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ABSTRACT

As embedded devices become increasingly prevalent in intelligent systems, low-
power system in resource-constrained environments has emerged as a key chal-
lenge. Spiking neural networks (SNNs), with their sparse and event-driven com-
putation, have shown great potential as a low-power candidate for embedded de-
vices. In federated learning scenarios, where multiple energy-constrained devices
collaborate, adopting efficient SNN models with effective training methods is crit-
ical. However, research on training SNNs within federated learning systems is still
very limited, particularly in terms of how to achieve both energy efficiency and ro-
bustness under system heterogeneity. This gap presents a significant opportunity
for further exploration of SNNs in distributed learning settings. In this paper,
we investigate a significant and innovative problem in robust spike-based feder-
ated learning, particularly in the presence of noise, and system heterogeneity. We
majorly consider two types of system heterogeneity in this study, including data
and client participation heterogeneity. To address this, we propose a novel feder-
ated learning framework, spike-based decoupled federated information-bottleneck
learning (SDFIL), to enable robust, low-power federated learning through SNNs
under system heterogeneity. Specifically, we design a decoupled information bot-
tleneck principle tailored for local SNN training to maximize the mutual informa-
tion between ground truth and model predictions while minimizing mutual infor-
mation between intermediate representations. This method effectively minimizes
the impact of outliers in non-independent and identically distributed (non-IID)
data on model updates, thereby enhancing the performance of federated SNNs,
resulting in enhanced robustness and reduced sensitivity to outliers. We evalu-
ate the proposed SDFIL algorithm across a variety of settings, including different
noise levels and varying degrees of system heterogeneity. The experimental re-
sults indicate that SDFIL demonstrates superior robustness compared to compet-
ing methods and generally achieves an improvement in overall accuracy of 5% to
10%. Additionally, it can achieve up to 7.7× higher energy efficiency compared to
traditional artificial neural networks (ANNs).

1 INTRODUCTION

Neuromorphic computing represents a groundbreaking approach to achieving artificial general in-
telligence, modeled after the brain’s processing mechanisms (Renner et al., 2024). Its event-based
processing provides several advantages, including low power consumption, low latency, and high
biological plausibility (Frenkel et al., 2023). With advancements in neuromorphic chips, such as
TrueNorth, Loihi, and Tianjic, neuromorphic computing has found applications across various fields
(Akopyan et al., 2015; Davies et al., 2018; Pei et al., 2019). A prominent model for neuromorphic
computing is the spiking neural network (SNN), which employs spiking neurons as its fundamental
unit (Meng et al., 2023; Fang et al., 2022; Yao et al., 2023). SNNs not only exhibit low-power effi-
ciency but also achieve performance on par with deep neural networks (Qiu et al., 2023; Kim et al.,
2019; She et al., 2022). Due to this power efficiency, SNNs show great potential for deployment in
embedded devices (Kucik & Meoni, 2021; Ottati et al., 2023). However, embedded devices often
require continuous data collection for training and updates.
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Local clients typically have limited private data and lack generalization ability (Mendieta et al.,
2022; Nguyen et al., 2022). However, due to data silos and privacy concerns, centralized learning
methods are impractical in real-world applications (Yin et al., 2021). To address this, federated
learning has been introduced as a distributed machine learning framework (Zhang et al., 2021).
It enables numerous clients to collaboratively train a model with decentralized data, ensuring that
private data is not shared with a central server, thus safeguarding data privacy (Zhuang et al., 2021).
Although federated learning plays a crucial role in large-scale, distributed edge learning systems
that prioritize privacy, current research on SNNs has yet to develop extensive methods for federated
learning within a distributed training framework.

When applying federated learning to SNNs, three key challenges arise, as shown in Figure 1. First,
data heterogeneity among clients is particularly problematic for SNNs. Clients typically generate
non-independent and non-identically distributed (non-IID) data, which disrupts the common IID as-
sumption (Besbes et al., 2024; Morafah et al., 2022). As the number of clients increases, managing
the impact of this heterogeneity on SNN training becomes even more difficult, leading to a critical
challenge for federated learning with SNNs. Second, to mitigate the risk of data leakage through
model updates, some approaches introduce noise to obscure gradients (Li et al., 2022). Thus, fed-
erated learning must ensure protection against gradient noise during model updates. Third, due to
variations in device performance and network connectivity, not all clients may participate in each
training iteration, resulting in client participation heterogeneity (Cui et al., 2022). Given that SNNs
are more computationally intensive due to event-driven processing and temporal characteristics, this
heterogeneity in client participation exacerbates the challenge of maintaining model consistency and
accuracy across a distributed system. In this study, data and client participation heterogeneity are
collectively referred to as system heterogeneity. Addressing system heterogeneity is critical for en-
suring the robustness and scalability of federated learning in SNN applications. Unlike previous
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Figure 1: Illustration of spike-based federated learning based on SNNs with gradient noise, client
participation heterogeneity, and data heterogeneity.

studies that focus solely on efficient SNN training, we approach SNN training from the perspective
of federated learning. To address the aforementioned challenges in federated learning with SNNs,
we propose a novel algorithm called spike-based decoupled federated information-bottleneck learn-
ing (SDFIL). Our approach is aiming to achieve robust, low-power federated learning in the presence
of noise, and system heterogeneity. The contribution of our work includes three folds:

• We study a novel and important robust spike-based federated learning problem with gradi-
ent noise and system heterogeneity that includes data and client participation heterogeneity,
and design a novel information bottleneck based optimization approach.
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• We derive a novel decoupled information bottleneck algorithm for spike-based federated
learning. It is useful to minimize the effects of outlier of non-IID data on model updating,
which can improve the robustness and scalability of federated SNNs.

• We test the proposed SDFIL algorithm on various type of settings, including different noise
strength and different levels of system heterogeneity. Experimental results demonstrate the
better robustness of SDFIL than competing methods and generally achieves an improve-
ment in overall accuracy of 5% to 10%.

2 BACKGROUND

2.1 FEDERATED LEARNING

Federated learning refers to a distributed training method that has significant data privacy advantages
and lower communication cost compared to centralized training models (Bohte, 2011). This frame-
work consists of a central server and K edge clients capable of processing data independently. Each
of the clients k = 0, 1, 2, . . . ,K, has its own local dataset Dk = {(xki

, yki
)}nk

i=1, with |Dk| = nk.
The client split is denoted by K/P , where K is the total number of clients and P is the participating
devices per round. At round r, each selected client that constitutes the set of training participants
Cr, with |Cr| = P , uses their private local data to calculate the average gradient ∆W r

k in the current
local model, and sends it to the central server. The central server then aggregates these gradients and
updates the global model:

W (r+1) =W r + γ
∑
k∈Cr

nk
n
∆W r

k , (1)

where n =
∑

k∈Cr
nk represents the total number of samples that participated in the training at

round r. The learning rate γ represents the magnitude of the weight change. federated learning
constructs a realistic scenario, where the model can be trained on different types of edge devices
that typically have lower power consumption and limited compute and memory resources. Therefore
there has been a great deal of interest in energy-efficient federated learning based on SNN (Tumpa
et al., 2023).

2.2 SPIKING NEURAL NETWORKS

SNNs are brain-inspired computational models that transmit information through discrete events
known as spikes. In this context, we employ the widely recognized leaky integrate-and-fire (LIF)
neuron model as the constituent unit of SNNs due to its simplicity and scalability.

During forward propagation, the LIF neuron utilizes the membrane potential as its internal state. The
input spikes from presynaptic neurons are weighted and aggregated, contributing to the membrane
potential. When this potential reaches a certain threshold, the neuron generates a spike as the output
signal and reset its state to the resting potential. The discrete-time form of LIF neurons is as follows:

uti = λut−1
i +

∑
j∈N

wijs
t−1
j , (2)

st−1
j =

{
1, if ut−1

j > θ

0, otherwise
, (3)

where uti is the neuron membrane potential at time step t, and λ is the membrane potential leak.
wij represents the synaptic weight between neuron i and j, and θ is the threshold voltage value.
st−1
j denotes the spike output of the neuron j, which is a binary function. When ut−1

i reaches the
threshold θ at the time step t, the neuron j generates a spike and takes value 1 as output and 0
otherwise. In this study, we employ the most commonly used error-driven global training method,
back propagation through time (BPTT) which is designed to propagate errors across multiple time
steps. The gradients of global loss are computed by backpropagating the errors through the unrolled
network, which can be calculated as accumulating the gradients at each time step:

wij = wij − η∆wij , (4)

3
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∆wij =

(
∂L

∂wij

)
=

T∑
t=1

(
∂L

∂sti

∂sti
∂uti

∂uti
∂wij

)
, (5)

where L is the target loss function. The activation function st−1
j is a Heaviside function and cannot

be differentiated at the threshold. To solve this challenge, Neftci et al. (2019) proposed a smooth
surrogate function for computing the gradient of the activation function. This approach allows SNNs
to be trained using conventional methods while still enabling the inference of spiking signals during
forward propagation.

3 METHOD

3.1 PROBLEM DEFINITION

In our investigation of federated learning frameworks, we methodically address three predominant
challenges: client participation heterogeneity, data heterogeneity, and gradient noise.

In federated learning, client participation heterogeneity poses a significant challenge to the scalabil-
ity. This issue mainly arises when the amount of training dataNtrain remains constant but the number
of clients K increases, which reduces the amount of private data nk on each client, adversely af-
fecting the data diversity in each training round. Although the total number of clients represents
one dimension of scalability, the proportion of participating clients in each round, K/P , is also
crucial to performance, especially under non-IID datasets. Furthermore, data heterogeneity and pri-
vacy concerns complicate model training and scalability. Individual clients, varying in geographic,
demographic, or behavioral factors, may have unique data distributions Pk, often with skewed cate-
gory Σ representation Dk ∼ Pk(Σ), which challenges the global model’s ability to learn uniformly
from all clients. Here, α serves as a parameter that dictates how unevenly samples are distributed
among users. A smaller α value leads to more uneven (non-IID) distributions. Moreover, while the
base station B updates the global model using gradients from clients, it cannot access local data
directly. This arrangement, although protective, doesn’t fully prevent potential data inference from
exchanged gradients. To enhance data privacy, gradients sent to the base station are typically obfus-
cated with noise, addressing the risk of data reconstruction. Clearly, our aims are the following: by
minimizing the loss on local datasets, the resulting gradients should exhibit high sample efficiency
and maintain good generalization capabilities, while also retaining information even after gradient
noise is introduced.

3.2 PROPOSED SDFIL

Although previous work has presented the concept of information bottleneck for SNNs, they have
not considered decoupling feature to solve overfitting and improve generalization ability. Thus, we
propose to build a loss function that comprise the sufficiency of information bottleneck, compressed
statistical amount and decoupling feature in federated learning of local model. Since it is challenging
to design this kind of loss function, we rebuild the variational lower bound of information bottleneck
and apply it in the spiking federated learning framework (Venkatesha et al., 2021). The loss function
Lj(w) of the jth client is defined as

Lj(w) =
1

Nj

∑
i∈Mj

l(w, i), (6)

whereNj represents the data sample number of the jth client, and l(w, i) represents the loss function
of the ith sample. Fj represents the collection of the data index, with the length Nj . In the conven-
tional federate learning algorithm, the cross-entropy loss function is used for training for providing
the sufficient representation of input, which is formulated as

l(w, (X,Y )) = −
r∑

u=1

Yu log(Y
u), (7)

where Y represents the one-hot encoding vector (Y1, Y2, ..., Yr), and r is total number of classes.
Y u = p(x) represents the probability that sample belongs to class u. Cross entropy cannot directly
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deal with the minimum/compressed representation ofX in the hidden layer, because it just considers
logits and the true data for statistic computation. Thus, we propose to design a novel loss, which
can both evaluate the sufficient representation of input, and evaluate its minimum representation.
Its objective is to maximize the mutual information I(Y, Zi) between input X and true data in the
optimization process, and minimize the mutual information I(Zi−1, Zi) among the hidden layers.
Therefore, we can use the Lagrange equation to design the loss based on information bottleneck as:

l(w, (X,Y )) = min
p(z|x),p(y|z),p(z)

{I(X;Z)− βI(Z;Y )} , (8)

where β is the positive Lagrange multiplier to achieve the balance between the complica-
tion/compression mutual information of the input representation and the remained relevant infor-
mation of the network. Other than the sufficient statistic amount and the minimum representation,
the decoupling of the hidden factor is another expected feature of the optimal representation, because
the independent factor may affect the generation of observing data. Therefore, we aims to decou-
ple the intermediate representation to obtain the finer representation and improve the generalization
ability.

In this study, we modify the variational lower bound of information bottleneck by resetting it in
the federated learning with randomizing the intermediate representation. In addition, we introduce
decoupling in the new loss. The minimization of Lagrange equation in information bottleneck can
be maximized equally by the following Lagrange equation as

LIB(w) = max
p(z|x),p(y|z),p(z)

I(Z;Y,w)− βI(Z;X,w), (9)

where we aim at learning the fine representation Z of input X , which can maximize the represen-
tation ability of Y while maximize the compressing ability of X . Lagrange parameter makes the
optimal balance between relevance and compression. The first term makes Z be predictive of Y ,
and the second term encourages Z to forget X . The mutual information I(Z, Y ) is calculated as

I(Z;Y ) =

∫
dy dz p(y, z) log

p(y, z)

p(y)p(z)
=

∫
dy dz p(y, z) log

p(y|z)
p(y)

, (10)

We design the encoder to define by Markov chain as

p(y|z) =
∫
dx p(x, y|z) =

∫
dx p(y|x) p(x|z) =

∫
dx

p(y|x) p(z|x) p(x)
p(z)

, (11)

where we use q(Y |Z) as the variational approximation of p(Y |Z) to solve its incomputability. Since
the KL divergence KL[p(Y |Z), q(Y |Z)] ≥ 0, it can be formulated as∫

dy p(y|z) log p(y|z) ≥
∫
dy p(y|z) log q(y|z). (12)

Thus, we can get the expression as

I(Z;Y ) ≥
∫
dy dz p(y, z) log

q(y|z)
p(y)

=

∫
dy dz p(y, z) log q(y|z)−

∫
dy p(y) log p(y)

=

∫
dy dz p(y, z) log q(y|z) +H(Y ).

(13)

We can also compute the mutual information I(Z;X) as

I(Z;X) =

∫
dz dx p(x, z) log

p(z|x)
p(z)

=

∫
dz dx p(x, z) log p(z|x)−

∫
dz p(z) log p(z). (14)
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We use k(z) as the variational approximation of p(z), because p(z) =
∫
dz p(z|x) p(x) maybe have

challenges to be calculated. The KL divergence KL[p(Z), k(Z)] ≥ 0 has the following relationship
as

∫
dz p(z) log p(z) ≥

∫
dz p(z) log k(z). (15)

Thus, we have the following equation as

I(Z;X) ≤
∫
dx dz p(x) p(z|x) log p(z|x)

k(z)
. (16)

The loss function can be calculated with the lower bound in practical computation as

L ≥
∫
dx dy dz p(x) p(y|x) p(z|x) log q(y|z)− β

∫
dx dz p(x) p(z|x) log p(z|x)

k(z)
. (17)

Then we have the following equation as

L ≈ 1

Mj

Mj∑
i=1

[∫
dz p(z|xi) log q(yi|z)− β p(z|xi) log

p(z|xi)
k(z)

]
, (18)

where p(x, y) = p(x)p(y|x) = 1
Mj

∑Mj

i=1 θxi
(x)θyi

(y), and θyi
(y) = p(y|yi) is the one-hot en-

coding of the label yi. In the one-hot encoding of the label, zero is replaced by a Gaussian random
variable ξ > 0, and is normalized to maintain the sum of distribution to be 1. With the reparamier-
izing technique [42], we have p(z|x)dz = p(ξ)dξ, where z = f(x, ξ) is the deterministic function
of x and ξ. Then we have the following equation as

LIB =
1

Mj

Mj∑
i=1

Eξ∼p(ξ) [− log q(yi|f(xi, ξ))] + βKL[p(Z|xi), k(Z)]. (19)

For the decoupling of Z, we can quantify it with the total relevance measurement ζ(Z) as

ζ(Z) := KL[p(Z|xi),
∏
j

Qj(zj)]. (20)

where
∏

j Qj(zj) represents the multiplication measurement of Z. When ζ(Z) = 0, each compo-
nent of Z is independent. Thus, we use ζ(Z) as a regularization term and the minimized equation
can be formulated as

LIB =
1

Mj

Mj∑
i=1

Eξ∼p(ξ) [− log q(yi|f(xi, ξ))] + βKL[p(Z|xi), k(Z)] + γζ(Z). (21)

By setting γ = β, we can get the following equation as

LIB =
1

Mj

Mj∑
i=1

Eξ∼p(ξ) [− log q(yi|f(xi, ξ))] + βKL[p(Z|xi),
∏
j

Qj(zj)]. (22)

We set the priori as a factorized Gaussian distribution to naturally or intrinsically obtain the de-
coupling feature. The first term of the proposed SDFIL quantify the average of the classical cross
entropy, and the second term stands for the minimization and decoupling feature of the representa-
tion.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets and Models. To validate the effectiveness of SDFIL, we conducted a series of experiments
on the CIFAR10 and CIFAR100 datasets under various conditions of heterogeneity. We utilized
VGG9 as the model on the clients, and incorporated batch normalization through time (BNTT)
(Kim & Panda, 2021) during network training. Details are in the appendix.

Gradient Noise. We added Gaussian noise N (0, 1) to the gradient, scaled by a noise strength factor
ϵ. This factor is gradually increased up to 2, meaning the added noise has a mean of 0 and a standard
deviation that reaches 2 at its maximum.

Implementation Details. For SDFIL, we have chosen 0.003 as the value for β. The SGD optimizer
was used with an initial learning rate of 0.1, reduced by a factor of 5 after 40, 60, and 80 epochs.
More details are in the appendix.

Other Methods. To demonstrate that our method can effectively enhance the accuracy of federated
learning using SNNs, we conducted a comparison under the same settings with the method described
in Venkatesha et al. (2021). Furthermore, to prove that our method remains robust and effective in
federated learning scenarios characterized by system heterogeneity and gradient noise, we carried
out ablation studies. Under identical conditions, the exclusive use of SDFIL algorithm is referred to
as w/o SDFIL.

4.2 COMPARISON WITH OTHER METHODS

Existing methods (Venkatesha et al., 2021) acknowledge that real-world federated learning systems
require strong scalability. They experimented with SNNs and cross-entropy loss functions across a
range of client combinations, taking into account the imbalance in data distribution. This study used
the proposed SDFIL with the same optimizer and parameter settings. Table 1 shows the final valida-
tion accuracy after 100 rounds of training. It is evident that our method outperforms the Venkatesha
et al. (2021) under various conditions. In scenarios with full participation of clients, SDFIL only
shows a slight advantage. However, as the number of clients increases and the proportion of partici-
pating clients remains the same, SDFIL maintains a higher accuracy compared to existing methods,
with an improvement of 5% to 10%, demonstrating a significant scalability advantage. Furthermore,
under conditions of imbalanced data distribution, SDFIL experiences a smaller drop in accuracy
compared to when the data is balanced, indicating robustness.

Then, we analyze the reasons for this phenomenon. SDFIL optimizes the mutual information be-
tween the input and output of the model, helping the network filter out task-relevant information
while suppressing redundant or irrelevant data. By introducing a decoupled information bottleneck
mechanism, SDFIL enhances the model’s ability to extract useful information, thereby improving
generalization and robustness. Particularly in scenarios with imbalanced client data, SDFIL auto-
matically adjusts to learn the key features from different clients’ data, effectively addressing data
distribution imbalances and mitigating accuracy degradation. This occurs because irrelevant local
noise is suppressed under the constraints of information bottleneck in SDFIL, allowing the model to
focus more on global information that contributes to the overall task. Additionally, SDFIL enables
the data features of each client to remain relatively independent within the global model, allowing
the model to maintain high accuracy even as the number of clients increases. This independence
of client features reduces conflicts between different clients’ data, contributing to the stability and
scalability of the model. By compressing irrelevant information, SDFIL can reduce overfitting to
specific clients or local data, thus improving the model’s generalization capabilities. By lessening
its dependency on particular datasets, the model becomes more robust in the face of noise or imbal-
anced data, reducing accuracy loss under extreme conditions. Due to the suppression of irrelevant
or redundant features, the SDFIL model maintains high stability.

4.3 ABLATION STUDY

Effectiveness on system heterogeneity. Figure 2 shows the effectiveness of SDFIL on client par-
ticipation heterogeneity. We only consider the differences in the number of participating clients P

7
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Table 1: Final validation accuracy achieved by the models after 100 rounds, for varying numbers of
total and participating clients, was evaluated on CIFAR10 and CIFAR100. A key finding is that, as
the ratio of total clients to participating clients (K/P) increases, the performance degradation is more
pronounced in ANNs and Venkatesha et al. (2021) than in our SDFIL method.

Clients (K/P) 10/2 20/5 100/10 150/15 200/20

CIFAR10

ANN IID 82.81 78.25 50.84 42.82 36.37
(Venkatesha et al., 2021) non-IID 79.68 73.02 44.33 36.86 33.39

SNN IID 76.44 75.01 67.54 63.85 58.76
(Venkatesha et al., 2021) non-IID 73.94 68.80 58.71 59.32 55.31

SDFIL IID 78.51 77.31 76.02 74.79 73.72
non-IID 75.60 70.46 69.36 68.35 64.83

CIFAR100

ANN IID 55.56 47.47 12.29 8.25 4.61
(Venkatesha et al., 2021) non-IID 53.55 44.80 13.12 8.39 5.08

SNN IID 47.25 49.95 42.79 36.61 32.52
(Venkatesha et al., 2021) non-IID 41.00 46.64 40.91 37.35 32.13

SDFIL IID 50.61 51.06 48.06 46.22 43.60
non-IID 44.13 47.11 45.54 44.68 43.40

and a type of data imbalance (α = 0.5), without taking gradient noise into account (ϵ = 0). In the
IID scenario, since the data is evenly distributed across clients, adding SDFIL results in only a slight
increase in accuracy. However, for the non-IID scenario, our method still retains a certain degree of
generalization capability even with fewer participants, particularly under extreme conditions such
as an K/P ratio of 100/1, where the accuracy can be improved by up to 5.21%.

Figure 2: Effectiveness on client participation heterogeneity. A key finding is that, SDFIL still
retains a certain degree of generalization capability even under extreme conditions such as an K/P
ratio of 100/1.

Furthermore, as shown in Figure 3, we also do not introduce gradient noise here. Under extremely
unbalanced non-IID conditions (α = 0.25), although the reduction in accuracy due to the decrease
in the number of participating clients from P = 10 to P = 5 is inevitable, our method minimizes the
relative decrease in accuracy. This indicates that under conditions of significant data heterogeneity
and client participation heterogeneity, the gradients produced by SDFIL enhance the robustness of
the trained model. Moreover, when the data distribution is relatively balanced (α = 1.0, 2.0, 4.0),
SDFIL not only improves accuracy but also shows less susceptibility to changes of data distribution,

8
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resulting in a more stable relative decrease in accuracy. Specifically, while the accuracy is increased
by up to 1%, it consistently achieves the relative decrease of approximately 2.5%.

Figure 3: Effectiveness on data heterogeneity. ’dec’ indicates the relative decrease in accuracy
from 100/10 to 100/5. A key finding is that, SDFIL not only performs better but also minimizes
the relative decrease in accuracy even under conditions of significant data heterogeneity and client
participation heterogeneity.

Effectiveness on gradient noise. We introduce gradient noise at the end, while simultaneously con-
sidering both types of heterogeneity. Table 2 and Table 3 displays the effects of incorporating gradi-
ent noise under conditions of data heterogeneity and client participation heterogeneity on CIFAR10
and CIFAR100. The more imbalanced the data distribution among clients, the greater the impact
of noise on the model’s performance. Under the same conditions, SDFIL shows an improvement in
accuracy by up to 5.14%, indicating that the gradients produced by the improved loss function are
better suited to the addition of random noise. This is because SDFIL extracts task-relevant latent
features from the data while suppressing or discarding task-irrelevant noise or redundant informa-
tion. Through SDFIL, the model selectively captures the most useful feature representations, thereby
effectively reducing the impact of noise on the global model. This makes the global model more
robust to noise when aggregating gradients and better able to adapt to diverse heterogeneous data
distributions. This allows the use of noisy gradients to effectively implement privacy protection.

Table 2: Final validation accuracy achieved by the models after 100 rounds on CIFAR10.

Clients (K/P) 100/10 100/5

Methods w/o SDFIL SDFIL w/o SDFIL SDFIL

α ϵ = 1 ϵ = 2 ϵ = 1 ϵ = 2 ϵ = 1 ϵ = 2 ϵ = 1 ϵ = 2

0.25 62.37 64.05 64.57 65.00 57.32 60.08 62.46 58.61
0.5 69.51 68.76 71.04 69.88 61.94 56.77 66.57 59.35
1.0 73.24 73.01 73.68 73.38 72.34 72.59 72.49 73.01
2.0 74.57 74.71 74.72 75.18 73.02 72.11 73.27 72.30
4.0 75.31 75.30 75.58 75.80 75.30 74.45 75.46 74.74

4.4 ENERGY CONSUMPTION

We approximate the energy use of 32-bit integer arithmetic in a 45nm CMOS process, focusing
only on Multiply and Accumulate (MAC) operations and excluding memory and peripheral circuit
energy, as detailed in Horowitz (2014). Specific details are included in the appendix. Figure 4
displays the estimated energy consumption for each layer in ANN and SDFIL using the VGG9

9
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Table 3: Final validation accuracy achieved by the models after 100 rounds on CIFAR100.

Clients (K/P) 100/10 100/5

Methods w/o SDFIL SDFIL w/o SDFIL SDFIL

α ϵ = 1 ϵ = 2 ϵ = 1 ϵ = 2 ϵ = 1 ϵ = 2 ϵ = 1 ϵ = 2

0.25 42.35 43.09 43.77 43.29 40.00 40.75 40.51 40.93
0.5 45.71 45.55 45.93 46.67 43.92 43.64 44.06 44.12
1.0 46.58 47.09 46.92 47.73 45.55 45.07 45.60 45.85
2.0 47.47 47.71 47.92 47.65 45.59 46.13 47.01 46.97
4.0 48.05 48.42 48.84 49.80 46.32 46.58 46.87 47.16

model trained on CIFAR10 for 100/10 clients with non-IID data distribution. The total energy
estimated by ANN is approximately 227.99µJ, in contrast to SDFIL, which is estimated at 29.76µJ,
making it 7.7 times more energy-efficient. Unlike the constant energy consumption of the ANN
across all instances, the energy usage of the SNN fluctuates with each instance, influenced by the
activity of its spikes.

Figure 4: Comparison of energy consumption. A key finding is that, SDFIL are considerably more
energy efficient compared to ANNs.

5 CONCLUSION

This study introduces and evaluates a approach to robust, spike-based federated learning within en-
vironments characterized by noise, data heterogeneity, and client participation heterogeneity. The
proposed SDFIL not only maximizes mutual information between ground truths and model predic-
tions but also minimizes it between intermediate representations. Experimental results demonstrate
that the SDFIL framework outperforms existing methods in terms of robustness to noise across
various settings and degrees of heterogeneity. By mitigating the adverse effects of noisy and incon-
sistent data, SDFIL significantly enhances the feasibility and energy efficiency of federated learning
on energy-constrained devices. These findings underscore the promising applications of SNNs in
federated learning scenarios. Given the promising effectiveness of SDFIL, it also has limitations,
including lack of investigation on different SNN architectures, other types of noises, and tests on
real-world devices. Limitations and future work are discussed in detail in Appendix A.5.
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ETHICS STATEMENT

This study explores the integration of SNNs with federated learning to enhance image recognition
tasks using the publicly available CIFAR10 and CIFAR100 datasets. These datasets consist of non-
sensitive, public domain images widely used in the computer vision community, complying with all
applicable terms of use. We have taken careful measures to adhere to data protection and privacy
regulations, including GDPR, despite the non-sensitive nature of the data. The federated learning
approach further bolsters our commitment to privacy as it allows for collaborative learning without
direct data sharing. Our research team is committed to upholding the highest standards of research
integrity and ensuring that our findings accurately reflect the conducted experiments and analyses.

REPRODUCIBILITY

We provide code for all experiments with the submission and provide the required experimental
details in the appendix.
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A APPENDIX

A.1 TRAINING SPIKING NEURAL NETWORKS WITH BNTT

In reference Kim & Panda (2021), the authors developed a strategy that applies batch normalization
along the time dimension to boost the training of SNNs. This technique enables the creation of high-
performance, low-latency SNNs from scratch, without relying on previously trained ANN models.
The key to this method is the introduction of a distinct learning parameter for each time-step, which
expands the batch norm layer through time. During the forward propagation, the BNTT is applied
after each layer as:

uti = λut−1
i + BNTTγt

∑
j∈N

wijo
t
j

 = λut−1
i + γti

(∑
j∈N wijo

t
j − µt

i√
(σt

i)
2 + ϵ

)
(A1)

where µt
i and σt

i represent the mean and variance of the mini-batch B at time step t. These are
computed using an exponential moving average across the training phases, which are applied to
standardize the validation set during inference. The scaling factor γ is adjusted through backpropa-
gation, with distinct γt values assigned at each time step for optimized inference.

A.2 INTRODUCTION AND PROCESSING OF DATASETS

CIFAR10 Introduced by Krizhevsky (2009), the CIFAR10 dataset comprises a collection of 60,000
color images categorized into 10 distinct classes, each containing 6,000 images. This dataset is
segmented into two subsets: 50,000 images for training and 10,000 for testing, distributing 5,000
training images and 1,000 testing images per class. All images are presented in a uniform resolution
of 32x32 pixels.

CIFAR100 The CIFAR100 dataset expands upon the CIFAR-10 dataset, offering a more complex
and varied testing ground for image recognition systems. It features 100 distinct classes, signif-
icantly broadening the scope beyond the 10 classes found in CIFAR10. This variety includes a
diverse array of objects and concepts, providing a rigorous challenge in image classification.
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Poisson Rate Coding The training process starts by encoding the pixel values into spike trains of
length T using Poisson rate coding. In Poisson coding, the relationship between the number of
spikes and the pixel intensity is established. At each time step, a random value is sampled from the
minimum to maximum possible pixel intensity range Imin to Imax. If this sampled value is below
the actual pixel intensity, a spike is generated, rendering the spike occurrence at each time step
stochastic. The accumulated number of spikes over time steps proportionally represents the pixel
intensity. Thus, when spikes are aggregated over time, the resulting image closely approximates the
original.

A.3 DETAILED EXPERIMENTAL SETUP AND RESULTS

Detailed Setup For client participation heterogeneity, we set up the case trained with 100 clients and
gradually decrease the number of participating clients from 50 to 1. Specifically, we employ two
K/P scenarios, 100/10 and 100/5, to combine with other issues. To address data heterogeneity,
we employed a Dirichlet distribution to generate non-IID data, which was then distributed among
various clients. We initiate with α = 4 and reduce it incrementally by half, ensuring the model’s
stability, to assess the system’s performance. The settings of the hyper-parameters in the experiment
are as Table 4.

Table 4: Settings of the hyper-parameters.

Description Value

Rounds of training 100
Number of local epochs 5

Training batch size 32
Testing batch size 64

Initial learning rate 0.1
Reduction factor for learning rate 5

Weight decay for SGD 5e-4
SGD momentum 0.95

Timesteps 20
kernel size 3

Detailed Results For the effectiveness of SDFIL on system and data heterogeneity, the detailed
results are as Table 5 and Table 6.

Table 5: Detailed results for the effectiveness of SDFIL on client participation heterogeneity.

Clients (K/P) 100/50 100/10 100/5 100/1

CIFAR10
w/o SDFIL

IID 77.15 75.88 74.74 67.21
non-IID 72.03 69.36 59.70 26.07

SDFIL IID 77.02 76.02 75.52 68.44
non-IID 72.95 69.36 59.95 31.28

CIFAR100
w/o SDFIL

IID 48.84 47.86 47.54 38.65
non-IID 46.85 45.30 43.57 30.86

SDFIL IID 48.42 48.06 47.60 39.01
non-IID 47.00 45.54 43.74 31.43
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Table 6: Detailed results for the effectiveness of SDFIL on data heterogeneity.

α 0.25 0.5 1.0 2.0 4.0

CIFAR10
w/o SDFIL

100/10 62.20 69.36 73.23 74.90 75.47
100/5 57.44 59.70 72.25 71.98 74.24

SDFIL 100/10 63.69 69.36 74.25 74.92 75.69
100/5 60.22 59.95 72.85 72.94 74.40

CIFAR100
w/o SDFIL

100/10 41.22 45.30 47.42 47.78 47.75
100/5 39.00 43.57 45.26 46.51 45.85

SDFIL 100/10 41.80 45.54 46.97 47.95 48.00
100/5 40.07 43.85 45.77 46.66 46.84

A.4 ESTIMATED ENERGY

This approximation is relatively coarse since it solely accounts for Multiply and Accumulate (MAC)
operations, disregarding the energy consumption of memory and peripheral circuits. The energy
costs associated with these operations are detailed in Table 7. For a convolutional layer with kernel
size k × k, I input channels, and O output channels, operating on an N ×N input feature map and
producing an M ×M output feature map, the total number of operations (OPS) is expressed as:

OPS =M2 × I × k2 ×O (A2)

For a fully connected layer with I inputs and O outputs, the number of operations (OPS) is:

OPS = I ×O (A3)

Given that SNNs utilize binary spikes, the MAC operations simplify to accumulation (AC) oper-
ations, thereby enhancing energy efficiency. The energy consumption for ANNs can be directly
calculated as:

EANN = OPS × EMAC (A4)

The energy usage for SNNs is calculated by multiplying the OPS by the spiking rate R across all
timesteps T , formulated as:

ESNN = OPS ×R× T × EAC (A5)

Table 7: Energy estimation for multiply and accumulate operations.

Operation Estimated Energy (pJ)

32-bit Multiply EMult 3.1
32-bit Add EAdd 0.1

32-bit Multiply and Accumulate EMAC 3.2
32-bit Accumulate EAC 0.1

Table 8 shows the spike rate of the corresponding layers for the final model of SDFIL after 100
rounds.

Table 8: Spike rate of the corresponding layers.

Layers Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 FC1 FC2

Spike rate 0.2112 0.0932 0.1597 0.0757 0.1092 0.0464 0.0295 0.0448 0.0126
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A.5 LIMITATIONS AND FUTURE WORK

Given the promising results demonstrating the effectiveness of SDFIL, it also has limitations.

First, the effectiveness of SDFIL may be highly dependent on the specific SNN architecture and
hyperparameter settings. Different network structures may exhibit varying adaptability under non-
independent and identically distributed (non-IID) data and client heterogeneity conditions. The
current research may not have fully explored the diversity of SNN architectures. Future studies
could attempt to validate the effectiveness of SDFIL across a wider range of SNN architectures,
investigating how different architectures impact the disentanglement results.

Second, while SDFIL demonstrates strong robustness in handling gradient noise, its performance
may degrade in extreme noise environments (such as very high noise levels or adversarial attacks).
Different types of noise, such as asynchronous client updates or data contamination introduced by
malicious clients, may require further research and optimization.

Finally, the current experiments are primarily based on simulated environments, and the framework
has not yet been thoroughly tested in large-scale real-world federated learning systems. In particular,
energy consumption evaluations may lack rigorous validation on real resource-constrained devices.
Future work could further test SDFIL in real IoT or mobile device scenarios to verify its performance
under actual energy consumption and computational resource constraints.

Future work can include two aspects.

First, the current research primarily focuses on optimizing single-task federated learning. Future
work could consider extending SDFIL to multi-task federated learning environments, where impor-
tant features can be shared and disentangled across different tasks. This would help improve the
model’s generalization ability in multi-task and cross-domain applications.

Second, future research could explore the application of SDFIL in more complex federated learning
scenarios, such as asynchronous update mechanisms, dynamic client participation, and data sparsity.
These situations are common in real-world applications, and enhancing the algorithm’s adaptability
and generalization in these contexts will be an important research direction.

A.6 THEORETICAL ANALYSIS

Settings: In this section, we analyze the theoretical convergence results of the designed loss function
and the robustness of the aggregation scheme For loss convergence analysis, we rewrite the entire
loss function LIB as follows:

lIB = CEloss + βKLloss (A6)

where CEloss is the sufficient statistic loss component, and KLloss is the decoupled compressive
statistic loss component. The LIF model simulates the accumulation of a neuron’s membrane po-
tential in response to input currents, firing a spike when a threshold is reached. First, we derive the
optimal cost for each loss component and demonstrate the corresponding convergence rate. Then,
we compare the optimal costs of each component to analyze the convergence behavior of the entire
loss function.

Sufficient Statistic Loss

Proposition 1: The sufficient statistic loss (CEloss) in the SDFIL loss function is equivalent to the
classical cross-entropy loss, whose optimal convergence rate is up to the logarithmic factor.

Proof: Let a single sample-label pair be (x, y). In the LIF model, we can calculate the optimal cost
of CEloss associated with the JIB loss function for the sample as follows:

CEloss = Eξ∼p(ξ) [− log q (y | f(x, ξ))] (A7)

In the LIF model, the activation function simulates the accumulation of the membrane potential
and the spiking process, with the dynamics of the membrane potential described by differential
equations. Let Y be the one-hot encoded vector, r the total number of classes, and Ŷu = f(x, ξ) the
probability that the sample is in class u. Then, Eq. (24) can be rewritten as:

CEloss = −
r∑

u=1

Yu log(Ŷu) (A8)
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Clearly, this equation is identical to Eq. (7), which is the classical cross-entropy loss calculation.
Therefore, CEloss in our designed loss function is completely equivalent to the traditional cross-
entropy loss in deep learning and federated learning, and it achieves the same optimal convergence
rate, up to a logarithmic factor. This proves Proposition 1.

Decoupled Compressive Statistic Loss

We now calculate the optimal cost of the decoupled compressive statistic loss KLloss associated
with the SDFIL loss function, considering the LIF spiking neuron model as the activation function.
The LIF model simulates the accumulation and leakage of the membrane potential during the spik-
ing process. Due to the dynamic characteristics of the membrane potential in the LIF model, we
introduce a time-dependent prior distribution to describe the noise accumulation in the membrane
potential. We recommend adopting a noise distribution, such as a log-normal distribution related to
the spike rate, as the prior Q(z), which better captures the firing characteristics of neurons.

Proposition 2: Let z = f(x, ξ) = ξ · f(x), where ξ ∼ pα(ξ), and pα is the parametric noise distri-
bution. For the LIF activation function, let the probability distribution of z be p(z) = Q0δ0(z)+

Cnst
z .

Now, if f(x) ̸= 0, then:

(i)
KLloss = −H(pα(x)(log ξ)) + log(Cnst) (A9)

(ii)
KLloss = − logαθ(x) + const (A10)

while pα(ξ) = logN (0, α2
θ(x)) follows a log-normal distribution; otherwise,

(iii)
KLloss = − logQ. (A11)

For the LIF activation function, which models spiking neurons based on accumulated membrane
potential dynamics, pα(ξ) describes the distribution of the noise involved in triggering a spike (i.e.,
reaching the threshold). If the LIF model involves the log-normal distribution of noise, similar
calculations as used for ReLU and Softplus can be extended to LIF as well, but with the membrane
potential dynamics in mind.

Proof: We use the following more generic KL divergence definition, since Pθ(z|x) and Pθ(z) are
not absolutely continuous:

KL[P (z), Q̂(z)] =

∫
log

dP

dQ̂
dP (A12)

where P ≪ Q̂. Since KL divergence is invariant under invertible parameter transformations, we can
express this using a typical invertible transformation ψ(z):

KL[P (z), Q̂(z)] = KL[P (ψ(z)), Q̂(ψ(z))] (A13)

Now, assume f(x) ̸= 0, then z ̸= 0. Since P (log z) = Cnst when z > 0, we get:

KLloss = KL[Pθ(z|x), Pθ(z)] = KL[Pθ(log z|x), Pθ(log z)] (A14)

This proves Proposition 2(i). Now, when pα(z)(ξ) = logN (0, α2
θ(x)), we obtain pα(x)(log ξ) =

N (0, α2
θ(x)), and the entropy of the Gaussian distribution is given by:

H(N (0, α)) = logαθ(x) +
1

2
log(2πe) (A15)

This proves Proposition 2(ii).

In the case of the LIF model, the dynamics of membrane potential (which includes both integration
and leakage) must be factored into the overall model. Hence, the noise required to trigger a spike
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plays a role in shaping the distribution, analogous to the role that activation functions like ReLU and
Softplus play in traditional neural networks.

Next, if we set f(x) = 0, then z = 0, so p(z|x) = δ0(z). After that, we can compute:

KLloss =

∫
log

dP (z|x)
dP (z)

dP = − logQ (A16)

Similarly, in the LIF model, we can compute the optimal convergence rate of KLloss. This proves
Proposition 2(iii).

SDFIL Loss Case

Proposition 3: The optimal convergence rate of the SDFIL loss function using the LIF activation is
up to the logarithmic factor.

Proof: We can write the collated optimal cost of the SDFIL loss function (LIB) for a single sample
(xi, yi) using the LIF activation model as follows. In the LIF model, neurons accumulate mem-
brane potential over time and emit spikes once the potential reaches a certain threshold, after which
the membrane potential resets. The leak dynamics of the membrane potential are modeled by an
exponential decay process, which adds complexity to the loss function in comparison to ReLU or
Softplus.

Using the LIF model, the loss function is modified to account for the dynamic behavior of the neuron
membrane potential. For LIF neurons, the collated optimal cost of LIB can be expressed as:

LIB =
1

Mj

Mj∑
i=1

Eξ∼p(ξ) [− log q(yi | f(xi, ξ))] + β logαθ(xi) (A17)

where αθ(xi) is associated with the membrane potential’s leakage and spike threshold dynamics.
The exponential decay in membrane potential and stochastic behavior related to spiking are taken
into account here.

While the LIF activation inherently has more complex dynamics due to the temporal evolution of
the membrane potential and its eventual spike, the loss function maintains a similar structure to that
used in ReLU activations but incorporates the time constants related to the membrane potential’s
leak rate.

In the LIF model, the collated optimal cost of LIB becomes:

LIB =
1

Mj

Mj∑
i=1

Eξ∼p(ξ) [− log q(yi | f(xi, ξ))] + β

[
1

2σ2

(
σ2(xi) + µ2

)
− log

α(xi)

σ
− 1

2

]
(A18)

Here, α(xi) models the stochastic behavior of the LIF neuron related to the timing of spikes and the
leak rate of the membrane potential. This form reflects the time-varying characteristics of the LIF
neurons and their impact on the optimal loss function.

From the above theoretical results, it is demonstrated that the optimal convergence rate for LIB is
up to the logarithmic factor, based on the proofs of Proposition 1 and Proposition 2. This proves
Proposition 3 and, therefore, we can conclude that our method converges under the LIF model.

18


	Introduction
	Background
	Federated Learning
	Spiking Neural Networks

	Method
	Problem Definition
	Proposed SDFIL

	Experiments
	Experimental Setting
	Comparison with Other Methods
	Ablation Study
	Energy Consumption

	Conclusion
	Appendix
	Training Spiking Neural Networks with BNTT
	Introduction And Processing of Datasets
	Detailed Experimental Setup and Results
	Estimated Energy
	Limitations and Future work
	Theoretical Analysis


