
Accelerated Learning with Linear Temporal Logic
using Differentiable Simulation

Anonymous Author(s)
Affiliation
Address
email

Abstract
To ensure learned controllers comply with safety and reliability requirements for1

reinforcement learning in real-world settings remains challenging. Traditional2

safety assurance approaches, such as state avoidance and constrained Markov3

decision processes, often inadequately capture trajectory requirements or may4

result in overly conservative behaviors. To address these limitations, recent studies5

advocate the use of formal specification languages such as linear temporal logic6

(LTL), enabling the derivation of correct-by-construction learning objectives from7

the specified requirements. However, the sparse rewards associated with LTL8

specifications make learning extremely difficult, whereas dense heuristic-based9

rewards risk compromising correctness. In this work, we propose the first method,10

to our knowledge, that integrates LTL with differentiable simulators, facilitating11

efficient gradient-based learning directly from LTL specifications by coupling with12

differentiable paradigms. Our approach introduces soft labeling to achieve differ-13

entiable rewards and states, effectively mitigating the sparse-reward issue intrinsic14

to LTL without compromising objective correctness. We validate the efficacy of15

our method through experiments, demonstrating significant improvements in both16

reward attainment and training time compared to the discrete methods.17

1 Introduction18

The growing demand for artificial intelligence (AI) systems to operate in a wide range of environments19

underscores the need for systems that can learn through interaction with their environments, without20

relying on human intervention. Reinforcement learning (RL) has emerged as a powerful tool for21

training controllers to perform effectively in uncertain settings with intricate, high-dimensional, and22

nonlinear dynamics. Recent advances in RL have enabled attainment of high-performance controllers23

in a variety of applications [1], such as robotic arm control [2], hand manipulation [3], legged24

locomotion [4, 5], navigation in crowded spaces [6], and robot-assisted surgery [7]. Despite the25

promising results in controlled environments, deploying learned controllers in real-world systems26

–where malfunctioning can be costly or hazardous– requires not only high performance but also strict27

compliance with formally specified safety and reliability requirements. Therefore, ensuring that28

learned controllers meet these critical specifications is essential to fully realize the potential of AI29

systems in real-world applications. Safety in learning is often modeled with constrained Markov30

decision processes (MDPs) [8–12], where the accumulated cost must be within a budget. However,31

additive cost functions may not reflect real-world safety, as assigning meaningful costs to harms is32

challenging. Alternative approaches define safety by avoiding unsafe states or actions [13–27], which33

is simpler than designing cost functions. However, this may result in overly conservative policies and34

could not capture complex trajectory-level requirements.35

Recently, researchers have explored specifying RL objectives using formal languages, which explic-36

itly and unambiguously express trajectory-based task requirements, including safety and liveness37

properties. Among these, linear temporal logic (LTL) has gained particular popularity [28–50] due38

the automaton-based memory it offers, which ensures history-independence and makes it especially39

suitable for long-horizon tasks unlike other languages such as signal temporal logic (STL). Specifying40

desired properties in LTL inherently prevents mismatches between the intended behavior and the41

behavior learned through reward maximization–one of the most well-known safety challenges in42

AI [51]. Although these methods are proven to define the correct RL objectives, the sparse logical43

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

rewards make learning extremely difficult, as obtaining a nonzero reward often requires significant44

exploration. Denser LTL-based rewards provided through heuristics might accelerate learning [38];45

however, if not carefully designed, they can compromise the correctness of the objective and misguide46

exploration depending on the environment, ultimately reducing learning efficiency. In this work,47

we address the challenges of scalable learning with correct objectives for long-horizon learning48

tasks. We adopt LTL as the specification language, leveraging the intuitive high level language and49

the automaton-based memory it provides. Unlike prior methods, our approach harnesses gradients50

from differentiable simulators to facilitate efficient learning directly from LTL specifications while51

preserving the correctness of the objectives. Our contributions can be summarized as follows:52

• We propose, to the best of our knowledge, the first approach that accelerates learning from LTL53

specifications using differentiable simulators. Our approach effectively mitigates the inherent issue54

of the sparse rewards without sacrificing the expressiveness and correctness that LTL provides.55

• We introduce soft labeling techniques for continuous environments that yield probabilistic ε-actions56

and transitions within the automata derived from LTL, which ensures the differentiability of rewards57

and states with respect to actions.58

• Through a serious of experiments, we demonstrate that our approach enables successful learning59

from LTL specifications in robotic systems, whereas traditional non-differentiable approaches fail60

to achieve feasible learning.61

2 Related Work62

Safe RL. One common perspective in Safe RL defines safety as the guarantee on the cumulative63

costs over time within a specified safety budget, which is often modeled using constrained MDPs64

and has been widely studied [8–12], relying on additive cost functions and budgets, which may not65

adequately capture safety in many scenarios. In practice, it is often difficult to assign unambiguous66

scalar costs reflecting trade-offs between different harmful situations [52]. Another approach defines67

safety in terms of avoiding unsafe states and focuses on preventing or modifying unsafe actions via68

shielding or barrier functions [13–27], which only require identification of unsafe states and actions69

and often easier than designing cost functions [53]; however, they can lead to overly conservative70

control policies [54]. Moreover, the requirements are often placed over trajectories, which could71

be more complex than simply avoiding certain states [55]. Our approach avoids these issues by72

employing LTL as the specifications language to obtain correct-by-construction RL objectives.73

RL with Temporal Logics. There is growing increasing in using formal specification languages to74

encode trajectory-dependent task objectives, especially those involving safety. LTL is widely used75

due to its expressiveness and well-defined semantics over infinite traces. There has been increasing76

interest in using formal specification languages to encode task objectives that are trajectory-dependent,77

particularly those involving safety requirements. LTL has emerged as a widely adopted formalism78

due to its expressiveness and well-defined semantics over infinite traces. Recent efforts [28–50]79

derives rewards from LTL specifications for RL, typically by translating LTL into limit-deterministic80

Büchi automata (LDBAs) and assigning rewards based on acceptance conditions. The memory81

structure provided by LDBAs supports long-horizon tasks better than alternatives such as STL, which82

require history-dependent rewards [56]. However, LTL rewards are often sparse and hinder learning.83

While heuristic-based dense rewards [38] attempt to address this, they risk misguiding exploration84

and compromising correctness. Our approach avoids these pitfalls by leveraging gradients from85

differentiable simulators to accelerate learning without sacrificing correctness.86

RL with Differentiable Simulators. Differentiable simulators enable gradient-based policy opti-87

mization in RL by computing gradients of states and rewards with respect to actions, using analytic88

methods [57–61] or auto-differentiation [62, 63]. While Backpropagation Through Time (BPTT) is89

commonly used [64–69], it suffers from vanishing or exploding gradients in long-horizon tasks as90

it ignores the Markov property of states [70]. To address this, several differentiable RL algorithms91

have been proposed [71, 72]. Short Horizon Actor-Critic (SHAC) [73] divides long trajectories into92

shorter segments where BPTT is tractable and bootstraps the remaining trajectory using the value93

function. Adaptive Horizon Actor-Critic (AHAC) [74] extends SHAC by dynamically adjusting the94

segment lengths based on contact information from the simulator. Gradient-Informed PPO [75] incor-95

porates gradient information into the PPO framework in an adaptive manner. Our approach builds a96

differentiable, Markovian transition function for LTL-derived automata, making it compatible with97

all differentiable RL methods. Unlike prior STL-based efforts [76, 77], which rely on non-Markovian98

rewards and BPTT, our method supports efficient long-horizon learning with full differentiability.99

2

3 Preliminaries and Problem Formulation100

MDPs. We formalize the interaction between controllers with the environments as MDPs, which101

can be used for a wide range of robotic systems, including arm manipulation and legged locomotion.102

Definition 1. A (differentiable) MDP is a tuple M = (S,A, f, p0) such that S is a set of continuous103

states; A is a set of continuous actions; f : S ×A 7→ S is a differentiable transition function; p0 is104

an initial state distribution where p0(s) denotes the probability density for the state s.105

For a given robotic task, the state space S can be defined by the positions x and velocities ẋ of106

relevant objects, body parts, and joints. The action space A may consist of torques applied to the107

joints. The transition function f captures the underlying system dynamics and outputs the next state108

via computing the accelerations ẍ by solving Mẍ = JTF(x, ẋ) + C(x, ẋ) + T(x, ẋ, a), for a given state109

s = ⟨x, ẋ⟩ ∈ S and action a ∈ A. Here, F, C, and T are, respectively, force, Coriolis, and torque110

functions that can be approximated using differentiable physics simulators.111

RL Objective. In RL, a given policy π : S 7→ A is evaluated based on the expected cumulative112

reward (known as return) associated with the paths σ := s0s1 . . . (sequence of visited states)113

generated by the Markov chain (MC) Mπ induced by the policy π. Specifically, for given a reward114

function R : S 7→ R, a discount factor γ ∈ (0, 1), and a horizon H , the return of a path σ115

from time t ∈ N is defined as Gt:H(σ) =
∑H
i=t γ

iR(σ[i]). For simplicity, we denote the infinite-116

horizon return starting from t = 0 as GH(σ) := G0:H(σ), and further drop the subscript to write117

G(σ) := limH→∞GH(σ). The discount factor γ reduces the value of future rewards to prioritize118

immediate ones: a reward received after t steps, R(σ[t]), contributes γtR(σ[t]) to the return. The119

objective in RL is to learn a policy that maximizes the expected return over trajectories.120

Labels. In robotic environments, we define the set of atomic propositions (APs), denoted by A, as121

properties of interest that place bounds on functions of the state space. Formally, each AP takes the122

form a:=‘g(s)>0’, where g : S 7→ R is assumed to be a differentiable function mapping a given123

state to a signal. For example, the function g(⟨x, ẋ⟩) := ẋ2max − ẋ2i can be used to define an AP that124

specifies that the velocity of the i-th robotic component must be below an upper bound ẋmax. The125

labeling function L : S 7→ 2A returns the set of APs that hold true for a given state. Specifically, an126

AP a := ‘g(s) > 0’ is included in the label set L(s) of state s – i.e., s is labeled by a if and only if127

(iff) g(s) > 0. We also write, with a slight abuse of notation, L(σ) := L(σ[0])L(σ[1]) . . . to denote128

the trace (sequences of labels) of a path σ. Finally, we write M+=(M,L) to denote a labeled MDP.129

LTL. LTL provides a high-level formal language for specifying the desired temporal behaviors130

of robotic systems. Alongside the standard operators in propositional logic – negation (¬) and131

conjunction (∧) – LTL offers two temporal operators, namely next (⃝) and until (U). The formal132

syntax of LTL is defined by the following grammar ([78]): φ := true | a | ¬φ | φ1 ∧ φ2 | ⃝φ |133

φ1Uφ2, a ∈ A. The semantics of LTL formulas are defined over paths. Specifically, a path σ either134

satisfies φ, denoted by σ |= φ, or not (σ ̸|= φ). The satisfaction relation is defined recursively as135

follows: σ |= φ; if φ = a and a ∈ L(σ[0]) (i.e., a immediately holds); if φ = ¬φ′ and σ ̸|= φ′; if136

φ = φ1 ∧ φ2 and (σ |= φ1) ∧ (σ |= φ2); if φ = φ1Uφ2 and there exists t ≥ 0 such that σ[t:] |= φ2137

and for all 0 ≤ i < t, σ[i:] |= φ1. The remaining Boolean and temporal operators can be derived via138

the standard equivalences such as eventually (♢φ := true U φ) and always (□φ := ¬(♢¬φ)).139

LDBAs. Whether a path σ satisfies a given LTL formula φ can be automated by building a140

corresponding LDBA, denoted by Aφ that is suitable for quantitative model-checking of MDPs ([79]).141

An LDBA is a tuple Aφ = (Q, q0,Σ, δ, B) where Q is a finite set of states; q0 ∈ Q is the initial state;142

Σ=2A is the set of labels; δ : Q× (Σ∪{ε}) 7→ 2Q is a transition function triggered by labels; B ⊆ Q143

is the accepting states. An LDBA Aφ accepts a path σ (i.e., σ |= φ), iff its trace L(σ) induces an144

LDBA execution visiting some of the accepting states infinitely often, known as the Büchi condition.145

Control Synthesis Problem. Our objective is to learn control policies that ensure given path146

specifications are satisfied by a given labeled MDP. In stochastic environments, this objective147

translates to maximizing the probability of satisfying those specifications. We consider specifications148

given as LTL formulas since LTL provides a high-level formalism well-suited for expressing safety149

and other temporal constraints in robotic systems–and, importantly, finite-memory policies suffice to150

satisfy LTL specifications [80]. We now formalize the control synthesis problem as follows:151

Problem 1. Given a labeled MDP M+ and a LTL formula φ, find an optimal finite-memory policy152

π∗φ that maximizes the probability of satisfying φ, i.e., π∗φ := argmax
π∈Π

Prσ∼M+
π

{
σ | σ |= φ

}
, where153

Π is the set of policies and σ is a path drawn from the Markov chain (MC) M+
π induced by π.154

3

4 Accelerated Learning from LTL using Differentiable Rewards155

In this section, we present our approach for efficiently learning optimal policies that satisfy given156

LTL specifications by leveraging differentiable simulators. We first define product MDPs and discuss157

their conventional use in generating discrete LTL-based rewards for reinforcement learning. We then158

introduce our method for deriving differentiable rewards using soft labeling, enabling gradient-based159

optimization while preserving the logical structure of the specifications.160

Product MDPs. A product MDP is constructed by augmenting the states and actions of the original161

MDP with indicator vectors representing the LDBA states. The state augmentations serve as memory162

modes necessary for tracking temporal progress, while the action augmentations, referred to as163

ε-actions, capture the nondeterministic ε-moves of the LDBA. The transition function of the product164

MDP reflects a synchronous execution of the LDBA and the MDP; i.e., upon taking an action, the165

MDP moves to a new state according to its transition probabilities, and the LDBA transitions by166

consuming the label of the current MDP state.167

Definition 2. A product MDP M = (S,A, f ,p0,B) is of a labeled MDP M+ = (S,A, f, p0, A, L)168

with an LDBA Aφ = (Q,Σ=2A, δ, q0, B) derived from a given LTL formula φ such that S = S ×Q169

is the set of product states and A = A×Q is the set of product actions where Q = [0, 1]|Q| is the170

space set for the one-hot indicator vectors of automaton states; f : S × A 7→ S is the transition171

function defined as172

f(⟨s,qq⟩, ⟨a,qqε⟩) :=
{
⟨s′,qq′⟩ qε ̸∈ δ(q′, ε)

⟨s′,qqε⟩ qε ∈ δ(q′, ε)
(1)

for given s, s′,∈ S, a ∈ A and the indicator vectors qq,qq
′
,qqε ∈ Q for q, q′, qε ∈ Q, respec-173

tively, where s′ := f(s, a) and q′ := δ(q, L(s)); p0 is the initial product state distribution where174

p×0 (⟨s,qq⟩)[q = q0]; B = {⟨s,qq⟩ ∈ S | q ∈ B} is the set accepting product states. A product MDP175

is said to accept a product path σ iff σ satisfies the Büchi condition, denoted as σ |= □♢B, which is176

to visit some states in B infinitely often.177

By definition, any product path accepted by the product MDP corresponds to a path in the original178

MDP that satisfies the Büchi acceptance condition of the LDBA. Consequently, the satisfaction of the179

LTL specification φ is reduced to ensuring acceptance in the product MDP. This reduces Problem 1180

to maximizing the probability of reaching accepting states infinitely often in the product MDP:181

Lemma 1 (from Theorem 3 in [79]). A memoryless product policy π∗φ that maximizes the probability182

of satisfying the Büchi condition in a product MDP M constructed from a given labeled MDP M+183

and the LDBA Aφ derived from a given LTL specification φ, induces a policy π∗φ with a finite-memory184

captured by Aφ maximizing the satisfaction probability of φ in M+.185

Discrete LTL Rewards. The idea is to derive LTL rewards from the acceptance condition of the186

product MDP to be able train control policies via RL approaches. Specifically, we consider the187

approach proposed in [33] that uses carefully crafted rewards and state-dependent discounting based188

on the Büchi condition such that an optimal policy maximizing the expected return is also an objective189

policy π∗φ maximizing the satisfaction probabilities as defined in Lemma 1, as formalized below:190

Theorem 1. For a given product MDP M, the expected return for a policy π approaches the191

probability of satisfying the Büchi acceptance condition as the discount factor γ goes to 1; i.e.,192

limγ→1− Eσ∼Mπ [G(σ)] = Prσ∼Mπ (σ |= □♢B); if the return G(σ) is defined as follows:193

G(σ):=

∞∑
t=0

R(σ[t])

t−1∏
i=0

Γ(σ[i]), R(s):=

{
1−β s∈B
0 s/∈B , Γ(s):=

{
β s∈B
γ s/∈B (2)

where
∏−1
i=0 :=1, β is a function of γ satisfying limγ→1−

1−γ
1−β = 0, R :S 7→ [0, 1) and Γ:S 7→(0, 1)194

are state-dependent reward and the discount functions respectively.195

The proof can be found in [33]. The idea is to encourage the agent to repeatedly visit an accepting196

state as many times as possible by assigning a larger reward to the accepting states. Further, the197

rewards are discounted less in non-accepting states to reflect that the number of visitations to non-198

accepting states are not important. The LTL rewards provided this approach is that the rewards are199

4

very sparse; depending on the environment and the structure of the automaton, the agent might need200

to blindly explore a large portion of the state space before getting a nonzero reward, which constitutes201

the main hurdle in learning from LTL specifications.202

Differentiable LTL Rewards. We propose employing differentiable reinforcement learning (RL)203

algorithms and simulators to mitigate the sparsity issue and accelerate learning. However, the standard204

LTL rewards described earlier are not only sparse but discrete, rendering them non-differentiable205

with respect to states and actions. This lack of differentiability primarily stems from two factors: the206

binary state-based reward function and discrete automaton transitions. To address this challenge, we207

introduce probabilistic "soft" labels. We start by defining the probability that a given AP, denoted as208

a := ‘g(s) > 0’, belongs to the label L(s) of a state s. Formally, we define this probability as:209

Pr(a ∈ L(s)) = Pr(g(s) > 0) := h(g(s)) =
1

1 + exp(−g(s))
. (3)

Although we use the widely adopted sigmoid function here1, any differentiable cumulative distribution210

function (CDF) h : R 7→ [0, 1] could be applied. Building upon these probabilities, we define the211

probability associated with a label l as follows:212

Pr(L(s) = l) =
∏
a∈l

Pr(a ∈ L(s))
∏
a̸∈l

(1− Pr(a ∈ L(s))). (4)

These probabilistic labels induce probabilistic automaton transitions, causing the controller to observe213

automaton states probabilistically. Consequently, instead of modeling automaton states as determin-214

istic indicator vectors in product MDPs, we represent them as probabilistic superpositions over all215

possible automaton states. By doing so, we design differentiable transitions and rewards within the216

product MDP. Let fL : S×Q 7→ Q denote the function that updates the automaton state probabilities217

based on the LDBA transitions triggered by probabilistic labels, and let q denote the vector where218

each element qq is the probability of being in automaton state q, then we can formally define:219

fL(⟨s,q⟩) = q′ where q′q′=
∑
q

qq
∑

l∈Lq,q′

Pr(L(s)=l) and Lq,q′ :={l | q′=δ(q, l)}. (5)

Intuitively, the probability of transitioning to a subsequent automaton state q′ is computed by summing220

probabilities across all current automaton states q and labels l ∈ Lq,q′ capable of leading to state q′.221

This computation can be efficiently done through differentiable matrix multiplication.222

The remaining hurdle is the binary ε-actions available to the controller, which trigger ε-transitions in223

the LDBA. Similarly to the soft labels approach, ε-actions can become differentiable by representing224

the probabilities of the ε-transitions to be triggered. Let fε : Q × Q 7→ Q denote the function225

updating automaton state probabilities based on the ε-action taken, and let qε denote the vector whose226

elements indicate the probabilities of taking the ε-actions leading to the corresponding automaton227

states, we then define:228

fε(q,q
ε) =q′ where q′q′=

∑
q∈Qε,q′

qqq
ε
q′+

∑
q∈Qq′,ε

qq′q
ε
q, Qε,q′:={q | q′∈δ(q,ε)}, Qq′,ε:={q | q ̸∈δ(q′, ε)}. (6)

Conceptually, the probability of transitioning to automaton state q′ involves two scenarios: (the first229

summation in (6)) the probability of moving to q′ via valid ε-transitions, and (the second summation230

in (6)) the probability of remaining in q′ after trying to leave from q′ via nonexistent ε-transitions.231

These vector computations can be efficiently performed in a differentiable manner.232

We can formulate the complete transition function f by composing fL, fε, and f as follows:233

f(⟨s,q⟩, ⟨a,qε⟩) := ⟨f(s, a), fL(
〈
s, fε(q,q

ε)⟩)
〉
. (7)

This transition function first executes the ε-actions, then performs the LDBA transitions triggered by234

state labels to update the automaton state probabilities, while applying the given action to update the235

MDP states. The function f is fully differentiable with respect to s, q, a, and qε. We can now obtain236

1For the correctness of LTL, Pr(g(s) > 0) must be exactly 0 or 1 for values below or above certain thresholds.
In practice, this is not an issue, as overflow behavior of sigmoid ensures this condition is satisfied

5

p = park ¬grass 0.0 2.5 5.0 7.5 10.0
Deceleration (m/s2)

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
/P

ro
ba

bi
lit

y

0.0 2.5 5.0 7.5 10.0
Deceleration (m/s2)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Gr
ad

ie
nt

LTL Satisfaction Probability Return (Discrete LTL) Return (Differentiable LTL)

Figure 1: LTL Returns and Derivatives. Left: The parking scenario where the car must brake to stop in the
parking area without entering the grass field (φp). Middle: LTL satisfaction probability and return estimates
from discrete and differentiable LTL formulations as functions of deceleration. Right: LTL return gradients
with respect to deceleration and their standard deviation. The key challenge in learning from LTL arises from
slightly-sloped regions and sharp changes in the returns produced by discrete LTL rewards. Our differentiable
LTL approach not only smooths these abrupt changes but also enables the use of low-variance first-order
gradient estimates essential for effective learning in slightly-sloped regions.

a reward R : Q 7→ (0, 1) and a discounting function D : Q 7→ (0, 1) that are also differentiable with237

respect state and actions as follows:238

R(⟨s,q⟩) := (1− β)
∑
q∈B

qq, D(q) := β
∑
q∈B

qq + γ
∑
q ̸∈B

qq (8)

These differentiable reward, discounting and functions allow us to obtain first-order gradient estimates239

∇1
ψJ(ψ) := Eσ∼Mπψ

[∇ψGH(σ)] which are known to exhibit lower variance compared to zeroth-240

order estimates [73]. Such first-order estimates can be effectively utilized by differentiable RL241

algorithms to accelerate learning. In the following example, we illustrate employing these lower-242

variance gradient estimates is particularly crucial when learning from LTL rewards.243

Parking Example. Consider a parking scenario in which the vehicle starts with an initial velocity244

of v0 = 10 m/s. The controller applies the brakes with a constant deceleration a ∈ [0 m/s2, 10 m/s2]245

over the next 10 seconds, with the goal of bringing the car to rest inside the parking area. For246

safety, the vehicle must not enter the grass field before reaching the parking zone on the right-hand247

side. We formalize these requirements in LTL as φp=♢□park ∧ □¬grass where the parking248

area and the grass field are defined as park := (x>10 m ∧ x<20 m) ∨ (x>30 m ∧ x<40 m) and249

grass := x>20 m ∧ x<30 m, respectively.250

Figure 1 illustrates this task, including satisfaction probabilities, returns, and gradients with respect to251

deceleration. The satisfaction probability is 1 for deceleration values between 2.5 m/s2 and 5.0 m/s2,252

and 0 outside this range. The differentiable LTL returns closely match the discrete ones, except253

near the boundaries of the satisfaction region, where the differentiable version produces smoother254

transitions. This smoothness is particularly evident in the gradient plots. Although differentiable255

LTL rewards yield smoother return curves, learning remains challenging due to the small gradient256

magnitudes across most of the parameter space except near the satisfaction boundaries. For instance,257

in the region between 0.0 m/s2 and 2.5 m/s2, the returns increase with deceleration, but noisy258

gradient estimates can still lead the learner away from the satisfaction region. Therefore, obtaining259

low-variance gradient estimates is especially beneficial when learning from LTL, where most of the260

landscape requires sharper gradients for effective optimization.261

5 Experiments262

In this section, through simulated experiments, we show learning from the differentiable LTL rewards263

provided by our approach is significantly faster than learning from standard discrete LTL rewards.264

Implementation Details. We implemented our approach in Python utilizing the PyTorch-based265

differentiable physics simulator dFlex introduced in [73]. We used an NVIDIA GeForce RTX 2080266

GPU, 4 Intel(R) Xeon(R) Gold 5218 CPU cores, and 32 gigabytes memory for each experiment.267

6

Figure 2: Task Specification with LTL. This figure illustrates a Cheetah policy learned by SHAC using
differentiable rewards derived via our approach from the LTL formula φlegged (10), which specifies accelerating
forward, stopping, and maintaining a safe tip-to-ground distance. Specifying the desired behaviors of robots
using the high-level language LTL provides is an intuitive alternative to manually designing reward functions,
which often require extensive domain expertise and risk unintended behaviors. Enabling learning directly from
LTL unlocks new possibilities for robust, safe, and flexible robotic applications.

Specifically, we generate the automaton description using Owl [81] and parse it using Spot [82]. We268

then construct reward and transition tensors from the automata. We then compute the probabilities269

for each observations as explained in the previous section using a sequence of differentiable vector270

operations using PyTorch. Lastly, using the constructed transition and reward tensors, we update the271

automaton states and provide rewards. The overall approach is summarized in Algorithm 1.272

Algorithm 1 Differentiable RL with LTL
Require: MDPM , LTL formula φ, Policy πψ

Derive LDBAAφ and APs A from φ
Derive f (7) and R,D (8) fromAφ
while True do

Initialize q(0)∼Aφ, s(0)∼M ,G←0
for t = 1, 2, ..., H do

Get action ⟨a,qε⟩ ∼ πψ(⟨s(t-1),q(t-1)⟩)
Execute ε-action q′←fε(q,qε)
Execute label transition q(t)←fL(⟨s,q′⟩)
Execute MDP action s(t) ← f(s, a)

Compute reward r ← R(q(t))
Update returnG← G+ D(q) · r

end for
Train πψ using differentiable returnG

end while

Baselines. We use two widely adopted and representa-273

tive state-of-the-art (SOTA) model-free RL algorithms as274

our baseline non-differentiable RL methods (̸∂RLs): the275

on-policy Proximal Policy Optimization (PPO) [83] and276

the off-policy Soft Actor-Critic (SAC) [84]. For differen-277

tiable RL baselines (∂RLs), we employ SHAC and AHAC,278

which, to the best of our knowledge, represent the SOTA279

in this category. For each environment and baseline, we280

adopted the tuned hyperparameters in [74].281

Metric. We evaluate performance in terms of the col-282

lected LTL rewards averaged over 5 seeds since they can283

serve as proxies for satisfaction probabilities. We consid-284

ered two criteria: (1) the maximum return achieved and285

(2) the speed of convergence. To maintain consistency, we used differentiable LTL rewards across all286

baselines as, for non-differentiable baselines, we observed no performance difference between the287

differentiable and discrete LTL rewards.288

CartPole. The CartPole environment consists of a cart that moves along a one-dimensional track,289

with a pole hinged to its top that can be freely rotated by applying torque. The system yields a290

5-dimensional observation space and a 1-dimensional action space. The control objective is to move291

the tip of the pole through a sequence of target positions while maintaining the cart within a desired292

region as much as possible and ensuring the velocity of the cart always remains within safe boundaries.293

We capture these requirements in LTL as follows:294

φcartpole=□‘|cart_vx|<v0’︸ ︷︷ ︸
safety

∧□♢‘|cart_x|<x0’︸ ︷︷ ︸
repetition

∧♢
(
‘|pole_z-z0|<∆’∧♢‘|pole_z-z1|<∆’

)︸ ︷︷ ︸
reachability & sequencing

. (9)

Here, cart_x, cart_vx, and pole_z represent the cart position, the cart velocity, and the pole height295

respectively. This formula demonstrates how LTL can be leveraged to encode both complex safety296

constraints and performance objectives. Specifically, we set x0 = 10 m, v0 = 10 m/s as boundaries,297

z0 = −1 m, z1 = 1 m as the target positions, and ∆ = 25 cm as the allowable deviation.298

Legged Robots. We consider three legged-robot environments: Hopper, Cheetah, and Ant. The299

Hopper environment features a one-legged robot with 4 components and 3 joints, resulting in a300

10-dimensional state space and a 3-dimensional action space. The Cheetah environment consists301

of a two-legged robot with 8 components and 6 joints, yielding a 17-dimensional state space and a302

6-dimensional action space. The Ant environment includes a four-legged robot with 9 components303

and 8 joints, producing a 37-dimensional state space and an 8-dimensional action space. In all three304

environments, the control task requires always keeping the torso/tip of the robot above a critical305

safety height, maintaining a certain distance between the torso/tip and the critical height as often as306

7

20 40 60 80
Steps (M)

0

.2

.4

.6

.8

1

Re
tu

rn
 (L

TL
 S

at
. P

ro
b.

 E
st

.) CartPole

20 40 60 80

Hopper

20 40 60 80

Cheetah

20 40 60 80

Ant

Max Max Max Max
SHAC () AHAC () PPO (¬) SAC (¬)

Figure 3: Comparison Across Environments: Differentiable vs. Discrete LTL Rewards. The wider plots
show the learning curves of all baseline algorithms, while the narrower plots on the right display the maximum
returns achieved after 100 M steps. All results are averaged over 5 random seeds, and the curves are smoothed
using max and uniform filters for visual clarity. The reported returns, bounded between 0 and 1, serve as proxies
for the probability of satisfying the LTL specifications. In all the environments algorithms utilizing differentiable
LTL rewards (SHAC, AHAC) rapidly learn near-optimal policies, whereas those relying on discrete LTL rewards
(PPO, SAC), display high variance, converge slowly, or getting stuck with sub-optimal/near-zero-return policies.

possible, and accelerating the robot forward, and then bringing the robot to a full stop. We formalize307

this task in LTL as follows:308

φlegged=□‘torso_z>z0’︸ ︷︷ ︸
safety

∧□♢‘torso_z>z1’︸ ︷︷ ︸
repetition

∧♢
(
‘torso_vx>v1’∧♢‘torso_vx<v0’

)︸ ︷︷ ︸
reachability & sequencing

. (10)

Here, torso_z and torso_vx denote the height and horizontal velocity of the robots. This formula309

captures several key aspects of LTL, including, safety, reachability, sequencing, and repetition. The310

values of z0 and z1 were chosen based on the torso height of each robot in their referential system.311

Specifically, we used z0 = −110 cm, z1 = −105 cm for Hopper; z0 = −75 cm, z1 = −105 cm312

for Cheetah; and z0 = 0 cm, z1 = 5 cm for Ant, where z0 denotes the critical safety height and z1313

represents a safe margin above it. We set v1 = 1 m/s, v1 = 3 m/s, and v1 = 1.5 m/s for Hopper,314

Cheetah, and Ant, respectively, reflecting movement speeds relatively challenging yet achievable for315

each of the robot. For deceleration, we set v0 = 0 m/s for all the environments. An illustration of a316

policy learned from this specification for Cheetah is provided in Figure 2.317

Results. Figure 3 presents our simulation results. Across all environments, ∂RL algorithms that318

leverage our differentiable LTL rewards consistently outperform ̸∂RL algorithms in terms of both319

maximum return achieved and learning speed from the LTL specifications.320

CartPole. The safety specification induces an automaton with three states, each having 64 transitions–321

but only one of these transitions yields a reward. This extreme sparsity, even in a low-dimensional322

state space, severely hinders the learning process for ̸∂RLs, as shown in the leftmost plot of Figure 3.323

In contrast, ∂RL algorithms leverage the gradients provided by differentiable rewards, enabling them324

to efficiently learn policies that nearly satisfy the LTL specification. Specifically, ∂RLs converge325

to near-optimal policies (Pr>0.8) within just 20 M steps, whereas ̸∂RLs (SAC: all seeds; PPO: one326

seed) fail to learn any policy that achieves meaningful reward, even after 100 million (M) steps.327

Legged Robots. As we move to environments with higher-dimensional state spaces–10, 17, and 37328

dimensions for Hopper, Cheetah, and Ant, respectively–even relatively simple LTL specifications329

pose a significant challenge for ̸∂RLs. The automata derived from the LTL specifications in these330

environments consists of four states, each with 16 transitions, of which four transitions in the third331

state yield rewards. Reaching this state, however, requires extensive blind exploration of the state332

space, making it significantly hard for ̸∂RLs to learn optimal control policies. On the other hand,333

∂RLs, guided by LTL reward gradients, quickly identify high-reward regions of the state space and334

learn effective policies.335

For Hopper, ∂RLs converge to near-optimal policies (Pr>0.8) within 20 M steps, while PPO requires336

the full 100 M steps to converge, and one SAC seed gets trapped in a local optimum. For Cheetah,337

∂RLs attain optimal performance (Pr>0.9), whereas PPO converges to a suboptimal policy even after338

100 M steps, and SAC consistently fails by getting stuck in poor local optima. For Ant, ∂RLs again339

learn near-optimal policies rapidly, while ̸∂RLs converge only to suboptimal policies.340

8

Ablation Study. To isolate the impact of differentiability of LTL rewards from inherent envi-341

ronment properties, we conduct an ablation study comparing ∂RLs and ̸∂RLs under simplified342

LTL specifications. Specifically, we use reduced versions of the LTL formulas from our earlier343

experiments:344

φ′cartpole := ♢‘|pole_z-z0|<∆’ (11)

φ′legged := ♢‘torso_vx>v1’ (12)

using z0 = −1 m, ∆ = 25 cm for Cartpole, and v1 = 50 cm/s for all the legged-robot environments.345

These simplified formulas yield one-state automata with 4 and 2 transitions, respectively, of which346

one is accepting. As such, they lack the complexity that makes learning from LTL challenging.347

Figure 4 presents the maximum returns obtained for these simplified specifications. Each of the348

baselines, regardless of differentiability, learns an optimal policy (Pr>0.9) for all the environments.349

However, when comparing these results to those in Figure 3, we observe only a minor performance350

drop for ∂RLs, whereas the performance of ̸∂RLs degrades dramatically—for some cases, from351

near satisfaction to complete failure—as LTL complexity increases. These results support our352

hypothesis that the performance advantage of ∂RLs over ̸∂RLs arises primarily from leveraging the353

differentiability of LTL rewards provided by our approach, rather than from environment-specific354

properties.355

6 Discussion and Limitations356

.97

.98

.99

1.0
Re

tu
rn

 (L
TL

 S
at

. P
ro

b.
 E

st
.) CartPole Hopper Cheetah Ant

SHAC () AHAC () PPO (¬) SAC (¬)

Figure 4: Ablation Study for LTL. The maximum
returns obtained after 100 M steps for simplified LTL
formulas (12), averaged over 5 seeds. Returns (0 to
1) indicate LTL satisfaction probabilities. Under these
simpler specifications, both ̸∂RLs and ∂RLs success-
fully learn near-optimal policies. However, as shown
in Figure 3, the performance of discrete ̸∂RLs degrades
dramatically with increasing LTL complexity—unlike
differentiable ∂RLs, which maintain reasonable perfor-
mance by leveraging the LTL rewards differentiability.

Our approach accelerates learning from LTL357

specifications by leveraging differentiable RL358

algorithms that utilize gradients provided by dif-359

ferentiable simulators. Therefore, the overall360

performance of our method is inherently influ-361

enced by the quality and efficiency of the under-362

lying simulators and RL algorithms. For exam-363

ple, if a simulator provides poor gradient infor-364

mation or computes gradients slowly, the learn-365

ing process will be significantly slowed down.366

Another issue is the reliance on hyperparame-367

ters. Although we adopt tuned hyperparameters368

from existing work, applying our approach to369

new environments may require additional hyper-370

parameter tuning. A further challenge lies in371

the formalization of LTL specifications. While372

LTL offers a more intuitive and structured way373

to specify tasks compared to manual reward en-374

gineering, it still requires familiarity with formal375

logic and sufficient domain knowledge to define376

meaningful bounds. Finally, our method intro-377

duces an additional hyperparameter: the CDF used for probability estimation, which must also be378

tuned for optimal performance.379

7 Conclusion380

In this work, we tackle the critical challenge of scalable RL for robotic systems under long-horizon,381

formally specified tasks. By adopting LTL as our specification framework, we ensure objective382

correctness and avoid the reward misspecification issues commonly encountered in conventional RL383

approaches. To overcome the learning inefficiencies caused by sparse logical rewards, we propose a384

novel method that leverages differentiable simulators, enabling gradient-based learning directly from385

LTL objectives without compromising their expressiveness or correctness. Our approach introduces386

soft labeling techniques that preserve the differentiability through the transitions of automata derived387

from LTL formulas, resulting in end-to-end differentiable learning framework. Through a series of388

simulated experiments, we demonstrate that our method substantially accelerates learning compared389

to SOTA non-differentiable baselines, paving the way for more reliable and scalable deployment of390

autonomous robotic systems in complex real-world environments.391

9

References392

[1] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.393

The International Journal of Robotics Research, 32(11):1238–1274, 2013.394

[2] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep395

visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.396

[3] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-397

Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning398

dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,399

2020.400

[4] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen401

Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science402

Robotics, 4(26):eaau5872, 2019.403

[5] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning404

quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.405

[6] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware motion planning406

with deep reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent407

Robots and Systems (IROS), pages 1343–1350. IEEE, 2017.408

[7] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:409

A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.410

[8] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.411

Journal of Machine Learning Research, 16(1):1437–1480, 2015.412

[9] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A413

lyapunov-based approach to safe reinforcement learning. Advances in neural information414

processing systems, 31, 2018.415

[10] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning416

by pid lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.417

PMLR, 2020.418

[11] Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably419

efficient safe exploration via primal-dual policy optimization. In International conference on420

artificial intelligence and statistics, pages 3304–3312. PMLR, 2021.421

[12] Puze Liu, Davide Tateo, Haitham Bou Ammar, and Jan Peters. Robot reinforcement learning422

on the constraint manifold. In Conference on Robot Learning, pages 1357–1366. PMLR, 2022.423

[13] Felix Berkenkamp, Matteo Turchetta, Angela P Schoellig, and Andreas Krause. Safe model-424

based reinforcement learning with stability guarantees. NIPS, 2017.425

[14] Jaime F. Fisac, Anayo K. Akametalu, Melanie N. Zeilinger, Shahab Kaynama, Jeremy Gillula,426

and Claire J. Tomlin. A general safety framework for learning-based control in uncertain robotic427

systems. TAC, 64(7):2737–2752, 2019.428

[15] Richard Cheng, Gabor Orosz, Richard M. Murray, and Joel W. Burdick. End-to-end safe429

reinforcement learning through barrier functions for safety-critical continuous control tasks.430

AAAI, 2019.431

[16] Björn Lütjens, Michael Everett, and Jonathan P How. Safe reinforcement learning with model432

uncertainty estimates. ICRA, 2019.433

[17] Jaime F. Fisac, Neil F. Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J. Tomlin.434

Bridging hamilton-jacobi safety analysis and reinforcement learning. ICRA, 00:8550–8556,435

2019.436

[18] Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho437

Hwang, Joseph E. Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery RL: Safe438

reinforcement learning with learned recovery zones. RA-L, 6(3):4915–4922, 2020.439

[19] Shuo Li and Osbert Bastani. Robust model predictive shielding for safe reinforcement learning440

with stochastic dynamics. ICRA, 00:7166–7172, 2020.441

[20] Mario Zanon and Sebastien Gros. Safe reinforcement learning using robust MPC. TAC,442

66(8):3638–3652, 2020.443

10

[21] Mohit Srinivasan, Amogh Dabholkar, Samuel Coogan, and Patricio A. Vela. Synthesis of444

control barrier functions using a supervised machine learning approach. IROS, 00:7139–7145,445

2020.446

[22] Jason Choi, Fernando Castaneda, Claire J. Tomlin, and Koushil Sreenath. Reinforcement447

learning for safety-critical control under model uncertainty, using control lyapunov functions448

and control barrier functions. RSS, 2020.449

[23] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan. Distributed multi-robot collision avoidance450

via deep reinforcement learning for navigation in complex scenarios. Journal of Robotics451

Research, 39(7):856–892, 2020.452

[24] Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe453

multi-agent control with decentralized neural barrier certificates. ICLR, 2021.454

[25] Weiye Zhao, Tairan He, and Changliu Liu. Model-free safe control for zero-violation reinforce-455

ment learning. CoRL, 2021.456

[26] Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A457

survey of neural lyapunov, barrier, and contraction methods for robotics and control. T-RO,458

39(3):1749–1767, 2023.459

[27] Santiago Paternain, Miguel Calvo-Fullana, Luiz F. O. Chamon, and Alejandro Ribeiro. Safe460

policies for reinforcement learning via primal-dual methods. TAC, 68(3):1321–1336, 2023.461

[28] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik462

Wojtczak. Omega-regular objectives in model-free reinforcement learning. In Proceedings of463

the 25th International Conference on Tools and Algorithms for the Construction and Analysis464

of Systems (TACAS), pages 395–412, 2019.465

[29] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Control synthesis from linear temporal466

logic specifications using model-free reinforcement learning. In International Conference on467

Robotics and Automation (ICRA), pages 10349–10355, 2020.468

[30] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Model-free reinforcement learning for469

stochastic games with linear temporal logic objectives. In International Conference on Robotics470

and Automation (ICRA), pages 10649–10655. IEEE, 2021.471

[31] A. K. Bozkurt, Y. Wang, and M. Pajic. Secure planning against stealthy attacks via model-free472

reinforcement learning. In International Conference on Robotics and Automation (ICRA), pages473

10656–10662. IEEE, 2021.474

[32] A. K. Bozkurt, Y. Wang, and M. Pajic. Model-free learning of safe yet effective controllers. In475

Conference on Decision and Control (CDC), pages 6560–6565. IEEE, 2021.476

[33] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Learning optimal controllers for477

temporal logic specifications in stochastic games. Transactions on Automatic Control (TAC),478

2024.479

[34] Xiao Li, Zachary Serlin, Guang Yang, and Calin Belta. A formal methods approach to inter-480

pretable reinforcement learning for robotic planning. Science Robotics, 4(37), 2019.481

[35] Mingyu Cai, Mohammadhosein Hasanbeig, Shaoping Xiao, Alessandro Abate, and Zhen Kan.482

Modular deep reinforcement learning for continuous motion planning with temporal logic.483

RA-L, 6(4):7973–7980, 2021.484

[36] Mingyu Cai, Shaoping Xiao, Baoluo Li, Zhiliang Li, and Zhen Kan. Reinforcement learning485

based temporal logic control with maximum probabilistic satisfaction. ICRA, 00:806–812, 2021.486

[37] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward487

machines: Exploiting reward function structure in reinforcement learning. JAIR, 2022.488

[38] Yiannis Kantaros. Accelerated reinforcement learning for temporal logic control objectives.489

IROS, 00:5077–5082, 2022.490

[39] Cameron Voloshin, Hoang M Le, Swarat Chaudhuri, and Yisong Yue. Policy optimization with491

linear temporal logic constraints. NeurIPS, 2022.492

[40] Cambridge Yang, Michael Littman, and Michael Carbin. On the (in)tractability of reinforcement493

learning for LTL objectives. IJCAI, 2022.494

11

[41] Mingyu Cai, Shaoping Xiao, Junchao Li, and Zhen Kan. Safe reinforcement learning under495

temporal logic with reward design and quantum action selection. Scientific Reports, 13(1):1925,496

2023.497

[42] Hosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Certified reinforcement learning498

with logic guidance. Artificial Intelligence, 322:103949, 2023.499

[43] Mingyu Cai, Erfan Aasi, Calin Belta, and Cristian-Ioan Vasile. Overcoming exploration: Deep500

reinforcement learning for continuous control in cluttered environments from temporal logic501

specifications. RA-L, 8(4):2158–2165, 2023.502

[44] Bohan Cui, Keyi Zhu, Shaoyuan Li, and Xiang Yin. Security-aware reinforcement learning503

under linear temporal logic specifications. ICRA, 00:12367–12373, 2023.504

[45] Cameron Voloshin, Abhinav Verma, and Yisong Yue. Eventual discounting temporal logic505

counterfactual experience replay. ICML, 2023.506

[46] Daqian Shao and Marta Kwiatkowska. Sample efficient model-free reinforcement learning from507

LTL specifications with optimality guarantees. arXiv, 2023.508

[47] Daiying Tian, Hao Fang, Qingkai Yang, Haoyong Yu, Wenyu Liang, and Yan Wu. Reinforcement509

learning under temporal logic constraints as a sequence modeling problem. Robotics and510

Autonomous Systems, 161:104351, 2023.511

[48] Christos K. Verginis, Cevahir Koprulu, Sandeep Chinchali, and Ufuk Topcu. Joint learning512

of reward machines and policies in environments with partially known semantics. Artificial513

Intelligence, 333:104146, 2024.514

[49] Xuan-Bach Le, Dominik Wagner, Leon Witzman, Alexander Rabinovich, and Luke Ong.515

Reinforcement learning with LTL and $\ omega$-regular objectives via optimality-preserving516

translation to average rewards. NeurIPS, 2024.517

[50] Mateo Perez, Fabio Somenzi, and Ashutosh Trivedi. A PAC learning algorithm for LTL and518

omega-regular objectives in MDPs. AAAI, 38(19):21510–21517, 2024.519

[51] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.520

Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.521

[52] Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and522

characterizing reward gaming. Advances in Neural Information Processing Systems, 35:9460–523

9471, 2022.524

[53] Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang,525

Zhaoran Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe526

reinforcement learning in unknown stochastic environments. In International Conference on527

Machine Learning, pages 36593–36604. PMLR, 2023.528

[54] Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement529

learning. In International conference on machine learning, pages 25636–25655. PMLR, 2022.530

[55] Kai-Chieh Hsu, Vicenç Rubies-Royo, Claire J Tomlin, and Jaime F Fisac. Safety and liveness531

guarantees through reach-avoid reinforcement learning. RSS, 2021.532

[56] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta. Q-learning for robust satisfaction533

of signal temporal logic specifications. In 2016 IEEE 55th Conference on Decision and Control534

(CDC), pages 6565–6570, Dec 2016.535

[57] Justin Carpentier and Nicolas Mansard. Analytical derivatives of rigid body dynamics algorithms.536

RSS, 2018.537

[58] Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bacher, Bernhard Thomaszewski, and538

Stelian Coros. ADD: Analytically differentiable dynamics for multi-body systems with frictional539

contact. TOG, 2020.540

[59] Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C Lin. Efficient differentiable541

simulation of articulated bodies. ICML, 2021.542

[60] Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda, and Pulkit543

Agrawal. An end-to-end differentiable framework for contact-aware robot design. RSS, 2021.544

[61] Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen Liu. Fast and545

feature-complete differentiable physics for articulated rigid bodies with contact. RSS, 2021.546

12

[62] Eric Heiden, Miles Macklin, Yashraj Narang, Dieter Fox, Animesh Garg, and Fabio Ramos.547

DiSECt: A differentiable simulation engine for autonomous robotic cutting. RSS, 2021.548

[63] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier549

Bachem. Brax - a differentiable physics engine for large scale rigid body simulation. NeurIPS,550

2021.551

[64] Miguel Zamora, Momchil Peychev, Sehoon Ha, Martin Vechev, and Stelian Coros. PODS:552

Policy optimization via differentiable simulation. ICML, 2021.553

[65] Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech554

Matusik. DiffPD: Differentiable projective dynamics. TOG, 41(2):1–21, 2021.555

[66] Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B Tenenbaum, and Chuang556

Gan. PlasticineLab: A soft-body manipulation benchmark with differentiable physics. ICLR,557

2021.558

[67] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and559

Frédo Durand. DiffTaichi: Differentiable programming for physical simulation. ICLR, 2020.560

[68] Junbang Liang, Ming C. Lin, and Vladlen Koltun. Differentiable cloth simulation for inverse561

problems. NeurIPS, pages 1–22, 2019.562

[69] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman,563

Jiajun Wu, Daniela Rus, and Wojciech Matusik. ChainQueen: A real-time differentiable564

physical simulator for soft robotics. ICRA, 00:6265–6271, 2019.565

[70] Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. Gradients are not all566

you need. arXiv preprint arXiv:2111.05803, 2021.567

[71] Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. Pipps: Flexible model-568

based policy search robust to the curse of chaos. In International Conference on Machine569

Learning, pages 4065–4074. PMLR, 2018.570

[72] Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators571

give better policy gradients? In International Conference on Machine Learning, pages 20668–572

20696. PMLR, 2022.573

[73] Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg,574

and Miles Macklin. Accelerated policy learning with parallel differentiable simulation. ICLR,575

2022.576

[74] Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, and Animesh Garg. Adaptive horizon577

actor-critic for policy learning in contact-rich differentiable simulation. ICML, 2024.578

[75] Sanghyun Son, Laura Yu Zheng, Ryan Sullivan, Yi-Ling Qiao, and Ming C. Lin. Gradient579

informed proximal policy optimization. NeurIPS, 2023.580

[76] Karen Leung, Nikos Aréchiga, and Marco Pavone. Backpropagation through signal temporal581

logic specifications: Infusing logical structure into gradient-based methods. The International582

Journal of Robotics Research, 42(6):356–370, 2023.583

[77] Yue Meng and Chuchu Fan. Signal temporal logic neural predictive control. RAL, 8(11):7719–584

7726, 2023.585

[78] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, Cambridge,586

MA, USA, 2008.587

[79] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínský. Limit-deterministic Büchi588

automata for linear temporal logic. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer589

Aided Verification, pages 312–332, Cham, 2016. Springer International Publishing.590

[80] Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic ω-regular games.591

Journal of Computer and System Sciences, 78(2):394–413, 2012.592

[81] Jan Kretínský, Tobias Meggendorfer, and Salomon Sickert. Owl: A library for ω-words,593

automata, and LTL. In Proceedings of the 16th International Symposium on Automated594

Technology for Verification and Analysis (ATVA), volume 11138 of LNCS, pages 543–550,595

2018.596

13

[82] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne597

Renault, and Laurent Xu. Spot 2.0—a framework for ltl and-automata manipulation. In598

Proceedings of the 14th International Symposium on Automated Technology for Verification599

and Analysis (ATVA), pages 122–129, 2016.600

[83] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal601

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.602

[84] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,603

Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms604

and applications. arXiv preprint arXiv:1812.05905, 2018.605

14

A Appendix606

Please check the supplemental material.607

15

NeurIPS Paper Checklist608

1. Claims609

Question: Do the main claims made in the abstract and introduction accurately reflect the610

paper’s contributions and scope?611

Answer: [Yes]612

Justification: We propose, to our knowledge, the first approach utilizing differentiable613

simulators to accelerate learning from LTL specifications, and we show the efficacy of our614

approach in experiments section.615

2. Limitations616

Question: Does the paper discuss the limitations of the work performed by the authors?617

Answer: [Yes]618

Justification: Our paper includes an explicit section dedicated to the limitations of our619

approach.620

3. Theory assumptions and proofs621

Question: For each theoretical result, does the paper provide the full set of assumptions and622

a complete (and correct) proof?623

Answer: [Yes]624

Justification: All assumptions are explicitly formalized for each theoretical statement. We625

provide intuitive explanations alongside the proofs, cite relevant resources for complete626

proofs, and include additional formalizations and explanations in the supplemental material.627

4. Experimental result reproducibility628

Question: Does the paper fully disclose all the information needed to reproduce the main ex-629

perimental results of the paper to the extent that it affects the main claims and/or conclusions630

of the paper (regardless of whether the code and data are provided or not)?631

Answer: [Yes]632

Justification: We clearly outlined the steps of our approach and provided pseudo-code, along633

with a reference to the paper from which all hyperparameters were adopted.634

5. Open access to data and code635

Question: Does the paper provide open access to the data and code, with sufficient instruc-636

tions to faithfully reproduce the main experimental results, as described in supplemental637

material?638

Answer: [Yes]639

Justification: The code is included in the supplemental material.640

6. Experimental setting/details641

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-642

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the643

results?644

Answer: [Yes] .645

Justification: We thoroughly specified the environment details for each experiment, with646

additional information provided in the supplemental material.647

7. Experiment statistical significance648

Question: Does the paper report error bars suitably and correctly defined or other appropriate649

information about the statistical significance of the experiments?650

Answer: [Yes]651

Justification: We showed standard deviation for each learning curve, as well as minimum,652

maximum, and mean values for the final policies.653

8. Experiments compute resources654

16

Question: For each experiment, does the paper provide sufficient information on the com-655

puter resources (type of compute workers, memory, time of execution) needed to reproduce656

the experiments?657

Answer: [Yes] .658

Justification: We included the information regarding the computer resources we used in the659

experiments section.660

9. Code of ethics661

Question: Does the research conducted in the paper conform, in every respect, with the662

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?663

Answer: [Yes]664

Justification: We reviewed the NeurIPS Code of Ethics and confirm that the research665

conducted fully adheres to it.666

10. Broader impacts667

Question: Does the paper discuss both potential positive societal impacts and negative668

societal impacts of the work performed?669

Answer: [NA]670

Justification: Our work does not have direct societal impacts.671

11. Safeguards672

Question: Does the paper describe safeguards that have been put in place for responsible673

release of data or models that have a high risk for misuse (e.g., pretrained language models,674

image generators, or scraped datasets)?675

Answer: [NA]676

Justification: Our paper does not present any such risks.677

12. Licenses for existing assets678

Question: Are the creators or original owners of assets (e.g., code, data, models), used in679

the paper, properly credited and are the license and terms of use explicitly mentioned and680

properly respected?681

Answer: [Yes]682

Justification: All tools, models, and hyperparameters used in our work are properly cited.683

13. New assets684

Question: Are new assets introduced in the paper well documented and is the documentation685

provided alongside the assets?686

Answer: [Yes]687

Justification: Our code is properly documented and included with a read-me file in the688

supplemental material.689

14. Crowdsourcing and research with human subjects690

Question: For crowdsourcing experiments and research with human subjects, does the paper691

include the full text of instructions given to participants and screenshots, if applicable, as692

well as details about compensation (if any)?693

Answer: [NA]694

Justification: Our work does not involve crowdsourcing or research with human subjects.695

15. Institutional review board (IRB) approvals or equivalent for research with human696

subjects697

Question: Does the paper describe potential risks incurred by study participants, whether698

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)699

approvals (or an equivalent approval/review based on the requirements of your country or700

institution) were obtained?701

Answer: [NA]702

17

https://neurips.cc/public/EthicsGuidelines

Justification: Our work does not involve crowdsourcing or research with human subjects.703

16. Declaration of LLM usage704

Question: Does the paper describe the usage of LLMs if it is an important, original, or705

non-standard component of the core methods in this research? Note that if the LLM is used706

only for writing, editing, or formatting purposes and does not impact the core methodology,707

scientific rigorousness, or originality of the research, declaration is not required.708

Answer: [NA]709

Justification: The LLMs were used solely for grammar checks in this work.710

18

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Accelerated Learning from LTL using Differentiable Rewards
	Experiments
	Discussion and Limitations
	Conclusion
	Appendix

