
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFIED PLAN VERIFICATION WITH STATIC RUBRICS
AND DYNAMIC POLICIES FOR RELIABLE LLM PLAN-
NING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents can decompose tasks, call tools, and exe-
cute multi-step plans, yet they frequently fail for two reasons: (i) pre-execution
plans look plausible but are incomplete, inconsistent, or ill-posed; and (ii) during
execution, tool outputs reveal conflicts or policy violations that the agent neither
detects nor repairs. Existing “LLM-as-judge” scoring is unstable and opaque,
while reactive agents lack grounded, learnable control. We introduce VERA, a
VERification-Aware planning infrastructure that inserts explicit checks both be-
fore and during execution. First, Static Verification via Rubrics (SVR) instanti-
ates an instance-specific, binary checklist from a general taxonomy (complete-
ness, correctness, executability), yielding auditable, stable decisions and action-
able feedback for plan revision. Second, a Dynamic Verification Policy (DVP)
enforces run-time control: a prompt-optimized rulebook (learned via MCTS-
style discrete search, no weight updates) consumes the step context and tool out-
puts to emit symbolic actions—e.g., browse more candidates, switch tool, skip,
backtrack, or accept. VERA is representation-agnostic and applies to structured
plans with schemas/tools, unstructured conversational plans, and natural-language
plans without tools. Across three regimes, VERA consistently improves task
success and constraint satisfaction over strong prompting and agent baselines,
reduces temporal/budget and policy violations, and provides rubric-level diag-
nostics that localize errors. Ablations show SVR (pre-execution screening) and
DVP (execution-time control) are complementary; learned rulebooks outperform
human-written heuristics with modest extra compute. We release prompts, rule-
books, and evaluation code to facilitate verification-aware agent research.

1 INTRODUCTION

Large Language Model (LLM) agents increasingly plan and execute multi-step tasks across interac-
tive, tool-using environments (Xie et al., 2024; Prasad et al., 2023; Wu et al., 2024). Plan verification,
where the agent checks whether the proposed plan is complete, correct, and executable, has become
a central component (Parmar et al., 2025; Li et al., 2024; Pathak et al., 2025; Gou et al., 2025).
Automating plan verification at scale can improve robustness by catching errors before they cascade
and by steering execution when reality diverges from user intent. Nonetheless, prior work reveals
three recurring weaknesses. (1) Lack of grounded and stable judgment: Prior work often assessed
plans with opaque or unstable scalar scores rather than explicit, auditable criteria; for example, Par-
mar et al. (2025) does not use grounded, instance-specific checks and is sensitive to re-prompting,
and Li et al. (2024) relies on a reward model trained from additional labeled data over three coarse
criteria, tying verification to task-specific training data. Recent rubric-based efforts (Gou et al.,
2025) underscore both the need and feasibility of more structured evaluation, but remain focused
on answer-level assessment rather than plan-level verification signals. (2) Lack of learnable, ex-
plicit verification that drives the agent policy: While many frameworks interleave reasoning with
acting (Yao et al., 2023b; Shinn et al., 2023; Prasad et al., 2023; Yao et al., 2023a), adaptation of
the agent’s actions is typically driven by free-form prompts or hand-tuned heuristics, rather than
learnable verification criteria that are explicitly grounded on the current step, the observed tool out-
puts, and other planning contexts. This formulation thus limits the auditability and effectiveness of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison between VERA and existing agent approaches. VERA supports both pre-
execution verification and in-execution verification and is agnostic to plan representation.

Approach Pre-execution Verification In-execution Verification Supported Plan Representation

Supported? Rubric-based
Screening Replanning Supported? Learnable Verification (Free-text or Structured plan)

Vanilla Prompting × × × × × F
ReAct (Yao et al., 2023b) × × × ✓ × F
Reflexion (Shinn et al., 2023) × × × ✓ × F
ADaPT (Prasad et al., 2023) × × ✓ ✓ × S
PlanGen (Parmar et al., 2025) ✓ ✓ ✓ × × S/F
AdaPlanner (Sun et al., 2023) ✓ × ✓ ✓ × S
DPPM (Lu et al., 2025) ✓ × ✓ ✓ ✓ S
LLM-Modulo (Gundawar et al., 2024) ✓ × ✓ ✓ ✓ S
Ours ✓ ✓ ✓ ✓ ✓ S/F

the frameworks. (3) Ad-hoc pre-and during-execution plan verifications: Existing systems often
check plans ad hoc (before or between actions) but lack a unified mechanism that (i) instantiates
task-specific, rubric-level checks before execution, and (ii) maintains those checks during execution
to reconcile user-specified constraints with observed tool outputs and newly surfaced facts. Recent
benchmarks (Xie et al., 2024; Yao et al., 2024; Zheng et al., 2024) highlight the need for such end-to-
end verifications under multi-constraint Xie et al. (2024) and policy-bound Yao et al. (2024)settings.
Despite steady progress, these gaps have led to brittle plans, unstable judgments, and failures that
are hard to detect and repair in practice (Wei et al., 2025).

To address these weaknesses, we introduce VERA 1, a verification-aware framework that pairs
pre-execution verification with during-execution verification-driven policy control for both struc-
tured schemas (Tantakoun et al., 2025) and free-text plans (Zheng et al., 2024). To enable grounded
and stable judgment, VERA replaces opaque scoring, a single scalar or pass/fail verdict without
explanation, with Static Verification via Rubrics (SVR). Specifically, given a fixed, generic tax-
onomy specifying the desired plan properties (i.e., completeness, correctness, and executability),
SVR adopts a rubric generator to instantiate the taxonomy into instance-specific, binary checks.
Each check is a concrete yes or no question tied to the current task (e.g., “Does the plan include
lodging for every night?” for a multi-day trip). Optionally, user- or domain-specific hard rules that
the generic taxonomy may not cover (e.g., “never exceed $500 total airfare” can be provided as
additional constraints. In addition, to prevent cascading failures during execution, VERA includes
a pre-execution replanning loop driven by SVR feedback. If the initial plan fails the checklist, the
agent iteratively revises the plan using localized feedback until a valid candidate is admitted, avoid-
ing costly execution-time corrections. The SVR output is a checklist with pass or fail decisions
and brief rationales that localize errors before any tool calls. VERA further introduces Dynamic
Verification Policy (DVP), which drives the agent policy during plan execution with an instance-
specific “rulebook” that verifies the plan explicitly based on the grounded planning contexts (e.g.,
checking whether a flight search returns no results, in which case the agent is suggested to try al-
ternative transportation). The rulebook is learned by editing and evaluating textual rules on training
scenarios through prompt optimization (Wang et al., 2023; Srivastava & Yao, 2025), which reduces
reliance on hand-written heuristics while improving upon free-form prompts. Finally, VERA unifies
the dual phases of plan verification, with SVR gating plans before execution and DVP maintaining
alignment during execution as new evidence arrives, providing continuous verification signals that
improve reliability. A comparison between VERA and state-of-the-art agent approaches can be
found in Table 1.

We evaluate VERA on three datasets: TravelPlanner (Xie et al., 2024), τ -bench (Yao et al., 2024),
and NaturalPlans (Zheng et al., 2024), where VERA is shown to outperform state-of-the-art base-
lines by 26.64%, 13.13% and 6.24% end-task success rate, respectively. Qualitative traces show that
SVR prevents ill-posed plans effectively, while DVP mitigates runtime conflicts by leveraging the
learned rulebook. In addition, we observed improvement in the stability of pre-execution plan veri-
fication, with reduced variance across runs, as well as a bounded overhead, with cost–performance
curves that preserve most gains under a modest verification frequency. Collectively, these results
support the claim that explicit, checklist-based pre-execution screening combined with learned,
execution-time control yields stable and effective LLM planning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

[QUERY] Please help me
plan a trip from St.
Petersburg to Rockford
spanning 3 days from
March 16th to March 18th,
2022. The travel should be
planned for a single person
with a budget of $1,700.

LLMLLMLLM

LLM

LLM

 Completeness Executability Correctness

Decomposition

Goal Coverage

Preconditions

Output Definition

Alternatives

Failsafe

Schema Match

Constraints

Goal Alignment

Consistency
Entity

Hallucination
Valid Arguments

Relevence

Effectiveness

Tool grounding

Tool Available

Dependency

Compatibility

Tool Arguments

Valid Argument

Plan VerificationTaxonomy

Feedback Score

LLM

> steps:
1️⃣ Long-haul transport
- step_id: "D1.1"
 description: "Flight "
 tool_ref:
 name: "FlightSearch"

1
Rubrics Generation

3
Plan Judge

2 Plan
Generation 4

Replanner

Rubrics

Flight price $474 is within budget,
consuming ~28% and leaving $1226 for
accommodations, meals, and activities.
Q1.2: Departure at 15:40 and arrival at
17:04 on March 16 allow for late-day
check-in and dinner as planned. No
conflicts identified.

 ACCEPT

Scheduling a breakfast at Flying Mango
immediately after a 17:04 arrival is
chronologically inconsistent

SKIP_STEP

This listing requires a minimum 30-night
stay but our trip is only 2 nights.

NEXT_RESULT

Accommodation at $210/night for 2
nights (total $420) fits within the $1226
remaining budget, and has no location
or timing conflicts.

ACCEPT

Plan Generation and Static Plan Verification Tool Execution and Dynamic Verification Using Policy

 (...truncated...)

[Observation]

[Observation]

[Observation]

[Observation] [DVP]

[DVP]

[DVP]

[DVP]

6Steps:
1️⃣ Long-haul transport
- step_id: "D1.1"
 description: "Flight St Petersburg → Rockford."
 tool_ref:
 name: "FlightSearch"
 arguments: ["St. Petersburg", "Rockford", "2022-03-16"]
 alternatives:
 - tool_ref:
 name: "GoogleDistanceMatrix"
 arguments: ["St. Petersburg", "Rockford", "self-driving"]
 criterion: "If flight unavailable or over budget."

2️⃣ Breakfast
- step_id: "D1.2"
 description: "Breakfast"
 tool_ref:
 name: "RestaurantSearch"
 arguments: ["Rockford"]

5️⃣ Accommodation nights 1-2
- step_id: "D1.5"
 description: "Book accommodation for two nights."
 depends_on: ["D1.4"]
 tool_ref:
 name: "AccommodationSearch"
 arguments: ["Rockford"]

5

 (...truncated...)Plan

SVR admitted Plan Plan Execution

Figure 1: Overview of VERA. Given a user query, VERA first instantiates an SVR rubric (Step 1)
and generates an initial plan (Step 2). A rubric-guided judge then verifies the plan (Step 3) and
provides targeted feedback for revision (Step 4). Once a plan passes all rubric checks (Step 5), it is
admitted for execution. During execution (Step 6), the Dynamic Verification Policy (DVP) monitors
tool outputs and adaptively accepts, skips, or explores alternative actions to ensure constraint satis-
faction and plan robustness.

2 RELATED WORK

Prior work on LLM-based planning spans reasoning traces (Wei et al., 2022; Yao et al., 2023a), in-
terleaved agent execution (Yao et al., 2023b; Shinn et al., 2023), and planning-first pipelines (Parmar
et al., 2025; Sun et al., 2023; Lu et al., 2025; Gundawar et al., 2024). While these systems improve
robustness via tool use, decomposition, or modular verification, they typically rely on unstructured
feedback, coarse reward models, or domain-specific constraints that are either not auditable or not
learnable. AoP (Li et al., 2024) formalizes multi-agent workflows but still lacks persistent, instance-
specific checks during execution. In contrast, VERA introduces a unified, rubric-based framework
where pre-execution screening (SVR) and execution-time policy control (DVP) are both grounded in
learnable, instance-specific verification rules. This yields stable and actionable verification signals
across diverse planning settings. A detailed comparison and extended discussion with baselines is
provided in Appendix 5.3.

3 VERA: LLM PLANNING WITH UNIFIED PLAN VERIFICATIONS

3.1 PRELIMINARIES

We consider an agent that solves a user request Q with optional hard constraints C by interacting with
an environment E that exposes a catalog of typed tools T . The agent achieves this goal through plan-
ning (Aghzal et al., 2025), where the objective is to find a sequence of actions P = ⟨a1, a2, · · · , aT ⟩
that transitions the agent from the initial state s0 to a terminal state sT that indicates the success of
solving the user request. In the interactive, tool-using task environments we focus on, each action
at is either a tool invocation, i.e., at = (op,args), with op ∈ T being a tool and args being the
typed arguments, or a terminal finish(y), which returns a final artifact y. We define s0 = (Q, C)
as the initial state. Once the agent executes an action at, the environment emits an observation ot
based on the tool-calling, yielding a new state st+1 = (Q, C, o1, · · · , ot), and the process repeats
until the agent decides to terminate and perceives the final artifact y. The success of the plan can be
formally defined by a task utility U(y;Q, C).
Existing LLM-based planning frameworks often directly prompt their LLM backend to generate P
(Wei et al., 2025). However, naively executing P could miss required elements, violate constraints,
or drift at runtime. In VERA, we address these issues by proposing a rubric-based pre-execution
verification of P , followed by during-execution control through a learned verification policy.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 PRE-EXECUTION VERIFICATION: STATIC VERIFICATION VIA RUBRICS (SVR)

VERA first introduces Static Verification via Rubrics (SVR) for pre-execution plan verification.

A Generic Taxonomy for Plan Verification. SVR screens a candidate plan P before any tool call
using a fixed, human-authored taxonomy (Fig. 1), denoted as I. The taxonomy, inspired by Wei et al.
(2025), encompasses three generic properties, i.e., Completeness, Correctness, and Executability.
Completeness asks whether the required elements and structure are present, including invokable
steps, goal coverage, explicit preconditions, output definition, and grounded alternatives for tools.
Correctness enforces logical or factual soundness, including schema matches where applicable,
constraint satisfaction, step-to-goal alignment, internal consistency, hallucination avoidance, and
relevance. Executability tests whether the plan can actually run in the target environment, which
involves tool grounding/availability, dependency satisfiability, environment compatibility, argument
counts/types, and semantic validity.

Automatic Rubric Generation for Grounded Plan Verification. To enable grounded plan verifi-
cation, SVR introduces a rubric generator, which maps the generic taxonomy to an instance-specific
rubric, i.e., Γ(Q, C, I) → R = {r1, . . . , rm}. Specifically, the rubric consists of binary checks
phrased as concrete yes or no questions tied to the task and constraints, e.g., under Completeness:
“Does the plan include lodging for every night within the requested dates and budget?”; under
Correctness: “Does each booking step respect the $500 budget limit?”; and under Executability:
“Are all required inputs, such as travel dates and budget constraints, obtained before attempting
to book?” The instantiated rubric R is fixed for the given (Q, C) and reused verbatim across other
execution steps. It is important to note that the rubric is generated automatically based on the task,
which thus renders SVR scalable.

Judging, Aggregation, and Plan Admission. Given (Q, C,P), we present the generated rubric
items R to a set of LLM judges, denoted as {Jk}Kk=1,K ≥ 1, for scoring.1 Each judge returns a
binary decision g

(k)
r (P) ∈ {0, 1} with a short rationale grounded in the planning context for each

rubric item r; all rubric items are weighted equally. When K > 1, we aggregate per-item verification
results by a majority vote over judges, with ties mapped to 0, to obtain ḡr ∈ {0, 1}. The SVR score
is the simple mean Φpre(P) = 1

|R|
∑

r∈R ḡr . A plan is admitted if Φpre(P) ≥ θpre, where θpre
is a threshold pre-defined per domain. Otherwise, we aggregate feedback from judges on failed
items and their rationales and invoke a replanner to edit the plan. SVR re-evaluates the edited plan
against the same rubric, repeating until it yields the admitted plan P static or it has replanned for a
pre-defined maximal number of rounds (in which case, we return the final revised plan from the last
round as P static. By decomposing the plan verification into a series of factoid binary checks, the
LLM judges empirically display much more stable scoring compared to opaque scalar scoring in
prior work (Parmar et al., 2025), which also makes the verification process auditable.

3.3 DURING-EXECUTION CONTROL: DYNAMIC VERIFICATION POLICY (DVP)

Complementing the pre-execution plan verification, VERA further includes a Dynamic Verification
Policy (DVP) that guides the agent planning through in-execution plan verification.

A Verification Policy during Execution. Given an SVR-admitted plan P static = ⟨a1, . . . , aT ⟩,
DVP dynamically verifies each action during the agent’s execution. At each step t, it checks whether
the observation resulting from executing at remains consistent with the task constraints and selects
an explicit control action based on its verification. Formally, DVP achieves this goal via a verifica-
tion policy of averify

t ∼ πverify
(
· |st,P static, E

)
, where averify

t is a policy action chosen from: accept,
which accepts the current observation and moves on to executing at+1, next result requests
further execution results for at (e.g., displaying the next few returned flight choices), alt tool
re-runs at using a different available tool in E , skip step skips at and proceed to at+1, and
backtrack reverts to the most recent committed step that can resolve the conflict and replans

1In practice, we found that involving multiple judges could diversify the verification feedback; however,
SVR is still applicable when K = 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

from there. In doing so, the verification policy implicitly controls the agent’s task planning, result-
ing in an effective plan Pdyna = ⟨a1, · · · , aT ′⟩ that could diverge from P static.

Learning Verification Rulebook with Prompt Optimization. The key challenge of DVP lies
in implementing the verification policy πverify. Prior work has dominantly relied on hand-crafted
heuristics or unstructured prompts to implement the verification, which makes the verification crite-
ria implicit and the judgment sensitive to long trajectories and distractors (Yao et al., 2023b; Shinn
et al., 2023; Prasad et al., 2023). In VERA, we propose the idea of learning a rulebook for dynamic
plan verification. A rulebook is a prompt that specifies domain-specific guidelines for checking the
observation ot (i.e., the output of executing at) against the task constraint. We learn the rulebook
through discrete prompt optimization (Srivastava & Yao, 2025; Wang et al., 2023). Specifically, we
treat the optimization as a discrete search over candidate rulebooks using a Monte Carlo Tree Search
(MCTS)-style procedure to balance exploration (trying new rule variants) and exploitation (refining
effective ones) Wang et al. (2023). Formally, we define an Markov Decision Process (MDP) over
policy versions: the optimization state at iteration t2 is the current policy π

(t)
verify; an optimization

action is a natural-language edit to its rulebook; and the transition is π(t+1)
verify = EDIT

(
π
(t)
verify, edit

)
. At

evaluation time, π(t)
verify maps (st,P static, E) to an action in {accept, next result, alt tool,

skip step, backtrack}. For example (Fig. 1), if π(t)
verify lacks any schedule-feasibility check,

the agent may book breakfast immediately after a late-arrival flight. Observing this error yields an
edit that inserts: “Is arrival time ≤ the next step’s start time? Compare arrival time with the next
step’s start to ensure downstream schedule feasibility.” Applying this edit produces π(t+1)

verify , which
then rejects or defers such temporally inconsistent steps in future executions.

At each MCTS node we keep the current policy version πt
verify and a mini-batch of training sam-

ple {(Qi, Ci, Ei,P static
i , yi)}. The optimization loop proceeds in four steps: (1) Plan Execution:

for each i, run P static
i under π(t)

verify in Ei, producing a final artifact ŷ(t)i and a step-level log of ob-

servations and chosen control actions averify
t . (2) Error extraction: compare ŷ

(t)
i with yi and

parse the logs to identify actionable control failures (e.g., accepting a constraint violation, un-
necessary skip step). (3) Feedback: use a meta-prompt mfb to summarize observed errors
into actionable edits ut, using an LLM optimizer, to the rulebook of π

(t)
verify. (4) Update: ap-

ply another meta-prompt, on an optimizer LLM, mopt to generate the revised policy π
(t+1)
verify =

EDIT
(
π
(t)
verify, ut

)
. We score each policy πS on a development set V using task-specific metrics:

R
(
π
(t)
verify

)
= 1

|V|
∑

i∈V Metric
(
ŷ
(t)
i , yi

)
where Metrici is pass rate for TRAVELPLANNER, exact

match for NATURALPLANS, and pass@1 for τ -BENCH. The search continues for a fixed tree depth
and returns π⋆

verify ∈ argmaxt∈{0,...,T} R
(
π
(t)
verify

)
which we freeze for test-time control. This adapts

prompt optimization to policy learning: Instead of tuning task instructions, we discover an inter-
pretable verification rulebook that selects explicit control actions during execution, without modi-
fying P static or training new models. We provide additional details and a complete algorithm with
examples in Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate our planning framework on three diverse benchmarks, each stressing
different aspects of planning spanned across multiple domains: (i)TravelPlanner (Xie et al., 2024):
A realistic trip-planning benchmark grounded in tool use (e.g., flight, hotel, map APIs) and multi-day
itinerary and commonsense constraints. Tasks require constructing travel plans over multiple days,
satisfying explicit user needs (budget, preferences) and implicit commonsense constraints (feasible
routes, accommodations each night). The emphasis is on structured constraint satisfaction, i.e., the
agent must gather information via tools and assemble a coherent plan that meets all requirements

2In this context, we double-use the index t to denote the iteration during prompt optimization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(e.g., no overlapping flights, within budget) before execution. This benchmark tests our frame-
work’s ability to verify plans against hard constraints and leverage external tools for information.
(ii) τ -bench (Yao et al., 2024): Interactive tasks in real-world domains where the agent converses
with the user, invokes domain-specific APIs, and must follow policy or rules. The benchmark evalu-
ates goal-state consistency and reliability under domain constraints. (iii) NaturalPlan: (Zheng et al.,
2024)Free-form planning of meetings, calendar, travel, expressed in natural language but with sym-
bolic structure. It emphasizes the execution of the exact plan and the adaptability under changing
conditions.

Evaluation Metrics. We adopt benchmark-specific metrics that capture both correctness and ro-
bustness. TravelPlanner is evaluated on delivery rate (whether a complete plan is produced), hard-
constraint and commonsense-constraint pass rates (satisfaction of explicit user requirements vs.
implicit feasibility), and final success rate (all constraints simultaneously satisfied). τ -bench uses
database-state accuracy, comparing the final tool-updated state against the annotated goal, together
with pass@1 metrics that assess consistency across repeated trials of the same task. NaturalPlan
relies on exact match, requiring the agent’s generated symbolic plan to align perfectly with the gold
reference, thereby stressing precision and adaptability in free-form planning.

Baselines. We compare VERA against ten representative baselines spanning prompting-only,
reasoning-augmented, and planning-centric paradigms. Vanilla Prompting serves as a single-shot
generation baseline with no planning or feedback. CoT (Wei et al., 2022) and ToT (Yao et al., 2023a)
enhance reasoning bandwidth via intermediate traces or tree search but offer no structured verifica-
tion. ReAct (Yao et al., 2023b) and Reflexion (Shinn et al., 2023) interleave tool use with thoughts
or self-critiques, enabling partial in-execution correction but lacking any pre-execution screening.
ADaPT (Prasad et al., 2023) adaptively refines plans during execution when stuck, but performs no
up-front validation. PlanGen (Parmar et al., 2025) and DPPM (Lu et al., 2025) generate complete
plans and apply pre-execution filters, though their checks are often heuristic or schema-specific.
AdaPlanner (Sun et al., 2023) revises plans reactively under tool feedback but lacks plan gating
before execution. LLM-Modulo (Gundawar et al., 2024) incorporates symbolic verifiers into both
planning phases, but depends on handcrafted rules and lacks learnable verification. In contrast,
VERA unifies pre-execution (SVR) and in-execution (DVP) under a single, rubric-based interface
that is learnable, instance-grounded, and generalizable across domains.

Hyperparameters and Experimental Settings In our pipeline, we leverage GPT-4o in our exper-
iments for planning, evaluation, and rubric generation. Throughout our experiments, we use k = 1
demonstrations for initial plan generation to satisfy the plan schema (if any). For the remaining
modules (judge, rubrics, etc.), we do not use any demonstrations.3 The sampling temperature by de-
fault is 0.7 for all LLMs. Further experimental details can be found in Appendix D, which includes
reproducible prompts.

4.2 MAIN RESULTS

Unified SVR and DVP improve overall results on all datasets. On TravelPlanner, VERA de-
livers executable plans in 100% of cases, matching the best pre-execution baselines and improving
over during-execution methods, indicating that plans admitted by SVR are consistently executable.
On the end metric Final, VERA reaches 44.44, exceeding the strongest test-time pre-execution
baseline DPPM by +26.64 points (17.80 7→ 44.44), and surpassing the trained LLM-Modulo⋆ by
+23.84 (20.60 7→ 44.44). It also improves during execution approaches, e.g., ADaPT, by large mar-
gins (6.60 7→ 44.44). In addition, VERA attains the highest commonsense and hard-constraint pass
rates in Table 2. Qualitatively, we find DVP closes common failures such as exploring alternate tools
when there are no valid candidates or violating temporal/budget constraints; some dataset-specific
priors (e.g., always prefer flights for certain routes) are not encoded, leaving headroom despite the
strongest reported Final.

On τ -Bench, VERA attains 73.04 on Retail and 60.00 on Airline, improving over the best during-
execution baselines Reflexion (54.78, 52.00) by +18.26 (54.78 7→ 73.04) and +8.00 (52.00 7→
60.00), respectively; gains over ReAct (53.70, 46.00) are +19.34 and +14.00. On NaturalPlans,

3Our framework is flexible enough to support additional in-context demonstrations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Main results across three planning regimes. We implement all the baselines ourselves
using the settings and prompts specified in the paper. We were not able to replicate the numbers
for LLM-Modulo; hence, we report the numbers from their original paper for the available dataset,
leaving others with a ‘-’. All values are percentages (%). Best per column in bold with a light tint.
Small green deltas on OURS indicate absolute gains over Vanilla Prompting.

TravelPlanner
(Constraint-level Rates ↑)

TauBench
(Pass@1 ↑)

NaturalPlans
(Exact Match ↑)

Method Delivery Common-
sense

Hard
Constr. Final Retail Airline Trip Meeting Calendar

Vanilla Prompting 89.40 02.80 10.60 0.60 23.48 24.00 03.70 45.20 43.70
CoT 100 22.22 26.67 04.44 24.34 30.00 26.60 24.70 33.60
ToT 100 24.50 27.60 04.44 28.70 34.00 42.63 41.40 58.90
ReAct 82.20 03.90 06.70 0.60 53.70 46.00 34.70 38.90 47.90
Reflexion 93.90 08.80 04.44 0.00 54.78 52.00 35.75 34.80 51.70
ADaPT 95.30 12.50 11.70 06.60 42.61 38.00 36.80 36.50 48.90
AdaPlanner 97.80 14.50 13.70 15.60 46.09 42.00 43.90 45.66 55.70
DPPM 100 21.10 22.20 17.80 47.83 48.00 45.80 45.40 60.70
PlanGen 100 16.10 16.70 12.80 41.75 46.00 44.75 45.63 62.66
LLM-Modulo⋆ 100 40.60 39.40 20.60 - - - - -
VERA 100 (+11) 44.44 (+41.6) 48.89 (+38.20) 44.44 (+43.80) 73.04 (+50.40) 60.00 (+36) 48.17 (+44.30) 49.80 (+4.608) 68.90 (+25.20)

Legend: Structured Plans , Unstructured Plans , or Unstructured and tool-free Plans

VERA sets the best scores on Meeting Scheduling (49.80) and Calendar Planning (68.90), improv-
ing over the strongest baselines by +4.17 (45.63 7→ 49.80) and +6.24 (62.66 7→ 68.90). On Trip
Planning, VERA reaches 48.17, topping PlanGen (44.75) by +3.42 (44.75 7→ 48.17) and ToT
(42.63) by +5.54.

Qualitatively, we observe that DVP plays a key role in mitigating execution-time failures by en-
forcing rubric-derived rules specific to each domain (Appendix C, Table C). In NATURALPLANS,
common agent errors include malformed headers or incorrect day transitions, e.g., missing the fi-
nal “Day D” line or breaking contiguous day arithmetic (C2). DVP learns to identify such failures
(e.g., invalid recurrence or unbalanced visit–flight blocks) and initiates localized repairs, improving
syntactic well-formedness and final scores without degrading content coverage. On τ -Bench, DVP
enforces task-type isolation and booking protocol consistency. For instance, it detects policy viola-
tions such as switching tasks mid-interaction (e.g., booking a new flight while canceling another), or
skipping mandatory booking steps like confirming baggage count or final payment consent. In such
cases, DVP prompts clarification or correction before proceeding, avoiding silent errors or premature
tool calls. While SVR ensures only structurally and semantically sound plans are admitted upfront,
DVP provides continuous guardrails that reconcile the evolving execution context with task-specific
requirements. Notably, some domain priors (e.g., favoring flights over trains in Europe) remain
unencoded, suggesting further headroom even with the strongest reported Final performance.

Insight 1: SVR admits only plans that pass a fixed checklist of completeness, correctness, and
executability, achieving 100% delivery on TravelPlanner. DVP then keeps execution aligned
with Q and hard constraints from C and E by selecting explicit control actions at runtime.

5 ADDITIONAL ANALYSES

5.1 ANALYSIS OF SVR

SVR complements VERA by providing accurate and grounded judgment A key goal
of SVR is to replace noisy scalar rewards with grounded, auditable criteria for plan vali-
dation. We compare four planning approaches by asking a simple question: “as the re-
ward increases, how much does the chance of success rise?” For each method4, we model
Pr(success | reward) with a logistic link on the raw points and visualize it alongside binned
estimates at 10 points with binomial CIs. We fit a logistic link to summarize the monotone
reward–success relationship and use AUC (with 95% CIs) as a comparable separation metric.

4For PlanGen, we use the same prompt provided in the paper, while for AdaPlanner and DPPM, we use
another prompt to give a reward based on evaluation feedback

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Reward (0 100)

0.0

0.2

0.4

0.6

0.8

1.0

P(
su

cc
es

s)
 /

ra
w

ou
tc

om
es Ours

PlanGen
AdaPlanner
DPPM

Figure 2: We plot Pr(success | reward) us-
ing a logistic fit (solid line) and binned em-
pirical estimates (points with 95% binomial
CIs). VERA with SVR provides more stable
and faithful verification signals.

Figure 2 shows a sharp transition at the ∼56 reward
threshold with AUC ∼0.97, indicating a strong
discriminative power and a steep reward-to-success
coupling. PlanGen rises only mildly (threshold
∼60, AUC ∼0.57), while AdaPlanner and DPPM
are similarly shallow. This confirms that SVR
provides more faithful verification, enabling stable
plan admission decisions. Qualitatively, as shown
in Table C, SVR succeeds because its fine-grained
rubrics encode essential planning principles that
others leave implicit. For instance, the Decom-
position rubric ensures each step is atomic and
tool-invokable, by generating binary rubrics like
“PASS if the plan breaks the trip
into atomic tool-invokable steps
(...) FAIL if steps are coarse
(e.g., ’book flight and hotel’ as one) (...)” Under Hallucination Avoid-
ance, with a rubric “PASS if all concrete entities (...) are sourced
from prior operator outputs; (...); FAIL if fabricated identifiers
appear without provenance.”, SVR checks that all concrete entities (e.g., flight numbers,
hotels) are grounded in prior tool outputs or clearly marked as placeholders, preventing fabricated
results from leaking into execution. These precise, interpretable checks allow SVR to reject
ill-formed plans early and consistently admit those that are complete, correct, and executable.

Insight 2: SVR’s fine-grained rubrics yield grounded, reliable verification: higher rewards imply
higher success, unlike prior noisy reward heuristics.

SVR provides stable and interpretable judgment across raters. To
evaluate judgment stability, we compare SVR (VERA) and PlanGen,
the two approaches that explicitly assign plan-level verification scores.

100% 75% 50% 25% 0% 25% 50% 75% 100%
Share of items

3/3 agree

2/3 agree

1 agree

56%

28%

16%

1%

4%

95%

PlanGen-style scalar Ours (SVR)

Figure 3: Inter-judge agreement over verification
scores. SVR yields stable judgment (56% 3-way
agreement), while PlanGen shows highly diver-
gent scores (95% complete disagreement).

PlanGen uses free-form constraint extraction
followed by scalar scoring, while VERA uses
binary rubric-based checks aggregated into a
structured reward. We prompt three judges on
the same plan under each method and measure
their agreement after binning scores into 20
equal-width bins over [−100, 100]. We group
each trial into one of three categories: (i) full
agreement (3/3 judges in the same bin), (ii) par-
tial agreement (2/3 judges in the same bin), and
(iii) full disagreement (each in a different bin).

As shown in Figure 4, PlanGen exhibits highly
unstable verification: 95% of its plans fall into
the disagreement case (1/1 agreement), with
only 1% full consensus. In contrast, VERA
flips this distribution, with 56% of plans achiev-
ing full agreement, and only 16% showing total
disagreement. Beyond binning artifacts, we also report scale-invariant metrics. SVR yields higher
inter-judge consistency across the board: mean pairwise Pearson correlation 0.449 vs 0.379, intra-
class correlation ICC(1,k) 0.728 vs 0.613, and lower average deviation 25.8 vs 30.3. These results
confirm that rubricized, binary-feedback-based verification not only improves plan quality, but also
yields more stable and auditable decisions.

Insight 3: SVR enables stable verification: 3-way judge agreement rises to 56% under rubric-
based checks, compared to just 1% in free-form scoring (PlanGen).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 ANALYSIS OF DVP

DVP improves runtime decisions via learned, task-specific rulebooks. While
SVR can admit only well-formed plans, effective execution still requires han-
dling runtime deviations, such as, unavailable tool results (no flight op-
tions on a given date) or implicit constraint violations (scheduling conflicts).

0
25

50
75

100

Fi
na

l S
uc

ce
ss

Commonsense

H
ar

d
Co

ns
tr

ai
nt

s

Delivery

VERA (full) VERA DVP VERA + ReAct

Figure 4: Disabling DVP or replacing
it with ReAct-style prompting signifi-
cantly degrades performance

Figure 4 shows that disabling DVP (−DVP) causes fi-
nal success to drop sharply from 44.44% to 20.0%, and
hard constraint adherence from 47.10% to 12.38%, de-
spite using SVR for plan admission. Substituting DVP
with ReAct-style prompting (+ReAct) improves slightly
(22.22% final success), but still underperforms across
commonsense and constraint metrics. Notably, from
Table 2, a standalone ReAct agent, without SVR or
DVP, achieves just 3.9% commonsense and 6.7% hard-
constraint satisfaction. Adding SVR raises these by over
+15 points, while further replacing ReAct with DVP dou-
bles the success rate and restores grounded constraint en-
forcement. This confirms that DVP provides more precise
and effective runtime control than unstructured prompt-
ing, especially when built on stable SVR-admitted plans.

Qualitatively, we find that DVP effectively mitigates
commonsense violations and enforces hard constraints
through prompt-optimized control policies (Table C). In
TRAVELPLANNER, it resolves temporal conflicts (e.g., late arrivals) by deferring downstream steps,
avoiding brittle failures when rigid scheduling collides with real-world constraints. It also enforces
dietary and budget constraints by skipping over-ineligible meals or hotels, and activates alternate
strategies when no feasible lodging option exists. Notably, DVP exhibits forward-looking, cost-
aware behavior via rules that anticipate future mandatory costs and proactively prune expensive
early options to preserve feasibility, e.g., skipping soft goals or retrying with cheaper candidates.
These behaviors are governed by textual rulebooks optimized from demonstrations, without hand-
coded heuristics or model fine-tuning. SVR contributes by gating ill-formed or constraint-violating
plans upfront, but DVP remains central in handling in-execution-time contingencies across domains.

Insight 4: DVP learns structured and interpretable control policies that resolve common sense
conflicts, enforce hard constraints, and optimize for future costs, achieving robust execution.

5.3 GENERALIZATION TO GAMEOF24

Method Accuracy (%)

Vanilla 6.00
CoT 7.00
ToT 52.00
VERA 71.00

Table 3: Game of 24 accuracy
comparison.

Table 3 shows that VERA attains 71.00% accuracy on Game
of 24, outperforming ToT (52.00%), CoT (7.00%), and Vanilla
(6.00%). We attribute the gains to the SVR-admitted plan’s
explicit search skeleton and guards: (i) exhaustive but non-
redundant expansion by “pick any unordered pair (x, y)” and
enumerate {x+y, x−y, y−x, x×y, x/y (y ̸=0), y/x (x ̸=0)}
while “treating +,× as one order only” to avoid symmetric
duplicates; (ii) recursive reduction “replace {x,y} with r and
repeat until list length = 1”, with a crisp termination test “if
|r−24| < 10−6 success; otherwise backtrack”; and (iii) cheap
but crucial pruning: “skip identical states (same multiset up to order)” and “skip divisions by zero.”
These checks make completeness and safety auditable before execution (SVR), while DVP’s runtime
control turns them into concrete actions, e.g., issuing backtrack when the singleton result ̸=
24, or next result when a candidate reproduces a visited multiset, without editing plan text.
Together, the plan-level invariants and execution-time decisions yield a stronger, more stable search
than free-form prompting or unconstrained tree sampling.

Insight 5: Structured verification plus execution-time control transfers across domains, even
without tools or retraining.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Mohamed Aghzal, Erion Plaku, Gregory J Stein, and Ziyu Yao. A survey on large language models
for automated planning. arXiv preprint arXiv:2502.12435, 2025.

Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev, Botao
Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, et al. Mind2web 2: Evaluating agentic search with
agent-as-a-judge. arXiv preprint arXiv:2506.21506, 2025.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik Valmeekam, Siddhant Bhambri, and Subbarao
Kambhampati. Robust planning with llm-modulo framework: Case study in travel planning.
arXiv preprint arXiv:2405.20625, 2024.

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning
in multi-agent systems. arXiv preprint arXiv:2410.02189, 2024.

Zhengdong Lu, Weikai Lu, Yiling Tao, Yun Dai, ZiXuan Chen, Huiping Zhuang, Cen Chen, Hao
Peng, and Ziqian Zeng. Decompose, plan in parallel, and merge: A novel paradigm for large
language models based planning with multiple constraints. arXiv preprint arXiv:2506.02683,
2025.

Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen, Long Le, Swaroop Mishra, Hossein Mobahi,
Jindong Gu, Zifeng Wang, Hootan Nakhost, et al. Plangen: A multi-agent framework for
generating planning and reasoning trajectories for complex problem solving. arXiv preprint
arXiv:2502.16111, 2025.

Aditya Pathak, Rachit Gandhi, Vaibhav Uttam, Arnav Ramamoorthy, Pratyush Ghosh, Aaryan Raj
Jindal, Shreyash Verma, Aditya Mittal, Aashna Ased, Chirag Khatri, et al. Rubric is all
you need: Enhancing llm-based code evaluation with question-specific rubrics. arXiv preprint
arXiv:2503.23989, 2025.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit
Bansal, and Tushar Khot. Adapt: As-needed decomposition and planning with language mod-
els. arXiv preprint arXiv:2311.05772, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Saurabh Srivastava and Ziyu Yao. Revisiting prompt optimization with large reasoning models-a
case study on event extraction. arXiv preprint arXiv:2504.07357, 2025.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances in neural information processing systems,
36:58202–58245, 2023.

Marcus Tantakoun, Christian Muise, and Xiaodan Zhu. Llms as planning formalizers: A survey
for leveraging large language models to construct automated planning models. In Findings of the
Association for Computational Linguistics: ACL 2025, pp. 25167–25188, 2025.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. arXiv preprint arXiv:2310.16427, 2023.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. Plangenllms: A modern
survey of llm planning capabilities. arXiv preprint arXiv:2502.11221, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Duo Wu, Jinghe Wang, Yuan Meng, Yanning Zhang, Le Sun, and Zhi Wang. Catp-llm: Empowering
large language models for cost-aware tool planning. arXiv preprint arXiv:2411.16313, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv. org/abs/2305.10601, 3, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. T-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

A EXTENDED RELATED WORK DISCUSSION

Reasoning traces without verification. Early progress on test-time reasoning in LLMs focused
on producing richer intermediate traces to improve final answers. Chain-of-Thought (CoT) elicits
step-by-step rationales, often boosting accuracy on arithmetic, commonsense, and symbolic tasks
(Wei et al., 2022). Tree-of-Thought (ToT) explores branching solution paths and uses search or vot-
ing to select a final trajectory (Yao et al., 2023a). While these methods increase reasoning bandwidth,
they typically lack instance-grounded verification: rationales are not checked against task-specific
constraints or external tool feedback before execution. As a result, scalar self-ratings or majority
votes can be unstable across prompts or seeds and cannot localize actionable faults such as missing
preconditions, violated hard rules, or unexecutable steps.

Interleaving reasoning and acting. Agent frameworks interleave token-level reasoning with tool
calls to ground decisions in observations. ReAct mixes thoughts and actions to guide retrieval and
tool use (Yao et al., 2023b); Reflexion adds self-critique to iteratively repair failures (Shinn et al.,
2023); and plan-while-acting variants (e.g., Prasad et al., 2023) adapt via free-form prompts or
heuristic controllers. These systems improve robustness in open-world settings but generally drive
policy updates with unstructured text feedback (“try again,” “revise step”) rather than learned, ex-
plicit verification criteria tied to the current step and observed tool outputs. Consequently, their
judgments are hard to audit and difficult to reuse across tasks or runs.

Planning-first and adaptive planners. Several works make the plan itself a first-class object.
AdaPlanner adaptively revises plans during execution under feedback and failures (Sun et al., 2023).
PlanGen (multi-agent planning with verification and constraint extraction) aims to generate and
screen full plans before execution (Parmar et al., 2025). DPPM (Decompose, Plan in Parallel,
and Merge) targets multi-constraint problems by parallelizing sub-plans and merging them under a
coordinator (Lu et al., 2025). LLM-modulo composes LLMs with modular skills/verifiers to scaffold
complex tasks (Gundawar et al., 2024). These approaches move beyond token-level heuristics, but
plan checks are often ad hoc (schema-specific rules, coarse reward models, or opaque scalar scores)
and typically do not unify pre-execution screening with execution-time policy control under a shared,
learnable verification interface.

Multi-agent orchestration and Agent-Oriented Planning (AoP). Multi-agent pipelines special-
ize roles (planner, critic, tool specialist, executor) for division of labor. Agent-Oriented Planning
(AoP) formalizes this with a learned reward model over coarse criteria and additional labeled su-
pervision (Li et al., 2024). While this improves coordination, verification signals are bound to the
reward model and dataset, limiting portability and interpretability. Moreover, AoP and related or-
chestrations typically lack an instance-specific checklist that persists from pre-execution to runtime
to resolve conflicts when the world diverges from the initial plan.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Algorithm 1 Offline learning of Runtime Control Policy (RCP) via prompt optimization

1: Inputs:
Training set Dtrain = {(Qi, Ci, Ei,P⋆

i , yi)},
policy LLM (fixed)Mpol, optimizer LLMMopt, rewardR, penalty Cost,
batch size k, depth limit L, iterations τ , exploration weight c (all decoding temperature 0)

2: Initialize:
Initial policy prompt S0; mappings A : S 7→U (available edits), ch : S×U 7→S,
rewards r : S×U 7→R, Q : S×U 7→R, visits N : S 7→N; best policy S⋆←S0, best score
R⋆←−∞

3: for n← 1, . . . , τ do
4: Sample mini-batch B ⊂ Dtrain, |B| = k; set St ← S0

5: for t← 0, . . . , L− 1 do
6: if A(St) ̸= ∅ then ▷ Selection (UCB)

7: ut ← argmaxu∈A(St)

[
Q(St, u) + c

√
ln(N (St)+1)

N (ch(St,u))+1

]
8: St+1 ← ch(St, ut); N (St)+= 1
9: else ▷ Expansion + Simulation

10: Rollout: For each (Qi, Ci, Ei,P⋆
i , yi)∈B, execute P⋆

i under πSt
withMpol to get

trace τi and output ŷi
11: Error mining: EB ← MINEERRORS({τi, ŷi, yi}i∈B) (e.g., missed next result,

wrong alt tool, unnecessary backtrack, constraint violations)
12: Edit proposal: ut ∼Mopt(u | St, EB ,mfb)
13: Policy update: St+1 ∼Mopt(S | St, ut,mopt)
14: A(St)←{ut}; ch(St, ut)←St+1; r(St, ut)← 1

|B|
∑

i∈B

[
R(ŷi, yi)

]
; N (St)+= 1

15: end if
16: if EARLYSTOP(St+1) then break
17: end if
18: end for
19: Backprop: propagate rollout rewards to update Q(·, ·) along the visited path
20: Track best: if r(St, ut)>R⋆ on a dev split, set R⋆←r(St, ut), S⋆←St+1

21: end for
22: return S⋆ (frozen at test time; induces πS⋆(at | Q,P⋆, E , ct, st, ot) over A)

Decomposition, search, and parallelization. Orthogonal lines study search over plans (beam,
MCTS), subgoal discovery, or parallel synthesis of plan segments before reconciliation. ToT-style
search (Yao et al., 2023a), adaptive decomposition (e.g., ADaPT-like strategies that split or refine
when stuck; Prasad et al., 2023), and parallel planning/merging (Lu et al., 2025) improve coverage
but typically assume either (i) a downstream scorer that is not grounded in the instance (susceptible
to prompt variance) or (ii) hand-crafted constraints that do not generalize across domains.

Rubric-based evaluation and LLM-as-Judge. Recent work augments LLM evaluation with
rubrics or structured criteria to reduce the brittleness of scalar judgments (Gou et al., 2025; Wei
et al., 2025). However, most rubricization targets answer-level quality (faithfulness, helpfulness),
not plan-level executability signals. When plan checks are attempted, they are often coarse (pass/-
fail) or detached from tool observations, which limits their ability to steer execution.

Our contribution in context. VERA differs from the above along three axes aligned with the
issues surfaced in §1. First, instead of opaque scalars or pass/fail checks, Static Verification
via Rubrics (SVR) instantiates a fixed taxonomy (completeness, correctness, executability) into
instance-specific, binary questions (e.g., “is lodging allocated for every night?”) that are auditable
and editable, yielding stable, localized pre-execution diagnostics (contrast with CoT/ToT/ReAct/Re-
flexion and heuristic screens in Parmar et al., 2025; Li et al., 2024). Second, Dynamic Verification
Policy (DVP) learns an execution-time rulebook via prompt optimization to map grounded contexts
(current step, tool outputs, constraints) to policy control (retry, replan, relax, backtrack), replacing
free-form heuristics with explicit, learnable verification that drives the agent policy (contrast with
Yao et al., 2023b; Shinn et al., 2023; Prasad et al., 2023; Sun et al., 2023). Third, VERA unifies pre-
and during-execution verification so that the same rubric family gates initial plans and persists as

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 2 Unified Verification-Aware Planning via SVR and DVP
Inputs:

User query Q, task environment E , operator library T , rubric generatorMrubric, plannerMplan, static
verifier VSVR, dynamic verifier policy πverify

Phase 1: Static Verification via Rubrics (SVR)
(1) Generate planning rubricsR←Mrubric(Q)
(2) Generate candidate plan P static ←Mplan(Q)
(3) Evaluate rubric checklist C ← VSVR(P static,R)
if C contains any failure then

Provide feedback and replan: P static ←Mplan(Q, feedback)
Repeat Steps (3) until plan passes all rubrics or max attempts

end if
Phase 2: Dynamic Verification Policy (DVP)

Initialize execution trajectory Pdyna ← []
for t← 1 to T do

Execute at from P static, observe ot
Choose verifier action averify

t ∼ πverify(ot,P static, E)
Case: averify

t :
if averify

t = accept then
Append at to Pdyna and proceed to at+1

else if averify
t = next result then

Request additional outputs for at from E and re-evaluate
else if averify

t = alt tool then
Re-execute at using an alternative tool in T

else if averify
t = skip step then

Discard at, move to at+1

else if averify
t = backtrack then

Revert to previous safe step aj (j < t) and replan forward
end if

end for
return Final executed plan Pdyna

actionable runtime checks (contrast with ad-hoc pre-only screens in Parmar et al., 2025 or controller-
only adaptations in Yao et al., 2023b; Shinn et al., 2023). Empirically, on TRAVELPLANNER, NAT-
URALPLANS, and τ -BENCH, this design yields higher end-task success and lower variance while
keeping verification overhead bounded (see §4.1).

B ADDITIONAL IMPLEMENTATION DETAILS

DVP Learning To implement the verification policy πverify, we optimize a domain-specific rule-
book using discrete prompt optimization via Monte Carlo Tree Search (MCTS). At each iteration
(Algorithm 1), the task model simulates execution under the current rulebook, an LLM-based opti-
mizer analyzes failures and proposes edits, and a reward function evaluates constraint satisfaction.
The algorithm refines the prompt through guided feedback loops, gradually improving its ability to
produce grounded and correct runtime decisions without relying on hand-crafted heuristics or model
fine-tuning.

VERA To integrate both pre-execution validation and during-execution control, we formulate
a unified algorithm (Algorithm 2) that first applies Static Verification via Rubrics (SVR) to filter
ill-formed plans and then executes the verified plan under a Dynamic Verification Policy (DVP).
Given a user query, SVR generates a task-specific rubric and filters candidate plans by checking for
completeness, correctness, and executability. Only plans that pass all checklist items are admitted.
During execution, DVP monitors each step by comparing tool outputs to expected constraints and
selects explicit control actions—such as accepting, skipping, retrying with alternative tools, or back-
tracking—based on a learned, prompt-optimized rulebook. This two-phase framework ensures that
plans are not only structurally sound at admission but also remain robust and reactive under runtime
uncertainty.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C QUALITATIVE ANALYSIS OF DVP

NaturalPlans: Temporal Structure and Plan Repair. In the NATURALPLANS setting, VERA
relies on DVP to enforce strict temporal formatting and maintain structural correctness during ex-
ecution. For instance, it detects violations of the F0. STRICT HEADER rule—e.g., plans that
begin with incorrect headers or mismatch the city count—and emits a backtrack signal to trig-
ger header repair. Additionally, DVP identifies arithmetic inconsistencies in visit blocks (via C2.
CONTIGUOUS DAY RANGES) where day spans, flight transitions, or final day coverage are mis-
aligned. Rather than discarding the entire plan, DVP corrects only the affected segments, ensuring
that well-formed prefixes are preserved. These fine-grained runtime interventions produce local-
ized, structure-preserving edits that static SVR may overlook, especially in longer, partially valid
itineraries.

TauBench: Dialogue Policy and API Verification. In τ -BENCH, DVP plays a crucial role in
dialogue management and tool-grounded execution. It enforces task isolation as prescribed by 1.1
Single Task Focus, prompting the user to confirm intent when new requests interrupt ongoing
ones—e.g., asking to rebook while canceling. Such interventions are realized via alt operator
or skip step control actions, which guide the conversation back to a valid interaction state. Fur-
thermore, in booking flows (3.1–3.5), DVP validates that the agent (i) collects all required infor-
mation (e.g., user ID, trip type, baggage count), (ii) confirms booking with the user before issuing
the API call, and (iii) checks the returned fields for mismatches. When discrepancies arise, DVP
issues backtrack or next result signals to retry or escalate, enforcing precise API-grounded
behavior beyond what ReAct-style prompting can achieve.

TravelPlanner: Budget-Aware Control and Operator Switching. In TRAVELPLANNER, DVP
ensures budget feasibility and step validity through forward-looking control. When transport steps
violate Q1.0 TRANSPORT-COST GUARD—e.g., when a flight would consume remaining budget
required for hotels—DVP emits an alt operator signal to prefer cheaper options such as driving
or taxis. For meals, DVP uses Q4.2 to skip steps that fall outside valid time windows or violate soft
precedence rules. Hotel decisions are guided by rules such as Q3.3 OCCUPANCY FLEX, where
DVP triggers paging or backtracking when listings fail minimum-night or pricing constraints. Addi-
tionally, the Q7.1 Budget Aggregator prevents downstream budget violations by anticipat-
ing cumulative costs and selecting next result to explore cheaper alternatives. These dynamic
adjustments—rooted in learned, prompt-optimized rulebooks—enable robust, constraint-respecting
execution without hand-coded heuristics.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Examples of Dynamic Verification Policies for Different Datasets
TRAVELPLANNER

<Flights / Long-distance Transport>:
Q1.0 TRANSPORT-COST GUARD

Let R = remaining_budget (before booking this leg)
Hmin = min(cost of all still-unbooked **mandatory** steps such as accommodation

and commute back; non-mandatory steps: meals and attractions)
⇒ flights, long-haul drives, first hotel)

D_est = estimated cost of the current origin-dest
self-drive / taxi leg
(estimate if alt price unknown).

If (candidate_cost × travellers > R − Hmin) OR # would break budget
(candidate_cost × travellers > 2 × D_est): # ≥ 2× cheaper alt
⇒ "alt_operator" # ask executor to try Drive / Taxi first

truncated
<Meals:>:
Meals can be skipped when (1) in lower precedence with Flights and Self-Driving or Taxi; (2)

Skipped to make room for accommodation and other budgets as well.
truncated
Q3.2 Is a concrete or inferred meal_time available?

Skip if the derived time falls outside the canonical window.
<Hotel Check-in / Stay>:
Q3.3 OCCUPANCY FLEX FOR ROOM-TYPE LISTINGS

• If the budget or min-night test fails, continue paging /
back-tracking exactly as in Q3.0.

< Budget Aggregator>:truncated
Q7.0 First, determine the number of travellers mentioned (exclude kids if not specified or

ambiguous).
Q7.1 Is Σ(daily_costs) ≤ total_trip_budget?

→ If FALSE and cheaper alternative exists for *current* soft step ⇒ "next_result".

NATURALPLANS
<Format & Template: High Priority>
F0. STRICT HEADER

PASS if the very first line equals:
"Here is the trip plan for visiting the {N} European cities for {D} days:"
with N, D matching the task; blank line follows.

Else FAIL → backtrack (fix header).
F1. VISIT BLOCK SYNTAX
<Coverage & Day Arithmetic: High Priority>
truncated
C2. CONTIGUOUS DAY RANGES

Let total days = D. Let the first block be s=1. For each block i with length k_i:
• Visit line must be "**Day s-e:** ... for k_i days." where e = s + k_i − 1.
• The following flight line must be "**Day e:** Fly from Prev to Next."
• The next block must start at day s' = e (flight day equals the first day of the

destination block).
PASS if all blocks satisfy the recurrence and the final e equals D.
Else FAIL → backtrack (repair day math).

τ -BENCH
1. INTERACTION MANAGEMENT
1.1 Single Task Focus
• Only work on one primary task at a time (booking, modifying, cancelling, compensation).
• If the user makes a new request mid-task, ask:

‘‘You’ve asked to [new request] while we’re working on [current task]. Would you like to
pause [current task] to handle [new request] now, or finish first?’’
truncated

3. BOOKING FLIGHTS
3.1 Information Gathering (in order)
1. Confirm User ID.
2. Trip type (one-way or round-trip).
8. Ask how many checked bags are needed.

3.5 Confirmation & Booking
• Summarize all booking details and payment plan.
• Ask ‘‘Do you confirm booking with these details?’’
• Upon explicit ‘‘yes,’’ call the booking API.
• After API returns, compare each returned field to requested values. If mismatch, apologize
, correct, and retry or escalate.

Table 4: Case studies of Dynamic Verification Policy (DVP) behavior across domains. Each
example shows how DVP responds to execution-time deviations by issuing control signals such as
backtrack, alt operator, or next result. In TRAVELPLANNER, DVP prevents budget
overflows by switching transport modes or skipping low-priority steps. In NATURALPLANS, it en-
forces formatting and day arithmetic (e.g., fixing header and visit block errors). In τ -BENCH, DVP
corrects API misuse, reorders dialogue turns, or prompts clarification when tasks conflict. These ex-
amples highlight how prompt-optimized verifier rulebooks enable grounded, context-sensitive policy
control at runtime.
D ADDITIONAL EXPERIMENTAL DETAILS

Feedback Collection Prompt. Below we present the prompt to generate plans.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

You are a planner whose job is to break down a given user request into a
set of small/atomic steps to finalize the user query. For example,
given a complex query in natural language, you need to indentify the
set of steps, constrained in user queries and break it down into
smaller steps. The expected output format is provided at the end.

For planning purposes, you will be given following as an input:
(1) An optional list of APIs/tools/operators or agents which can be used

to execute the atomic steps.
(2) The user query
(3) An optional set of constraints. If not provided, you may chose to

skip this field.
(4) An optional plan schema which you can use to output the plan. If none

provided, please output in a natural language set of steps.

Start of APIs/Tools/Operators
{api_tools}
End of APIs/Tools/Operators

The input query is:
Begin User Query
{user_query}
End User Query

Start of Constraints
{constraints}
End of Constraints

Your job is to output a plan in the following format:
{plan_schema}.

Expected outputs:
1) First, provide your step by step analysis using "Let's think step by

step." to tackle the problem. Wrap your analysis in <analysis>...</
analysis> tags.

2) Second, output any user constraints in the field wrapped inside tags <
constraints>...</constraints>

3) Finally, output your plan wrapped inside tags <PLAN>...</PLAN> tags.

Always, strictly follow the provided output structure.

Rubric Generation Prompt. Below, we present the prompt to generate rubrics.

You are an expert in designing rubrics for grading any domain-specific
tasks and your job is to design strict domain-specific rubrics based
on few samples covering critical and necessary aspects of a domain.
You need to generate exactly {num_rubrics} rubrics for each category.
Remember, some of the taxonomy elements provided below are only

applicable to structured plans or specific domains. Use your best
judgment to pick the taxonomy elements for rubrics generation. The
examples are as follows:

The examples to learn rubrics are as follows:
Begin Query
{example_string}
End Query

Please consider the following taxonomy for rubrics generation (consider
only which are applicable)"

Begin Taxonomy
{taxonomy}
End Taxonomy

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In addition, here are some task-specific constraints you should also
consider:

Begin Constraints
{additional_constraints}
End Constraints

Please craft a domain-specific rubric, wrapped within tags <rubrics>...</
rubrics> for plan verification in the following format:

```
{{

"Parent_Category_1":
{{

"Child-Category 1" : "Rubric - 1 ",
"Child-Category 2" : "Rubric - 2 ",
...

}}
...

}}
```

Expected outputs:
1) First, provide your step by step analysis using "Let's think step by

step." to tackle the problem. Wrap your analysis in <analysis>...</
analysis> tags.

2) Second, output any user constraints that needs to be included in
rubrics in the field wrapped inside tags <constraints>...</
constraints>. You can also include any additional constraints for a
viable plan.

3) A very important thing to consider and remember is that the process is
for validation so the execution results are not provided in the plan

. The plan will be sent for execution once the validation scores
enough basd on your scores hence, do not expect any outputs yet!

4) Finally, output your rubrics wrapped inside tags <rubrics>...</rubrics
> tags.

5) Do not ever change the name of the rubric items.

Always, strictly follow the provided output structure.

Rubric Generation Prompt. Below, we present the prompt to generate judge scores and feed-
back.

You are a judge whose job is to critically analyze and categorically
analyze the user plan and the taxonomy and assign a binary score (0
or 1) to every rubric item. Remember to only base your judgment on
the plan, not the query itself, and to be very strict and specific.
The information from the user query should not be used for judging
and is for reference and grounding purposes only. You only need to
judge based on the plan, not the user query and present actionable
items at the end. A very important thing to consider and remember is
that the process is for validation so the execution results are not
provided in the plan. The plan will be sent for execution once the
validation scores enough basd on your scores hence, do not expect any
outputs yet!

The user query is:
Begin User Query
{user_query}
End User Query

Below are the set of APIs/tools/api/operators which you can be used for
planning (we use APIs, Tools, and Operators interchangeably):

Begin API/Tools/Operators
{api_tools}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

End API/Tools/Operators

The plan you have to verify is:
Start of Proposed Plan
{plan}
End Proposed Plan

The plan schema is:
Begin Plan Schema
{plan_schema}
End Plan Schema

The rubrics are as follows --- score only these, do not invent new ones:
Begin Rubrics
{rubrics}
End Rubrics

You can consider the following to understand related plans which are
correct and will score high for similar queries:

Begin Demonstrations
{icl}
End Demonstrations

Return your result wrapped in <scores> ... </scores> tags, in the
following format:

```
{{

"Parent_Category_1": {{
"Child-Category 1": {{

"reasoning": "your detailed analysis of the plan",
"score": 0/1

}},
"Child-Category 2": {{

"reasoning": "your detailed analysis of the plan",
"score": 1/0

}}
}},
"Parent_Category_2": {{
...

}},
"Overall": {{
"Overall Impression of the plan and actionable items to improve the
plan": "provide your overall detailed analysis of the plan and in
addition unambiguous and clear feedback or ationable items on how to
improve it based on other judges' feedbacks.",
"Overall score of the plan": "{{overall_score_percent}}"

}}
}}

```

Expected outputs:
1) First, provide your step by step analysis using "Let's think step by

step." to tackle the problem. Wrap your analysis in <analysis>...</
analysis> tags.

2) Second, output any user constraints that needs to be used for rubric
verification in the field wrapped inside tags <constraints>...</
constraints>. You can also include any additional constraints for a
viable plan.

3) Finally, output your scores wrapped inside tags <scores>...</scores>
tags with **a valid JSON object.** Remember "overall score" should be
a number, don't even add % or any other character.

4) Do not ever change the name of the rubric items.

Always, strictly follow the provided output structure.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Rubric Generation Prompt. Below, we present the prompt to generate new plans based on judge
scores and feedback.

You are a planner whose job is to break down a given user request into a
set of small/atomic steps to finalize the user query and improve over
a plan which was given a low score based on judges' feedback. For

example, given a complex query in natural language, you need to
indentify the set of steps, constrained in user queries and break it
down into smaller steps while keeping feedback in mind. The expected
output format is provided at the end.

For planning purposes, you will be given following as an input:
(1) An optional list of APIs/tools/operators or agents which can be used

to execute the atomic steps.
(2) The user query
(3) The current (low-scored) plan you need to modify.
(4) The feedback.
(5) An optional set of constraints. If not provided, you may chose to

skip this field.
(6) An optional plan schema which you can use to output the plan. If none

provided, please output in a natural language set of steps.
(7) Previous failed attempts which leads to incorrect outputs

Start of APIs/Tools/Operators
{api_tools}
End of APIs/Tools/Operators

The input query is:
Begin User Query
{user_query}
End User Query

The current plan is:
Start of Plan to modify
{current_plan}
End of Plan to modify

The feedback:
Begin Feedback
{feedback}
End Feedback

You can consider the following to understand related plans which are
correct and will score high during validation:

Begin Demonstrations
{icl}
End Demonstrations

Start of Constraints
{constraints}
End of Constraints

Your job is to output a plan in the following format:
Begin Plan Schema
{plan_schema}.
End Plan Schema

Start Previous Failed Attempts
{previous_attempts}
End Previous Failed Attempts

Expected outputs:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1) First, provide your step by step analysis using "Let's think step by
step." to tackle the problem. Wrap your analysis in <analysis>...</
analysis> tags.

2) Second, output any user constraints in the field wrapped inside tags <
constraints>...</constraints>

3) **Finally, always output your plan wrapped inside tags <PLAN>...</PLAN
> tags.** Always, strictly follow the provided output structure. """

20

	Introduction
	Related Work
	VERA: LLM Planning with Unified Plan Verifications
	Preliminaries
	Pre-execution Verification: Static Verification via Rubrics (SVR)
	During-execution Control: Dynamic Verification Policy (DVP)

	Experiments
	Experimental Setup
	Main Results

	Additional Analyses
	Analysis of SVR
	Analysis of DVP
	Generalization to GameOf24

	Extended Related Work Discussion
	Additional Implementation Details
	Qualitative Analysis of DVP
	Additional Experimental Details

