

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SONIC: SPECTRAL ORIENTED NEURAL INVARIANT CONVOLUTIONS

Anonymous authors
Paper under double-blind review

Local convolution

Self-attention

SONIC (Ours)

ABSTRACT

Convolutional Neural Networks (CNNs) rely on fixed-size kernels scanning local patches, which limits their ability to capture global context or long-range dependencies without very deep architectures. Vision Transformers (ViTs), in turn, provide global connectivity but lack spatial inductive bias, depend on explicit positional encodings, and remain tied to the initial patch size. Bridging these limitations requires a representation that is both structured and global. We introduce **SONIC** (**Spectral Oriented Neural Invariant Convolutions**), a continuous spectral parameterisation that models convolutional operators using a small set of shared, orientation-selective components. These components define smooth responses across the full frequency domain, yielding global receptive fields and filters that adapt naturally across resolutions. Across synthetic benchmarks, large-scale image classification, and 3D medical datasets, SONIC shows improved robustness to geometric transformations, noise, and resolution shifts, and matches or exceeds convolutional, attention-based, and prior spectral architectures with an order of magnitude fewer parameters. These results demonstrate that continuous, orientation-aware spectral parameterisations provide a principled and scalable alternative to conventional spatial and spectral operators.

1 INTRODUCTION

Human visual processing is a remarkably complex and efficient system. It enables us to effortlessly recognise objects, detect and interpret motion, and comprehend complex scenes, adapting seamlessly across varying orientations, scales, resolutions, and even under degraded conditions, where computer vision methods often struggle. Serving as a benchmark due to its exceptional effectiveness under different circumstances, human vision highlights the areas where current artificial systems still exhibit limitations; Bridging this gap remains a central challenge in computer vision, driving the development of models that more closely approximate the versatility and robustness of human perception.

Multi-Layer Perceptrons (MLPs), as the earliest neural network models, demonstrated the feasibility of learning complex mappings but lacked the inductive biases required for large-scale vision tasks. Convolutional Neural Networks (CNNs) (LeCun et al., 2015), widely used for many vision tasks, rely on fixed-size kernels scanning local image patches. While effective for capturing local features like edges and textures, this design limits their ability to understand the overall context or capture long-range dependencies without relying on very deep architectures (as demonstrated by Luo et al. (2017)). Critically, their effectiveness is limited by sensitivity to slight geometric variations,

054 including translations (in particular out-of-frame translations), rescalings, rotations, and mild distortions (Azulay
 055 & Weiss, 2018). Vision Transformers (ViTs) (Dosovitskiy et al., 2020), inspired by advances in natural language
 056 processing, overcome this limitation by dividing images into sequences of patches and applying self-attention. This
 057 design directly models global context and alleviates the locality constraints of CNNs. Nevertheless, the self-attention
 058 mechanism is computationally demanding, as its cost grows quadratically with the number of image patches, and thus
 059 with the image area, which poses significant challenges for high-resolution inputs. Furthermore, Vision Transformers
 060 lack CNN-style spatial inductive biases and therefore require explicit mechanisms (e.g. positional encodings) to
 061 model positional relationships, and their accuracy–compute trade-off is closely tied to the chosen patch size. With the
 062 proposed method, which enables global receptive fields using significantly fewer parameters, we aim to narrow this
 063 conceptual gap and move computer vision models toward resolution-invariant perception, drawing inspiration from
 064 the robustness and adaptability of human-like visual processing.

065 **Contribution** In this paper, we introduce a theoretically grounded spectral framework for multidimensional signals
 066 that naturally provides global receptive fields, full convolutional expressiveness, and inherent resolution invariance,
 067 offering a lightweight yet versatile foundation that can support progress toward more scalable and adaptable vision
 068 models. The remainder of this paper is organised as follows. Section 2 introduces the mathematical preliminaries
 069 and related works. Section 3 presents the formulation of the SONIC approach together with implementation details.
 070 Section 4 reports the experimental results. Section 5 discusses the limitations of the proposed method and outlines
 071 directions for future research.

073 2 BACKGROUND

074 Modern vision tasks demand the ability to integrate information over long spatial ranges. Although natural images
 075 often exhibit long-range structure, standard convolutions remain bounded by local receptive fields, making standard
 076 architectures inefficient, as many layers are effectively used to propagate information across the image rather than
 077 to learn increasingly abstract representations. Across established methods, global context is mostly obtained only
 078 indirectly, motivating the study of operators that provide global receptive fields as an intrinsic property of a single
 079 layer. This section reviews the mathematical foundations of such operators and develops the framework of spectral
 080 operators that underpins our approach.

081 **Spatial-domain operators.** In the spatial domain, enlarging the receptive field requires expanding the support of
 082 the discrete kernel. Large-kernel convolutions increase the neighbourhood size directly (Ding et al., 2022), dilated
 083 convolutions introduce gaps to cover larger regions without increasing the number of parameters (Yu & Koltun, 2015)
 084 and non-local (Wang et al., 2018) methods target long-range interactions; however, despite their effectiveness, convolutional
 085 layers implement filtering over a fixed sampling grid, an approach that implicitly assumes locality and smooth
 086 variation in the underlying signal. These assumptions hold for small neighborhoods but break down over large spatial
 087 ranges, where long-range structure cannot be captured efficiently through local interactions alone. As receptive fields
 088 expand, spatial filters become increasingly tied to the image resolution and scale, limiting their generalization and
 089 efficiency. Another well-studied strategy is to use self-attention mechanisms (Chen et al., 2018; Dosovitskiy et al.,
 090 2021), which compute pairwise interactions across all spatial positions and therefore provide a principled way to model
 091 long-range dependencies. However, these approaches incur computational and memory costs that grow rapidly with
 092 image resolution: large kernels scale with their area $O(K^2)$, attention scales quadratically with the number of tokens,
 093 and as resolution increases, these scaling properties make such mechanisms difficult to deploy efficiently, especially
 094 in high-resolution domains where global context is important but computational budgets are constrained.

095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107 Figure 1: (a) Taxonomy of large receptive-field operators.

Spectral-domain operators. An alternative paradigm achieves global receptive fields by representing operators directly in the frequency domain (Rippel et al., 2015). This approach uses the fact that every linear, shift-invariant operator on \mathbb{R}^D is fully characterised, enabling information to propagate globally through a frequency-wise multiplication.

Let $D \in \mathbb{N}$ and consider vector-valued signals

$$x : \mathbb{R}^D \rightarrow \mathbb{C}^{C_{\text{in}}}, \quad y : \mathbb{R}^D \rightarrow \mathbb{C}^{C_{\text{out}}}.$$

For a sufficiently regular scalar function $f : \mathbb{R}^D \rightarrow \mathbb{C}$, the Fourier transform is

$$\mathcal{F}_D[f](\omega) = \int_{\mathbb{R}^D} f(\mathbf{x}) e^{-i\omega \cdot \mathbf{x}} d\mathbf{x}, \quad \omega \in \mathbb{R}^D. \quad (1)$$

and extends component-wise to vector-valued functions. A linear, shift-invariant operator acting on x has a convolution representation:

$$y(\mathbf{x}) = \int_{\mathbb{R}^D} k(\mathbf{x} - \mathbf{z}) x(\mathbf{z}) d\mathbf{z}, \quad (2)$$

where $k : \mathbb{R}^D \rightarrow \mathbb{C}^{C_{\text{out}} \times C_{\text{in}}}$. The Convolution Theorem gives

$$\mathcal{F}_D[y](\omega) = \hat{k}(\omega) \mathcal{F}_D[x](\omega), \quad \omega \in \mathbb{R}^D. \quad (3)$$

where $\hat{k}(\omega)$ is the Fourier transform of a spatial kernel in the classical convolution setting. In spectral neural methods, however, we do not constrain the operator to arise from any finite-support spatial kernel. Instead, we define the spectral kernel directly by

$$\hat{k}(\omega) := \hat{H}(\omega), \quad (4)$$

where $\hat{H}(\omega)$ is the learnable frequency response of the operator. This viewpoint treats \hat{H} as the primary parametrisation, enabling general global and resolution-invariant operators beyond those that correspond to discrete spatial kernels. In practice, images are sampled on a discrete grid. Let the spatial domain be discretised using N_1, \dots, N_D samples along each axis, with pixel spacings $\Delta_1, \dots, \Delta_D$. The corresponding DFT frequency sets are given by

$$\Omega_d = 2\pi \left\{ \frac{k_d}{N_d \Delta_d} \mid k_d = -\lfloor \frac{N_d}{2} \rfloor, \dots, \lceil \frac{N_d}{2} \rceil - 1 \right\}, \quad d = 1, \dots, D. \quad (5)$$

The full frequency grid is the Cartesian product $\Omega = \Omega_1 \times \dots \times \Omega_D$, containing $N = N_1 \dots N_D$ discrete frequencies. The DFT samples \hat{x} are defined at frequencies $\omega_n \in \Omega$.

Resolution invariance We formalise resolution invariance by defining the operator via a continuous spectral symbol that is independent of the sampling grid. Let

$$\hat{H}_\theta : \mathbb{R}^D \rightarrow \mathbb{C}^{C_{\text{out}} \times C_{\text{in}}} \quad (6)$$

be a continuous function parameterised by θ . Given a discretisation (N, Δ) with Fourier grid $\Omega_{N, \Delta}$, the discretised operator is obtained via sampling:

$$\hat{y}^{(N, \Delta)}(\omega_n) = \hat{H}_\theta(\omega_n) \hat{x}^{(N, \Delta)}(\omega_n), \quad \omega_n \in \Omega_{N, \Delta}. \quad (7)$$

We term the operator resolution-invariant if θ depends only on the underlying physics of the layer, not on the discretisation (N, Δ) . Changing resolution then simply corresponds to resampling the same continuous function \hat{H}_θ on a new grid. GFNet (Rao et al., 2021) and FNO (Li et al., 2021) parameterise \hat{H} directly on the discrete FFT grid: GFNet learns a complex mask of size N , and FNO learns a fixed number of low-frequency coefficients. Since these coefficients correspond to specific frequency indices, changing resolution alters the operator itself. Thus, such models do not define a true resolution-invariant convolution operator.

Continuous Spectral Operators A principled way to overcome this limitation is to define the operator directly in the continuous Fourier domain and then evaluate it on the discrete grid provided by the data. In this formulation, the spectral symbol $\hat{H}(\omega)$ is a continuous function of frequency, independent of the sampling pattern, and the discrete operator is obtained merely by sampling \hat{H} at the DFT frequencies of the current resolution. This yields a truly resolution-invariant parameterisation with global receptive fields. Two families of such continuous spectral operators appear in the literature:

- **Unstructured continuous operators**, which learn $\widehat{H}(\omega)$ as a general continuous function of frequency, typically via a small MLP or other low-dimensional parametrisation. Such models include neural implicit spectral filters and continuous FNO variants (Grabinski et al., 2024; Kabri et al., 2023), where the network outputs a complex response for any $\omega \in \mathbb{R}^D$. While this provides maximal flexibility and full continuity in ω , these parameterisations are usually isotropic or weakly anisotropic: the learned response depends primarily on $\|\omega\|$ unless orientation structure is encoded explicitly. Moreover, the channel mixing remains fully dense, offering little inductive bias regarding frequency orientation or cross-channel structure. As a result, these operators can be expressive but often parameter-inefficient.
- **Structured continuous operators** imposes additional structure on $\widehat{H}(\omega)$ through basis expansions, separability assumptions, or functional templates. Examples include SNO (Fanaskov & Oseledets, 2024), which expands the symbol in a fixed orthogonal basis, and multidimensional SSM-based kernels like S4ND (Nguyen et al., 2022), which impose axis-aligned or separable constructions inherited from one-dimensional state-space models. Although these multidimensional SSMs are not typically framed as spectral operators, their learned kernels do admit a structured frequency-domain representation and can be interpreted through the same lens as spectral methods. For completeness, we provide the frequency-domain form of S4ND in the appendix. These approaches provide improved inductive bias and parameter efficiency by coupling nearby frequencies and reusing spectral modes across channels. While more efficient, most structured models remain tied to coordinate axes. Their separability limits their ability to capture oriented or anisotropic patterns that lie along general directions in frequency space.

Natural images contain oriented structures such as edges, textures, and oscillations that correspond to directional features in frequency space. Standard separable parameterisations cannot easily model such behaviour. To represent interactions along arbitrary frequency directions, one must go beyond axis-aligned or tensor-product constructions and design spectral operators whose modes explicitly encode orientation in \mathbb{R}^D .

In this paper, we address this limitation by introducing SONIC: Spectral Oriented Neural Invariant Convolutions. SONIC is a Structured Continuous Spectral Operator that moves beyond axis-aligned constructions by explicitly parameterizing the spectral symbol $\widehat{H}_\theta(\omega)$ as a superposition of directional modes. This allows us to learn complex, oriented features in the frequency domain that are fully resolution-invariant, parameter-efficient, and inherently adapted to capturing the anisotropic structures present in natural signals.

3 METHOD

Overview. Many spectral neural methods are either axis-separable (efficient but limited in orientation) or fully nonlocal (powerful but inefficient and not spectrally faithful). Starting from linear time-invariant (LTI) systems, we extend the formulation to N -dimensional signals in the frequency domain, yielding a compact spectral representation. This framework models linear, shift-invariant operators through a shared low-rank structure, where oriented spectral transfer functions are applied at each frequency and mixed across channels by learned matrices B and C .

3.1 FORMULATION

Our method draws inspiration from the analytic structure of linear time-invariant systems, the same foundation underlying modern state-space models. To make this connection precise, consider the continuous-time LTI state-space system:

$$\dot{\mathbf{z}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t), \quad (8)$$

with zero initial condition. Its impulse response is obtained by setting $\mathbf{u}(t) = \delta(t)$:

$$\mathbf{K}(t) = \mathbf{C} e^{\mathbf{A}t} \mathbf{B}, \quad t \geq 0. \quad (9)$$

The output equals the convolution of the input with the impulse response:

$$(\mathbf{K} * \mathbf{u})(t) = \int_0^\infty \mathbf{C} e^{\mathbf{A}\tau} \mathbf{B} \mathbf{u}(t - \tau) d\tau. \quad (10)$$

Taking the Laplace transform of the impulse response (derivations provided in Appendix C),

$$H(s) = \mathcal{L}\{\mathbf{K}(t)\}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}. \quad (11)$$

The expression $H(s)$ above is the standard resolvent form that characterises the frequency response of a stable linear time-invariant system. We use this structure only as a modelling template: by replacing the scalar Laplace variable

216 s with the multi-dimensional spatial frequency ω , we obtain an analytic spectral parameterisation that inherits the
 217 smooth and structured behaviour of resolvent filters in D dimensions.

218 Let the input be $x \in \mathbb{R}^{C \times N_1 \times \dots \times N_D}$ and the output $y \in \mathbb{R}^{K \times N_1 \times \dots \times N_D}$. We denote their D -dimensional discrete
 219 Fourier transforms by

$$220 \quad \hat{x} = \mathcal{F}_D[x], \quad y = \mathcal{F}_D^{-1}[\hat{y}].$$

222 Central to our method is the transfer function $T_m(\omega)$, which defines the frequency response of a single mode. For
 223 each mode $m = 1, \dots, M$ we set

$$225 \quad T_m(\omega) = \frac{1}{i s_m(\omega \cdot \mathbf{v}_m) - a_m + \tau_m \|(I - \mathbf{v}_m \mathbf{v}_m^\top) \omega\|_2^2}, \quad (12)$$

227 Where each mode is parameterised by: (1) the orientation $\mathbf{v}_m \in \mathbb{R}^D$ with $\|\mathbf{v}_m\|_2 = 1$; (2) the scale $s_m > 0$
 228 controlling spectral selectivity; (3) the real part $\text{Re}(a_m)$ introducing damping; (4) the imaginary part $\text{Im}(a_m)$
 229 governing oscillatory behaviour; and (5) the transverse penalty $\tau_m \geq 0$ controlling decay orthogonal to \mathbf{v}_m . Together,
 230 these parameters shape the amplitude, orientation, and oscillatory nature of each spectral mode. The denominator
 231 replicates the resolvent structure of an LTI system. SONIC adopts this template by substituting the Laplace variable s
 232 with the oriented frequency component $i s_m(\omega \cdot \mathbf{v}_m)$ and by adding a transverse decay term that enforces anisotropic
 233 filtering.

234 Rather than learning an unconstrained response $\hat{\mathbf{H}}(\omega)$ for every frequency, SONIC factorises the spectral operator
 235 through M shared modes with entrywise form:

$$237 \quad \hat{H}_{k,c}(\omega) = \sum_{m=1}^M C_{km} T_m(\omega) B_{mc}. \quad (13)$$

240 where $B \in \mathbb{C}^{M \times C}$ and $C \in \mathbb{C}^{K \times M}$. Given this factorised spectral response, the frequency-wise filtering applied to
 241 the input DFT is

$$242 \quad \hat{y}_k(\omega) = \sum_{c=1}^C \hat{H}_{k,c}(\omega) \hat{x}_c(\omega), \quad k = 1, \dots, K, \quad \omega \in \Omega, \quad (14)$$

245 where $\hat{H}_{k,c}(\omega)$ is the frequency response of the ($c \rightarrow k$) channel filter. This decomposition yields a compact, low-rank
 246 representation of the spectral operator, enabling expressive but parameter-efficient filtering. Following the frequency-
 247 domain filtering, the spatial output is added to a learnable skip projection and then passed through a pointwise nonlin-
 248 earity, yielding the next-layer activation $x^{(\ell+1)}$:

$$250 \quad x^{(\ell+1)} = \sigma(y^{(\ell)} + W_s x^{(\ell)}). \quad (15)$$

251 This nonlinear recursion allows multiple SONIC blocks to be stacked, providing depth-wise expressivity in the same
 252 manner as conventional convolutional architectures. Although SONIC is not a state-space model, its mode parameter-
 253 isation is inspired by resolvent structures of linear time-invariant systems. Appendix C shows that restricting SONIC's
 254 orientations to the coordinate axes yields the Multidimensional SSM form.

256 3.2 INTUITION

258 We use a compact collection of oriented modes that are shared across channels. Instead of learning an unconstrained
 259 spectrum for every input–output pair, each mode has a learnable analytic shape with a few learnable knobs, yielding
 260 interpretable, spatially localised filters. We also illustrate the effect of each parameter in Figure 2.

261 Each mode learns a preferred direction via a unit vector \mathbf{v}_m , a compass needle in frequency space. Any frequency
 262 vector ω decomposes uniquely into components along and across to this needle:

$$264 \quad \omega_{\parallel m} := \omega \cdot \mathbf{v}_m, \quad \omega_{\perp m} := (I - \mathbf{v}_m \mathbf{v}_m^\top) \omega.$$

265 The mode passes slow variation along its needle and increasingly damps faster oscillations in that direction, so
 266 gently varying, needle-aligned content is emphasized while rapidly oscillating content along the axis is attenuated. It
 267 also suppresses energy that lies across the needle, so components that are not aligned with the needle's orientation
 268 contribute less. In spatial terms, the resulting kernel is stretched along \mathbf{v}_m (making it sensitive to lines, flows, or
 269 ridges in that direction) and compressed across it.

270 The scale parameter s_m regulates the mode's spectral selectivity. Small values produce a broad response that
 271 pools over a wide band of along-axis frequencies, acting as an orientation-aware smoother that preserves coarse
 272 structure while suppressing fine fluctuations. Large values narrow the passband and sharpen selectivity, emphasizing
 273 only a thin slice of along-axis variation; in the spatial domain, this corresponds to a longer, more finely structured
 274 kernel along v_m . During learning, s_m adapts locally to the content of the signal: scenes dominated by broad shapes
 275 tend to drive s_m down, while scenes rich in fine oriented detail push it up.

276 By contrast, the complex coefficient a_m governs the global dynamics of each mode. Its real part controls damping,
 277 ensuring stability, while its imaginary part introduces oscillations that can be amplified or suppressed. These oscillations
 278 enrich the representation, allowing the mode to capture structured patterns in the plane. Unlike s_m , which tunes
 279 frequency selectivity along the axis, a_m balances between smoothness and oscillatory structure: smoother, slowly
 280 varying signals encourage stronger damping and broader low-pass behavior, whereas signals with repetitive, oriented
 281 fine-scale structure favor a smaller imaginary component that preserves such fine patterns.

282 Finally, the transverse penalty $\tau_m \geq 0$ pushes down frequencies that point away from v_m . This sharpens directional
 283 selectivity by suppressing leakage into neighboring directions and, in higher dimensions, prevents degenerate, plane-
 284 like responses. Intuitively, larger τ_m clamps the response tightly around the chosen axis, whereas smaller τ_m allows
 285 more lateral spread.

287 (a) A SONIC block applies a learned frequency response $\hat{H}(\omega)$ to the input: the feature map is transformed to the Fourier domain,
 288 modulated by \hat{H} , and returned to the spatial domain before normalization and a residual ReLU fusion.

289 (b) The spectral symbol $\hat{H}(\omega)$ is constructed as a superposition of M spectral modes. Each mode $T_m(\omega)$ is a learned complex filter
 290 over frequency. Input channels are mixed into the modes via $B \in \mathbb{C}^{M \times C}$, and the mode responses are recombined into K output
 291 channels via $C \in \mathbb{C}^{K \times M}$, yielding the low-rank factorization $\hat{H}_{k,c}(\omega) = \sum_{m=1}^M C_{km} T_m(\omega) B_{mc}$.

292 (c) Each transfer function $T_m(\omega)$ is parameterized by interpretable geometric factors—orientation, scale, complex coefficients,
 293 and transverse decay—producing a structured family of spectral filters. Shown: parameter sweep for mode T_1 , visualized as
 294 $Z = \log(1 + |T(\omega_x, \omega_y)|)$.

323 Figure 2: SONIC overview: (a) Residual Block, (b) Spectral Mixing, and (c) Learnable Spectral Modes.

324 Conceptually, the modes, after the spectral transfer, form a small dictionary of directional behaviors, while separate
 325 learned mixing weights decide how each input channel contributes to, and each output channel draws from, the same
 326 dictionary. This keeps parameters modest and encourages reuse of structure across channels. After building the
 327 modes, we let the model mix the different modes by C and B , this ensures that each channel c mapping to output k
 328 can be a unique superposition of all constructed modes. The key distinction compared to other spectral methods is
 329 the parameterisation of the spectral domain. Conventional spectral neural operators employ an unconstrained, discrete
 330 representation, assigning independent complex coefficients to each sampled frequency ω_k . In contrast, SONIC utilises
 331 a structured low-rank factorisation built from a small set of shared spectral modes. Each mode is governed by a smooth,
 332 orientation-sensitive transfer function $T_m(\omega)$, yielding a continuous and anisotropic dependence on the frequency
 333 variable. This induces substantial parameter sharing across both frequencies and channels, in contrast to traditional
 334 spectral approaches, whose representations are frequency-wise independent and lack functional coherence in ω .

335 **Resolution Invariance** Crucially, all of these filters are parameterized directly in the continuous spectral domain.
 336 This means their definition does not depend on the size or sampling rate of the image: defining filters as continuous
 337 functions of ω decouples them from any particular grid size or sampling rate; the same response formula is evaluated
 338 on whatever DFT grid the data induces, yielding a resolution-invariant filter. This distinguishes our approach from
 339 spatial-domain kernels, whose size and shape are tied to a fixed grid. We made some minor adjustments to ensure
 340 resolution invariance: To make the directional parameters resolution invariant, we express directions in physical units
 341 and normalise:

$$342 D_{\Delta} = \text{diag}(\Delta_1, \dots, \Delta_D), \quad \tilde{v}_m = D_{\Delta}^{-1} v_m, \quad \hat{v}_m = \frac{\tilde{v}_m}{\|\tilde{v}_m\|_2}. \quad (16)$$

343 This resolution-aware formulation can be exploited during training, as also proposed in Nguyen et al. (2022). Beyond
 344 efficiency, it is particularly relevant in domains where resolution dependence is intrinsic, such as medical imaging,
 345 remote sensing, and microscopy.

347 **Computation** The number of learnable real scalars is:

$$349 \underbrace{2KM}_{C^{re}, C^{im}} + \underbrace{2MC}_{B^{re}, B^{im}} + \underbrace{(4+D)M+1}_{a^{re}, a^{im}, s, v, \tau \in \mathbb{R}^2},$$

351 For the FFT transformation we used the highly optimized VkFFT library (Tolmachev, 2023), with per-transform cost
 352 $O(N \log N)$ for a single (complex) channel. The spectral forward pass performs one DFT per input channel and one
 353 inverse DFT per output channel, plus $O(M(C+K))$ complex multiplications per frequency. The forward pass consists
 354 of one DFT per input channel and one inverse DFT per output channel, s with cost

$$355 O(CN \log N) \quad \text{and} \quad O(KN \log N),$$

356 where $N = \prod_{d=1}^D N_d$ is the total number of spatial points. In addition, frequency-wise multiplications incur a cost of

$$358 O(M(C+K)N),$$

359 since each of the M modes couples inputs and outputs across all frequencies. The total complexity is therefore

$$360 O((C+K)N \log N + M(C+K)N).$$

361 SONIC is thus particularly attractive for large receptive fields (where d is large or even global), since the cost remains
 362 manageable and the parameter count remains compact.

364 4 EMPIRICAL VALIDATION

365 **SynthShape** To evaluate the sensitivity of models to geometric variations, we introduce SynthShape (Synthetic
 366 Shape Dataset), a simple 64x64 synthetic geometric shape-based segmentation benchmark. We assess model generalization
 367 by measuring performance under controlled perturbations. Rescaling (including interpolation artefacts),
 368 in-plane rotation, out-of-frame translation, geometric distortion, and additive Gaussian noise. All experiments are
 369 conducted using 5-fold cross-validation. Furthermore, we introduce **HalliGalli**, a controlled spatial-reasoning task
 370 modeled after the well-known game, designed to test effective long-range dependency modelling rather than theoretical
 371 receptive field size. The task is to classify a central patch according to whether exactly two matching shapes appear
 372 in the four distant corners; the centre itself carries no class signal. Since the task depends on structure that cannot be
 373 captured within any local receptive field, purely local models fail. Architectures with untargeted global filters either
 374 fail due to missing orientation or degrade under Gaussian noise, as their large receptive fields accumulate noise over
 375 a broad spatial region. SONIC successfully solves the HalliGalli task and remains robust under inference-time noise,
 376 demonstrating the effectiveness of its globally oriented structured receptive field. Further implementation details are
 377 provided in Appendix 7.

378 Table 1: Comparison of ConvNet, ViT, S4ND, NIFF, GFNet, and SonicNet performance on SynthShape under geo-
379 metric variations (left), and qualitative examples from SynthShape and HalliGalli-SRT (right).

Experiment	Value	ConvNet	ViT	S4ND	NIFF	GFNet	SonicNet
Parameter count (M)		0.153	0.468	0.186	0.042	0.415	0.072
GMACs		0.156	0.012	0.023	0.041	0.139	0.006
Distortion	2.0	0.97	0.88	0.84	0.94	0.66	0.97
	4.0	0.96	0.88	0.83	0.94	0.62	0.96
	6.0	0.94	0.87	0.82	0.92	0.60	0.96
Gaussian Noise (σ)	0.1	0.98	0.78	0.89	0.99	0.73	0.98
	0.2	0.85	0.44	0.67	0.92	0.31	0.79
	0.3	0.58	0.32	0.43	0.71	0.19	0.60
Rescaling	0.75	0.84	0.73	0.49	0.78	0.44	0.86
	1.00*	0.99	0.94	0.93	1.00	0.92	1.00
	1.50	0.62	0.68	0.32	0.59	0.37	0.74
Rotation (°)	15	0.69	0.66	0.68	0.70	0.44	0.75
	30	0.28	0.32	0.50	0.30	0.30	0.23
	45	0.28	0.30	0.44	0.29	0.28	0.24
Translation (%)	10	0.92	0.87	0.76	0.89	0.53	0.95
	20	0.96	0.90	0.76	0.96	0.74	0.97
	30	0.91	0.88	0.77	0.88	0.56	0.93
Combined	10	0.85	0.76	0.47	0.71	0.36	0.90
	20	0.62	0.59	0.30	0.50	0.28	0.76
	30	0.41	0.37	0.24	0.40	0.25	0.48
HalliGalli		0.42	0.33	0.62	1.00	0.71	1.00
HalliGalli ($\sigma = 0.1$)		0.33	0.33	0.49	0.56	0.37	0.86

* Validation accuracy on the training task.

404 **3D Medical Image Segmentation** To evaluate performance on real-world high-dimensional data requiring long-
405 range spatial understanding, we apply our method to 3D medical image segmentation. Following the evaluation
406 protocol of Isensee et al. (2024), we benchmark on the two datasets identified as most reliable for fair comparisons,
407 namely Kidney and Kidney Tumour Segmentation (*KiTS*), and Automated Cardiac Diagnosis Challenge (*ACDC*).
408 All models are trained and evaluated with identical 5-fold splits, preprocessing/target spacing, augmentations, and
409 postprocessing. Training is conducted under identical conditions, including the same preprocessing and postprocessing
410 steps, allowing observed differences to be attributed solely to the proposed method.

412 Table 2: **3D Medical Image segmentation results** (5-fold CV; mean across 5 folds). Columns report **DSC** and **NSD**
413 (at 2 mm). “RT” is runtime (hours) and “VRAM” is peak memory (GB). Literature results are shown in gray as
414 reported by Isensee et al. (2024).

Method	KiTS		ACDC		Params (M)	RT (h)	VRAM (GB)
	DSC	NSD	DSC	NSD			
nnU-Net ResEnc L	88.98	85.74	91.40	96.21	31.12	34	23
SonicNet (Ours)	88.55	81.19	92.02	96.07	2.59	67	61.37
nnU-Net ResEnc L	88.17	85.93	91.69	95.11	31.12	36	36.60
MedNeXt L k5	87.74	85.67	92.62	96.09	55.00	233	18.00
STU-Net L	85.84	83.02	89.34	95.12	440.30	51	26.50
SwinUNETRV2	84.14	80.11	86.24	95.15	72.80	15	13.40
nnFormer	75.85	69.43	81.55	95.83	150.0	8	5.70
CoTr	84.59	80.92	88.02	93.74	41.27	18	8.20
U-Mamba Bot	86.22	83.27	89.13	95.40	64.00	24	12.40

429 **External validation** External validation is critical in medical imaging because models frequently degrade when
430 exposed to new scanners or protocols. Using identical training conditions and evaluating on heterogeneous external
431 datasets provides a clinically meaningful measure of generalisability and highlights whether an architecture is suited
432 for deployment beyond the development cohort. For this generalisability experiment, we evaluate SONIC on the

432 PI-CAI challenge (clinically significant prostate cancer segmentation) data (Saha et al., 2022) and compare it to the
 433 top-performing baseline, nnU-Net, on their performance on two external datasets, Prostate158 (Adams et al., 2022)
 434 and PROMIS (Ahmed et al., 2017). Qualitive comparison can be found in the appendix.
 435

436 **Table 3: External validation performance on Prostate158 and PROMIS.** SonicNet achieves improved detection
 437 performance with substantially fewer parameters.

Metric		nnU-Net	SonicNet
TRAINABLE PARAMETERS (M/MB)		31.20/342.0	2.59/28.4
Prostate158	AUROC	0.814	0.841
	AP	0.533	0.548
	F1 Score	0.632	0.649
	Sensitivity	0.475	0.495
	Precision	0.941	0.943
	TP/FP/FN (%)	0.30/0.02/0.34	0.32/0.02/0.32
PROMIS	AUROC	0.646	0.687
	AP	0.195	0.258
	F1 Score	0.185	0.223
	Sensitivity	0.103	0.127
	Precision	0.912	0.907
	TP/FP/FN (%)	0.05/0.01/0.47	0.07/0.01/0.47

454 **ImageNet-50M** To evaluate SONIC on natural images, under highly anisotropic visual conditions, we conduct ex-
 455 periments on ImageNet-1K, the standard benchmark for large-scale image classification. Due to computational con-
 456 straints, we adopt a reduced training setting that we denote corresponding to 200k optimization steps with a batch size
 457 of 256. We evaluate ResNet-50 variants augmented with different spectral operators and compare them against strong
 458 baselines, including a Vision Transformer. Beyond reporting standard classification accuracy, we also assess robust-
 459 ness under controlled resolution shifts, which serve as a proxy for the anisotropic distortions common in practical
 460 deployment scenarios. By systematically varying input resolution, we quantify how well SONIC maintains accuracy
 461 relative to competing methods, thereby characterizing its robustness to scale changes and sampling artifacts.

462 **Table 4: Comparison of ResNet-50 variants** and related ar-
 463 chitectures on ImageNet under 224×224 evaluation.

Model	Model Complexity			Accuracy	
	Params (M)	GFLOPs (G)	Img/s	Top-1	Top-5
ResNet-50	25.60	8.26	4758	58.47	82.68
ViT-S/16	48.60	35.21	1136	62.23	83.91
ResNet-50 NIFF	18.61	14.89	862	57.52	82.24
ResNet-50 S4ND	16.67	4.57	1421	64.38	86.44
ResNet-50 GFNet	15.72	4.57	4504	61.43	84.47
ResNet-50 RepLK	19.23	7.71	1884	65.17	86.34
ResNet-50 Dilated	25.55	38.36	2130	61.52	84.73
ResNet-50 Sonic	1.34	0.81	831	60.01	82.28

477 **Figure 3: Relative performance degradation under**
 478 **resolution changes on ImageNet.**

479 **Compute and memory overhead.** Figure 4 illustrates the compute and memory profile of SONIC in comparison
 480 to a standard 3×3 convolution and a ViT block with 4×4 patches. At scale (224×224) , SONIC is only $1.23 \times$
 481 slower and uses $1.18 \times$ more memory, representing a modest overhead for obtaining global receptive fields. At higher
 482 resolutions, the runtime gap narrows and SONIC becomes effectively on par with convolution, reflecting the favourable
 483 scaling of FFT-based filtering. SONIC’s peak memory is dominated by the FFT stage, which requires storing the full
 484 spectral grid at each layer. In contrast, full-resolution self-attention grows quadratically with spatial size, becoming
 485 substantially more expensive even at moderate resolutions. Furthermore, as shown in Fig 8 (appendix), runtime and
 486 memory grow approximately linearly in both C and M in the practically relevant regime, with no unexpected spikes.
 487 This confirms that SONIC can be tuned in the number of channels and number of modes without additional overheads.

Overall, SONIC provides global spatial mixing at a fraction of the cost of global attention, while remaining close to convolution in both compute and memory.

Figure 4: Runtime and memory characteristics of ViT, convolutional, and SONIC blocks across spatial resolutions.

5 DISCUSSION

We introduced a spectral factorisation framework, where SONIC serves as a theoretically grounded alternative to spatial convolution blocks. Unlike conventional spatial kernels, SONIC employs low-rank, orientation-aware operators in the frequency domain. This design provides a principled inductive bias for modelling long-range, structured interactions while remaining highly parameter-efficient. Our empirical evaluation demonstrates SONIC’s properties. On SynthShape, the model exhibited superior robustness to image distortions compared to conventional CNN and ViT baselines and previous spectral-domain architectures. In the HalliGalli spatial reasoning task, SONIC was the only architecture capable of solving strict long-range dependencies within a single block, highlighting the effectiveness of its global receptive field. Furthermore, these theoretical advantages translated into real-world performance in 3D medical segmentation benchmarks (KiTS and ACDC), where SONIC matched or exceeded state-of-the-art performance while requiring significantly fewer parameters (< 10%) than established heavyweights such as nnU-Net and MedNeXt.

At the same time, important limitations remain. Nonlinearities must be applied in the spatial domain. This prevents us from stacking multiple SONIC layers purely in the frequency domain and forces repeated FFT/IFFT operations, which introduce additional overhead. Although this limitation is shared by most spectral neural architectures, it does constrain how fully the model can operate within the spectral domain. Furthermore, we observed occasional instabilities during SONIC block initialisation, stemming from the same property that defines the operator: in imaging tasks, identical spatial dimensions may correspond to very different physical scales across datasets. Developing a more general and robust initialisation scheme for SONIC, therefore, remains an important direction for future work. Moreover, the global nature of the frequency-domain representation can limit the capture of very fine local structure, which suggests that hybrid architectures may ultimately be needed to combine the strengths of both domains. Our goal here is to provide SONIC as a general and simple operator that can be integrated in the same way as other well-known alternatives. Further work should explore how to incorporate SONIC thoughtfully into new or existing architectures. In summary, spectral factorisation offers a new building block for neural architectures that complements existing paradigms. Its strengths lie in long-range receptive field, parameter efficiency, orientation-awareness, and robustness, while future work should focus on improving efficiency, mitigating memory demands, and exploring hybrid spectral-spatial architectures.

6 ACKNOWLEDGEMENT

In this paper, we used large language models to refine wording and improve the clarity of information transfer. All conceptual ideas, discussion of related work, and factual content were developed manually by the authors; the models were employed solely for assistance with presentation.

540 REFERENCES

542 Lisa C. Adams, Marcus R. Makowski, Günther Engel, Maximilian Rattunde, Felix Busch, Patrick Asbach, Stefan M.
 543 Niehues, Shankeeth Vinayahalingam, Bram van Ginneken, Geert Litjens, and Keno K. Bressem. Prostate158 - an
 544 expert-annotated 3t mri dataset and algorithm for prostate cancer detection. *Computers in Biology and Medicine*,
 545 148:105817, 2022. ISSN 0010-4825. doi: <https://doi.org/10.1016/j.combiomed.2022.105817>. URL <https://www.sciencedirect.com/science/article/pii/S0010482522005789>.

547 Hashim U Ahmed, Ahmed El-Shater Bosaily, Louise C Brown, Rhian Gabe, Richard Kaplan, Mahesh K Parmar,
 548 Yolanda Collaco-Moraes, Katie Ward, Richard G Hindley, Alex Freeman, Alex P Kirkham, Robert Oldroyd,
 549 Chris Parker, and Mark Emberton. Diagnostic accuracy of multi-parametric mri and trus biopsy in prostate
 550 cancer (promis): a paired validating confirmatory study. *The Lancet*, 389(10071):815–822, 2017. ISSN 0140-
 551 6736. doi: [https://doi.org/10.1016/S0140-6736\(16\)32401-1](https://doi.org/10.1016/S0140-6736(16)32401-1). URL <https://www.sciencedirect.com/science/article/pii/S0140673616324011>.

553 Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small image transformations? *CoRR*, abs/1805.12177, 2018. URL <http://arxiv.org/abs/1805.12177>.

556 Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, and Jiashi Feng. a^2 -nets: Double attention networks,
 557 2018. URL <https://arxiv.org/abs/1810.11579>.

558 Xiaohan Ding, Xiangyu Zhang, Yizhuang Zhou, Jungong Han, Guiguang Ding, and Jian Sun. Scaling up your kernels
 559 to 31x31: Revisiting large kernel design in cnns, 2022. URL <https://arxiv.org/abs/2203.06717>.

560 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
 561 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
 562 image is worth 16x16 words: Transformers for image recognition at scale. *CoRR*, abs/2010.11929, 2020. URL
 563 <https://arxiv.org/abs/2010.11929>.

564 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
 565 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
 566 image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL <https://arxiv.org/abs/2010.11929>.

567 V. Fanaskov and I. Oseledets. Spectral neural operators, 2024. URL <https://arxiv.org/abs/2205.10573>.

568 Julia Grabinski, Janis Keuper, and Margret Keuper. As large as it gets: Learning infinitely large filters via neural
 569 implicit functions in the fourier domain, 2024. URL <https://arxiv.org/abs/2307.10001>.

570 Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus Maier-Hein, and Paul F.
 571 Jaeger. nnu-net revisited: A call for rigorous validation in 3d medical image segmentation, 2024. URL <https://arxiv.org/abs/2404.09556>.

572 Samira Kabri, Tim Roith, Daniel Tenbrinck, and Martin Burger. Resolution-invariant image classification based on
 573 fourier neural operators, 2023. URL <https://arxiv.org/abs/2304.01227>.

574 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436, 2015.

575 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
 576 Anima Anandkumar. Fourier neural operator for parametric partial differential equations, 2021. URL <https://arxiv.org/abs/2010.08895>.

577 Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S. Zemel. Understanding the effective receptive field in deep
 578 convolutional neural networks. *CoRR*, abs/1701.04128, 2017. URL <http://arxiv.org/abs/1701.04128>.

579 Eric Nguyen, Karan Goel, Albert Gu, Gordon W. Downs, Preey Shah, Tri Dao, Stephen A. Baccus, and Christopher
 580 Ré. S4nd: Modeling images and videos as multidimensional signals using state spaces, 2022. URL <https://arxiv.org/abs/2210.06583>.

581 Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for image classification,
 582 2021. URL <https://arxiv.org/abs/2107.00645>.

583 Oren Rippel, Jasper Snoek, and Ryan P. Adams. Spectral representations for convolutional neural networks, 2015.
 584 URL <https://arxiv.org/abs/1506.03767>.

594 Anindo Saha, Jasper Jonathan Twilt, Joeran Sander Bosma, Bram van Ginneken, Derya Yakar, Mattijs Elschot, Jeroen
595 Veltman, Jurgen Fütterer, Maarten de Rooij, and Henkjan Huisman. The pi-cai challenge: Public training and
596 development dataset, June 2022. URL <https://doi.org/10.5281/zenodo.6624726>.

597
598 Dmitrii Tolmachev. Vkkft-a performant, cross-platform and open-source gpu fft library. *IEEE Access*, 11:12039–
599 12058, 2023. doi: 10.1109/ACCESS.2023.3242240.

600 Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks, 2018. URL <https://arxiv.org/abs/1711.07971>.

601
602 Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. *arXiv preprint*
603 *arXiv:1511.07122*, 2015.

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 7 APPENDIX
649650 APPENDIX A: IMPLEMENTATION DETAILS
651652 We constrain $s_m > 0$ and typically enforce $\text{Re}(a_m) < 0$ so that the spatial response function decays rather than
653 grows. The imaginary part $\text{Im}(a_m)$ can be bounded in magnitude (e.g., $|a_m^{\text{im}}| \leq \rho$). We initialize $v_m \sim U(0, \pi)$.
654655 All parameters are learned end-to-end by backpropagation. A convenient reparameterisation that enforces the
656 constraints is:

657
$$s_m = \text{softplus}(\sigma_m) + \varepsilon, \quad a_m^{\text{re}} = -\text{softplus}(\alpha_m), \quad a_m^{\text{im}} = \rho \tanh(\beta_m), \quad v_m = \frac{u_m}{\|u_m\|_2},$$

658

659 with free variables $\sigma_m, \alpha_m, \beta_m, \rho \in \mathbb{R}$ and $u_m \in \mathbb{R}^2$, small $\varepsilon > 0$. The mixing matrices B and C are complex-valued
660 and learned without constraints.
661662 *Implementation notes.* (i) We standardize each input channel to zero mean and unit variance, with a small noise for
663 numerical stability. (ii) We apply an RMS transfer gain normalisation over the (half-)spectrum to keep the overall
664 response well-scaled across resolutions. (iii) We use real-FFT (rFFT/irFFT) along the last two spatial dimensions;
665 consequently we enforce Hermitian consistency by zeroing the imaginary part at DC. (iv) For memory efficiency the
666 computation is performed in frequency *slabs* (blocks over rows of Ω) without altering the continuous formulation
667 above. (v) Direction vectors are rescaled by D_{Δ}^{-1} and renormalized (unit length) before use, ensuring invariance to
668 pixel spacing. (v) Optional mode dropout is applied to V_m as a regularizer.
669670 SYNTHSHAPE
671672 The dataset consist of a random number of geometric primitives (circle, square, triangle, cross, star) at random
673 positions and scales within the image, while preventing overlaps through collision checks. Each object is assigned a
674 randomly perturbed base colour, ensuring that models cannot exploit a trivial mapping between RGB values and
675 semantic classes. The ground-truth segmentation mask assigns a unique class label to each shape type, with background
676 indexed as class 0.
677678 **Models.** All models use an embedding width of $c=128$
679680

- **ConvNet:** A lightweight stack of L convolutional layers (default $L = 4$), each followed by group normalisation
681 and GELU activations. A 1×1 convolution projects the final feature map to the number of classes.
The patch size is set to 16 to give the model a fair opportunity to capture broader context, rather than learning
solely from small local receptive fields.
- **ViT:** A Vision Transformer consisting of a patch embedding layer, sinusoidal positional encodings (interpolated
682 if image resolution differs), and a stack of transformer blocks with multi-head self-attention and MLP
683 layers. The output features are reshaped and upsampled to the original spatial resolution, followed by a 1×1
684 convolution for classification.
- **SonicNet:** For SonicNet we use a depth of 4 stacked SonicBlocks, each consisting of GroupNorm, GELU,
685 and a residual spectral convolutional mapping. The final stage applies GroupNorm, GELU, and a 3×3 convolution
686 to project features to class logits.
- **GFNet:** Each block replaces local convolutions by a learned complex-valued mask applied in the Fourier
687 domain. Features are normalised and transformed by the global filter, followed by a pointwise MLP and
688 residual connections, while the overall encoder–head structure is kept identical to the ConvNet.
- **NIFF:** Rach block learns a continuous frequency response via a small MLP that maps frequency coordinates
689 to complex filter values. These filters are applied depthwise in the Fourier domain and wrapped in the same
690 normalisation, residual, and head structure as the ConvNet.
- **S4ND:** A state-space baseline where the convolutional backbone is replaced by stacked S4ND layers operating
691 directly on the $H \times W$ grid. Each block applies a 2D structured state-space update to the feature map
692 and is embedded in the same residual and segmentation head pattern as the other models.

693694 **Training.** All models were trained using the AdamW optimizer with learning rate 10^{-2} and weight decay 10^{-4} ,
695 for 1000 epochs and batch size 32. A one-cycle learning rate schedule was applied. To account for class imbalance,
696 inverse-frequency class weights were computed dynamically from a large synthetic batch and used in the cross-entropy
697 loss. The final training objective combined cross-entropy with the multi-class Dice loss in equal weighting.
698

702 **Evaluation.** Model robustness was assessed by applying five geometric transformations at inference: rescaling,
 703 rotation, translation, distortion, and Gaussian noise. Each transformation was applied with three levels of severity.
 704 Rescaling resized the full image before resampling it back to 64×64 , introducing interpolation artefacts. Translation
 705 shifted the input by a fixed percentage of image width/height, potentially moving parts of objects out of frame. Distortion
 706 was implemented via bicubic upsampling of a low-resolution displacement field. Rotation was performed around
 707 the image centre, and Gaussian noise was added per pixel channel.

708
 709
 710 **Metrics.** The primary evaluation metric was the multi-class Dice score (excluding background), averaged across
 711 folds. All experiments were repeated 5 times with different seeds to estimate variance. 1.

729 Figure 5: Qualitative visual examples on the SynthShape benchmark
 730
 731
 732
 733

734 IMAGE NET

735
 736 For ImageNet we follow the public “academic default” implementation¹ and keep all training hyperparameters and op-
 737 timisation settings unchanged. We replace the standard ResNet-50 bottleneck blocks by SonicBlocks, where each 3×3
 738 convolution in the main path is substituted with a Sonic layer, while the 1×1 convolutions in the skip path and classi-
 739 fier head remain unchanged. Full architectural details and the exact PyTorch implementation of `resnet50_sonic`
 740 are provided in the supplementary material.

741 742 MEDICAL IMAGING BENCHMARK

743
 744 **Setup.** Following the recommendations of Isensee et al. (2024), we minimize confounding factors and keep the
 745 experiment as plain as possible. We retain the baseline nnU-Net preprocessing and postprocessing and change only
 746 the network backbone: the original U-Net is replaced by a stack of SONIC Blocks (“SonicNet”). The first block lifts
 747 the input from C to K channels; the remaining $D-1$ blocks keep K channels. We apply GroupNorm and GELU before
 748 a final 3×3 convolution to produce n_{classes} output channels. For this experiment, we used four stacked SonicBlocks
 749 (i.e., a depth of 4). We employed stochastic gradient descent with an initial learning rate of 10^{-2} and a weight decay
 750 of 10^{-5} . Training was performed with a mini-batch size of two for a total of 1000 epochs, each consisting of 250
 751 iterations. For inference, we used the checkpoint corresponding to the highest validation performance during training.
 752

753
 754
 755 ¹<https://github.com/landskape-ai/imagenet>

756 7.1 QUALITATIVE COMPARISON OF THE EXTERNAL VALIDATION
757
758769
770 Figure 6: **Qualitative comparison of prostate cancer detection methods.** The figure shows representative cases
771 from the Prostate158 (left) and PROMIS (right) datasets, with ground truth lesions (red) and model predictions (cyan)
772 overlaid on T2-weighted MRI slices (confidence ≥ 0.5).
773
774775 8 APPENDIX B: PRACTICAL IMPLEMENTATION
776777 **Role of K and M** The parameters K and M play complementary roles in shaping the behaviour of a SONIC block.
778 The number of modes M determines the spectral diversity of the operator; in contrast, the channel width K controls
779 the capacity with which these shared modes are mixed across feature channels. The ratio between K and M therefore
780 reflects the balance between channel-mixing capacity and spectral richness. Understanding this trade-off helps guide
781 architectural choices across different model sizes.
782783 **Qualitative analysis of receptive fields** To better understand how SONIC behaves in practice, we visualize the
784 normalized spectral energy of the learned filters across the four stages of the network. Each plot shows the log-
785 scaled energy distribution over the spatial frequency plane, giving an intuitive sense of the effective receptive field and
786 directional structure captured at different depths.787 As the network progresses through stages, the spectral responses become increasingly smooth, structured, and
788 oriented—indicating that early stages capture broad, irregular frequency content, while deeper stages refine this into
789 cleaner, more coherent spectral patterns. These visualizations highlight how SONIC gradually organizes its spectral
790 modes and how the parameterization remains stable and well-behaved across depth.
791800
801 Figure 7: Visualisation of a randomly selected learned 2D convolutional kernel from our medical image segmentation
802 model across four stages of the network.
803
804
805
806
807
808
809

810 **Practical scalability of SONIC Block** To validate that the SONIC block exhibits the intended linear scaling behavior, we empirically benchmark its runtime and memory usage across a range of channel dimensions and mode counts. We confirm this behavior by measuring wall-clock runtime and peak memory under controlled synthetic settings, sweeping C and M independently while keeping spatial resolution fixed. Across all tested configurations, runtime increases as a straight line with respect to both variables, and memory usage follows the same linear trend.

830 Figure 8: Runtime and memory of SONIC when varying channels C and modes M at fixed resolution.

833 APPENDIX C: SUPPORTING PROOFS

835 CONVOLUTION THEOREM FOR THE D -DIMENSIONAL FOURIER TRANSFORM

836 Let the convolution of two functions on \mathbb{R}^D be defined by

$$837 (f * g)(\mathbf{x}) := \int_{\mathbb{R}^D} f(\boldsymbol{\tau}) g(\mathbf{x} - \boldsymbol{\tau}) d\boldsymbol{\tau}, \quad \mathbf{x} \in \mathbb{R}^D.$$

838 Then, for $\boldsymbol{\omega} \in \mathbb{R}^D$, the D -dimensional Fourier transform satisfies

$$839 \begin{aligned} \mathcal{F}\{f * g\}(\boldsymbol{\omega}) &= \int_{\mathbb{R}^D} \left(\int_{\mathbb{R}^D} f(\boldsymbol{\tau}) g(\mathbf{x} - \boldsymbol{\tau}) d\boldsymbol{\tau} \right) e^{-i\boldsymbol{\omega} \cdot \mathbf{x}} d\mathbf{x} \\ 840 &= \int_{\mathbb{R}^D} \int_{\mathbb{R}^D} f(\boldsymbol{\tau}) g(\mathbf{u}) e^{-i\boldsymbol{\omega} \cdot (\boldsymbol{\tau} + \mathbf{u})} d\mathbf{u} d\boldsymbol{\tau} \\ 841 &= \left(\int_{\mathbb{R}^D} f(\boldsymbol{\tau}) e^{-i\boldsymbol{\omega} \cdot \boldsymbol{\tau}} d\boldsymbol{\tau} \right) \left(\int_{\mathbb{R}^D} g(\mathbf{u}) e^{-i\boldsymbol{\omega} \cdot \mathbf{u}} d\mathbf{u} \right). \end{aligned}$$

842 Hence,

$$843 \mathcal{F}\{f * g\}(\boldsymbol{\omega}) = \mathcal{F}\{f\}(\boldsymbol{\omega}) \mathcal{F}\{g\}(\boldsymbol{\omega}).$$

845 CONNECTION TO STATE-SPACE KERNELS

846 Consider the linear time-invariant state-space model

$$847 \dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t), \quad (17)$$

848 with $x(t) \in \mathbb{C}^n$, $u(t) \in \mathbb{C}^m$, $y(t) \in \mathbb{C}^p$, and system matrices $A \in \mathbb{C}^{n \times n}$, $B \in \mathbb{C}^{n \times m}$, $C \in \mathbb{C}^{p \times n}$. Assume a zero initial state $x(0^-) = 0$ and a strictly proper output.

849 The corresponding impulse response (or kernel) is

$$850 \mathcal{K}(t) = Ce^{At}B, \quad t \geq 0. \quad (18)$$

864 By definition, the transfer function is the Laplace transform of the impulse response:
 865

$$866 H(s) = \int_0^\infty e^{-st} \mathcal{K}(t) dt = \int_0^\infty e^{-st} C e^{At} B dt. \quad (19)$$

868 Pulling out C and B gives
 869

$$870 H(s) = C \left(\int_0^\infty e^{(A-sI)t} dt \right) B. \quad (20)$$

871 For $\text{Re}(s)$ sufficiently large, the integral converges to
 872

$$873 \int_0^\infty e^{(A-sI)t} dt = (sI - A)^{-1}. \quad (21)$$

874 Hence the transfer function is
 875

$$876 H(s) = C(sI - A)^{-1} B. \quad (22)$$

877 **SONIC with Restricted Modes.** We show that our general Fourier domain formulation reduces to the Laplace
 878 resolvent parameterisation of S4ND when orientations are restricted to the coordinate axes.
 879

880 Recall our frequency response factorisation
 881

$$882 \hat{H}_{c,k}(\omega) = \sum_{m=1}^M C_{km} T_m(\omega) B_{mc}, \quad (23)$$

883 with mode response
 884

$$885 T_m(\omega) = \frac{1}{is_m(\omega \cdot v_m) - a_m + \tau_m \|(I - v_m v_m^\top) \omega\|^2}. \quad (24)$$

886 Suppose $v_m = e_d$, the d -th standard basis vector. Then
 887

$$888 \omega \cdot v_m = \omega_d, \quad (I - v_m v_m^\top) \omega = \sum_{j \neq d} \omega_j e_j,$$

889 so that
 890

$$891 \|(I - v_m v_m^\top) \omega\|^2 = \sum_{j \neq d} \omega_j^2.$$

892 In this case,
 893

$$894 T_m(\omega) = \frac{1}{is_m \omega_d - a_m + \tau_m \sum_{j \neq d} \omega_j^2}. \quad (25)$$

895 We discard the transverse penalty $\tau_m = 0$, then
 896

$$897 T_m(\omega_d) = \frac{1}{is_m \omega_d - a_m} = \frac{1}{s_m} \frac{1}{i\omega_d - \frac{a_m}{s_m}},$$

898 where the absorption is into the learned parameters (a_m/s_m in A , and B or C absorb $1/s_m$). Thus
 899

$$900 \hat{H}_{c,k}(\omega_d) = [C(i\omega_d I - A)^{-1} B]_{kc}, \quad H(s) = C(sI - A)^{-1} B.$$