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ABSTRACT

Convolutional Neural Networks (CNNs) rely on fixed-size kernels scanning lo-
cal patches, which limits their ability to capture global context or long-range de-
pendencies without very deep architectures. Vision Transformers (ViTs), in turn,
provide global connectivity but lack spatial inductive bias, depend on explicit po-
sitional encodings, and remain tied to the initial patch size. Bridging these limi-
tations requires a representation that is both structured and global. We introduce
SONIC (Spectral Oriented Neural Invariant Convolutions), a compact col-
lection of spectral filters that learns directly in the Fourier domain. SONIC fac-
torises multi-channel frequency responses through a small set of shared oriented
components. This yields filters that are directional, interpretable, and resolution-
invariant, extending globally beyond patch-size limitations. Parameters scale lin-
early with the number of channels, enabling efficient learning without loss of ex-
pressivity. Experiments on standard vision benchmarks show that SONIC delivers
more robust performance than conventional models, while matching or exceeding
their accuracy with substantially fewer parameters.

1 INTRODUCTION

Human visual processing is a remarkably complex and efficient system. It enables us to effortlessly
recognise objects, detect and interpret motion, and comprehend complex scenes, adapting seam-
lessly across varying orientations, scales, resolutions, and even under degraded conditions, where
computer vision methods often struggle. Serving as a benchmark due to its exceptional effectiveness
under different circumstances, human vision highlights the areas where current artificial systems
still exhibit limitations; Bridging this gap remains a central challenge in computer vision, driving
the development of models that more closely approximate the versatility and robustness of human
perception.

Multi-Layer Perceptrons (MLPs), as the earliest neural network models, demonstrated the
feasibility of learning complex mappings but lacked the inductive biases required for large-scale
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vision tasks. Convolutional Neural Networks (CNNs) (LeCun et al., 2015), widely used for
many vision tasks, rely on fixed-size kernels scanning local image patches. While effective for
capturing local features like edges and textures, this design limits their ability to understand the
overall context or capture long-range dependencies without relying on very deep architectures (as
demonstrated by Luo et al. (2017). Critically, their effectiveness is limited by sensitivity to slight
geometric variations, including translations (in particular out-of-frame translations), rescalings,
rotations, and mild distortions (Azulay & Weiss, 2018). Vision Transformers (ViTs) (Dosovitskiy
et al., 2020), inspired by advances in natural language processing, overcome this limitation by
dividing images into sequences of patches and applying self-attention. This design directly models
global context and alleviates the locality constraints of CNNs. Nevertheless, the self-attention
mechanism is computationally demanding, as its cost grows quadratically with the number of
image patches, and thus with the image area, which poses significant challenges for high-resolution
inputs. Furthermore, Vision Transformers lack CNN-style spatial inductive biases and therefore
require explicit mechanisms (e.g. positional encodings) to model positional relationships, and their
accuracy–compute trade-off is closely tied to the chosen patch size. With the proposed method,
which enables global receptive fields using significantly fewer parameters, we aim to narrow this
conceptual gap and move computer vision models toward resolution-invariant perception, drawing
inspiration from the robustness and adaptability of human-like visual processing. The Sonic model
is a drop-in replacement for vision or higher-dimensional signal tasks requiring long receptive
fields, robustness to quantifiable resolution variance (e.g., medical imaging) and tasks which require
high directional selectivity.

Contribution In this paper, we introduce a theoretically grounded spectral framework for multidi-
mensional signals that naturally provides global receptive fields, full convolutional expressiveness,
and inherent resolution invariance. The approach combines simplicity with generality, offering a
lightweight yet versatile foundation that can support progress toward more scalable and adaptable
vision models.

The remainder of this paper is organized as follows. Section 2 introduces the mathematical
preliminaries and related works. Section 3 presents the formulation of the SONIC approach to-
gether with implementation details. Section 4 reports the experimental results. Section 5 discusses
the limitations of the proposed method and outlines directions for future research.

2 BACKGROUND

To motivate our approach, we introduce the mathematical foundations that connect convolution,
linear systems, and their extensions into the spectral domain.

Linear Time-Invariant (LTI) systems Convolution is a fundamental operation in signal process-
ing and neural networks, describing how one function modifies or filters another. A central class
of convolutional systems are Linear Time-Invariant (LTI) systems, characterized by their impulse
response K(t). For D-dimensional signals u(t), the output is

y(x) =

∫

RD

K(x− τ )u(τ ) dτ . (1)

In the one-dimensional temporal case, finite-dimensional LTI systems admit a state-space represen-
tation:

K(t) = CeAtB, (2)
where K(t) is causal and absolutely integrable and consists of mixtures of exponentials and damped
oscillations, with A, B, and C specifying the dynamics, input, and output maps, respectively. This
formulation, known as a state-space system, underlies many modern learning-based sequence mod-
els including the Kalman filter (Kalman, 1960), linear dynamical systems (Roweis & Ghahramani,
1999), and nonlinear extensions such as recurrent neural networks, LSTMs (Hochreiter & Schmid-
huber, 1997), and GRUs (Chung et al., 2014). However, LTIs gained renewed attention with the
introduction of the Structured State Space model (S4) by Gu et al. (2021), which emphasizes the
linear ODE representation of the system:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t). (3)
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Here x(t) ∈ RN acts as a hidden state, encoding information from all past inputs up to time
t. To make this formulation suitable for sequence-to-sequence modeling on discrete data, the
continuous-time dynamics, on initialisation, are projected onto a polynomial orthogonal basis and
then discretized. This yields a stable and trainable recurrence relation that can be implemented
efficiently on GPUs. Mamba (Gu & Dao, 2024), the successor to S4, incorporates input-dependent
selectivity for adaptive dynamics, at the cost of strict LTI structure.

While state-space models were originally designed for one-dimensional sequences, many do-
mains, especially vision, require multidimensional inputs. Extensions have followed three main
paradigms. (i) Flatten-and-scan (Zhu et al., 2024), (Liu et al., 2024) reshapes D-dimensional
arrays into 1D sequences for standard SSMs, sometimes with multiple scan directions to reduce
ordering bias, but at the cost of locality. (ii) Tensor-product bases (Baron et al., 2023) extend the
S4 spectral parameterisation to higher dimensions by constructing kernels from tensor products
of 1D basis functions. This preserves spatial alignment but remains limited to separable spectral
forms. (iii) Spatial separable multidimensional kernels(Nguyen et al., 2022) instead imposes
separability directly on the convolution kernel, modeling it as a Kronecker product of independent
1D SSMs. This enables efficient computation but constrains cross-dimensional interactions. All
these methods enable efficient computation and maintain the structure of multidimensional convo-
lutions, but strict separability limits expressiveness by constraining cross-dimensional interactions
to factorized forms.

Spectral decomposition We extend multidimensional SSMs by leveraging the spectral decom-
position of D-dimensional signals. The frequency analysis of such signals is formalized using the
Fourier transform. We denote by ω = (ω1, . . . , ωD) ∈ RD a D-dimensional angular frequency,
with each component ωd restricted to the discrete DFT grid

Ωd = 2π ·
{

kd

Nd ∆d

∣∣∣ kd = −
⌊
Nd

2

⌋
, . . . ,

⌈
Nd

2

⌉
− 1
}
, d = 1, . . . , D,

so that the full frequency domain is Ω = Ω1 × · · · × ΩD. For a function f : RD → C, the
D-dimensional Fourier transform is defined as

F{f}(ω) =

∫

RD

f(x) e−iω·x dx, ω ∈ RD. (4)

A central result is the Convolution Theorem (see Appendix 7), which states that convolution in the
spatial domain corresponds to multiplication in the frequency domain:

F{f ∗ g}(ω) = F{f}(ω) F{g}(ω). (5)

Beyond an analytical formulation, this property can be extended to kernels specified directly in the
frequency domain; in particular, one may learn a spectral kernel T (ω) such that

F{f ∗ g}(ω) = T (ω)F{g}(ω), (6)

which forms the basis of spectral neural methods.

Spectral Neural Methods A number of approaches have explored learning filters directly in the
spectral domain rather than the spatial domain. While not strictly a spectral parameterisation, early
work such as Rippel et al. (2015) proposed to learn the full convolution kernel in the spatial domain
and then apply it efficiently in the frequency domain using the convolution theorem. More recently,
Rao et al. (2021) introduced global filter networks (GFNet), which directly parameterize a complex-
valued mask M(ω) in the Fourier domain and apply it elementwise. This provides the model with
full control over the spectral response, but also introduces a limitation: the FFT grid is tied to
the input resolution, and the number of learnable parameters scales with the discretisation of the
frequency spectrum. An alternative line is represented by the Fourier Neural Operator (FNO) of
Li et al. (2020), which avoids parameterizing the full frequency domain. Instead, FNO truncates
to a fixed set of low-frequency fourier coefficients, typically chosen as a square block of Fourier
coefficients closest to the origin, and learns weights only for those frequencies:

ŷ(ω) =

{Q(ω)F{g}(ω), ω ∈ Ω,

F{g}(ω), ω /∈ Ω,
(7)

3
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where Q(ω) are the learnable spectral coefficients. This drastically reduces the number of param-
eters and demonstrates improved resolution robustness of the learned operator. However, learn-
ing a separate coefficient for each retained frequency treats the spectrum as a set of disconnected
points, disregarding the smooth, correlated structure across nearby frequencies and orientations.
This lack of parameter sharing across ω reduces the inductive bias needed to interpolate and extrap-
olate, thereby limiting generalisation across resolutions and spectral regions.

3 METHOD

Overview. Many spectral neural methods are either axis–separable (efficient but limited in orien-
tation) or fully nonlocal (powerful but inefficient and not spectrally faithful). Starting from linear
time-invariant (LTI) systems, we extend the formulation to N -dimensional signals in the frequency
domain, yielding a compact spectral representation. This framework models linear, shift–invariant
operators through a shared low–rank structure, where oriented spectral transfer functions are applied
at each frequency and mixed across channels by learned matrices B and C.

Formulation Consider a continuous-time LTI state-space model with zero initial condition. Its
Laplace-domain transfer function is (see App. 7):

H(s) = C (sI−A)−1B. (8)

We use this resolvent form as a template for the spatial filtering; Let the input be x ∈
Rnc×N1×···×ND and the output y ∈ Rnk×N1×···×ND , and denote their D-dimensional DFTs by
x̂, ŷ:

ŷ(ω) = Ĥ(ω) x̂(ω), y = F−1
D

[
ŷ
]
.

We apply frequency-wise filtering as

ŷk(ω) =

nc∑

c=1

Ĥk,c(ω) x̂c(ω), k = 1, . . . , nk, ω ∈ Ω, (9)

where Ĥk,c(ω) ∈ C is the frequency response of the (c→ k) channel filter. Rather than learning a
free response for every pair (k, c) and every ω, we factorise the coupling through M shared modes
reused across all channels and frequencies. In matrix form,

Ĥ(ω) = C diag
(
T1(ω), . . . , TM (ω)

)
B, (10)

such that entrywise:

Ĥk,c(ω) =

M∑

m=1

Ckm Tm(ω) Bmc, B ∈ CM×Nc , C ∈ CNk×M . (11)

Central to our method is the transfer function, which defines a frequency-wise linear operator. For
each mode m = 1, . . . ,M we define:

Tm(ω) =
1

i sm (ω ·vm) − am + τm ∥(I − vmv⊤
m)ω∥22

, (12)

Where each mode is parameterised by: (1) the orientation vm ∈ RD with ∥vm∥2 = 1, which
selects the direction in frequency space; (2) the scale sm ∈ R>0, encoding the spectral selectivity;
(3) the real part Re(am), which introduces damping; (4) the imaginary part Im(am), which governs
oscillatory behaviour; and (5) the transverse penalty τm ≥ 0, which controls the decay of responses
orthogonal to vm. Together, these six parameters shape the amplitude, orientation, and oscillatory
nature of the spectral transfer function.

Intuition We use a compact collection of oriented modes that are shared across channels. Instead
of learning an unconstrained spectrum for every input–output pair, each mode has a learnable an-
alytic shape with a few learnable knobs, yielding interpretable, spatially localised filters. We also
illustrate the effect of each parameter in Figure 1.

4
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Figure 1: Effect of parameters on the construction of the Transfer Function Tm(ω), Columns
(left→right): v, s, are, aim, τ , and . Rows decodes the Parameter Value: LOW (top) vs. HIGH
(bottom), with all other parameters fixed at their nominal values. Each panel shows a 3D surface of
the spatial kernel k(x, y) = F−1{Tm(ω)} and a floor projection (filled contours). Heights and col-
ors represent the kernel value (the predicted response at offset (x, y) to a unit impulse), normalized
to [−1, 1]. For the τ column we display |k|; for the others we display Re(k). This is a qualitative
illustration.

Each mode learns a preferred direction via a unit vector vm, a compass needle in frequency space.
Any frequency vector ω decomposes uniquely into components along and across/perpendicular to
this needle:

ω||m := ω ·vm , ω⊥m := (I − vmv⊤
m)ω .

The mode passes slow variation along its needle and increasingly damps faster oscillations in that
direction, so gently varying, needle-aligned content is emphasized while rapidly oscillating content
along the axis is attenuated. It also suppresses energy that lies across the needle, so components that
are not aligned with the needle’s orientation contribute less. In spatial terms, the resulting kernel is
stretched along vm (making it sensitive to lines, flows, or ridges in that direction) and compressed
across it.

The scale parameter sm regulates the mode’s spectral selectivity. Small values produce a
broad response that pools over a wide band of along-axis frequencies, acting as an orientation-aware
smoother that preserves coarse structure while suppressing fine fluctuations. Large values narrow
the passband and sharpen selectivity, emphasizing only a thin slice of along-axis variation; in
the spatial domain, this corresponds to a longer, more finely structured kernel along vm. During
learning, sm adapts locally to the content of the signal: scenes dominated by broad shapes tend to
drive sm down, while scenes rich in fine oriented detail push it up.

By contrast, the complex coefficient am governs the global dynamics of each mode. Its real part
controls damping, ensuring stability, while its imaginary part, scaled by ρ, introduces oscillations
that can be amplified or suppressed. These oscillations enrich the representation, allowing the mode
to capture structured patterns in the plane. Unlike sm, which tunes frequency selectivity along the
axis, am balances between smoothness and oscillatory structure: smoother, slowly varying signals
encourage stronger damping and broader low-pass behavior, whereas signals with repetitive, ori-
ented fine-scale structure favor a smaller imaginary component that preserves such fine patterns.

Finally, the transverse penalty τm ≥ 0 pushes down frequencies that point away from vm. This
sharpens directional selectivity by suppressing leakage into neighboring directions and, in higher
dimensions, prevents degenerate, plane-like responses. Intuitively, larger τm clamps the response
tightly around the chosen axis, whereas smaller τm allows more lateral spread.

Conceptually, the modes, after the spectral transfer, form a small dictionary of directional
behaviors, while separate learned mixing weights decide how each input channel contributes to,
and each output channel draws from, the same dictionary. This keeps parameters modest and
encourages reuse of structure across channels. After building the modes we let the model mix the
different modes by C and B, this ensures that each channel c mapping to output k can be a unique
superposition of all constructed modes. This is illustrated in figure 2.

5
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Figure 2: Illustration of the SonicBlock( nc = 2 7−→ nk = 2, m = 4): An overview of
the frequency-wise filtering architecture, for conceptual clarity, each stage is depicted in the spatial
domain, although training operates fully in the frequency domain. The block mixes the input features
x̂c(ω) through coefficients B and C, producing intermediate variables Um. These are modulated by
the transfer functions Tm(ω) to yield Vm, combined to form the outputs ŷk(ω). Multiple instances of
this block may be stacked, interleaved with conventional nonlinearities and normalisation operations

Resolution Invariance Crucially, all of these filters are parameterized directly in the continuous
spectral domain. This means their definition does not depend on the size or sampling rate of the
image: defining filters as continuous functions of ω decouples them from any particular grid size
or sampling rate; the same response formula is evaluated on whatever DFT grid the data induces,
yielding a resolution-invariant filter. This distinguishes our approach from spatial-domain kernels,
whose size and shape are tied to a fixed grid. We made some minor adjustments to ensure resolu-
tion invariance: To make the directional parameters resolution invariant, we express directions in
physical units and normalize:

D∆ = diag(∆1, . . . ,∆D), ṽm = D−1
∆ vm, v̂m =

ṽm

∥ṽm∥2
. (13)

This formulation provides flexibility with respect to resolution, which can also be exploited during
training as proposed in Nguyen et al. (2022). Beyond training efficiency, resolution-aware parame-
terisation is particularly relevant in domains where resolution dependence is intrinsic, such as med-
ical imaging, remote sensing, and microscopy. An additional possibility is to relax the unit-norm
constraint on the orientation modes and allow resolutions to be learned directly from data; however,
this may introduce instability during optimisation.

Computation The number of learnable real scalars is:

2KM︸ ︷︷ ︸
Cre,Cim

+ 2MC︸ ︷︷ ︸
Bre,Bim

+ (4 +D)M + 1︸ ︷︷ ︸
are, aim, s, v,τ ∈R2

,

For the FFT transformation we used the highly optimized VkFFT library (Tolmachev, 2023), with
per-transform cost O(N logN) for a single (complex) channel. The spectral forward pass performs
one DFT per input channel and one inverse DFT per output channel, plus O(M(C+K)) complex
multiplications per frequency. The forward pass consists of one DFT per input channel and one
inverse DFT per output channel, s with cost

O(CN logN) and O(KN logN),

where N =
∏D

d=1 Nd is the total number of spatial points. In addition, frequency-wise multiplica-
tions incur a cost of

O
(
M(C+K)N

)
,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

since each of the M modes couples inputs and outputs across all frequencies. The total complexity
is therefore

O
(
(C+K)N logN + M(C+K)N

)
.

For comparison, a standard spatial convolution with kernel size d× d has cost

O(CKNd2).

SONIC is thus particularly attractive for large receptive fields (where d is large or even global), since
the cost remains manageable and the parameter count remains compact.

4 EMPIRICAL VALIDATION

SynthShape To evaluate the sensitivity of models to geometric variations, we introduce
SynthShape (Synthetic Shape Dataset), a simple 64x64 synthetic geometric shape–based segmenta-
tion benchmark. We examine the generalisation ability of these models by evaluating their perfor-
mance under a range of geometric transformations, namely scaling, rotation, translation, distortion,
and additive Gaussian noise. Although training involves varying object sizes and random placement
on a grid, scaling and translation remain challenging. Translation can result in objects partially
leaving the frame (out-of-frame translation), a scenario absent during training. Scaling is applied
to the entire image, which is then resized back to the original resolution of 64×64 pixels, thereby
introducing interpolation artefacts. SynthShape employs a simple network architecture with an inter-
changeable backbone, which can be instantiated as (i) a Convolutional Neural Network (ConvNet),
(ii) a Vision Transformer (ViT), or (iii) SonicNet. All experiments are conducted using 5-fold cross-
validation. Further implementation details and segmentation predictions are provided in Appendix
7.

Figure 3: Representative examples of the geometric transformations applied during inference.

Table 1: Comparison of ConvNet, ViT, and SonicNet performance on SynthShape under geometric
variations. Results are reported as Dice score (mean ± std) over 5-fold cross-validation.

Experiment Value ConvNet ViT SonicNet
Parameter count (M) 0.448 1.291 0.125
GMACs 1.829 0.024 0.030
Distortion 2.0 0.440 ± 0.153 0.088 ± 0.030 0.579 ± 0.132

4.0 0.263 ± 0.073 0.114 ± 0.102 0.282 ± 0.077
6.0 0.113 ± 0.086 0.082 ± 0.089 0.156 ± 0.054

Gaussian Noise (σ) 0.1 0.605 ± 0.039 0.085 ± 0.076 0.802 ± 0.061
0.2 0.337 ± 0.102 0.085 ± 0.085 0.607 ± 0.055
0.3 0.175 ± 0.043 0.063 ± 0.085 0.547 ± 0.075

Rescaling 0.75 0.688 ± 0.035 0.133 ± 0.075 0.773 ± 0.045
1.00∗ 0.963 ± 0.073 0.131 ± 0.073 0.991 ± 0.015
1.50 0.813 ± 0.044 0.136 ± 0.074 0.815 ± 0.036

Rotation (◦) 15 0.872 ± 0.066 0.169 ± 0.111 0.883 ± 0.026
30 0.797 ± 0.064 0.107 ± 0.070 0.846 ± 0.031
45 0.762 ± 0.071 0.115 ± 0.067 0.827 ± 0.064

Translation (%) 10 0.826 ± 0.037 0.115 ± 0.080 0.846 ± 0.029
20 0.663 ± 0.113 0.158 ± 0.066 0.651 ± 0.121
30 0.598 ± 0.181 0.189 ± 0.115 0.602 ± 0.159

∗ Validation accuracy on the training task.
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Prostate Cancer Detection For the high-stakes clinical context, we focus our study on 3D prostate
imaging, given its importance in the diagnosis and management of prostate cancer. Accordingly, we
train our model on the PI-CAI dataset (Saha et al., 2022), which comprises 1,500 anonymized bipara-
metric MRI scans from 1,476 patients collected between 2012 and 2021. For external validation, we
evaluate performance on the unseen Prostate158 (Adams et al., 2022) and PROMIS (Ahmed et al.,
2017) datasets.The PROMIS dataset is considered challenging because its scans are older and have
lower diagnostic quality, as MRI quality has markedly improved since the study Hering et al. (2024).

Table 2: Detection performance comparison on Prostate158 and PROMIS datasets (binary, thresh-
old 0.5). Best performances are shown in bold.

Metric nnU-Net nnDetection SonicNet

TRAINABLE PARAMETERS (M/MB) 31.20/342.0 31.20/188.5 0.06/1.1*

Pr
os

ta
te

15
8 AUROC 0.814 0.789 0.841

AP 0.533 0.442 0.548
F1 Score 0.632 0.511 0.649
Sensitivity 0.475 0.353 0.495
Precision 0.941 0.923 0.943
TP/FP/FN (%) 0.30/0.02/0.34 0.23/0.02/0.42 0.32/0.02/0.32

PR
O

M
IS

AUROC 0.646 0.593 0.687
AP 0.195 0.128 0.258
F1 Score 0.185 0.288 0.223
Sensitivity 0.103 0.176 0.127
Precision 0.912 0.791 0.907
TP/FP/FN (%) 0.05/0.01/0.47 0.09/0.02/0.43 0.07/0.01/0.47

* For the full breakdown of parameters see Appendix B, Table 4.

For empirical validation, we compare our method exclusively with nnU-Net v2 and nnU-Net Detec-
tion (Isensee et al., 2021), as they currently represent the most reliable and state-of-the-art baselines
for 3D medical image detection and segmentation, and were the official baselines of the PI-CAI
challenge Saha et al. (2022), (Isensee et al., 2024). By restricting our comparison to nnU-Net v2
and nnU-Net Detection, we ensure that performance gains are demonstrated against the strongest
and most widely recognized references in the field. Training is conducted under identical condi-
tions, including the same preprocessing and postprocessing steps, allowing observed differences to
be attributed solely to the proposed method.

Figure 4: Qualitative comparison of prostate cancer detection methods. The figure shows repre-
sentative cases from the Prostate158 (left) and PROMIS (right) datasets, with ground truth lesions
(red) and model predictions (cyan) overlaid on T2-weighted MRI slices (confidence ≥ 0.5). More
qualitative comparison can be found in Appendix A, Figure 7.

Table 3: Segmentation performance on overlapping true positive cases, allowing a direct comparison
of lesion delineation quality.

Dataset Method Volumetric Dice Hausdorff 95 (mm) Surface Distance (mm)

Prostate158 nnU-Net 0.391± 0.278 14.60± 10.58 5.20± 7.17
SonicNet 0.401± 0.257 12.41± 9.83 3.89± 5.74

PROMIS nnU-Net 0.459± 0.222 17.69± 13.09 3.78± 3.26
SonicNet 0.488± 0.213 14.37± 12.18 3.12± 2.66

8
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5 DISCUSSION

We introduced a spectral factorisation framework, where Sonic serves as a theoretically grounded al-
ternative to spatial convolution blocks. Unlike conventional spatial kernels, Sonic employs low-rank,
orientation-aware operators in the frequency domain. This design provides a principled inductive
bias for modelling long-range, structured interactions while remaining highly parameter-efficient.
Across synthetic and clinical benchmarks, SonicNet consistently showed advantages in robustness
to geometric transformations, resilience to noise and acquisition variability, and strong generali-
sation despite having far fewer parameters than established baselines. These results highlight the
potential of spectral operators as a compact and effective alternative to convolutional or attention-
based representations. At the same time, important limitations remain. Despite the name, SONIC
does not primarily excel in speed: reliance on FFTs introduces considerable computational and
memory overhead, which constrains scalability on current GPU hardware compared to spatial con-
volutions that benefit from kernel-level optimisation. Moreover, the inherently global nature of the
frequency-domain representation limits its ability to capture fine-grained local structure, suggesting
that hybrid architectures may be needed to get the best of both worlds. In summary, spectral fac-
torisation offers a new building block for neural architectures that complements existing paradigms.
Its strengths lie in long-range receptive field, parameter efficiency, orientation-awareness, and ro-
bustness, while future work should focus on improving efficiency, mitigating memory demands, and
exploring hybrid spectral-spatial architectures.
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7 APPENDIX

APPENDIX A: IMPLEMENTATION DETAILS

We constrain sm > 0 and typically enforce Re(am) < 0) so that the spatial response function de-
cays rather than grows. The imaginary part Im(am) can be bounded in magnitude (e.g., |aimm | ≤ ρ).
We initialize vm ∼ U(0, π).

All parameters are learned end-to-end by backpropagation. A convenient reparameterisation
that enforces the constraints is:

sm = softplus(σm) + ε, arem = − softplus(αm), aimm = ρ tanh(βm), vm =
um

∥um∥2
,

with free variables σm, αm, βm, ρ ∈ R and um ∈ R2, small ε > 0. The mixing matrices B and C
are complex-valued and learned without constraints.

Implementation notes. (i) We standardize each input channel to zero mean and unit variance, with
a small noise for numerical stability. (ii) We apply an RMS transfer gain normalisation over the
(half-)spectrum to keep the overall response well-scaled across resolutions.(iii) We use real–FFT
(rFFT/irFFT) along the last two spatial dimensions; consequently we enforce Hermitian consis-
tency by zeroing the imaginary part at DC.(iii) For memory efficiency the computation is performed
in frequency slabs (blocks over rows of Ω) without altering the continuous formulation above. (iv)
Direction vectors are rescaled by D−1

∆ and renormalized (unit length) before use, ensuring invariance
to pixel spacing. (v) Optional mode dropout is applied to Vm as a regularizer.

SYNTHSHAPE

The dataset consist of a random number of geometric primitives (circle, square, triangle, cross,
star) at random positions and scales within the image, while preventing overlaps through collision
checks. Each object is assigned a randomly perturbed base colour, ensuring that models cannot
exploit a trivial mapping between RGB values and semantic classes. The ground-truth segmentation
mask assigns a unique class label to each shape type, with background indexed as class 0.

Models. All models use an embedding width of c=128

• ConvNet: A lightweight stack of L convolutional layers (default L = 4), each followed by
group normalisation and GELU activations. A 1 × 1 convolution projects the final feature
map to the number of classes. The patch size is set to 16 to give the model a fair opportunity
to capture broader context, rather than learning solely from small local receptive fields.

• ViT: A Vision Transformer consisting of a patch embedding layer, sinusoidal positional
encodings (interpolated if image resolution differs), and a stack of transformer blocks with
multi-head self-attention and MLP layers. The output features are reshaped and upsampled
to the original spatial resolution, followed by a 1× 1 convolution for classification.

• SonicNet: For SonicNet we use a depth of 4 stacked SonicBlocks, each consisting of
GroupNorm, GELU, and a residual spectral convolutional mapping. The final stage applies
GroupNorm, GELU, and a 3×3 convolution to project features to class logits.

Training. All models were trained using the AdamW optimizer with learning rate 10−2 and weight
decay 10−4, for 1000 epochs and batch size 32. A one-cycle learning rate schedule was applied. To
account for class imbalance, inverse-frequency class weights were computed dynamically from a
large synthetic batch and used in the cross-entropy loss. The final training objective combined
cross-entropy with the multi-class Dice loss in equal weighting.
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Evaluation. Model robustness was assessed by applying five geometric transformations at infer-
ence: rescaling, rotation, translation, distortion, and Gaussian noise. Each transformation was ap-
plied with three levels of severity. Rescaling resized the full image before resampling it back to
64 × 64, introducing interpolation artefacts. Translation shifted the input by a fixed percentage of
image width/height, potentially moving parts of objects out of frame. Distortion was implemented
via bicubic upsampling of a low-resolution displacement field. Rotation was performed around the
image centre, and Gaussian noise was added per pixel channel.

Metrics. The primary evaluation metric was the multi-class Dice score (excluding background),
averaged across folds. All experiments were repeated 5 times with different seeds to estimate vari-
ance.

Results Visual results from the SynthShape experiment are shown in Figure 5 and 6, comparing
convolution with Sonic (ViT omitted due to poor segmentation). The example illustrates one of the
five trials summarized in Table 1.

Figure 5: Segmentation result using ConvNet. Figure 6: Segmentation result using SonicNet.

PROSTATE CANCER DETECTION

Setup. Following the recommendations of Isensee et al. (2024), we minimize confounding factors
and keep the experiment as plain as possible. We retain the baseline nnU-Net preprocessing and
postprocessing and change only the network backbone: the original U-Net is replaced by a stack
of Sonic Blocks (“SonicNet”). The first block lifts the input from C to K channels; the remaining
D − 1 blocks keep K channels. We apply GroupNorm and GELU before a final 3×3 convolution
to produce nclasses output channels. For this experiment, we used four stacked SonicBlocks (i.e., a
depth of 4). The decomposition of the parameters are given in Table 4:

Table 4: Parameter breakdown of SonicNet with C input channels, K output channels, M modes,
and a depth of four SonicBlocks. “7M+1” corresponds to the transfer function parameters with
D = 3 and 1 for ρ.

C K M 2MC 2KM 7M+1 Projection GroupNorm Block sum

Block 0 3 64 64 8192 384 449 192 6 9223
Block 1 64 64 64 8192 8192 449 128 16961
Block 2 64 64 64 8192 8192 449 128 16961
Block 3 64 64 64 8192 8192 449 128 16961

Linear projection 64 2 3458 128 3586

Total 63692

All three models were optimized using the Focal Loss (Lin et al., 2018), which down-weights easy
negatives and focuses the training signal on difficult examples. We employed stochastic gradient de-
scent with an initial learning rate of 10−2 and a weight decay of 10−5. Training was performed with
a mini-batch size of three for a total of 1000 epochs, each consisting of 250 iterations. For inference,
we used the checkpoint corresponding to the highest validation performance during training.
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(a) Prostate158 (b) PROMIS

Figure 7: Qualitative comparison of nnU-Net, nnDetection, and SonicNet predictions on the
Prostate158 (left) and PROMIS (right) datasets. Ground-truth lesions are shown in red and model
predictions in cyan.

APPENDIX B: SUPPORTING PROOFS

CONVOLUTION THEOREM FOR THE D-DIMENSIONAL FOURIER TRANSFORM

Let the convolution of two functions on RD be defined by

(f ∗ g)(x) :=
∫

RD

f(τ ) g(x− τ ) dτ , x ∈ RD.

Then, for ω ∈ RD, the D-dimensional Fourier transform satisfies

F{f ∗ g}(ω) =

∫

RD

(∫

RD

f(τ ) g(x− τ ) dτ

)
e−iω·x dx

=

∫

RD

∫

RD

f(τ ) g(u) e−iω·(τ+u) du dτ

=

(∫

RD

f(τ ) e−iω·τ dτ

)(∫

RD

g(u) e−iω·u du

)
.

Hence,
F{f ∗ g}(ω) = F{f}(ω)F{g}(ω).

CONNECTION TO STATE-SPACE KERNELS

Consider the linear time-invariant state-space model

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (14)

with x(t) ∈ Cn, u(t) ∈ Cm, y(t) ∈ Cp, and system matrices A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n.
Assume a zero initial state x(0−) = 0 and a strictly proper output.
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The corresponding impulse response (or kernel) is

K(t) = CeAtB, t ≥ 0. (15)

By definition, the transfer function is the Laplace transform of the impulse response:

H(s) =

∫ ∞

0

e−st K(t) dt =

∫ ∞

0

e−st CeAtB dt. (16)

Pulling out C and B gives

H(s) = C

(∫ ∞

0

e(A−sI)t dt

)
B. (17)

For Re(s) sufficiently large, the integral converges to
∫ ∞

0

e(A−sI)t dt = (sI −A)−1. (18)

Hence the transfer function is
H(s) = C(sI −A)−1B. (19)

Sonic with Restricted Modes. We show that our general Fourier domain formulation reduces to
the Laplace resolvent parameterisation of S4ND when orientations are restricted to the coordinate
axes.

Recall our frequency response factorisation

Ĥc,k(ω) =

M∑

m=1

Ckm Tm(ω)Bmc, (20)

with mode response

Tm(ω) =
1

ism(ω ·vm) − am + τm∥(I − vmv⊤m)ω∥2 . (21)

Suppose vm = ed, the d-th standard basis vector. Then

ω ·vm = ωd, (I − vmv⊤m)ω =
∑

j ̸=d

ωjej ,

so that
∥(I − vmv⊤m)ω∥2 =

∑

j ̸=d

ω2
j .

In this case,

Tm(ω) =
1

ism ωd − am + τm
∑

j ̸=d ω
2
j

. (22)

We discard the transverse penalty τm = 0, then

Tm(ωd) =
1

ismωd − am
=

1

sm

1

iωd − am

sm

,

where the absorption is into the learned parameters (am/sm in A, and B or C absorb 1/sm). Thus

Ĥc,k(ωd) =
[
C (iωdI −A)−1B

]
kc
, H(s) = C(sI −A)−1B.
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