6.2) is considerably slower (details in Appendix G.2) than established image similarity metrics such as LPIPS (Zhang et al., 2018), or SSIM (Wang et al., 2004). Exploring a distillation strategy involving training a separate model trained to predict DiffED is a possible future research direction.

9 CONCLUSION

We proposed a novel perspective on the latent space of diffusion models by viewing it as a $(D + 1)$ -dimensional statistical manifold, with the Fisher-Rao metric inducing a geometrical structure. By leveraging the fact that the denoising distributions form an exponential family, we showed that we can tractably estimate geodesics even for high-dimensional image diffusion models. We visualized our methods for image interpolations and demonstrated their utility in molecular transition path sampling.

This work deepens our understanding of the latent space in diffusion models and has the potential to inspire further research, including the development of novel applications of the spacetime geometric framework, such as enhanced sampling techniques.

478 REPRODUCIBILITY STATEMENT

480 We include the source code in our submission, which allows for reproducing the results. Our claims
 481 made in the main text are proven in the appendices. Experiment details can be found in Appendix G.

483 ETHICS STATEMENT

485 The use of generative models, especially those capable of producing images and videos, poses
 considerable risks for misuse. Such technologies have the potential to produce harmful societal

486 effects, primarily through the spread of disinformation, but also by reinforcing harmful stereotypes
 487 and implicit biases. In this work, we contribute to a deeper understanding of diffusion models,
 488 which currently represent the leading methodology in generative modeling. While this insight may
 489 eventually support improvements to these models, thereby increasing the risk of misuse, it is important
 490 to note that our research does not introduce any new ethical risks beyond those already associated
 491 with generative AI.

492 We have used Large Language Models to polish writing on a sentence level.
 493

494 **REFERENCES**
 495

496 Shun-ichi Amari. *Information geometry and its applications*. Springer, 2016.
 497

498 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their*
 499 *Applications*, 1982.

500 Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: On the curvature of
 501 deep generative models. In *ICLR*, 2018.

502

503 Georgios Arvanitidis, Miguel González-Duque, Alison Pouplin, Dimitrios Kalatzis, and Soren
 504 Hauberg. Pulling back information geometry. In *AISTATS*, 2022.

505

506 Z Faidon Brotzakis and Peter G Bolhuis. A one-way shooting algorithm for transition path sampling
 507 of asymmetric barriers. *The Journal of Chemical Physics*, 2016.

508

509 Ayan Das, Stathi Fotiadis, Anil Batra, Farhang Nabiei, FengTing Liao, Sattar Vakili, Da-shan Shiu,
 510 and Alberto Bernacchia. Image generation with shortest path diffusion. In *ICML*, 2023.

511

512 Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
 513 Arnaud Doucet. Riemannian score-based generative modelling. In *NeurIPS*, 2022.

514

515 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
 516 hierarchical image database. In *CVPR*, 2009.

517

518 Manfredo Perdigao Do Carmo and Flaherty Francis. *Riemannian geometry*. Springer, 1992.

519

520 Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
 521 Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control. In
 522 *ICLR*, 2025.

523

524 Yuanqi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noe, Carla Gomes, Alan Aspuru-
 525 Guzik, and Kirill Neklyudov. Doob’s Lagrangian: A sample-efficient variational approach to
 526 transition path sampling. In *NeurIPS*, 2024.

527

528 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Association*,
 529 106(496):1602–1614, 2011.

530

531 Sandesh Ghimire, Jinyang Liu, Armand Comas, Davin Hill, Aria Masoomi, Octavia Camps, and
 532 Jennifer Dy. Geometry of score based generative models. *arXiv*, 2023.

533

534 Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
 535 generative models with free-form continuous dynamics. In *ICLR*, 2019.

536

537 Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
 538 Ricky TQ Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
 539 Markov processes. In *ICLR*, 2025.

540

541 Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Bernd Ensing, and Max Welling. Stochastic
 542 optimal control for collective variable free sampling of molecular transition paths. In *NeurIPS*,
 543 2023.

544

545 Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron Courville. Rieman-
 546 nian diffusion models. In *NeurIPS*, 2022.

540 Michael Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian
 541 smoothing splines. *Communications in Statistics – Simulation and Computation*, 1989.
 542

543 Rafał Karczewski, Markus Heinonen, and Vikas Garg. Devil is in the details: Density guidance for
 544 detail-aware generation with flow models. In *ICML*, 2025.

545 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 546 based generative models. In *NeurIPS*, 2022.

547

548 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
 549 and improving the training dynamics of diffusion models. In *CVPR*, 2024.

550 Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
 551 *NeurIPS*, 2021.

552

553 Diederik P Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with simple
 554 data augmentation. In *NeurIPS*, 2023.

555

556 Alexander Lobashev, Dmitry Guskov, Maria Larchenko, and Mikhail Tamm. Hessian geometry of
 557 latent space in generative models. In *ICML*, 2025.

558 Cheng Lu, Kaiwen Zheng, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Maximum likelihood
 559 training for score-based diffusion odes by high order denoising score matching. In *ICML*, 2022.

560

561 Chenlin Meng, Yang Song, Wenzhe Li, and Stefano Ermon. Estimating high order gradients of the
 562 data distribution by denoising. In *NeurIPS*, 2021.

563

564 Kumar Mishra, Ashok Kumar, and Ting-Kam Leonard Wong. Information geometry for the working
 565 information theorist. *arXiv*, 2023.

566

567 OpenMP Architecture Review Board. OpenMP application program interface version 3.0, 2008.
 URL <http://www.openmp.org/mp-documents/spec30.pdf>.

568

569 Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding the
 570 latent space of diffusion models through the lens of Riemannian geometry. In *NeurIPS*, 2023.

571

572 Sanjeev Raja, Martin Sipka, Michael Psenka, Tobias Kreiman, Michal Pavelka, and Aditi Krish-
 573 napriyan. Action-minimization meets generative modeling: Efficient transition path sampling with
 574 the Onsager-Machlup functional. In *ICLR Workshop on Generative and Experimental Perspectives
 for Biomolecular Design*, 2025.

575

576 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 577 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

578

579 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 580 learning using nonequilibrium thermodynamics. In *ICML*, 2015.

581

582 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 In *NeurIPS*, 2019.

583

584 Yang Song, Jascha Sohl-Dickstein, Diederik Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 585 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.

586

587 James Thornton, Michael Hutchinson, Emile Mathieu, Valentin De Bortoli, Yee Whye Teh, and
 588 Arnaud Doucet. Riemannian diffusion Schrödinger bridge. In *ICML Workshop Continuous Time
 Methods for Machine Learning*, 2022.

589

590 Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
 591 visibility to structural similarity. *IEEE Transactions on Image Processing*, 2004.

592

593 Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
 Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
 applications. *ACM Computing Surveys*, 2023.

594 Qingtao Yu, Jaskirat Singh, Zhaoyuan Yang, Peter Henry Tu, Jing Zhang, Hongdong Li, Richard
 595 Hartley, and Dylan Campbell. Probability density geodesics in image diffusion latent space. In
 596 *CVPR*, 2025.

597 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 598 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

600

A NOTATION

601

603 We denote $\mathbf{x} = (x^1, \dots, x^D)^\top \in \mathbb{R}^D$ a point in D -dimensional Euclidean space (a column vector),
 604 $\text{Tr}(\mathbf{A}) = \sum_i A_{ii}$ - the trace operator of a square matrix $\mathbf{A} \in \mathbb{R}^{k \times k}$.

606 **Differential operators.** For a scalar function $f : \mathbb{R}^D \rightarrow \mathbb{R}, \mathbf{x} \mapsto f(\mathbf{x}) \in \mathbb{R}$, we denote

607 gradient: $\nabla_{\mathbf{x}} f(\tilde{\mathbf{x}}) = \left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^D} \right)^\top \Big|_{\mathbf{x}=\tilde{\mathbf{x}}} \in \mathbb{R}^D$

608

609 Hessian: $\nabla_{\mathbf{x}}^2 f(\tilde{\mathbf{x}}) = \left[\frac{\partial^2 f}{\partial x^i \partial x^j} \right]_{i,j} \Big|_{\mathbf{x}=\tilde{\mathbf{x}}} \in \mathbb{R}^{D \times D}$

610

611 Laplacian: $\Delta_{\mathbf{x}} f(\tilde{\mathbf{x}}) = \text{Tr}(\nabla_{\mathbf{x}}^2 f(\tilde{\mathbf{x}})) = \sum_{i=1}^D \frac{\partial^2 f}{\partial (x^i)^2} \Big|_{\mathbf{x}=\tilde{\mathbf{x}}} \in \mathbb{R}$

612

613 For a curve $\gamma : [0, 1] \rightarrow \mathbb{R}^k, s \mapsto \gamma_s \in \mathbb{R}^k$ we denote

614 time derivative: $\dot{\gamma}_s = \frac{d}{ds} \gamma_s \in \mathbb{R}^k$.

615

616 For a vector valued function $f : \mathbb{R}^k \rightarrow \mathbb{R}^m, \mathbf{x} \mapsto (f^1(\mathbf{x}), \dots, f^m(\mathbf{x}))^\top \in \mathbb{R}^m$ we denote

617 Jacobian: $\frac{\partial f(\tilde{\mathbf{x}})}{\partial \mathbf{x}} = \left[\frac{\partial f^i}{\partial x^j} \right]_{i,j} \Big|_{\mathbf{x}=\tilde{\mathbf{x}}} \in \mathbb{R}^{m \times k}$

618

619 When $k = m$, we define

620 divergence: $\text{div}_{\mathbf{x}} f(\tilde{\mathbf{x}}) = \text{Tr} \left(\frac{\partial f(\tilde{\mathbf{x}})}{\partial \mathbf{x}} \right) = \sum_{i=1}^k \frac{\partial f^i}{\partial x^i} \Big|_{\mathbf{x}=\tilde{\mathbf{x}}} \in \mathbb{R}$

621

622 **Functions with two arguments.** For $f : \mathbb{R}^{k_1} \times \mathbb{R}^{k_2} \rightarrow \mathbb{R}, (\mathbf{x}_1, \mathbf{x}_2) \mapsto f(\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}$ we define
 623 (analogously w.r.t. second argument)

624 gradient w.r.t. first argument: $\nabla_{\mathbf{x}_1} f(\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2) = \left(\frac{\partial f}{\partial x_1^1}, \dots, \frac{\partial f}{\partial x_1^{k_1}} \right)^\top \Big|_{(\mathbf{x}_1, \mathbf{x}_2) = (\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2)} \in \mathbb{R}^{k_1}$

625

626 For $f : \mathbb{R}^{k_1} \times \mathbb{R}^{k_2} \rightarrow \mathbb{R}^m, (\mathbf{x}_1, \mathbf{x}_2) \mapsto (f^1(\mathbf{x}_1, \mathbf{x}_2), \dots, f^m(\mathbf{x}_1, \mathbf{x}_2))^\top \in \mathbb{R}^m$ we define (analo-
 627 gously w.r.t. second argument)

628 Jacobian w.r.t. first argument: $\frac{\partial f(\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2)}{\partial \mathbf{x}_1} = \left[\frac{\partial f^i}{\partial x_1^j} \right]_{i,j} \Big|_{(\mathbf{x}_1, \mathbf{x}_2) = (\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2)} \in \mathbb{R}^{m \times k_1}$

629

630

B PULLBACK GEOMETRY IN DIFFUSION MODELS

631

632 **Lemma B.1.** Let \mathcal{Z} be a latent space, $\mathcal{X} = \mathbb{R}^d$ a data space, and $f : \mathcal{Z} \rightarrow \mathcal{X}$ a decoder. Then the
 633 length and energy of a curve $\gamma : [0, 1] \rightarrow \mathcal{X}$ under the pullback geometry are given by

634
$$\ell_{\text{PB}}(\gamma) = \int_0^1 \left\| \frac{d}{ds} f(\gamma_s) \right\| ds \quad (24)$$

635

636
$$\mathcal{E}_{\text{PB}}(\gamma) = \frac{1}{2} \int_0^1 \left\| \frac{d}{ds} f(\gamma_s) \right\|^2 ds, \quad (25)$$

637

638 where $\|\cdot\|$ is the Euclidean norm.

648 *Proof.* For a general Riemannian metric \mathbf{G} , the length, and energy are given by
 649

$$650 \quad \ell_{\mathbf{G}}(\gamma) = \int_0^1 \|\dot{\gamma}_s\|_{\mathbf{G}} ds \quad (26)$$

$$651 \quad \mathcal{E}_{\mathbf{G}}(\gamma) = \frac{1}{2} \int_0^1 \|\dot{\gamma}_s\|_{\mathbf{G}}^2 ds, \quad (27)$$

652 where $\|\dot{\gamma}_s\|_{\mathbf{G}}^2 = \dot{\gamma}_s^\top G(\gamma_s) \dot{\gamma}_s$. For $\mathbf{G} = \mathbf{G}_{\text{PB}}$ induced by the decoder f , we have
 653

$$654 \quad \mathbf{G}_{\text{PB}}(\mathbf{z}) = \left(\frac{\partial f}{\partial \mathbf{z}}(\mathbf{z}) \right)^\top \left(\frac{\partial f}{\partial \mathbf{z}}(\mathbf{z}) \right), \quad (28)$$

655 which leads to
 656

$$657 \quad \|\dot{\gamma}_s\|_{\mathbf{G}_{\text{PB}}}^2 = \dot{\gamma}_s^\top \left(\frac{\partial f}{\partial \mathbf{z}}(\gamma_s) \right)^\top \left(\frac{\partial f}{\partial \mathbf{z}}(\gamma_s) \right) \dot{\gamma}_s = \left(\frac{\partial f}{\partial \mathbf{z}}(\gamma_s) \dot{\gamma}_s \right)^\top \left(\frac{\partial f}{\partial \mathbf{z}}(\gamma_s) \dot{\gamma}_s \right) \quad (29)$$

$$658 \quad \stackrel{(*)}{=} \left(\frac{d}{ds} f(\gamma_s) \right)^\top \left(\frac{d}{ds} f(\gamma_s) \right) = \left\| \frac{d}{ds} f(\gamma_s) \right\|^2,$$

659 where $(*)$ follows from the chain rule. \square
 660

661 **Proposition B.1** (Pullback geodesics decode to straight lines). *Let \mathcal{Z} be a latent space, $\mathcal{X} = \mathbb{R}^d$ a
 662 data space, and $f : \mathcal{Z} \rightarrow \mathcal{X}$ a bijective decoder. Fix $\mathbf{z}^a, \mathbf{z}^b \in \mathcal{Z}$ and write $\mathbf{x}^a = f(\mathbf{z}^a)$, $\mathbf{x}^b = f(\mathbf{z}^b)$.
 663 Then any shortest path between \mathbf{z}^a and \mathbf{z}^b in the pullback geometry decodes to the straight segment
 664 from \mathbf{x}^a to \mathbf{x}^b .*
 665

666 *Proof.* Let $\mathbf{x}_s = (1 - s) \mathbf{x}^a + s \mathbf{x}^b$ for $s \in [0, 1]$. Because f is bijective, define its latent preimage
 667

$$668 \quad \gamma_s^* = f^{-1}(\mathbf{x}_s), \quad s \in [0, 1].$$

669 The pullback length of a latent curve γ is the Euclidean length of its image (Lemma B.1):
 670

$$671 \quad \ell_{\text{PB}}(\gamma) = \int_0^1 \left\| \frac{d}{ds} f(\gamma_s) \right\| ds.$$

672 For γ^* , $f(\gamma_s^*) = \mathbf{x}_s$ has constant velocity $\dot{\mathbf{x}}_s = \mathbf{x}^b - \mathbf{x}^a$, hence
 673

$$674 \quad \ell_{\text{PB}}(\gamma^*) = \int_0^1 \|\mathbf{x}^b - \mathbf{x}^a\| ds = \|\mathbf{x}^b - \mathbf{x}^a\|.$$

675 For any other smooth latent curve $\bar{\gamma}$ from \mathbf{z}^a to \mathbf{z}^b , using the triangle inequality:
 676

$$677 \quad \ell_{\text{PB}}(\bar{\gamma}) = \int_0^1 \left\| \frac{d}{ds} f(\bar{\gamma}_s) \right\| ds \geq \left\| \int_0^1 \frac{d}{ds} f(\bar{\gamma}_s) ds \right\| = \|f(\mathbf{z}^b) - f(\mathbf{z}^a)\| = \|\mathbf{x}^b - \mathbf{x}^a\| = \ell_f(\gamma^*).$$

678 Therefore $\ell_{\text{PB}}(\bar{\gamma}) \geq \ell_{\text{PB}}(\gamma^*)$. Hence, any pullback geodesic decodes to the straight segment:
 679

$$680 \quad f(\gamma_s^*) = f(f^{-1}(\mathbf{x}_s)) = (1 - s) \mathbf{x}^a + s \mathbf{x}^b.$$

681 \square

682 In this proposition, we emphasize that any minimizing path in the latent space \mathcal{Z} , when measured
 683 with the pullback metric, will always decode to a straight line in the data space \mathcal{X} . The reason is that
 684 the bijective decoder acts only on the ambient coordinates of $\mathcal{X} = \mathbb{R}^d$, regardless of whether the
 685 actual data lie on a lower-dimensional submanifold. In the denoising diffusion setting, this situation
 686 is unavoidable, since the model enforces $\dim(\mathcal{Z}) = \dim(\mathcal{X})$. This stands in contrast with prior
 687 works using variational autoencoders (Arvanitidis et al., 2018), where latent geodesics live in a
 688 lower-dimensional space and can decode to curved trajectories in the ambient space.
 689

690 Unless the dimension of the latent space is reduced to the intrinsic dimension of the data, the pullback
 691 metric carries no meaningful geometric information in the standard denoising diffusion setting, where
 692 $\dim(\mathcal{Z}) = \dim(\mathcal{X})$.
 693

702 C PROOF OF PROPOSITION 5.1

704 In this section, we prove [Proposition 5.1](#). The proof consists of

706 1. Showing that curve energy \mathcal{E} in exponential families simplifies ([Appendix C.1](#)).

707 2. Showing that the family of denoising distributions forms an exponential family ([Appendix C.2](#)).

709 3. Putting it together ([Appendix C.4](#)).

711 C.1 INFORMATION GEOMETRY IN EXPONENTIAL FAMILIES

713 We begin by defining an exponential family of distributions.

715 **Definition C.1** (Exponential Family). A parametric family of probability distributions $\{p(\cdot|\mathbf{z})\}$ is
716 called an exponential family if it can be expressed in the form

$$717 p(\mathbf{x}|\mathbf{z}) = h(\mathbf{x}) \exp(\boldsymbol{\eta}(\mathbf{z})^\top T(\mathbf{x}) - \psi(\mathbf{z})), \quad (30)$$

719 with \mathbf{x} a random variable modelling the data and \mathbf{z} the parameter of the distribution. In addition,
720 $T(\mathbf{x})$ is called a sufficient statistic, $\boldsymbol{\eta}(\mathbf{z})$ natural (canonical) parameter, $\psi(\mathbf{z})$ the log-partition
721 (cumulant) function and $h(\mathbf{x})$ is a base measure independent of \mathbf{z} , and

$$722 \boldsymbol{\mu}(\mathbf{z}) = \mathbb{E}[T(\mathbf{x}) | \mathbf{z}] \quad (31)$$

724 is the expectation parameter.

726 In exponential families, the Riemannian metric tensor takes a specific form, which we show now.

727 **Proposition C.1** (Fisher-Rao metric for an exponential family). Let $\{p(\cdot|\mathbf{z})\}$ be an exponential family.
728 We denote $\boldsymbol{\eta}(\mathbf{z})$ the natural parametrisation, $T(\mathbf{x})$ the sufficient statistic and $\boldsymbol{\mu}(\mathbf{z}) = \mathbb{E}[T(\mathbf{x})|\mathbf{z}]$ the
729 expectation parameters. The Fisher-Rao metric is given by:

$$730 \mathbf{G}_{\text{IG}}(\mathbf{z}) = \left(\frac{\partial \boldsymbol{\eta}(\mathbf{z})}{\partial \mathbf{z}} \right)^\top \left(\frac{\partial \boldsymbol{\mu}(\mathbf{z})}{\partial \mathbf{z}} \right). \quad (32)$$

734 *Proof.* For $p(\mathbf{x}|\mathbf{z}) = h(\mathbf{x}) \exp(\boldsymbol{\eta}(\mathbf{z})^\top T(\mathbf{x}) - \psi(\mathbf{z}))$, we have

$$735 \nabla_{\mathbf{z}} \log p(\mathbf{x}|\mathbf{z}) = \nabla_{\mathbf{z}} \sum_k \eta^k(\mathbf{z}) T^k(\mathbf{x}) - \nabla_{\mathbf{z}} \psi(\mathbf{z}) = \left(\frac{\partial \boldsymbol{\eta}(\mathbf{z})}{\partial \mathbf{z}} \right)^\top T(\mathbf{x}) - \nabla_{\mathbf{z}} \psi(\mathbf{z}). \quad (33)$$

739 Note that

$$740 \mathbb{E}[\nabla_{\mathbf{z}} \log p(\mathbf{x}|\mathbf{z}) | \mathbf{z}] = \int p(\mathbf{x}|\mathbf{z}) \nabla_{\mathbf{z}} \log p(\mathbf{x}|\mathbf{z}) d\mathbf{x} = \int \nabla_{\mathbf{z}} p(\mathbf{x}|\mathbf{z}) d\mathbf{x} = \nabla_{\mathbf{z}} \int p(\mathbf{x}|\mathbf{z}) d\mathbf{x} = \mathbf{0}. \quad (34)$$

743 Therefore, by taking the expectation of both sides of [Eq. 33](#), we get

$$745 \nabla_{\mathbf{z}} \psi(\mathbf{z}) = \left(\frac{\partial \boldsymbol{\eta}(\mathbf{z})}{\partial \mathbf{z}} \right)^\top \boldsymbol{\mu}(\mathbf{z}), \quad (35)$$

748 where $\boldsymbol{\mu}(\mathbf{z}) = \mathbb{E}[T(\mathbf{x})|\mathbf{z}]$. Now we differentiate j -th component of both sides of [Eq. 34](#) w.r.t z^i , and
749 we get

$$750 0 = \frac{\partial}{\partial z^i} 0 = \frac{\partial}{\partial z^i} \mathbb{E} \left[\frac{\partial \log p(\mathbf{x}|\mathbf{z})}{\partial z^j} \mid \mathbf{z} \right] = \frac{\partial}{\partial z^i} \int p(\mathbf{x}|\mathbf{z}) \frac{\partial \log p(\mathbf{x}|\mathbf{z})}{\partial z^j} d\mathbf{x} \\ 751 = \int \frac{\partial p(\mathbf{x}|\mathbf{z})}{\partial z^i} \frac{\partial \log p(\mathbf{x}|\mathbf{z})}{\partial z^j} d\mathbf{x} + \int p(\mathbf{x}|\mathbf{z}) \frac{\partial^2 \log p(\mathbf{x}|\mathbf{z})}{\partial z^i \partial z^j} d\mathbf{x} \\ 753 = \mathbb{E} \left[\frac{\partial \log p(\mathbf{x}|\mathbf{z})}{\partial z^i} \frac{\partial \log p(\mathbf{x}|\mathbf{z})}{\partial z^j} \mid \mathbf{z} \right] + \mathbb{E} \left[\frac{\partial^2 \log p(\mathbf{x}|\mathbf{z})}{\partial z^i \partial z^j} \mid \mathbf{z} \right]. \quad (36)$$

756 Therefore

757

$$[\mathbf{G}_{\text{IG}}(\mathbf{z})]_{ij} = \mathbb{E} \left[\frac{\partial \log p(\mathbf{x}|\mathbf{z})}{\partial z^i} \frac{\partial \log p(\mathbf{x}|\mathbf{z})}{\partial z^j} \mid \mathbf{z} \right] = -\mathbb{E} \left[\frac{\partial^2 \log p(\mathbf{x}|\mathbf{z})}{\partial z^i \partial z^j} \mid \mathbf{z} \right]. \quad (37)$$

758

760 Now using Eq. 33, we have

761

$$\frac{\partial^2 \log p(\mathbf{x}|\mathbf{z})}{\partial z^i \partial z^j} = \frac{\partial}{\partial z^i} \left(\sum_k \frac{\partial \eta^k(\mathbf{z})}{\partial z^j} T^k(\mathbf{x}) - \frac{\partial \psi(\mathbf{z})}{\partial z^j} \right) = \sum_k \frac{\partial^2 \eta^k(\mathbf{z})}{\partial z^i \partial z^j} T^k(\mathbf{x}) - \frac{\partial^2 \psi(\mathbf{z})}{\partial z^i \partial z^j}. \quad (38)$$

762

764 Therefore, from Eq. 37:

765

$$[\mathbf{G}_{\text{IG}}(\mathbf{z})]_{ij} = \frac{\partial^2 \psi(\mathbf{z})}{\partial z^i \partial z^j} - \sum_k \frac{\partial^2 \eta^k(\mathbf{z})}{\partial z^i \partial z^j} \mu^k(\mathbf{z}). \quad (39)$$

766

768 Now using Eq. 35, we have

769

$$\frac{\partial^2 \psi(\mathbf{z})}{\partial z^i \partial z^j} = \frac{\partial}{\partial z^j} \left(\sum_k \frac{\partial \eta^k(\mathbf{z})}{\partial z^i} \mu^k(\mathbf{z}) \right) = \sum_k \frac{\partial^2 \eta^k(\mathbf{z})}{\partial z^j \partial z^i} \mu^k(\mathbf{z}) + \sum_k \frac{\partial \eta^k(\mathbf{z})}{\partial z^i} \frac{\partial \mu^k(\mathbf{z})}{\partial z^j}. \quad (40)$$

770

773 Combining (Eq. 39) with (Eq. 40) yields:

774

$$[\mathbf{G}_{\text{IG}}(\mathbf{z})]_{ij} = \sum_k \frac{\partial \eta^k(\mathbf{z})}{\partial z^j} \frac{\partial \mu^k(\mathbf{z})}{\partial z^i} = \left[\left(\frac{\partial \boldsymbol{\eta}(\mathbf{z})}{\partial \mathbf{z}} \right)^\top \left(\frac{\partial \boldsymbol{\mu}(\mathbf{z})}{\partial \mathbf{z}} \right) \right]_{ij}. \quad (41)$$

775

776 \square

777 **Corollary C.1** (Energy function for an exponential family). *Let $\gamma : [0, 1] \rightarrow \mathcal{Z}$ be a smooth curve in the parameter space \mathcal{Z} of an exponential family. Then*

778

$$\mathcal{E}_{\text{IG}}(\gamma) = \frac{1}{2} \int_0^1 \left(\frac{d}{ds} \boldsymbol{\eta}(\gamma_s) \right)^\top \left(\frac{d}{ds} \boldsymbol{\mu}(\gamma_s) \right) ds \quad (42)$$

779

$$\ell_{\text{IG}}(\gamma) = \int_0^1 \sqrt{\left(\frac{d}{ds} \boldsymbol{\eta}(\gamma_s) \right)^\top \left(\frac{d}{ds} \boldsymbol{\mu}(\gamma_s) \right)} ds. \quad (43)$$

780

781 For a curve discretized uniformly into N points, we have $s_n := \frac{n}{N-1}$, $\gamma_n := \gamma(s_n)$, and $\boldsymbol{\mu}_n := \boldsymbol{\mu}(\gamma_n)$, $\boldsymbol{\eta}_n := \boldsymbol{\eta}(\gamma_n)$, we have

782

$$\mathcal{E}_{\text{IG}}(\gamma) \approx \frac{N-1}{2} \sum_{n=0}^{N-2} (\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n)^\top (\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n) \quad (44)$$

783

784

$$\ell_{\text{IG}}(\gamma) \approx \sqrt{\sum_{n=0}^{N-2} (\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n)^\top (\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n)} \quad (45)$$

785

786 *Proof.* The energy of γ is given by $\mathcal{E}_{\text{IG}}(\gamma) = \frac{1}{2} \int_0^1 \|\dot{\gamma}_s\|_{\mathbf{G}_{\text{IG}}}^2 ds$. We replace the Riemannian metric \mathbf{G}_{IG} with the previously obtained expression of the Fisher-Rao metric (Eq. 32).

787 Using Eq. (32), we have

788

$$\begin{aligned} \|\dot{\gamma}_s\|_{\mathbf{G}_{\text{IG}}}^2 &= \dot{\gamma}_s^\top \mathbf{G}_{\text{IG}}(\gamma_s) \dot{\gamma}_s = \dot{\gamma}_s^\top \left(\frac{\partial \boldsymbol{\eta}(\gamma_s)}{\partial \mathbf{z}} \right)^\top \left(\frac{\partial \boldsymbol{\mu}(\gamma_s)}{\partial \mathbf{z}} \right) \dot{\gamma}_s \\ &= \left(\frac{\partial \boldsymbol{\eta}(\gamma_s)}{\partial \mathbf{z}} \dot{\gamma}_s \right)^\top \left(\frac{\partial \boldsymbol{\mu}(\gamma_s)}{\partial \mathbf{z}} \dot{\gamma}_s \right) = \left(\frac{d}{ds} \boldsymbol{\eta}(\gamma_s) \right)^\top \left(\frac{d}{ds} \boldsymbol{\mu}(\gamma_s) \right). \end{aligned}$$

789

790 Therefore

791

$$\begin{aligned} \mathcal{E}_{\text{IG}}(\gamma) &= \frac{1}{2} \int_0^1 \|\dot{\gamma}_s\|_{\mathbf{G}_{\text{IG}}}^2 ds = \frac{1}{2} \int_0^1 \left(\frac{d}{ds} \boldsymbol{\eta}(\gamma_s) \right)^\top \left(\frac{d}{ds} \boldsymbol{\mu}(\gamma_s) \right) ds \\ \ell_{\text{IG}}(\gamma) &= \int_0^1 \|\dot{\gamma}_s\|_{\mathbf{G}_{\text{IG}}} ds = \int_0^1 \sqrt{\left(\frac{d}{ds} \boldsymbol{\eta}(\gamma_s) \right)^\top \left(\frac{d}{ds} \boldsymbol{\mu}(\gamma_s) \right)} ds. \end{aligned}$$

792

810 For a discretized curve, the reasoning is similar to the proof of Proposition A.2 in [Arvanitidis et al.](#)
 811 (2022). We have $ds = s_{n+1} - s_n = \frac{1}{N-1}$ and we can approximate $\frac{d}{ds} \boldsymbol{\eta}(\boldsymbol{\gamma}_s) \Big|_{s=s_n} \approx \frac{\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n}{ds}$ and
 812 $\frac{d}{ds} \boldsymbol{\mu}(\boldsymbol{\gamma}_s) \Big|_{s=s_n} \approx \frac{\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n}{ds}$, and

$$813 \mathcal{E}_{\text{IG}}(\boldsymbol{\gamma}) \approx \frac{1}{2} \sum_{n=0}^{N-2} \left(\frac{\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n}{ds} \right)^\top \left(\frac{\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n}{ds} \right) ds = \frac{N-1}{2} \sum_{n=0}^{N-2} (\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n)^\top (\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n)$$

$$814 \ell_{\text{IG}}(\boldsymbol{\gamma}) \approx \sum_{n=0}^{N-2} \sqrt{\left(\frac{\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n}{ds} \right)^\top \left(\frac{\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n}{ds} \right)} ds = \sum_{n=0}^{N-2} \sqrt{(\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n)^\top (\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n)}$$

□

823 C.2 DIFFUSION DENOISING DISTRIBUTIONS ARE EXPONENTIAL

825 A key observation is that the family of denoising distributions $p(\mathbf{x}_0 | \mathbf{x}_t)$ indexed by both space and
 826 time (\mathbf{x}_t, t) is exponential, which we prove now.

827 **Proposition C.2** (Exponential family of denoising). *Let \mathbf{x}_t be a noisy observation corresponding to
 828 diffusion time t , as introduced in [Eq. 1](#). Then the denoising distribution can be written as*

$$829 p(\mathbf{x}_0 | \mathbf{x}_t) = h(\mathbf{x}_0) \exp(\boldsymbol{\eta}(\mathbf{x}_t, t)^\top T(\mathbf{x}_0) - \psi(\mathbf{x}_t, t)), \quad (46)$$

830 with $h = q$ the data distribution density, ψ the log-partition function, and

$$831 \boldsymbol{\eta}(\mathbf{x}_t, t) = \left(\frac{\alpha_t}{\sigma_t^2} \mathbf{x}_t, -\frac{\alpha_t^2}{2\sigma_t^2} \right) \quad (\text{natural parameter}) \quad (47)$$

$$832 T(\mathbf{x}_0) = (\mathbf{x}_0, \|\mathbf{x}_0\|^2) \quad (\text{sufficient statistic}) \quad (48)$$

$$833 \boldsymbol{\mu}(\mathbf{x}_t, t) = \left(\underbrace{\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]}_{\text{'space'}}, \underbrace{\frac{\sigma_t^2}{\alpha_t} \text{div}_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] + \|\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\|^2}_{\text{'time': } \mathbb{E}[\|\mathbf{x}_0\|^2 | \mathbf{x}_t]} \right), \quad (49)$$

834 which means that the family of denoising distributions $\{p(\mathbf{x}_0 | \mathbf{x}_t)\}$ indexed by (\mathbf{x}_t, t) is exponential
 835 ([Definition C.1](#)).

836 *Proof. Step 1: denoising is exponential.* The denoising distribution is given by

$$837 p(\mathbf{x}_0 | \mathbf{x}_t) = \frac{p(\mathbf{x}_t | \mathbf{x}_0) q(\mathbf{x}_0)}{p_t(\mathbf{x}_t)},$$

838 where q is the data distribution, $p(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t | \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$ is the forward density ([Eq. 1](#)), and
 839 $p_t(\mathbf{x}_t) = \int p(\mathbf{x}_t | \mathbf{x}_0) q(\mathbf{x}_0) d\mathbf{x}_0$ is the marginal distribution at time t . Therefore

$$840 p(\mathbf{x}_t | \mathbf{x}_0) = \frac{1}{(2\pi\sigma_t^2)^{D/2}} \exp\left(-\frac{\|\mathbf{x}_t - \alpha_t \mathbf{x}_0\|^2}{2\sigma_t^2}\right)$$

$$841 = \frac{1}{(2\pi\sigma_t^2)^{D/2}} \exp\left(-\frac{\|\mathbf{x}_t\|^2}{2\sigma_t^2} + \frac{\alpha_t}{\sigma_t^2} \mathbf{x}_t^\top \mathbf{x}_0 - \frac{\alpha_t^2}{2\sigma_t^2} \|\mathbf{x}_0\|^2\right) \quad (50)$$

$$842 = \exp\left(-\frac{D}{2} \log(2\pi\sigma_t^2) - \frac{\|\mathbf{x}_t\|^2}{2\sigma_t^2}\right) \exp\left(-\frac{\alpha_t^2}{2\sigma_t^2} \|\mathbf{x}_0\|^2 + \frac{\alpha_t}{\sigma_t^2} \mathbf{x}_t^\top \mathbf{x}_0\right).$$

843 By substituting into the denoising density, we get

$$844 p(\mathbf{x}_0 | \mathbf{x}_t) = q(\mathbf{x}_0) \exp\left\{-\frac{\alpha_t^2}{2\sigma_t^2} \|\mathbf{x}_0\|^2 + \frac{\alpha_t}{\sigma_t^2} \mathbf{x}_t^\top \mathbf{x}_0 - \left(\log p_t(\mathbf{x}_t) + \frac{D}{2} \log(2\pi\sigma_t^2) + \frac{\|\mathbf{x}_t\|^2}{2\sigma_t^2}\right)\right\}$$

$$845 = h(\mathbf{x}_0) \exp(\boldsymbol{\eta}(\mathbf{x}_t, t)^\top T(\mathbf{x}_0) - \psi(\mathbf{x}_t, t)), \quad (51)$$

864 where

866
$$\eta(\mathbf{x}_t, t) = \left(\frac{\alpha_t}{\sigma_t^2} \mathbf{x}_t, -\frac{\alpha_t^2}{2\sigma_t^2} \right) \in \mathbb{R}^{D+1} \quad (52)$$
 867

868
$$T(\mathbf{x}_0) = (\mathbf{x}_0, \|\mathbf{x}_0\|^2) \in \mathbb{R}^{D+1} \quad (53)$$
 869

870
$$h(\mathbf{x}_0) = q(\mathbf{x}_0) \in \mathbb{R} \quad (54)$$
 871

872
$$\psi(\mathbf{x}_t, t) = \log p_t(\mathbf{x}_t) + \frac{D}{2} \log(2\pi\sigma_t^2) + \frac{\|\mathbf{x}_t\|^2}{2\sigma_t^2} \in \mathbb{R} \quad (55)$$
 873

which proves that the denoising distributions form an exponential family.

874 **Step 2: deriving the expectation parameter μ .** The expectation parameter μ is given by $\mu(\mathbf{x}_t, t) = \mathbb{E}[T(\mathbf{x}_0) | \mathbf{x}_t] = (\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t], \mathbb{E}[\|\mathbf{x}_0\|^2 | \mathbf{x}_t])$. The denoising covariance is known (Meng et al., 875 2021):

876
$$\text{Cov}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{\sigma_t^2}{\alpha_t^2} (\mathbf{I} + \sigma_t^2 \nabla_{\mathbf{x}_t}^2 \log p_t(\mathbf{x}_t)). \quad (56)$$
 877

878 Therefore, from the definition of conditional variance, we can deduce the second denoising moment:

879
$$\begin{aligned} 880 \mathbb{E}[\|\mathbf{x}_0\|^2 | \mathbf{x}_t] &= \mathbb{E}\left[\left\|\mathbf{x}_0 - \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\right\|^2 | \mathbf{x}_t\right] + \left\|\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\right\|^2 \\ 881 &= \text{Tr}(\text{Cov}[\mathbf{x}_0 | \mathbf{x}_t]) + \left\|\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\right\|^2 \\ 882 &\stackrel{(56)}{=} \frac{\sigma_t^2}{\alpha_t^2} (D + \sigma_t^2 \Delta \log p_t(\mathbf{x}_t)) + \left\|\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\right\|^2 \\ 883 &= \frac{\sigma_t^2}{\alpha_t} \text{div}_{\mathbf{x}_t} \left(\frac{\mathbf{x}_t + \sigma_t^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)}{\alpha_t} \right) + \left\|\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\right\|^2 \\ 884 &= \frac{\sigma_t^2}{\alpha_t} \text{div}_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] + \left\|\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\right\|^2, \end{aligned} \quad (57)$$
 885

886 where we used the fact that (Efron, 2011)

887
$$\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{\mathbf{x}_t + \sigma_t^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)}{\alpha_t}. \quad (58)$$
 888

889 Together, we have

890
$$\mu(\mathbf{x}_t, t) = \left(\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t], \frac{\sigma_t^2}{\alpha_t} \text{div}_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] + \left\|\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\right\|^2 \right) \quad (59)$$
 891

892 \square

903 C.3 BOLTZMANN DENOISING DISTRIBUTIONS

904 Note that, if the data distribution is Boltzmann, i.e. $q(\mathbf{x}_0) \propto \exp(-U(\mathbf{x}_0))$ for some energy function 905 U , we have:

906
$$\begin{aligned} 907 p(\mathbf{x}_0 | \mathbf{x}_t) &\propto q(\mathbf{x}_0) p(\mathbf{x}_t | \mathbf{x}_0) \propto \exp(-U(\mathbf{x}_0)) \exp\left(-\frac{\|\mathbf{x}_t - \alpha_t \mathbf{x}_0\|^2}{2\sigma_t^2}\right) \\ 908 &= \exp\left(-U(\mathbf{x}_0) - \frac{1}{2} \text{SNR}(t) \|\mathbf{x}_0 - \mathbf{x}_t/\alpha_t\|^2\right). \end{aligned}$$
 909

910 This implies that $p(\mathbf{x}_0 | \mathbf{x}_t)$ is also a Boltzmann distribution with $p(\mathbf{x}_0 | \mathbf{x}_t) \propto \exp(-U(\mathbf{x}_0 | \mathbf{x}_t))$ for 911

912
$$U(\mathbf{x}_0 | \mathbf{x}_t) = U(\mathbf{x}_0) + \frac{1}{2} \text{SNR}(t) \left\|\mathbf{x}_0 - \mathbf{x}_t/\alpha_t\right\|^2. \quad (60)$$
 913

914 C.4 PUTTING IT TOGETHER: PROPOSITION 5.1

915 The claim of Proposition 5.1 follows from Proposition C.2 and Corollary C.1.

918 D KULLBACK-LEIBLER DIVERGENCE IN EXPONENTIAL FAMILIES
919920 For any distribution family, the Fisher-Rao metric is the local approximation of the KL divergence,
921 i.e (Arvanitidis et al., 2022):
922

923
$$\text{KL}(p(\cdot | z_1) || p(\cdot | z_2)) \approx \frac{1}{2} (z_1 - z_2)^\top \mathbf{G}_{\text{IG}}(z_1) (z_1 - z_2).$$

924

925 In the case of exponential families, we have $\mathbf{G}_{\text{IG}}(z) = \left(\frac{\partial \eta(z)}{\partial z} \right)^\top \left(\frac{\partial \mu(z)}{\partial z} \right)$, and thus we can write
926

927
$$\begin{aligned} 928 \text{KL}(p(\cdot | z_1) || p(\cdot | z_2)) &\approx \frac{1}{2} (z_1 - z_2)^\top \left(\frac{\partial \eta(z_1)}{\partial z} \right)^\top \left(\frac{\partial \mu(z_1)}{\partial z} \right) (z_1 - z_2) \\ 930 &\approx \frac{1}{2} (\eta(z_1) - \eta(z_2))^\top (\mu(z_1) - \mu(z_2)). \end{aligned}$$

931

932 It turns out that the RHS always corresponds to a notion of distribution divergence (not only when z_1
933 and z_2 are close together), namely the *symmetrized* Kullback-Leibler divergence:
934

935
$$\text{KL}^S(p || q) := \frac{1}{2} (\text{KL}(p || q) + \text{KL}(q || p)). \quad (61)$$

936

937 **Lemma D.1** (KL in exponential families). *Let $\mathcal{P} = \{p(\cdot | z) | z \in \mathcal{Z}\}$ be an exponential family with
938 $p(x|z) = h(x) \exp(\eta(z)^\top T(x) - \psi(z))$, and $\mu(z) = \mathbb{E}_{x \sim p(x|z)}[T(x)]$. Then*
939

940
$$\text{KL}(z_1 || z_2) = (\eta(z_1) - \eta(z_2))^\top \mu(z_1) - \psi(z_1) + \psi(z_2), \quad (62)$$

941

942 where we abuse notation and write $\text{KL}(z_1 || z_2)$ instead of $\text{KL}(p(\cdot | z_1) || p(\cdot | z_2))$.
943944 *Proof.*

945
$$\begin{aligned} \text{KL}(z_1 || z_2) &= \mathbb{E}_{x \sim p(x | z_1)} [\log p(x | z_1) - \log p(x | z_2)] \\ 946 &= \mathbb{E}_{x \sim p(x | z_1)} [\eta(z_1)^\top T(x) - \eta(z_2)^\top T(x) - \psi(z_1) + \psi(z_2)] \\ 947 &= (\eta(z_1) - \eta(z_2))^\top \mathbb{E}_{x \sim p(x | z_1)} [T(x)] - \psi(z_1) + \psi(z_2) \\ 948 &= (\eta(z_1) - \eta(z_2))^\top \mu(z_1) - \psi(z_1) + \psi(z_2). \end{aligned}$$

949

950 \square 952 **Lemma D.2** (Symmetrized KL in exponential families). *With assumptions of Lemma D.1, we have*
953

954
$$\text{KL}^S(z_1 || z_2) = \frac{1}{2} (\eta(z_1) - \eta(z_2))^\top (\mu(z_1) - \mu(z_2)). \quad (63)$$

955

956 *Proof.*

957
$$\begin{aligned} 2 \text{KL}^S(z_1 | z_2) &= \text{KL}(z_1 || z_2) + \text{KL}(z_2 || z_1) \\ 958 &= (\eta(z_1) - \eta(z_2))^\top \mu(z_1) - \psi(z_1) + \psi(z_2) + (\eta(z_2) - \eta(z_1))^\top \mu(z_2) - \psi(z_2) + \psi(z_1) \\ 959 &= (\eta(z_1) - \eta(z_2))^\top (\mu(z_1) - \mu(z_2)). \end{aligned}$$

960

961 \square 964 The formula for KL in Lemma D.1 is not useful in practice, because it requires knowing $\psi(z)$, which
965 can be unknown or expensive to evaluate. However, the gradients with respect to both arguments
966 depend only on η and μ .
967**Lemma D.3** (KL gradients). *With assumptions of Lemma D.1, we have for any z_1, z_2*

968
$$\begin{aligned} \nabla_{z_1} \text{KL}(z_1 || z_2) &= \frac{\partial \mu(z_1)}{\partial z}^\top (\eta(z_1) - \eta(z_2)) \\ 969 &= \frac{\partial \eta(z_1)}{\partial z}^\top (\mu(z_1) - \mu(z_2)) \\ 970 \\ 971 \nabla_{z_2} \text{KL}(z_1 || z_2) &= \frac{\partial \mu(z_2)}{\partial z}^\top (\eta(z_2) - \eta(z_1)) \\ 972 &= \frac{\partial \eta(z_2)}{\partial z}^\top (\mu(z_2) - \mu(z_1)) \end{aligned} \quad (64)$$

972 *Proof.* The proof is a straightforward calculation using [Lemma D.1](#) and [Eq. 35](#). We have
 973

$$\begin{aligned}
 974 \quad \nabla_{\mathbf{z}_1} \text{KL}(\mathbf{z}_1 \parallel \mathbf{z}_2) &= \nabla_{\mathbf{z}_1} \left((\boldsymbol{\eta}(\mathbf{z}_1) - \boldsymbol{\eta}(\mathbf{z}_2))^{\top} \boldsymbol{\mu}(\mathbf{z}_1) - \psi(\mathbf{z}_1) + \psi(\mathbf{z}_2) \right) \\
 975 \\
 976 &= \frac{\partial \boldsymbol{\eta}(\mathbf{z}_1)}{\partial \mathbf{z}}^{\top} \boldsymbol{\mu}(\mathbf{z}_1) + \frac{\partial \boldsymbol{\mu}(\mathbf{z}_1)}{\partial \mathbf{z}}^{\top} (\boldsymbol{\eta}(\mathbf{z}_1) - \boldsymbol{\eta}(\mathbf{z}_2)) - \nabla_{\mathbf{z}} \psi(\mathbf{z}_1) \\
 977 \\
 978 &\stackrel{(35)}{=} \cancel{\frac{\partial \boldsymbol{\eta}(\mathbf{z}_1)}{\partial \mathbf{z}}^{\top} \boldsymbol{\mu}(\mathbf{z}_1)} + \cancel{\frac{\partial \boldsymbol{\mu}(\mathbf{z}_1)}{\partial \mathbf{z}}^{\top} (\boldsymbol{\eta}(\mathbf{z}_1) - \boldsymbol{\eta}(\mathbf{z}_2))} - \cancel{\frac{\partial \boldsymbol{\eta}(\mathbf{z}_1)}{\partial \mathbf{z}}^{\top} \boldsymbol{\mu}(\mathbf{z}_1)} \\
 979 \\
 980 &= \frac{\partial \boldsymbol{\mu}(\mathbf{z}_1)}{\partial \mathbf{z}}^{\top} (\boldsymbol{\eta}(\mathbf{z}_1) - \boldsymbol{\eta}(\mathbf{z}_2))
 \end{aligned}$$

981 and
 982

$$\begin{aligned}
 983 \quad \nabla_{\mathbf{z}_2} \text{KL}(\mathbf{z}_1 \parallel \mathbf{z}_2) &= \nabla_{\mathbf{z}_2} \left((\boldsymbol{\eta}(\mathbf{z}_1) - \boldsymbol{\eta}(\mathbf{z}_2))^{\top} \boldsymbol{\mu}(\mathbf{z}_1) - \psi(\mathbf{z}_1) + \psi(\mathbf{z}_2) \right) \\
 984 \\
 985 &\stackrel{(35)}{=} -\frac{\partial \boldsymbol{\eta}(\mathbf{z}_2)}{\partial \mathbf{z}}^{\top} \boldsymbol{\mu}(\mathbf{z}_1) + \frac{\partial \boldsymbol{\eta}(\mathbf{z}_2)}{\partial \mathbf{z}}^{\top} \boldsymbol{\mu}(\mathbf{z}_2) = \frac{\partial \boldsymbol{\eta}(\mathbf{z}_2)}{\partial \mathbf{z}}^{\top} (\boldsymbol{\mu}(\mathbf{z}_2) - \boldsymbol{\mu}(\mathbf{z}_1))
 \end{aligned}$$

986 \square
 987

990 Knowing the gradients allows for estimating the KL divergence along a curve without knowing ψ .
 991

992 **Proposition D.1** (KL along a curve). *Let $\gamma : [0, 1] \rightarrow \mathcal{Z}$ be a smooth denoising curve, and $\mathbf{z}^* \in \mathcal{Z}$. Then:*
 993

$$\begin{aligned}
 994 \quad \text{KL}(\gamma_s \parallel \mathbf{z}^*) &= \text{KL}(\gamma_0 \parallel \mathbf{z}^*) + \int_0^s \left(\frac{d}{du} \boldsymbol{\mu}(\gamma_u) \right)^{\top} (\boldsymbol{\eta}(\gamma_u) - \boldsymbol{\eta}(\mathbf{z}^*)) du \\
 995 \\
 996 \quad \text{KL}(\mathbf{z}^* \parallel \gamma_s) &= \text{KL}(\mathbf{z}^* \parallel \gamma_0) + \int_0^s \left(\frac{d}{du} \boldsymbol{\eta}(\gamma_u) \right)^{\top} (\boldsymbol{\mu}(\gamma_u) - \boldsymbol{\mu}(\mathbf{z}^*)) du
 \end{aligned} \tag{65}$$

997 *Proof.*
 998

$$\begin{aligned}
 1001 \quad \text{KL}(\gamma_s \parallel \mathbf{z}^*) - \text{KL}(\gamma_0 \parallel \mathbf{z}^*) &= \\
 1002 &= \int_0^s \frac{d}{du} (\text{KL}(\gamma_u \parallel \mathbf{z}^*)) du \quad // \text{Fundamental theorem of calculus} \\
 1003 \\
 1004 &= \int_0^s \nabla_{\mathbf{z}_1} \text{KL}(\gamma_u \parallel \mathbf{z}^*)^{\top} \dot{\gamma}_u du \quad // \text{Chain rule} \\
 1005 \\
 1006 &= \int_0^s \left(\frac{\partial \boldsymbol{\mu}(\gamma_u)}{\partial \mathbf{z}}^{\top} \dot{\gamma}_u \right)^{\top} (\boldsymbol{\eta}(\gamma_u) - \boldsymbol{\eta}(\mathbf{z}^*)) du \quad // \text{Lemma D.3} \\
 1007 \\
 1008 &= \int_0^s \left(\frac{d}{du} \boldsymbol{\mu}(\gamma_u) \right)^{\top} (\boldsymbol{\eta}(\gamma_u) - \boldsymbol{\eta}(\mathbf{z}^*)) du \quad // \text{Chain rule.}
 \end{aligned}$$

1012 Using the same reasoning we have
 1013

$$\begin{aligned}
 1014 \quad \text{KL}(\mathbf{z}^* \parallel \gamma_s) - \text{KL}(\mathbf{z}^* \parallel \gamma_0) &= \int_0^s \frac{d}{du} (\text{KL}(\mathbf{z}^* \parallel \gamma_u)) du \\
 1015 \\
 1016 &= \int_0^s \nabla_{\mathbf{z}_2} \text{KL}(\mathbf{z}^* \parallel \gamma_u)^{\top} \dot{\gamma}_u du \\
 1017 \\
 1018 &= \int_0^s \left(\frac{\partial \boldsymbol{\eta}(\gamma_u)}{\partial \mathbf{z}}^{\top} \dot{\gamma}_u \right)^{\top} (\boldsymbol{\mu}(\gamma_u) - \boldsymbol{\mu}(\mathbf{z}^*)) du \\
 1019 \\
 1020 &= \int_0^s \left(\frac{d}{du} \boldsymbol{\eta}(\gamma_u) \right)^{\top} (\boldsymbol{\mu}(\gamma_u) - \boldsymbol{\mu}(\mathbf{z}^*)) du
 \end{aligned}$$

1021 \square
 1022

1026 **E GEODESIC AND DIFFED PSEUDOCODE**
10271028 **Algorithm 2** Evaluate Curve
1029

1030 **Require:** Curve $\gamma : [0, 1] \rightarrow \mathbb{R}^{D+1}$, number of points N_γ
 1031 1: $\{s_n\}_{n=0}^{N_\gamma-1} \leftarrow \text{linspace}(0, 1, N_\gamma)$ ▷ Uniformly discretized curve
 1032 2: **for** $n = 0$ to $N_\gamma - 1$ **do**
 1033 3: $\mathbf{z}_n \leftarrow \gamma(s_n)$
 1034 4: Decompose $\mathbf{z}_n = (\mathbf{x}_t^{(n)}, t_n)$
 1035 5: $\boldsymbol{\eta}_n \leftarrow \boldsymbol{\eta}(\mathbf{x}_t^{(n)}, t_n)$ using Eq. (15)
 1036 6: $\boldsymbol{\mu}_n \leftarrow \boldsymbol{\mu}(\mathbf{x}_t^{(n)}, t_n)$ using Eq. (16)
 1037 7: **end for**
 1038 8: **return** $\{\boldsymbol{\eta}_n\}, \{\boldsymbol{\mu}_n\}$

1040

1041 **Algorithm 3** Spacetime Geodesic Estimation
1042

1043 **Require:** $\mathbf{x}_a, \mathbf{x}_b \in \mathbb{R}^D$, $N_\gamma > 0$ discretization points
 1044 **Require:** $N_{\text{iter}} > 0$, $t_{\min} > 0$, learning rate $\eta > 0$
 1045 1: $\mathbf{z}_a \leftarrow (\mathbf{x}_a, t_{\min})$, $\mathbf{z}_b \leftarrow (\mathbf{x}_b, t_{\min})$ ▷ Embed points into Spacetime
 1046 2: Initialize cubic spline γ_θ with $\gamma_\theta(0) = \mathbf{z}_a$, $\gamma_\theta(1) = \mathbf{z}_b$
 1047 3: **for** $k = 0$ to $N_{\text{iter}} - 1$ **do** ▷ Optimization loop
 1048 4: $\{\boldsymbol{\eta}_n\}, \{\boldsymbol{\mu}_n\} \leftarrow \text{EVALUATECURVE}(\gamma_\theta, N_\gamma)$
 1049 5: $\mathcal{E}(\gamma_\theta) \leftarrow \frac{N_\gamma-1}{2} \sum_n (\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n)^\top (\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n)$ ▷ Energy estimate Eq. (14)
 1050 6: $\mathbf{g} \leftarrow \nabla_{\theta} \mathcal{E}(\gamma_\theta)$
 1051 7: $\theta \leftarrow \theta - \eta \mathbf{g}$ ▷ Gradient descent update of curve's parameters
 1052 8: **end for**
 1053 9: **return** γ_θ

1054

1055 **Algorithm 4** Diffusion Edit Distance Estimation
1056

1057 **Require:** $\mathbf{x}_a, \mathbf{x}_b \in \mathbb{R}^D$, $N_\gamma > 0$, $N_{\text{iter}} > 0$
 1058 **Require:** $t_{\min} > 0$, learning rate $\eta > 0$
 1059 1: $\gamma_\theta \leftarrow \text{SPACETIMEGEODESIC}(\mathbf{x}_a, \mathbf{x}_b, N_\gamma, N_{\text{iter}}, t_{\min}, \eta)$ ▷ Use Algorithm 3
 1060 2: $\{\boldsymbol{\eta}_n\}, \{\boldsymbol{\mu}_n\} \leftarrow \text{EVALUATECURVE}(\gamma_\theta, N_\gamma)$
 1061 3: $d_{\text{DE}}(\mathbf{x}_a, \mathbf{x}_b) \leftarrow \sum_n \sqrt{(\boldsymbol{\eta}_{n+1} - \boldsymbol{\eta}_n)^\top (\boldsymbol{\mu}_{n+1} - \boldsymbol{\mu}_n)}$ ▷ Length estimate Eq. (45)
 1062 4: **return** $d_{\text{DE}}(\mathbf{x}_a, \mathbf{x}_b)$

1063

1064

1065 **F QUALITATIVE EXAMPLE OF DIFFED**
1066

1067 In Fig. 8, we compare the Diffusion Edit Distance (DiffED) (Section 6.2) with LPIPS (Zhang et al.,
 1068 2018), SSIM (Wang et al., 2004), and the Euclidean distance between images. Specifically, for the
 1069 ImageNet class “Space bar”, we generate 20 random image pairs, estimate the similarity of each pair
 1070 with each method, and rank the pairs according to each method, from the most similar to the most
 1071 dissimilar.

1072

1073 **G EXPERIMENTAL DETAILS**
10741075 **G.1 TOY GAUSSIAN MIXTURE**
1076

1077 For the experiments with a 1D Gaussian mixture (Fig. 1, and Fig. 3 left), we define the data
 1078 distribution as $p_0 = \sum_{i=1}^3 \pi_i \mathcal{N}(\mu_i, \sigma^2)$ with $\mu_1 = -2.5, \mu_2 = 0.5, \mu_3 = 2.5, \pi_1 = 0.275, \pi_2 =$
 1079 $0.45, \pi_3 = 0.275$, and $\sigma = 0.75$. We specify the forward process (Eq. 1) as Variance-Preserving
 (Song et al., 2021), i.e. satisfying $\alpha_t^2 + \sigma_t^2 = 1$, and assume as log-SNR linear noise schedule,

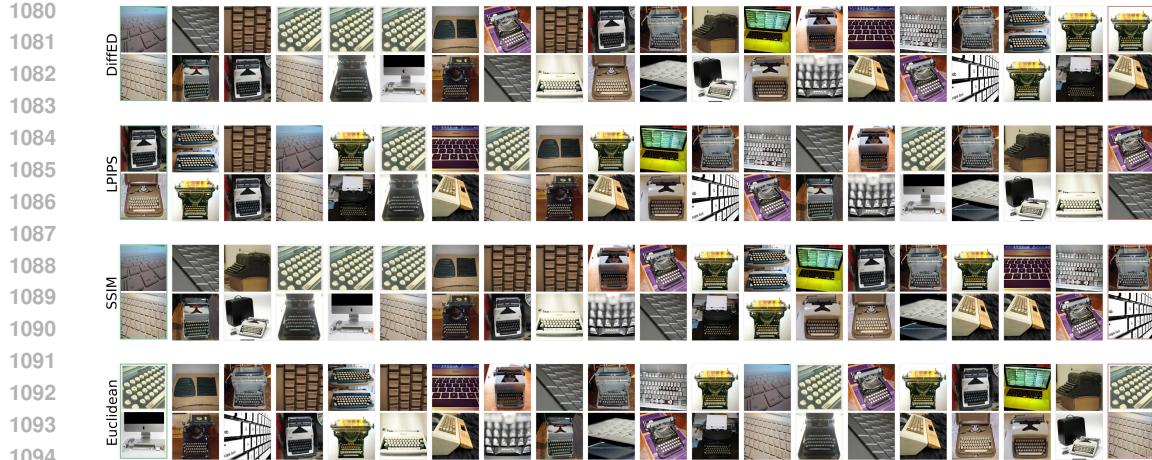


Figure 8: **Comparison of DiffED with other image similarity metrics.** Each row corresponds to a different image similarity measure, and images are sorted by their similarity, from most similar (left) to most dissimilar (right). Images shown are 20 random image pairs from class “Space bar”.

i.e. $\lambda_t = \log \text{SNR}(t) = \lambda_{\max} + (\lambda_{\min} - \lambda_{\max})t$ for $\lambda_{\min} = -10, \lambda_{\max} = 10$. Which implies: $\alpha_t^2 = \text{sigmoid}(\lambda_t), \sigma_t^2 = \text{sigmoid}(-\lambda_t)$.

Since p_0 is a Gaussian mixture, all marginals p_t are also Gaussian mixtures, and training a diffusion model is unnecessary, as the score function $\nabla_{\mathbf{x}} \log_t(\mathbf{x})$ is known analytically. In this example, the data is 1D, and the spacetime is 2D.

To generate Fig. 1 we estimate the geodesic between $\mathbf{z}_1 = (-2.3, 0.35)$, and $\mathbf{z}_2 = (2, 0.4)$ by parametrizing γ with a cubic spline (Arvanitidis et al., 2022) with two nodes, and discretizing it into $N = 128$ points and taking 1000 optimization steps with Adam optimizer and learning rate $\eta = 0.1$, which takes a few seconds on an M1 CPU.

To generate Fig. 3 left, we generate 3 PF-ODE sampling trajectories starting from $x = 1, 0, -1$ using an Euler solver with 512 solver steps. We solve only until $t = t_{\min} = 0.1$ (as opposed to $t = 0$), because for $t \approx 0$, the denoising distributions $p(\mathbf{x}_0 | \mathbf{x}_t)$ become closer to Dirac delta distributions $\delta_{\mathbf{x}_t}$, which makes the energies very large. For each sampling trajectory, we take the endpoints $(x_1, 1), (x_{t_{\min}}, t_{\min})$ and estimate the geodesic between them using Proposition 5.1 with a cubic spline with 10 nodes, discretizing it into 512 points, and taking 2000 gradient steps of AdamW optimizer with learning rate $\eta = 0.01$. This takes roughly 10 seconds on an M1 CPU.

G.2 IMAGE DATA

For all experiments on image data, we use the pretrained EDM2 model trained on ImageNet512 (Karras et al., 2024) (specifically, the `edm2-img512-xxl-fid` checkpoint), which is a Variance-Exploding model, i.e. $\alpha_t = 1$, and using the noise schedule $\sigma_t = t$. It is a latent diffusion model, using a fixed StabilityVAE (Rombach et al., 2022) as the encoder/decoder.

Image interpolations. To interpolate between two images, we encode them with StabilityVAE to obtain two latent codes $\mathbf{x}_0^1, \mathbf{x}_0^2$, and encode them both with PF-ODE (Eq. 3) from $t = 0$ to $t = t_{\min} = 0.368$, corresponding to $\log \text{SNR}(t_{\min}) = 2$. This is to avoid very high values of energy for $t \approx 0$. We then optimize the geodesic between $(\mathbf{x}_{t_{\min}}^1, t_{\min})$ and $(\mathbf{x}_{t_{\min}}^2, t_{\min})$ by parametrizing it with a cubic spline with 8 nodes, and minimizing the energy defined in Proposition 5.1 using AdamW optimizer with learning rate $\eta = 0.1$. The curve is discretized into 16 points, and optimized for 200 gradient steps, which takes roughly 6 minutes on an A100 NVIDIA GPU per interpolation image pair.

Note that in our experiments, we used the largest release model `edm2-img512-xxl-fid`. The image interpolation time can be reduced to roughly a minute by considering the smallest model version `edm2-img512-xs-fid`.

1134 **PF-ODE sampling trajectories.** To generate PF-ODE sampling trajectories, we use the 2nd order
 1135 Heun solver (Karras et al., 2022) with 64 steps, and solve from $t = 80$ to $t_{\min} = 0.135$ corresponding
 1136 to $\log \text{SNR}(t_{\min}) = 4$. This is to avoid instabilities for small t . We parametrize the geodesic directly
 1137 with the entire sampling trajectory $\gamma_t = (\mathbf{x}_t, t)$ for $t = T, \dots, t_{\min}$, where the t schedule corresponds
 1138 to EDM2 model’s sampling schedule.

1139 We then fix the endpoints of the trajectory, and optimize the intermediate points using AdamW
 1140 optimizer with learning rate $\eta = 0.0001$ (larger learning rates lead to NaN values) and take 600
 1141 optimization steps. This procedure took roughly 2 hours on an A100 NVIDIA GPU per a single
 1142 sampling trajectory.

1143 To visualize intermediate noisy images at diffusion time t , we rescale them with $\frac{\sigma_{\text{data}}}{\sqrt{\sigma_{\text{data}}^2 + \sigma_t^2}}$ before
 1144 decoding with the VAE deocder, to avoid unrealistic color values, where we set $\sigma_{\text{data}} = 0.5$ as in
 1145 Karras et al. (2022).

1147

1148 G.3 MOLECULAR DATA

1149 **Approximating the base energy function with a neural network.** We follow Holdijk et al.
 1150 (2023) and represent the energy function of Alanine Dipeptide in the space of two dihedral angles
 1151 $\phi, \psi \in [-\pi, \pi]$. We use the code provided by the authors at [github.com/LarsHoldijk/
 1152 SOCTransitionPaths](https://github.com/LarsHoldijk/SOCTransitionPaths), which estimates the energy $U(\phi, \psi)$. However, even though the values of
 1153 the energy U looked reasonable, we found that the provided implementation of $\frac{\partial U}{\partial \phi}$, and $\frac{\partial U}{\partial \psi}$ yielded
 1154 unstable results due to discontinuities.

1155 Instead, we trained an auxiliary feedforward neural network U_θ to approximate U . We parametrized
 1156 with two hidden layers of size 64 with SiLU activation functions, and trained it on a uniformly
 1157 discretized grid $[-\pi, \pi] \times [-\pi, \pi]$ into 16384 points. We trained the model with mean squared error
 1158 for 8192 steps using Adam optimizer with a learning rate $\eta = 0.001$ until the model converged to
 1159 an average loss of ≈ 1.5 . This took approximately two and a half minutes on an M1 CPU. In the
 1160 subsequent experiments, we estimate $\nabla_{\mathbf{x}} U(\mathbf{x})$ with automatic differentiation on the trained auxiliary
 1161 model.

1162

1163 **Generating samples from the energy landscape.** To generate samples from the data distribution
 1164 $p_0(\mathbf{x}_0) \propto \exp(-U(\mathbf{x}_0))$, we initialize the samples uniformly on the $[-\pi, \pi] \times [-\pi, \pi]$ grid, and use
 1165 Langevin dynamics

$$d\mathbf{x} = -\nabla_{\mathbf{x}} U(\mathbf{x})dt + \sqrt{2}dW_t \quad (66)$$

1166 with the Euler-Maruyama solver for $dt = 0.001$ and $N = 1000$ steps.

1167

1168 **Training a diffusion model on the energy landscape.** To estimate the spacetime geodesics, we
 1169 need a denoiser network approximating the denoising mean $\hat{\mathbf{x}}_0(\mathbf{x}_t, t) \approx \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$. We parametrize
 1170 the denoiser network with

```
1171 from ddpm import MLP
1172 model = MLP(
1173     hidden_size=128,
1174     hidden_layers=3,
1175     emb_size=128,
1176     time_emb="sinusoidal",
1177     input_emb="sinusoidal"
1178 )
1179
```

1180 using the TinyDiffusion implementation github.com/tanelp/tiny-diffusion. We trained
 1181 the model using the weighted denoising loss: $w(\lambda_t) \|\hat{\mathbf{x}}_0(\mathbf{x}_t, t) - \mathbf{x}_0\|^2$ with a weight function
 1182 $w(\lambda_t) = \sqrt{\text{sigmoid}(\lambda_t + 2)}$ and an adaptive noise schedule (Kingma & Gao, 2023). We train the
 1183 model for 4000 steps using the AdamW optimizer with learning rate $\eta = 0.001$, which took roughly
 1184 1 minute on an M1 CPU.

1185

1186 **Spacetime geodesics.** With a trained denoiser $\hat{\mathbf{x}}_0(\mathbf{x}_t, t)$, we can estimate the expectation parameter
 1187 μ (Eq. 16) and thus curves energies in the spacetime geometry (Proposition 5.1).

1188 In Section 6.3, we want to interpolate between two low-energy states: $\mathbf{x}_0^1 = (-2.55, 2.7)$ and
 1189 $\mathbf{x}_0^2 = (0.95, -0.4)$. To avoid instabilities for $t \approx 0$, we represent them on the spacetime manifold
 1190 as $\mathbf{z}_1 = (-2.55, 2.7, t_{\min})$, and $\mathbf{z}_2 = (0.95, -0.4, t_{\min})$, where $\log \text{SNR}(t_{\min}) = 7$. We then
 1191 approximate the geodesic between them, by parametrizing γ as a cubic spline with 10 nodes and fixed
 1192 endpoints $\gamma_0 = \mathbf{z}_1$, and $\gamma_1 = \mathbf{z}_2$ and discretize it into 512 points. We then optimize it by minimizing
 1193 Proposition 5.1 with the Adam optimizer with learning rate $\eta = 0.1$ and take 10000 optimization
 1194 steps, which takes roughly 6 minutes on an M1 CPU.

1195
 1196 **Annealed Langevin dynamics.** To generate transition paths, we use Annealed Langevin dynamics
 1197 (Algorithm 1) with the geodesic discretized into $N = 512$ points, $K = 128$ Langevin steps for each
 1198 point on the geodesic γ , and use $dt = 0.0001$, i.e., requiring 65536 evaluations of the gradient of
 1199 the auxiliary energy function. We generate 8 independent paths in parallel, which takes roughly 27
 1200 seconds on an M1 CPU.

1201
 1202 **Constrained transition paths.** Constrained transition paths were also parametrized with cubic
 1203 splines with 10 nodes, but discretized into 1024 points.

1204 For the **low-variance** transition paths, we chose the threshold $\rho = 3$, and $\lambda = 0$ for the first 1200
 1205 optimization steps, and λ linearly increasing from 0 to 100 for the last 3800 optimization steps, for
 1206 the total of 5000 optimization steps with the Adam optimizer with a learning $\eta = 0.01$. This took
 1207 just under 6 minutes on an M1 CPU.

1208 For the **region-avoiding** transition paths, we encode the restricted region with $\mathbf{z}^* = (-0.8, -0.1, t^*)$
 1209 with $\log \text{SNR}(t^*) = 4$, and combine two penalty functions: h_1 is the low-variance penalty described
 1210 above, but with $\rho_1 = 3.75$ threshold, and h_2 is the KL penalty with $\rho_2 = -4350$ threshold. We
 1211 define λ_1 as in the low-variance transitions, and fix $\lambda_2 = 1$. The optimization was performed with
 1212 Adam optimizer, learning rate $\eta = 0.1$, and ran for 4000 steps for a runtime of just under 5 minutes
 1213 on an M1 CPU.

1214 The reason we include the low-variance penalty in the region-avoiding experiment is because
 1215 $\text{KL}(p(\cdot|\mathbf{z}^*) \parallel p(\cdot|\gamma_s))$ can trivially be increased by simply increasing entropy of $p(\cdot|\gamma_s)$ which
 1216 would not result in avoiding the region defined by $p(\cdot|\mathbf{z}^*)$.

1218 H NOTE ON TRANSITION PATH SAMPLING BASELINES

1220 For transition path experiments performed in Section 6.3, we considered Holdijk et al. (2023); Du et al.
 1221 (2024); Raja et al. (2025) as baselines. However, we encountered reproducibility issues. Specifically

- 1223 • Holdijk et al. (2023) released the implementation: [github.com/LarsHoldijk/
 1224 SOCTransitionPaths](https://github.com/LarsHoldijk/SOCTransitionPaths). However, it does not appear to be supported. Several issues in
 1225 the repository highlight failures to reproduce results, which have remained unresolved for
 1226 more than a year.
- 1227 • Raja et al. (2025) released the implementation: [github.com/ASK-Berkeley/
 1228 OM-TPS](https://github.com/ASK-Berkeley/OM-TPS). However, it does not contain the code for the alanine dipeptide experiments,
 1229 and the authors did not respond to a request to release it.
- 1230 • Du et al. (2024) released the implementation: [github.com/plainerman/
 1231 Variational-Doob](https://github.com/plainerman/Variational-Doob) that we were able to use. However, we obtained results signif-
 1232 icantly worse than those reported in the original publication. We have contacted the authors,
 1233 who acknowledged our question but did not provide guidance on how to resolve the issue.

1234 For Doob’s Lagrangian (Du et al., 2024), we experimented with: different numbers of epochs,
 1235 different numbers of Gaussians, first vs second order ODE, MLP vs spline, and internal vs external
 1236 coordinates. We reported the results of the configuration that was the best. Many configurations
 1237 either diverged completely (returned NaN values) or collapsed to completely straight transition paths,
 1238 oblivious to the underlying energy landscape. These issues persisted even after switching to double
 1239 precision (as advised in the official code repository).

1241 I EXPECTATION PARAMETER ESTIMATION CODE

```

1242 1 import jax
1243 2 import jax.random as jr
1244 3 import jax.numpy as jnp
1245 4
1246 5 def f(x, t, key): # Implementation of the expected denoising
1247 6     pass
1248 7
1249 8 def sigma_and_alpha(t): # Depends on the choice of SDE and noise
1250 9     schedule
1251 10    pass
1252 11 def mu(x, t, key):
1253 12     model_key, eps_key = jr.split(key, 2)
1254 13     eps = jr.rademacher(eps_key, (x.size,), dtype=jnp.float32)
1255 14     def pred_fn(x_):
1256 15         return f(x_, t, key=model_key)
1257 16     f_pred, f_grad = jax.jvp(pred_fn, (x,), (eps,))
1258 17     div = jnp.sum(f_grad * eps)
1259 18     sigma, alpha = sigma_and_alpha(t)
1260 19     return sigma**2/alpha * div + jnp.sum(f_pred ** 2), f_pred
1261
1262
1263 J LICENCES
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

Listing 1: JAX Implementation of μ estimation