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ABSTRACT

Effective attention modules have played a crucial role in the success of Transformer-
based large language models (LLMs), but the quadratic time and memory com-
plexities of these attention modules also pose a challenge when processing long
sequences. One potential solution for the long sequence problem is to utilize
distributed clusters to parallelize the computation of attention modules across mul-
tiple devices (e.g., GPUs). However, adopting a distributed approach inevitably
introduces extra memory overheads to store local attention results and incurs ad-
ditional communication costs to aggregate local results into global ones. In this
paper, we propose a distributed attention framework named “BurstAttention” to
optimize memory access and communication operations at both the global cluster
and local device levels. In our experiments, we compare BurstAttention with
other competitive distributed attention solutions for long sequence processing. The
experimental results under different length settings demonstrate that BurstAttention
offers significant advantages for processing long sequences compared with these
competitive baselines, reducing 40% communication overheads and achieving 2×
speedup during training 128K sequence length on 8×A100.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have emerged as the dominant architectures for large language
models (LLMs) (Brown et al., 2020; Chowdhery et al., 2022) due to their remarkable capacities to
understand complex text and generate controllable responses. Empirically, the power of Transformers
lies largely in their multi-head attention modules, which enable Transformers to capture rich semantic
information from textual contexts effectively. For every plus, there is a minus. Despite the success of
Transformers’ attention modules, these modules exhibit quadratic time and memory complexity con-
cerning sequence length, posing challenges in terms of both computing time and memory overheads
as sequence length increases.

Various efforts have been devoted to making attention modules more efficient and enabling LLMs
to process longer sequences. One direction is taking full advantage of a single device’s compute
and storage units (e.g., a GPU) to process long sequences, such as FlashAttention (Dao et al., 2022).
FlashAttention can significantly accelerate the computation of attention modules by using more
efficient static random access memory (SRAM) instead of high-bandwidth memory (HBM) in devices
to store intermediate attention states. Another direction is using distributed clusters containing
multiple devices (e.g., multiple GPUs) to process long sequences, such as RingAttention (Li et al.,
2021). RingAttention divides long sequences into multiple subsequences and processes subsequences
separately on different devices. Besides these efforts, some lossy methods, such as sparse attention
methods (Zaheer et al., 2020; Ding et al., 2023), are also widely explored to reduce the computing
time and memory requirements of attention modules within a tolerable performance penalty.

All the above improvements orienting to improve attention modules have achieved promising results,
and an intuitive problem is raised — whether we can combine these improvements to achieve a more
efficient attention solution. This paper introduces an efficient distributed attention framework to
handle extremely long sequences named “BurstAttention”. BurstAttention can take full advantage of
the power of both distributed clusters and single devices while being compatible with lossy sparse

1



Under review as a conference paper at ICLR 2024

attention methods. Specifically, given an extremely long sequence, BurstAttention first divides the
sequence into partitions according to the number of devices in distributed clusters, and each partition
is assigned to one of these devices. Then, each device projects the partitioned sequence into query,
value, and key embedding partitions. The query partitions are pinned, and all key-value partitions are
passed through all devices to compute their local attention scores with each pinned query partition.
Based on the local attention scores, a global attention operation is adopted to aggregate the local
results into the final global results.

By fine-grained scheduling the computation and communication operations of devices during com-
puting attention modules, as well as introducing online softmax operations (Milakov & Gimelshein,
2018), BurstAttention proposes global attention optimization (GAO) and local attention optimization
(LAO) strategies, which can fully optimize the input-output (I/O) and communication procedures in
distributed clusters. These two strategies offer substantial benefits for computing local attention scores
in each device and aggregating local results into global ones in the whole cluster, including improved
memory consumption, reduced communication overhead, and enhanced cache utilization. Since
BurstAttention splits sequences into multiple partitions for processing, this design naturally makes it
adaptable to any optimization strategies at the local attention level, especially the above-mentioned
sparse attention methods (Zaheer et al., 2020; Ding et al., 2023). Also, owing to just splitting
sequences, BurstAttention is orthogonal to other distributed methods and can be easily integrated
with these for training and inference Transformer-based LLMs, such as data parallelism (Valiant,
1990), tensor parallelism (Narayanan et al., 2021), pipeline parallelism (Huang et al., 2019), and zero
redundancy optimizer (Rajbhandari et al., 2020; Ren et al., 2021).

We evaluate BurstAttention and current competitive distributed attention solutions (Dao et al., 2022; Li
et al., 2021) under various sequence length settings. The experimental results show that BurstAttention
is a memory-efficient solution for attention modules to process long sequences and achieve good
data throughputs. Moreover, since BurstAttention greatly optimizes the communication operations
in the computation process of attention modules, BurstAttention makes it more difficult for device
communication to become a bottleneck as the devices in distributed clusters increase, and thus can
take better advantage of distributed clusters than other attention solutions.

2 RELATED WORK

Transformer-based LLMs such as GPT (Brown et al., 2020; Ouyang et al., 2022), LLaMA (Touvron
et al., 2023a;b), and PaLM (Chowdhery et al., 2022; Anil et al., 2023) have achieved great success
in recent years (Han et al., 2021; Bommasani et al., 2021; Zhao et al., 2023). Despite the success
of these LLMs, they still face efficiency challenges: one is that as these models continue to grow
in size, the computational and memory costs associated with training and inference have become
bottlenecks. Another is that the quadratic attention computational complexity of the Transformer
architecture makes these LLMs difficult to handle long sequences. Up to now, various parallelism
strategies (Valiant, 1990; Huang et al., 2019; Rajbhandari et al., 2020; Narayanan et al., 2021) and
memory optimization strategies (Ren et al., 2021; Chen et al., 2016; Korthikanti et al., 2023), which
have significantly improved the training and inference efficiency of LLMs, have well solved the
computational bottleneck caused by the model size growth, but it is still challenging to solve the
efficiency issue caused by the sequence growth.

To enable LLMs to process longer sequences more efficiently, several attention solutions have been
proposed. Korthikanti et al. (2023) adopt selective activation recomputation to avoid storing attention
softmax logits during the forward pass, and then recompute these logits during the backward pass to
build a computation graph for backpropagation, significantly reducing memory overheads of attention
modules to process long sequences. Rabe & Staats (2021) formalize the computation of attention
modules at the block level and make each thread block in devices handle the attention computation
of a sub-sequence, further reducing temporary memory consumptions and achieving a logarithmic
memory complexity relative to the sequence length. Based on these works, Dao et al. (2022) introduce
FlashAttention, a CUDA implementation of attention modules that leverages the fast I/O capabilities
of the SRAM in devices for further speedup. FlashAttention optimizes the attention algorithm by
introducing I/O complexity analysis and minimizing the I/O costs on the HBM in devices, offering a
new perspective on attention optimization.
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While the above solutions focus on optimizing the long-sequence attention problem using a single
device, they still struggle to handle extremely long sequences due to the limitations of a single device’s
performance. Some recent efforts have therefore aimed to address this long-sequence challenge using
distributed clusters, i.e., using multiple devices. The most straightforward method is to use general
parallelism strategies, such as data parallelism (Valiant, 1990), tensor parallelism (Narayanan et al.,
2021), pipeline parallelism (Huang et al., 2019), and zero redundancy optimizer (Rajbhandari et al.,
2020; Ren et al., 2021). In order to better use distributed clusters for attention modules to process
long sequences, Li et al. (2021) propose sequence parallelism method RingAttention, which splits
the computation and memory overheads of attention modules across multiple devices following the
sequence dimension.

Various sparse attention methods, including low-rank methods (Winata et al., 2020; Wang et al.,
2020), kernel-based methods (Katharopoulos et al., 2020; Choromanski et al., 2020; Qin et al.,
2022) and downsampling methods (Lee et al., 2019; Jaegle et al., 2021) are also widely explored.
These methods reduce the time and memory requirements of attention modules by computing a
limited selection of similarity scores from a sequence rather than all possible pairs, resulting in
sparse attention softmax logits rather than dense ones. Recently, Ding et al. (2023) have explored
implementing sparse attention methods based on distributed clusters and achieved promising results.
Note that these sparse attention methods inevitably lead to significant performance degradation, along
with reducing the time and memory requirements. In the actual processing of long sequences, the use
of these lossy methods needs to be cautious.

Existing attention solutions to process long sequences mainly focus on one specific optimization
aspect. This paper provides a holistic perspective that encompasses all the above-mentioned aspects
and offers an efficient distributed attention framework to process extremely long sequences.

3 METHODOLOGY

3.1 PRELIMINARY

As the key module in Transformers (Vaswani et al., 2017), an attention module can be formalized as

S =
QKT

√
d

, P = softmax(S), O = PV, (1)

where Q ∈ RN×d indicates the embeddings of the query sequence, N is the length of the query
sequence, and d is the embedding dimension. K ∈ RN×d and V ∈ RN×d indicate the embeddings of
the key sequence and the value sequence, respectively. S ∈ RN×N is the attention score, P ∈ RN×N

is the attention probability. O ∈ RN×d is the final attention result, which is the average of the value
sequence embeddings weighted by the similarities between the query sequence and the key sequence.
In this paper, we mainly use self-attention modules to illustrate BurstAttention, but BurstAttention
can be easily extended to cross-attention modules. For more details of various attention modules in
the Transformer architecture, we recommend referring to the original paper of Transformers (Vaswani
et al., 2017), and we will not go into details here.

3.2 THE WHOLE FRAMEWORK OF BURSTATTENTION

We build the whole framework of BurstAttention based on sequence parallelism (Li et al., 2021),
where Q, K and V are divided into multiple partitions along the sequence dimension according to
the number of devices (e.g., GPUs) in a distributed cluster. Each device in the cluster will be assigned
a query partition, a key partition, and a value partition. Formally, given the device number G, the
i-th device will be assigned Qi,Ki,Vi ∈ RN

G ×d. As shown in Figure 1, at each step, the i-th device
receives a key partition Kj and a value partition Vj from its previous neighbor and performs local
attention operations. After that, the i-th device sends its received key and value partitions Kj and Vj

to its next neighbor for the use of the next step, which forms a ring-style communication process.
This ring-style communication process continues until all K and V partitions have made a full circle
around the ring, completing local attention operations on all devices. The local attention operations
can be formalized as

Si,j =
QiK

T
j√

d
, Pi,j = softmax(Si,j), Oi,j = Pi,jVj , (2)
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Figure 1: In this figure, we undertake a two-step partitioning of the sequence input: first, dividing it
across multiple devices (inter-device), and then further splitting it within each single device (intra-
device). First, We partition the query, key, and value across multiple devices and pass the sliced
sequence through each device in a ring-like communication, allowing each device to process only
a local attention at a time. This avoids the burden on memory caused by processing extremely
long sequence at once. We then aggregate local attention results into global attention results. By
transmitting K,V simultaneously, we avoid storing intermediate result QKT , which has quadratic
memory complexity, and instead recompute it during the backward pass, which we call global
attention optimization (GAO). In local attention, we further partition the sub-sequence into smaller
tiles, aiming to perform block-wise computations within the device. This allows us to take advantage
of the high bandwidth of SRAM while minimizing access to the lower bandwidth HBM, which we
call local attention optimization (LAO).

where Oi,j ∈ RN
G ×d is the local attention results between the device-assigned query partition Qi

and the device-received partitions Kj and Vj . Si,j ∈ RN
G ×N

G is the local attention score, and
Pi,j ∈ RN

G ×N
G is the local attention probability. Obviously, Eq. (1) and Eq. (2) are not equivalent, we

thus introduce global attention operations to aggregate all local attention results {Oi,j}
N
G ,NG
i=1,j=1 into

the final partitioned attention results Oi ∈ RN
G ×d, and {Oi}

N
G
i=1 is the final global attention results.

To make both the global and local attention operations more efficient, we introduce Global Attention
Optimization (GAO) and Local Attention Optimization (LAO), respectively. Next, we will introduce
how to perform these attention optimization strategies in detail.

3.3 GLOBAL ATTENTION OPTIMIZATION (GAO)

For global attention operations, the main idea is to aggregate Oi,j into Oi. For some conventional
methods such as RingAttention (Li et al., 2021), for the i-th query partition, they store the intermediate
results Si,j and Pi,j for every j throughout the ring-style communication process. This introduces a
non-negligible memory overhead. To get rid of this memory overhead, we introduce GAO.

As shown in Figure 1, GAO consists of two main steps. First, similar to RingAttention, devices are
organized in a ring for communication. Each round, K,V partitions are shifted along the ring to
the next adjacent device. Second, after each round of K,V transmission, each device i performs a
local attention operation using the partitions Qi and its received partition Kj , and Vj , as described
in Eq. (2). The local attention result Oi,j are then dynamically accumulated into global attention
result Oi by employing online softmax (Milakov & Gimelshein, 2018), which eliminates the need to
store intermediate results Si,j and Pi,j .

As depicted in Algorithm 1, in the forward pass, we dynamically maintain the row-wise maximum
value mi of Si,j as in Line 11 and the row-wise sum l of Pi,j as in Line 12 to avoid storing S and P,
and use mi and li for scaling during the aggregation of Oi as in Line 13. Note that, the functions
rowmax(·) and rowsum(·) can be formalized as

[rowmax(W)]i = max
j

{[W]i,j}, [rowsum(W)]i =
∑
j

[W]i,j , (3)
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Algorithm 1: The forward pass of GAO

Data: Matrices Qi,Ki,Vi ∈ R
N
G

×d on the i-th device

1 Initialize Oi = (0)N
G

×d
∈ R

N
G

×d
, li = (0)N

G
∈ R

N
G ,mi = (−∞)N

G
∈ R

N
G ;

2 Put Ki,Vi into communication ring;
3 for j = 1 to G do
4 Conduct one step of ring communication;
5 Get Kj ,Vj from communication ring;

/* The forward pass of local attention operations (w/o LAO). */

6 Si,j = QiK
T
j ;

7 mi,j = rowmax(Si,j);
8 Pi,j = exp(Si,j −mi,j);
9 li,j = rowsum(Pi,j) ;

10 Oi,j = Pi,jVj ;
/* The end of the forward pass of local attention operations. */

11 mnew ← max {mi,mi,j};

12 li = emi−mnew li + e
mi,j−mnew li,j ;

13 Oi = emi−mnewOi + e
mi,j−mnewOi,j ;

14 mi = mnew;
15 Put Kj ,Vj into communication ring;

16 Oi = diag(li)
−1Oi;

17 lsei = mi + log li;
18 Return Oi, lsei;

Algorithm 2: The backward pass of GAO

Data: Matrices Qi,Ki,Vi,Oi,dOi ∈ R
N
G

×d , lsei ∈ RN on the i-th device

1 Initialize dQi,dKi,dVi = (0)N
G

×d
∈ R

N
G

×d;

2 Di = rowsum(dOi ◦Oi) (pointwise multiply);
3 Put Qi,dQi,dOi, Di, lsei into communication ring;
4 for j = 1 to G do
5 Conduct one step of ring communication;
6 Get Qj ,dQj ,dOj , Dj , lsej from communication ring;

/* The backward pass of local attention operations (w/o LAO). */

7 Sj,i = QjK
T
i ;

8 Pj,i = exp(Sj,i − lsej);

9 dVi = dVi + PT
j,idOj ;

10 dPj,i = dOj VT
i ;

11 dSj,i = Pj,i ◦ (dPj,i −Dj);

12 dKi = dKi + dST
j,iQj ;

13 dQj = dQj + dSj,i Ki;
/* The end of the backward pass of local attention operations. */

14 Put Qj ,dQj ,dOj , Dj , lsej into communication ring;

15 Return dQG,dKG,dVG;

where [·]i is the i-th element of the vector, [·]i,j is the element in the i-th row and j-th column of the
matrix. Considering the requirements of the backward pass, we also store lsei besides the global
attention results Oi after the forward pass, which can make the subsequent backward pass more
efficient. During the backward pass, as depicted in Algorithm 2, we employ the same strategy for the
forward pass to obtain gradients based only on recomputed S, P and output information.

3.4 LOCAL ATTENTION OPTIMIZATION (LAO)

Given Qi, Kj , and Vj , the local attention operations that involve these partitions are performed only
on a single device (e.g., a GPU). When computing Oi,j in Eq. (2), Si,j and Pi,j are computed and
stored on the HBM of the device. To avoid frequent I/O operations of Si,j and Pi,j on the HBM, the
local attention operations of BurstAttention, inspired from FlashAttention (Dao et al., 2022), further
divide Qi, Kj , and Vj into tiles along the sequence dimension, with each tile M

4d sequence length,
where M represents the SRAM size of the device, d represents the attention head dimension.

As shown in Figure 1, during computing Oi,j , each thread block reads the tiles of Qi,Kj ,Vj from
the HBM to SRAM, the tiles of Si,j and Pi,j are computed and then written on the SRAM instead of
the HBM, Oi,j are dynamically accumulated based on online softmax operations and written back to
the HBM. Since the SRAM has a much higher I/O bandwidth than the HBM, the above optimization
can make local attention operations more efficient. Although the memory of the SRAM is tiny, further
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Method FlashAttention/LAO
Memory Communication

Parameter Activation Forward Backward

RingAttention w/o 4HZd 4BZNd
G + BZN2

G + BNH
G 2BZNd 6BZNd

RingAttention† − − −

Tensor Parallelism w/o
4HZd

G

4BZNd
G + BZN2

G +BNH
4BZNd 4BZNd

Tensor Parallelism w/ 4BZNd
G + BZN2

(M/4d)2G +BNH

BurstAttention w/o
4HZd

4BZNd
G + BZN2

G2 + BNH
G 2BZNd 3BZNd

BurstAttention w/ 4BZNd
G + BZN2

(M/4d)2G2 + BNH
G

Table 1: The memory and communication overheads of various distributed attention solutions. G
is the device number of the whole distributed cluster, B denotes the batch size, N represents the
sequence length, Z signifies the number of attention heads, d corresponds to the hidden dimension
per head, H represents the model dimension of Transformers, and M represents the device SRAM
size. † means from an implementation perspective, RingAttention’s separating K and V into two
independent rounds of communication cannot be combined with FlashAttention to improve efficiency.

dividing Qi, Kj , and Vj into many fine-grained tiles ensure the intermediate results Si,j and Pi,j

can be entirely stored into the SRAM.

Intuitively, when BurstAttention is running on a single device rather than a distributed cluster, there is
no need to use GAO at this time, and LAO will play the same role as FlashAttention. In other words,
FlashAttention can be viewed as a specialization of BurstAttention on a single device.

3.5 INTEGRATING BURSTATTENTION WITH SPARSE ATTENTION METHODS

As mentioned before, the sequence parallelism mechanism makes BurstAttention easy to cooperate
with sparse attention methods. During the computation process of BurstAttention, given Qi, Kj ,
Vj , if there is no need to compute the similarities between these partitions, then the local attention
operations on these partitions can be skipped directly. If just some tokens in Qi, Kj and Vj are
required to compute their similarities for final attention results, we can similarly skip unnecessary
operations in local attention operations.

4 ANALYSIS

In this section, we will analyze the memory, I/O, and communication overheads of BurstAttention as
compared to existing competitive distributed attention solutions. As data parallelism and pipeline
parallelism are often used as the most basic distributed strategies and cannot reduce the cost of long
sequence processing, we focus here on comparing BurstAttention, tensor parallelism (Narayanan
et al., 2021), and the typical sequence parallelism method RingAttention (Li et al., 2021).

4.1 MEMORY AND I/O OVERHEADS

In terms of memory complexity, when we split the input along the sequence dimension across
devices for global operations and further split them in each device for local operations, the memory
overheads caused by QKT will be reduced to 1

(M/d)2G2 of the original ones. Table 1 shows the
memory overheads of various distributed attention solutions. The table shows that BurstAttention has
lower activation memory while tensor parallelism has lower parameter memory. This means that the
longer the sequence, the more pronounced the advantage of BurstAttention. Moreover, by combining
BurstAttention with some parallelism strategies like zero redundancy optimizer (Rajbhandari et al.,
2020; Ren et al., 2021) to partition parameters, BurstAttention can easily obtain the same param-
eter memory overheads as tensor parallelism. In terms of I/O overheads, RingAttention requires
Θ(BZN2

G +BZNd) memory accesses on every single device of the whole cluster; tensor parallelism
and BurstAttention only requires Θ( BZN2

(M/d2)G ) memory accesses. This indicates that BurstAttention
can significantly reduce I/O time costs compared to other distributed attention baselines.

4.2 COMMUNICATION OVERHEADS

In the forward pass, BurstAttention involves one round of ring-style peer-to-peer communications
on the K,V ∈ RB×Z×N

G ×d, with a total cost of Θ(2BZNd). In the backward pass, BurstAttention
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Table 2: The first token latency of the LLaMA-7b inference (s).

Sequence Length 4,096 8,192 16,384 32,768 65,536 131,072 262,144

RingAttention 0.42±0.01 0.87±0.01 2.00±0.01 5.13±0.05 OOM OOM OOM
TP(Megatron V1) w/ Flash 0.67±0.01 1.29±0.01 2.58±0.01 5.27±0.01 11.63±0.02 27.54±0.01 71.52±0.06
TP(Megatron V3) w/ Flash 0.73±0.02 1.36±0.01 2.68±0.01 5.67±0.01 12.25±0.01 28.73±0.03 75.52±0.05
BurstAttention w/o LAO 0.46±0.01 0.88±0.01 1.79±0.01 3.88±0.01 10.78±0.01 OOM OOM
BurstAttention 0.44±0.01 0.84±0.01 1.68±0.01 3.27±0.01 6.49±0.01 16.01±0.01 49.32±0.11

Table 3: The first token latency of the LLaMA-13b inference (s).

Sequence Length 4,096 8,192 16,384 32,768 65,536 131,072 262,144

RingAttention 0.66±0.01 1.36±0.01 3.08±0.01 7.98±0.02 OOM OOM OOM
TP(Megatron V1) w/ Flash 1.05±0.01 2.01±0.01 4.03±0.01 8.41±0.01 18.56±0.02 44.39±0.04 OOM
TP(Megatron V3) w/ Flash 1.07±0.01 2.09±0.01 4.20±0.01 8.76±0.01 19.06±0.06 45.46±0.03 119.03±0.04
BurstAttention w/o LAO 0.72±0.01 1.39±0.01 2.77±0.05 5.99±0.01 16.95±0.01 OOM OOM
BurstAttention 0.69±0.01 1.40±0.05 2.57±0.03 5.08±0.02 9.92±0.01 25.91±0.01 78.80±0.07

requires one round of ring-style communication on tensors Q,dQ,dO ∈ RB×N
G ×Z×d and D, lse ∈

RB×N
G ×Z , with a total cost of Θ(3BZNd+ 2BNZ

G ). Table 1 shows the communication overheads
of various distributed attention solutions. The forward communication of RingAttention is the same
as BurstAttention, which is Θ(2BZNd), but without GAO and LAO, RingAttention requires a total
cost of Θ(6BZNd) in the backward pass, which is about twice that of BurstAttention. Therefore,
BurstAttention has great advantage of communication overheads during training than RingAttention.
The forward communication of tensor parallelism is Θ(4BZNd) and the total communication is
Θ(8BZNd), thus BurstAttention also has higher communication efficiency during both inferring
and training than tensor parallelism.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

We conduct our experiments on a distributed cluster of 8×A100 GPUs interconnected by PCI-E. We
use two LLMs in our experiments, LLaMA-2 with 7 billion parameters (7b) and LLaMA-2 with 13
billion parameters (13b) (Touvron et al., 2023b).

Our experiments consist of five methods: (1) TP, which refers to tensor parallelism (Narayanan
et al., 2021), a commonly used distributed strategy in the stages of both training and inference. Note
that here we futher classify TP into TP(Megatron V1) and TP(Megatron V3) based on the detail
communication operations (Megatron V1 uses all-reduce while Megatron V3 uses the combination
of all-gather and reduce-scatter). (2) TP w/ FlashAttention, which combines FlashAttention (Dao
et al., 2022) with tensor parallelism as a strong baseline. Note that this is a commonly used
strategy in current LLM pre-training and inference. (3) RingAttention, a typical sequence
parallelism baseline. (4) BurstAttention, our distributed attention method includes both GAO and
LAO strategies. (5) BurstAttention w/o LAO, where we remove the LAO strategy for ablation studies.
(6) BurstAttention+ZeRO , where we futher optimize the memory overhead of BurstAttention by
adopting the ZeRO(Rajbhandari et al., 2020) technique to shard model parameters across devices.

As we mentioned before, data parallelism and pipeline parallelism cannot effectively reduce the
cost of long sequence processing, and we do not use them as baselines. In fact, we conduct some
experiments to adapt data parallelism and pipeline parallelism for long-sequence attention, but
unfortunately, these two parallelism methods cannot process extremely long sequences. From our
pilot experiments, directly adopting data parallelism or pipeline parallelism can only handle
sequences shorter than 8192, much shorter than RingAttention and TP.

5.2 INFERENCE LATENCY

In this section, we focus on the latency needed for generating the first token (i.e., the first token
latency) in the inference process. We concentrate on the time of the first token generation because the
long sequence attention computation mainly exists in the inference encoding process. Since the first
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(a) Training time (b) Training memory

Figure 2: The training time and memory of LLaMA-7b on 8×A100.

(a) Training time (b) Training memory

Figure 3: The training time and memory of LLaMA-7b on 32×A100.

token latency is much higher than the latency of generating subsequent tokens, the first token latency
thus becomes one of the most critical targets existing works seek to optimize.

In real-time AI services such as ChatGPT, the system’s responsiveness significantly impacts the
user experience, and these applications usually output results in a streaming manner to improve
responsiveness. Since the first token latency is the longest, the first token latency directly influences
the perceived responsiveness and efficiency of the model in these streaming scenarios.

As shown in Table 2 and Table 3, we can see that, compared with tensor parallelism, sequence
parallelism methods are more suitable to infer long sequences. Compared with the RingAttention
method, by using GAO, BurstAttention can support longer sequences. By further using LAO,
BurstAttention can achieve more latency improvements and support much longer sequences. Note
that, although TP(Megatron V3) is more memory efficient than TP(Megatron V1), the all-reduce
operation used by TP(Megatron V1) is better optimized than the reduce-scatter and all-gather
operations used by TP(Megatron V3). In the actual inference, TP(Megatron V1) is slightly faster than
TP(Megatron V3). Since TP(Megatron V3) has a similar time to TP(Megatron V1) but better memory
efficiency, we mainly compare our method with TP(Megatron V3) in subsequent experiments.

5.3 TRAINING PERFORMANCE

For training LLMs, a batch is required to have 2 to 4 million tokens, otherwise, the model performance
may be degraded, i.e., the longer the sequence length is, the smaller the batch size is. Due to this,
several GPUs may need to process one example together. For example, using 2048 GPUs to train
128-layer GPT-3, the sequence length is 4096, the batch size is 1024, data parallelism is 16, pipeline
parallelism is 32, and tensor parallelism is 4. In this scenario, the optimal setup is to divide a batch
into 64 micro-batches with a micro-batch size of 1. In this case, four GPUs under the same tensor
parallelism group are inevitably required to process one piece of data together. In view of this, we fix
the batch size to 1 for experimental convenience and vary the input sequence length from 1K to 32K.

As can be seen from Figure 2a, although tensor parallelism adopts FlashAttention to improve its
processing of long sequences, both RingAttention and BurstAttention have better training time than
tensor parallelism when processing long sequences. This is also why existing works using tensor
parallelism to train LLMs usually set the training length between 2048 and 4096. Compared with
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(a) LLaMA-13b latency - GPU number (b) LLaMA-7b throughput - batch size

Figure 4: Scaling abilities on different GPU numbers and batch sizes.

BurstAttention, RingAttention is limited by the sequence length since it stores too many intermediate
states, but BurstAttention can support the longest input length. On the other hand, BurstAttention
without LAO has a similar trend of training time as RingAttention and tensor parallelism.

From Figure 3, BurstAttention achieves nearly 2.0× speedup when the sequence is longer than
128K. Also combining BurstAttention with ZeRO optimization brings significant improvements in
memory efficiency. Although BurstAttention+ZeRO brings little additional communication overheads,
BurstAttention+ZeRO still achieves memory efficiency comparable to Megatron V3 and demonstrates
superior speed in both multi-node and single-node setups than Megatron V3. This suggests that
BurstAttention, with its current optimizations, offers a more efficient solution in terms of speed, even
when faced with a memory-efficient competitor like Megatron V3.

5.4 SCALING ABILITY

In this section, we further verify the scaling ability of BurstAttention. In Figure 4a, we set batch
size to 1 and sequence length to 65,536, and then evaluate the latency changes with increasing GPU
numbers. As shown in the figure, in the single-GPU scenario, BurstAttention with LAO is equivalent
to FlashAttention, and its inference latency is on par with the baseline using FlashAttention. Tensor
parallelism cannot further decrease the latency when the number of GPUs increases from 4 to 8
due to the communication overhead with increased batch-size, while BurstAttention can achieve
better scaling trends. Note that RingAttention requires storing Θ(BZN2

G ) memory for each layer,
which is extremely large and cannot fit into GPUs even sharded on 8 GPUs. In Figure 4b, we fix the
sequence length to 4096 and the number of GPUs to 8 to evaluate the training throughput changes
with increasing batch sizes. The experimental results show that BurstAttention can support a larger
batch size, and the throughput grows with the increase of batch sizes in training scenario.

5.5 PERPLEXITY

We sample 100 examples from C4 (Raffel et al., 2020) and eval-
uate the perplexity (PPL) of LLaMA-7b implemented based on
different distributed attention solutions. By evaluating PPL scores,
we can evaluate the correctness of these implementation. From
Table 4, we can find BurstAttention would not bring performance
penalty, as compared to other distributed attention solutions.

Method PPL

TP 9.901
TP w/ FlashAttention 9.902
RingAttention 9.904
BurstAttention w/o LAO 9.901
BurstAttention 9.901

Table 4: LLaMA-7b PPL on C4.

6 CONCLUSION

In this work, we present an efficient distributed attention framework named BurstAttention, which
can enhance performance in terms of memory consumption and running speed when processing
extremely long sequences. When running on a single device, BurstAttention can achieve comparable
efficiency to FlashAttention. When running on a distributed cluster, BurstAttention can outperform
existing competitive distributed attention solutions, including RingAttention and tensor parallelism.
Moreover, the experimental results show that BurstAttention also has greater scaling abilities than
existing solutions as increasing devices and batch sizes.
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