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Abstract

With the increasing availability of open-source robotic data, imitation learning1

has emerged as a viable approach for both robot manipulation and locomotion.2

Currently, large generalized policies are trained to predict controls or trajectories3

using diffusion models, which have the desirable property of learning multimodal4

action distributions. However, generalizability comes with a cost, namely, larger5

model size and slower inference. This is especially an issue for robotic tasks that6

require high control frequency. Further, there is a known trade-off between perfor-7

mance and action horizon for Diffusion Policy (DP), a popular model for generating8

trajectories: fewer diffusion queries accumulate greater trajectory tracking errors.9

For these reasons, it is common practice to run these models at high inference10

frequency, subject to robot computational constraints. To address these limitations,11

we propose Latent Weight Diffusion (LWD), a method that uses diffusion and12

a world model to generate closed-loop policies (weights for neural policies) for13

robotic tasks, rather than generating trajectories. Learning the behavior distribution14

through parameter space over trajectory space offers two key advantages: longer15

action horizons (fewer diffusion queries) & robustness to perturbations while re-16

taining high performance; and a lower inference compute cost. To this end, we17

show that LWD has higher success rates than DP when the action horizon is longer18

and when stochastic perturbations exist in the environment. Furthermore, LWD19

achieves multitask performance comparable to DP while requiring just ∼ 1/45th20

of the inference-time FLOPS per step.21

Figure 1: Latent Weight Diffusion (LWD) generates policies from heterogeneous trajectory data.
With state-conditioned policy generation, the diffusion model can run inference at a lower fre-
quency. With task-conditioned policy generation, the generated policies can be small yet main-
tain task-specific performance. Demonstrations of this work can be found on the project website:
https://sites.google.com/view/lwd2025/home.
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1 Introduction22

The rise of open-source robotic datasets has made imitation learning a promising approach for23

robotic manipulation and locomotion tasks [10, 43]. While methods like Behavioral Cloning [13] and24

transformer-based models (e.g., RT-1 [5]) have shown promise, they struggle with multimodal action25

distributions. For example, in navigation tasks where both “turn left” and “turn right” are valid, these26

models often predict an averaged action, i.e., “go straight”, leading to suboptimal performance.27

Diffusion models offer a compelling alternative, providing continuous outputs and learning multi-28

modal action distributions [51]. Action trajectory diffusion for robotic tasks [9] has shown promise29

but incurs high computational costs, particularly at high control frequencies. Moreover, such tra-30

jectory diffusion models are susceptible to the trade-off between performance and action horizon31

(or action chunk size, representing the number of environment interactions between consecutive32

trajectory generations). Fewer diffusion queries lead to larger action chunks, giving greater trajectory33

tracking errors.34

To overcome these limitations, we introduce Latent Weight Diffusion (LWD), a novel approach that35

uses latent diffusion and a world model to generate closed-loop policies directly in parameter space,36

bypassing trajectory generation. LWD first encodes demonstration trajectories into a latent space,37

then learns their distribution using a diffusion model, and finally decodes them into policy weights38

via a hypernetwork [15]. The generated policy is also optimized with model-based imitation learning39

using a co-trained world (dynamics) model [16], which helps in understanding the environment40

transitions during training. This approach leverages the success of latent diffusion techniques in41

vision [47] and language [34], and combines them with learned dynamics models, bringing their42

advantages to robotic control. The world model, and accompanying loss terms, help the agent learn43

the optimal policy that can be backpropagated through the learned (differentiable) dynamics, and also44

apply corrective actions to bring back the agent states back into distribution of the input trajectory45

dataset. For LWD, the action horizon corresponds to the number of environment interactions between46

consecutive policy weight generations. To achieve trajectory encoding and policy parameter decoding,47

we derive a novel objective function described in Section 3.1, and show that we can approximate its48

components with a hypernetwork-based VAE and a World Model, and optimize it using a novel loss49

function described in Section 3.2. This paper provides the following key contributions:50

1. Theoretical Foundations for generating policies: We derive a novel objective function,51

which when optimized, allows us to generate policy parameters instead of action trajectories.52

For this, we integrate concepts from latent diffusion, hypernetworks, and world models.53

2. Longer Action Horizons & Robustness to Perturbations: By generating closed-loop54

policies under learned dynamics, LWD mitigates trajectory tracking errors, enabling policies55

to operate over extended time horizons with fewer diffusion queries. Additionally, closed-56

loop policies are reactive to environmental changes, ensuring LWD-generated policies57

remain robust under stochastic disturbances.58

3. Lower Inference Costs: The computational burden of generalization is shifted to the59

diffusion model, allowing the generated policies to be smaller and more efficient.60

We validate these contributions through experiments on the PushT task [9], the Lift and Can tasks61

from Robomimic [36], and 10 tasks from Metaworld [58]. On Metaworld, LWD achieves comparable62

performance to Diffusion Policy but with a ∼ 45x reduction in FLOPS per step, representing a63

significant improvement in computational efficiency (FLOPS per step are the floating point operations64

per second, amortized over all steps of the episode). Analysis across a range of benchmark robotic65

locomotion and manipulation tasks, demonstrates LWD’s ability to accurately capture the behavior66

distribution of diverse trajectories, showcasing its capacity to learn a distribution of behaviors.67

2 Related Work68

2.1 Imitation Learning and Diffusion for Robotics69

Behavioral cloning has advanced with transformer-based models like PerAct [49] and RT-1 [5], achiev-70

ing strong task performance. Vision-language models (e.g., RT-2 [4]) extend this by interpreting text71

as actions, while RT-X [10] generalizes across robot embodiments. Object-aware representations [24],72
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energy-based models, and temporal abstraction (e.g., implicit behavioral cloning [13], sequence73

compression [61]) further improve multitask learning. DBC [7] enhances robustness to sensor noise,74

whereas LWD targets environmental perturbations affecting system dynamics, such as object shifts or75

execution-time disturbances.76

Alongside these advances, diffusion models (originally introduced for generative modeling [25, 48])77

have emerged as powerful tools for robotics. Trajectory-based diffusion approaches capture mul-78

timodal action distributions [9], while goal-conditioned methods such as BESO [46] and Latent79

Diffusion Planning [30] improve efficiency through latent-space conditioning. Diffusion has also80

been leveraged for grasping and motion planning [52, 35, 6], skill chaining [39], and locomotion81

control [28]. Hierarchical extensions such as ChainedDiffuser [57], SkillDiffuser [33], and multi-82

task latent diffusion [51] address long-horizon action planning, though trajectory tracking remains83

challenging. Recently, OCTO [40] demonstrates that diffusion-based generalist robot policies.84

2.2 Hypernetworks and Policy Generation85

Hypernetworks, first introduced by [15], are neural architectures designed to estimate parameters86

for secondary networks, finding applications across various domains. Initially applied to meta-87

learning scenarios for one-shot learning tasks [3], hypernetworks have recently been extended to88

robot policy representations [23]. Their approach aligns conceptually with Dynamic Filter Networks89

[29], emphasizing dynamic adaptability to input data.90

Recent developments also integrate Latent Diffusion Models (LDMs) into hypernetwork-like settings,91

modeling training dynamics in parameter spaces [41]. Specifically, LDMs have been successfully used92

to generate behavior-conditioned policies from textual descriptions [22] and trajectory embeddings93

[32], as well as to learn distributions over complex model architectures like ResNet [54]. Notably,94

while these recent approaches [22, 32] depend on pre-collected policy datasets, the current work95

distinguishes itself by removing this requirement.96

2.3 World Models97

Ha and Schmidhuber [16] introduced world models for forecasting in latent space. PlaNet [18]98

extended this with pixel-based dynamics learning and online planning. Dreamer [17] learned latent99

world models with actor-critic RL for long-horizon behaviors, followed by DreamerV2 [19] with100

discrete representations achieving human-level Atari, and DreamerV3 [20] scaling robustly across101

domains. IRIS [37] used transformers for sequence modeling, reaching superhuman Atari in two102

hours. SLAC [31] showed that stochastic latent variables accelerate RL from high-dimensional inputs.103

VINs [50] embedded differentiable value iteration for explicit planning, while E2C [55] combined104

VAEs with locally linear dynamics. DayDreamer [56] enabled real robot learning in one hour, and105

MILE [27] adapted Dreamer to CARLA with 31% gains. Model-based imitation learning was further106

scaled to large self-driving datasets by Popov et al. [44]. Recent advances include SafeDreamer [60]107

for safety, STORM [38] with efficient transformers, UniZero [59] for joint optimization of models108

and policies, and Time-Aware World Models [8] incorporating temporal dynamics.109

3 Method & Problem Formulation110

As this work tackles policy neural network weights generation, we take inspiration from the method111

employed in [22], where it was demonstrated that latent diffusion can be utilized to learn the112

distribution of policy parameters for humanoid locomotion. A key limitation of this method was113

the reliance on often unavailable policy datasets. This work does not require a dataset of policy114

parameters but trains on a (more commonly available) trajectory dataset.115

LWD employs a two-step training process. First, a variational autoencoder (VAE) with weak KL-116

regularization encodes trajectories into a latent space that can be decoded into policy weights. The117

decoder is a conditioned hypernetwork that takes a policy neural network without its parameters118

(weights) as input and populates it with the desired weights based on the conditioning. The gen-119

erated policy parameters are also optimized for trajectory tracking with a world model. Next, a120

diffusion model learns the distribution of this latent space, enabling policy sampling from the learned121

distribution (see Figure 2).122
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Figure 2: LWD: We first pre-train a VAE and World Model, which variationally encodes trajectories
to a latent space and then decodes it as policy parameters, the policy parameters are optimized for both
behavior cloning and trajectory tracking in a co-trained world model. Next, we train a conditional
latent diffusion model to learn this latent distribution. When teacher forcing is enabled, the world
model parameters are optimized, when disabled, the world model is used to optimize the VAE.

Compared to [22], which encodes policy parameters and employs a graph hypernetwork with a MSE123

loss on parameter reconstruction, our approach differs as it: (1) encodes trajectories as opposed124

to parameters, into latent space (2) uses a simple hypernetwork, (3) applies a behavior cloning125

loss (detailed in Section 3.1 & Section 3.2) on the generated policy, and (4) learns a world model126

for predicting observations given the action in an environment. Below we discuss the problem127

formulation and derivation.128

3.1 Latent Policy Representation129

We begin by formulating our approach for unconditional policy generation. Assume a distribution130

over stochastic policies, where variability reflects behavioral diversity. Each policy is parameterized131

by θ, with π(·, θ) denoting a sampled policy and p(θ) the parameter distribution. Sampling a132

policy corresponds to drawing θ ∼ p(θ). When a policy interacts with the environment, it gives133

us a trajectory τ = {st, at}Tt=0. We assume multiple such trajectories are collected by repeatedly134

sampling θ and executing the corresponding policy. This enables a heterogeneous dataset, e.g., from135

humans or expert agents. For a given θ, actions are noisy: at ∼ N (π(st, θ), σ
2).136

Our objective is to recover the distribution p(θ) that generated the trajectory dataset. We posit a latent137

variable z capturing behavioral modes, and assume conditional independence: p(τ | z, θ) = p(τ | θ).138

Given trajectory data, we maximize the likelihood log p(τ). To do so, we derive a modified Evidence139

Lower Bound (mELBO) that incorporates p(θ) (see below). This differs from the standard ELBO140

used in VAEs.141

log p(τ) = log

∫ ∫
p(τ, θ, z) dz dθ (Introduce policy parameter θ and latent variable z)

= log

∫ ∫
p(τ | z, θ)p(θ | z)p(z) dz dθ (Apply the chain rule)

= log

∫ ∫
p(τ | z, θ)p(θ | z)p(z)

q(z | τ)
q(z | τ) dz dθ (1a)

(Introduce a variational distribution q(z | τ), approximating the true posterior p(z | τ))

= log

∫
Ep(θ|z)

[
p(τ | z, θ)p(z)

q(z | τ)
q(z | τ)

]
dz (1b)

≥ Eq(z|τ)

[
log

(Ep(θ|z) [p(τ | z, θ)] p(z)
q(z | τ)

)]
(Jensen’s inequality)

= Eq(z|τ)
[
log

(
Ep(θ|z) [p(τ | z, θ)]

)]
− Eq(z|τ) [log (q(z | τ))− log (p(z))] (1c)

= Eq(z|τ)
[
log

(
Ep(θ|z) [p(τ | θ)]

)]
− KL(q(z | τ) ∥ p(z)) (cond. independence) (1d)

≥ Eq(z|τ)
[
Ep(θ|z) [log (p(τ | θ))]

]
− KL(q(z | τ) ∥ p(z)) (Jensen’s inequality) (1e)

Assuming the state transitions are Markov and s1 is independent of θ, the joint likelihood of the entire142

sequence {(s1, a1), (s2, a2), . . . , (sT , aT )} (i.e., p(τ | θ)) is given by:143
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p(s1, a1, . . . , sT , aT | θ) = p(s1)p(a1 | s1, θ) ·
T∏

t=2

p(st | st−1, at−1)p(at | st, θ) (2a)

log p(s1, a1, . . . , sT , aT | θ) = log p(s1) + log p(a1 | s1, θ)

+

T∑
t=2

[log p(st | st−1, at−1) + log p(at | st, θ)] (2b)

Substituting 2b in 1e:144

log p(τ) ≥ Eq(z|τ)
[
Ep(θ|z) [log (p(τ | θ))]

]
− KL(q(z | τ) ∥ p(z))

= Eq(z|τ)

[
Ep(θ|z)

[
T∑

t=1

log p(at | st, θ) +
T∑

t=2

log p(st | st−1, at−1)

]]
− KL(q(z | τ) ∥ p(z)) +A (3)

A consists of log p(s1), and since this cannot be subject to maximization, we shall ignore it.145

Therefore, our modified ELBO is:146

Eq(z|τ)

Ep(θ|z)

 T∑
t=1

log p(at | st, θ)︸ ︷︷ ︸
Behavior Cloning

+

T∑
t=2

log p(st | st−1, at−1)︸ ︷︷ ︸
WorldModel


− KL(q(z | τ) ∥ p(z))︸ ︷︷ ︸

KLRegularizer

(4)

3.2 Loss function for World Model Augmented Variational Autoencoder for Policies147

Since we now have a modified ELBO objective, we shall now try to approximate its components148

with a variational autoencoder and a world model. Let ϕenc be the parameters of the VAE encoder149

that variationally maps trajectories to z, ϕdec be the parameters of the VAE decoder, and ϕwm150

be the world model parameters. We assume the latent z is distributed with mean zero and unit151

variance. We construct the VAE decoder to approximate p(θ | z) with pϕdec
(θ | z). Considering152

at ∼ N (π(st, θ), σ
2), and τk = {skt , akt }Tt=1, we derive our VAE loss function as:153

LBC = −
T∑

t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

154

LRO = −
T∑

t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm(st | skt−1, a

k
t−1)

)]
155

LTF = −
T∑

t=2

(skt − ŝkt )
2 LKL = −βkl

dim(z)∑
i=1

(
σ2
ei + µ2

ei − 1− log σ2
ei

)
156

L
(
{skt , akt }Tt=1 | ϕenc, ϕdec, ϕwm

)
= LBC + LRO + LTF + LKL (5)

where, LBC is the behavior cloning loss to train the policy decoder, LRO is the rollout loss to correct157

the decoded policy’s actions using the world model, LTF is the teacher forcing loss to train the world158

model, and LKL is the KL loss to regularize the latent space. θ is obtained from the hypernetwork159

decoder fϕdec
(z). (µe, σe) = fϕenc({skt , akt }Tt=1), z ∼ N (µe, σe), ŝkt ∼ pϕwm(skt | skt−1, a

k
t−1) and160

βkl is the regularization weight. The complete derivation is shown in Appendix A. Since the decoder161

in the VAE outputs the parameter of a secondary network, we shall use a conditional hypernetwork,162

specifically the model developed for continual learning by [53]. For computational stability, we shall163

use LBC , LRO and LKL to optimize the VAE (encoder and decoder parameters) and LTF to train164

the world model parameters. With the teacher forcing objective we get a reliable world model that165

we can then use in the rollout objective. This is similar to procedures followed in [1, 44, 27].166

In practice, we see that approximating p(z) = N (0, I) is suboptimal, and therefore we set βkl to167

a very small number ∼ (10−10, 10−6). After training the VAE to maximize the objective provided168
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in Equation (5) with this βkl, we have access to this latent space z and can train a diffusion model169

to learn its distribution p(z). We can condition the latent denoising process on the current state170

and/or the task identifier c of the policy required. Therefore the model shall be approximating171

pϕdif
(zt−1 | zt, c). After denoising for a given state and task identifier, we can convert the denoised172

latent to the required policy. Therefore, to sample from p(θ), first sample z using the trained diffusion173

model z ∼ pϕdif
(z0), and then apply the deterministic function fϕdec

to the sampled z. Note that to174

sample policies during inference, we do not need to encode trajectories; rather, we need to sample a175

latent using the diffusion model and use the hypernetwork decoder of a pre-trained VAE to decode a176

policy from it.177

4 Experiments178

We run three sets of experiments. In the first set, we evaluate the validity of our main contributions. We179

compare LWD with action trajectory generation methods with respect to 1) Longer Action Horizons180

and Environment Perturbations, where experiments are performed on the PushT task [9] and the Lift181

and Can Robomimic tasks [36], while varying these parameters, and 2) Lower inference costs, where182

experiments are performed on 10 tasks from the Metaworld [58] suite of tasks, to show LWD requires183

fewer parameters during inference while maintaining multi-task performance. The task descriptions184

are provided in Appendix B. We choose a multi-task experiment here as the model capacity required185

for solving multiple tasks generally increases with the number of tasks. In the second set, we perform186

ablations over three components of our method: 1) Diffusion model architecture, Appendix E; 2)187

VAE decoder size, Appendix F; 3) KL coefficient for the VAE, Appendix D. In the final set, we188

analyze the behavior distribution modeled by our latent space. These can be found in Appendix G,189

and Appendix H.190

We focus on demonstrating results in state-based low-dimensional observation spaces. Our generated191

policies are Multi-Layer Perceptrons (MLP) with 2 hidden layers with 256 neurons each. In the192

VAE, the encoder is a sequential network that flattens the trajectory and compresses it to a low-193

dimensional latent space, and the decoder is a conditional hypernetwork[12]. The details of the194

VAE implementation are provided in Appendix J.2 and Appendix J.3. For the world model, since195

we use low-dimensional observation spaces, we use a simple MLP with 2 hidden layers with 1024196

neurons each to map the history of observations and actions to the next observation. For stability,197

we use LRO only after 10 epochs of training. This warm-starts the world model before we use it to198

optimize the policy generator. For all experiments, the latent space is R256 and the learning rate is199

10−4 with the Adam optimizer. For the diffusion model, we use the DDPM Scheduler for denoising.200

Inspired by [9], we conducted an ablation between two diffusion architectures: a ConditionalUnet1D201

network and a Transformer architecture. Based on the results are shown in Appendix E, We chose the202

ConditionalUnet1D model for all experiments in the paper. Just as [9], we condition the diffusion203

model with FiLM layers, and also use the Exponential Moving Average [21] of parameter weights204

(commonly used in DDPM) for stability. All results presented in this work are obtained from running205

experiments over three seeds, and the compute resources are described in Appendix J.9206

4.1 Empirical Evaluation of Contributions207

4.1.1 Longer Action Horizons & Robustness to Perturbations208

We first evaluate our method on the PushT task [9], a standard benchmark for diffusion-based209

trajectory generation in manipulation. The goal is to align a ‘T’ block with a target position and210

orientation on a 2D surface. Observations consist of the end-effector’s position and the block’s211

position and orientation. Actions specify the end-effector’s target position at each time step. Task212

performance (measured by success rate) is defined as the maximum overlap between the actual and213

desired block poses during a rollout. We test under different action horizons and varying levels of214

environment perturbation, simulated via an adversarial agent that randomly displaces the ‘T’ block.215

For the LWD model, we first train a VAE to encode trajectory snippets (of length equal to the action216

horizon) into latents representing locally optimal policies. These policies are optimized with a217

co-trained world model. A conditional latent diffusion model, given the current state, then generates218

a latent that the VAE decoder transforms into a locally optimal policy for the next action horizon.219

The inference process is illustrated in Figure 1. We train two variants of LWD, with (LWD w/ WM)220

and without (LWD w/o WM) the world model (i.e., we train LWD with just LBC + LKL).221
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Figure 3: Longer action horizons and robustness to perturbations on PushT: Performance of
LWD and baselines on the PushT task as we vary the action horizon and environment perturbations.

Figure 4: Visualization of Perturbation: When an adversarial perturbation is applied, we see that
LWD’s generated closed-loop policy successfully adapts to the change.

As baselines for this experiment, we compare the proposed LWD variants against four alternatives: 1)222

a Diffusion Policy (DP) model that generates open-loop action trajectories for a fixed action horizon;223

2) a Latent Diffusion Policy (LDP) model, which is structurally similar to LWD but decodes the224

latent representation into an action trajectory rather than a closed-loop policy; 3) a Multilayer225

Perceptron (MLP) policy, which shares the same architecture as the policy network generated by226

LWD and serves to isolate the impact of diffusion modeling; 4) a Random Policy, which provides a227

lower-bound performance reference. For a fair comparison, all diffusion-based models (LWD, DP,228

and LDP) use the same model size and hyperparameters, corresponding to the medium configuration229

described in Appendix J.4 and Appendix J.7. LDP uses a VAE decoder, implemented as an MLP with230

two hidden layers of 256 neurons each, to output an action chunk of the same length as the action231

horizon.232

All models are evaluated across 50 uniquely seeded environment instances, with each evaluation233

repeated 10 times, across 3 training seeds. Figure 3 illustrates the impact of perturbation magnitudes234

and action horizons on success rates across all baselines. Perturbations refer to random displacements235

applied to the T block, occurring at randomly selected time steps with 10% probability. A sample236

rollout with a perturbation magnitude of 50 is shown in Figure 4.237

While DP demonstrates comparable performance to both LWD variants at an action horizon of 16238

with minimal perturbations, LWD exhibits superior robustness as the action horizon increases. This239

enhanced robustness of LWD with the world model becomes more pronounced in the presence of240

larger perturbations. Specifically, at longer action horizons such as 128, LWD w/ WM maintains a241

significantly higher success rate compared to DP across all perturbation levels. The MLP generally242

underperforms compared to both LWD variants and DP, highlighting the benefits of diffusion-based243

approaches for this task. LDP has a lower success rate than LWD, indicating that generating a244

closed-loop policy is more important than learning the latent representation space. The relatively245

lower sensitivity to perturbations at an action horizon of 16 for both policies can be attributed to the246

more frequent action trajectory queries inherent in DP at shorter horizons (i.e. smaller action chunks),247

effectively approximating a more closed-loop control strategy.248

Finally, we measured the total time required to successfully complete the PushT task and see that249

for all levels of perturbation, for a given success rate, LWD executes a rollout quicker (in wall-clock250

time) than the DP model. See Appendix I for more details.251

We also ran experiments on the Robomimic [36] Lift and Can tasks, using the same hyperparameters252

as the PushT experiment, the same task settings, and the mh demonstration data from [9]. To simulate253
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Figure 5: Longer action horizons and robustness to perturbations on Robomimic tasks: Perfor-
mance of LWD and DP as we vary the action horizon and environment perturbations.

perturbations, we add random translation and rotation vectors to the end effector, applied 10% of the254

time. Figure 5 shows the performance of the LWD variants and baselines under these perturbations255

across different action horizons. The x-axis corresponds to perturbation magnitude. Similar to PushT,256

LWD outperforms DP for longer horizons and is more robust to perturbations.257

4.1.2 Low Inference Cost258

Figure 6: Success rate vs. average compute of
LWD, DP, and MLP policies on 10 Metaworld
tasks for various model sizes. The x-axis shows
the number of GFLOPS/step for each policy on
a log scale. LWD performs ∼ 45 times fewer
computations than a DP policy with comparable
performance.

We will now look at the next contribution,259

namely, lower inference cost compared to meth-260

ods that diffuse action trajectories instead of261

policies. When training a single policy on multi-262

ple tasks, it is known that a larger model capacity263

is needed. This is detrimental in robotics appli-264

cations as this increases control latency. We265

train a task-conditioned LWD model and show266

that the cost of task generalization is borne by267

the latent diffusion model, while the generated268

execution policy remains small. Because LWD269

generates a smaller policy, the runtime compute270

required for inference is much smaller compared271

to the SOTA methods. For simplicity, in this sec-272

tion, we use the LWD w/o WM variant.273

We experiment on 10 tasks of the Metaworld274

benchmark, the details of which are in Ap-275

pendix B. We set the action horizon to the length276

of the entire trajectory for LWD to generate poli-277

cies that shall work for the entire duration of the278

rollout, where at each time step, the generated279

MLPs shall predict instantaneous control. We280

experimented over three sizes of the generated281

MLP policy: 128, 256, and 512 neurons per282

layer, each having 2 hidden layers. We also train283

10 DP models, spread over a grid of 5 different284

sizes (xs, s, m, l, xl) and 2 action horizons: 32285

and 128. Each DP model is run at an inference frequency of half the action horizon. We provide the286

details of the DP model in Appendix J.1. Finally, we also train 3 MLP models with 128, 256, and287

512 neurons per layer, to compare the performance of LWD with a standard MLP policy.288

Note that LWD uses a fixed action horizon equal to the full episode length (500 steps), whereas the289

DP model uses a variable horizon. The LWD inference process is illustrated on the right-hand side290

of Figure 1. All baseline models receive the task identifier as part of the state input. Each model291
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is trained with 3 random seeds, and evaluated across 10 tasks, with 16 rollouts per task. Figure 6292

presents the results of this evaluation. In the plot, the x-axis represents average per-step inference293

compute (in GFLOPs), and the y-axis indicates the overall success rate across tasks. For DP models,294

achieving high success rates requires increasing model size or denoising frequency (i.e., predicting295

shorter action chunks), both of which raise computational cost. In contrast, LWD generates a simpler,296

more efficient controller, requiring significantly less compute. The best-performing LWD model297

achieves an 81% success rate with ∼ 45× fewer inference operations than the closest-performing298

DP model. Interestingly, the MLP baseline also performs well, and is comparable in efficiency to299

LWD, but still lags in performance. We attribute this to the unimodal nature of this dataset, as MLPs300

struggled with the multimodal PushT task in the previous section.301

4.2 Behavior Analysis302

Figure 7: Behavior distribution: Robomimic Lift task

LWD models trajectory data from a dis-303

tribution of policies, exposing this distri-304

bution through its latent space. On the305

Robomimic Lift task with the MH dataset306

(300 trajectories from 6 operators of var-307

ied proficiency: 2 “worse,” 2 “okay,” and 2308

“better.”), LWD encoded entire demonstra-309

tion trajectories. A 2D t-SNE plot revealed310

clusters aligned with operator identity, de-311

spite LWD receiving no explicit operator312

labels. This shows LWD can cluster behav-313

iors and potentially filter unwanted ones, a314

capability further studied in Appendix G315

and Appendix H.316

5 Limitations and Future Work317

Latent Weight Diffusion (LWD) is a promising framework for policy generation, but Diffusion Policy318

(DP) performs better in short-horizon, low-perturbation settings. This gap likely stems from VAE319

approximation errors and LWD’s added complexity, which increases training cost, particularly the320

RAM demands of loading full observation sequences.321

DP’s strength is its compatibility with foundation models as action heads [40], while integrating322

LWD into such architectures remains an open question. For image-based observations, LWD requires323

CNN-based policies. Although hypernetworks can generate CNN and ViT weights, adapting these324

within LWD is challenging. Our early results show promise in using pre-trained encoders and325

applying LWD to image embeddings. Integrating LWD with vision-based world models is also open,326

but appears feasible with approaches in [44] and [27].327

Future work could improve LWD’s VAE decoder through chunked deconvolutional hypernet-328

works [53], enabling more efficient decoding. Extending LWD to Transformer or ViT policies329

is another direction, especially for sequential or visual tasks [11]. Finally, warm-starting with prior330

latents [9] may further boost performance by providing richer priors.331

6 Conclusion332

We introduce Latent Weight Diffusion (LWD), a novel framework for learning a distribution over333

policies from diverse demonstration trajectories. LWD models behavioral diversity via latent diffusion,334

a world model, and uses a hypernetwork decoder to generate policy weights, enabling closed-335

loop control directly from sampled latents. Our evaluation highlights two key strengths of LWD:336

robustness and computational efficiency. Compared to Diffusion Policy, LWD delivers more reliable337

performance in environments with long action horizons and perturbations, while reducing inference338

costs, especially in multi-task settings.339
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Justification: All experiemnts were trained with three seeds. For PushT tasks, we ran 50622

evaluations for each seed. For MetaWorld, we ran 16 evaluations per seed per task. For623

Robomimic, we ran 32 evaluations per seed per task. Each plot has error bars.624

8. Experiments compute resources625

Question: For each experiment, does the paper provide sufficient information on the com-626

puter resources (type of compute workers, memory, time of execution) needed to reproduce627

the experiments?628
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Answer: [Yes]629

Justification: This is mentioned in Appendix J.9. We have even more precise calculations630

for evaluation compute resources measured in Giga FLOPS when comparing compute with631

the baseline (DP).632

9. Code of ethics633

Question: Does the research conducted in the paper conform, in every respect, with the634

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?635

Answer: [Yes]636

Justification: The authors have adhered to the NeurIPS Code of Ethics.637

10. Broader impacts638

Question: Does the paper discuss both potential positive societal impacts and negative639

societal impacts of the work performed?640

Answer: [Yes]641

Justification: A societal impact section is mentioned in Appendix K.642

11. Safeguards643

Question: Does the paper describe safeguards that have been put in place for responsible644

release of data or models that have a high risk for misuse (e.g., pretrained language models,645

image generators, or scraped datasets)?646

Answer: [NA]647

Justification: This paper uses datasets for solving robotic tasks, which are not high risk for648

misuse.649

12. Licenses for existing assets650

Question: Are the creators or original owners of assets (e.g., code, data, models), used in651

the paper, properly credited and are the license and terms of use explicitly mentioned and652

properly respected?653

Answer: [Yes]654

Justification: The authors have credited the papers where the data has been used to train the655

models. The licenses were permissive licenses (Apache 2.0 license for D4RL, MIT license656

for Diffusion Policy) to use for research purposes. The authors have also cited the original657

papers that produced the code package or dataset.658

13. New assets659

Question: Are new assets introduced in the paper well documented and is the documentation660

provided alongside the assets?661

Answer: [Yes]662

Justification: The assets here are the code and the models. The authors will release these for663

the camera-ready version.664

14. Crowdsourcing and research with human subjects665

Question: For crowdsourcing experiments and research with human subjects, does the paper666

include the full text of instructions given to participants and screenshots, if applicable, as667

well as details about compensation (if any)?668

Answer: [NA]669

Justification: No human subjects were involved in this work.670

15. Institutional review board (IRB) approvals or equivalent for research with human671

subjects672

Question: Does the paper describe potential risks incurred by study participants, whether673

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)674

approvals (or an equivalent approval/review based on the requirements of your country or675

institution) were obtained?676

Answer: [NA]677

16

https://neurips.cc/public/EthicsGuidelines


Justification: This work does not involve human subjects, and did not require IRB approval.678

16. Declaration of LLM usage679

Question: Does the paper describe the usage of LLMs if it is an important, original, or680

non-standard component of the core methods in this research? Note that if the LLM is used681

only for writing, editing, or formatting purposes and does not impact the core methodology,682

scientific rigorousness, or originality of the research, declaration is not required.683

Answer: [NA]684

Justification: This paper does not involve LLMs as any component of the core methods in685

this research.686
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A Appendix – VAE loss derivation687

Since at ∼ N (π(st, θ), σ
2):688

p(at | st, θ) =
1√
2πσ2

exp

(
− (at − π(st, θ))

2

2σ2

)
(6)

Our objective is to maximize the mELBO. The likelihood of trajectory τk = {skt , akt }Tt=1 for the689

given VAE parameters is:690

L (τk | ϕenc, ϕdec, ϕwm)

=

T∑
t=1

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
log p

(
akt | skt , θ

)]]
+

T∑
t=2

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
log pϕwm(skt | skt−1, a

k
t−1)

]]
− KL (qϕenc

(z | τk) ∥ p(z)) (7)

Consider the second term in the above equation. On maximization akt−1 = π(skt−1, θ), and because691

the inner quantity is a constant w.r.t. st we can add a harmless expectation Est∼π[.] (i.e., states visited692

by the estimated policy, not necessarily those in the dataset), therefore it becomes:693

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
Est∼π

[
log pϕwm

(skt | skt−1, π(s
k
t−1, θ))

]]]
= Eqϕenc (z|τk)

[
Epϕdec

(θ|z)

[
Est∼π

[
log

pϕwm
(skt | skt−1, π(s

k
t−1, θ))

pϕwm
(skt | skt−1, a

k
t−1)

]]]
+ Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
Est∼π

[
log pϕwm

(skt | skt−1, a
k
t−1)

]]]
(8)

We can now substitute in the KL term, and drop the expectation in the last term (since the inner terms694

only depend on skt−1 and not st ∼ π, θ, or z. Therefore, the loss now becomes:695

L (τk | ϕenc, ϕdec, ϕwm)

= C − 1

2σ2

T∑
t=1

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
(akt − π(skt , θ))

2
]]

−
T∑

t=2

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
KL

(
pϕwm(skt | skt−1, π(s

k
t−1, θ))

∥∥ pϕwm(skt | skt−1, a
k
t−1)

)]]
−

T∑
t=2

log pϕwm
(skt | skt−1, a

k
t−1)

− KL (qϕenc
(z | τk) ∥ p(z)) (9)

For computational stability, we construct our decoder to be a deterministic function fϕdec
, i.e.,696

pϕdec
(θ | z) becomes δ(θ−fϕdec

(z)). Further, if we have a trained world model, we can approximate697

skt with st (i.e., direct model output samples) in the second term. This is done so that we can optimize698

the world model and policy correction separately with the teacher forcing and rollout objectives699
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(similar to that followed in [1]. Therefore:700

L (τk | ϕenc, ϕdec, ϕwm)

= C − 1

2σ2

T∑
t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

−
T∑

t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm

(st | skt−1, a
k
t−1)

)]
−

T∑
t=2

log pϕwm(skt | skt−1, a
k
t−1)

− KL (qϕenc
(z | τk) ∥ p(z))

Where C is a constant from the substitution. Enforcing p(z) = N (0, I), and ignoring constants, we701

get:702

L (τk | ϕenc, ϕdec, ϕwm) = LBC + LRO + LTF + LKL (10)
703

LBC = −
T∑

t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

(11)

704

LRO = −
T∑

t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm(st | skt−1, a

k
t−1)

)]
(12)

705

LTF = −
T∑

t=2

(skt − ŝkt )
2 (13)

706

LKL = −βkl

dim(z)∑
i=1

(
σ2
ei + µ2

ei − 1− log σ2
ei

)
(14)

where, LBC is the behavior cloning loss to train the policy decoder, LRO is the rollout loss to correct707

the decoded policy’s actions using the world model, LTF is the teacher forcing loss to train the world708

model, LKL is the KL loss to regularize the latent space, (µe, σe) = fϕenc
(τk), z ∼ N (µe, σe),709

ŝkt ∼ pϕwm
(skt | skt−1, a

k
t−1) and βkl is the regularization weight.710

B Appendix – Metaworld task descriptions711

Task Description
Window Open Push and open a window. Randomize window positions
Door Open Open a door with a revolving joint. Randomize door positions
Drawer Open Open a drawer. Randomize drawer positions
Dial Turn Rotate a dial 180 degrees. Randomize dial positions
Faucet Close Rotate the faucet clockwise. Randomize faucet positions
Button Press Press a button. Randomize button positions
Door Unlock Unlock the door by rotating the lock clockwise. Randomize door positions
Handle Press Press a handle down. Randomize the handle positions
Plate Slide Slide a plate into a cabinet. Randomize the plate and cabinet positions
Reach Reach a goal position. Randomize the goal positions

Table 1: Metaworld task descriptions and randomization settings
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C Appendix – Effect of Trajectory snipping on Latent Representations712

For most robotics use cases, it is impossible to train on long trajectories due to the computational713

limitations of working with large batches of long trajectories. In some cases, it may also be beneficial714

to generate locally optimum policies for shorter action horizons (as done for experiments presented715

in Section 4.1.1). Therefore, we analyze the effect of sampling smaller sections of trajectories716

from the dataset. After training a VAE for the D4RL half-cheetah dataset on three policies (expert,717

medium, and random), we encode all the trajectories in the mixed dataset to the latent space. We then718

perform Principal Component Analysis (PCA) on this set of latents and select the first two principal719

components. Figure 8a shows us a visualization of this latent space. We see that the VAE has learned720

to encode the three sets of trajectories to be well separable. Next, we run the same experiment, but721

now we sample trajectory snippets of length 100 from the dataset instead of the full-length (1000)722

trajectories. Figure 8b shows us the PCA on the encoded latents of these trajectory snippets. We see723

that the separability is now harder in the latent space. Surprisingly, we noticed that after training our724

VAE on the snippets, the decoded policies from randomly snipped trajectories were still faithfully725

behaving like their original policies. We believe that this is because the halfcheetah env is a cyclic726

locomotion task, and all trajectory snippets have enough information to indicate its source policy.727

More dimensions of the PCA are shown in Figure 9.728

(a) Trajectory Length 1000 (b) Trajectory Length 100

Figure 8: Effect of trajectory snipping in HalfCheetah. Top two principal components of the latent.

(a) Trajectory length 1000 (b) Trajectory length 100

Figure 9: Effect of trajectory snipping in HalfCheetah. Top third and fourth principal components
of the latent.

To validate this hypothesis, we analyze our method on trajectory snippets for non-cyclic tasks. We729

choose the MT10 suite of tasks in Metaworld [58] (note that these are different from the original 10730

tasks discussed in the rest of the paper. We utilize the hand-crafted expert policy for each of the tasks731

in MT10 to collect trajectory data. For each task, we collect 1000 trajectories of length 500.732

Figure 10a shows the principal components of the latents of the full trajectories in the dataset, and733

Figure 10b shows the same for the split trajectories. We can see that the separability of different734

tasks is much harder in this case. More dimensions of the PCA are shown in Figure 11b. Further, we735
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(a) Trajectory Length 500 (b) Trajectory Length 50

Figure 10: Effect of trajectory snipping in MT10. Top two principal components of the latent.

(a) Trajectory length 500 (b) Trajectory length 50

Figure 11: Effect of trajectory snipping in MT10. Top third and fourth principal components of the
latent.

noticed that the decoded policies from the trajectory snippets did not perform as well as the original736

policies - for the same decoder size as the half cheetah task. This validates our hypothesis that the737

snippets are unable to reproduce the original policy for non-cyclic tasks. To have the same degree of738

behavior reconstruction as the half-cheetah tasks, we need a larger decoder model. This is discussed739

in Appendix F.740

D Appendix - Ablation of the KL coefficient741

Figure 12: Effect of KL coefficient

A key hyperparameter in LWD is the KL regular-742

ization term, βKL, used during VAE training. In743

this section, we analyze its impact on the learned744

latent space using the PushT task with an action745

horizon of 32. We train three VAEs with βKL746

values of 1e−7, 1e−9, and 1e−10. For evalua-747

tion, we sample a trajectory of length 32, encode748

and decode it via the VAE to generate a policy,749

and then execute this policy in the environment750

starting from the same initial state. We com-751

pute the MSE between the final state reached752

after 32 steps and the corresponding state in the753

original trajectory. Figure 12 in Appendix D.1754

shows this metric across 3 seeds during training.755

Lower βKL values result in lower final-state MSE, indicating better trajectory reconstruction. This is756

due to a more expressive, multi-modal latent space made possible by weaker regularization, without757

compromising sampling, as diffusion still operates effectively within this space. Visualizations758

are provided below in Appendix D.1. Based on these results, we use βKL = 1e−10 in all PushT759

experiments.760

D.1 KL coefficient ablation latent space761

Following the KL ablation experiment above, we analyzed the latent space of the encoded trajectories762

with PCA, similar to that performed in Appendix C. The three plots in Figure 13, show that the763

trajectory encodings get closer and lose behavioral diversity when the KL coefficient is high.764
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(a) KL coefficient: 1e-7 (b) KL coefficient: 1e-9 (c) KL coefficient: 1e-10

Figure 13: Latent space representation of PushT trajectories at different KL coefficients

E Appendix – Ablation of the Diffusion Model Architecture765

Figure 14: Diffusion Architecture Ablation

Diffusion models typically adopt either UNet-766

based [26] or Transformer-based [42] architectures767

(described as medium "m" in Appendix J.1). To768

guide our choice for the LWD diffusion policy, we769

performed an ablation study on the PushT task [9]770

using an action horizon of 32. As shown in Fig-771

ure 14, the UNet model demonstrated faster initial772

learning, achieving higher average success rates early773

in training. However, both architectures eventually774

converged to comparable final success rates. For con-775

sistency, we adopt the UNet architecture for all other776

experiments.777

F Appendix – Ablation of the Decoder size778
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(b) Trajectory length 50

Figure 15: Effect of VAE decoder size: For long
trajectories, even the smallest decoder (xs) yields
high task performance, whereas short trajectories
benefit from a larger decoder.

An interesting experiment was the effect of779

breaking a large trajectory into sub-trajectories780

and how this affects the latent space. A key781

takeaway from that experiment was that for782

halfcheetah locomotion, even small VAE de-783

coders generated accurate policies from tra-784

jectory snippets. Whereas, for manipulation785

tasks from Metaworld, the same-sized small786

decoder was not capable of reconstructing the787

original policy. See Appendix C for this ex-788

periment. This finding prompted an ablation789

on the decoder size, evaluating the average790

success rate of decoded policies across all791

10 Metaworld tasks. Figure 15 illustrates the792

performance of decoders with varying sizes,793

denoted as xs (3.9M parameters), s (7.8M794

parameters), m (15.6M parameters), and l795

(31.2M parameters). It’s important to note796

that despite the substantial parameter count of the hypernetwork decoder, the resulting inferred797

policy remains relatively small (< 100K parameters, see Figure 6). The results demonstrate that798

increasing the decoder size consistently improves the average success rate of the decoded policies.799

Refer Appendix J.3 for more details regarding the decoder size characterization.800

This contrasts with rollouts from the HalfCheetah environment, where even smaller decoders gener-801

ated accurate policies from trajectory snippets. We hypothesize this discrepancy stems from two key802

factors. First, the cyclic nature of HalfCheetah provides sufficient information within snippets to infer803

the underlying policy. Second, the increased complexity of Metaworld tasks means that snippets may804
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lack crucial information for inference. For instance, in a pick-and-place task, a snippet might only805

capture the “pick” action, leaving the latent without sufficient information to infer the “place” action.806

G Appendix – Behavior Reconstruction Analysis807

Here, we ask – Does LWD reconstruct the original policies and reproduce diverse behaviors?808

G.1 Operator Behavior Analysis809

Figure 16: Behavior distribution for the
Robomimic Lift task

Since LWD assumes trajectory data obtained810

from a distribution of policies (described in Sec-811

tion 3.1), it offers us access to this distribution812

through its latent space. As an experiment on the813

Robomimic Lift task, we encoded trajectories814

of the demonstrations on this dataset. We set the815

action horizon to the maximum demonstration816

length, effectively encoding the entire trajec-817

tory for each demonstration. The MH (Multi-818

Human) dataset contains 50 trajectories from 6819

operators, totalling 300 successful trajectories.820

The operators were varied in proficiency – there821

were 2 “worse” operators, 2 “okay” operators,822

and 2 “better” operators. Figure 16 visualizes a823

2D t-SNE plot of the latents sampled from the VAE in this experiment. Interestingly, we start to see824

clusters in this space, each corresponding to a different operator. It is important to note that LWD825

was never given explicit information regarding these operators, yet was able to cluster them based826

on their behavior distribution. We believe this interesting result can enable us to filter out unwanted827

behaviors in imitation learning.828

G.2 Locomotion829

First, we analyze the behavior reconstruction capability of different components of LWD in locomo-830

tion domains. For this experiment, we use the halfcheetah dataset from D4RL [14]. The parameters831

used for this experiment are shown in Appendix J.5. Each trajectory in this dataset has a length832

of 1000. We combine trajectory data from three original behavior policies provided in this dataset:833

expert, medium, and random. Following [2], we track the foot contact timings of each trajectory as a834

metric for measuring behavior. For each behavior policy, we get 32 trajectories. These timings are835

normalized to the trajectory length and are shown in Figure 17. For each plot, the x-axis denotes the836

foot contact percentage of the front foot, while the y-axis denotes the foot contact percentage of the837

back foot.838

We first visualize the foot contact timings of the original policies in Figure 17a. We see that different839

running behaviors of the half cheetah can be differentiated in this plot. Then, we train the VAE840

model on this dataset to embed our trajectories into a latent space. We then apply the hypernetwork841

decoder to generate policies from these latents. These policies are then executed on the halfcheetah842

environment, to create trajectories. We plot the foot contact timings of these generated policies in843

Figure 17b. We see that the VAE captures each of the original policy’s foot contact distributions,844

therefore empirically showing that the assumption pϕdec
(θ | z) = δ(θ−fϕdec

(z)) is reasonable. Then,845

we train a latent diffusion model conditioned on a behavior specifier (i.e., one task ID per behavior).846

In Figure 17c, we show the distribution of foot contact percentages of the policies generated by847

the behavior specifier conditioned diffusion model. We see that the diffusion model can learn the848

conditional latent distribution well, and the behavior distribution of the decoded policies of the849

sampled latent matches the original distribution. Apart from visual inspection, we also track rewards850

obtained by the generated policies and empirically calculated Jensen Shannon Divergence between851

the original and obtained foot contact distributions and observe that LWD maintains behavioral852

diversity in this locomotion task. See Appendix H for more details.853
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(a) Original policies that provide the
trajectory dataset.

(b) VAE generated policies from tra-
jectories.

(c) Diffusion generated policies
from trajectories.

Figure 17: Foot-contact times shown for various trajectories on the Half Cheetah task. We use
foot contact times as the chosen metric to show different behaviors for the half cheetah run task by
different policies. The first plot on the left shows the distribution of foot contact percentages for each
of the three original policies. The second plot in the center denotes the foot contact percentages for
the policies generated by the trained VAE when provided each original policy’s entire trajectory. The
third plot on the right denotes the foot contact percentages for the policies generated by the diffusion
model, trained without any task conditioning.
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Figure 18: Behavior Reconstruction for Manipulation: We track these metrics on the Adroit
hammer task, and the LWD-generated policy behaves similarly to the original policy. The ‘cloned’
bars represent metrics with respect to a human demonstration behavior cloned policy, and ‘expert’
bars represent metrics from an RL-trained policy.

G.3 Manipulation854

To verify the behavior reconstruction capabilities of LWD in manipulation, we also experiment on855

the D4RL Adroit dataset [45]. We choose a tool use task, where the agent must hammer a nail into a856

board. We utilize their 5000 expert and 5000 human-cloned trajectories, to train our LWD model.857

The implementation details are in Appendix J.6. Then, we evaluate the behavior of the original and858

generated policy on the following metrics: Mean object height - Average height of the object during859

eval; Alignment error (goal distance) - Mean distance between the target and the final goal position;860

Max nail impact - Maximum value of the nail impact sensor during eval; Contact ratio - Fraction of861

time steps where the nail impact sensor value exceeds 0.8; Object manipulation score - Proportion862

of time steps where the object height exceeds 0.04 meters. From Figure 18, we can see that the policy863

generated by LWD behaves similarly to the original policy.864

H Appendix – Behavior Reconstruction Metrics for HalfCheetah865

We can analyze the behavior reconstruction capability of LWD by comparing the rewards obtained866

during a rollout. The VAE parameters used for this experiment are shown in Appendix J.5. Figure 19867

shows us the total objective obtained by the original, VAE-decoded, and diffusion-denoised policies.868

We see that the VAE-decoded and diffusion-generated policies achieve similar rewards to the original869

policy for each behavior.870

24



Apart from these plots, we use Jensen-Shannon divergence to quantify the difference between871

two distributions of foot contact timings. Table 2 shows the JS divergence between the empirical872

distribution of the foot contact timings of the original policies and those generated by LWD. The873

lower this value is, the better. As a metric to capture the stochasticity in the policy and environment,874

we get the JS divergence between two successive sets of trajectories generated by the same original875

policy, which we shall denote SOS (Same as source). A policy having a JS divergence score lesser876

than this value indicates that that policy is indistinguishable from the original policy by behavior.877

As a baseline for this experiment, we train a large (5-layer, 512 neurons each) behavior-conditioned878

MLP on the same mixed dataset with MSE loss. We see that policies generated by LWD consistently879

achieve a lower JS divergence score than the MLP baseline for expert and medium behaviors. The880

random behavior is difficult to capture as the actions are almost Gaussian noise. Surprisingly, for the881

HalfCheetah environment, policies generated by LWD for expert and medium had lower scores than882

SOS, making it behaviorally indistinguishable from the original policy.883
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Figure 19: Reconstruction Rewards: For each of the 3 environments shown above, the generated
policy from trajectory decoded VAE and task-conditioned diffusion model, achieves similar total
objective as the original policies. Each bar indicates the mean total objective obtained with error lines
denoting the standard deviation.

Environment Source Policy Target Policy
SOS MLP LWD

Ant
Expert 0.187 ± 0.142 1.272 ± 0.911 0.510 ± 0.159

Medium 0.624 ± 0.232 1.907 ± 0.202 1.328 ± 0.283
Random 1.277 ± 1.708 4.790 ± 0.964 8.859 ± 0.792

HalfCheetah
Expert 0.158 ± 0.146 2.810 ± 1.139 0.088 ± 0.050

Medium 0.275 ± 0.196 0.692 ± 0.787 0.194 ± 0.157
Random 0.0467 ± 0.009 0.11 ± 0.009 0.104 ± 0.0187

Walker2D
Expert 0.342 ± 0.329 2.879 ± 1.493 1.093 ± 0.310

Medium 0.078 ± 0.058 0.165 ± 0.126 0.155 ± 0.091
Random 0.080 ± 0.004 60.514 ± 52.461 2.776 ± 1.260

Table 2: Behavior Reconstruction: JS divergence between foot contact distributions from source
and target policies. The lower the value, the better.

I Appendix – PushT Execution time comparison884

To show the benefit of using LWD over DP when it comes to inference times, we conduct the885

following experiment. We utilize the models trained in Section 4.1.1 for the PushT task and record886

the average time taken to complete 256 environment steps at different action horizons. Figure 20887

plots the minimum eval time that can achieve the corresponding success rate in the x-axis. This time888

was recorded while running on an NVIDIA 3090 GPU. The lower the area under this plot, the better.889

We record these metrics for varying perturbation levels. We see that for all settings, we achieve890

corresponding success rates with lower evaluation time. Thus showing the benefit of longer action891

horizons with LWD.892

Crucially, we observed that episodes taking 1 second for a rollout had only 2 diffusion queries (large893

action horizon), whereas those taking 6 seconds had 32 diffusion queries (small action horizon).894

The number of environment steps is the same. Thus, it is clear that diffusion-based methods can895
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consume up most of the total rollout time, significantly exceeding the time spent interacting with the896

environment. This substantial computational overhead underscores the critical need for optimizing897

the inference efficiency of diffusion models, particularly in time-critical robotics applications.898

Figure 20: Average minimum episode eval time required to achieve corresponding success rate.

J Appendix – Implementation Details899

The following are the hyperparameters we use for our experiments:900

J.1 Baseline Diffusion Policy model901

To train the diffusion policy baseline model shown in Figure 6, we utilize the training script provided902

by the authors of DP here:903

https://colab.research.google.com/drive/1gxdkgRVfM55zihY9TFLja97cSVZOZq2B?usp=sharing.904

To set the model size we use the following parameters:905

Size Diffusion Step Embed Dim Down Dims Kernel Size
extra-small: (s) 64 [16, 32, 64] 5

small: (s) 256 [32, 64, 128] 5
large: (m) 256 [128, 256, 256] 5
large: (l) 256 [256, 512, 1024] 5

extra large: (xl) 512 [512, 1024, 2048] 5
Table 3: Architectural configurations for the ConditionUnet1D Diffusion Policy (DP) across different
model sizes.

For the ablation described in Appendix E, we use a transformer architecture, the details of which are:906

J.2 VAE Encoder details907

For the encoder, we first flatten the trajectory to form a one-dimensional array, which is then fed to a908

Multi-Layer Perceptron with three hidden layers of 512 neurons each.909
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Size Diffusion Step Embed Dim Model Dim # Layers # Heads
extra-small: (xs) 64 64 3 2

small: (s) 128 128 4 4
medium: (m) 256 256 6 8
large: (l) 256 512 8 8

extra-large: (xl) 512 768 12 12
Table 4: Architectural configurations for Transformer-based Diffusion models across different model
sizes.

J.3 VAE Hypernetwork decoder size characterization910

For the hypernetwork, we utilize an HMLP model (a full hypernetwork) from the911

https://hypnettorch.readthedocs.io/en/latest/ package with default parameters. We condition the912

HMLP model on the generated latent of dimension 256. To vary the size of the decoder, as explained913

in Appendix F, we set the hyperparameter in the HMLP as shown in Table 5

Size No. of parameters layers
xs 3.9M [50, 50]
s 7.8M [100, 100]
m 15.6 M [200, 200]
l 31.2M [400, 400]
Table 5: VAE size varying parameters

914

J.4 Diffusion model parameters915

For all our experiments, we utilize the same ConditionalUnet1D network from [9] as the diffusion916

model. This is the same as the DP-medium (m) model described in Appendix J.1.917

J.5 Mujoco locomotion tasks918

We use the following hyperparameters to train VAEs for all D4RL mujoco tasks shown in the paper.919

To show the effect of shorter trajectories in Appendix C, we change the Trajectory Length to 100.

Parameter Value
Trajectory Length 1000
Batch Size 32
VAE Num Epochs 150
VAE Latent Dimension 256
VAE Decoder Size s
Evaluation MLP Layers {256, 256}
VAE Learning Rate 3× 10−4

KL Coefficient 1× 10−6

Diffusion Num Epochs 200
Table 6: Mujoco locomotion hyperparameters.

920

J.6 Adroit Hammer task921

We use the same hyperparameters as Table 6 and override the following hyperparameters to train922

VAEs for the D4RL Adroit hammer task shown in the paper.923

Further, for the experiment where we show the hammer task can be composed of sub-tasks, we change924

the Trajectory Length to 32 to enable LWD to learn the distribution of shorter horizon policies.925
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Parameter Value
Trajectory Length 128
VAE Num Epochs 20
Diffusion Num Epochs 10

Table 7: Adroit hammer hyperparameters.

J.7 PushT and Robomimic LWD926

For all the experiments shown in Section 4.1.1, we use the same hyper-parameters described in927

Table 6, and override the following:

Parameter Value
Trajectory Length 256
VAE Num Epochs 1000
Diffusion Num Epochs 1000
Diffusion Model size l
VAE Decoder Size l
VAE KL coefficient 1e− 10

Table 8: PushT LWD hyperparameters.

928

J.8 Metaworld tasks929

For all the experiments shown in Section 4.1.2, we use the same hyper-parameters described in930

Table 6, and override the following:

Parameter Value
Trajectory Length 500
VAE Num Epochs 100
Diffusion Num Epochs 100
VAE Decoder Size xs

Table 9: Metaworld hyperparameters.

931

To show the effect of shorter trajectories in Appendix C, we change the Trajectory Length to 50.932

J.9 Compute Resources933

Each VAE and diffusion experiment was run on jobs that were allocated 6 cores of a Intel(R) Xeon(R)934

Gold 6154 3.00GHz CPU, an NVIDIA GeForce RTX 2080 Ti GPU, and 108 GB of RAM.935

K Societal Impact936

This paper presents work intending to advance the field of Machine Learning in Robotics. The authors937

are committed to ensuring that the research is used for the benefit of society and does not contribute938

to any harm or negative consequences. While there are many potential societal consequences robotics939

and machine learning in general, there are none that are specific to this work alone, that we can940

foresee.941
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