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ABSTRACT

Prior research shows that differences in the early period of neural network training
significantly impact the performance of in-distribution (ID) data of tasks. Yet, the
implications of early learning dynamics on out-of-distribution (OOD) generaliza-
tion remain poorly understood, primarily due to the complexities and limitations
of existing analytical techniques. In this work, we investigate the relationship
between learning dynamics, OOD generalization under covariate shift and the early
period of neural network training. We utilize the trace of Fisher Information and
sharpness, focusing on gradual unfreezing (i.e., progressively unfreezing param-
eters during training) as our methodology for investigation. Through a series of
empirical experiments, we show that 1) changing the number of trainable param-
eters during the early period of training via gradual unfreezing can significantly
improve OOD results; 2) the trace of Fisher Information and sharpness can be
used as indicators for the removal of gradual unfreezing during the early period of
training for better OOD generalization. Our experiments on both image and text
data show that the early period of training is a general phenomenon that can provide
Pareto improvements in ID and OOD performance with minimal complexity. Our
work represents a first step towards understanding how early learning dynamics
affect neural network OOD generalization under covariate shift and suggests a new
avenue to improve and study this problem.

1 INTRODUCTION

Deep neural networks have achieved remarkable results on in-distribution (ID) data of a task they
trained on but often performed poorly on out-of-distribution (OOD) data under input distribution
shifts. OOD performance is critical for real-world applications, such as training on clean images
or text but inferencing on noise-corrupted data (Hendrycks & Dietterich, 2019; Michel & Neubig,
2018), data obtained from different time periods (Lazaridou et al., 2021; Yao et al., 2022), across
languages or domains (Wang et al., 2021; Talman & Chatzikyriakidis, 2019; Liu et al., 2022; Koh
et al., 2021; Gulrajani & Lopez-Paz, 2021). Inadequate generalization to OOD settings is a key issue
limiting the robustness and reliability of these models.

Prior research observed that variations in the early period of training have a significant impact on
the model’s ID performance (Golatkar et al., 2019; Achille et al., 2019; Mosbach et al., 2021; Fort
et al., 2020) across scenarios including unimodal and multimodal settings when training from scratch,
performing parameter-efficient fine-tuning, or using federated learning. The observation of such a
period in diverse applications suggests that the early period of learning is generally important for
neural network training (Kleinman et al., 2024), drawing parallels to biological phenomena like the
critical learning period in animals (Achille et al., 2019; Kleinman et al., 2023).

In particular, intervening during the early period of training can significantly impact ID generalization
at the end of training. Training techniques, such as adjusting optimization hyperparameters (e.g.,
weight decay, learning rate, or dropout; Golatkar et al. 2019; Jastrzebski et al. 2021; Mosbach et al.
2021; Liu et al. 2023b), using data augmentation (Golatkar et al., 2019; Liu et al., 2023c), or adding
noise to weights (Frankle et al., 2020), impact learning dynamics early on and can significantly
improve or degrade ID results depending on when they are applied or removed. Despite extensive
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Training StepsStart EndStandard 
training w/ Int.

Early period of 
training w/ Int.

Intervention (e.g., gradual unfreezing)

… … … …
… Trainable

Frozen

Model

Out-of-Distribution Evaluation

Noise-Corrupted Domain Shift Language Shift

P: Fun for adults and children.
H: Fun for only children.

P: 对成人和儿童来说很有趣
H: 只有孩子才会开心

P: Spaß für Erwachsene und Kinder.
H: Spaß für nur Kinder.

Train

Test

No Int. 72.36% 67.96% 71.84%

Early* 75.61% +3.25 72.26% +4.30 74.10% +2.26
Std. Int. 71.75% -0.61 67.12% -0.84 70.92% -0.92

Figure 1: (Left) Interventions during the early period of training are applied for a much shorter time.
(Right) Impact of intervention in the early period of training on OOD performance across diverse
settings (CIFAR10, Krizhevsky 2009; Hendrycks & Dietterich 2019; Office-Home, Venkateswara
et al. 2017; XNLI, Conneau et al. 2018). ∗ indicates optimal OOD results (§5.1).

studies on early learning dynamics and ID generalization, to the best of our knowledge, the impact of
the early training period on OOD generalization remains unexplored.

In this work, we focus on the impact of the early period of training on OOD generalization, specifically
under the common input distribution shift (i.e., covariate shift, encompassing clean to noisy inputs,
language, and domain shifts, etc.). We conduct a series of empirical investigations to explore
this effect from a previously unexplored perspective – trainable parameters – by using gradual
unfreezing (Howard & Ruder, 2018) to intervene in the early period of training (Figure 1). This
method is a simple instance of broader training approaches with selective trainable parameters (Kumar
et al., 2022; Lee et al., 2023), proven effective in adaptation for OOD generalization. We investigate
changes in commonly used metrics to study generalization, namely Fisher Information and loss
sharpness (Jastrzebski et al., 2021; Foret et al., 2021; Kwon et al., 2021; Zheng et al., 2021) during
the early period of training, exploring their roles in shaping OOD generalization. Through targeted
case studies, we demonstrate how leveraging the dynamics of the early period in training can be an
effective strategy for “seizing” the moment for generalization across various scenarios.

To the best of our knowledge, we show for the first time that intervening through trainable parameters
(i.e., gradual unfreezing) in the early period of training, can significantly enhance OOD generalization
under covariate shift in various settings. Our results indicate that sharpness and Fisher Information
metrics, though they may not be directly predictive of OOD generalization, can be used as indicators
to optimize the timing of intervention removal for better OOD results. We validate this finding in
both vision and language tasks, showing its ability to achieve Pareto improvements with minimal
complexity. Our analysis and empirical evidence reveal new insights into how early learning dynamics
impact neural network generalization, particularly under covariate shift, and suggest new avenues for
studying OOD generalization.

2 RELATED WORK

Early period of neural network training. Under the standard usage of the term generalization (in-
distribution, where training and testing data are assumed to be from the same distribution), prior work
(Golatkar et al., 2019; Achille et al., 2019) shows that the early period of training of neural networks
exhibits a “critical learning period” when trained from scratch. Regularization and interventions
applied in this critical period affect final task results.

Jastrzebski et al. (2021) indicates that when learning with a lower learning rate, Fisher Information
exhibits an “explosion” in the early period of training which impedes ID generalization. Applying
regularization to the trace of Fisher Information alleviates the negative impact of the high Fisher
Information. Liu et al. (2023c) shows the termination of MixUp (Zhang et al., 2018) early in training
and switching to standard empirical risk minimization helps with better ID generalization. You et al.
(2020); Frankle et al. (2020) shows that even winning “lottery tickets” emerge in the early period of
training with large learning rates. The critical learning period is also found in many other settings,
such as in multimodal models (Kleinman et al., 2023), in linear models (Kleinman et al., 2024), in
transformers (Mosbach et al., 2021) and federated learning (Yan et al., 2022). However, these works
only focus on ID generalization, neglecting the challenges of OOD generalization.
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Prior work (Yang et al., 2024; Qiu et al., 2024) investigates into how models adapt to spurious
correlations (which is a distinct form of OOD problem compared to the covariate shift examined in
our work). These studies focus on the early formation of distinct spurious features during training
and the mitigation strategies. However, the impact of trainable parameters (an increasingly important
area in light of recent advancements in parameter efficiency and dynamic architectures) remains
underexplored.

Kumar et al. (2022); Lee et al. (2023); Liu et al. (2023a) find that training different parts of a model
at different times can alter learning dynamics and achieve better OOD results. Encouraged by
these findings, we use gradual unfreezing (Howard & Ruder, 2018, a very simple form of training
parts of a model at different times) as the main investigative tool in this paper. We focus on two
key advancements: 1) more general settings (e.g., training from scratch, fine-tuning), and 2) the
characterization of the early period of training and its relationship to OOD generalization.

Fisher Information, sharpness and generalization. Fisher Information has been studied in many
prior works such as Chaudhari et al. (2017); Martens & Grosse (2015) to investigate and improve
optimization behaviour. Similarly, sharpness is another popular metric used to study optimization
behaviour and its relationship to generalization.

Jastrzebski et al. (2017) found a correlation between sharpness and the ratio of learning rate to
batch size, which impacts generalization. Jiang et al. (2020); Dziugaite & Roy (2017); Neyshabur
et al. (2017) provide theoretical backing for generalization error using sharpness-related measures
and empirically show a correlation with generalization. While prior work believes that flatter (less
sharp) minima in the loss landscape lead to better generalization in neural networks (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2017; Izmailov et al., 2018; Cha et al., 2021), there have been
debates on whether sharp minima (such as a high largest eigenvalue of the training Hessian, λmax)
imply poor generalization (Dinh et al., 2017) and demonstrate the limits of λmax in explaining ID
generalization (Kaur et al., 2023). Andriushchenko et al. (2023) demonstrate that adaptive sharpness
is an unreliable metric for OOD generalization in the final solution.

Current research primarily examines the loss landscape at convergence to understand ID generaliza-
tion. However, the role of Fisher information and sharpness metrics during early training and their
relationship to final OOD generalization remains unclear.

3 PRELIMINARIES

We utilize Fisher Information (Fisher, 1925) and sharpness to analyze the training process. Below,
we outline the specific metrics used in our experiments.

3.1 FISHER INFORMATION MATRIX (FIM)

Let x be the inputs and y be the labels of a dataset D. Given a neural network parameterized by w
with an output distribution pw(·|x) for input x, the Fisher Information is defined as:

F (w) =
1

|D|
∑
x∈D

Eŷ∼Pw(·|x)
[
∇w log pw(ŷ|x)∇w log pw(ŷ|x)T

]
. (1)

Note that ŷ are sampled from pw(·|x) and not equal to y in general.

Fisher Information reflects the local curvature and measures the amount of information with respect
to network parameters, i.e., how sensitive the network predictions are to the small changes in its
parameters (Amari & Nagaoka, 2000). A higher value of an element of F (w) indicates that a small
change in the corresponding network parameter results in a significant change in the output, which
can be interpreted as a “sharper” loss landscape.

Estimating the full F (w) is generally expensive. Prior work shows that the trace of the Fisher
Information, tr(F), correlates well with the full Fisher Information when used in real applications to
capture signals during the learning process (Achille et al., 2019; Jastrzebski et al., 2021; Sung et al.,
2021, inter alia). tr(F) is defined as

tr(F) =
1

|D|
∑
x∈D

Eŷ∼pw(·|x)||∇w log pw(ŷ|x)||2. (2)
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3.2 SHARPNESS

Let LD(w) = 1
|D|

∑
(x,y)∈D log pw(y|x) be the loss over training datasets D, of a neural network

parameterized by w, and δ be a small perturbation drawn from a noise distribution, such as a Gaussian
distribution N (0, ρ2diag(c2)). The definitions of average and worst-case sharpness are (Foret et al.,
2021; Kwon et al., 2021; Andriushchenko et al., 2023; Hochreiter & Schmidhuber, 1997):

Sρ
avg = Eδ∼N (0,ρ2diag(c2))LD(w − δ)− LD(w), (3)

Sρ
worst = max

∥δ⊙c−1∥p ≤ ρ
LD(w − δ)− LD(w), (4)

where ρ is a radius parameter of the noise, c is a vector in the parameter space along which sharpness
is measured and ⊙c−1 is element-wise multiplication.

Sharpness metrics measure how the loss changes with respect to small changes to model parameters.1
While both the Fisher Information and sharpness are used for investigating loss landscapes and
generalization, they offer different views (parameter space vs. loss) of the training process.

3.3 GRADUAL UNFREEZING

Gradual unfreezing (Howard & Ruder, 2018) progressively increases the number of trainable parame-
ters (i.e., unfreeze, layer-by-layer) of a neural network from the top to the bottom of a network at
a fixed interval of training steps, k (i.e., the unfreezing interval). In this paper, we use a modified
formulation of gradual unfreezing (Liu et al., 2023a), where we progressively unfreeze “blocks” of
parameters during the early period of training top-down (a block of parameters can range from a single
layer to several consecutive layers). In our experiments, we use the namespace of the parameters used
in standard implementations to determine blocks. See Appendix B for the algorithm. This method,
along with the top-down unfreezing, is chosen as the analysis tool due to its proven effectiveness in
achieving state-of-the-art performance across various transfer learning settings (Howard & Ruder,
2018; Kumar et al., 2022; Liu et al., 2023a; Reinhardt et al., 2024).

4 EXPERIMENTAL SETUP

We study three experimental settings in this work, covering a diverse set of tasks and scenarios
including training from scratch then inference with noise-corrupted images, fine-tuning a pre-trained
model for domain generalization, and parameter-efficient fine-tuning for language shift generalization.
All experimental results are averaged over 6 runs (for MNIST due to high variances) or 4 runs (all
other datasets) and only ID data is used for model selection. See Appendix C and Appendix D for
details on the evaluation datasets and hyperparameters.

Training from scratch, noise-corrupted input shift. In this setting, we train a ResNet18 (He
et al., 2016) from scratch using the MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky, 2009), or
CIFAR100 (Krizhevsky, 2009). For OOD evaluation, we use the corrupted corresponding evaluation
datasets, MNIST-C (Mu & Gilmer, 2019), CIFAR10-C (Hendrycks & Dietterich, 2019) and CIFAR-
100-C (Hendrycks & Dietterich 2019, averaging results across corruption types and severities. ID
evaluation is done on the original test sets.

Fine-tuning from a pre-trained model, domain shift. Here, we fine-tune an ImageNet (Deng
et al., 2009) pre-trained vision transformer (ViT, Wu et al. 2020). We use two popular domain
shift datasets, namely Office-Home (Venkateswara et al., 2017) and DomainNet (Peng et al., 2019)
for evaluation. We use a single source-domain for training, evaluating all other domains that are
not part of the training for Office-Home. For DomainNet, we train on the three domains with the
least data (for efficiency reasons) and evaluate on the test sets of all other domains that are not
the same as the training domain (i.e., Domaintrain ∈ {Sketch, Infograph, Clipart}, Domaintest ∈
{Sketch, Infograph, Clipart, Real, Painting, Quickdraw}, see Appendix C).

1The sharpness can be negative.
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Parameter-Efficient Fine-Tuning (PEFT) with a pre-trained model, language shift. We also
conduct experiments using a language transformer. Since pre-training and fine-tuning are common
for adapting foundational models, we examine the cross-lingual transfer (train with English data, test
with other languages) task using PEFT with the LoRA (Hu et al., 2022) adapters. Here, ID data refers
to English task data (for training and validation), while OOD data are in other languages. We train
with SQuAD (Rajpurkar et al. 2016, English, question and answering task) and MNLI (Williams
et al. 2018, English, natural language inference task), and evaluate on XQuAD (Artetxe et al., 2020),
MLQA (Lewis et al., 2020) and XNLI (Conneau et al., 2018). We use XLM-RoBERTa (Conneau
et al., 2020) as the pre-trained multilingual transformer backbone.

Learning dynamics metrics. We use ρ = 0.01 to calculate the sharpness (both average-case and
worst-case) with 15 noise samples (it is computationally expensive to use a larger number of noise
samples), and L2 norm for the worst-case sharpness. We normalize the tr(F) by the number of
trainable parameters. We use the Auto-PGD algorithm (Croce & Hein, 2020) as implemented in
Andriushchenko et al. (2023) (we refer the readers to the original papers for details) for computing
worst-case sharpness, as it is a hyperparameter-free estimation method.

5 IMPACT AND TIME-SENTISITIVITY OF EARLY INTERVENTIONS ON
OUT-OF-DISTRIBUTION GENERALIZATION

5.1 TIMING IS CRITICAL FOR REMOVING INTERVENTIONS

Here, we investigate how unfreezing interval k affects ID and OOD results. For all experiments in this
section, the smallest k is 1 (unfreeze a block of parameters every one batch update) and the largest k
is determined by equally dividing the total training steps among all blocks (Howard & Ruder, 2018;
Raffel et al., 2022; Kumar et al., 2022; Lee et al., 2023). We show the relative change in the test
results (by subtracting the test results using gradual unfreezing to the results using standard training).

Training from scratch, noise-corrupted input shift. Figure 2 shows the relative change in test
results compared to standard training. Gradual unfreezing of trainable parameters significantly
impacts OOD generalization (i.e., noise-corrupted images) as early as after a single batch of data,
and this effect is particularly pronounced in simpler datasets like MNIST. Extending the unfreezing
interval during training initially has minimal impact on ID performance, but later leads to a significant
decline, especially at a faster rate with CIFAR. The observed deterioration in ID performance over
extended unfreezing intervals mirrors trends from early-stage training interventions and aligns with
previous findings (Golatkar et al., 2019; Achille et al., 2019) using other interventions.

The influence of gradual unfreezing on OOD results serves as evidence for the importance of early
training periods for OOD generalization. Notably, gradual unfreezing reveals a trade-off between
ID and OOD performance for CIFAR datasets, with a brief window where OOD results improve
before a sharp decline in ID performance. These results suggest that there may be a critical range
of k during early training where ID performance remains stable and OOD performance improves.
This time-sensitive observation persists over different learning rates (Figure 2(b)) and model depths
(Figure 7 in Appendix F).

Fine-tuning from a pre-trained model, domain shift. Figure 3(a) presents the relative change in
domain generalization performance when fine-tuning a pre-trained ViT on single source-domain data.
Consistent with previous observations on noise-corrupted input images, results on DomainNet and
Office-Home both exhibit a time-sensitive nature in parameter training. 2 Notably, there is also a
specific period during training where domain generalization results improve significantly (+2.72%
points in accuracy for DomainNet and +4.30% points for Office-Home) with minimal impact on ID
evaluation results (DomainNet).

PEFT with a pre-trained model, language shift. We continue to observe a consistent pattern in
OOD results (Figure 3(b)) with the prior two scenarios. However, the ID performance for SQuAD also
shows improvements. In particular, unfreezing around 1000 and 1600 steps obtain high improvements
on average test F1 scores (+2.25% on XNLI and +1.73% on SQUAD). Similar to prior observations,
both ID and OOD results are poor when unfreezing occurs later in the training process.

2Since there is no official test set for Office-Home, the ID evaluation results are omitted.
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(a) Maximum OOD accuracy improvements are 30.63%, 3.25%, and 1.78% points in accuracy.
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(b) Maximum OOD accuracy improvements are 4.06%, 1.46%, and 2.10% points in accuracy, using
1/10th of the learning rate as in sub-figure (a).

Figure 2: Changes in ID and OOD (noise-corrupted images) evaluation results when unfreezing pa-
rameters at different times (i.e., k) highlight the early training period’s impact on OOD generalization.
∆acc is calculated by subtracting gradual unfreezing results from standard training. The x-axis is in
the log scale. Each data point on the plot is obtained by averaging over 6 runs for MNIST and 4 runs
for CIFAR datasets (a total of 166 experiments per subfigure).
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(a) The maximum improvements in OOD (domain shift) results are +2.72% in accuracy for Domain-
Net and +4.30% points in accuracy for Office-Home, averaged over 4 runs.
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(b) The maximum improvements in OOD (language shift) results are +2.26% points on XNLI and
+1.73% points on SQUAD in F1, averaged over 4 runs.

Figure 3: Changes in ID and OOD evaluation results when unfreezing parameters at different times
(i.e., k) for domain shift (vision) and language shift (text) with pre-trained transformers. ∆ is
calculated by subtracting the gradual unfreezing results from standard training, averaged over 4 runs
(168 experiments in total for subfigure (a) due to single source-domain training and 68 experiments
for subfigure (b)). The x-axis is in the log scale.

Summary of findings. The early period of training impacts adaptation to OOD data under covariate
shifts. Intervening during this period with gradual unfreezing leads to a time-sensitive trade-off
between OOD and ID performance. While factors like data quality or sophisticated learning objectives
could influence OOD performance, our results suggest that early, well-timed intervention on trainable
parameters also significantly influences models’ eventual performance, making this phase a key target
for improving OOD results at minimal complexity.
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5.2 DISCUSSIONS

Why does gradual unfreezing help OOD? Kumar et al. (2022, linear-probing then fine-tuning)
proposes a method that aligns the classification head (while other parameters kept frozen) with ID data
early in training to prevent feature distortion during fine-tuning, leading to better OOD generalization.
We suspect that gradual unfreezing could be exploiting a similar mechanism during the early period
of training when fine-tuning from a pre-trained model.

Let gb denote the gradient of a mini-batch in the training set b ∈ B. Let ĝ denote the full-batch
gradient for the training set. Define the (average) gradient similarity at each training step by
GS ≜ 1

|B|
∑

b∈B
gb·ĝ
∥gb∥∥ĝ∥ where (·) denotes vector multiplication. Tracking GS during training, we

find that when training from scratch, GS is higher when using gradual unfreezing than standard
training during the early period of training. The difference in GS disappears after the early period
(Figure 4 shows GS for the classification head, additional layers in Appendix H.1). This suggests that
gradual unfreezing could help to better align early mini-batch gradients to the full-batch gradient.
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Figure 4: Gradient similarity (mini-batch vs full-
data) for the classification head of a ResNet18
trained with CIFAR10. The mini-batch gradient
is more similar to the full-data gradient in the early
period of training when gradual unfreezing is ap-
plied (K=100) compared to standard training (K=0).

Improving alignment could prevent overfitting
to specific mini-batches and reduce learning
spurious features, especially early in train-
ing, where such features can have lasting
deleterious effects. To verify, we conduct
additional experiments using the WaterBirds
dataset (Sagawa et al., 2020, commonly used
for spurious correlation study). We find that
gradual unfreezing indeed improves worst-
group accuracy over standard training (see Ap-
pendix F.4).

Other interventions during the early period
of training. Beyond gradual unfreezing, we
found that other interventions also exhibit the
time-critical nature of training for OOD gen-
eralization. Currently, the list of interventions
includes learning rate warm-up and delaying
the application of a regularizer that minimizes
tr(F) (Jastrzebski et al., 2021). We refer the
reader to Appendix F.2 and F.3 for details and
additional results. While the gain in OOD gen-
eralization for other interventions is less significant than restraining trainable parameters (i.e., through
gradual unfreezing), these additional cases indicate that the time-critical nature of removing/applying
intervention for OOD generalization is a general phenomenon. We will investigate them in detail in
the future.

6 CAN WE USE LEARNING DYNAMICS TO “SEIZE” THE EARLY PERIOD OF
TRAINING FOR OOD GENERALIZATION?

6.1 LEARNING DYNAMICS ANALYSIS

To analyze the characteristics of the early period of training with gradual unfreezing, we examine the
learning dynamics using the three metrics described in §3.

Figure 5(a) and Figure 5(c) show the learning dynamics for the early period of training from scratch
or with PEFT (in both cases, only randomly initialized parameters are updated). We see that by
initially freezing and subsequently gradually unfreezing the trainable parameters, we induce higher
Fisher Information and Sρ

avg, Sρ
worst at the beginning of training compared to standard training. In

general, the longer we withhold parameters, the higher the level of sharpness and tr(F) we can
sustain. Unfreezing parameters reduce these metrics.

Figure 5(b) (domain shift, fine-tuning a pre-trained backbone) shows some inconsistency in the
metrics initially. However, as parameters are withheld longer, sharpness and tr(F) sustain. Note

7
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that, unlike the previous cases, this experiment directly fine-tunes a pre-trained model without adding
randomly initialized parameters.

While Sρ
avg, Sρ

worst, and tr(F) differ in definition, they are all sensitive to the early period of
training.3 We identify a pattern consisting of two phases: 1) an initial phase of rapid change (e.g.,
before the first 50-100, 1000 or 2000 steps in the three subfigures in Figure 5 respectively), and 2) a
subsequent stabilization phase where the rate of change of the metric decreases.

Summary of findings. 1) Gradual unfreezing alters learning dynamics during the early period of
training, as measured by the metrics in §3. 2) The inconsistent learning dynamics across metrics
when fine-tuning a pre-trained backbone suggest that sharpness alone does not reliably predict OOD
generalization in the modern transfer learning setup. This points to the need to develop new theoretical
metrics in different OOD scenarios. Empirically, low sharpness during early training period does not
guarantee optimal OOD results (e.g., GU increases sharpness early on when training from scratch, yet
yields better OOD results empirically), despite the recent success of many sharpness minimization
methods for ID. 3) In standard training (without interventions), metrics exhibit two phases: an initial
phase of rapid change, followed by a stabilization phase.
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(a) Training from scratch: the plot shows metrics when unfrozen at steps k = {250, 750} compared
to standard training. The best OOD result in this plot is when k = 250 (+19.62% points compared
to standard training). We also observe similar trends with 1/10 of the learning rate here (see
Appendix H.4).
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(b) Fine-tuning from a pre-trained ViT model on Office-Home (Art as the source domain for training):
the plot shows metrics when unfrozen at steps k = {50, 200} compared to standard training. The
best OOD result in this plot is when k = 50 (+4.30% points compared to standard training).
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(c) Fine-tuning of a text Transformers with LoRA adapters: the plot shows metrics when unfrozen at
steps k = {1250} compared to standard training.

Figure 5: Learning dynamics with three metrics: tr(F), Sρavg, and Sρworst. Unfreezing param-
eters at different steps impact early learning dynamics. The y-axis is log-scaled and normalized
between 0 and 1000 for clarity.

3See Appendix H for additional learning dynamics with similar trends.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.2 DO LEARNING DYNAMICS SIGNAL THE RIGHT TIME FOR INTERVENTION REMOVAL?

Learning dynamics criteria for improved OOD generalization. Here, we investigate the learning
dynamics of ResNet18 on MNIST when training from scratch. We combined our findings in §5.1 and
§6.1 to arrive at the hypothesis that the optimal range of k for achieving the best overall ID and OOD
performance is after the initial rapid change of sharpness and tr(F) but not too long afterward. For
instance, the ID results deteriorated rapidly after 800-1000 training steps for the CIFAR datasets in
Figure 2, while OOD results were still improving.

This observation suggests that the optimal time to remove intervention (i.e., unfreeze parameters in
our case) while maintaining ID results (less than 0.5 points decrease in accuracy) and achieving better
OOD results should meet two specific criteria: 1) after the initial rapid change of sharpness or tr(F),
and 2) before the stabilization phase progresses too far.

Criterion 2) is evident across all figures in our prior experiments in §5, as larger values of k consistently
degrade both ID and OOD performance. To assess the criterion 1), we focus on the MNIST dataset
and identify k̂ as the earliest ending step of the initial rapid-changing phase among the three metrics
(Sρ

worst, S
ρ
avg and tr(F)). We then experiment with 10 different k values, spaced 10 steps apart,

both less and greater than k̂. For k < k̂, we obtained median OOD (ID) accuracies of 52.72 (98.93).
For k̂ < k, we obtained median OOD (ID) accuracies of 53.54 (98.91). This result helps to validate
the first criterion since the median OOD accuracy is lower for k < k̂ with minimal change in ID
accuracy. Together, this analysis suggests that the stabilization of metrics after the initial phase could
be a useful signal to determine the optimal time to introduce new trainable parameters.

Hypothesis validation with a heuristic algorithm. To further validates our hypothesis, we use a
heuristic algorithm that satisfies the above-mentioned criteria to determine the stabilization time of
the three metrics (we first detect a significant change in metrics, then detect the stabilization point
of the metrics, the algorithm is given in Appendix E). The OOD results are then compared with ten
random sampled k values per dataset to determine the winning rate (i.e., the percentage of times
when the value picked by the algorithm is better than a randomly sampled value).

Training from scratch, noise-corrupted input shift. As shown in Table 1, using a heuristic algorithm
is better than performing a random hyperparameter search the majority of the time. In most cases, the
degradation of ID accuracy is within 0.5 percentage points. This further validates that the stabilization
of Sρ

worst, S
ρ
avg and tr(F) could signify the removal of interventions (in our case gradual unfreezing)

to trade-off a small amount of ID performance for better OOD results. While tr(F) shows better
results, there isn’t a clear winning metric for intervention removal due to: 1) the metrics exhibit high
noise during training, and 2) the stabilization points determined by different metrics either match or
are very close to each other. We defer the exploration of more sophisticated algorithms to future work.
Nevertheless, our experiments show that an optimal intervention window exists that can effectively
balance good ID and ODD results and the stabilization of sharpness and tr(F) could signal the right
time to remove interventions.

Table 1: Results using the heuristic algorithm to find k̂ for gradual unfreezing (GU). Best OOD
results are bolded. The algorithm can determine the same value of k̂ in different metrics in multiple
cases (hence the same results). WR stands for winning rate (OOD). See Appendix E for visualization
of k̂ overlay on the learning dynamics.

MNIST RN18 CIFAR10 RN18 CIFAR100 RN18 WR
Method ID / OOD ID / OOD ID / OOD -

Standard 99.06±0.08/33.36±10.81 93.32±0.23/72.36±0.63 71.07±0.36/45.10±0.39 -

GUS
ρ
worst

98.78±0.15/52.48±7.70 93.06±0.06/72.75±0.84 70.68±0.18/45.19±0.62 60%
GUS

ρ
avg

98.78±0.15/52.48±7.70 93.02±0.05/72.58±0.49 70.67±0.20/45.35±0.60 60%
GUtr(F) 98.91±0.26/54.12±10.23 93.02±0.10/73.56±0.45 70.78±0.31/45.82±0.56 83%
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PEFT with a pre-trained model, language shift. Results using tr(F) to determine k̂ for gradual un-
freezing are shown in Table 2 (k̂ values are in Appendix E, results with Sρ

worst / Sρ
avg are in Table 6

in the Appendix) and the winning rate is 80%. The ID results are not sacrificed in this experimental
setting, hence further pointing towards that the stabilization of sharpness and tr(F) could signify
‘when’ to remove intervention in the early period of training for better OOD generalization.

Table 2: Cross-lingual transfer results of standard training and using tr(F) to determine unfreezing
interval k̂ for gradual unfreezing (GU), best OOD results are bolded. WR stands for winning rate,
averaged over 10 randomly sampled k per training dataset. EM is the exact match score.

XQuAD MLQA XNLI WR
Method F1- En/X-ling EM- En/X-ling F1- X-ling EM- X-ling Acc- En/X-ling

Standard 82.96±0.49/68.72±0.85 71.39±0.25/52.64±0.66 56.27±0.80 40.93±0.55 83.17±0.29/71.84±0.52 -

GUtr(F) 83.77±0.57/70.70±0.27 72.33±0.69/54.40±0.27 58.47±0.21 42.31±0.17 83.36±0.13/72.49±0.42 80%

Fine-tuning from a pre-trained model, domain shift. The domain generalization results on Domain-
Net, using tr(F) to determine k̂ for gradual unfreezing, achieve an accuracy of 37.86%, compared
to 35.34% with standard training, with a winning rate of 90%. The complete results are in Table 7 in
appendix. Once again, our results align with the trends observed in the previous two cases.

Summary of findings. Our case studies show that the learning dynamics can be effective indicators
for determining the optimal timing for intervention removal, with tr(F) being a slightly better
metric overall (when trainable parameters are randomly initialized). While the improvement in OOD
performance may be modest, this higlights the connection between learning dynamics and OOD
generalization, as well as its potential applications. Since our understanding of the relationship
between learning dynamics and OOD generalization is nascent, we hope this initial work will
encourage further exploration in this area.

7 CONCLUSIONS

In this work, we investigate the early period of training and its impact on OOD generalization
under covariate shift. We show that interventions by altering trainable parameters (i.e., progressively
changing the number of trainable parameters through gradual unfreezing) during the early period of
training improve OOD generalization. This is validated across various vision and language tasks,
achieving Pareto improvements with minimal complexity. We emphasize the overlooked role of
trainable parameters during the early period of training. Unlike prior work on ID generalization,
we empirically observed that sharpness and tr(F) during the early period of training may not be
indicative of the OOD generalization, but can be indicative of “when” to remove interventions.

In light of these findings, it is also essential to consider the broader context of the training strategy
studied in this work. The significance of methods that modify only parts of the final model, along with
the growing focus on efficient training and fine-tuning — such as freezing parameters (e.g., Adapters,
Houlsby et al. 2019; Pfeiffer et al. 2020; Hu et al. 2022) or dynamic architectures (Yoon et al., 2018;
Evci et al., 2022; Gu et al., 2021) — cannot be overstated. Our findings contribute to a deeper
understanding of the early period of training and OOD generalization, and suggest new research
directions, including the development of theoretical metrics to better predict OOD generalization.
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A LIMITATIONS

There are several limitations to our work. We empirically evaluate three model architectures, and
three types of covariate shift, and our selection may not encompass all possibilities and real-world
applications. However, we believe our insights have generalizable value. Our empirical observations
reveal correlations between changes in training dynamics and OOD generalization. Future research
could explore causal interventions to better understand and enhance this relationship.

In our work, we utilize a hand-crafted algorithm to determine metric stabilization time, aiming to show
that sharpness stabilization could indicate the time needed for the removal of interventions. However,
leveraging training dynamics during the early period of training requires additional computation
compared to standard training. While this is not a concern for our study, as our focus is on uncovering
insights, more efficient, theory-driven algorithms and metrics should be explored for future practical
applications.

B GRADUAL UNFREEZING

Following the notations and algorithm in Liu et al. (2023a), let FORWARD(∗) be the standard forward
pass, and BACKWARD(∗) calculates gradients and performs updates for trainable parameters. The
modified gradual unfreezing algorithm is in Algorithm 1.

In our experiments, we partition the blocks by their natural namespaces as follows:

ResNet18: The definition block follows the standard implementation of ResNet, with an input
convolution layer and a batch norm group together as the additional block. The model parameters are
partitioned into 5 blocks, and a classification head.

VGG11: The definition block follows the standard implementation of VGG, with 8 blocks in total.
The classification head consists of 3 linear layers with a ReLU function in between. The results are in
the Appendix.

Algorithm 1 Gradual Unfreezing
Require: A model’s eventual trainable parameters are partitioned into blocks j ∈ {0, . . . , L− 1} parameterized by θj , with a task-specific

classification head C, and an unfreezing interval k. A set S of the indices of parameter blocks to unfreeze.

1: Initialize C, θj for all j
2: S ← {C}
3: j ← L− 1
4: for i = 1 . . . N do
5: Sample a data batch b ∼ D
6: if i mod k == 0 and i ≤ kL then
7: S ← S ∪ {θj}
8: j ← j − 1
9: end if
10: FORWARD(∗)
11: BACKWARD(S)
12: end for

XLM-RoBERTa + LoRA: The experiment follows Liu et al. (2023a). Each parameter block consists
of 2 sets of LoRA adapters added to the query and value of the backbone transformer from the same
layer. The LoRA parameters are partitioned into 12 blocks, and a classification head, where the
classification head and the last layer of LoRA adapters are trainable initially.

C DATASETS

We provide additional information on the datasets used for evaluation in our experiments.

MNIST-C (Mu & Gilmer, 2019), CIFAR10-C/CIFAR100-C (Hendrycks & Dietterich, 2019): This
is the noise-corrupted version of the classic image classification datasets MNIST/CIFAR10/CIFAR-
100. There are 15 different corruptions in the evaluation dataset, namely frost, fog, gaussian blur,
gaussian noise, glass blur, impulse noise, jpeg compression, motion blur, pixelate, saturate, shot noise,
snow, spatter, speckle noise, and zoom blur, across 5 severity levels. There are a total of 10 classes
each for MNIST-C/CIFAR10-C, and 100 classes for CIFAR100-C.
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Office-Home (Venkateswara et al., 2017): This is an image classification task where the images are
organized into four different domains: Clipart, Art, Photo and Real. There are a total of 65 classes
for classification in this dataset. We considered four domain transfer settings: from Clipart(C) to
Art(A)/Photo(P)/Real(R); from A to C/P/R; from P to A/C/R; and from R to A/P/C.

DomainNet (Peng et al., 2019): This is an image classification task where the images are organized
into six different domains: Infograph, Sketch, Real, Quickdraw, Painting, and Clipart. There are
a total of 345 classes for classification in this dataset. Due to resource constraints and efficiency,
we considered three transfer settings (with the least amount of training data): from Infograph(I)
to Sketch(S)/Real(R)/Quickdraw(Q)/Painting(P)/Clipart(C); from C to I/S/R/Q/P; and from S to
I/R/Q/P/C.

XQuAD (Artetxe et al., 2020): This is a parallel dataset for evaluating cross-lingual question
answering, with an evaluation set covering 11 languages (excluding English): Arabic, German, Greek,
Spanish, Hindi, Russian, Thai, Turkish, Vietnamese, Chinese, Romanian. The task is the classify the
start and end of the answer given a question and a context.

MLQA (Lewis et al., 2020): This is a highly parallel dataset for evaluating cross-lingual question
answering. The dataset consists of an evaluation set covering 6 languages (excluding English):
Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. The task is the classify the
start and end of the answer given a question and a context.

XNLI (Conneau et al., 2018): This is a multilingual natural language inference dataset covering 14
languages (excluding English): French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic,
Vietnamese, Thai, Chinese, Hindi, Swahili and Urdu. The task is to classify a pair of sentences as
having either an entailment, contradiction or neutral relationship.

D HYPERPARAMETERS

The hyperparameters are listed in Table 3 for our experiments. We use the default hyperparameters
for the AdamW optimizer, except for the learning rate. All other hyperparameters for the transformer
experiments follow Liu et al. (2023a), and we use the HuggingFace PEFT (Mangrulkar et al., 2022)
implementations of LoRA. We report results over 6 random seeds for MNIST (due to the high variance
in OOD results), and we use 4 random seeds for all other experiments. Standard data augmentation
techniques are applied across all experiments. For the CIFAR datasets, we use random cropping
and horizontal flipping. For the domain shift datasets, we apply resizing and cropping, horizontal
flipping, colour jittering, and grayscaling, following the approach in Gulrajani & Lopez-Paz (2021).
The experiments use a single NVIDIA P100, A6000 or A100 GPU depending on the availability.

For our domain shift experiments, we used the total training steps and conducted evaluations across
various settings with a single source-domain training (hyperparameter determined following Gulrajani
& Lopez-Paz 2021).

For calculating Sρ
worst and Sρ

avg, we use L2 norm and ρ = 0.01 with 15 examples. We follow the
setup in Andriushchenko et al. (2023) and use the implementation with 2048 data points from the
training data (un-augmented when calculating sharpness metrics) for all experiments. We use a batch
size of 256, except for SQuAD (the batch size is 32) for calculating all the metrics. The sharpness
and tr(F) are recorded every 10 batches (steps) for all datasets.
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Table 3: Hyperparameters used in our experiments.

MNIST CIFAR10 CIFAR10 CIFAR100 SQuAD MNLI Office-Home DomainNet
RN18 RN18 VGG11 RN18 XLM-R XLM-R Vit-B/16 Vit-B/16

optimizer AdamW SGD SGD SGD AdamW AdamW AdamW AdamW
lr scheduler const. const. const. const. linear linear const. const.
lrd 0.01 0.1 0.15 0.01 0.0005 0.0005 0.00005 0.00005
batch size 128 128 128 128 32 128 128 128
training epochs 10 200 200 200 15 15 - -
training steps - - - - - - 5000 15000
weight decay 0.01 0 0 0.0005 0.01 0.01 0.01 0.01
momentum 0.9 0 0 0.9 - - - -

LoRA r - - - - 8 8 - -
LoRA alpha - - - - 8 8 - -
LoRA dropout - - - - 0.2 0.2 - -
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E ALGORITHM TO DETERMINE THE UNFREEZE TIME

To verify our hypothesis, we use a simple algorithm with a heuristic to determine the unfreezing
interval k̂, Algorithm 2 presents the flow, τ is 3 or 8 and ϵ is 0.02 (i.e., the percentage of change in
the signal is within 2%). The algorithm takes t∆Ŝ

as the input, which is the index marking the end of
the rapid increase of the signal using a similar logic.

Algorithm 2 Find Stabilization
1: procedure FIND_STABILIZATION_BY_MEAN(Ŝ, t∆

Ŝ
, τ, ϵ) ▷ Ŝ is an array of normalized signal when only the head is trainable, t∆

Ŝ
is

the index marking the end of the rapid increasing of the signal, τ is the window for smoothing the signals, ϵ is the threshold in changes of
the signal for stabilization.

2: if t∆
Ŝ

> 0 then

3: Ŝ = Ŝ[t∆
Ŝ

:]

4: end if
5: µŜ = moving_average(Ŝ, τ )
6: ∆µ

Ŝ
= np.abs(np.diff(µŜ ))

7: for i, δ in enumerate(µŜ ) do
8: if δ ≤ ϵ then
9: index = i ▷ The first time where the change is smaller than τ .
10: break
11: end if
12: end for
13: if t∆

Ŝ
> 0 then

14: index = index + t∆
Ŝ

15: end if
16: return index
17: end procedure

Using the heuristic algorithm, we determine the value k̂ for experiments in Table 4, where we observe
the determined k̂ are very close to each other except for VGG with CIFAR10 and XLM-R with
SQuAD. All the k̂ values are shown visually in Figure 6, overlaying on top of the learning dynamics.

Table 4: Different k determined by Algorithm 2.

Metric MNIST RN18 CIFAR10 RN18 CIFAR100 RN18 CIFAR10 VGG11 SQuAD XLM-R MNLI XLM-R
Sρ
worst 270 230 260 960 810 780

Sρ
avg 270 270 250 1010 1090 720

tr(F) 210 260 230 250 1310 790

Table 5: Results using the heuristic algorithm (Appendix E) to find k̂ for gradual unfreezing (GU),
best OOD results are bolded. The algorithm can determine the same value of k̂ in different metrics in
multiple cases (hence the same results). WR stands for winning rate (OOD).

MNIST RN18 CIFAR10 RN18 CIFAR100 RN18 WR CIFAR10 VGG11 WR
Method ID / OOD ID / OOD ID / OOD - ID / OOD

Standard 99.06/33.36 93.32/72.36 71.07/45.10 - 88.62/71.63 -

GUSρ
worst

98.78/52.48 93.06/72.75 70.68/45.19 60% 87.69/71.47 40%
GUSρ

avg
98.78/52.48 93.02/72.58 70.67/45.35 60% 87.71/72.37 100%

GUtr(F) 98.91/54.12 93.02/73.56 70.78/45.82 83% 88.40/71.86 60%

Table 5, Table 6 shows the complete results for 1) training from scratch evaluating on noise-corrupted
inputs, and 2) PEFT tuning for cross-lingual transfer. While all results are better than the standard
training, empirically, tr(F) is a metric that gives a better winning rate compared to a random
hyperparameter search.
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Table 6: Cross-lingual transfer results of standard training and using all 3 metrics to determine the
unfreezing interval k̂ for gradual unfreezing (GU), best OOD results are bolded. WR stands for
winning rate, averaged over 10 randomly sampled k per training dataset.

XQuAD MLQA XNLI WR
Method F1- En/X-ling EM- En/X-ling F1- X-ling EM- X-ling Avg- En/X-ling

Standard 82.96/68.72 71.39/52.64 56.27 40.93 83.17/71.84 -

GUS
ρ
worst

83.78/70.09 72.10/54.17 57.86 42.02 82.83/72.13 45%
GUS

ρ
avg

83.84/70.00 72.12/53.69 58.10 42.03 83.03/72.27 40%
GUtr(F) 83.77/70.70 72.33/54.40 58.47 42.31 83.36/72.49 80%

Table 7: Domain generalization results of standard training and using tr(F) to determine unfreezing
interval k̂ for gradual unfreezing (GU), best OOD results are bolded. WR stands for winning rate,
averaged over 10 randomly sampled k per training dataset.

DomainNet WR
Method OOD

Standard 35.34 -

GUSρ
worst

37.95 90%
GUSρ

avg
37.80 90%

GUtr(F) 37.86 90%
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Figure 6: Learning dynamics with k̂ given by Algorithm 2 (vertical line).
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Figure 7: Changes in ID and OOD evaluation results when unfreezing parameters at different times
(i.e., k) for ResNet18 and ResNet34. The ∆ is calculated by subtracting the gradual unfreezing
results from standard training, averaging 6 runs. The x-axis is on a log scale.

Table 8: ID and OOD evaluation results of ResNet18 and ResNet34 on MNIST. k∗ is the optimal k
that produces the best average OOD results.

ResNet18 ResNet34
ID/OOD ID/OOD

Std 99.06/33.36 99.24/10.04
k∗ 98.98/63.99 99.20/46.80

F IMPACT AND TIME-SENSITIVITY OF INTERVENTIONS ON
OUT-OF-DISTRIBUTION RESULTS

F.1 MODEL SIZE

We further experimented with a larger ResNet (ResNet34) on the MNIST dataset (chosen for its
efficiency as we needed to conduct 86 experiments to generate the subfigure). The time-sensitive
nature remains consistent across ResNet models of different depths. Figure 7 shows the results and
the numerical results are in Table 8, indicating that this time sensitivity in OOD generalization persists
across models with different depths. Interestingly, the larger model (ResNet34) shows no significant
differences in ID results while exhibiting greater variation and degradation in OOD results compared
to the smaller model (ResNet18).

F.2 LEARNING RATE WARM-UP

We also experiment with a simple learning rate warm-up (step function, single step), starting from
a reduced learning rate (1/10 or 1/5 of the target learning rate) and switching at a specific time
k. We evaluate this approach with: 1) ResNet18 trained from scratch, test on noise-corrupted
CIFAR10, starting at 1/10 of the target learning rate, and 2) fine-tuning the pre-trained ViT, test on
the Office-Home dataset (domain shift) from 1/5 of the target rate. The results are in Figure 8.

Although the improvements are smaller compared to gradual unfreezing, adjusting the learning
rate switch timing increases OOD accuracy by up to +1.31% with ResNet18, with minimal impact
on ID performance. The maximum improvements on the Office-Home dataset is +1.67%. This
again highlights the importance of timing in applying or removing interventions for better OOD
generalization.

F.3 FISHER PENALTY

Prior work shows that regularizing tr(F) can help with ID generalization (Jastrzebski et al., 2021)
(training from scratch). Let J be the original loss, the total loss with Fisher penalty is in Eqn. 5.
Following the simple CNN setting in (Jastrzebski et al., 2021, Appendix I.2), we train a simple
4-layer CNN (with one MaxPooling layer, no dropout) and a final fully connected layer of 128 hidden
units on the CIFAR10 dataset from scratch with data augmentations. The model is trained for 300
epochs using an SGD optimizer with batch size 128, momentum 0.9, and a learning rate decay of 0.1
after epochs 150 and 225. We use a starting learning rate of 0.001 (a smaller learning rate than the
default) and apply the Fisher penalty (FP) with a strength of 0.01 (α) every 10 steps. The model is
evaluated with noise-corrupted inputs (i.e., CIFAR10-C) during the test.
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Figure 8: Changes in ID and OOD evaluation results when unfreezing parameters at different times
(i.e., k) highlight the early training period’s influence on OOD generalization in different settings
with learning rate warm-up (step function, single step). The ∆ is calculated by subtracting the gradual
unfreezing results from standard training, averaging 4 runs. The x-axis is on a log scale.

Jtotal = J + α ∗ tr(F) . (5)

First, in this small learning rate setting, the ID results improved from 84.45 to 85.39 on average over
4 random seeds (compared to no FP) when we applied FP to the training. Then, we experiment with
delaying the application of the FP regularizer by k steps, and Figure 9 shows the results compared
to applying FP from the beginning of the training. Delaying the application of the FP decreases ID
results by a small fraction, but increases OOD results compared to no delay. The best k appears to
be between 1000 to 3000 steps (largest OOD increase, smallest ID decrease). Figure 10 shows the
learning dynamics with no FP penalty (Std) and with the FP applied with no delay (k=0) or a delay
of 2000 steps (i.e., k=2000). The sharpness profile of the k=2000 curve follows a high-to-low trend.
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Figure 9: Change in ID and OOD
evaluation results when applying
Fisher penalty at different times.

The stabilization of sharpness and tr(F) once again coincides
with the period of improved OOD results in Figure 9. This
supports our hypothesis that the point at which sharpness and
tr(F) stabilize marks the optimal time to apply a regularizer
that reduces sharpness during early training.

We also use the same algorithm (Appendix E) to determine
the time for application of FP (i.e., find a time k when the
sharpness metrics or FIM stabilizes). The ID/OOD results are
85.04/66.25, 85.22/66.65 and 84.98/65.97, determined using
Sρ
worst, S

ρ
avg and tr(F), respectively (k=1980/1930/2410).

As expected, the OOD results are better than applying the FP
from the beginning of the training.

F.4 SPURIOUS CORRELATION EXPERIMENT

We hypothesize that the effectiveness of gradual unfreezing
on OOD generalization stems from implicitly regularizing learning from possible spurious fea-
tures present in the dataset. To test this hypothesis, we experiment with a pre-trained ResNet18
(on ImageNet) and the WaterBirds dataset (Sagawa et al., 2020) which the spurious features are
known. Training hyperparameters are determined based on Izmailov et al. (2022) (learning rate=3e-3,
epochs=100, weight decay=1e-4, batch size=32, SGD optimizer, 4 runs).

In this experiment, the accuracy and worst-group accuracy (WGA) for standard training (Empirical
Risk Minimization) were 96.88% and 56.93%, respectively, compared to 96.88% and 58.29% with
gradual unfreezing. This result confirms that gradual unfreezing achieves better OOD results by
implicitly regularizing spurious correlations.
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Figure 10: Learning dynamics of a simple CNN model on CIFAR10 with and without the application
of the Fisher penalty from Jastrzebski et al. (2021). Std means standard training without using the
Fisher penalty. k=0 means the Fisher penalty is applied at the start of training. k=2000 means
the Fisher penalty is applied with a delay of 2000 steps. The y-axis is normalized and results are
smoothed using a rolling window for better visualization.
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Figure 11: Learning dynamics of a ResNet 18 model trained with MNIST. Rev indicates that the
unfreezing order progresses from the bottom layers to the top layers. Similar to the trends using
top-down order, higher sharpness and tr(F) are observed.
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Figure 12: Learning dynamics of a ResNet 18 model trained with MNIST using LP-FT as in Kumar
et al. (2022). Similar to the trends using top-down order, higher sharpness and tr(F) are observed.
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G PROPERTIES OF THE FINAL SOLUTIONS AND OOD RESULTS

Changing the learning dynamics in the early period of training inevitably results in different final
solutions. We plot the final solution’s λmax (largest eigenvalue of training data feature), Sρ

worst and
Sρ
avg against the OOD test results in Figure 13 respectively.

While in general the sharpness measures and OOD have negative correlations (i.e., the smaller the
sharpness values the better, especially Sρ

worst has a consistent negative correlation), they are not
always statistically significant (e.g., for MNIST). The learning rate has a big impact on the final
solutions’ sharpness. Furthermore, such as in Figure 13 (c), we can even attain slightly positive
correlations. Our results complement the findings in Andriushchenko et al. (2023), which serve as
evidence pointing towards the need for developing robust new metrics and thorough investigation for
OOD generalization.

H ADDITIONAL LEARNING DYNAMICS

H.1 GRADIENT SIMILARITY

Figure 14 illustrates additional gradient similarity (between mini-batch gradients and the full gradient,
§5.2) during the early period of training for ResNet18. On average, gradient similarity increases
when trainable parameters are constrained. Additionally, higher layers exhibit greater similarity to
the full gradient at the beginning of training.

H.2 FEATURE RANK

Figure 15 shows the evolution of feature ranks before the classification head for the first 2000 training
steps. We observe that standard training typically starts with a lower feature rank, and as training
progresses, the feature rank gradually increases. When withholding parameters from training, the
feature ranks are high at the beginning of the learning period. As parameters are gradually released,
the feature ranks decrease compared to their initial values.

H.3 SQUAD

In Figure 16, we present the learning dynamics for XLM-R with SQuAD in the early period of
learning. The learning dynamics show a similar trend as the SQuAD dataset, the Sρ

worst value is also
negative, and withholding trainable parameters increases the Sρ

worst during training based on Eqn. 4
in our main paper.

H.4 TRAINING FROM SCRATCH

Figure 17 shows all the learning dynamics in the early period of training using the same learning rate
in §D with gradual unfreezing. Figure 18 shows the learning dynamics in the early period of training
using 1/10th of the learning rate specified in §D with gradual unfreezing. We observe consistent
trends.
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Figure 13: Final feature λmax, Sρ
worst, and Sρ

avg versus the OOD test results (coloured by learning
rate), labelled with Kendall’s τ and p-value.
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(a) ResNet18 Layer 4
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(c) ResNet18 Layer 2
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Figure 14: Gradient similarity (mini-batch vs full-data) for the convolution layers in ResNet18 during
training with CIFAR10. The mini-batch gradient is, on average, more similar to the full-data gradient
when gradual unfreezing is applied (K=100) compared to standard training (K=0). This effect is more
pronounced in the higher layers.
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Figure 15: Change of feature ranks before the classification head. The sudden decrease in feature
ranks is due to unfreezing the trainable parameters.
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Figure 16: Learning dynamics of XLM-R with LoRA training with SQuAD, y-axis for figures are
in the log scale, the original value sharpness value in sub-figure (c) is negative where we take the
absolute value before visualization. All values are normalized between 0 and 1000 for visualization.
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Figure 17: Unfreezing parameters at different times affects the learning dynamics in the early period
of training (with lrd). We show tr(F), Sρ

avg and Sρ
worst when parameters are unfrozen at steps

k = {250, 750} for ResNet and k = {250, 5000} for VGG, versus standard training. The y-axis uses
a log scale and is normalized between 0 and 1000 for visualization.
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Figure 18: Unfreezing parameters at different times affect the learning dynamics in the early period
of training. We show tr(F), Sρ

avg and Sρ
worst when parameters are unfrozen at steps k = {250, 750}

for ResNet, versus standard training. The y-axis uses a log scale and is normalized between 0 and
1000 for visualization. We use 1/10th of the learning rate specified in §D.

30


	Introduction
	Related Work
	Preliminaries
	Fisher Information Matrix (FIM)
	Sharpness
	Gradual Unfreezing

	Experimental Setup
	Impact and time-sentisitivity of early interventions on out-of-distribution generalization
	Timing is critical for removing interventions
	Discussions

	Can we use learning dynamics to ``seize'' the early period of training for OOD Generalization?
	Learning dynamics analysis
	Do learning dynamics signal the right time for intervention removal?

	Conclusions
	Limitations
	Gradual Unfreezing
	Datasets
	Hyperparameters
	Algorithm to Determine the Unfreeze Time
	Impact and Time-sensitivity of interventions on out-of-distribution results
	Model Size
	Learning Rate Warm-up
	Fisher Penalty
	Spurious Correlation Experiment

	Properties of the Final Solutions and OOD Results
	Additional Learning Dynamics
	Gradient Similarity
	Feature Rank
	SQuAD
	Training from Scratch


