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Abstract

With the increasing availability of open-source robotic data, imitation learning
has emerged as a viable approach for both robot manipulation and locomotion.
Currently, large generalized policies are trained to predict controls or trajectories
using diffusion models, which have the desirable property of learning multimodal
action distributions. However, generalizability comes with a cost, namely, larger
model size and slower inference. This is especially an issue for robotic tasks that
require high control frequency. Further, there is a known trade-off between perfor-
mance and action horizon for Diffusion Policy (DP), a popular model for generating
trajectories: fewer diffusion queries accumulate greater trajectory tracking errors.
For these reasons, it is common practice to run these models at high inference
frequency, subject to robot computational constraints. To address these limitations,
we propose Latent Weight Diffusion (LWD), a method that uses diffusion and
a world model to generate closed-loop policies (weights for neural policies) for
robotic tasks, rather than generating trajectories. Learning the behavior distribution
through parameter space over trajectory space offers two key advantages: longer
action horizons (fewer diffusion queries) & robustness to perturbations while re-
taining high performance; and a lower inference compute cost. To this end, we
show that LWD has higher success rates than DP when the action horizon is longer
and when stochastic perturbations exist in the environment. Furthermore, LWD
achieves multitask performance comparable to DP while requiring just ~ 1/45th
of the inference-time FLOPS per step.
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Figure 1: Latent Weight Diffusion (LWD) generates policies from heterogeneous trajectory data.
With state-conditioned policy generation, the diffusion model can run inference at a lower fre-
quency. With task-conditioned policy generation, the generated policies can be small yet main-
tain task-specific performance. Demonstrations of this work can be found on the project website:
https://sites.google.com/view/1wd2025/home.
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1 Introduction

The rise of open-source robotic datasets has made imitation learning a promising approach for
robotic manipulation and locomotion tasks [[10} 43]]. While methods like Behavioral Cloning [13]] and
transformer-based models (e.g., RT-1 [5]) have shown promise, they struggle with multimodal action
distributions. For example, in navigation tasks where both “turn left” and “turn right” are valid, these
models often predict an averaged action, i.e., “go straight”, leading to suboptimal performance.

Diffusion models offer a compelling alternative, providing continuous outputs and learning multi-
modal action distributions [S1]. Action trajectory diffusion for robotic tasks [9] has shown promise
but incurs high computational costs, particularly at high control frequencies. Moreover, such tra-
jectory diffusion models are susceptible to the trade-off between performance and action horizon
(or action chunk size, representing the number of environment interactions between consecutive
trajectory generations). Fewer diffusion queries lead to larger action chunks, giving greater trajectory
tracking errors.

To overcome these limitations, we introduce Latent Weight Diffusion (LWD), a novel approach that
uses latent diffusion and a world model to generate closed-loop policies directly in parameter space,
bypassing trajectory generation. LWD first encodes demonstration trajectories into a latent space,
then learns their distribution using a diffusion model, and finally decodes them into policy weights
via a hypernetwork [15]]. The generated policy is also optimized with model-based imitation learning
using a co-trained world (dynamics) model [16], which helps in understanding the environment
transitions during training. This approach leverages the success of latent diffusion techniques in
vision [47] and language [134]], and combines them with learned dynamics models, bringing their
advantages to robotic control. The world model, and accompanying loss terms, help the agent learn
the optimal policy that can be backpropagated through the learned (differentiable) dynamics, and also
apply corrective actions to bring back the agent states back into distribution of the input trajectory
dataset. For LWD, the action horizon corresponds to the number of environment interactions between
consecutive policy weight generations. To achieve trajectory encoding and policy parameter decoding,
we derive a novel objective function described in Section [3.1} and show that we can approximate its
components with a hypernetwork-based VAE and a World Model, and optimize it using a novel loss
function described in Section[3.2] This paper provides the following key contributions:

1. Theoretical Foundations for generating policies: We derive a novel objective function,
which when optimized, allows us to generate policy parameters instead of action trajectories.
For this, we integrate concepts from latent diffusion, hypernetworks, and world models.

2. Longer Action Horizons & Robustness to Perturbations: By generating closed-loop
policies under learned dynamics, LWD mitigates trajectory tracking errors, enabling policies
to operate over extended time horizons with fewer diffusion queries. Additionally, closed-
loop policies are reactive to environmental changes, ensuring LWD-generated policies
remain robust under stochastic disturbances.

3. Lower Inference Costs: The computational burden of generalization is shifted to the
diffusion model, allowing the generated policies to be smaller and more efficient.

We validate these contributions through experiments on the PushT task [9]], the Lift and Can tasks
from Robomimic [36]], and 10 tasks from Metaworld [S8]]. On Metaworld, LWD achieves comparable
performance to Diffusion Policy but with a ~ 45x reduction in FLOPS per step, representing a
significant improvement in computational efficiency (FLOPS per step are the floating point operations
per second, amortized over all steps of the episode). Analysis across a range of benchmark robotic
locomotion and manipulation tasks, demonstrates LWD’s ability to accurately capture the behavior
distribution of diverse trajectories, showcasing its capacity to learn a distribution of behaviors.

2 Related Work

2.1 Imitation Learning and Diffusion for Robotics

Behavioral cloning has advanced with transformer-based models like PerAct [49] and RT-1 [55], achiev-
ing strong task performance. Vision-language models (e.g., RT-2 [4]) extend this by interpreting text
as actions, while RT-X [[10] generalizes across robot embodiments. Object-aware representations [24],
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energy-based models, and temporal abstraction (e.g., implicit behavioral cloning [[13], sequence
compression [61]]) further improve multitask learning. DBC [7]] enhances robustness to sensor noise,
whereas LWD targets environmental perturbations affecting system dynamics, such as object shifts or
execution-time disturbances.

Alongside these advances, diffusion models (originally introduced for generative modeling [25} 48]))
have emerged as powerful tools for robotics. Trajectory-based diffusion approaches capture mul-
timodal action distributions [9], while goal-conditioned methods such as BESO [46] and Latent
Diffusion Planning [30] improve efficiency through latent-space conditioning. Diffusion has also
been leveraged for grasping and motion planning [52, 35} 6], skill chaining [39], and locomotion
control [28]]. Hierarchical extensions such as ChainedDiffuser [S7], SkillDiffuser [33]], and multi-
task latent diffusion [51] address long-horizon action planning, though trajectory tracking remains
challenging. Recently, OCTO [40]] demonstrates that diffusion-based generalist robot policies.

2.2 Hypernetworks and Policy Generation

Hypernetworks, first introduced by [[15], are neural architectures designed to estimate parameters
for secondary networks, finding applications across various domains. Initially applied to meta-
learning scenarios for one-shot learning tasks [3]], hypernetworks have recently been extended to
robot policy representations [23]]. Their approach aligns conceptually with Dynamic Filter Networks
[29], emphasizing dynamic adaptability to input data.

Recent developments also integrate Latent Diffusion Models (LDMs) into hypernetwork-like settings,
modeling training dynamics in parameter spaces [41]. Specifically, LDMs have been successfully used
to generate behavior-conditioned policies from textual descriptions [[22] and trajectory embeddings
[32]], as well as to learn distributions over complex model architectures like ResNet [[54]]. Notably,
while these recent approaches [22} [32] depend on pre-collected policy datasets, the current work
distinguishes itself by removing this requirement.

2.3 World Models

Ha and Schmidhuber [16] introduced world models for forecasting in latent space. PlaNet [[18]]
extended this with pixel-based dynamics learning and online planning. Dreamer [17] learned latent
world models with actor-critic RL for long-horizon behaviors, followed by DreamerV?2 [19] with
discrete representations achieving human-level Atari, and DreamerV3 [20]] scaling robustly across
domains. IRIS [37] used transformers for sequence modeling, reaching superhuman Atari in two
hours. SLAC [31]] showed that stochastic latent variables accelerate RL from high-dimensional inputs.
VINs [50] embedded differentiable value iteration for explicit planning, while E2C [S5]] combined
VAEs with locally linear dynamics. DayDreamer [56] enabled real robot learning in one hour, and
MILE [_27] adapted Dreamer to CARLA with 31% gains. Model-based imitation learning was further
scaled to large self-driving datasets by Popov et al. [44]. Recent advances include SafeDreamer [60]]
for safety, STORM [38]] with efficient transformers, UniZero [59] for joint optimization of models
and policies, and Time-Aware World Models [8]] incorporating temporal dynamics.

3 Method & Problem Formulation

As this work tackles policy neural network weights generation, we take inspiration from the method
employed in [22], where it was demonstrated that latent diffusion can be utilized to learn the
distribution of policy parameters for humanoid locomotion. A key limitation of this method was
the reliance on often unavailable policy datasets. This work does not require a dataset of policy
parameters but trains on a (more commonly available) trajectory dataset.

LWD employs a two-step training process. First, a variational autoencoder (VAE) with weak KL-
regularization encodes trajectories into a latent space that can be decoded into policy weights. The
decoder is a conditioned hypernetwork that takes a policy neural network without its parameters
(weights) as input and populates it with the desired weights based on the conditioning. The gen-
erated policy parameters are also optimized for trajectory tracking with a world model. Next, a
diffusion model learns the distribution of this latent space, enabling policy sampling from the learned
distribution (see Figure [2)).
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Figure 2: LWD: We first pre-train a VAE and World Model, which variationally encodes trajectories
to a latent space and then decodes it as policy parameters, the policy parameters are optimized for both
behavior cloning and trajectory tracking in a co-trained world model. Next, we train a conditional
latent diffusion model to learn this latent distribution. When teacher forcing is enabled, the world
model parameters are optimized, when disabled, the world model is used to optimize the VAE.

Compared to [22], which encodes policy parameters and employs a graph hypernetwork with a MSE
loss on parameter reconstruction, our approach differs as it: (1) encodes trajectories as opposed
to parameters, into latent space (2) uses a simple hypernetwork, (3) applies a behavior cloning
loss (detailed in Section [3.1] & Section [3.2)) on the generated policy, and (4) learns a world model
for predicting observations given the action in an environment. Below we discuss the problem
formulation and derivation.

3.1 Latent Policy Representation

We begin by formulating our approach for unconditional policy generation. Assume a distribution
over stochastic policies, where variability reflects behavioral diversity. Each policy is parameterized
by 6, with 7(-,0) denoting a sampled policy and p(6) the parameter distribution. Sampling a
policy corresponds to drawing 6 ~ p(6). When a policy interacts with the environment, it gives
us a trajectory T = {s;,a;}_,. We assume multiple such trajectories are collected by repeatedly
sampling # and executing the corresponding policy. This enables a heterogeneous dataset, e.g., from
humans or expert agents. For a given 6, actions are noisy: a; ~ N (7(s¢, 0), 02).

Our objective is to recover the distribution p(é) that generated the trajectory dataset. We posit a latent
variable z capturing behavioral modes, and assume conditional independence: p(7 | z,0) = p(7 | 6).
Given trajectory data, we maximize the likelihood log p(7). To do so, we derive a modified Evidence
Lower Bound (mELBO) that incorporates p(6) (see below). This differs from the standard ELBO
used in VAEs.

logp(7) = log / / p(7,0,2)dzdf (Introduce policy parameter § and latent variable z)

= log//p(r | 2,8)p(0 | 2)p(z)dzdf (Apply the chain rule)

9 0
log// p(r | 2 6)p(0 | Z)p(z)q(z | 7) dz df (la)
(z|7)
(Introduce a var1at10nal distribution ¢(z | 7), approximating the true posterior p(z | 7))
p(7 | 2,0)p(2)
=lo /E z[qz T) | dz (1b)
e [ Boor | Ty 1T

Epo)2) [p(7 | 2,0)] p(2)
q(z | 7)

> Eqz1m) [log ( ﬂ (Jensen’s inequality)

q(z 7 [10g (Epopz) [p(7 | 2,0)])] — Eq(ir) [log (a(z | 7)) — log (p(2))] (Ic)
- [1og (Epop2) [p(T ] 0)])] — KL(q(2 | 7) || p(2)) (cond. independence) (1d)
7 [Epa)2) log (p(7 | 0))]] —KL(q(z | 7) || p(2)) (Jensen’s inequality) ~ (le)

Assuming the state transitions are Markov and s; is independent of 6, the joint likelihood of the entire
sequence {(s1,a1), (s2,a2),...,(sT,ar)} (.e., p(T | §)) is given by:
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p(st, a1, smiar | 0) = pls)plar | s1,0) - [ [ p(se | se-1,00-1)plar [ 5,60)  Qa)
t=2

logp(s1,a1,...,87,ar | 0) =logp(s1) +logp(ai | s1,0)
T

+ Y [logp(st | st—1,ai-1) +logp(ar | s1,0)] (2b)
=2

Substituting 2b in le:
log p(7) > Eq(zpry [Ep(o)) [log (p(7 | 6))]] — KL(g(z | 7) || p(2))
T T
Ep12) [Z log p(ay | s¢,0) + Zlogp(st | St—laat—l)‘|‘|

t=1 t=2
—KL(q(z [ 7) | p(2)) + A S

=Eqezir)

A consists of log p(s1), and since this cannot be subject to maximization, we shall ignore it.

Therefore, our modified ELBO is:

T T
Eqc:ir) |Eporz) | D logplas | 51,60) + 3 logp(se | si-1,a0-1) | | — KL(q(z | 7) [| p(2)) 4)

t=1 t=2

Behavior Cloning World Model KL Regularizer

3.2 Loss function for World Model Augmented Variational Autoencoder for Policies

Since we now have a modified ELBO objective, we shall now try to approximate its components
with a variational autoencoder and a world model. Let ¢, be the parameters of the VAE encoder
that variationally maps trajectories to z, ¢ge. be the parameters of the VAE decoder, and ¢,
be the world model parameters. We assume the latent z is distributed with mean zero and unit
variance. We construct the VAE decoder to approximate p(6 | z) with pg, . (6 | z). Considering
ai ~ N(m(s4,0),02), and 71, = {s¥, aF}L |, we derive our VAE loss function as:

T
Lpc = — Zqume(zhk) [(@f - W(Sf, f¢dec (Z)))2]
t=1
T
Lro =— Z]Eq%m(zm) [KL(pq&wm (st | Sf—uﬂ(sf—lafmw(z))) H Db (8¢ | sf_l,a,’f_l))]
t=2
T dim(z)
ETF:_Z(S?_§§)2 £KL:_BM Z (03L+u§1 —l—lOgUSi)

t=2 i=1

L ({sf, ay}y | bencs Pdecs dwm) = Lec + Lro + Lrr + LiL (5)

where, L ¢ is the behavior cloning loss to train the policy decoder, Lo is the rollout loss to correct
the decoded policy’s actions using the world model, L is the teacher forcing loss to train the world
model, and L, is the KL loss to regularize the latent space.  is obtained from the hypernetwork
decoder fg,..(2). (ke,00) = fene ({557 af}gpzl)’ 2~ N(pte, 0c), §§ ~ Popuwm (Sf | 8,’?,1, affl) and
Bk 1s the regularization weight. The complete derivation is shown in Appendix |A] Since the decoder
in the VAE outputs the parameter of a secondary network, we shall use a conditional hypernetwork,
specifically the model developed for continual learning by [53]]. For computational stability, we shall
use Lpc, Lro and Lk, to optimize the VAE (encoder and decoder parameters) and L1 to train
the world model parameters. With the teacher forcing objective we get a reliable world model that
we can then use in the rollout objective. This is similar to procedures followed in [1} 44} 27].

In practice, we see that approximating p(z) = N(0, I) is suboptimal, and therefore we set Bi; to
a very small number ~ (10719,1075). After training the VAE to maximize the objective provided
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in Equation (5) with this 3y, we have access to this latent space z and can train a diffusion model
to learn its distribution p(z). We can condition the latent denoising process on the current state
and/or the task identifier ¢ of the policy required. Therefore the model shall be approximating
Doai s (2¢—1 | 21, ¢). After denoising for a given state and task identifier, we can convert the denoised
latent to the required policy. Therefore, to sample from p(6), first sample z using the trained diffusion
model z ~ pg,,; (20), and then apply the deterministic function f,. . to the sampled z. Note that to
sample pohcles during inference, we do not need to encode trajectories; rather, we need to sample a
latent using the diffusion model and use the hypernetwork decoder of a pre-trained VAE to decode a
policy from it.

4 Experiments

We run three sets of experiments. In the first set, we evaluate the validity of our main contributions. We
compare LWD with action trajectory generation methods with respect to 1) Longer Action Horizons
and Environment Perturbations, where experiments are performed on the PushT task [9] and the Lift
and Can Robomimic tasks [36], while varying these parameters, and 2) Lower inference costs, where
experiments are performed on 10 tasks from the Metaworld [58]] suite of tasks, to show LWD requires
fewer parameters during inference while maintaining multi-task performance. The task descriptions
are provided in Appendix [B] We choose a multi-task experiment here as the model capacity required
for solving multiple tasks generally increases with the number of tasks. In the second set, we perform
ablations over three components of our method: 1) Diffusion model architecture, Appendix [E} 2)
VAE decoder size, Appendix [} 3) KL coefficient for the VAE, Appendix D] In the final set, we
analyze the behavior distribution modeled by our latent space. These can be found in Appendix

and Appendix

We focus on demonstrating results in state-based low-dimensional observation spaces. Our generated
policies are Multi-Layer Perceptrons (MLP) with 2 hidden layers with 256 neurons each. In the
VAE, the encoder is a sequential network that flattens the trajectory and compresses it to a low-
dimensional latent space, and the decoder is a conditional hypernetwork[12]. The details of the
VAE implementation are provided in Appendix [J.2|and Appendix For the world model, since
we use low-dimensional observation spaces, we use a simple MLP with 2 hidden layers with 1024
neurons each to map the history of observations and actions to the next observation. For stability,
we use Lo only after 10 epochs of training. This warm-starts the world model before we use it to
optimize the policy generator. For all experiments, the latent space is R?*® and the learning rate is
10~* with the Adam optimizer. For the diffusion model, we use the DDPM Scheduler for denoising.
Inspired by [9], we conducted an ablation between two diffusion architectures: a ConditionalUnet1D
network and a Transformer architecture. Based on the results are shown in Appendix [E| We chose the
ConditionalUnet1D model for all experiments in the paper. Just as [9], we condition the diffusion
model with FiLM layers, and also use the Exponential Moving Average [21]] of parameter weights
(commonly used in DDPM) for stability. All results presented in this work are obtained from running
experiments over three seeds, and the compute resources are described in Appendix

4.1 Empirical Evaluation of Contributions
4.1.1 Longer Action Horizons & Robustness to Perturbations

We first evaluate our method on the PushT task [9]], a standard benchmark for diffusion-based
trajectory generation in manipulation. The goal is to align a ‘T’ block with a target position and
orientation on a 2D surface. Observations consist of the end-effector’s position and the block’s
position and orientation. Actions specify the end-effector’s target position at each time step. Task
performance (measured by success rate) is defined as the maximum overlap between the actual and
desired block poses during a rollout. We test under different action horizons and varying levels of
environment perturbation, simulated via an adversarial agent that randomly displaces the ‘T” block.

For the LWD model, we first train a VAE to encode trajectory snippets (of length equal to the action
horizon) into latents representing locally optimal policies. These policies are optimized with a
co-trained world model. A conditional latent diffusion model, given the current state, then generates
a latent that the VAE decoder transforms into a locally optimal policy for the next action horizon.
The inference process is illustrated in Figure[I] We train two variants of LWD, with (LWD w/ WM)
and without (LWD w/o WM) the world model (i.e., we train LWD with just L + Lk ).



222
223
224
225
226
227
228
229
230
231
232

233
234
235
236
237

238

240
241
242
243
244
245
246
247
248

249
250
251

252
253

Action Horizon: 16

Action Horizon: 32

Action Horizon: 64

Action Horizon: 128

0.8 ] o 0]
T T T T
0:06 =4 4 o
wn n n %)
(%] %] %] wn
oI 1] 4] ]
o 9 9 > o
S 02 =] =] < | 3
oo e an e n m;:g:-;ﬁf!:

0 25 50 75
Perturbation

100

0 25 50 75
Perturbation

100

0 25 50 75
Perturbation

100

0 25 50 75
Perturbation

100

—— DP  —— LDP —— LDPW/ WM  —— LWD w/o WM MLP  —— Random

Figure 3: Longer action horizons and robustness to perturbations on PushT: Performance of
LWD and baselines on the PushT task as we vary the action horizon and environment perturbations.
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Figure 4: Visualization of Perturbation: When an adversarial perturbation is applied, we see that
LWD’s generated closed-loop policy successfully adapts to the change.

As baselines for this experiment, we compare the proposed LWD variants against four alternatives: 1)
a Diffusion Policy (DP) model that generates open-loop action trajectories for a fixed action horizon;
2) a Latent Diffusion Policy (LDP) model, which is structurally similar to LWD but decodes the
latent representation into an action trajectory rather than a closed-loop policy; 3) a Multilayer
Perceptron (MLP) policy, which shares the same architecture as the policy network generated by
LWD and serves to isolate the impact of diffusion modeling; 4) a Random Policy, which provides a
lower-bound performance reference. For a fair comparison, all diffusion-based models (LWD, DP,
and LDP) use the same model size and hyperparameters, corresponding to the medium configuration
described in Appendix [J.4)and Appendix[J.7] LDP uses a VAE decoder, implemented as an MLP with
two hidden layers of 256 neurons each, to output an action chunk of the same length as the action
horizon.

All models are evaluated across 50 uniquely seeded environment instances, with each evaluation
repeated 10 times, across 3 training seeds. Figure [3]illustrates the impact of perturbation magnitudes
and action horizons on success rates across all baselines. Perturbations refer to random displacements
applied to the T block, occurring at randomly selected time steps with 10% probability. A sample
rollout with a perturbation magnitude of 50 is shown in Figure [4]

While DP demonstrates comparable performance to both LWD variants at an action horizon of 16
with minimal perturbations, LWD exhibits superior robustness as the action horizon increases. This
enhanced robustness of LWD with the world model becomes more pronounced in the presence of
larger perturbations. Specifically, at longer action horizons such as 128, LWD w/ WM maintains a
significantly higher success rate compared to DP across all perturbation levels. The MLP generally
underperforms compared to both LWD variants and DP, highlighting the benefits of diffusion-based
approaches for this task. LDP has a lower success rate than LWD, indicating that generating a
closed-loop policy is more important than learning the latent representation space. The relatively
lower sensitivity to perturbations at an action horizon of 16 for both policies can be attributed to the
more frequent action trajectory queries inherent in DP at shorter horizons (i.e. smaller action chunks),
effectively approximating a more closed-loop control strategy.

Finally, we measured the total time required to successfully complete the PushT task and see that
for all levels of perturbation, for a given success rate, LWD executes a rollout quicker (in wall-clock
time) than the DP model. See Appendix |l for more details.

We also ran experiments on the Robomimic [36] Lift and Can tasks, using the same hyperparameters
as the PushT experiment, the same task settings, and the mh demonstration data from [9]. To simulate
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Figure 5: Longer action horizons and robustness to perturbations on Robomimic tasks: Perfor-
mance of LWD and DP as we vary the action horizon and environment perturbations.

perturbations, we add random translation and rotation vectors to the end effector, applied 10% of the
time. Figure 5] shows the performance of the LWD variants and baselines under these perturbations
across different action horizons. The x-axis corresponds to perturbation magnitude. Similar to PushT,
LWD outperforms DP for longer horizons and is more robust to perturbations.

4.1.2 Low Inference Cost

We will now look at the next contribution,
namely, lower inference cost compared to meth-
ods that diffuse action trajectories instead of
452 policies. When training a single policy on multi-

80 //‘ ple tasks, it is known that a larger model capacity
is needed. This is detrimental in robotics appli-
AT

100

cations as this increases control latency. We

60 train a task-conditioned LWD model and show
that the cost of task generalization is borne by
the latent diffusion model, while the generated

o/ ™= WD execution policy remains small. Because LWD

- P generates a smaller policy, the runtime compute
W DP-f:1/16 . . .
W DP - f: 1/64 required for inference is much smaller compared
Model Size to the SOTA methods. For simplicity, in this sec-
200 o piniy tion, we use the LWD w/o WM variant.
1ze:
o We experiment on 10 tasks of the Metaworld
Size: xs benchmark, the details of which are in Ap-

pendix [B] We set the action horizon to the length

1°’;mmi5§§’;ﬂops,5{2;(mg scain) 10" of the entire trajectory for LWD to generate poli-

cies that shall work for the entire duration of the

Figure 6: Success rate vs. average compute of rollout, where at each time step, the generated

LWD, DP, and MLP policies on 10 Metaworld MLPs shall predict instantaneous control. We

tasks for various model sizes. The x-axis shows experimented over three sizes of the generated

the number of GFLOPS/step for each policy on  MLP policy: 128, 256, and 512 neurons per

a log scale. LWD performs ~ 45 times fewer J|ayer, each having 2 hidden layers. We also train

computations than a DP policy with comparable 10 DP models, spread over a grid of 5 different

performance. sizes (xs, s, m, 1, x1) and 2 action horizons: 32

and 128. Each DP model is run at an inference frequency of half the action horizon. We provide the

details of the DP model in Appendix E Finally, we also train 3 MLP models with 128, 256, and
512 neurons per layer, to compare the performance of LWD with a standard MLP policy.

Average Success Rate (%)

& 4> 0

Note that LWD uses a fixed action horizon equal to the full episode length (500 steps), whereas the
DP model uses a variable horizon. The LWD inference process is illustrated on the right-hand side
of Figure[I] All baseline models receive the task identifier as part of the state input. Each model
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is trained with 3 random seeds, and evaluated across 10 tasks, with 16 rollouts per task. Figure E]
presents the results of this evaluation. In the plot, the x-axis represents average per-step inference
compute (in GFLOPs), and the y-axis indicates the overall success rate across tasks. For DP models,
achieving high success rates requires increasing model size or denoising frequency (i.e., predicting
shorter action chunks), both of which raise computational cost. In contrast, LWD generates a simpler,
more efficient controller, requiring significantly less compute. The best-performing LWD model
achieves an 81% success rate with ~ 45x fewer inference operations than the closest-performing
DP model. Interestingly, the MLP baseline also performs well, and is comparable in efficiency to
LWD, but still lags in performance. We attribute this to the unimodal nature of this dataset, as MLPs
struggled with the multimodal PushT task in the previous section.

4.2 Behavior Analysis

Original Encodings LWD models trajectory data from a dis-

” { tribution of policies, exposing this distri-
2 ® bution through its latent space. On the
Robomimic Lift task with the MH dataset

” N o oo (300 trajectories from 6 operators of var-

o oemas ied proficiency: 2 “worse,” 2 “okay,” and 2
o oemers  “better.”), LWD encoded entire demonstra-
° ™ tion trajectories. A 2D t-SNE plot revealed
clusters aligned with operator identity, de-

spite LWD receiving no explicit operator

50 labels. This shows LWD can cluster behav-
s ’ ’ B iors and potentially filter unwanted ones, a
capability further studied in Appendix [G|

and Appendix

Encoding Dim 2

o
Encoding Dim 1

Figure 7: Behavior distribution: Robomimic Lift task

5 Limitations and Future Work

Latent Weight Diffusion (LWD) is a promising framework for policy generation, but Diffusion Policy
(DP) performs better in short-horizon, low-perturbation settings. This gap likely stems from VAE
approximation errors and LWD’s added complexity, which increases training cost, particularly the
RAM demands of loading full observation sequences.

DP’s strength is its compatibility with foundation models as action heads [40], while integrating
LWD into such architectures remains an open question. For image-based observations, LWD requires
CNN-based policies. Although hypernetworks can generate CNN and ViT weights, adapting these
within LWD is challenging. Our early results show promise in using pre-trained encoders and
applying LWD to image embeddings. Integrating LWD with vision-based world models is also open,
but appears feasible with approaches in [44] and [27].

Future work could improve LWD’s VAE decoder through chunked deconvolutional hypernet-
works [53]], enabling more efficient decoding. Extending LWD to Transformer or ViT policies
is another direction, especially for sequential or visual tasks [11]]. Finally, warm-starting with prior
latents [9] may further boost performance by providing richer priors.

6 Conclusion

We introduce Latent Weight Diffusion (LWD), a novel framework for learning a distribution over
policies from diverse demonstration trajectories. LWD models behavioral diversity via latent diffusion,
a world model, and uses a hypernetwork decoder to generate policy weights, enabling closed-
loop control directly from sampled latents. Our evaluation highlights two key strengths of LWD:
robustness and computational efficiency. Compared to Diffusion Policy, LWD delivers more reliable
performance in environments with long action horizons and perturbations, while reducing inference
costs, especially in multi-task settings.
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