
Latent Weight Diffusion: Generating reactive policies
instead of trajectories

Anonymous Author(s)
Affiliation
Address
email

Abstract

With the increasing availability of open-source robotic data, imitation learning1

has emerged as a viable approach for both robot manipulation and locomotion.2

Currently, large generalized policies are trained to predict controls or trajectories3

using diffusion models, which have the desirable property of learning multimodal4

action distributions. However, generalizability comes with a cost, namely, larger5

model size and slower inference. This is especially an issue for robotic tasks that6

require high control frequency. Further, there is a known trade-off between perfor-7

mance and action horizon for Diffusion Policy (DP), a popular model for generating8

trajectories: fewer diffusion queries accumulate greater trajectory tracking errors.9

For these reasons, it is common practice to run these models at high inference10

frequency, subject to robot computational constraints. To address these limitations,11

we propose Latent Weight Diffusion (LWD), a method that uses diffusion and12

a world model to generate closed-loop policies (weights for neural policies) for13

robotic tasks, rather than generating trajectories. Learning the behavior distribution14

through parameter space over trajectory space offers two key advantages: longer15

action horizons (fewer diffusion queries) & robustness to perturbations while re-16

taining high performance; and a lower inference compute cost. To this end, we17

show that LWD has higher success rates than DP when the action horizon is longer18

and when stochastic perturbations exist in the environment. Furthermore, LWD19

achieves multitask performance comparable to DP while requiring just ∼ 1/45th20

of the inference-time FLOPS per step.21

Figure 1: Latent Weight Diffusion (LWD) generates policies from heterogeneous trajectory data.
With state-conditioned policy generation, the diffusion model can run inference at a lower fre-
quency. With task-conditioned policy generation, the generated policies can be small yet main-
tain task-specific performance. Demonstrations of this work can be found on the project website:
https://sites.google.com/view/lwd2025/home.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://sites.google.com/view/lwd2025/home

1 Introduction22

The rise of open-source robotic datasets has made imitation learning a promising approach for23

robotic manipulation and locomotion tasks [10, 43]. While methods like Behavioral Cloning [13] and24

transformer-based models (e.g., RT-1 [5]) have shown promise, they struggle with multimodal action25

distributions. For example, in navigation tasks where both “turn left” and “turn right” are valid, these26

models often predict an averaged action, i.e., “go straight”, leading to suboptimal performance.27

Diffusion models offer a compelling alternative, providing continuous outputs and learning multi-28

modal action distributions [51]. Action trajectory diffusion for robotic tasks [9] has shown promise29

but incurs high computational costs, particularly at high control frequencies. Moreover, such tra-30

jectory diffusion models are susceptible to the trade-off between performance and action horizon31

(or action chunk size, representing the number of environment interactions between consecutive32

trajectory generations). Fewer diffusion queries lead to larger action chunks, giving greater trajectory33

tracking errors.34

To overcome these limitations, we introduce Latent Weight Diffusion (LWD), a novel approach that35

uses latent diffusion and a world model to generate closed-loop policies directly in parameter space,36

bypassing trajectory generation. LWD first encodes demonstration trajectories into a latent space,37

then learns their distribution using a diffusion model, and finally decodes them into policy weights38

via a hypernetwork [15]. The generated policy is also optimized with model-based imitation learning39

using a co-trained world (dynamics) model [16], which helps in understanding the environment40

transitions during training. This approach leverages the success of latent diffusion techniques in41

vision [47] and language [34], and combines them with learned dynamics models, bringing their42

advantages to robotic control. The world model, and accompanying loss terms, help the agent learn43

the optimal policy that can be backpropagated through the learned (differentiable) dynamics, and also44

apply corrective actions to bring back the agent states back into distribution of the input trajectory45

dataset. For LWD, the action horizon corresponds to the number of environment interactions between46

consecutive policy weight generations. To achieve trajectory encoding and policy parameter decoding,47

we derive a novel objective function described in Section 3.1, and show that we can approximate its48

components with a hypernetwork-based VAE and a World Model, and optimize it using a novel loss49

function described in Section 3.2. This paper provides the following key contributions:50

1. Theoretical Foundations for generating policies: We derive a novel objective function,51

which when optimized, allows us to generate policy parameters instead of action trajectories.52

For this, we integrate concepts from latent diffusion, hypernetworks, and world models.53

2. Longer Action Horizons & Robustness to Perturbations: By generating closed-loop54

policies under learned dynamics, LWD mitigates trajectory tracking errors, enabling policies55

to operate over extended time horizons with fewer diffusion queries. Additionally, closed-56

loop policies are reactive to environmental changes, ensuring LWD-generated policies57

remain robust under stochastic disturbances.58

3. Lower Inference Costs: The computational burden of generalization is shifted to the59

diffusion model, allowing the generated policies to be smaller and more efficient.60

We validate these contributions through experiments on the PushT task [9], the Lift and Can tasks61

from Robomimic [36], and 10 tasks from Metaworld [58]. On Metaworld, LWD achieves comparable62

performance to Diffusion Policy but with a ∼ 45x reduction in FLOPS per step, representing a63

significant improvement in computational efficiency (FLOPS per step are the floating point operations64

per second, amortized over all steps of the episode). Analysis across a range of benchmark robotic65

locomotion and manipulation tasks, demonstrates LWD’s ability to accurately capture the behavior66

distribution of diverse trajectories, showcasing its capacity to learn a distribution of behaviors.67

2 Related Work68

2.1 Imitation Learning and Diffusion for Robotics69

Behavioral cloning has advanced with transformer-based models like PerAct [49] and RT-1 [5], achiev-70

ing strong task performance. Vision-language models (e.g., RT-2 [4]) extend this by interpreting text71

as actions, while RT-X [10] generalizes across robot embodiments. Object-aware representations [24],72

2

energy-based models, and temporal abstraction (e.g., implicit behavioral cloning [13], sequence73

compression [61]) further improve multitask learning. DBC [7] enhances robustness to sensor noise,74

whereas LWD targets environmental perturbations affecting system dynamics, such as object shifts or75

execution-time disturbances.76

Alongside these advances, diffusion models (originally introduced for generative modeling [25, 48])77

have emerged as powerful tools for robotics. Trajectory-based diffusion approaches capture mul-78

timodal action distributions [9], while goal-conditioned methods such as BESO [46] and Latent79

Diffusion Planning [30] improve efficiency through latent-space conditioning. Diffusion has also80

been leveraged for grasping and motion planning [52, 35, 6], skill chaining [39], and locomotion81

control [28]. Hierarchical extensions such as ChainedDiffuser [57], SkillDiffuser [33], and multi-82

task latent diffusion [51] address long-horizon action planning, though trajectory tracking remains83

challenging. Recently, OCTO [40] demonstrates that diffusion-based generalist robot policies.84

2.2 Hypernetworks and Policy Generation85

Hypernetworks, first introduced by [15], are neural architectures designed to estimate parameters86

for secondary networks, finding applications across various domains. Initially applied to meta-87

learning scenarios for one-shot learning tasks [3], hypernetworks have recently been extended to88

robot policy representations [23]. Their approach aligns conceptually with Dynamic Filter Networks89

[29], emphasizing dynamic adaptability to input data.90

Recent developments also integrate Latent Diffusion Models (LDMs) into hypernetwork-like settings,91

modeling training dynamics in parameter spaces [41]. Specifically, LDMs have been successfully used92

to generate behavior-conditioned policies from textual descriptions [22] and trajectory embeddings93

[32], as well as to learn distributions over complex model architectures like ResNet [54]. Notably,94

while these recent approaches [22, 32] depend on pre-collected policy datasets, the current work95

distinguishes itself by removing this requirement.96

2.3 World Models97

Ha and Schmidhuber [16] introduced world models for forecasting in latent space. PlaNet [18]98

extended this with pixel-based dynamics learning and online planning. Dreamer [17] learned latent99

world models with actor-critic RL for long-horizon behaviors, followed by DreamerV2 [19] with100

discrete representations achieving human-level Atari, and DreamerV3 [20] scaling robustly across101

domains. IRIS [37] used transformers for sequence modeling, reaching superhuman Atari in two102

hours. SLAC [31] showed that stochastic latent variables accelerate RL from high-dimensional inputs.103

VINs [50] embedded differentiable value iteration for explicit planning, while E2C [55] combined104

VAEs with locally linear dynamics. DayDreamer [56] enabled real robot learning in one hour, and105

MILE [27] adapted Dreamer to CARLA with 31% gains. Model-based imitation learning was further106

scaled to large self-driving datasets by Popov et al. [44]. Recent advances include SafeDreamer [60]107

for safety, STORM [38] with efficient transformers, UniZero [59] for joint optimization of models108

and policies, and Time-Aware World Models [8] incorporating temporal dynamics.109

3 Method & Problem Formulation110

As this work tackles policy neural network weights generation, we take inspiration from the method111

employed in [22], where it was demonstrated that latent diffusion can be utilized to learn the112

distribution of policy parameters for humanoid locomotion. A key limitation of this method was113

the reliance on often unavailable policy datasets. This work does not require a dataset of policy114

parameters but trains on a (more commonly available) trajectory dataset.115

LWD employs a two-step training process. First, a variational autoencoder (VAE) with weak KL-116

regularization encodes trajectories into a latent space that can be decoded into policy weights. The117

decoder is a conditioned hypernetwork that takes a policy neural network without its parameters118

(weights) as input and populates it with the desired weights based on the conditioning. The gen-119

erated policy parameters are also optimized for trajectory tracking with a world model. Next, a120

diffusion model learns the distribution of this latent space, enabling policy sampling from the learned121

distribution (see Figure 2).122

3

Figure 2: LWD: We first pre-train a VAE and World Model, which variationally encodes trajectories
to a latent space and then decodes it as policy parameters, the policy parameters are optimized for both
behavior cloning and trajectory tracking in a co-trained world model. Next, we train a conditional
latent diffusion model to learn this latent distribution. When teacher forcing is enabled, the world
model parameters are optimized, when disabled, the world model is used to optimize the VAE.

Compared to [22], which encodes policy parameters and employs a graph hypernetwork with a MSE123

loss on parameter reconstruction, our approach differs as it: (1) encodes trajectories as opposed124

to parameters, into latent space (2) uses a simple hypernetwork, (3) applies a behavior cloning125

loss (detailed in Section 3.1 & Section 3.2) on the generated policy, and (4) learns a world model126

for predicting observations given the action in an environment. Below we discuss the problem127

formulation and derivation.128

3.1 Latent Policy Representation129

We begin by formulating our approach for unconditional policy generation. Assume a distribution130

over stochastic policies, where variability reflects behavioral diversity. Each policy is parameterized131

by θ, with π(·, θ) denoting a sampled policy and p(θ) the parameter distribution. Sampling a132

policy corresponds to drawing θ ∼ p(θ). When a policy interacts with the environment, it gives133

us a trajectory τ = {st, at}Tt=0. We assume multiple such trajectories are collected by repeatedly134

sampling θ and executing the corresponding policy. This enables a heterogeneous dataset, e.g., from135

humans or expert agents. For a given θ, actions are noisy: at ∼ N (π(st, θ), σ
2).136

Our objective is to recover the distribution p(θ) that generated the trajectory dataset. We posit a latent137

variable z capturing behavioral modes, and assume conditional independence: p(τ | z, θ) = p(τ | θ).138

Given trajectory data, we maximize the likelihood log p(τ). To do so, we derive a modified Evidence139

Lower Bound (mELBO) that incorporates p(θ) (see below). This differs from the standard ELBO140

used in VAEs.141

log p(τ) = log

∫ ∫
p(τ, θ, z) dz dθ (Introduce policy parameter θ and latent variable z)

= log

∫ ∫
p(τ | z, θ)p(θ | z)p(z) dz dθ (Apply the chain rule)

= log

∫ ∫
p(τ | z, θ)p(θ | z)p(z)

q(z | τ)
q(z | τ) dz dθ (1a)

(Introduce a variational distribution q(z | τ), approximating the true posterior p(z | τ))

= log

∫
Ep(θ|z)

[
p(τ | z, θ)p(z)

q(z | τ)
q(z | τ)

]
dz (1b)

≥ Eq(z|τ)

[
log

(Ep(θ|z) [p(τ | z, θ)] p(z)
q(z | τ)

)]
(Jensen’s inequality)

= Eq(z|τ)
[
log

(
Ep(θ|z) [p(τ | z, θ)]

)]
− Eq(z|τ) [log (q(z | τ))− log (p(z))] (1c)

= Eq(z|τ)
[
log

(
Ep(θ|z) [p(τ | θ)]

)]
− KL(q(z | τ) ∥ p(z)) (cond. independence) (1d)

≥ Eq(z|τ)
[
Ep(θ|z) [log (p(τ | θ))]

]
− KL(q(z | τ) ∥ p(z)) (Jensen’s inequality) (1e)

Assuming the state transitions are Markov and s1 is independent of θ, the joint likelihood of the entire142

sequence {(s1, a1), (s2, a2), . . . , (sT , aT)} (i.e., p(τ | θ)) is given by:143

4

p(s1, a1, . . . , sT , aT | θ) = p(s1)p(a1 | s1, θ) ·
T∏

t=2

p(st | st−1, at−1)p(at | st, θ) (2a)

log p(s1, a1, . . . , sT , aT | θ) = log p(s1) + log p(a1 | s1, θ)

+

T∑
t=2

[log p(st | st−1, at−1) + log p(at | st, θ)] (2b)

Substituting 2b in 1e:144

log p(τ) ≥ Eq(z|τ)
[
Ep(θ|z) [log (p(τ | θ))]

]
− KL(q(z | τ) ∥ p(z))

= Eq(z|τ)

[
Ep(θ|z)

[
T∑

t=1

log p(at | st, θ) +
T∑

t=2

log p(st | st−1, at−1)

]]
− KL(q(z | τ) ∥ p(z)) +A (3)

A consists of log p(s1), and since this cannot be subject to maximization, we shall ignore it.145

Therefore, our modified ELBO is:146

Eq(z|τ)

Ep(θ|z)

 T∑
t=1

log p(at | st, θ)︸ ︷︷ ︸
Behavior Cloning

+

T∑
t=2

log p(st | st−1, at−1)︸ ︷︷ ︸
WorldModel


− KL(q(z | τ) ∥ p(z))︸ ︷︷ ︸

KLRegularizer

(4)

3.2 Loss function for World Model Augmented Variational Autoencoder for Policies147

Since we now have a modified ELBO objective, we shall now try to approximate its components148

with a variational autoencoder and a world model. Let ϕenc be the parameters of the VAE encoder149

that variationally maps trajectories to z, ϕdec be the parameters of the VAE decoder, and ϕwm150

be the world model parameters. We assume the latent z is distributed with mean zero and unit151

variance. We construct the VAE decoder to approximate p(θ | z) with pϕdec
(θ | z). Considering152

at ∼ N (π(st, θ), σ
2), and τk = {skt , akt }Tt=1, we derive our VAE loss function as:153

LBC = −
T∑

t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

154

LRO = −
T∑

t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm(st | skt−1, a

k
t−1)

)]
155

LTF = −
T∑

t=2

(skt − ŝkt)
2 LKL = −βkl

dim(z)∑
i=1

(
σ2
ei + µ2

ei − 1− log σ2
ei

)
156

L
(
{skt , akt }Tt=1 | ϕenc, ϕdec, ϕwm

)
= LBC + LRO + LTF + LKL (5)

where, LBC is the behavior cloning loss to train the policy decoder, LRO is the rollout loss to correct157

the decoded policy’s actions using the world model, LTF is the teacher forcing loss to train the world158

model, and LKL is the KL loss to regularize the latent space. θ is obtained from the hypernetwork159

decoder fϕdec
(z). (µe, σe) = fϕenc({skt , akt }Tt=1), z ∼ N (µe, σe), ŝkt ∼ pϕwm(skt | skt−1, a

k
t−1) and160

βkl is the regularization weight. The complete derivation is shown in Appendix A. Since the decoder161

in the VAE outputs the parameter of a secondary network, we shall use a conditional hypernetwork,162

specifically the model developed for continual learning by [53]. For computational stability, we shall163

use LBC , LRO and LKL to optimize the VAE (encoder and decoder parameters) and LTF to train164

the world model parameters. With the teacher forcing objective we get a reliable world model that165

we can then use in the rollout objective. This is similar to procedures followed in [1, 44, 27].166

In practice, we see that approximating p(z) = N (0, I) is suboptimal, and therefore we set βkl to167

a very small number ∼ (10−10, 10−6). After training the VAE to maximize the objective provided168

5

in Equation (5) with this βkl, we have access to this latent space z and can train a diffusion model169

to learn its distribution p(z). We can condition the latent denoising process on the current state170

and/or the task identifier c of the policy required. Therefore the model shall be approximating171

pϕdif
(zt−1 | zt, c). After denoising for a given state and task identifier, we can convert the denoised172

latent to the required policy. Therefore, to sample from p(θ), first sample z using the trained diffusion173

model z ∼ pϕdif
(z0), and then apply the deterministic function fϕdec

to the sampled z. Note that to174

sample policies during inference, we do not need to encode trajectories; rather, we need to sample a175

latent using the diffusion model and use the hypernetwork decoder of a pre-trained VAE to decode a176

policy from it.177

4 Experiments178

We run three sets of experiments. In the first set, we evaluate the validity of our main contributions. We179

compare LWD with action trajectory generation methods with respect to 1) Longer Action Horizons180

and Environment Perturbations, where experiments are performed on the PushT task [9] and the Lift181

and Can Robomimic tasks [36], while varying these parameters, and 2) Lower inference costs, where182

experiments are performed on 10 tasks from the Metaworld [58] suite of tasks, to show LWD requires183

fewer parameters during inference while maintaining multi-task performance. The task descriptions184

are provided in Appendix B. We choose a multi-task experiment here as the model capacity required185

for solving multiple tasks generally increases with the number of tasks. In the second set, we perform186

ablations over three components of our method: 1) Diffusion model architecture, Appendix E; 2)187

VAE decoder size, Appendix F; 3) KL coefficient for the VAE, Appendix D. In the final set, we188

analyze the behavior distribution modeled by our latent space. These can be found in Appendix G,189

and Appendix H.190

We focus on demonstrating results in state-based low-dimensional observation spaces. Our generated191

policies are Multi-Layer Perceptrons (MLP) with 2 hidden layers with 256 neurons each. In the192

VAE, the encoder is a sequential network that flattens the trajectory and compresses it to a low-193

dimensional latent space, and the decoder is a conditional hypernetwork[12]. The details of the194

VAE implementation are provided in Appendix J.2 and Appendix J.3. For the world model, since195

we use low-dimensional observation spaces, we use a simple MLP with 2 hidden layers with 1024196

neurons each to map the history of observations and actions to the next observation. For stability,197

we use LRO only after 10 epochs of training. This warm-starts the world model before we use it to198

optimize the policy generator. For all experiments, the latent space is R256 and the learning rate is199

10−4 with the Adam optimizer. For the diffusion model, we use the DDPM Scheduler for denoising.200

Inspired by [9], we conducted an ablation between two diffusion architectures: a ConditionalUnet1D201

network and a Transformer architecture. Based on the results are shown in Appendix E, We chose the202

ConditionalUnet1D model for all experiments in the paper. Just as [9], we condition the diffusion203

model with FiLM layers, and also use the Exponential Moving Average [21] of parameter weights204

(commonly used in DDPM) for stability. All results presented in this work are obtained from running205

experiments over three seeds, and the compute resources are described in Appendix J.9206

4.1 Empirical Evaluation of Contributions207

4.1.1 Longer Action Horizons & Robustness to Perturbations208

We first evaluate our method on the PushT task [9], a standard benchmark for diffusion-based209

trajectory generation in manipulation. The goal is to align a ‘T’ block with a target position and210

orientation on a 2D surface. Observations consist of the end-effector’s position and the block’s211

position and orientation. Actions specify the end-effector’s target position at each time step. Task212

performance (measured by success rate) is defined as the maximum overlap between the actual and213

desired block poses during a rollout. We test under different action horizons and varying levels of214

environment perturbation, simulated via an adversarial agent that randomly displaces the ‘T’ block.215

For the LWD model, we first train a VAE to encode trajectory snippets (of length equal to the action216

horizon) into latents representing locally optimal policies. These policies are optimized with a217

co-trained world model. A conditional latent diffusion model, given the current state, then generates218

a latent that the VAE decoder transforms into a locally optimal policy for the next action horizon.219

The inference process is illustrated in Figure 1. We train two variants of LWD, with (LWD w/ WM)220

and without (LWD w/o WM) the world model (i.e., we train LWD with just LBC + LKL).221

6

Figure 3: Longer action horizons and robustness to perturbations on PushT: Performance of
LWD and baselines on the PushT task as we vary the action horizon and environment perturbations.

Figure 4: Visualization of Perturbation: When an adversarial perturbation is applied, we see that
LWD’s generated closed-loop policy successfully adapts to the change.

As baselines for this experiment, we compare the proposed LWD variants against four alternatives: 1)222

a Diffusion Policy (DP) model that generates open-loop action trajectories for a fixed action horizon;223

2) a Latent Diffusion Policy (LDP) model, which is structurally similar to LWD but decodes the224

latent representation into an action trajectory rather than a closed-loop policy; 3) a Multilayer225

Perceptron (MLP) policy, which shares the same architecture as the policy network generated by226

LWD and serves to isolate the impact of diffusion modeling; 4) a Random Policy, which provides a227

lower-bound performance reference. For a fair comparison, all diffusion-based models (LWD, DP,228

and LDP) use the same model size and hyperparameters, corresponding to the medium configuration229

described in Appendix J.4 and Appendix J.7. LDP uses a VAE decoder, implemented as an MLP with230

two hidden layers of 256 neurons each, to output an action chunk of the same length as the action231

horizon.232

All models are evaluated across 50 uniquely seeded environment instances, with each evaluation233

repeated 10 times, across 3 training seeds. Figure 3 illustrates the impact of perturbation magnitudes234

and action horizons on success rates across all baselines. Perturbations refer to random displacements235

applied to the T block, occurring at randomly selected time steps with 10% probability. A sample236

rollout with a perturbation magnitude of 50 is shown in Figure 4.237

While DP demonstrates comparable performance to both LWD variants at an action horizon of 16238

with minimal perturbations, LWD exhibits superior robustness as the action horizon increases. This239

enhanced robustness of LWD with the world model becomes more pronounced in the presence of240

larger perturbations. Specifically, at longer action horizons such as 128, LWD w/ WM maintains a241

significantly higher success rate compared to DP across all perturbation levels. The MLP generally242

underperforms compared to both LWD variants and DP, highlighting the benefits of diffusion-based243

approaches for this task. LDP has a lower success rate than LWD, indicating that generating a244

closed-loop policy is more important than learning the latent representation space. The relatively245

lower sensitivity to perturbations at an action horizon of 16 for both policies can be attributed to the246

more frequent action trajectory queries inherent in DP at shorter horizons (i.e. smaller action chunks),247

effectively approximating a more closed-loop control strategy.248

Finally, we measured the total time required to successfully complete the PushT task and see that249

for all levels of perturbation, for a given success rate, LWD executes a rollout quicker (in wall-clock250

time) than the DP model. See Appendix I for more details.251

We also ran experiments on the Robomimic [36] Lift and Can tasks, using the same hyperparameters252

as the PushT experiment, the same task settings, and the mh demonstration data from [9]. To simulate253

7

Figure 5: Longer action horizons and robustness to perturbations on Robomimic tasks: Perfor-
mance of LWD and DP as we vary the action horizon and environment perturbations.

perturbations, we add random translation and rotation vectors to the end effector, applied 10% of the254

time. Figure 5 shows the performance of the LWD variants and baselines under these perturbations255

across different action horizons. The x-axis corresponds to perturbation magnitude. Similar to PushT,256

LWD outperforms DP for longer horizons and is more robust to perturbations.257

4.1.2 Low Inference Cost258

Figure 6: Success rate vs. average compute of
LWD, DP, and MLP policies on 10 Metaworld
tasks for various model sizes. The x-axis shows
the number of GFLOPS/step for each policy on
a log scale. LWD performs ∼ 45 times fewer
computations than a DP policy with comparable
performance.

We will now look at the next contribution,259

namely, lower inference cost compared to meth-260

ods that diffuse action trajectories instead of261

policies. When training a single policy on multi-262

ple tasks, it is known that a larger model capacity263

is needed. This is detrimental in robotics appli-264

cations as this increases control latency. We265

train a task-conditioned LWD model and show266

that the cost of task generalization is borne by267

the latent diffusion model, while the generated268

execution policy remains small. Because LWD269

generates a smaller policy, the runtime compute270

required for inference is much smaller compared271

to the SOTA methods. For simplicity, in this sec-272

tion, we use the LWD w/o WM variant.273

We experiment on 10 tasks of the Metaworld274

benchmark, the details of which are in Ap-275

pendix B. We set the action horizon to the length276

of the entire trajectory for LWD to generate poli-277

cies that shall work for the entire duration of the278

rollout, where at each time step, the generated279

MLPs shall predict instantaneous control. We280

experimented over three sizes of the generated281

MLP policy: 128, 256, and 512 neurons per282

layer, each having 2 hidden layers. We also train283

10 DP models, spread over a grid of 5 different284

sizes (xs, s, m, l, xl) and 2 action horizons: 32285

and 128. Each DP model is run at an inference frequency of half the action horizon. We provide the286

details of the DP model in Appendix J.1. Finally, we also train 3 MLP models with 128, 256, and287

512 neurons per layer, to compare the performance of LWD with a standard MLP policy.288

Note that LWD uses a fixed action horizon equal to the full episode length (500 steps), whereas the289

DP model uses a variable horizon. The LWD inference process is illustrated on the right-hand side290

of Figure 1. All baseline models receive the task identifier as part of the state input. Each model291

8

is trained with 3 random seeds, and evaluated across 10 tasks, with 16 rollouts per task. Figure 6292

presents the results of this evaluation. In the plot, the x-axis represents average per-step inference293

compute (in GFLOPs), and the y-axis indicates the overall success rate across tasks. For DP models,294

achieving high success rates requires increasing model size or denoising frequency (i.e., predicting295

shorter action chunks), both of which raise computational cost. In contrast, LWD generates a simpler,296

more efficient controller, requiring significantly less compute. The best-performing LWD model297

achieves an 81% success rate with ∼ 45× fewer inference operations than the closest-performing298

DP model. Interestingly, the MLP baseline also performs well, and is comparable in efficiency to299

LWD, but still lags in performance. We attribute this to the unimodal nature of this dataset, as MLPs300

struggled with the multimodal PushT task in the previous section.301

4.2 Behavior Analysis302

Figure 7: Behavior distribution: Robomimic Lift task

LWD models trajectory data from a dis-303

tribution of policies, exposing this distri-304

bution through its latent space. On the305

Robomimic Lift task with the MH dataset306

(300 trajectories from 6 operators of var-307

ied proficiency: 2 “worse,” 2 “okay,” and 2308

“better.”), LWD encoded entire demonstra-309

tion trajectories. A 2D t-SNE plot revealed310

clusters aligned with operator identity, de-311

spite LWD receiving no explicit operator312

labels. This shows LWD can cluster behav-313

iors and potentially filter unwanted ones, a314

capability further studied in Appendix G315

and Appendix H.316

5 Limitations and Future Work317

Latent Weight Diffusion (LWD) is a promising framework for policy generation, but Diffusion Policy318

(DP) performs better in short-horizon, low-perturbation settings. This gap likely stems from VAE319

approximation errors and LWD’s added complexity, which increases training cost, particularly the320

RAM demands of loading full observation sequences.321

DP’s strength is its compatibility with foundation models as action heads [40], while integrating322

LWD into such architectures remains an open question. For image-based observations, LWD requires323

CNN-based policies. Although hypernetworks can generate CNN and ViT weights, adapting these324

within LWD is challenging. Our early results show promise in using pre-trained encoders and325

applying LWD to image embeddings. Integrating LWD with vision-based world models is also open,326

but appears feasible with approaches in [44] and [27].327

Future work could improve LWD’s VAE decoder through chunked deconvolutional hypernet-328

works [53], enabling more efficient decoding. Extending LWD to Transformer or ViT policies329

is another direction, especially for sequential or visual tasks [11]. Finally, warm-starting with prior330

latents [9] may further boost performance by providing richer priors.331

6 Conclusion332

We introduce Latent Weight Diffusion (LWD), a novel framework for learning a distribution over333

policies from diverse demonstration trajectories. LWD models behavioral diversity via latent diffusion,334

a world model, and uses a hypernetwork decoder to generate policy weights, enabling closed-335

loop control directly from sampled latents. Our evaluation highlights two key strengths of LWD:336

robustness and computational efficiency. Compared to Diffusion Policy, LWD delivers more reliable337

performance in environments with long action horizons and perturbations, while reducing inference338

costs, especially in multi-task settings.339

9

References340

[1] Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley,341

Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised342

video models enable understanding, prediction and planning. arXiv preprint arXiv:2506.09985,343

2025.344

[2] Sumeet Batra, Bryon Tjanaka, Matthew C Fontaine, Aleksei Petrenko, Stefanos Nikolaidis, and345

Gaurav Sukhatme. Proximal policy gradient arborescence for quality diversity reinforcement346

learning. arXiv preprint arXiv:2305.13795, 2023.347

[3] Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi. Learning348

feed-forward one-shot learners. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,349

editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates,350

Inc., 2016.351

[4] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-352

manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan353

Fu, Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex354

Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,355

Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk356

Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,357

Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,358

Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,359

Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2:360

Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint361

arXiv:2307.15818, 2023.362

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea363

Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz,364

Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry365

Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav366

Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta,367

Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar,368

Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan,369

Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun370

Xu, Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at371

scale. In arXiv preprint arXiv:2212.06817, 2022.372

[6] Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning373

diffusion: Learning and planning of robot motions with diffusion models. in 2023 ieee. In RSJ374

International Conference on Intelligent Robots and Systems (IROS), pages 1916–1923.375

[7] Shang-Fu Chen, Hsiang-Chun Wang, Ming-Hao Hsu, Chun-Mao Lai, and Shao-Hua Sun.376

Diffusion model-augmented behavioral cloning. In International Conference on Machine377

Learning, pages 7486–7510. PMLR, 2024.378

[8] Yixuan Chen, Hao Zhang, and Jian Liu. Time-aware world model for adaptive prediction and379

control. arXiv preprint arXiv:2506.08441, 2025.380

[9] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ381

Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.382

The International Journal of Robotics Research, 2024.383

[10] Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhi-384

ram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim385

Gupta, Ajay Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan,386

Alexander Khazatsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait387

Singh, Animesh Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin,388

Archit Sharma, Arefeh Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-389

Limerick, Beomjoon Kim, Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles390

Xu, Charlotte Le, Chelsea Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang,391

10

Christine Chan, Christopher Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel392

Morton, Danny Driess, Daphne Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh393

Jayaraman, Dmitry Kalashnikov, Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu,394

Federico Ceola, Fei Xia, Feiyu Zhao, Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S.395

Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn,396

Guangwen Yang, Guanzhi Wang, Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben397

Amor, Henrik I Christensen, Hiroki Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie398

Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra,399

Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette400

Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun,401

Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra402

Malik, João Silvério, Joey Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi403

Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol404

Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth405

Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran406

Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap Singh,407

Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yunliang Chen, Lerrel Pinto,408

Li Fei-Fei, Liam Tan, Linxi "Jim" Fan, Lionel Ott, Lisa Lee, Luca Weihs, Magnum Chen,409

Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina, Mateo Guaman Castro,410

Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu Ding,411

Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki Kanazawa, Nicklas412

Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur413

Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi,414

Patrick “Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano,415

Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov,416

Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario Scalise, Rose Hendrix,417

Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan418

Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar419

Bahl, Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun Xu, Siddhant420

Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal,421

Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel Belkhale,422

Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada,423

Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z.424

Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vincent425

Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong426

Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao427

Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying428

Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen429

Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang430

Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen431

Zhang, Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X432

models. https://arxiv.org/abs/2310.08864, 2023.433

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,434

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,435

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image436

recognition at scale. CoRR, abs/2010.11929, 2020.437

[12] Benjamin Ehret, Christian Henning, Maria R. Cervera, Alexander Meulemans, Johannes von Os-438

wald, and Benjamin F. Grewe. Continual learning in recurrent neural networks. In International439

Conference on Learning Representations, 2021.440

[13] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,441

Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.442

In Aleksandra Faust, David Hsu, and Gerhard Neumann, editors, Proceedings of the 5th443

Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research,444

pages 158–168. PMLR, 08–11 Nov 2022.445

[14] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for446

deep data-driven reinforcement learning, 2020.447

11

https://arxiv.org/abs/2310.08864

[15] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,448

2016.449

[16] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In450

Advances in Neural Information Processing Systems 31, pages 2451–2463. Curran Associates,451

Inc., 2018. https://worldmodels.github.io.452

[17] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:453

Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.454

[18] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,455

and James Davidson. Learning latent dynamics for planning from pixels. arXiv preprint456

arXiv:1811.04551, 2019.457

[19] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and458

James Davidson. Mastering atari with discrete world models. arXiv preprint arXiv:2010.02193,459

2020.460

[20] Danijar Hafner, Jurgis Pašukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains461

through world models. arXiv preprint arXiv:2301.04104, 2023.462

[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for463

unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on464

computer vision and pattern recognition, pages 9729–9738, 2020.465

[22] Shashank Hegde, Sumeet Batra, KR Zentner, and Gaurav Sukhatme. Generating behaviorally466

diverse policies with latent diffusion models. Advances in Neural Information Processing467

Systems, 36:7541–7554, 2023.468

[23] Shashank Hegde, Zhehui Huang, and Gaurav S Sukhatme. Hyperppo: A scalable method for469

finding small policies for robotic control. In 2024 IEEE International Conference on Robotics470

and Automation (ICRA), pages 10821–10828. IEEE, 2024.471

[24] Negin Heravi, Ayzaan Wahid, Corey Lynch, Peter R. Florence, Travis Armstrong, Jonathan472

Tompson, Pierre Sermanet, Jeannette Bohg, and Debidatta Dwibedi. Visuomotor control in473

multi-object scenes using object-aware representations. 2023 IEEE International Conference474

on Robotics and Automation (ICRA), pages 9515–9522, 2022.475

[25] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo476

Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,477

editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural478

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.479

[26] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances480

in neural information processing systems, 33:6840–6851, 2020.481

[27] Anthony Hu, Zak Murez, Nikhil Mohan, Sofia Dudas, Jeffrey Hawke, Vijay Badrinarayanan,482

Roberto Cipolla, and Alex Kendall. Model-based imitation learning for urban driving. arXiv483

preprint arXiv:2210.07729, 2022.484

[28] Xiaoyu Huang, Yufeng Chi, Ruofeng Wang, Zhongyu Li, Xue Bin Peng, Sophia Shao, Borivoje485

Nikolic, and Koushil Sreenath. Diffuseloco: Real-time legged locomotion control with diffusion486

from offline datasets. arXiv preprint arXiv:2404.19264, 2024.487

[29] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. In488

D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural489

Information Processing Systems, volume 29. Curran Associates, Inc., 2016.490

[30] Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao491

Huang, Sirui Xie, and Ying Nian Wu. Latent plan transformer for trajectory abstraction:492

Planning as latent space inference. Advances in Neural Information Processing Systems,493

37:123379–123401, 2024.494

12

https://worldmodels.github.io

[31] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:495

Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953,496

2019.497

[32] Yongyuan Liang, Tingqiang Xu, Kaizhe Hu, Guangqi Jiang, Furong Huang, and Huazhe Xu.498

Make-an-agent: A generalizable policy network generator with behavior-prompted diffusion.499

arXiv preprint arXiv:2407.10973, 2024.500

[33] Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo.501

Skilldiffuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task502

execution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern503

Recognition, pages 16467–16476, 2024.504

[34] Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent505

diffusion for language generation. Advances in Neural Information Processing Systems, 36,506

2024.507

[35] Yunhao Luo, Chen Sun, Joshua B Tenenbaum, and Yilun Du. Potential based diffusion motion508

planning. arXiv preprint arXiv:2407.06169, 2024.509

[36] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,510

Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning511

from offline human demonstrations for robot manipulation. In arXiv preprint arXiv:2108.03298,512

2021.513

[37] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world514

models. In International Conference on Learning Representations, 2023.515

[38] Vincent Micheli, Eloi Alonso, and François Fleuret. Storm: Efficient stochastic transformer516

based world models for reinforcement learning. arXiv preprint arXiv:2310.09615, 2024.517

[39] Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining:518

Long-horizon skill planning with diffusion models. In Conference on Robot Learning, 2023.519

[40] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep520

Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yun-521

liang Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey522

Levine. Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and523

Systems, Delft, Netherlands, 2024.524

[41] William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning525

to learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,526

2022.527

[42] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings528

of the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.529

[43] Xue Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine.530

Learning agile robotic locomotion skills by imitating animals. 07 2020.531

[44] Alexander Popov, Alperen Degirmenci, David Wehr, Shashank Hegde, Ryan Oldja, Alexey532

Kamenev, Bertrand Douillard, David Nistér, Urs Muller, Ruchi Bhargava, et al. Mitigating533

covariate shift in imitation learning for autonomous vehicles using latent space generative world534

models. arXiv preprint arXiv:2409.16663, 2024.535

[45] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel536

Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforce-537

ment Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS),538

2018.539

[46] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation540

learning using score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.541

13

[47] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-542

resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF543

conference on computer vision and pattern recognition, pages 10684–10695, 2022.544

[48] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-545

resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer546

Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages547

10674–10685. IEEE, 2022.548

[49] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for549

robotic manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.550

[50] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.551

In Advances in Neural Information Processing Systems, pages 2154–2162, 2016.552

[51] Wenhui Tan, Bei Liu, Junbo Zhang, Ruihua Song, and Jianlong Fu. Multi-task manipulation553

policy modeling with visuomotor latent diffusion. ArXiv, abs/2403.07312, 2024.554

[52] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se(3)-diffusionfields: Learning555

smooth cost functions for joint grasp and motion optimization through diffusion. 2023 IEEE556

International Conference on Robotics and Automation (ICRA), pages 5923–5930, 2022.557

[53] Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacramento. Continual558

learning with hypernetworks. In International Conference on Learning Representations, 2020.559

[54] Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor560

Darrell, Zhuang Liu, and Yang You. Neural network diffusion. arXiv preprint arXiv:2402.13144,561

2024.562

[55] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to563

control: A locally linear latent dynamics model for control from raw images. In Advances in564

Neural Information Processing Systems, pages 2746–2754, 2015.565

[56] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Day-566

dreamer: World models for physical robot learning. arXiv preprint arXiv:2206.14176, 2022.567

[57] Zhou Xian and Nikolaos Gkanatsios. Chaineddiffuser: Unifying trajectory diffusion and568

keypose prediction for robotic manipulation. In Conference on Robot Learning/Proceedings of569

Machine Learning Research. Proceedings of Machine Learning Research, 2023.570

[58] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and571

Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement572

learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020.573

[59] Hao Zhang, Zhihan Xu, Jian Liu, and Qingzhao Wang. Generalized and efficient planning with574

scalable latent world models. arXiv preprint arXiv:2406.10667, 2024.575

[60] Weidong Zhang, Jian Liu, Lihe Xia, Qingzhao Wang, and Hongming Zhou. Safedreamer: Safe576

reinforcement learning with world models. arXiv preprint arXiv:2307.07176, 2023.577

[61] Ruijie Zheng, Ching-An Cheng, Hal Daumé Iii, Furong Huang, and Andrey Kolobov. Prise: Llm-578

style sequence compression for learning temporal action abstractions in control. In International579

Conference on Machine Learning, pages 61267–61286. PMLR, 2024.580

14

NeurIPS Paper Checklist581

1. Claims582

Question: Do the main claims made in the abstract and introduction accurately reflect the583

paper’s contributions and scope?584

Answer: [Yes]585

Justification: Yes, the paper presents a novel approach to generating reactive policies using586

latent weight diffusion, which is articulated in both the intro and the abstract sections.587

2. Limitations588

Question: Does the paper discuss the limitations of the work performed by the authors?589

Answer: [Yes]590

Justification: Limitations and Future Work are discussed in Section 5.591

3. Theory assumptions and proofs592

Question: For each theoretical result, does the paper provide the full set of assumptions and593

a complete (and correct) proof?594

Answer: [Yes]595

Justification: We have a proof in Section 3.1 and Appendix A that is complete and correct to596

the best of the authors’ knowledge.597

4. Experimental result reproducibility598

Question: Does the paper fully disclose all the information needed to reproduce the main ex-599

perimental results of the paper to the extent that it affects the main claims and/or conclusions600

of the paper (regardless of whether the code and data are provided or not)?601

Answer: [Yes]602

Justification: The authors have provided full information about the method, the setup for603

experiments, and the hyperparameters (in the appendices) used to reproduce these results.604

5. Open access to data and code605

Question: Does the paper provide open access to the data and code, with sufficient instruc-606

tions to faithfully reproduce the main experimental results, as described in supplemental607

material?608

Answer: [No]609

Justification: We will include the code and data in the camera-ready version.610

6. Experimental setting/details611

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-612

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the613

results?614

Answer: [Yes]615

Justification: Yes, these details are provided in the paper, with more details (such as616

hyperparameters) provided in the appendices.617

7. Experiment statistical significance618

Question: Does the paper report error bars suitably and correctly defined or other appropriate619

information about the statistical significance of the experiments?620

Answer: [Yes]621

Justification: All experiemnts were trained with three seeds. For PushT tasks, we ran 50622

evaluations for each seed. For MetaWorld, we ran 16 evaluations per seed per task. For623

Robomimic, we ran 32 evaluations per seed per task. Each plot has error bars.624

8. Experiments compute resources625

Question: For each experiment, does the paper provide sufficient information on the com-626

puter resources (type of compute workers, memory, time of execution) needed to reproduce627

the experiments?628

15

Answer: [Yes]629

Justification: This is mentioned in Appendix J.9. We have even more precise calculations630

for evaluation compute resources measured in Giga FLOPS when comparing compute with631

the baseline (DP).632

9. Code of ethics633

Question: Does the research conducted in the paper conform, in every respect, with the634

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?635

Answer: [Yes]636

Justification: The authors have adhered to the NeurIPS Code of Ethics.637

10. Broader impacts638

Question: Does the paper discuss both potential positive societal impacts and negative639

societal impacts of the work performed?640

Answer: [Yes]641

Justification: A societal impact section is mentioned in Appendix K.642

11. Safeguards643

Question: Does the paper describe safeguards that have been put in place for responsible644

release of data or models that have a high risk for misuse (e.g., pretrained language models,645

image generators, or scraped datasets)?646

Answer: [NA]647

Justification: This paper uses datasets for solving robotic tasks, which are not high risk for648

misuse.649

12. Licenses for existing assets650

Question: Are the creators or original owners of assets (e.g., code, data, models), used in651

the paper, properly credited and are the license and terms of use explicitly mentioned and652

properly respected?653

Answer: [Yes]654

Justification: The authors have credited the papers where the data has been used to train the655

models. The licenses were permissive licenses (Apache 2.0 license for D4RL, MIT license656

for Diffusion Policy) to use for research purposes. The authors have also cited the original657

papers that produced the code package or dataset.658

13. New assets659

Question: Are new assets introduced in the paper well documented and is the documentation660

provided alongside the assets?661

Answer: [Yes]662

Justification: The assets here are the code and the models. The authors will release these for663

the camera-ready version.664

14. Crowdsourcing and research with human subjects665

Question: For crowdsourcing experiments and research with human subjects, does the paper666

include the full text of instructions given to participants and screenshots, if applicable, as667

well as details about compensation (if any)?668

Answer: [NA]669

Justification: No human subjects were involved in this work.670

15. Institutional review board (IRB) approvals or equivalent for research with human671

subjects672

Question: Does the paper describe potential risks incurred by study participants, whether673

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)674

approvals (or an equivalent approval/review based on the requirements of your country or675

institution) were obtained?676

Answer: [NA]677

16

https://neurips.cc/public/EthicsGuidelines

Justification: This work does not involve human subjects, and did not require IRB approval.678

16. Declaration of LLM usage679

Question: Does the paper describe the usage of LLMs if it is an important, original, or680

non-standard component of the core methods in this research? Note that if the LLM is used681

only for writing, editing, or formatting purposes and does not impact the core methodology,682

scientific rigorousness, or originality of the research, declaration is not required.683

Answer: [NA]684

Justification: This paper does not involve LLMs as any component of the core methods in685

this research.686

17

A Appendix – VAE loss derivation687

Since at ∼ N (π(st, θ), σ
2):688

p(at | st, θ) =
1√
2πσ2

exp

(
− (at − π(st, θ))

2

2σ2

)
(6)

Our objective is to maximize the mELBO. The likelihood of trajectory τk = {skt , akt }Tt=1 for the689

given VAE parameters is:690

L (τk | ϕenc, ϕdec, ϕwm)

=

T∑
t=1

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
log p

(
akt | skt , θ

)]]
+

T∑
t=2

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
log pϕwm(skt | skt−1, a

k
t−1)

]]
− KL (qϕenc

(z | τk) ∥ p(z)) (7)

Consider the second term in the above equation. On maximization akt−1 = π(skt−1, θ), and because691

the inner quantity is a constant w.r.t. st we can add a harmless expectation Est∼π[.] (i.e., states visited692

by the estimated policy, not necessarily those in the dataset), therefore it becomes:693

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
Est∼π

[
log pϕwm

(skt | skt−1, π(s
k
t−1, θ))

]]]
= Eqϕenc (z|τk)

[
Epϕdec

(θ|z)

[
Est∼π

[
log

pϕwm
(skt | skt−1, π(s

k
t−1, θ))

pϕwm
(skt | skt−1, a

k
t−1)

]]]
+ Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
Est∼π

[
log pϕwm

(skt | skt−1, a
k
t−1)

]]]
(8)

We can now substitute in the KL term, and drop the expectation in the last term (since the inner terms694

only depend on skt−1 and not st ∼ π, θ, or z. Therefore, the loss now becomes:695

L (τk | ϕenc, ϕdec, ϕwm)

= C − 1

2σ2

T∑
t=1

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
(akt − π(skt , θ))

2
]]

−
T∑

t=2

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
KL

(
pϕwm(skt | skt−1, π(s

k
t−1, θ))

∥∥ pϕwm(skt | skt−1, a
k
t−1)

)]]
−

T∑
t=2

log pϕwm
(skt | skt−1, a

k
t−1)

− KL (qϕenc
(z | τk) ∥ p(z)) (9)

For computational stability, we construct our decoder to be a deterministic function fϕdec
, i.e.,696

pϕdec
(θ | z) becomes δ(θ−fϕdec

(z)). Further, if we have a trained world model, we can approximate697

skt with st (i.e., direct model output samples) in the second term. This is done so that we can optimize698

the world model and policy correction separately with the teacher forcing and rollout objectives699

18

(similar to that followed in [1]. Therefore:700

L (τk | ϕenc, ϕdec, ϕwm)

= C − 1

2σ2

T∑
t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

−
T∑

t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm

(st | skt−1, a
k
t−1)

)]
−

T∑
t=2

log pϕwm(skt | skt−1, a
k
t−1)

− KL (qϕenc
(z | τk) ∥ p(z))

Where C is a constant from the substitution. Enforcing p(z) = N (0, I), and ignoring constants, we701

get:702

L (τk | ϕenc, ϕdec, ϕwm) = LBC + LRO + LTF + LKL (10)
703

LBC = −
T∑

t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

(11)

704

LRO = −
T∑

t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm(st | skt−1, a

k
t−1)

)]
(12)

705

LTF = −
T∑

t=2

(skt − ŝkt)
2 (13)

706

LKL = −βkl

dim(z)∑
i=1

(
σ2
ei + µ2

ei − 1− log σ2
ei

)
(14)

where, LBC is the behavior cloning loss to train the policy decoder, LRO is the rollout loss to correct707

the decoded policy’s actions using the world model, LTF is the teacher forcing loss to train the world708

model, LKL is the KL loss to regularize the latent space, (µe, σe) = fϕenc
(τk), z ∼ N (µe, σe),709

ŝkt ∼ pϕwm
(skt | skt−1, a

k
t−1) and βkl is the regularization weight.710

B Appendix – Metaworld task descriptions711

Task Description
Window Open Push and open a window. Randomize window positions
Door Open Open a door with a revolving joint. Randomize door positions
Drawer Open Open a drawer. Randomize drawer positions
Dial Turn Rotate a dial 180 degrees. Randomize dial positions
Faucet Close Rotate the faucet clockwise. Randomize faucet positions
Button Press Press a button. Randomize button positions
Door Unlock Unlock the door by rotating the lock clockwise. Randomize door positions
Handle Press Press a handle down. Randomize the handle positions
Plate Slide Slide a plate into a cabinet. Randomize the plate and cabinet positions
Reach Reach a goal position. Randomize the goal positions

Table 1: Metaworld task descriptions and randomization settings

19

C Appendix – Effect of Trajectory snipping on Latent Representations712

For most robotics use cases, it is impossible to train on long trajectories due to the computational713

limitations of working with large batches of long trajectories. In some cases, it may also be beneficial714

to generate locally optimum policies for shorter action horizons (as done for experiments presented715

in Section 4.1.1). Therefore, we analyze the effect of sampling smaller sections of trajectories716

from the dataset. After training a VAE for the D4RL half-cheetah dataset on three policies (expert,717

medium, and random), we encode all the trajectories in the mixed dataset to the latent space. We then718

perform Principal Component Analysis (PCA) on this set of latents and select the first two principal719

components. Figure 8a shows us a visualization of this latent space. We see that the VAE has learned720

to encode the three sets of trajectories to be well separable. Next, we run the same experiment, but721

now we sample trajectory snippets of length 100 from the dataset instead of the full-length (1000)722

trajectories. Figure 8b shows us the PCA on the encoded latents of these trajectory snippets. We see723

that the separability is now harder in the latent space. Surprisingly, we noticed that after training our724

VAE on the snippets, the decoded policies from randomly snipped trajectories were still faithfully725

behaving like their original policies. We believe that this is because the halfcheetah env is a cyclic726

locomotion task, and all trajectory snippets have enough information to indicate its source policy.727

More dimensions of the PCA are shown in Figure 9.728

(a) Trajectory Length 1000 (b) Trajectory Length 100

Figure 8: Effect of trajectory snipping in HalfCheetah. Top two principal components of the latent.

(a) Trajectory length 1000 (b) Trajectory length 100

Figure 9: Effect of trajectory snipping in HalfCheetah. Top third and fourth principal components
of the latent.

To validate this hypothesis, we analyze our method on trajectory snippets for non-cyclic tasks. We729

choose the MT10 suite of tasks in Metaworld [58] (note that these are different from the original 10730

tasks discussed in the rest of the paper. We utilize the hand-crafted expert policy for each of the tasks731

in MT10 to collect trajectory data. For each task, we collect 1000 trajectories of length 500.732

Figure 10a shows the principal components of the latents of the full trajectories in the dataset, and733

Figure 10b shows the same for the split trajectories. We can see that the separability of different734

tasks is much harder in this case. More dimensions of the PCA are shown in Figure 11b. Further, we735

20

(a) Trajectory Length 500 (b) Trajectory Length 50

Figure 10: Effect of trajectory snipping in MT10. Top two principal components of the latent.

(a) Trajectory length 500 (b) Trajectory length 50

Figure 11: Effect of trajectory snipping in MT10. Top third and fourth principal components of the
latent.

noticed that the decoded policies from the trajectory snippets did not perform as well as the original736

policies - for the same decoder size as the half cheetah task. This validates our hypothesis that the737

snippets are unable to reproduce the original policy for non-cyclic tasks. To have the same degree of738

behavior reconstruction as the half-cheetah tasks, we need a larger decoder model. This is discussed739

in Appendix F.740

D Appendix - Ablation of the KL coefficient741

Figure 12: Effect of KL coefficient

A key hyperparameter in LWD is the KL regular-742

ization term, βKL, used during VAE training. In743

this section, we analyze its impact on the learned744

latent space using the PushT task with an action745

horizon of 32. We train three VAEs with βKL746

values of 1e−7, 1e−9, and 1e−10. For evalua-747

tion, we sample a trajectory of length 32, encode748

and decode it via the VAE to generate a policy,749

and then execute this policy in the environment750

starting from the same initial state. We com-751

pute the MSE between the final state reached752

after 32 steps and the corresponding state in the753

original trajectory. Figure 12 in Appendix D.1754

shows this metric across 3 seeds during training.755

Lower βKL values result in lower final-state MSE, indicating better trajectory reconstruction. This is756

due to a more expressive, multi-modal latent space made possible by weaker regularization, without757

compromising sampling, as diffusion still operates effectively within this space. Visualizations758

are provided below in Appendix D.1. Based on these results, we use βKL = 1e−10 in all PushT759

experiments.760

D.1 KL coefficient ablation latent space761

Following the KL ablation experiment above, we analyzed the latent space of the encoded trajectories762

with PCA, similar to that performed in Appendix C. The three plots in Figure 13, show that the763

trajectory encodings get closer and lose behavioral diversity when the KL coefficient is high.764

21

(a) KL coefficient: 1e-7 (b) KL coefficient: 1e-9 (c) KL coefficient: 1e-10

Figure 13: Latent space representation of PushT trajectories at different KL coefficients

E Appendix – Ablation of the Diffusion Model Architecture765

Figure 14: Diffusion Architecture Ablation

Diffusion models typically adopt either UNet-766

based [26] or Transformer-based [42] architectures767

(described as medium "m" in Appendix J.1). To768

guide our choice for the LWD diffusion policy, we769

performed an ablation study on the PushT task [9]770

using an action horizon of 32. As shown in Fig-771

ure 14, the UNet model demonstrated faster initial772

learning, achieving higher average success rates early773

in training. However, both architectures eventually774

converged to comparable final success rates. For con-775

sistency, we adopt the UNet architecture for all other776

experiments.777

F Appendix – Ablation of the Decoder size778

0 250 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

xs
s
m
l

(a) Trajectory length 500

0 250 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

xs
s
m
l

(b) Trajectory length 50

Figure 15: Effect of VAE decoder size: For long
trajectories, even the smallest decoder (xs) yields
high task performance, whereas short trajectories
benefit from a larger decoder.

An interesting experiment was the effect of779

breaking a large trajectory into sub-trajectories780

and how this affects the latent space. A key781

takeaway from that experiment was that for782

halfcheetah locomotion, even small VAE de-783

coders generated accurate policies from tra-784

jectory snippets. Whereas, for manipulation785

tasks from Metaworld, the same-sized small786

decoder was not capable of reconstructing the787

original policy. See Appendix C for this ex-788

periment. This finding prompted an ablation789

on the decoder size, evaluating the average790

success rate of decoded policies across all791

10 Metaworld tasks. Figure 15 illustrates the792

performance of decoders with varying sizes,793

denoted as xs (3.9M parameters), s (7.8M794

parameters), m (15.6M parameters), and l795

(31.2M parameters). It’s important to note796

that despite the substantial parameter count of the hypernetwork decoder, the resulting inferred797

policy remains relatively small (< 100K parameters, see Figure 6). The results demonstrate that798

increasing the decoder size consistently improves the average success rate of the decoded policies.799

Refer Appendix J.3 for more details regarding the decoder size characterization.800

This contrasts with rollouts from the HalfCheetah environment, where even smaller decoders gener-801

ated accurate policies from trajectory snippets. We hypothesize this discrepancy stems from two key802

factors. First, the cyclic nature of HalfCheetah provides sufficient information within snippets to infer803

the underlying policy. Second, the increased complexity of Metaworld tasks means that snippets may804

22

lack crucial information for inference. For instance, in a pick-and-place task, a snippet might only805

capture the “pick” action, leaving the latent without sufficient information to infer the “place” action.806

G Appendix – Behavior Reconstruction Analysis807

Here, we ask – Does LWD reconstruct the original policies and reproduce diverse behaviors?808

G.1 Operator Behavior Analysis809

Figure 16: Behavior distribution for the
Robomimic Lift task

Since LWD assumes trajectory data obtained810

from a distribution of policies (described in Sec-811

tion 3.1), it offers us access to this distribution812

through its latent space. As an experiment on the813

Robomimic Lift task, we encoded trajectories814

of the demonstrations on this dataset. We set the815

action horizon to the maximum demonstration816

length, effectively encoding the entire trajec-817

tory for each demonstration. The MH (Multi-818

Human) dataset contains 50 trajectories from 6819

operators, totalling 300 successful trajectories.820

The operators were varied in proficiency – there821

were 2 “worse” operators, 2 “okay” operators,822

and 2 “better” operators. Figure 16 visualizes a823

2D t-SNE plot of the latents sampled from the VAE in this experiment. Interestingly, we start to see824

clusters in this space, each corresponding to a different operator. It is important to note that LWD825

was never given explicit information regarding these operators, yet was able to cluster them based826

on their behavior distribution. We believe this interesting result can enable us to filter out unwanted827

behaviors in imitation learning.828

G.2 Locomotion829

First, we analyze the behavior reconstruction capability of different components of LWD in locomo-830

tion domains. For this experiment, we use the halfcheetah dataset from D4RL [14]. The parameters831

used for this experiment are shown in Appendix J.5. Each trajectory in this dataset has a length832

of 1000. We combine trajectory data from three original behavior policies provided in this dataset:833

expert, medium, and random. Following [2], we track the foot contact timings of each trajectory as a834

metric for measuring behavior. For each behavior policy, we get 32 trajectories. These timings are835

normalized to the trajectory length and are shown in Figure 17. For each plot, the x-axis denotes the836

foot contact percentage of the front foot, while the y-axis denotes the foot contact percentage of the837

back foot.838

We first visualize the foot contact timings of the original policies in Figure 17a. We see that different839

running behaviors of the half cheetah can be differentiated in this plot. Then, we train the VAE840

model on this dataset to embed our trajectories into a latent space. We then apply the hypernetwork841

decoder to generate policies from these latents. These policies are then executed on the halfcheetah842

environment, to create trajectories. We plot the foot contact timings of these generated policies in843

Figure 17b. We see that the VAE captures each of the original policy’s foot contact distributions,844

therefore empirically showing that the assumption pϕdec
(θ | z) = δ(θ−fϕdec

(z)) is reasonable. Then,845

we train a latent diffusion model conditioned on a behavior specifier (i.e., one task ID per behavior).846

In Figure 17c, we show the distribution of foot contact percentages of the policies generated by847

the behavior specifier conditioned diffusion model. We see that the diffusion model can learn the848

conditional latent distribution well, and the behavior distribution of the decoded policies of the849

sampled latent matches the original distribution. Apart from visual inspection, we also track rewards850

obtained by the generated policies and empirically calculated Jensen Shannon Divergence between851

the original and obtained foot contact distributions and observe that LWD maintains behavioral852

diversity in this locomotion task. See Appendix H for more details.853

23

(a) Original policies that provide the
trajectory dataset.

(b) VAE generated policies from tra-
jectories.

(c) Diffusion generated policies
from trajectories.

Figure 17: Foot-contact times shown for various trajectories on the Half Cheetah task. We use
foot contact times as the chosen metric to show different behaviors for the half cheetah run task by
different policies. The first plot on the left shows the distribution of foot contact percentages for each
of the three original policies. The second plot in the center denotes the foot contact percentages for
the policies generated by the trained VAE when provided each original policy’s entire trajectory. The
third plot on the right denotes the foot contact percentages for the policies generated by the diffusion
model, trained without any task conditioning.

cloned expert
Tasks

0.00

0.05

0.10

0.15

0.20
Mean Object Height

Original
Diffusion

cloned expert
Tasks

0.005

0.000

0.005

0.010

0.015

0.020

0.025

Mean Goal Distance

cloned expert
Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Max Nail Impact

cloned expert
Tasks

0.01

0.00

0.01

0.02

0.03

0.04

Contact Ratio

cloned expert
Tasks

0.0

0.2

0.4

0.6

0.8

1.0
Object Manipulation Score

Figure 18: Behavior Reconstruction for Manipulation: We track these metrics on the Adroit
hammer task, and the LWD-generated policy behaves similarly to the original policy. The ‘cloned’
bars represent metrics with respect to a human demonstration behavior cloned policy, and ‘expert’
bars represent metrics from an RL-trained policy.

G.3 Manipulation854

To verify the behavior reconstruction capabilities of LWD in manipulation, we also experiment on855

the D4RL Adroit dataset [45]. We choose a tool use task, where the agent must hammer a nail into a856

board. We utilize their 5000 expert and 5000 human-cloned trajectories, to train our LWD model.857

The implementation details are in Appendix J.6. Then, we evaluate the behavior of the original and858

generated policy on the following metrics: Mean object height - Average height of the object during859

eval; Alignment error (goal distance) - Mean distance between the target and the final goal position;860

Max nail impact - Maximum value of the nail impact sensor during eval; Contact ratio - Fraction of861

time steps where the nail impact sensor value exceeds 0.8; Object manipulation score - Proportion862

of time steps where the object height exceeds 0.04 meters. From Figure 18, we can see that the policy863

generated by LWD behaves similarly to the original policy.864

H Appendix – Behavior Reconstruction Metrics for HalfCheetah865

We can analyze the behavior reconstruction capability of LWD by comparing the rewards obtained866

during a rollout. The VAE parameters used for this experiment are shown in Appendix J.5. Figure 19867

shows us the total objective obtained by the original, VAE-decoded, and diffusion-denoised policies.868

We see that the VAE-decoded and diffusion-generated policies achieve similar rewards to the original869

policy for each behavior.870

24

Apart from these plots, we use Jensen-Shannon divergence to quantify the difference between871

two distributions of foot contact timings. Table 2 shows the JS divergence between the empirical872

distribution of the foot contact timings of the original policies and those generated by LWD. The873

lower this value is, the better. As a metric to capture the stochasticity in the policy and environment,874

we get the JS divergence between two successive sets of trajectories generated by the same original875

policy, which we shall denote SOS (Same as source). A policy having a JS divergence score lesser876

than this value indicates that that policy is indistinguishable from the original policy by behavior.877

As a baseline for this experiment, we train a large (5-layer, 512 neurons each) behavior-conditioned878

MLP on the same mixed dataset with MSE loss. We see that policies generated by LWD consistently879

achieve a lower JS divergence score than the MLP baseline for expert and medium behaviors. The880

random behavior is difficult to capture as the actions are almost Gaussian noise. Surprisingly, for the881

HalfCheetah environment, policies generated by LWD for expert and medium had lower scores than882

SOS, making it behaviorally indistinguishable from the original policy.883

expert medium random
Tasks

0

2000

4000

6000

8000

10000

12000

Re
wa

rd
s

Original
VAE
Diffusion

(a) HalfCheetah

expert medium random
Tasks

0

1000

2000

3000

4000

5000

6000

Re
wa

rd
s

Original
VAE
Diffusion

(b) Ant

expert medium random
Tasks

0

1000

2000

3000

4000

5000

Re
wa

rd
s

Original
VAE
Diffusion

(c) Walker

Figure 19: Reconstruction Rewards: For each of the 3 environments shown above, the generated
policy from trajectory decoded VAE and task-conditioned diffusion model, achieves similar total
objective as the original policies. Each bar indicates the mean total objective obtained with error lines
denoting the standard deviation.

Environment Source Policy Target Policy
SOS MLP LWD

Ant
Expert 0.187 ± 0.142 1.272 ± 0.911 0.510 ± 0.159

Medium 0.624 ± 0.232 1.907 ± 0.202 1.328 ± 0.283
Random 1.277 ± 1.708 4.790 ± 0.964 8.859 ± 0.792

HalfCheetah
Expert 0.158 ± 0.146 2.810 ± 1.139 0.088 ± 0.050

Medium 0.275 ± 0.196 0.692 ± 0.787 0.194 ± 0.157
Random 0.0467 ± 0.009 0.11 ± 0.009 0.104 ± 0.0187

Walker2D
Expert 0.342 ± 0.329 2.879 ± 1.493 1.093 ± 0.310

Medium 0.078 ± 0.058 0.165 ± 0.126 0.155 ± 0.091
Random 0.080 ± 0.004 60.514 ± 52.461 2.776 ± 1.260

Table 2: Behavior Reconstruction: JS divergence between foot contact distributions from source
and target policies. The lower the value, the better.

I Appendix – PushT Execution time comparison884

To show the benefit of using LWD over DP when it comes to inference times, we conduct the885

following experiment. We utilize the models trained in Section 4.1.1 for the PushT task and record886

the average time taken to complete 256 environment steps at different action horizons. Figure 20887

plots the minimum eval time that can achieve the corresponding success rate in the x-axis. This time888

was recorded while running on an NVIDIA 3090 GPU. The lower the area under this plot, the better.889

We record these metrics for varying perturbation levels. We see that for all settings, we achieve890

corresponding success rates with lower evaluation time. Thus showing the benefit of longer action891

horizons with LWD.892

Crucially, we observed that episodes taking 1 second for a rollout had only 2 diffusion queries (large893

action horizon), whereas those taking 6 seconds had 32 diffusion queries (small action horizon).894

The number of environment steps is the same. Thus, it is clear that diffusion-based methods can895

25

consume up most of the total rollout time, significantly exceeding the time spent interacting with the896

environment. This substantial computational overhead underscores the critical need for optimizing897

the inference efficiency of diffusion models, particularly in time-critical robotics applications.898

Figure 20: Average minimum episode eval time required to achieve corresponding success rate.

J Appendix – Implementation Details899

The following are the hyperparameters we use for our experiments:900

J.1 Baseline Diffusion Policy model901

To train the diffusion policy baseline model shown in Figure 6, we utilize the training script provided902

by the authors of DP here:903

https://colab.research.google.com/drive/1gxdkgRVfM55zihY9TFLja97cSVZOZq2B?usp=sharing.904

To set the model size we use the following parameters:905

Size Diffusion Step Embed Dim Down Dims Kernel Size
extra-small: (s) 64 [16, 32, 64] 5

small: (s) 256 [32, 64, 128] 5
large: (m) 256 [128, 256, 256] 5
large: (l) 256 [256, 512, 1024] 5

extra large: (xl) 512 [512, 1024, 2048] 5
Table 3: Architectural configurations for the ConditionUnet1D Diffusion Policy (DP) across different
model sizes.

For the ablation described in Appendix E, we use a transformer architecture, the details of which are:906

J.2 VAE Encoder details907

For the encoder, we first flatten the trajectory to form a one-dimensional array, which is then fed to a908

Multi-Layer Perceptron with three hidden layers of 512 neurons each.909

26

https://colab.research.google.com/drive/1gxdkgRVfM55zihY9TFLja97cSVZOZq2B?usp=sharing

Size Diffusion Step Embed Dim Model Dim # Layers # Heads
extra-small: (xs) 64 64 3 2

small: (s) 128 128 4 4
medium: (m) 256 256 6 8
large: (l) 256 512 8 8

extra-large: (xl) 512 768 12 12
Table 4: Architectural configurations for Transformer-based Diffusion models across different model
sizes.

J.3 VAE Hypernetwork decoder size characterization910

For the hypernetwork, we utilize an HMLP model (a full hypernetwork) from the911

https://hypnettorch.readthedocs.io/en/latest/ package with default parameters. We condition the912

HMLP model on the generated latent of dimension 256. To vary the size of the decoder, as explained913

in Appendix F, we set the hyperparameter in the HMLP as shown in Table 5

Size No. of parameters layers
xs 3.9M [50, 50]
s 7.8M [100, 100]
m 15.6 M [200, 200]
l 31.2M [400, 400]
Table 5: VAE size varying parameters

914

J.4 Diffusion model parameters915

For all our experiments, we utilize the same ConditionalUnet1D network from [9] as the diffusion916

model. This is the same as the DP-medium (m) model described in Appendix J.1.917

J.5 Mujoco locomotion tasks918

We use the following hyperparameters to train VAEs for all D4RL mujoco tasks shown in the paper.919

To show the effect of shorter trajectories in Appendix C, we change the Trajectory Length to 100.

Parameter Value
Trajectory Length 1000
Batch Size 32
VAE Num Epochs 150
VAE Latent Dimension 256
VAE Decoder Size s
Evaluation MLP Layers {256, 256}
VAE Learning Rate 3× 10−4

KL Coefficient 1× 10−6

Diffusion Num Epochs 200
Table 6: Mujoco locomotion hyperparameters.

920

J.6 Adroit Hammer task921

We use the same hyperparameters as Table 6 and override the following hyperparameters to train922

VAEs for the D4RL Adroit hammer task shown in the paper.923

Further, for the experiment where we show the hammer task can be composed of sub-tasks, we change924

the Trajectory Length to 32 to enable LWD to learn the distribution of shorter horizon policies.925

27

https://hypnettorch.readthedocs.io/en/latest/

Parameter Value
Trajectory Length 128
VAE Num Epochs 20
Diffusion Num Epochs 10

Table 7: Adroit hammer hyperparameters.

J.7 PushT and Robomimic LWD926

For all the experiments shown in Section 4.1.1, we use the same hyper-parameters described in927

Table 6, and override the following:

Parameter Value
Trajectory Length 256
VAE Num Epochs 1000
Diffusion Num Epochs 1000
Diffusion Model size l
VAE Decoder Size l
VAE KL coefficient 1e− 10

Table 8: PushT LWD hyperparameters.

928

J.8 Metaworld tasks929

For all the experiments shown in Section 4.1.2, we use the same hyper-parameters described in930

Table 6, and override the following:

Parameter Value
Trajectory Length 500
VAE Num Epochs 100
Diffusion Num Epochs 100
VAE Decoder Size xs

Table 9: Metaworld hyperparameters.

931

To show the effect of shorter trajectories in Appendix C, we change the Trajectory Length to 50.932

J.9 Compute Resources933

Each VAE and diffusion experiment was run on jobs that were allocated 6 cores of a Intel(R) Xeon(R)934

Gold 6154 3.00GHz CPU, an NVIDIA GeForce RTX 2080 Ti GPU, and 108 GB of RAM.935

K Societal Impact936

This paper presents work intending to advance the field of Machine Learning in Robotics. The authors937

are committed to ensuring that the research is used for the benefit of society and does not contribute938

to any harm or negative consequences. While there are many potential societal consequences robotics939

and machine learning in general, there are none that are specific to this work alone, that we can940

foresee.941

28

	Introduction
	Related Work
	Imitation Learning and Diffusion for Robotics
	Hypernetworks and Policy Generation
	World Models

	Method & Problem Formulation
	Latent Policy Representation
	Loss function for World Model Augmented Variational Autoencoder for Policies

	Experiments
	Empirical Evaluation of Contributions
	Longer Action Horizons & Robustness to Perturbations
	Low Inference Cost

	Behavior Analysis

	Limitations and Future Work
	Conclusion
	Appendix – VAE loss derivation
	Appendix – Metaworld task descriptions
	Appendix – Effect of Trajectory snipping on Latent Representations
	Appendix - Ablation of the KL coefficient
	KL coefficient ablation latent space

	Appendix – Ablation of the Diffusion Model Architecture
	Appendix – Ablation of the Decoder size
	Appendix – Behavior Reconstruction Analysis
	Operator Behavior Analysis
	Locomotion
	Manipulation

	Appendix – Behavior Reconstruction Metrics for HalfCheetah
	Appendix – PushT Execution time comparison
	Appendix – Implementation Details
	Baseline Diffusion Policy model
	VAE Encoder details
	VAE Hypernetwork decoder size characterization
	Diffusion model parameters
	Mujoco locomotion tasks
	Adroit Hammer task
	PushT and Robomimic LWD
	Metaworld tasks
	Compute Resources

	Societal Impact

