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Abstract
Data plays a pivotal role in the development
of both classic and learning-based methods
for Mixed-Integer Linear Programming (MILP).
However, the scarcity of data in real-world ap-
plications underscores the necessity for MILP
instance generation methods. Currently, these
methods primarily rely on iterating random single-
constraint modifications, disregarding the under-
lying problem structure with constraint interre-
lations, thereby leading to compromised quality
and solvability. In this paper, we propose ACM-
MILP, a framework for MILP instance generation,
to achieve adaptive constraint modification and
constraint interrelation modeling. It employs an
adaptive constraint selection mechanism based
on probability estimation within the latent space
to preserve instance characteristics. Meanwhile,
it detects and groups strongly related constraints
through community detection, enabling collective
modifications that account for constraint depen-
dencies. Experimental results show significant
improvements in problem-solving hardness simi-
larity under our framework. Additionally, in the
downstream task, we showcase the efficacy of our
generated instances for hyperparameter tuning.
Source code is available: https://github.
com/Thinklab-SJTU/ACM-MILP.

1. Introduction
Mixed-integer linear programming (MILP), as a significant
Combinatorial Optimization (CO) problem, is of central
importance in operation research and computer science
and serves broad applications in various real-world sce-
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narios including planning (da Silva et al., 2006), schedul-
ing (Muckstadt & Wilson, 1968), routing (Dong et al., 2014),
etc. Beyond traditional branch-and-bound solvers (Gurobi
Optimization, LLC, 2023; Cplex, 2009; Bestuzheva et al.,
2021a;b), recent trends have led to a proliferation of machine
learning (ML) approaches in a data-driven paradigm, gener-
ally assisting traditional solvers in solving process (Paulus
et al., 2022; Zhang et al., 2023b; Li et al., 2023b; 2024;
Zhang et al., 2023a). These approaches hold promise for
enhancing both speed and quality in problem-solving.

In particular, the pivotal role of high-quality instances has
become increasingly prominent. The process of testing and
tuning solver hyperparameters (Hutter et al., 2010), which
is crucial for solver efficiency and accuracy, often heavily
relies on comprehensive datasets that faithfully reflect the
diversity and complexity of real-world scenarios (Li et al.,
2023a). Meanwhile, the effectiveness of data-driven ML ap-
proaches naturally depends on the availability of extensive
and representative data (Bengio et al., 2021). However, due
to the complexity and specificity of MILP, as well as data pri-
vacy and proprietary constraints (Roling et al., 2008; Freund
& Naor, 2004; Sakuma & Kobayashi, 2007), available real-
world data are rather scarce (Gleixner et al., 2021), which
poses obstacles to both classic and ML-based MILP solvers
and heightens the need for efficient instance generation.

Efforts have been made to address this data bottleneck, pri-
marily stemming from two lines toward instance generation.
Hand-crafted instance generation methods either leverage
specialized strategies to generate instances of specific prob-
lems that can be readily reduced to MILP (Bergman et al.,
2016; Balas & Ho, 1980; Leyton-Brown et al., 2000), or gen-
erate new instances by sampling in an encoding space while
controlling a few specific statistics (Smith-Miles & Bowly,
2015; Bowly, 2019). These methods heavily rely on expert
knowledge and manual efforts, failing to adaptively unravel
specific data characteristics and maintain general applica-
bility. In comparison, learning-based generation methods
leveraging deep neural networks can naturally accommodate
the capture of global instance features through data-driven
training. This line of work is still in its early stage, which
primarily encompasses G2MILP (Geng et al., 2023), the
first learning-based MILP generation model with a masked
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Variational Autoencoder (VAE) paradigm. It represents a
MILP instance as a bipartite graph and iteratively corrupts
and replaces a constraint node using sampled latent vec-
tors. However, the iterating of random single-constraint
modification overlooks the inherent problem structure with
constraint correlations. Specifically, it randomly selects the
constraints during modification, which may inadvertently
compromise crucial constraints and change the nature of
the problem, leading to quality degradation of generated
instances. Additionally, the strategy of modifying only a
single constraint at a time can potentially disrupt the intrin-
sic interrelations among constraints and even significantly
alter the feasible region. Such disruptions may undermine
the coherence and the quality of the generated instances.

In this paper, we address two critical questions for constraint
modeling in the context of MILP instance generation: Q1.
Which modifications of constraints in a specific instance
distribution can best preserve the inherent properties of the
instances? Q2. How to recognize and process the inter-
relations among constraints? Based on these two aspects,
we propose a learning-based generative framework ACM-
MILP for MILP instance generation, achieving adaptive and
correlation-aware constraint reconstruction via constraint
grouping and probability modeling of substructures. Specif-
ically, we transform MILP instances into bipartite graph
representations, where constraints and variables are vertices
and non-zero constraint coefficients are edges. We encode
the vertices in the bipartite graphs utilizing the principles
of VAE (Kipf & Welling, 2016; Kingma & Welling, 2013),
which naturally computes and retains the sampling prob-
abilities of constraints, distinguishing them into generic
and instance-unique constraints. We selectively reconstruct
these unique constraints to maintain the structural charac-
teristics of the data distribution in an iterative way. Fur-
thermore, we identify the tightly coupled constraints via
community detection and simultaneously modify a commu-
nity of constraints to maintain their interrelatedness.

Experiments are conducted to evaluate the quality of gener-
ated instances in two folds. First, we measure the statistical
distributional similarity between generated and raw training
instances by multiple graph statistics. Next, we solve the
instances using the popular MILP solver Gurobi (Gurobi
Optimization, LLC, 2023) to measure the computational
hardness similarity via the solving time and the number of
branching nodes (Li et al., 2023a; Balyo et al., 2020). Em-
pirical results demonstrate the superiority of ACM-MILP
in resembling computational hardness compared to previ-
ous state-of-the-art while preserving statistical distributional
similarity. Moreover, to show the applications on the down-
stream tasks, we examine the correlation in solving time
with different solver hyperparameter configurations between
training and generated instances and tune the hyperparame-
ters of Gurobi utilizing the generated instances. Our method

shows promising potential and effectiveness in hyperparam-
eter tuning on MILP solvers.

The main contributions of the paper are as follows.

1) We propose ACM-MILP, a framework for MILP instance
generation through adaptive constraint modification. This
framework includes constraint grouping to maintain the
intrinsic interrelations among constraints and constraint se-
lection to preserve the inherent problem structures.

2) We conduct MILP instance generation experiments on
3 datasets, verifying the significant effectiveness of ACM-
MILP in generating hardness-preserving MILP instances,
and provide ablation studies alongside further analysis.

3) We demonstrate the promising potential of ACM-MILP
in the downstream task of solver hyperparameter tuning.

2. Related Work
Beyond generative models on image and text data (Li et al.,
2022; 2023c), there are recent works on instance generation
for more complex combinatorial problems, ranging from
satisfiability problems (You et al., 2019; Li et al., 2023a;
Chen et al., 2024) to LP (Bowly et al., 2020). Here we
mainly discuss those on MILP.

Heuristic MILP Generation. Researches on heuristic
MILP generation are primarily divided into two categories.
The first includes various problem-specific generation meth-
ods (Cornuéjols et al., 1991; Drugan, 2013; Drexl et al.,
2000). These approaches focus on leveraging mathemati-
cal formulations and expert knowledge to generate specific
instances such as TSP (Vander Wiel & Sahinidis, 1995) or
knapsack (Atamtürk, 2003). These methods are not general-
izable across problem domains. The second aims to generate
general MILP instances. Bowly (2019) generated new in-
stances by sampling in an encoding space while manually
controlling some graph statistics. They achieved only partial
matches to structural metrics through manual adjustments,
lacking the ability to fully encapsulate the nuanced and dy-
namic nature of real-world data distributions. ACM-MILP
generates general MILP instances by adaptively learning
the rich features of instances in a data-driven manner.

Learning-based MILP Generation. In Geng et al. (2023),
a learning-based MILP generative model is proposed with a
masked VAE paradigm, which iteratively reconstructs a con-
straint. All constraints are uniformly modified, which can
be detrimental to preserving the inherent properties of in-
stances. Additionally, their modification approach may dis-
rupt the interrelations among the constraints. ACM-MILP
selectively modifies constraints to preserve instance proper-
ties and handles the interrelations among the constraints.

In this paper, we follow the test setting of existing related
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Figure 1. Overview of our ACM-MILP. The input instance is represented as a bipartite graph. C denotes the constraint vertex set,
and V denotes the variable vertex set. The constraints are first grouped and divided into communities. The encoder yields the latent
representations of the vertices. We compute the Gaussian probabilities for all communities and then select the community with the lowest
Gaussian probability for modification. In line with VAE, we resample the representations in training while directly sampling from a
standard Gaussian in inference. The representations are merged with the embedded vertex features yielded by the graph embedding model.
The decoder generates new constraint vertices in the selected community, as well as the edges connected to the community.

works that use the generated instance to better fine-tune
the solvers’ hyperparameters or independently evaluate the
hardness and similarity to the original instances.

3. Methodology
In this section, we present the insights and details of our
ACM-MILP framework. We start by introducing the pre-
liminary background on MILP instance representation in
Sec. 3.1. Then, we concentrate on answering the two ques-
tions raised in Sec. 1 and elaborate on the constraint group-
ing and adaptive selection in Sec. 3.2. Finally, we introduce
the overall pipeline and model implementation, as well as
some important training details in Sec. 3.3. Fig. 1 shows the
overall procedure of our ACM-MILP framework.

3.1. Preliminary

Given a set of variables x ∈ Rn, the MILP problem is
formulated as follows:

min
x∈Rn

c̃⊤x, s.t. Ax ≤ b, xi ∈ Z, ∀i ∈ I, (1)

where c̃ ∈ Rn is the objective coefficient, A ∈ Rm×n is
the constraint coefficient matrix, and b ∈ Rm is the bias. I
is the index set indicating the integrality of the variables.

In line with the literature (Zhang et al., 2023b), we represent
each MILP instance with a weighted bipartite graph (Gasse
et al., 2019; Nair et al., 2021) G = (C,V, E). C and V re-
spectively represent the two parts of G, while E denotes the
edge set of G. Specifically, C = {c1, c2, · · · , cm} contains

m constraint vertices, where vertex ci corresponds to the
i-th constraint. The feature for vertex ci, denoted as ci, is
a 2-dimensional vector including a bias term bi and a po-
sitional encoding (Vaswani et al., 2017) i

m . bi is the i-th
element of b. The positional encoding is utilized to enhance
representation (Chen et al., 2023). V = {v1, v2, · · · , vn}
contains n variable vertices, where vertex vi corresponds to
the i-th variable. The variable feature vi is a 9-dimensional
vector calculated by the combinatorial optimization envi-
ronment Ecole (Prouvost et al., 2020), including the objec-
tive coefficient, the variable type, and the variable bounds.
E = {eij |ci ∈ C, vj ∈ V} contains edges in G. eij connects
constraint vertex ci and variable vertex vj with edge weight
Aij . Aij is the i-th row and j-th column element of con-
straint coefficient matrix A. Aij = 0 denotes no edge exists.
The feature eij for edge eij is the edge weight Aij . Please
refer to Appendix A for more details on the graph features.

3.2. Constraint Grouping and Adaptive Selection

3.2.1. RAW CONSTRAINT GROUPING

We first illustrate the significance of processing the interrela-
tions among constraints. Constraints are crucial in MILP, as
they determine the feasible region for variables, essentially
defining the solver’s search space. The similarity in solving
the original and generated instances is directly linked to how
closely their constraint-based feasible regions match.

Moreover, the feasible region is not determined by a single
constraint but by the joint combination of multiple con-
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Figure 2. An example of single and collective constraint modifi-
cation. There are three strongly related constraints on x1 and x2,
and they jointly form the feasible region. After modifying a sin-
gle constraint, the feasible region becomes empty. The collective
constraint modification means modifying the three constraints si-
multaneously and results in a similar feasible region.

straints. Modifying just one constraint while keeping others
unchanged can significantly alter the feasible region, po-
tentially rendering the problem unsolvable. Therefore, one
constraint should be modified in conjunction with other
closely related constraints to maintain the similarity in the
feasible region. Fig. 2 illustrates an example. The single-
constraint modification leads to an empty feasible region,
while modifying all related constraints results in a similar
feasible region to the original. It indicates the necessity
and significance of operating strongly related constraints
together by grouping.

Naturally, the next issue is to find strongly related con-
straints for grouping. Intuitively, the constraints connected
with similar or common variables are strongly related and
should be grouped or coupled. Therefore, we resort to com-
munity detection for constraint grouping. Without loss of
generality, here we adopt the Louvain (Blondel et al., 2008)
algorithm, a heuristic method based on modularity (Clauset
et al., 2004) to extract the community structure of a graph.
Here the modularity Q is defined as:

Q =
1

2τ

∑
ij

(
Gij − γ

kikj
2τ

)
δ(Ci, Cj), (2)

where τ is the number of edges, G is the unweighted ad-
jacency matrix of the bipartite graph G, Gij is the i-th row
and j-th column element of G and ki is the degree of the
i-th vertex. Ci is the index of the community that contains
the i-th vertex. δ is an indicator, where δ(Ci, Cj) = 1 if
Ci = Cj else 0. γ is a hyperparameter. We set G to the
unweighted adjacency matrix because the edge weight of G
is the constraint coefficient and cannot represent relevance.

The Louvain algorithm first assigns each vertex to its own
community and moves each vertex to its neighbors’ com-
munity to find the maximum positive modularity gain. It
stops when no modularity gain is achieved. In this way,

MILP Instance 1 MILP Instance 2

Dataset

Figure 3. Our insight on constraint group selection. The constraint
groups with high sampling probabilities (blue vertices) are more
generic in the dataset, while those with low sampling probabilities
(red and green vertices) are more instance-specific.

we can group the constraint vertices connected to similar
variables into the same community. Since our focus is solely
on grouping the constraints, we can further refine the results
provided by the Louvain algorithm by removing variable
vertices and retaining only the constraint vertices. Please
refer to Appendix B.1 for more details.

3.2.2. CONSTRAINT GROUP SELECTION

The selection of constraints has a significant impact on
the quality of generated instances. Recall that in Geng
et al. (2023), the modified constraints are randomly selected.
However, this approach might lead to the modification of
numerous generic constraints, which breaks the specific
problem property related to computational hardness. We
aim to modify the constraints by which we can best preserve
the inherent properties of the instances.

To address the issue, we first take a batch of MILP instances
that satisfy the same distribution. Utilizing VAE, we encode
the constraints of all instances into a latent space and guide
them to conform to a standard Gaussian distribution. By
VAE, the sampling probabilities of constraints are naturally
preserved and can be used to differentiate the constraints. A
higher sampling probability of a constraint corresponds to
more occurrences in the distribution, thus indicating that the
constraint is more generic and contains inherent properties.
In contrast, those with lower sampling probabilities are more
instance-specific. Fig. 3 illustrates our insight.

When computing the sampling probability, we take the char-
acteristics of instances into consideration by moving the
center of the Gaussian distribution to the mean of the con-
straint representations for each instance. Therefore, the
sampling probability Pj(c) of a constraint c in the j-th in-
stance can be calculated by the probability density function
of Gaussian distribution:
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Pj(c) =
1√
2π

exp

(
−||ẑc − ẑj ||2

2

)
, (3)

where ẑc is the Gaussian center of constraint vertex c given
by the VAE encoder. ẑj is the mean of the constraint
representations in instance j which can be calculated via
ẑj =

1
|Cj |

∑
c∈Cj

ẑc. Cj is the constraint set in instance j.

Furthermore, as described in Sec. 3.2.1, the constraints are
grouped as communities. We select and modify a whole
community in practice. Therefore, we measure the sampling
probability of community C with the average constraint
sampling probability in community C, denoted as Pj(C):

Pj(C) =
1

|C|
∑
c∈C

Pj(c), (4)

where |C| denotes the number of constraint vertices in C.
The sampling probability P̂j(C) of community C is com-
puted by adding a normalization on Pj(C) through:

P̂j(C) =
Pj(C)∑

C′∈C Pj(C′)
, (5)

where C is the set containing all constraint communities.
To preserve the inherent properties of the MILP instances,
we select the instance-specific communities, i.e., those with
lower sampling probabilities for modification.

3.3. Generation Pipeline and Implementation

3.3.1. GENERATION PARADIGM

Inspired by Geng et al. (2023), we devise a VAE paradigm
for MILP instance generation. Please note that the instances
have been transformed into bipartite graphs. The instance
generation is converted into a graph generation task.

Given a MILP instance and its corresponding bipartite graph
G drawn from dataset D, we aim to generate a community
of constraint vertices to replace the original community in
G, and thus generate a new graph Ĝ. Following the stan-
dard VAE framework (Kingma & Welling, 2013; Kipf &
Welling, 2016), we introduce an encoder or recognition
model with parameter ϕ, and a decoder or generative model
with parameter θ. C is the community to be replaced (as-
sume ci, · · · , cj ∈ C, and vk, · · · , vl are connected vari-
ables). C is selected as described in Sec. 3.2.2 with en-
coder parameter ϕ, denoted by C ∼ p̃ϕ(G). We also de-
vise an auxiliary graph embedding model with parameter
µ to provide the features H\C of vertices not in or con-
nected with the community C in decoding, where H\C =
(hc1 , · · · ,hci−1

,hcj+1
, · · · ,hcm ,hv1 , · · · ,hvk−1

,hvl+1
,

· · · ,hvn).

Denote G̃ as the unmodified parts of graph G. In train-
ing, we hope to reconstruct G given G̃ and H\C, so
we train the decoder by maximizing the log-likelihood
log pθ(G|G̃,H\C) = log pθ(Ĝ = G|G̃,H\C). Therefore,

training the VAE is to find the best parameters by:

argmax
θ,ϕ

EG∼DEC∼p̃ϕ(G)
log pθ(G|G̃,H\C). (6)

In line with VAE, we introduce a latent representation
ZC = (zci , · · · , zcj , zvk , · · · , zvl) containing latent vec-
tors of constraint vertices in community C and connected
variable vertices. The encoder qϕ learns the distribution
parameters ẐC of ZC. Each vector in ZC is sampled from
the distribution with parameter ẐC in training. During in-
ference, the latent vectors are independently sampled from
a standard Gaussian distribution. The loss is derived by the
evidence lower bound (ELBO):
L = EG∼DEC∼p̃ϕ(G)

[EZC∼qϕ(ZC|G)

[
− log pθ(G | ZC, G̃,H\C)

]
︸ ︷︷ ︸

Lr

+ β ·DKL [qϕ(ZC | G)∥pθ(ZC)]︸ ︷︷ ︸
Ld

],

(7)where DKL denotes the KL divergence. pθ(ZC) is the prior
of ZC, assumed as Gaussian N (0, I) in consistency with
Sec. 3.2.2. Lr is the reconstruction loss, which quantifies
the error in reconstructing the graph G. The divergence
loss Ld encourages the posterior provided by the encoder
to conform to a standard Gaussian. This alignment is
crucial for matching the sampling distribution used during
the inference stage. The hyperparameter β allows for
a trade-off between the fidelity of reconstruction and
regularization of the latent space.

The overall generation pipeline is concluded as follows:

Constraint Grouping. Given the original MILP instance
and its corresponding bipartite graph, the strongly related
constraints are coupled through the Louvain algorithm. The
detected constraint communities serve as constraint groups.

Constraint Selecting. Utilize the encoder of the VAE to
compute the Gaussian centers ẑci , i = 1, · · · , n of con-
straint vertices, and calculate the sampling probabilities for
constraints by Eq. 3 and then those for communities by
Eq. 4 and Eq. 5. The communities are arranged in an as-
cending order based on their sampling probabilities and are
sequentially extracted in the subsequent processes.

Iteratively Replacing. We utilize the VAE paradigm de-
scribed above to generate a new community of constraints,
which is then used to replace the corresponding commu-
nity in the original instance. This process is continued until
the number of replaced constraints ≥ η|C|, where η is the
replacement ratio and |C| denotes the number of constraints.

Note that we endeavor to make high-quality modifications
on constraints, and the variables remain unmodified.

3.3.2. MODEL ARCHITECTURE

We elaborate on our model architecture in this section, in-
cluding the initial embedding layer, encoder, graph embed-
ding model, and decoder.
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Initial Embedding Layer. The original features in G are
firstly embedded with an initial embedding layer imple-
mented with MLPs:

z(0)ci = MLPc(ci), z
(0)
vi = MLPv(vi), z

(0)
eij = MLPe(eij).

(8)
z
(0)
ci , z

(0)
vi , z

(0)
eij denote the initial embedding of constraint

vertex ci, variable vertex vi and edge eij , repectively.

Encoder. The VAE encoder is implemented with a bipartite
graph neural network (GNN) combined with two MLPs to
obtain the Gaussian distribution parameters ẑu and ẑvar

u of
the latent representation:

ẑu = MLPmean
ϕ

(
GNNϕ(Z

(0)
c ,Z(0)

e ,Z(0)
v )u

)
, (9)

ẑvar
u = MLPvar

ϕ

(
GNNϕ(Z

(0)
c ,Z(0)

e ,Z(0)
v )u

)
, (10)

where Z
(0)
c ,Z

(0)
e ,Z

(0)
v denote stacks of z(0)c , z

(0)
e and z

(0)
v ,

respectively. u is an arbitrary vertex in G that u ∈ C ∪V . ẑu
and ẑvar

u serve as the mean and log-variance of the Gaussian,
respectively. The latent representation zu of vertex u is then
sampled in the Gaussian distribution by:

zu = N (ẑu, exp(ẑ
var
u )), (11)

where zu is utilized in the decoding phase.

Graph Embedding Model. The function of the graph
embedding model is to provide additional information
about graph G for the decoder during the decoding phase,
thereby facilitating the decoder in more effectively generat-
ing graphs similar to G. We implement it as a bipartite GNN
with the same architecture as the encoder GNN:

hu = GNNµ(Z
(0)
c ,Z(0)

e ,Z(0)
v )u, u ∈ C ∪ V. (12)

hu is the embedded feature of vertex u in G, and will be
utilized in the decoding phase.

Decoder. The VAE decoder aims to reconstruct the selected
community C in G with zu and hu. It first yields refined
vertex features h̃u via merging zu and hu, simply by:

h̃u =

{
zu, if u ∈ C or connected with C,

hu, else.
(13)

Denote the stack of h̃u as H̃. Then we apply a GNN to fuse
H̃, and generate the final vertex features pu:

pu = GNNθ(H̃,Z(0)
e )u, u ∈ C ∪ V. (14)

Denote the stack of pu as P. The decoder leverages P to
reconstruct constraints in C.

The reconstruction of a constraint ci includes construct-
ing the bias bci and the constraint coefficient vector aci ,

Table 1. Statistical distributional similarity score on datasets.
Replacement Ratio Model MIS SC CA

/ Bowly 0.319 0.451 0.672

η = 0.05

Random 0.523 0.643 0.744
G2MILP 0.974 0.735 0.998
ACM-MILP 0.756 0.904 0.993

η = 0.1

Random 0.486 0.558 0.732
G2MILP 0.947 0.712 0.996
ACM-MILP 0.668 0.893 0.984

η = 0.2

Random 0.373 0.504 0.717
G2MILP 0.823 0.706 0.990
ACM-MILP 0.613 0.875 0.956

whereby the constructed constraint is a⊤cix ≤ bci . However,
our objective is to generate a set of constraints in one go,
which may require distinct techniques. Regarding biases,
we postulate that the correlation of biases between different
constraints is not particularly strong, thus enabling us to
generate them individually for each constraint. As for the
coefficient matrix, which most directly reflects the intercon-
nections and associations between constraints, our approach
involves initially predicting a degree for each constraint.
Subsequently, for the entire community, we predict a pool
of variables that are connected. Within this pool, we select
variables connected to each constraint. Finally, we predict
the weights of these connections, i.e., the coefficient values.
Please refer to Appendix B.3 for more details.

3.3.3. TRAINING DETAILS

We divide the training procedure into two stages as follows.

Stage 1: Communities are randomly selected with the aim
of enabling the network to learn the embeddings of all com-
munities. This phase focuses on a broad acquisition of
knowledge across various community embeddings.

Stage 2: The communities with low sampling probabilities
are chosen for training. The model is then fine-tuned with
these specific communities. The objective of this stage is to
focus on these least probable communities, which are also
the ones typically selected during the inference phase. This
targeted approach in the second stage is crucial for refining
the network’s ability to handle and prioritize communities
that are critical for inference.

4. Experiments
4.1. Experimental Settings

We evaluate the similarity between the training and gen-
erated instances using graph statistics and computational
hardness. Furthermore, we attempt to show that the gener-
ated MILP instances can help improve the MILP solvers by
tuning their hyperparameters.

Metric: Graph Statistics. In line with Geng et al. (2023),
we select 11 classical statistics (Brown et al., 2019) of the
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Table 2. Solving time (second) by Gurobi and the relative errors w.r.t. the training sets. We run 5 restarts for each trial and report mean/std.
Replacement Ratio Model MIS SC CA

0 (Training set) / 0.315±0.002 1.804±0.013 0.561±0.002

/ Bowly 0.003±0.001 0.012±0.002 0.006±0.001

η = 0.05

Random 0.509±0.027 (61.6%) 1.705±0.016 (5.5%) 1.062±0.005 (89.3%)
G2MILP 0.364±0.002 (15.6%) 1.781±0.012 (1.3%) 0.885±0.002 (57.8%)

ACM-MILP 0.289±0.002 (8.3%) 1.794±0.008 (0.6%) 0.523±0.002 (6.8%)

η = 0.1

Random 1.184±0.046 (275.9%) 1.542±0.011 (14.5%) 1.402±0.012 (149.9%)
G2MILP 0.231±0.001 (26.7%) 1.912±0.027 (6.0%) 1.090±0.003 (94.3%)

ACM-MILP 0.261±0.005 (17.1%) 1.797±0.004 (0.4%) 0.498±0.001 (11.2%)

η = 0.2

Random 15.016±1.209 (4667.0%) 1.111±0.019 (38.4%) 2.239±0.021 (299.1%)
G2MILP 0.145±0.002 (54.0%) 1.911±0.022 (5.9%) 1.306±0.005 (132.8%)

ACM-MILP 0.234±0.001 (25.7%) 1.831±0.014 (1.5%) 0.437±0.001 (22.1%)

Table 3. Number of branching nodes of instances solved by Gurobi and the relative errors w.r.t. the training sets.
Replacement Ratio Model MIS SC CA

0 (Training set) / 16.294 839.354 406.107

/ Bowly 0 0 0

η = 0.05

Random 48.448 (197.3%) 681.406 (18.8%) 844.100 (107.9%)
G2MILP 23.450 (43.9%) 826.824 (1.5%) 686.839 (69.1%)

ACM-MILP 14.484 (11.1%) 843.939 (0.5%) 350.115 (13.8%)

η = 0.1

Random 190.813 (1071.1%) 560.655 (33.2%) 1051.451 (158.9%)
G2MILP 11.157 (31.5%) 923.973 (10.0%) 824.986 (103.1%)

ACM-MILP 13.300 (18.4%) 842.010 (0.3%) 307.280 (24.3%)

η = 0.2

Random 2651.630 (16173.7%) 393.655 (53.1%) 1515.076 (273.1%)
G2MILP 7.159 (56.1%) 926.389 (10.4%) 976.679 (140.5%)

ACM-MILP 12.935 (20.6%) 859.528 (2.4%) 215.441 (46.9%)

bipartite graphs transformed by the instances and compute
the Jsnsen-Shannon (JS) divergence (Lin, 1991) to measure
the distributional similarity between training and generated
instances. We report the standardized similarity scores cal-
culated by the metrics. Please refer to Appendix C.2 for the
details on the mathematical formula for the similarity score.

Metric: Computational Hardness. To measure the simi-
larity in computational hardness, we utilize the MILP solver
Gurobi (Gurobi Optimization, LLC, 2023) to solve both
the training and generated instances and report the average
solving time and branching nodes. The computational hard-
ness similarity is crucial in the downstream hyperparameter
tuning task, which is more on our radar in this paper.

Application: Hyperparameter Tuning on Gurobi. We
demonstrate the effectiveness of generated instances in re-
ducing Gurobi’s solving time via hyperparameter tuning.
First, we randomly generate 50 distinct hyperparameter con-
figurations for Gurobi and solve the training and generated
instances by Gurobi with the 50 configurations. In this
way, we can evaluate the solving time consistency of the
training and generated instances with different solver config-
urations. Then, we utilize a Bayesian optimization package
SMAC3 (Lindauer et al., 2022) to tune the Gurobi hyperpa-

rameters on the training and generated instances and report
the solving time on the test set. Note that the generated in-
stances with η = 0.1 are used to tune the hyperparameters.

Datasets. We conduct experiments on three synthetic
datasets, embracing different MILP problem types. Specif-
ically, the datasets include Maximum Independent Set
(MIS) (Bergman et al., 2016), Set Covering (SC) (Balas
& Ho, 1980) and Combinatorial Auction (CA) (Leyton-
Brown et al., 2000). The datasets are generated in line with
previous work (Gasse et al., 2019). In each dataset, 1,000
instances are for training, and 1,000 are for testing. Please
refer to Appendix C.1 for more details on datasets.

Baselines. We compare our ACM-MILP with three base-
lines. The first baseline is the heuristic MILP generator
Bowly (Bowly, 2019), which can generate MILP instances
from scratch and control specific statistical distributions.
We adjust the controllable parameters to align with the train-
ing set statistics, enabling Bowly to mimic the training set.
The second is G2MILP (Geng et al., 2023), the first deep-
learning model for MILP generation. The third is Random,
which adopts the architecture of G2MILP with a random
output. The replacement ratio η is set to 0.05, 0.1, and 0.2
to demonstrate the effect of different levels of modification.
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Table 4. Solving time (second) on the test set by Gurobi with differ-
ent hyperparameters. ‘default’ refers to the default hyperparameter
without tuning. We run 5 restarts for each trial and report mean/std.

Model MIS SC CA

default 0.458±0.007 4.222±0.044 0.926±0.004
training set 0.496±0.003 3.852±0.031 1.336±0.008

G2MILP 0.481±0.004 3.899±0.030 1.018±0.008
ACM-MILP 0.460±0.008 3.804±0.019 0.871±0.004

4.2. Results and Discussion

Instance Similarity. We generate 1,000 instances with
each η on each dataset and evaluate the similarity between
training and generated instances. We show the statistical
distributional similarity in Table 1. Overall, ACM-MILP
shows a comparative similarity score with G2MILP (higher
on SC, lower on MIS, slightly lower on CA), higher than
Bowly and Random. However, we can analyze the results
in conjunction with the computational hardness similarity
results shown in Table 2 and Table 3 to derive more informa-
tion. On all three datasets, ACM-MILP shows a significantly
lower error in preserving computational hardness, even on
MIS and CA (with lower statistical distributional similar-
ity). It demonstrates that ACM-MILP has more effectively
learned the features of instances crucial for solving, indicat-
ing a tremendous potential to generate a richer diversity of
instances while maintaining computational hardness.

Hyperparameter Tuning on Gurobi. For the first exper-
iment, we randomly generate 50 different hyperparameter
configurations for Gurobi. We solve the training and gener-
ated instances with these 50 different hyperparameter config-
urations. We set the time limit to 200 seconds for MIS and
CA and 400 seconds for SC. In Fig. 4, we demonstrate the
solving time compared with the CA training set. The closer
to a straight line the points in each figure are, the stronger
the correlation is. Fig. 4(a) shows that different datasets are
not strongly correlated on the same configuration. More-
over, from Fig. 4(b,c,d), we can see that our ACM-MILP
exhibits a stronger correlation with the original samples on
hyperparameter configurations, which implies that instances
generated via ACM-MILP can be more effectively utilized
for hyperparameter tuning. Please refer to Appendix C.3 for
more details and results.

For the second experiment, we apply the Bayesian optimiza-
tion package SMAC3 to tune the hyperparameters of Gurobi.
We set the number of Bayesian optimization trials to 200,
i.e., sampling 200 hyperparameter configurations during tun-
ing. To simulate the scenario with limited data availability,
we randomly choose 20 original MILP instances as the train-
ing set. We tune the hyperparameters on the training set and
1,000 generated instances. After tuning, we solve the 1,000
instances in the test set with the tuned hyperparameters. The
result is shown in Table 4. On SC and CA, the hyperpa-

Table 5. Solving time (second) by Gurobi and the relative errors
w.r.t. the training sets as the reference. (η = 0.1)

Model MIS SC CA

Reference 0.315 1.804 0.561

G2MILP 0.231 (26.7%) 1.912 (6.0%) 1.090 (94.3%)
ACM-MILP w/o G 0.239 (24.1%) 1.890 (4.8%) 0.693 (23.5%)
ACM-MILP w/o S 0.251 (20.3%) 1.713 (5.0%) 0.446 (20.5%)

ACM-MILP 0.261 (17.1%) 1.797 (0.4%) 0.498 (11.2%)

Table 6. Number of branching nodes of instances solved by Gurobi
and relative errors w.r.t. the training sets as reference. (η = 0.1)

Model MIS SC CA

Reference 16.294 839.354 406.107

G2MILP 11.517 (31.5%) 923.973 (10.0%) 824.986 (103.1%)
ACM-MILP w/o G 11.349 (30.3%) 897.706 (7.0%) 517.175 (27.3%)
ACM-MILP w/o S 12.250 (24.8%) 745.720 (11.2%) 211.240 (48.0%)

ACM-MILP 13.300 (18.4%) 842.010 (0.3%) 307.280 (24.3%)

rameter configuration tuned by our ACM-MILP-generated
instances achieves the best solving time, demonstrating the
effectiveness of ACM-MILP on the hyperparameter tuning
task. On MIS, the default configuration yields the best result.
However, our ACM-MILP still outperforms the other two
models due to the volume of data over the training set and
the quality of generated data over G2MILP.

4.3. Ablation Study

We conduct two ablation studies on the effect of constraint
grouping and constraint selection, respectively. The settings
of these two scenarios are as follows:

• We deactivate the constraint grouping approach by divid-
ing each constraint node into a unique community. Thus,
the model can only modify one constraint at a time. We
name this approach ACM-MILP w/o G, which is used to
evaluate the effect of constraint grouping.

• We deactivate the constraint selection approach by ran-
domly selecting constraint communities during instance
generation. We name this approach ACM-MILP w/o S,
which is used to evaluate the effect of constraint selection.

We set the replacement ratio η = 0.1, which is a moderate
value, and generate 100 instances on each dataset. The
results are shown in Table 5 and Table 6, indicating that
both constraint grouping and constraint selection contribute
to generating hardness-preserving instances.

4.4. Analysis on Constraint Grouping

We further analyze the effect of our constraint grouping
approach. We compare the distribution of constraint com-
munity sizes between a training and a generated instance.
We show the results in Fig. 5. Our ACM-MILP includes
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(c) G2MILP, η = 0.2
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(d) ACM-MILP, η = 0.2

Figure 4. Solving time (second) compared with the CA training set on 50 different hyperparameter configurations.
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Figure 5. Comparison of the community size distribution between
the training and generated instance. Darker colors denote overlap-
ping, and larger overlapping areas indicate closer distributions.
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Figure 6. Visualization in the latent space: community centers in
one single instance (a) and in a batch of instances (b). Red points
are the communities chosen for modification.

grouping strongly related constraints, while G2MILP does
not consider the interrelations among constraints. We can
see that ACM-MILP-generated instance has a close distri-
bution with the original training instance, indicating that
the constraint grouping approach can preserve the interrela-
tions among constraints. G2MILP significantly varies the
community size distribution, meaning that the reconstructed
constraint fails to retain the relation with other constraints.

4.5. Visualization

To better understand the effect of our constraint selection
strategy, we visualize the centers of the constraint commu-
nities in the latent space in Fig. 6. It depicts that in a single
instance, the communities are divided into two clusters by
their sampling probabilities. The communities in the smaller
cluster with lower sampling probabilities are chosen for

modification. In a batch of instances, the larger clusters are
close to each other and can be clustered, while the smaller
clusters differ significantly. It indicates that the larger clus-
ters mainly include generic features, and the smaller clusters
contain unique features to the specific instances.

5. Conclusion
In this paper, we propose a generative framework ACM-
MILP for MILP instance generation with adaptive and
correlation-aware constraint reconstruction. It adopts an
adaptive constraint selection mechanism based on the prin-
ciple of VAE, selecting instance-unique constraints for mod-
ification and retaining generic constraints to preserve char-
acteristics. It also detects and groups constraints with strong
interrelations via community detection, allowing for col-
lective modification. Experimental results show that ACM-
MILP significantly improves the problem-solving hardness
similarity over the baselines, even with more diversity. In
the downstream task, we demonstrate the effectiveness of
ACM-MILP-generated instances on hyperparameter tuning.
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Mixed-integer linear programming (MILP) by addressing
the critical issue of data scarcity and the need for high-
quality instance generation. By introducing the ACM-MILP
framework, this paper proposes a novel approach that en-
hances the quality and solvability of MILP instances, which
is essential in real-world scenarios. This advancement is
crucial for the MILP community, as it offers a method to
generate instances that are more representative of actual
challenges encountered in practice. The techniques to adap-
tively modify constraints of the framework are particularly
promising, as they can be integrated with other MILP gener-
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ation methods and ensure the preservation of the inherent
complexity and dependencies in MILP problems. Further-
more, the demonstrated effectiveness of these generated
instances in hyperparameter tuning highlights the frame-
work’s practical utility, potentially leading to more efficient
and accurate MILP solvers. Overall, this paper contributes
significantly to the broader MILP research community by
providing a sophisticated framework for instance generation,
thereby enhancing the research and application of MILP in
various real-world scenarios.
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A. Bipartite Graph Features
As described in the main paper, we represent a MILP instance as a bipartite graph G = (C,V, E), where C denotes the
constrain vertex set, V denotes the variable vertex set, and E refers to the edge set. The features of G correspondingly contain
three components, denoted as (C,V,E). C, V and E are the feature matrices of C, V and E , respectively. The detailed
features and descriptions can be found in Table 7.

Table 7. Detailed constraint, variable, and edge features in the bipartite graph.

Feature Name Description

C
bias The bias value of the constraint.
positional encoding The positional encoding of the constraint.

V

objective The coefficient of the variable in the objective function.
is type binary Whether the variable is binary.
is type integer Whether the variable is an integer.
is type implicit integer Whether the variable is an implicit integer.
is type continuous Whether the variable is continuous.
has lower bound Whether the variable has a lower bound
has upper bound Whether the variable has an upper bound
lower bound The lower bound of the variable.
upper bound The upper bound of the variable.

E coefficient The coefficient of the edge between the constraint and variable.

The positional encoding for constraint ci is defined as i
|C| . The goal of applying the positional encoding is to improve the

discrimination of different constraints and enhance representation by GNN (Chen et al., 2023), which takes a significant role
in selecting edges for the constraints.

The original features of the bipartite graph are automatically extracted via the combinatorial optimization environment
Ecole (Prouvost et al., 2020). Then, we manually add positional encoding as a new feature in the constraint features.

B. Implementation Details of ACM-MILP
B.1. Community Detection

Table 8. Average community number and community size on MIS, SC and CA.

dataset avg community num avg community size

MIS 97.25 20.09
SC 63.57 7.87
CA 13.86 13.87

As described in Sec. 3.2.1 in the main paper, we adopt the Louvain algorithm (Blondel et al., 2008) to detect the communities
in the bipartite graph. The Louvain algorithm is based on the optimization of graph modularity, which is defined in Eq. 2
in the main paper. The graph modularity is well suited for describing the interrelations among constraints since larger
modularity indicates more common variables are connected.

The Louvain algorithm includes moving a vertex ui into its neighbor’s community and computing the modularity gain by:

∆Q =
ki,in
2τ
− γ

Σtot · ki
2τ2

, (15)

where τ is the number of edges, ki,in is the number of edges connecting ui and vertices in the community, Σtot denotes the
total degree of the vertices in the community, ki refers to the degree of ui, and γ is the resolution parameter. Note that if γ is
less than 1, the algorithm favors larger communities, and greater than 1 favors smaller communities. In our implementation,
we set γ to 4 on the MIS dataset, 2 on the SC dataset, and 1 on the CA dataset. With these settings, the MILP instances in
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Algorithm 1 Louvain Algorithm for Community Detection
Input: Graph G(C ∪ V, E) with vertex set U = C ∪ V and edge set E , resolution parameter γ.
Output: Community structure of graph G.

1: Initialize each vertex u ∈ U as a separate community;
2: Calculate the modularity gain for moving each vertex to the community of its neighbors by Eq. 15;
3: repeat
4: for each vertex u ∈ U do
5: Move u to the community that results in the highest modularity gain;
6: end for
7: Update the community structure and recalculate the modularity gain;
8: until no further improvement in modularity can be achieved;
9: Aggregate the graph based on the detected communities;

10: repeat
11: Line 2 - 9;
12: until no further improvement in modularity can be achieved.

these datasets can roughly be divided into communities with suitable sizes for modification. We show the average number
and size of communities on these three datasets in Table 8. We also show the procedure of the Louvain algorithm in Algo. 1.
We implement the Louvain algorithm by the Python package python-louvain (Aynaud, 2020).

B.2. Derivation of Loss Function

Here we show how to derive the loss function in Eq. 7 from the training objective in Eq. 6. We first derive:

log pθ(G|G̃,H\C) = EZC∼qϕ(ZC|G)

[
log pθ(G | G̃,H\C)

]
= EZC∼qϕ(ZC|G)

[
log

pθ(G | ZC, G̃,H\C)pθ(ZC)

qϕ(ZC | G)
qϕ(ZC | G)

pθ(ZC | G, G̃,H\C)

]

= EZC∼qϕ(ZC|G)

[
log

pθ(G | ZC, G̃,H\C)pθ(ZC)

qϕ(ZC | G)

]
+ EZC∼qϕ(ZC|G)

[
log

qϕ(ZC | G)
pθ(ZC | G, G̃,H\C)

]
= −L(θ,ϕ | G, G̃,H\C)) +DKL

[
qϕ(ZC | G)∥pθ(ZC | G, G̃,H\C)

]
≥ −L(θ,ϕ | G, G̃,H\C).

(16)
In the above formula, −L(θ,ϕ | G, G̃,H\C) is called the (variational) lower bound, and can be written as:

L(θ,ϕ | G, G̃,H\C) = EZC∼qϕ(ZC|G)

[
log

qϕ(ZC | G)
pθ(G | ZC, G̃,H\C)pθ(ZC)

]

= EZC∼qϕ(ZC|G)

[
− log pθ(G | ZC, G̃,H\C)

]
+ EZC∼qϕ(ZC|G)

[
log

qϕ(ZC | G)
pθ(ZC)

]
= EZC∼qϕ(ZC|G)

[
− log pθ(G | ZC, G̃,H\C)

]
+DKL [qϕ(ZC | G)∥pθ(ZC)] .

(17)

Note that G̃ and H\C are both decided by the modified community C. Therefore, we take the expectation of graph G and
community C, and add a hyperparameter to control the weight of the KL divergence loss, thereby deriving the loss function:

L = EG∼DEC∼p̃ϕ(G)
[EZC∼qϕ(ZC|G)

[
− log pθ(G | ZC, G̃,H\C)

]
︸ ︷︷ ︸

Lr

+β ·DKL [qϕ(ZC | G)∥pθ(ZC)]︸ ︷︷ ︸
Ld

]. (18)
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B.3. Network Architecture

B.3.1. GNN ARCHITECTURE

As described in the main paper, we adopt a GNN to extract the features of the bipartite graph in the encoder, decoder, and
graph embedding model. Here, we show the detailed architecture and procedure of the GNN.

We first yield the initial embedding of constraints z(0)ci , variables z(0)vj and edges z(0)eij from the original features by Eq. 8.
Then, we adopt K bipartite graph convolution layers. In each convolution layer, we perform the following convolutions:

z(k+1)
ci = MLP

z(k)ci ,
∑

j:eij∈E
MLP

(
z(k)ci , z(0)eij , z

(k)
vj

) (19)

z(k+1)
vj = MLP

z(k)vj ,
∑

i:eij∈E
MLP

(
z(k+1)
ci , z(0)eij , z

(k)
vj

) . (20)

A Graphnorm layer is followed after each convolution. After performing K bipartite graph convolution layers, we apply a
Jumping Knowledge layer (Xu et al., 2018) with concatenation to derive the final vertex representations:

z(final)
u = MLP

([
z(0)u , z(1)u , · · · , z(K)

u

])
, u ∈ C ∪ V. (21)

B.4. Decoder Modules

In the main paper, we elaborate on the procedure of the decoding phase. A GNN is first employed to extract the refined
vertex features pu after merging by Eq. 14. Then, we design five modules to accomplish the reconstruction of a constraint
community. Here, we present the detailed architecture of the five decoder modules.

Bias Predictor. We apply an MLP to predict the normalized bias of each constraint in C by:

b̂pred
ci = Sigmoid

(
MLPb

θ(pci)
)
, ci ∈ C, (22)

where the Sigmoid function is adopted to restrict the output range to [0, 1]. The final predicted bias bpred
ci is computed via

bpred
ci = (bmax − bmin)b̂

pred
ci + bmin, where bmax and bmin are respectively the maximum and minimum bias that occur in the

dataset. The bias predictor is trained by MSE loss.

Degree Predictor. Similar to the bias predictor, we apply an MLP to predict the normalized degree via:

d̂pred
ci = Sigmoid

(
MLPd

θ(pci)
)
, ci ∈ C. (23)

The final predicted degree dpred
ci is calculated through dpred

ci = (dmax − dmin)d̂
pred
ci + dmin, where dmax and dmin are

respectively the maximum and minimum degree that occur in the dataset. The degree predictor is also trained by MSE loss.

Variable Pool Predictor. Denote the pool containing the connected variables with the community C as PC. We consider
predicting whether a variable is in PC as a binary classification task and adopt an MLP with the input of variable vertex
feature pvi :

ξvi = Sigmoid (MLPv
θ(pvi)) , vi ∈ V, (24)

where ξvi denotes the probability that vi is in PC. In training, ξvi is used to compute the BCE loss to train the predictor. For
inference, the variables with top-k probabilities are preserved in PC, where k is the sum of dpred

ci for ci ∈ C.

Edge Selector. It selects the edges between a constraint in community C and variables in PC through an MLP:

ξci,vj = Sigmoid
(
MLPe

θ([pci ,pvj ])
)
, (25)

where ci ∈ C and vj ∈ PC. [·] denotes the concatenation operation. ξci,vj refers to the probability of an existing edge
between ci and vj . This module is trained by BCE loss. During inference, we select the edges for a constraint by sampling
with the probability ξci,∼, rather than directly choosing the variables with top-k probabilities. This approach helps avoid
generating duplicated constraints.
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Edge Weight Predictor. Finally, an MLP is applied to predict the normalized edge weight by:

ŵci,vj = Sigmoid
(
MLPw

θ ([pci ,pvj ])
)
, (26)

ensuring that an edge exists between ci and vj . The final predicted weight is computed in a similar way to the bias through
wpred

ci,vj = (wmax − wmin)ŵci,vj
+ wmin, where wmax and wmin are respectively the maximum and minimum constraint

coefficient that occur in the dataset. This module is trained by MSE loss.

The losses from these five modules collectively constitute the reconstruction loss Lr, which is jointly optimized with the
divergence loss Ld during training.

More details on the choices of model architecture hyperparameters can be found in our source code.

B.5. Training and Inference Procedure

Here, we demonstrate the training and inference procedures of ACM-MILP in Algo. 2 and Algo. 3, respectively.

Algorithm 2 Training procedure of ACM-MILP
Input: Dataset D, batch size B, number of training steps N1 for stage 1, number of training steps N2 for stage 2, size of

community pool s for fine-tuning in stage 2.
Output: Trained ACM-MILP.

1: Detect communities for each instance in D by Algo. 1; ▷ coupling constraints
2: for i = 1, · · · , N1 do
3: B ← ∅;
4: for b = 1, · · · , B do
5: G ∼ D, C ∼ CG ; ▷ randomly select graph and community
6: B ← {(G,C)};
7: for ci ∈ C do
8: Compute bpred

ci , dpred
ci , ξv , ξci,v , wpred

ci,v with parameters ϕ, θ, µ;
9: end for

10: Compute LG,C by Eq. 17;
11: end for
12: L ← 1

|B|
∑

(G,C)∈B LG,C;
13: Update ϕ, θ, µ to minimize L; ▷ training in stage 1
14: end for
15: for i = 1, · · · , N2 do
16: B ← ∅;
17: for b = 1, · · · , B do
18: G ∼ D;
19: Select s communities CG,s with top-s lowest Gaussian sampling probabilities from CG ;
20: for C ∈ CG,s do
21: B ← {(G,C)};
22: for ci ∈ C do
23: Compute bpred

ci , dpred
ci , ξv , ξci,v , wpred

ci,v with parameters ϕ, θ, µ;
24: end for
25: Compute LG,C by Eq. 17;
26: end for
27: end for
28: L ← 1

|B|
∑

(G,C)∈B LG,C;
29: Update ϕ, θ, µ to minimize L; ▷ fine-tuning in stage 2
30: end for
31: return the detected community structure

B.6. Testbed

All experiments are done on our workstation with AMD 3970X, RTX 3090, and 128GB memory.
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Algorithm 3 Generate a new MILP instance with ACM-MILP
Input: Dataset D, trained ACM-MILP, replacement ratio η.
Output: A new MILP instance Ĝ.

1: G ∼ D, s← ⌈η · |CG |⌉; ▷ sample an instance, and compute the number of communities to be modified
2: Select s communities CG,s with top-s lowest Gaussian sampling probabilities from CG ;
3: for C ∈ CG,s do
4: Compute bpred

ci , dpred
ci for all ci ∈ C with ACM-MILP;

5: Compute ξv for v ∈ VG with ACM-MILP;
6: Construct the connected variable pool Vconnect;
7: for ci ∈ C do
8: Compute ξci,v for v ∈ Vconnect with ACM-MILP;
9: Sample edges for dpred

ci times with sampling probability ξci,v for v ∈ Vconnect;
10: Compute wpred

ci,v for selected edges;
11: Replace the original bias, edges, and edge weights of ci with the newly generated ones.
12: end for
13: end for

C. Details on Experiments
C.1. Dataset Statistics

As described in the main paper, we conduct experiments on three datasets, including Maximum Independent Set (MIS), Set
Covering (SC), and Combinatorial Auction (CA). We demonstrate the detailed information of these datasets in Table 9.

Table 9. The statistics of datasets. # of training refers to the number of instances in the training set, and # of the test denotes the number of
instances in the test set. |C| and |V| mean the average number of constraints and variables, respectively.

dataset # of training # of test |C| |V|
MIS 1000 1000 1954 500

SC 1000 1000 500 1000
CA 1000 1000 192 500

C.2. Calculations of Statistical Distributional Similarity Score

We use 11 graph statistics to evaluate the statistical distributional similarity. We show the used statistics in Table 10. We first
calculate the statistics for each training and generated instance. Then, we estimate the distributions and the cross entropy by
functions in the Python package numpy and scipy, respectively. We compute the JS divergence DJS,i for the i-th statistic
between the training and generated instances, and standardize DJS,i by:

Dnorm
JS,i =

1

log 2
(log 2−DJS,i). (27)

The statistical distributional similarity score is the mean of all normed JS divergences, and is calculated by:

score =
1

11

11∑
i=1

Dnorm
JS,i , (28)

ranging from 0 to 1. A higher score implies higher similarity in distribution.

C.3. Downstream Tasks

Solving with Different Hyperparameters As described in the main paper, we conduct experiments on hyperparameter
tuning on Gurobi. We first solve the training and generated instances with 50 distinct hyperparameter configurations
and measure the consistency of the training and generated instances in solving with different solver configurations. This
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Table 10. The 11 graph statistics used for measuring statistical distributional similarity.

Feature Description

coef dens Proportion of non-zero elements in matrix A, calculated as |E|/(|V| · |W|).
cons degree mean Average degree of constraint vertices in V .

cons degree std Standard deviation of constraint vertex degrees in V .

var degree std Standard deviation of variance vertex degrees inW .

lhs mean Average value of non-zero elements in matrix A.

lhs std Standard deviation of non-zero elements in matrix A.

rhs mean Average value of elements in vector b.

rhs std Standard deviation of elements in vector b.

clustering coef Clustering coefficient of the graph.

modularity Modularity of the graph.

Table 11. Selected hyperparameters of Gurobi. ‘category’ refers to the component that the hyperparameter affects in solving process.

hyperparameter category value type selecting range description

Heuristics MIP double [0, 1] Turn MIP heuristics up or down.
MIPFocus MIP integer {0, 1, 2, 3} Set the focus of the MIP solver.
VarBranch MIP integer {-1, 0, 1, 2, 3} Branch variable selection strategy.
BranchDir MIP integer {-1, 0 ,1} Branch direction preference.
RINS MIP integer {-1, 0, · · · , 20} RINS heuristic.
PartitionPlace MIP integer {0, 1, · · · , 31} Controls when the partition heuristic runs.
NodeMethod MIP integer {-1, 0, 1, 2} Method used to solve MIP node relaxations.
LPWarmStart Simplex integer {0, 1, 2} Warm start usage in simplex.
PerturbValue Simplex double [0, 0.001] Simplex perturbation magnitude.
Presolve Presolve integer {-1, 0, 1, 2} Presolve level.
Prepasses Presolve integer {-1, 0, · · · , 20} Presolve pass limit.
Cuts MIP Cuts integer {-1, 0, 1, 2, 3} Global cut generation control.
CliqueCuts MIP Cuts integer {-1, 0, 1, 2} Clique cut generation.
CoverCuts MIP Cuts integer {-1, 0, 1, 2} Cover cut generation.
Method Other integer {-1, 0, 1, 2, 3, 4, 5} Algorithm used to solve continuous models.

experiment shows the consistency of tuning hyperparameters with generated and training instances. Here, we demonstrate
the hyperparameters of Gurobi related to this experiment in Table 11. In our experiment, we set the random seed to 0,
· · · , 50 each time, and randomly select each hyperparameter from the selecting range via the Python package ‘random’.
The hyperparameters fall into various categories, including cut, branch, presolve, and LP relaxation, thereby significantly
affecting the solving process.

Due to space limitations, we only demonstrate the results on CA in the main paper. Here, we show full results on CA, MIS,
and SC in Fig. 7, Fig. 8 and Fig. 9, respectively. We also calculate the Pearson Correlation Coefficients (PCC) and the log
p-values of solving time and report them in Table 12. We can see that our method outperforms G2MILP in most cases.

Hyperparameter Tuning on Gurobi We conduct the hyperparameter tuning experiment on Gurobi. We compare the
solving time of Gurobi utilizing the following configurations on 1,000 instances in the test set:

• ‘default’: The default configuration of hyperparameters without tuning.

• ‘training set’: The configuration of hyperparameters tuned on 20 instances selected in the training set. We only utilize
20 instances to simulate the situation of data scarcity.
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(b) G2MILP, η = 0.05
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(c) G2MILP, η = 0.1
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(d) G2MILP, η = 0.2
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(f) ACM-MILP, η = 0.05
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(g) ACM-MILP, η = 0.1
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(h) ACM-MILP, η = 0.2

Figure 7. Solving time (second) compared with the CA training set on 50 different hyperparameter configurations.

Table 12. Pearson Correlation Coefficients (PCC) and the log p-values of solving time between training and generated instances.

Replacement Ratio Model
MIS CA SC

PCC ↑ log p-value ↓ PCC ↑ log p-value ↓ PCC ↑ log p-value ↓
/ Bowly -0.068 0.639 -0.127 0.378 0.042 0.772

η = 0.05
G2MILP 0.995 -49.332 0.991 -42.467 0.989 -40.545

ACM-MILP 0.997 -51.630 0.995 -47.511 0.997 -54.524

η = 0.1
G2MILP 0.988 -39.721 0.976 -31.550 0.997 -53.443

ACM-MILP 0.988 -38.966 0.991 -41.494 0.998 -56.987

η = 0.2
G2MILP 0.970 -29.593 0.934 -21.399 0.993 -46.017

ACM-MILP 0.990 -40.944 0.985 -36.692 0.998 -56.074

• ‘G2MILP’: The configuration of hyperparameters tuned on 1,000 instances generated by G2MILP. We set η = 0.1.

• ‘ACM-MILP’: The configuration of hyperparameters tuned on 1,000 instances generated by ACM-MILP. We set
η = 0.1.

We tune the hyperparameters by Bayesian optimization. We employ the Python Bayesian optimization package SMAC3
and run 200 trials, which means sampling and evaluating 200 configurations in each tuning process. To achieve a trade-off
between tuning time and tuning effectiveness, we select eight major hyperparameters from Table 11, including Heuristics,
MIPFocus, VarBranch, BranchDir, Presolve, PrePasses, Cuts, and Method. The selecting ranges of hyperparameters remain
the same as Table 11.

D. Further Experiments and Analysis
D.1. Comparison with Bipartite Modularity

When adopting the Louvain algorithm for community detection in the main paper, we use the standard modularity definition
(Clauset et al., 2004). However, there is a modularity metric designed for bipartite graph (Barber, 2007). We implement the
bipartite Louvain algorithm, i.e., the Louvain algorithm on the bipartite modularity definition, with the Python package
scikit-network (Bonald et al., 2020). We detect the communities on the training set of MIS, SC, and CA via the bipartite
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(b) G2MILP, η = 0.05
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(c) G2MILP, η = 0.1
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(d) G2MILP, η = 0.2
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(f) ACM-MILP, η = 0.05
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(g) ACM-MILP, η = 0.1
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(h) ACM-MILP, η = 0.2

Figure 8. Solving time (second) compared with the MIS training set on 50 different hyperparameter configurations.
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(a) CA training set
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(b) G2MILP, η = 0.05
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(c) G2MILP, η = 0.1
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(d) G2MILP, η = 0.2
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(e) Bowly
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(f) ACM-MILP, η = 0.05
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(g) ACM-MILP, η = 0.1

0 50 100 150 200 250 300 350
Original Solving Time

0

50

100

150

200

250

300

350

Ge
ne

ra
te

d 
So

lv
in

g 
Ti

m
e

(h) ACM-MILP, η = 0.2

Figure 9. Solving time (second) compared with the SC training set on 50 different hyperparameter configurations.
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Table 13. Average modularity on the training set. ’Algorithm’ refers to the algorithm adopted for community detection.

Algorithm MIS SC CA

Ordinary Louvain 0.629 0.148 0.344
Bipartite Louvain 0.608 0.114 0.342

Table 14. Solving time (second) by Gurobi and the relative errors w.r.t. the training sets. We run 5 restarts for each trial and report
mean/std. (η = 0.1)

Algorithm Model MIS SC CA

/ / (training set) 0.315±0.002 1.804±0.013 0.561±0.002
Ordinary Louvain ACM-MILP 0.261±0.005 (17.1%) 1.797±0.004 (0.4%) 0.498±0.001 (11.2%)
Bipartite Louvain ACM-MILP 0.271±0.006 (14.0%) 1.875±0.009 (3.9%) 0.491±0.002 (12.5%)

Table 15. Number of branching nodes of instances solved by Gurobi and the relative errors w.r.t. the training sets. (η = 0.1)
Algorithm Model MIS SC CA

/ / (training set) 16.294 839.354 406.107
Ordinary Louvain ACM-MILP 13.300 (18.4%) 842.010 (0.3%) 307.280 (24.3%)
Bipartite Louvain ACM-MILP 13.980 (14.2%) 907.780 (8.2%) 293.740 (27.7%)

Table 16. Solving time (second) by Gurobi and the relative errors w.r.t. the training sets. We run 5 restarts for each trial and report
mean/std.

Replacement Ratio Model MIS SC CA

0 (Training set) / 0.315±0.002 1.804±0.013 0.561±0.002

η = 0.3
G2MILP 0.114±0.001 (63.8%) 1.426±0.021 (21.0%) 1.908±0.010 (240.1%)

ACM-MILP 0.214±0.004 (32.1%) 1.774±0.017 (1.7%) 0.436±0.004 (22.3%)

η = 0.4
G2MILP 0.092±0.002 (70.8%) 1.259±0.022 (30.2%) 1.856±0.014 (230.8%)

ACM-MILP 0.168±0.003 (46.7%) 2.086±0.026 (15.6%) 0.387±0.003 (31.0%)

η = 0.5
G2MILP 0.070±0.001 (77.8%) 2.446±0.028 (35.6%) 1.751±0.008 (212.1%)

ACM-MILP 0.103±0.002 (67.3%) 1.645±0.020 (8.8%) 0.311±0.004 (44.6%)

Table 17. Number of branching nodes of instances solved by Gurobi and the relative errors w.r.t. the training sets.
Replacement Ratio Model MIS SC CA

0 (Training set) / 16.294 839.354 406.107

η = 0.3
G2MILP 5.312 (67.4%) 391.921 (53.3%) 1130.160 (178.3%)

ACM-MILP 8.560 (47.5%) 625.343 (25.5%) 217.000 (46.6%)

η = 0.4
G2MILP 5.660 (65.3%) 323.282 (61.5%) 1149.630 (183.1%)

ACM-MILP 7.483 (54.1%) 892.280 (6.3%) 125.240 (69.2%)

η = 0.5
G2MILP 6.281 (61.5%) 1357.380 (61.7%) 1112.340 (173.9%)

ACM-MILP 6.866 (57.9%) 624.610 (25.6%) 73.760 (81.8%)

Louvain algorithm and compare the difference between the modularities computed by ordinary Louvain and bipartite
Louvain. The results are demonstrated in Table 13. The modularities derived by the two algorithms are slightly different.
Furthermore, we conduct MILP instance generation experiments to evaluate the effect of bipartite Louvain. We set the
replacement ratio η = 0.1 and generate 1,000 instances on each dataset. The results are demonstrated in Table 14 and Table
15. The two approaches show similar performance.

D.2. Experiments with More Values of η

To further verify the effectiveness of our ACM-MILP, we conduct experiments with more values of η, and demonstrate the
results in Table 16 and Table 17. The results show the effectiveness of our model on multiple values of η.
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Table 18. Solving time (second) and number of branching nodes by Gurobi and the relative errors w.r.t. the training sets on MIS. We run 5
restarts for each trial and report mean/std. (η = 0.1)

Selection Scheme Model Solving Time Branching Nodes

High Prob ACM-MILP 0.151±0.002 (52.1%) 3.57 (78.5%)
Low Prob ACM-MILP 0.261±0.005 (17.1%) 13.30 (18.4%)

Table 19. Number and ratio of variables taking different values in the solutions between the original and generated instances.
Replacement Ratio Difference Number Difference Ratio

η = 0.01 28 5.6%
η = 0.05 57 11.4%
η = 0.1 78 15.6%
η = 0.2 141 28.2%

D.3. Further Analysis on Constraint Selection

In this section, we will provide insights into the importance of selecting constraint communities with low sampling
probabilities. We supplement two rationales for this design with empirical evidence presented below:

• Communities with high sampling probabilities should be maintained to preserve the solving characteristics of
MILP instances. As claimed in HardSATGEN (Li et al., 2023a), combinatorial optimization instances’ core logical
structures, which may correspond to high sampling probability in this context, are challenging for predictive neural
networks to learn. We supplement experiments on the MIS dataset, where we modify the communities with high sampling
probabilities with the same paradigm for comparison. The results in Table 18 indicate that modifying the communities
with high sampling probabilities leads to significant quality degradation of generated samples. This further suggests that
the structures of these communities cannot be effectively learned by neural networks, and thus should be maintained.

• Communities with low sampling probabilities are not noisy and uninformative constraints and maintain a clear
impact on the solution. We solve the original MIS instances and the corresponding generated MIS instances, where all
variables are binary. Subsequently, we perform a statistical analysis on the number and ratio of variables taking different
values in the solutions produced by Gurobi between the original and the generated instances. The results are demonstrated
in Table 19. It can be seen that even if the top 1% of communities with the lowest sampling probabilities are modified,
the solution can be clearly influenced. It indicates that communities with low sampling probabilities are also important
substructures for learning and generating.
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