

000 001 002 003 004 005 CANNISTRACI-HEBB TRAINING ON ULTRA-SPARSE 006 SPIKING NEURAL NETWORKS 007 008 009

010 **Anonymous authors**
 011 Paper under double-blind review
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037

ABSTRACT

038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610

054 regrowth (Bennett et al., 2018). Although sparse training has proven effective in reducing parameter
 055 counts and improving computational efficiency in ANNs (Mocanu et al., 2018; Evcı et al., 2019;
 056 Yuan et al., 2021; Zhang et al., 2022), its application in SNNs remains challenging. This is due to
 057 the spike-based computation and the non-differentiable nature of the spiking activation function of
 058 SNNs, which hinder direct gradient-based optimization. Consequently, most sparse training meth-
 059 ods for ANNs that rely on gradient information cannot be directly applied to SNNs.

060 Specifically, current research in sparse SNNs training methods faces a significant challenge in
 061 achieving high levels of structural connection sparsity while maintaining performance compara-
 062 ble to that of their fully connected counterpart. For instance, the adaptive structural development
 063 of SNN (SD-SNN) model (Han et al., 2025a), incorporates multiple brain-inspired developmental
 064 mechanisms, including synaptic elimination, neuronal pruning and synaptic regeneration. Besides,
 065 it also uses adaptive pruning and regrowth rates, which led to the structural stability. As a result,
 066 SD-SNN achieves 98.56% accuracy with 1.45% improvement on DVS-Gesture dataset, but only
 067 reaches a maximum sparsity of 61.10%. Similarly, Shen et al. (2025) propose a two-stage dynamic
 068 structure learning method, effectively addressing the limitations of fixed pruning ratios and static
 069 sparse training methods prevalent in existing models. Nonetheless, their approach attains an average
 070 structural connection sparsity of around 70%. Some studies directly apply ANN-based sparse train-
 071 ing methods to SNNs, Gradient Rewiring (Shen et al., 2025) method achieves up to 90% sparsity.
 072 However, it exhibits an accuracy degradation of 3.55% compared to its fully connected counterpart.

073 To address this challenge, we propose the Cannistraci-Hebb Spiking Neural Network (CH-SNN), a
 074 novel and generalizable dynamic sparse training framework for SNNs, which achieves high levels of
 075 structural connection sparsity and maintaining performance comparable to that of its fully connected
 076 (FC) counterpart. The main contributions of this work are summarized as follows:

- 077 • **Introducing a novel sparse training framework.** We propose a four-stage dynamic sparse
 078 training framework (CH-SNN) consisting of sparse topology initialization, sparse weight
 079 initialization, network pruning and network regrowth. CH-SNN attains 99% structural con-
 080 nection sparsity in all linear layers and shows better performance than FC networks on the
 081 CIFAR-100, MNIST, N-MNIST, CIFAR10-DVS and DVS-Gesture datasets respectively.
- 082 • **Proposing efficient initialization methods.** We propose two initialization methods, one
 083 is Sparse Spike Correlated Topological Initialization (SSCTI) which initializes an ultra-
 084 sparse network structure by leveraging correlations among input nodes, another is Sparse
 085 Spike Weight Initialization (SSWI) which incorporates temporal activation sparsity and
 086 structural connection sparsity of SNNs to initialize weights. SSCTI and SSWI enhance the
 087 performance of the link predictor and facilitate faster training from the initial phases.
- 088 • **Demonstrating superior performance across architectures and datasets.** We have con-
 089 ducted extensive experiments, the experimental results demonstrate that CH-SNN outper-
 090 forms existing sparse SNN training methods across six datasets (CIFAR10-DVS, CIFAR-
 091 10, CIFAR-100, MNIST, N-MNIST and DVS-Gesture) and three network structures. No-
 092 tably, it attains a 0.16% accuracy improvement over the FC network at a sparsity of 97.75%.
 093 We apply CH-SNN to a hardware-friendly algorithm S-TP, which has been implemented
 094 on a neuromorphic processor for edge-side AI applications. Experimental results show that
 095 CH-SNN significantly improve energy efficiency, achieving an average improvement of
 096 55 \times across four datasets.

097 2 RELATED WORKS

100 2.1 SPARSE SPIKING NEURAL NETWORKS

101 Structural connection sparsification is one of the key technologies for enhancing SNNs energy ef-
 102 ficiency. By reducing redundant links and neurons within the model, it can significantly reduce
 103 computational and storage overhead. Existing sparse SNNs training methods can be categorized
 104 into pruning and sparse training.

105 **Pruning.** Pruning methods initialize a fully connected network structure and gradually remove in-
 106 significant links during training. Current SNNs pruning approaches can be divided into the two
 107 types: (1) Biological plasticity pruning. This approach draws inspiration from the developmen-

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 tal mechanisms of the brain, leveraging biological synaptic plasticity to accomplish the pruning of SNNs. Han et al. (2025b;a) propose the developmental plasticity-inspired adaptive pruning method, which takes into account multiple biologically realistic mechanisms, so that the network structure can be dynamically optimized. Rathi et al. (2019) present a sparse SNN training method where pruning is based on the spike timing dependent plasticity model (STDP). Links between pre-neuron and post-neuron with low correlation or uncorrelated spiking activity are pruned. Liu et al. (2022) propose a dynamic pruning framework (named DynSNN) for SNNs, enabling dynamic optimization of the network topology. (2) Transfer ANNs pruning method to SNNs. These methods adapt pruning techniques from ANNs. For instance, Chen et al. (2022) use different functions describing the growing threshold of state transition to regulate the pruning speed, avoiding disastrous performance degradation at the final stage of training. Deng et al. (2023) formulate the link pruning problem as a constrained optimization problem, which is addressed by integrating spatiotemporal backpropagation (STBP) with the alternating direction method of multipliers (ADMMs). Backpropagation with sparsity regularization (BPSR) (Yan et al., 2022) incorporates an L_1 regularization term into the loss function to drive the weights toward zero, followed by a static threshold-based pruning method, thereby achieving network structural connection sparsification.

Sparse training. In contrast to pruning methods, sparse training begins with a sparsely connected network and dynamically alternates between pruning less important connections and growing new ones during learning. It maintains sparsity in both the forward and backward propagation during the training process, resulting in lower hardware requirements. For example, the Deep Rewiring (Deep R) (Bellec et al., 2018) method prunes links when their value changes sign during updates, and randomly regenerate an equivalent number of links. This process is repeated over multiple rounds. Based on Deep R, Chen et al. (2021) introduce a Gradient Rewiring (Grad R) approach to further modify the gradient values of the links, enabling previously pruned links to regenerate. Furthermore, Shen et al. (2025) propose a two-stage dynamic structure learning method for deep SNNs, the first stage evaluates the network’s compressibility based on the PQ index (Diao et al., 2023) and adaptively determines the regrowth ratio, and the second stage performs pruning and regrowth according to this ratio. Qi et al. (2018) propose a spiking neural network with connection gates (SNN-CG) to jointly learn the topology and the weights in SNN. The connection structures and the weights are learned alternately until a termination condition is satisfied. Neurogenesis dynamics-inspired spiking neural network (NDSNN) training method (Huang et al., 2023) trains a model from scratch using dynamic sparsity. NDSNN creates a drop-and-grow strategy to promote link reduction. Based on RigL (Evci et al., 2019), Lasby et al. (2024) propose a sparse-to-sparse dynamic sparse training method named Structured RigL (SRigL), which learns a sparse neural network with constant fan-in fine-grained structured sparsity while maintaining generalization comparable with RigL.

2.2 CANNISTRACI-HEBB THEORY AND NETWORK TOPOLOGY INTELLIGENCE

Inspired by the dynamic sparse connectivity characteristics of the brain, the Cannistraci-Hebb (CH) theory (Cannistraci et al., 2013; Daminelli et al., 2015; Cannistraci, 2018a; Muscoloni et al., 2018; Zhao et al., 2025) is a general theoretical framework developed in the field of network science to predict the non-observed dynamic connectivity of complex networks, using the mere knowledge of the network topology. CH theory is also recently introduced (Zhao et al., 2025; Zhang et al., 2024b) for dynamic sparse training for deep AI, demonstrating a gradient-free link regrowth mechanism that relies solely on topological information. For example, Cannistraci-Hebb Training (CHT) (Zhang et al., 2024d) is applied to ANNs, utilizing the CH3-L3 network automaton for link prediction. CH3-L3 is one of the highest-performing and most robust network automata under the Cannistraci-Hebb theory (Zhao et al., 2025). It can automatically evolve the network topology of a given structure by identifying node pairs with the fewest external connections within the local community structure, thereby guiding link regrowth. For multiple tasks, CHT achieves better performance surpassing than fully connected networks with only 1% connections, demonstrating the ultra-sparse advantage. Importantly, CHT is shown to induce during training also a node sparsification process (called network node percolation), which at the end of the training compressed the node size of certain networks to around the 30 percent of the initial size, preserving or improving task performance. Furthermore, Zhang et al. (2024c) put forward a Cannistraci-Hebb Training soft rule (CHTs) which probabilistically removes network links based on a removal fraction and regrows new links according to CH3-L3 prediction scores, overcoming CHT’s tendency to fall into epitopological local minima during the early stages of training when topological noise is significant.

162 3 METHODS
163164 3.1 SPIKING NEURAL NETWORK
165166 **Fundamentals.** Unlike artificial neural networks, SNNs use sparse spike signals to transmit information.
167 The spike signals enable SNNs to avoid Multiply-Accumulate (MAC) operations. Thereby
168 reducing energy consumption and computational load (Rueckauer et al., 2017). In this paper, we
169 adopt the leaky integrate-and-fire (LIF) neuron (Abbott, 1999) to process spike signals, as shown in
170 Equation (1).

171
$$v_j(t+1) = (1 - z_j(t))\alpha v_j(t) + \sum_i W_{ij} x_i(t+1), \quad z_j(t) = U(v_j(t) - \theta) \quad (1)$$

172
173

174 where t denotes the time step, $v_j(\cdot)$ represents the membrane potential of the neuron j , α is the
175 membrane potential decay constant, W_{ij} denotes the synaptic weight, $x_i(t)$ is the input spike, and
176 U is the step function. When the membrane potential accumulates and exceeds the firing threshold
177 θ , the neuron emits an output spike, denoted by $z_j(\cdot) = 1$. Otherwise, the neuron remains silent,
178 i.e., $z_j(\cdot) = 0$. After firing a spike, the membrane potential is reset to zero.179 **Training method.** It is challenging to apply standard gradient descent to SNNs. The step function
180 in Equation (1) results in a derivative that is zero almost everywhere and undefined at the threshold
181 point. This makes the direct calculation of partial derivatives $\frac{\partial z_j(\cdot)}{\partial v_j(\cdot)}$ impossible using conventional
182 calculus, which prevents the application of the backpropagation algorithm. Thus we use the surro-
183 gate gradient method (Wu et al., 2018) to update the weights of SNNs.184 **Sparse Target Propagation.** Sparse Target Propagation (S-TP) (Zhang et al., 2024a) adopts a
185 hardware-friendly surrogate gradient method. S-TP randomly selects target windows in the learning
186 process, reducing over 90% of the spike number in the learning process without noticeable accuracy
187 degradation. S-TP has been implemented in a low-power neuromorphic processor, which proves its
188 notable hardware-friendliness.190 3.2 CANNISTRACI-HEBB SPIKING NEURON NETWORK
191192 In this paper, we propose the four-stage dynamic sparse training method for SNNs, named
193 Cannistraci-Hebb Spike Neuron Network (CH-SNN). It is a general sparse training framework ca-
194 pable of sparsifying all linear layers in SNNs. The framework of CH-SNN is illustrated in Figure
195 1. **The first stage is sparse topology initialization.** We propose a sparse topology initialization
196 method named Sparse Spike Correlated Topological Initialization (SSCTI) based on Pearson’s phi
197 coefficient to initialize an ultra-sparse network. **The second stage is sparse weight initialization.**
198 We introduce the Sparse Spike Weight Initialization (SSWI) method, which incorporates the tem-
199 poral activation sparsity, structural connection sparsity and neuronal threshold information of SNNs
200 into the weight initialization process to perform weight initialization. **The third stage is network
201 pruning.** We use a probability-based links pruning strategy to remove links according to a dynamic
202 ratio ζ . Subsequently, inactive neurons are identified and removed, according to the CHT network
203 percolation procedure (Zhang et al., 2024d). **The fourth stage is network regrowth.** Here, the
204 regrowth score of potential links is computed using CH3-L3. According to this score, links are
205 regenerated with the same ratio applied in the network pruning stage, thereby maintaining the pre-
206 defined structural connection sparsity. Links with higher regrowth scores are proportionally sampled
207 according to the CHTs methodology (Zhang et al., 2024c).

208 3.2.1 SPARSE TOPOLOGY INITIALIZATION

209 As we know, the topology of a network should reflect the relationships between node features within
210 some latent geometric space (Cannistraci & Muscoloni, 2020). The correlations between input fea-
211 tures directly define the geometric relationships among nodes in this latent feature space. Therefore,
212 by computing the correlations between nodes in the input layer, we preserve connections between
213 highly correlated nodes according to the predefined sparsity. Thus, we propose the Sparse Spike
214 Correlated Topological Initialization (SSCTI) method, as shown in Figure 1 Stage 1. Since the in-
215 put of SNNs are discrete binary spike trains, we measure the correlation between input nodes using
Pearson’s phi coefficient (Pearson, 2015), which measures the strength and direction of association

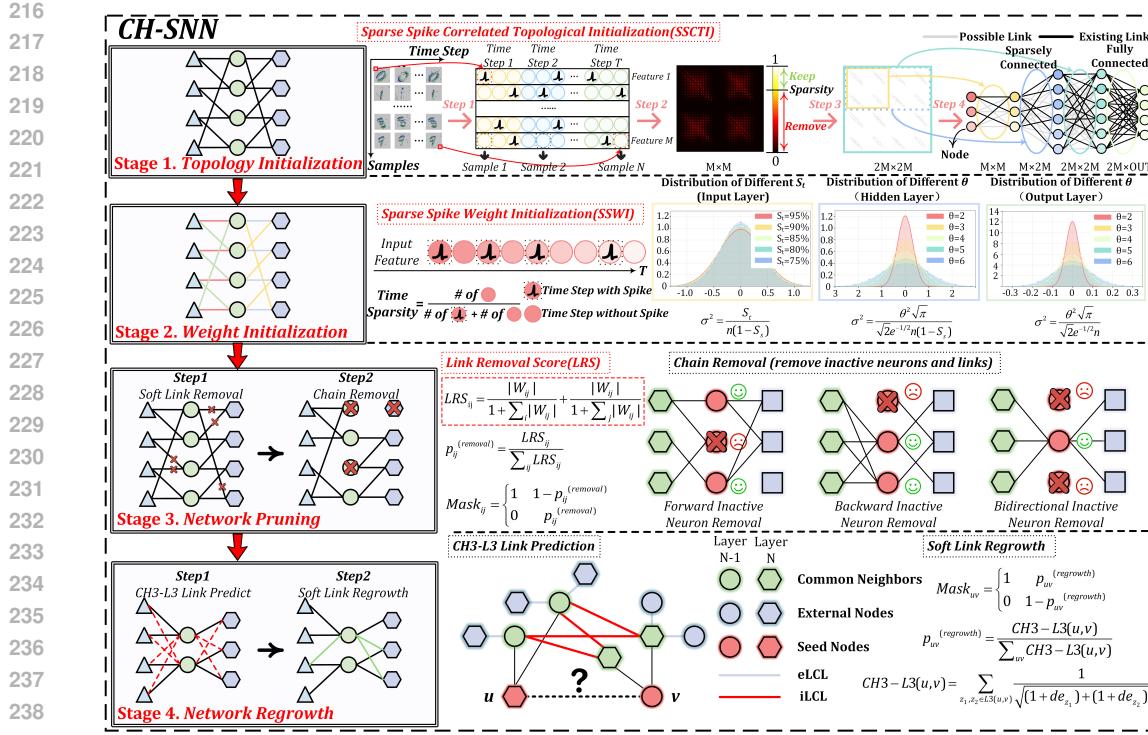


Figure 1: The framework of Cannistraci-Hebb Spiking Neural Network (CH-SNN).

between two binary variables. We take each dimension of the input data x_i and each time step t as a variable and an independent sample, respectively. Thus, the total number of samples is $N \times T$. The Pearson's phi coefficient is described in Equation (2).

$$\phi_{ij} = \sqrt{\frac{\chi_{ij}^2}{2NT}} = \sqrt{\frac{\sum_{t=1}^{NT} (x_i(t) - E_i)^2 / E_i + \sum_{t=1}^{NT} (x_j(t) - E_j)^2 / E_j}{2NT}} \quad (2)$$

where ϕ_{ij} represents the Pearson's phi coefficient between input data x_i and x_j , M denotes the dimension of the input data, T is total time step, N stands for the number of samples, χ_{ij}^2 represents the Chi-square statistic, and E_i is the mean value of x_i . From Equation (2), we obtain the correlation matrix $\Phi \in \mathbb{R}^{M \times M}$, we keep the top $(1 - S_s)$ proportion of links of the SNN with the strongest correlations and remove other links in SNN, where S_s stands for the structural connection sparsity, thereby completing the initialization of the network structure. The dimensionality of the hidden layer is determined by an expansion factor $\beta \geq 1$, $\beta \in \mathbb{Z}$, such that the dimension of the hidden layer equals the input dimension multiplied by β . This allows the hidden layer dimensionality to be flexibly adjusted, as shown in Figure 1 Stage 1. However, when CH-SNN is used to sparsify intermediate layers, such as linear layers within spiking convolutional neural networks (Lv et al., 2024) or Spikformer (Zhou et al., 2022), the input distribution may be altered by preceding convolutional layers or attention layers. This makes it difficult for SSCTI to accurately capture feature correlations between nodes. To address this issue, we adopt a uniform random initialization strategy, which ensures that each node retains an equal number of connections. See more details in Appendix A.4.

3.2.2 SPARSE SPIKE WEIGHT INITIALIZATION

For ANNs, weight initialization strategies such as Kaiming initialization (He et al., 2015) are widely adopted. Most of these methods assume that weights follow a zero-mean Gaussian distribution, and determine the variance of this distribution under the principle of maintaining consistent variance of input data across layers. However, such approaches cannot be directly applied to the weight initialization in structural sparse networks. Although methods like SWI (Zhang et al., 2024d) have been proposed for sparse artificial neural networks, they are unsuitable for SNNs owing to their inability to incorporate temporal activation sparsity and the unique activation function of LIF neurons.

270 To address this problem, we put forward the Sparse Spike Weight Initialization (SSWI) method,
 271 which incorporates the temporal activation sparsity (S_t), structural connection sparsity (S_s) and the
 272 neuronal threshold information (θ) of SNNs into the weight initialization process. The detailed
 273 derivation is provided in Appendix A.1. The SSWI method is presented in Equation (3).

$$274 \quad SSWI(W_{ij}^{(l)}) \sim \mathcal{N}(0, \sigma^2), \quad \sigma^2 = \begin{cases} \frac{S_t}{n(1 - S_s)}, & (l = 1) \\ \frac{\theta^2 \sqrt{\pi}}{\sqrt{2}e^{-1/2}n(1 - S_s)}, & (1 < l < L) \\ \frac{\theta^2 \sqrt{\pi}}{\sqrt{2}e^{-1/2}n}, & (l = L) \end{cases} \quad (3)$$

275 where S_t denotes the temporal activation sparsity of the input data in SNNs, S_s represents the
 276 structural connection sparsity, l is the index of the layer (with a total of L layers), n indicates the
 277 input feature dimension of the l layer, and θ denotes the spike threshold in the LIF neuron. SSWI
 278 enhances training efficiency, leading to faster convergence from the initial phases.

286 3.2.3 NETWORK PRUNING

287 **Link Removal.** We propose a hybrid strategy to calculate the link removal score (LRS) that
 288 combines relative importance (RI) and weight magnitude (WM). The approach not only accelerates
 289 network sparsification but also promotes the activation of more neurons during training. The LRS
 290 is defined as follows:

$$292 \quad LRS_{ij}^{(l)} = \frac{|W_{ij}^{(l)}|}{1 + \sum_i |W_{ij}^{(l)}|} + \frac{|W_{ij}^{(l)}|}{1 + \sum_j |W_{ij}^{(l)}|} \quad (4)$$

293 where $LRS_{ij}^{(l)}$ denotes the link removal score of the weight $W_{ij}^{(l)}$, $\sum_j |W_{ij}^{(l)}|$ represents the sum of
 294 the magnitude of all weights connected to the input neuron i , and $\sum_i |W_{ij}^{(l)}|$ denotes the sum of the
 295 magnitude of all weights connected to the output neuron j . Instead of using the magnitude of the
 296 LRS as the direct criterion for link removal, we sample from a multi-nomial distribution based on
 297 the LRS value to determine whether a link should be removed. See more details in Appendix A.3.

298 **Chain Removal.** After link removal, neurons that are unilaterally or bilaterally disconnected (i.e.,
 299 without any incoming or outgoing links) are regarded as inactive neurons. Since these inactive
 300 neurons lose the ability to transmit information, they may hinder information flow throughout the
 301 network. Because of the mechanism of CH3-L3, such inactive neurons are unable to regrow new
 302 links during the network regrowth stage. Therefore, during the chain removal step, we permanently
 303 remove them from the network. As illustrated in Figure 1 Stage 3, this process enhances overall
 304 information propagation.

308 3.2.4 NETWORK REGROWTH

309 We employ CH3-L3 to compute the link regrowth score for potential links, as CH3-L3 is recognized
 310 as the most robust and stable link predictor within the Cannistraci-Hebb theory (Zhang et al., 2024b;
 311 Zhao et al., 2025; Zhang et al., 2025). To mitigate the risk of falling into epitopological local minima
 312 due to structural noise in the network, we sample from a binomial distribution based on the regrowth
 313 score to stochastically determine whether a link should be regenerated, instead of using the regrowth
 314 score directly as the criterion for link regrowth (Zhang et al., 2024c). The formula for calculating
 315 the link regrowth score is as follows:

$$318 \quad \text{CH3-L3}(u, v) = \sum_{z_1, z_2 \in l3(u, v)} \frac{1}{\sqrt{(1 + de_{z_1}) \times (1 + de_{z_2})}} \quad (5)$$

319 where u and v are two nodes that may potentially form a link, and z_1, z_2 denote two intermediate
 320 nodes along a path of length 3 between u and v —also referred to as common neighbor nodes of
 321 u and v . The terms de_{z_1} and de_{z_2} represent the external local community connectivity degrees of
 322 nodes z_1 and z_2 , respectively. A detailed description of the CH3-L3 is provided in Appendix A.2.

324

4 EXPERIMENTS

325

4.1 COMPREHENSIVE PERFORMANCE COMPARISON WITH OTHER METHODS

326 We compare our CH-SNN with existing sparse SNNs training methods including Grad R (Chen
 327 et al., 2021), SD-SNN (Han et al., 2025a) and DPAP (Han et al., 2025b), using the same net-
 328 work architectures for fair comparison. In addition, we have conducted experiments on the Spik-
 329 former (Zhou et al., 2022) architecture to further verify our methods. It is worth noting that none
 330 of the compared methods have been evaluated on the Spikformer. Detailed experimental settings
 331 are provided in Appendix A.5 and reproducibility statement is provided in Appendix A.10. The
 332 experimental results are summarized in Table 1 and Figure 2.

333
 334 Table 1: Performance comparison of different methods on CIFAR-10, CIFAR-100, MNIST, N-
 335 MNIST, CIFAR10-DVS and DVS-Gesture datasets. The gray section indicates the performance of
 336 CH-SNN. For each dataset, we have bolded the method with the highest accuracy improvement and
 337 the one with the highest sparsity. We exclude Spikformer from our comparison here.

340	Dataset	Method	Network	Link sparsity	Acc.	Accuracy improvement
341	CIFAR-10	Grad R	6Conv 2FC	71.59%	92.54%	-0.30%
342		DPAP	6Conv 2FC	50.80%	93.83%	-0.71%
343		SD-SNN	6Conv 2FC	35.57%	94.59%	-0.15%
344		CH-SNN	6Conv 2FC	74.62%	94.60%	-0.14%
345		CH-SNN	Spikformer	82.21%	94.26%	-0.10%
346	CIFAR-100	SD-SNN	6Conv 2FC	36.94%	75.33%	+3.27%
347		CH-SNN	6Conv 2FC	74.45%	75.22%	+3.16%
348		CH-SNN	Spikformer	82.11%	76.23%	+0.75%
349	MNIST	Grad R	2FC	74.29%	98.59%	-0.33%
350		DPAP	2FC	77.36%	98.74%	-0.07%
351		SD-SNN	2FC	45.86%	98.90%	+0.09%
352		CH-SNN	2FC	97.75%	98.97%	+0.16%
353		Grad R	2Conv 2FC	49.16%	99.37%	+0.02%
354		DPAP	2Conv 2FC	61.25%	99.59%	+0.13%
355	N-MNIST	SD-SNN	2Conv 2FC	49.83%	99.51%	+0.14%
356		CH-SNN	2Conv 2FC	93.91%	99.53%	+0.16%
357		CH-SNN	Spikformer	81.72%	99.73%	+0.02%
358	CIFAR10-DVS	Grad R	2Conv 2FC	75.00%	98.56%	-0.27%
359		DPAP	2Conv 2FC	63.95%	99.59%	+0.06%
360		SD-SNN	2Conv 2FC	58.62%	98.78%	-0.29%
361		CH-SNN	2Conv 2FC	94.73%	99.15%	+0.08%
362		CH-SNN	Spikformer	85.74%	99.45%	+0.10%
363	DVS-Gesture	CH-SNN	6Conv 2FC	84.34%	72.00%	+1.50%
364		CH-SNN	Spikformer	85.37%	70.60%	+0.40%
365	DVS-Gesture	Deep R	2Conv 2FC	75.00%	81.23%	-2.89%
366		Grad R	2Conv 2FC	75.00%	91.95%	+7.83%
367		SD-SNN	2Conv 2FC	61.10%	96.21%	+1.14%
368		CH-SNN	2Conv 2FC	94.73%	95.45%	+0.38%
369		CH-SNN	Spikformer	82.25%	93.56%	+1.14%

370
 371 **Performance on Non-Spiking Datasets.** On the MNIST dataset with the two-layer fully connected
 372 (2FC) architecture, CH-SNN attains a 97.75% sparsity while improving accuracy by 0.16% over
 373 the FC baseline. Compared to the state-of-the-art method DPAP, CH-SNN not only increases spa-
 374 rity by approximately 20% but also achieves a performance gain of 0.23%. With the 2CONV2FC
 375 architecture, CH-SNN realizes 93.91% sparsity with a 0.16% improvement in accuracy. These re-
 376 sults demonstrate that CH-SNN delivers both the highest level of sparsity and the most significant
 377 performance gains among all compared methods. Furthermore, when applied to the Spikformer ar-
 chitecture, CH-SNN achieves an 81.72% sparsity with a slight performance improvement of 0.02%.

On the CIFAR-10 dataset, CH-SNN again achieves the highest level of sparsity—74.62%—with only a minimal accuracy drop of 0.14%. Similarly, when applied to Spikformer, it maintains a sparsity of 82.21% with a negligible performance degradation of 0.10%. On the CIFAR-100 dataset, although the performance improvement of CH-SNN is marginally lower than that of SD-SNN, it increases sparsity by nearly 38%. Additionally, with the Spikformer architecture, CH-SNN provides a 0.75% performance improvement at 82.11% sparsity.

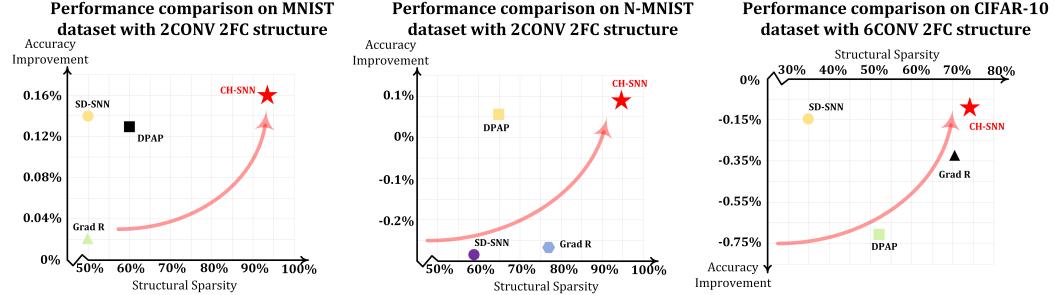


Figure 2: Performance comparison of different methods on MNIST, N-MNIST and CIFAR-10. We plot the performance of different sparse SNN training methods with structural sparsity on the x-axis and accuracy improvement on the y-axis. The plot clearly shows that CH-SNN achieves the highest level of sparsity alongside the greatest improvement in accuracy.

Performance on Spiking Datasets. On the N-MNIST dataset, CH-SNN attains a 0.08% performance improvement at 94.73% sparsity, outperforming the FC network. On the DVS-Gesture dataset, although CH-SNN’s accuracy gain is lower than those of SD-SNN and Grad R, it still demonstrates 95.45% accuracy with 0.38% improvement compared to the FC baseline and reaches significantly higher sparsity level (94.73%) than all other compared methods. On the CIFAR10-DVS dataset, CH-SNN exhibits an accuracy improvement of 1.50% at 84.34% sparsity. Since the CH-SNN framework removes inactive neurons, the sparse network with CH-SNN achieves higher node sparsity compared to other methods. Detailed results are provided in Table 9 of the appendix A.8.

4.2 EXPERIMENTS ON HARDWARE-FRIENDLY ALGORITHMS S-TP

Hardware-friendly algorithm S-TP has been realized in a chip ANP-I (Zhang et al., 2024a), which is a low-power neuromorphic processor for edge-side AI applications. To verify our methods, we apply CH-SNN to S-TP. Detailed experimental configurations and network architectures are provided in Appendix A.5. We have conducted comprehensive experiments to evaluate the performance of CH-SNN in terms of accuracy and energy efficiency. The results are shown in Table 2 and Figure 3.

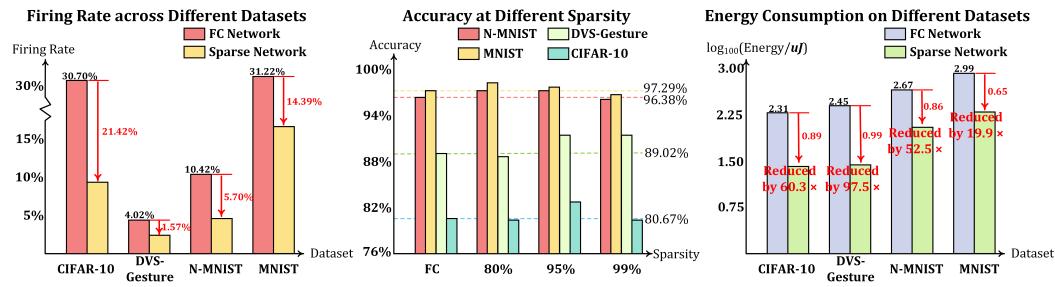


Figure 3: Experimental results of CH-SNN on hardware-friendly algorithm S-TP. A comparison of firing rates between the sparse network with CH-SNN and the FC network across four datasets is presented in the left plot. The middle plot provides an accuracy comparison among the FC network and sparse networks at sparsity levels of 80%, 95%, and 99%. The right plot displays the energy consumption comparison, with the vertical axis on a base-100 logarithmic scale. A scale difference of 0.99 signifies that the energy consumption of the FC network is 97.5 (100^{0.99}) times greater than that of the sparse network.

432 **Accuracy Analysis.** At an average sparsity of 96.4%, the sparse network with CH-SNN achieves
 433 the comparable accuracy of the FC network without CH-SNN on all four datasets. Notably, on the
 434 DVS-Gesture dataset, sparse network attains a 2.27% improvement in accuracy at 98.84% sparsity.
 435 For the N-MNIST dataset, although the accuracy of the sparse network is slightly lower than that of
 436 the FC network, it successfully prunes nearly half of the nodes (41.90% node sparsity) with only a
 437 minimal accuracy drop of 0.18%.

438 **Energy Analysis.** We evaluate the energy efficiency in terms of the average firing rate, total spike
 439 count, and the number of Synaptic Operations (SOPs). The measured energy consumption of ANP-
 440 I chip is 1.5 pJ/SOP (Zhang et al., 2024a), which is regarded as a baseline. We calculate the total
 441 energy consumption by multiplying this baseline by the total SOPs. As illustrated in Figure 3, on the
 442 DVS-Gesture dataset, the CH-SNN with sparse connectivity consumes 97.5 times less energy than
 443 its fully connected counterpart. Furthermore, it yields an average reduction in energy consumption
 444 of 55 times and a 10.77% decrease in the average firing rate across the four datasets.

445
 446
 447 Table 2: Performance and energy consumption of CH-SNN on MNIST, DVS-Gesture, N-MNIST
 448 and CIFAR-10 datasets (S-TP). For each dataset, the first row shows the performance of the fully
 449 connected network, and the second row shows that of the sparse network with CH-SNN. A 3FC ar-
 450 chitecture is consistently employed across all experiments, with details provided in the appendix A.5.

Dataset	Spike count	SOPs	Firing rate	Link sparsity	Node sparsity	Acc.	Energy
MNIST	6.1×10^8 3.3×10^8	6.3×10^{11} 3.2×10^{10}	31.22% 16.83%	0% 94.59%	0% 23.47%	97.29% 97.56%	948mJ 48mJ
DVS-Gesture	2.2×10^7 1.3×10^7	5.2×10^{10} 5.0×10^8	4.02% 2.45%	0% 98.84%	0% 12.30%	89.02% 91.29%	78mJ 0.8mJ
N-MNIST	2.5×10^8 1.2×10^8	1.4×10^{11} 2.9×10^9	10.42% 4.72 %	0% 98.46%	0% 41.90%	96.38% 96.20%	216mJ 4.4mJ
CIFAR-10	6.3×10^7 1.9×10^7	2.8×10^{10} 4.8×10^8	30.70% 9.28%	0% 93.78%	0% 0%	80.67% 82.84%	41mJ 0.7mJ

463 **Supplementary Experiments.** We perform ablation studies to verify the SSCTI and SSWI methods,
 464 with results in Appendix A.6. Besides, sensitivity analyses are conducted on critical hyperparam-
 465 eters—including learning rate, batch size and pruning ratio—as summarized in Appendix A.7. We
 466 also conducted a robustness analysis and details are provided in Appendix A.9. Details of large
 467 language model usage in the writing process can be found in the Appendix A.13.

469 5 CONCLUSION

472 To address the challenge in achieving high levels of structural connection sparsity while maintain-
 473 ing performance comparable to that of fully connected networks, this paper presents CH-SNN, a
 474 four-stage dynamic sparse training framework for learning ultra-sparse spiking neural networks.
 475 The framework comprises: (1) sparse topology initialization, leveraging input correlation to initial-
 476 ize the network structure; (2) sparse weight initialization, which incorporates temporal activation
 477 sparsity, structural connection sparsity and neuronal threshold information of SNNs to initialize
 478 the weights of SNNs within a sparse network structure. (3) network pruning based on a removal
 479 score, combined with the removal of inactive neurons to improve information flow, and (4) network
 480 regrowth using the CH3-L3 score with a probabilistic strategy. These stages enable CH-SNN to
 481 achieve sparsification across all linear layers and enables effective training at ultra-high levels of
 482 sparsity conditions. Experimental results demonstrate that CH-SNN outperforms existing sparse
 483 SNNs training methods, achieving 97.75% sparsity on MNIST with a 0.16% accuracy improvement
 484 over the FC baseline. In addition, it realizes 98.84% sparsity with a 2.27% performance gain over
 485 the FC network while improving energy efficiency by approximately 97.5x. In summary, CH-SNN
 achieves performance comparable to FC networks even at ultra-high levels of sparsity, offering a
 promising solution for implementing edge AI on neuromorphic hardware.

486 REFERENCES
487

488 L.F Abbott. Lapicque's introduction of the integrate-and-fire model neuron (1907). *Brain*
489 *Research Bulletin*, 50(5):303–304, 1999. ISSN 0361-9230. doi: [https://doi.org/10.1016/S0361-9230\(99\)00161-6](https://doi.org/10.1016/S0361-9230(99)00161-6). URL <https://www.sciencedirect.com/science/article/pii/S0361923099001616>.

490 Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
491 Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz,
492 Michael Debole, Steve Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha. A low
493 power, fully event-based gesture recognition system. In *2017 IEEE Conference on Computer*
494 *Vision and Pattern Recognition (CVPR)*, pp. 7388–7397, 2017. doi: 10.1109/CVPR.2017.781.

495 Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
496 very sparse deep networks, 2018. URL <https://arxiv.org/abs/1711.05136>.

497 Sophie H. Bennett, Alastair J. Kirby, and Gerald T. Finnerty. Rewiring the connectome: Evidence
498 and effects. *Neuroscience & Biobehavioral Reviews*, 88:51–62, 2018. ISSN 0149-7634. doi:
499 <https://doi.org/10.1016/j.neubiorev.2018.03.001>. URL <https://www.sciencedirect.com/science/article/pii/S0149763417304864>.

500 Carlo Cannistraci. Modelling self-organization in complex networks via a brain-inspired network
501 automata theory improves link reliability in protein interactomes. *Scientific Reports*, 8, 10 2018a.
502 doi: 10.1038/s41598-018-33576-8.

503 Carlo Cannistraci. Modelling self-organization in complex networks via a brain-inspired network
504 automata theory improves link reliability in protein interactomes. *Scientific Reports*, 8, 10 2018b.
505 doi: 10.1038/s41598-018-33576-8.

506 Carlo Cannistraci, G. Alanis-Lobato, and Timothy Ravasi. From link-prediction in brain connec-
507 tomes and protein interactomes to the local-community-paradigm in complex networks. *Scientific*
508 *reports*, 3(1), April 2013. ISSN 2045-2322. doi: 10.1038/srep01613. KAUST Repository Item:
509 Exported on 2020-10-01.

510 Carlo Vittorio Cannistraci and Alessandro Muscoloni. Geometrical congruence and efficient greedy
511 navigability of complex networks, 2020. URL <https://arxiv.org/abs/2005.13255>.

512 Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking
513 neural networks through gradient rewiring. In *Proceedings of the Thirtieth International Joint*
514 *Conference on Artificial Intelligence*, IJCAI-2021, pp. 1713–1721. International Joint Confer-
515 ences on Artificial Intelligence Organization, August 2021. doi: 10.24963/ijcai.2021/236. URL
516 <http://dx.doi.org/10.24963/ijcai.2021/236>.

517 Yanqi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State tran-
518 sition of dendritic spines improves learning of sparse spiking neural networks. *International*
519 *Conference on Machine Learning*, Jan 2022.

520 Simone Daminelli, Josephine Maria Thomas, Claudio Durán, and Carlo Vittorio Cannistraci. Com-
521 mon neighbours and the local-community-paradigm for topological link prediction in bipartite
522 networks. *New Journal of Physics*, 17(11):113037, November 2015. ISSN 1367-2630. doi:
523 10.1088/1367-2630/17/11/113037. URL <http://dx.doi.org/10.1088/1367-2630/17/11/113037>.

524 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
525 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin,
526 Andrew Lines, Ruokun Liu, Deepak Mathai, Steven McCoy, Arnab Paul, Jonathan Tse, Gu-
527 ruguhanathan Venkataraman, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang.
528 Loihi: A neuromorphic manycore processor with on-chip learning. *IEEE Micro*, 38(1):82–99,
529 2018. doi: 10.1109/MM.2018.112130359.

530 Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan Xie.
531 Comprehensive snn compression using admm optimization and activity regularization. *IEEE*
532 *Transactions on Neural Networks and Learning Systems*, 34(6):2791–2805, 2023. doi: 10.1109/
533 TNNLS.2021.3109064.

540 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE*
 541 *Signal Processing Magazine*, 29(6):141–142, 2012.
 542

543 Enmao Diao, G. Wang, Jiawei Zhan, Yuhong Yang, Jie Ding, and Vahid Tarokh. Pruning deep
 544 neural networks from a sparsity perspective. *ArXiv*, abs/2302.05601, 2023. URL <https://api.semanticscholar.org/CorpusID:256827141>.
 545

546 Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the
 547 lottery: Making all tickets winners. *ArXiv*, abs/1911.11134, 2019. URL <https://api.semanticscholar.org/CorpusID:208267757>.
 548

549

550 Bing Han, Feifei Zhao, Wenzuan Pan, and Yi Zeng. Adaptive sparse structure development
 551 with pruning and regeneration for spiking neural networks. *Information Sciences*, 689:121481,
 552 2025a. ISSN 0020-0255. doi: <https://doi.org/10.1016/j.ins.2024.121481>. URL <https://www.sciencedirect.com/science/article/pii/S0020025524013951>.
 553

554

555 Bing Han, Feifei Zhao, Yi Zeng, and Guobin Shen. Developmental plasticity-inspired adaptive
 556 pruning for deep spiking and artificial neural networks. *IEEE Transactions on Pattern Analysis
 557 and Machine Intelligence*, 47(1):240–251, 2025b. doi: 10.1109/TPAMI.2024.3467268.
 558

559

560 Li Hanming, Yusong Wang, Yingtao Zhang, and Carlo Vittorio Cannistraci. Cannistraci-hebb
 561 training of convolutional neural networks. *Preprints*, September 2025. doi: 10.20944/preprints202509.1904.v1. URL <https://doi.org/10.20944/preprints202509.1904.v1>.
 562

563 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
 564 ing human-level performance on imagenet classification, 2015. URL <https://arxiv.org/abs/1502.01852>.
 565

566 Donald Olding Hebb. The organization of behavior. 1949.
 567

568 Shaoyi Huang, Haowen Fang, Kaleel Mahmood, Bowen Lei, Nuo Xu, Bin Lei, Yue Sun, Dongkuan
 569 Xu, Wujie Wen, and Caiwen Ding. Neurogenesis dynamics-inspired spiking neural network train-
 570 ing acceleration, 2023. URL <https://arxiv.org/abs/2304.12214>.
 571

572 Dexuan Huo, Jilin Zhang, Xinyu Dai, Jian Zhang, Chunqi Qian, Kea-Tiong Tang, and Hong Chen.
 573 Anp-g: A 28-nm 1.04-pj/sop sub-mm² asynchronous hybrid neural network olfactory processor
 574 enabling few-shot class-incremental on-chip learning. *IEEE Journal of Solid-State Circuits*, 60
 575 (7):2660–2670, 2025. doi: 10.1109/JSSC.2025.3530513.
 576

577 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL <https://api.semanticscholar.org/CorpusID:18268744>.
 578

579 Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. Dynamic sparse training
 580 with structured sparsity, 2024. URL <https://arxiv.org/abs/2305.02299>.
 581

582 Guoqi Li, Lei Deng, Huajin Tang, Gang Pan, Yonghong Tian, Kaushik Roy, and Wolfgang Maass.
 583 Brain-inspired computing: A systematic survey and future trends. *Proceedings of the IEEE*, 112
 584 (6):544–584, 2024. doi: 10.1109/JPROC.2024.3429360.
 585

586 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: An event-stream
 587 dataset for object classification. *Frontiers in Neuroscience*, 11, 05 2017. doi: 10.3389/fnins.2017.
 588 00309.

589

590 Fangxin Liu, Wenbo Zhao, Yongbiao Chen, Zongwu Wang, and Fei Dai. Dynsnn: A dynamic
 591 approach to reduce redundancy in spiking neural networks. In *ICASSP 2022 - 2022 IEEE In-
 592 ternational Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2130–2134,
 593 2022. doi: 10.1109/ICASSP43922.2022.9746566.
 594

595 Changze Lv, Jianhan Xu, and Xiaoqing Zheng. Spiking convolutional neural networks for text
 596 classification, 2024. URL <https://arxiv.org/abs/2406.19230>.
 597

594 Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Philipp
 595 Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan
 596 Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner,
 597 William P. Risk, Rajit Manohar, and Dharmendra S. Modha. A million spiking-neuron integrated
 598 circuit with a scalable communication network and interface. *Science*, 345(6197):668–673, 2014.
 599 doi: 10.1126/science.1254642. URL <https://www.science.org/doi/abs/10.1126/science.1254642>.
 600

601 Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu,
 602 and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
 603 connectivity inspired by network science. *Nature Communications*, 9(1), June 2018. ISSN
 604 2041-1723. doi: 10.1038/s41467-018-04316-3. URL <http://dx.doi.org/10.1038/s41467-018-04316-3>.
 605

606 Alessandro Muscoloni, Ilyes Abdelhamid, and Carlo Vittorio Cannistraci. Local-community net-
 607 work automata modelling based on length-three-paths for prediction of complex network struc-
 608 tures in protein interactomes, food webs and more. *bioRxiv*, 2018. doi: 10.1101/346916. URL
 609 <https://doi.org/10.1101/346916>.
 610

611 Garrick Orchard, Ajinkya Jayawant, Gregory Cohen, and Nitish Thakor. Converting static image
 612 datasets to spiking neuromorphic datasets using saccades, 2015. URL <https://arxiv.org/abs/1507.07629>.
 613

614 K. Pearson. *On the Theory of Contingency and Its Relation to Association and Normal Correla-
 615 tion*. Creative Media Partners, LLC, 2015. ISBN 9781297758287. URL <https://books.google.com.hk/books?id=6sxAjqEACAAJ>.
 616

617 Yu Qi, Jiangrong Shen, Yueming Wang, Huajin Tang, Hang Yu, Zhaohui Wu, and Gang Pan. Jointly
 618 learning network connections and link weights in spiking neural networks. In *Proceedings of the
 619 27th International Joint Conference on Artificial Intelligence*, IJCAI’18, pp. 1597–1603. AAAI
 620 Press, 2018. ISBN 9780999241127.
 621

622 Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp-based pruning of connections and weight
 623 quantization in spiking neural networks for energy-efficient recognition. *IEEE Transactions on
 624 Computer-Aided Design of Integrated Circuits and Systems*, 38(4):668–677, 2019. doi: 10.1109/
 625 TCAD.2018.2819366.
 626

627 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine in-
 628 telligence with neuromorphic computing. *Nature*, 575(7784):607–617, November 2019.
 629 ISSN 0028-0836. doi: 10.1038/s41586-019-1677-2. URL <https://doi.org/10.1038/s41586-019-1677-2>.
 630

631 Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
 632 Conversion of continuous-valued deep networks to efficient event-driven networks for im-
 633 age classification. *Frontiers in Neuroscience*, Volume 11 - 2017, 2017. ISSN 1662-453X.
 634 doi: 10.3389/fnins.2017.00682. URL <https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682>.
 635

636 Jiangrong Shen, Qi Xu, Gang Pan, and Badong Chen. Improving the sparse structure learning
 637 of spiking neural networks from the view of compression efficiency, 2025. URL <https://arxiv.org/abs/2502.13572>.
 638

639 Xiany Wu, Yufei Zhao, Yong Song, Yurong Jiang, Yashuo Bai, Xinyi Li, Ya Zhou, Xin Yang,
 640 and Qun Hao. Dynamic threshold integrate and fire neuron model for low latency spiking
 641 neural networks. *Neurocomputing*, 544:126247, 2023. ISSN 0925-2312. doi: <https://doi.org/10.1016/j.neucom.2023.126247>. URL <https://www.sciencedirect.com/science/article/pii/S0925231223003703>.
 642

643 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 644 training high-performance spiking neural networks. *Frontiers in Neuroscience*, 12, May 2018.
 645 ISSN 1662-453X. doi: 10.3389/fnins.2018.00331. URL <http://dx.doi.org/10.3389/fnins.2018.00331>.
 646

648 Yulong Yan, Haoming Chu, Yi Jin, Yuxiang Huan, Zhuo Zou, and Lirong Zheng. Back-
 649 propagation with sparsity regularization for spiking neural network learning. *Frontiers*
 650 in *Neuroscience*, Volume 16 - 2022, 2022. ISSN 1662-453X. doi: 10.3389/fnins.
 651 2022.760298. URL <https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.760298>.

653 Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
 654 Zhan, Chaoyang He, Qing Jin, Siyue Wang, Minghai Qin, Bin Ren, Yanzhi Wang, Sijia Liu, and
 655 Xue Lin. Mest: Accurate and fast memory-economic sparse training framework on the edge,
 656 2021. URL <https://arxiv.org/abs/2110.14032>.

658 Jilin Zhang, Dexuan Huo, Jian Zhang, Chunqi Qian, Qi Liu, Liyang Pan, Zhihua Wang, Ning Qiao,
 659 Kea-Tiong Tang, and Hong Chen. Anp-i: A 28-nm 1.5-pj/sop asynchronous spiking neural net-
 660 work processor enabling sub-0.1- j/sample on-chip learning for edge-ai applications. *IEEE Jour-
 661 nal of Solid-State Circuits*, 59(8):2717–2729, 2024a. doi: 10.1109/JSSC.2024.3357045.

662 Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
 663 and-play: An efficient post-training pruning method for large language models. In *The Twelfth
 664 International Conference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=Tr01Px9woF>.

667 Yingtao Zhang, Jialin Zhao, Ziheng Liao, Wenjing Wu, Umberto Michieli, and Carlo Cannis-
 668 traci. Brain-inspired sparse training in mlp and transformers with network science modeling
 669 via cannistraci-hebb soft rule, 06 2024c.

670 Yingtao Zhang, Jialin Zhao, Wenjing Wu, Alessandro Muscoloni, and Carlo Vittorio
 671 Cannistraci. Epitopological learning and cannistraci-hebb network shape intelli-
 672 gence brain-inspired theory for ultra-sparse advantage in deep learning. In B. Kim,
 673 Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.), *International
 674 Conference on Representation Learning*, volume 2024, pp. 46211–46239, 2024d.
 675 URL https://proceedings.iclr.cc/paper_files/paper/2024/file/c9ef471a579197c4ed99df2aa542ce97-Paper-Conference.pdf.

677 Yingtao Zhang, Diego Cerretti, Jialin Zhao, Wenjing Wu, Ziheng Liao, Umberto Michieli, and
 678 Carlo Vittorio Cannistraci. Brain network science modelling of sparse neural networks enables
 679 transformers and llms to perform as fully connected, 2025. URL <https://arxiv.org/abs/2501.19107>.

682 Yuxin Zhang, Mingbao Lin, Mengzhao Chen, Fei Chao, and Rongrong Ji. Optg: Optimizing
 683 gradient-driven criteria in network sparsity, 2022. URL <https://arxiv.org/abs/2201.12826>.

685 Jialin Zhao, Alessandro Muscoloni, Umberto Michieli, Yingtao Zhang, and Carlo Vittorio Can-
 686 nistraci. Adaptive network automata modelling of complex networks for link prediction.
 687 *Preprints.org*, 2025. doi: 10.20944/preprints202012.0808.v4. URL <https://doi.org/10.20944/preprints202012.0808.v4>.

690 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
 691 Li Yuan. Spikformer: When spiking neural network meets transformer, 2022. URL <https://arxiv.org/abs/2209.15425>.

694 A APPENDIX

697 A.1 SPARSE SPIKE WEIGHT INITIALIZATION

698 For the sparse spiking neural network, we first introduce the sparse connection matrix $\mathbf{C} \in$
 699 $\{0, 1\}^{m \times n}$, where 1 represents a connection exists and 0 represents no connection exists. For a
 700 sparse network, we have:

$$6 \quad \mathbf{y}^{(l)} = \mathbf{C}^{(l)} \odot \mathbf{W}^{(l)} \mathbf{x}^{(l)} + \mathbf{b}^{(l)} \quad (6)$$

702 where \odot represents the Hadamard product, $\mathbf{W}^{(l)} \in \mathbb{R}^{m \times n}$ is the weight matrix, $\mathbf{x}^{(l)} \in \mathbb{R}^{n \times 1}$ denotes the input vector, $\mathbf{b}^{(l)} \in \mathbb{R}^{m \times 1}$ is the bias vector, $\mathbf{y}^{(l)} \in \mathbb{R}^{m \times 1}$ stands for the output vector, and l represents the layer index. Next we assume that bias is 0 and the number of network layers is L , For the i – th element $y_i^{(l)}$ of the output vector $\mathbf{y}^{(l)}$, we discuss its variance:

$$707 \quad \text{Var}[y_i^{(l)}] = \text{Var}\left[\sum_{j=1}^n C_{ij}^{(l)} W_{ij}^{(l)} x_j^{(l)}\right] \quad (7)$$

709 \mathbf{C} , \mathbf{W} and \mathbf{x} are independent of each other, All elements in the matrices $\mathbf{W}, \mathbf{C}, \mathbf{x}$ are independently
710 and identically distributed, and the three matrices have different distributions. Then the variance of
711 $y_i^{(l)}$ can be expressed as follows:

$$713 \quad \text{Var}[y_i^{(l)}] = n[(\text{Var}[C_{ij}] + \mu_C^2)(\text{Var}[W_{ij}] + \mu_W^2)(\text{Var}[x_j] + \mu_x^2) - \mu_C^2 \mu_W^2 \mu_x^2] \quad (8)$$

714 where μ is the mean. For the elements of the sparse connection matrix \mathbf{C} , we assume that it follows
715 the Bernoulli distribution, then we have:

$$717 \quad C_{ij} = \begin{cases} 1, & p = 1 - S_s \\ 0, & p = S_s \end{cases}, \quad \mu_C = 1 - S_s, \quad \text{Var}[C_{ij}] = S_s(1 - S_s) \quad (9)$$

719 where S_s is the structural connection sparsity. Based on previous work (He et al., 2015), we similarly
720 define W_{ij} to follow a zero-mean Gaussian distribution, which means $\mu_W = 0$. The Equation (8)
721 can be changed to:

$$722 \quad \text{Var}[y_i^{(l)}] = n(1 - S_s)(\text{Var}[W_{ij}])(\text{Var}[x_j] + \mu_x^2) \quad (10)$$

723 We expect to maintain the same variance of the input feature across layers, which means $\text{Var}[y_i^{(l)}] =$
724 $\text{Var}[y_i^{(l-1)}]$. For the input layer ($l = 1$), it can be expressed as $\text{Var}[y_i^{(1)}] = \text{Var}[x_i]$, because there
725 is no activation function applied to the input feature. The input of the spiking neural network is 1 or
726 0, therefore, we can assume that x_i follows the Bernoulli distribution with parameter $p = S_t$. We
727 can get the variance of the W_{ij} as follows:

$$729 \quad \text{Var}[W_{ij}^{(1)}] = \frac{S_t}{n(1 - S_s)} \quad (11)$$

731 where S_t is the temporal activation sparsity, and n is the dimension of the input. For the rest of
732 sparsely connected layers, $y_i^{(l)}$ follows a distribution with zero mean and symmetric about zero,
733 since $W_{ij}^{(l)}$ follows a zero-mean Gaussian distribution and the input of every layer is zero or one,
734 which will not affect the symmetry of $W_{ij}^{(l)}$. To simplify the analysis, we assume that $y_i^{(l)}$ also
735 follows a zero-mean Gaussian distribution. In the spiking neural network, the activation function is
736 not ReLU, but rather the step function, which can be expressed as:

$$738 \quad x_i^{(l)} = U(y_i^{(l-1)} + V_{mem} - \theta) = \begin{cases} 1, & y_i^{(l-1)} + V_{mem} \geq \theta \\ 0, & y_i^{(l-1)} + V_{mem} < \theta \end{cases} \quad (12)$$

741 Where θ is the threshold of the spiking neural network. We approximate that V_{mem} and $y_i^{(l-1)}$
742 follow the same distribution. Therefore, Equation (12) can be expressed as follows:

$$743 \quad x_i^{(l)} = U(2y_i^{(l-1)} - \theta) = \begin{cases} 1, & y^{(l-1)} \geq \theta/2 \\ 0, & y^{(l-1)} < \theta/2 \end{cases} \quad (13)$$

746 We expect to find a relationship between $\text{Var}[x_j^{(l)}] + \mu_x^2$ and $\text{Var}[y_j^{(l-1)}]$ that will simplify Equation
747 (10). Based on Equation (13), we have:

$$749 \quad \text{Var}[x_j^{(l)}] + \mu_x^2 = \int_{\theta/2}^{+\infty} \frac{1}{\sqrt{2\pi \text{Var}[y_j^{(l-1)}]}} e^{-x^2/2\text{Var}[y_j^{(l-1)}]} dx = 1 - \Phi(\theta/2 \sqrt{\text{Var}[y_j^{(l-1)}]}) \quad (14)$$

751 where $\Phi(\cdot)$ is the cumulative distribution function of the standard normal distribution. We expand
752 Equation (14) in a Taylor series around $\theta/2$ with $\text{Var}[y_j^{(l-1)}]$ as the variable and discard the higher-
753 order terms:

$$755 \quad \text{Var}[x_j^{(l)}] + \mu_x^2 \approx 1 - \Phi(1) + \frac{2}{\sqrt{2\pi}\theta^2} e^{(-\frac{1}{2})} (\text{Var}[y_j^{(l-1)}] - \frac{\theta^2}{4}) \approx \frac{\sqrt{2}e^{-1/2}}{\sqrt{\pi}\theta^2} \text{Var}[y_j^{(l-1)}] \quad (15)$$

756 Next, we substitute Equation (15) into Equation (10), obtaining the following result:
757

$$758 \quad 759 \quad 760 \quad \text{Var}[W_{ij}^{(l)}] = \frac{\theta^2 \sqrt{\pi}}{\sqrt{2} e^{-1/2} n (1 - S_s)}, (1 < l < L) \quad (16)$$

761 Finally, we assume that the output layer is fully connected, which means $S_s = 0$, so we can obtain
762 the following result:
763

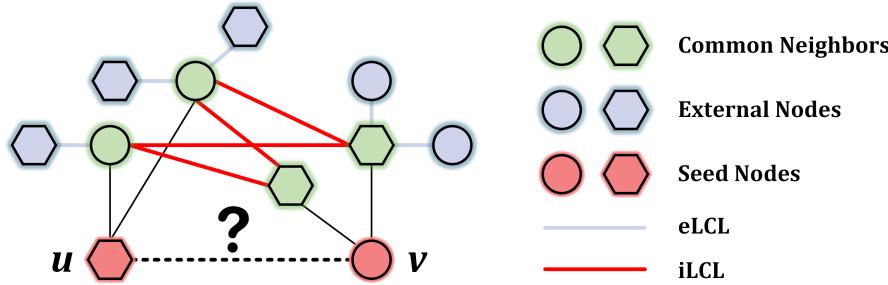
$$764 \quad \text{Var}[W_{ij}^{(L)}] = \frac{\theta^2 \sqrt{\pi}}{\sqrt{2} e^{-1/2} n} \quad (17)$$

765 In summary, we can summarize the Sparse Spike Weight Magnitude Initialization (SSWI) as fol-
766 lows:
767

$$768 \quad 769 \quad 770 \quad 771 \quad 772 \quad 773 \quad 774 \quad \text{SSWI}(W_{ij}^{(l)}) \sim \mathcal{N}(0, \sigma^2), \quad \sigma^2 = \begin{cases} \frac{S_t}{n(1 - S_s)}, & (l = 1) \\ \frac{\theta^2 \sqrt{\pi}}{\sqrt{2} e^{-1/2} n (1 - S_s)}, & (1 < l < L) \\ \frac{\theta^2 \sqrt{\pi}}{\sqrt{2} e^{-1/2} n}, & (l = L) \end{cases} \quad (18)$$

775 A.2 EXPLANATION OF CH3-L3

776 To illustrate the application of CH3-L3 for link prediction, consider a hypothetical network contain-
777 ing nodes u and v that are not directly connected. The CH3-L3 method evaluates potential links by
778 analyzing all length-3 paths between u and v and incorporating the local community connectivity of
779 intermediate nodes.
780



792 Figure 4: Example of link prediction using CH3-L3.
793

794 We provide an illustrative example in Figure 4. Red nodes represent seed nodes between which no
795 direct connection is currently observed, but which have the potential to regenerate a link. Green
796 nodes denote common neighbors—nodes directly connected to both seed nodes. Red edges indicate
797 connections between common neighbors, referred to as internal Local Community Links (iLCL).
798 Blue nodes represent external nodes outside the set of seed nodes and their common neighbors.
799 Blue edges correspond to connections between common neighbors and these external nodes, termed
800 external Local Community Links (eLCL). The calculation process of CH3-L3 is as follows:
801

$$802 \quad 803 \quad 804 \quad 805 \quad \text{CH3-L3}(u, v) = \sum_{z_1, z_2 \in l3(u, v)} \frac{1}{\sqrt{(1 + de_{z_1}) \times (1 + de_{z_2})}} \quad (19)$$

806 where u and v denote two seed nodes, and z_1, z_2 represent two common neighbor nodes along a path
807 of length 3 between u and v . The terms de_{z_1} and de_{z_2} correspond to the number of eLCL associated
808 with node z_1 and z_2 , respectively. The CH3-L3 score is computed by summing the contributions
809 from all length-3 paths between u and v . Here, adding 1 to de_{z_1} and de_{z_2} prevents division by zero
and ensures numerical stability when no external links are present.

810 A.2.1 GUARANTEEING TRAINING STABILITY VIA THE CH3-L3
811

812 The CH3-L3 regrowth score is derived from the Cannistraci-Hebb theory of local-community orga-
813 nization (Cannistraci, 2018b; Zhang et al., 2024d; Zhao et al., 2025). The term d_{ez} in Equation 19
814 (the external degree of a common neighbor z) acts as a penalty term. It inherently discourages the
815 formation of new links that would connect to nodes that are already highly connected outside their
816 immediate local community. This design naturally prevents the mechanism from getting stuck in
817 redundant loops of adding and removing the same connections. It preferentially strengthens con-
818 nections within structurally isolated communities, which is a stable, self-reinforcing process. It is a
819 gradient-free, topology-driven predictive network automata (Zhang et al., 2025; Zhao et al., 2025)
820 that guides the network towards a sparse, hub-and-community structure (Zhang et al., 2024d).

821 While CH3-L3 is inherently stable, we proactively introduced an early-stop mechanism in the CH-
822 SNN framework to explicitly monitor and halt any potential redundancy. We track the overlap rate
823 between the set of links removed and the set of links regrown in each topological update cycle.
824 Once this overlap rate exceeds a high threshold (e.g., 95%), it signals that the network topology has
825 stabilized. At this point, we permanently stop the topological evolution (pruning and regrowth) for
826 that layer and focus solely on weight update.

827 Furthermore, our framework includes a chain removal, as shown in section 3.2.3, that permanently
828 removes inactive neurons. Since these neurons cannot attract new connections via CH3-L3, their
829 removal prevents structural dead-ends and further contributes to overall training stability and effi-
830 ciency.

831 Our extensive experiments across multiple datasets and architectures, where CH-SNN consistently
832 converges and outperforms baselines, serve as empirical validation of this stable behavior. Finally,
833 the previous studies on dynamic sparse training (DST) never raised a concern of stable convergence
834 or meaningful structure learning because the DST methodology selects which link should be re-
835 moved during the training by using the weight update, this ensures a convergence of the model
836 towards meaningful structures (Zhang et al., 2024d; Evci et al., 2019; Zhang et al., 2024c) even with
837 a random predictor such as SET (Mocanu et al., 2018).

838
839 A.2.2 BIOLOGICAL INTERPRETABILITY OF CH3-L3
840

841 The CH3-L3 mechanism operationalizes Hebbian principles at a network-structural level, embody-
842 ing the concept that “neurons that fire together wire together” (Hebb, 1949). Specifically, it identifies
843 pairs of neurons that exhibit structural correlations, such as sharing common neighbors or belonging
844 to the same local community, and predicts the formation of new links between them. This process
845 mirrors synaptic turnover and rewiring observed in biological neural circuits, where connections are
846 dynamically formed or strengthened based on functional relatedness.

847 Although CH3-L3 does not explicitly model precise spike timing, it captures the topological out-
848 comes of STDP-like plasticity. CH3-L3 leverages these structural signatures, derived from local
849 community detection, to guide link regrowth, effectively simulating a topology-driven form of plas-
850 ticity. This approach is analogous to how STDP reinforces connections within functionally related
851 neuronal assemblies, promoting sparse yet efficient network dynamics. In dynamic sparse networks,
852 such regrowth ensures adaptability while maintaining biological realism, as it avoids random recon-
853 nections and prioritizes structurally plausible ones.

854 In summary, while CH3-L3 is not a direct biophysical simulation of STDP, it provides a functionally
855 equivalent and biologically interpretable mechanism for synaptic rewiring, enhancing the model’s
856 relevance to neuroscience applications.

857
858 A.3 DETAILS OF NETWORK PRUNING AND NETWORK REGROWTH
859

860 During dynamic sparse training, we generate a sparse connectivity matrix C , where $C_{ij} = 1$ in-
861 dicates the presence of a link between nodes i and j , and $C_{ij} = 0$ indicates no link between the
862 nodes. After each training epoch, a process of network pruning and network regrowth is performed.
863 Correspondingly, the sparse connectivity matrix C is updated.

864 A.3.1 LINK REMOVAL
865

866 During the link removal phase, we calculate the Link Removal Score (LRS) for the existing links
867 (where $C_{ij} = 1$). The LRS_{ij} is computed as shown in Equation (20):
868

$$869 \quad LRS_{ij} = \left(\frac{|W_{ij}|}{1 + \sum_i |W_{ij}|} + \frac{|W_{ij}|}{1 + \sum_j |W_{ij}|} \right)^{\frac{\delta}{1-\delta}} \quad (20)$$

872 The parameter δ controls the sampling distribution. When $\delta = 0$, it means the LRS is identical for
873 all links. In this scenario, the corresponding sampling method is random sampling, where links are
874 randomly selected and removed. When $\delta = 1$, the sampling becomes deterministic, and links are
875 removed directly based on their LRS values. When $\delta = 0.5$, it means sampling from a multinomial
876 distribution based on the LRS values. In this situation, we calculate the link removal probability
877 $p_{ij}^{(removal)}$ using the LRS_{ij} , as shown in Equation (21):
878

$$879 \quad p_{ij}^{(removal)} = \frac{LRS_{ij}}{\sum_{ij} LRS_{ij}} \quad i, j \in \{a, b \mid C_{ab} = 1\} \quad (21)$$

882 Subsequently, based on the link removal probabilities, we remove a certain proportion (ζ) of links
883 as specified in Equation (22), completing the link removal process.
884

$$885 \quad C_{ij} = \begin{cases} 1 & 1 - p_{ij}^{(removal)} \\ 0 & p_{ij}^{(removal)} \end{cases} \quad i, j \in \{a, b \mid C_{ab} = 1\} \quad (22)$$

889 A.3.2 LINK REGROWTH
890

891 During link regrowth, we compute the link regrowth score (**CH3-L3**(u, v)) for nonexistent links
892 (where $C_{uv} = 0$), as formulated in Equation (23).
893

$$894 \quad \text{CH3-L3}(u, v) = \sum_{z_1, z_2 \in l3(u, v)} \frac{1}{\sqrt{(1 + de_{z_1}) \times (1 + de_{z_2})}}^{\frac{\delta}{1-\delta}} \quad (23)$$

898 Consistent with the link removal, the parameter δ controls the sampling distribution. $\delta = 0$
899 represents random sampling, $\delta = 1$ indicates that links will be directly regrown based on the
900 **CH3-L3**(u, v), and $\delta = 0.5$ signifies sampling from a multinomial distribution based on the
901 **CH3-L3**(u, v). Similarly, we compute the link regrowth probability $p_{uv}^{(regrowth)}$, as shown in Equa-
902 tion (24).
903

$$904 \quad p_{uv}^{(regrowth)} = \frac{\text{CH3-L3}(u, v)}{\sum_{uv} \text{CH3-L3}(u, v)} \quad u, v \in \{a, b \mid C_{ab} = 0\} \quad (24)$$

907 Following the regrowth probabilities, the regrowth of links can be completed as shown in Equation
908 (25). The number of regrowth links remains consistent with the number of pruned links, thereby
909 maintaining the pre-defined overall network sparsity.
910

$$911 \quad C_{uv} = \begin{cases} 1 & p_{uv}^{(regrowth)} \\ 0 & 1 - p_{uv}^{(regrowth)} \end{cases} \quad u, v \in \{a, b \mid C_{ab} = 0\} \quad (25)$$

915 To evaluate the impact of different regrowth sampling distributions on model accuracy, we conducted
916 comprehensive experiments. As shown in Table 3, the highest accuracy is achieved when $\delta = 0.5$.
917 Consequently, for all experimental results reported in this paper, we set $\delta = 0.5$, which means we
918 sample regrowth links from a multinomial distribution.
919

918
919
920
921
922
923
924
925
926
927Table 3: Sensitivity experiment of δ .

Dataset	$\delta = 1$	$\delta = 0.5$	$\delta = 0$
N-MNIST	96.30%	97.21%	96.63%
DVS-Gesture	89.02%	91.29%	90.53%
MNIST	98.28%	98.40%	98.30%
CIFAR-10	78.87%	82.84%	77.68%

A.4 DETAILS OF SPARSE SPIKE CORRELATED TOPOLOGICAL INITIALIZATION

To enhance the performance of the link predictor, we propose the Sparse Spike Correlated Topological Initialization (SSCTI), a method for initializing the topology of layers that interact directly with input features.

Assuming we have N samples with M input features and a timestep of T , the SSCTI procedure consists of the following four steps, as illustrated in Figure 5. **(1) Temporal Unfolding and Stacking.** We treat each timestep as an independent sample and stack them along the feature dimension, resulting in a data matrix of $\mathbb{R}^{M \times NT}$ for subsequent processing. **(2) Feature Correlation Calculation.** Based on the $\mathbb{R}^{M \times NT}$ matrix, we compute the Pearson's phi coefficient between every pair of features, constructing a feature correlation matrix of $\mathbb{R}^{M \times M}$. **(3) Top-K Sparsification and Adjacency Matrix Construction.** We retain only the top- $(1 - S_s)$ values in the correlation matrix (where S_s denotes the structural connection sparsity) and set them to 1, forming an adjacency matrix of $\mathbb{R}^{M \times M}$ that defines the initial topological structure of the layer. When the hidden layer dimension matches the input dimension (M), connections exist only where the adjacency matrix contains 1. If the hidden layer is larger (e.g., $2M$), the adjacency matrix is tiled or repeated accordingly (e.g., to $\mathbb{R}^{M \times 2M}$), allowing flexible scaling of hidden dimensions. The same process is applied to initialize topological structures between hidden layers. **(4) Sparse Topological Initialization.** Finally, we initialize the network topology based on the adjacency matrix, preserving only the connections indicated by 1's in the matrix.

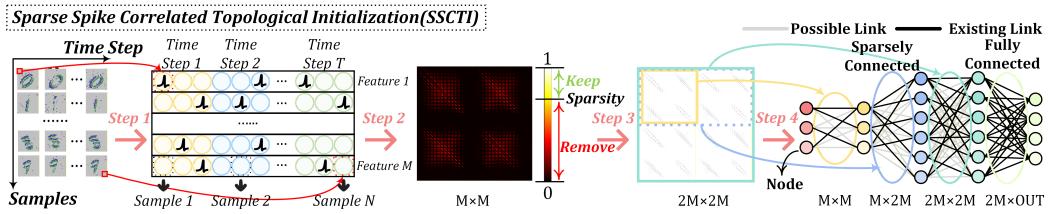


Figure 5: An example of how to construct the SSCTI on the N-MNIST dataset

A.5 EXPERIMENTAL SETUP

To evaluate the performance of CH-SNN, we conduct extensive experiments on multiple datasets, including MNIST (Deng, 2012), CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), N-MNIST (Orchard et al., 2015), CIFAR10-DVS (Li et al., 2017) and DVS-Gesture (Amir et al., 2017). Both the MNIST and N-MNIST datasets contain 10 classes of handwritten numbers (0–9), each consisting of 60,000 training samples and 10,000 test samples. DVS-Gesture comprises 11 types of gestures captured using an event-based camera. For these three datasets, we adopt the following network architecture: Input \rightarrow 15 (Channel Count)Conv (Layer Type)3 \times 3(Kernel Size) \rightarrow AvgPool2 \times 2 \rightarrow 40Conv3 \times 3 \rightarrow AvgPool2 \times 2 \rightarrow Flatten \rightarrow 300 \rightarrow Classes. For MNIST, a two-layer fully connected network is used: 784 \rightarrow 1568 \rightarrow 10. Since CIFAR10 and CIFAR100 share a similar data format, we employ the same network structure for both: Input \rightarrow [128Conv3 \times 3] \times 2 \rightarrow MaxPool2 \times 2 \rightarrow [256Conv3 \times 3] \times 2 \rightarrow MaxPool2 \times 2 \rightarrow 512Conv3 \times 3 \rightarrow Flatten \rightarrow 512 \times 8 \times 8 \rightarrow 512 \rightarrow 10. All networks are configured with a time step of 8. Non-Spiking datasets (CIFAR10, CIFAR100, MNIST) are encoded using direct encoding. For all experiments, we adopt the standard Spikformer architecture (Zhou et al., 2022), configured with 8 encoder layers, a hidden dimension

of 512, 8 attention heads, and a timestep of 4. A uniform sparsity of 99% is applied to all linear layers (except for the output layer). Weight updates are performed via surrogate gradient methods. Within each epoch, after completing weight training, CH-SNN performs pruning and regeneration according to the pruning ratio ζ followed by testing. The value of ζ decays cosine-annealingly to zero over the course of training, which can be expressed as follows:

$$\zeta = \frac{\zeta}{2} \times (1 + \cos(\frac{\pi \times \text{epoch}}{\text{total epochs}})) \quad (26)$$

For the S-TP algorithm, we perform experiments on the CIFAR-10, MNIST, N-MNIST and DVS-Gesture datasets using a network structure defined as Input-2×Input-2×Input-Classes, with input sizes of 578 for N-MNIST, 784 for MNIST, 512 for CIFAR-10, and 2048 for DVS-Gesture. Throughout training, we set the learning rate to 0.0001, the dynamic pruning ratio ζ to 0.35, the batch size to 100, the target window size to 4, the number of epochs to 100, and the neuronal firing threshold to 4.

A.6 ABLATION EXPERIMENT

We have conducted ablation studies to validate the effectiveness of our proposed SSCTI and SSWI. The results are summarized in Table 4. When both SSCTI and SSWI are removed, the model fails to converge in most cases. Removing either SSCTI or SSWI individually leads to varying degrees of performance degradation. Notably, with a high level of sparsity of 99%, the model becomes unstable and fails to train when SSWI is ablated. These ablation results demonstrate the critical importance and effectiveness of both SSCTI and SSWI in maintaining network performance under extreme sparsity.

Table 4: Ablation Study on SSCTI and SSWI (When SSCTI is ablated, we employ random structural initialization; when SSWI is removed, we use Kaiming initialization).

Dataset	SSCTI	SSWI	99% Sparsity	95% Sparsity	80% Sparsity	70% Sparsity
N-MNIST	✓		9.80%	9.80%	9.80%	91.99%
		✓	9.80%	88.82%	96.95%	97.12%
		✓	89.61%	94.74%	96.53%	96.87%
MNIST	✓		96.20%	97.21%	97.29%	97.22%
		✓	9.80%	9.80%	97.23%	97.78%
		✓	70.41%	96.57%	97.57%	97.57%
DVS-Gesture	✓		78.09%	96.81%	97.88%	97.91%
		✓	96.88%	97.56%	98.11%	98.00%
		✓	9.09%	9.09%	9.09%	9.09%
CIFAR-10	✓		9.09%	9.09%	78.79%	86.74%
		✓	76.52%	87.12%	87.50%	86.74%
		✓	91.29%	91.29%	88.64%	89.02%
CIFAR-10	✓		10.00%	57.35%	78.89%	77.95%
		✓	34.55%	76.83%	80.01%	78.19%
		✓	77.40%	81.62%	80.62%	80.65%
		✓	78.94%	82.84%	81.73%	81.42%

A.7 SENSITIVITY TEST

We have conducted a sensitivity analysis of the hyperparameters in CH-SNN, focusing primarily on the learning rate, batch size, dynamic pruning ratio, and static sparsity rate, to evaluate the model’s performance under variations in these parameters.

Learning Rate (LR). We train CH-SNN using different learning rates (0.01, 0.005, 0.001, 0.0005, 0.0001) and record its performance, as summarized in Table 5. The results indicate that as the learning rate increases, the model exhibits a noticeable decline in performance. Through further analysis, we conclude that this performance degradation stems from the S-TP algorithm: during weight updates, an excessively large learning rate leads to oversized training steps, preventing convergence to

1026
1027 an optimal solution. This is validated by conducting a learning rate sensitivity experiment on a fully
1028 connected network, where a similar performance drop is observed, as shown in Table 5.
1029

1030 Table 5: Learning rate sensitivity experiment.

Dataset	lr-0.01	lr-0.005	lr-0.001	lr-0.0005	lr-0.0001
N-MNIST	83.08%	85.59%	95.84%	96.87%	96.91%
DVS-Gesture	65.91%	75.76%	89.77%	89.77%	89.77%
MNIST	67.18%	85.83%	94.98%	96.19%	97.98%
CIFAR-10	78.74%	79.96%	82.84%	82.73%	82.54%
N-MNIST(FC)	69.65%	80.90%	88.16%	96.31%	96.38%
DVS-Gesture(FC)	68.56%	68.18%	85.98%	88.64%	89.02%
MNIST(FC)	79.90%	84.58%	92.43%	94.12%	97.29%
CIFAR-10(FC)	59.86%	55.49%	80.14%	81.92%	80.67%

1041
1042 **Batch Size (BS).** We employ different batch sizes to train CH-SNN, and the experimental results
1043 presented in Table 6 show that variations in batch size did not cause significant changes in its per-
1044 formance.

1045 Table 6: Batch size sensitivity experiment.

Dataset	BS-16	BS-32	BS-50	BS-64	BS-100
N-MNIST	96.88%	96.86%	96.85%	97.00%	96.91%
DVS-Gesture	89.77%	89.39%	89.02%	89.39%	89.77%
MNIST	98.08%	98.09%	98.11%	98.07%	97.98%
CIFAR-10	82.64%	81.95%	81.88%	81.74%	82.84%

1053
1054 **Dynamic Pruning Ratio (ζ).** To evaluate the impact of different pruning rate strategies on model
1055 performance, we first test the dynamic pruning rate strategy as defined in Equation (26). We adjust
1056 various decay starting points (0.5, 0.4, 0.3, 0.2, 0.1), and the experimental results are shown in
1057 Table 7. It can be observed that CH-SNN exhibits negligible performance variation across different
1058 initial pruning rates, demonstrating strong stability in response to changes in the pruning rate. The
1059 model consistently achieves strong performance under the predefined sparsity targets.

1060 Table 7: Dynamic removal rate sensitivity experiment.

Dataset	$\zeta-0.5$	$\zeta-0.4$	$\zeta-0.3$	$\zeta-0.2$	$\zeta-0.1$
N-MNIST	97.14%	96.91%	96.96%	97.04%	97.10%
DVS-Gesture	89.39%	90.53%	89.02%	88.64%	89.39%
MNIST	97.98%	97.98%	97.98%	97.98%	97.98%
CIFAR-10	82.64%	82.24%	82.84%	83.03%	82.75%

1068
1069 **Static Pruning Ratio (ζ).** Similarly, we evaluate a static pruning rate strategy. Unlike the dynamic
1070 approach, the static pruning rate remains constant at its initial value throughout training. We test
1071 multiple starting values for the static pruning rate, and the results are presented in Table 8. CH-SNN
1072 shows minimal performance variation across different static pruning rates. It is worth noting that
1073 compared to the dynamic pruning strategy, the static approach generally leads to a slight decrease in
1074 overall accuracy.

1075 A.8 NODE SPARSITY

1076
1077 In the CH-SNN framework, neurons that are unilaterally or bilaterally disconnected (i.e., without
1078 any incoming or outgoing links) are regarded as inactive neurons. Since these inactive neurons
1079 lose the ability to transmit information, they may hinder information flow throughout the network.
We assume that such inactive neurons are unable to regrow new links during the network regrowth

1080

1081

Table 8: Static removal rate sensitivity experiment.

Dataset	ζ -0.5	ζ -0.4	ζ -0.3	ζ -0.2	ζ -0.1
N-MNIST	96.90%	96.87%	96.84%	96.81%	97.10%
DVS-Gesture	88.64%	89.39%	89.02%	89.02%	88.64%
MNIST	97.98%	97.98%	97.98%	97.98%	97.98%
CIFAR-10	82.24%	82.26%	82.53%	82.63%	82.25%

1082

1083

1084

1085

1086

1087

1088

1089

stage. Therefore, during the chain removal step, we permanently remove them from the network. As illustrated in Figure 1 Stage 3, this process enhances node sparsity. We compare CH-SNN with SD-SNN, an existing open-source method, as shown in Table 9.

1090

1091

1092

1093

1094

1095

Table 9: Node sparsity of different methods on CIFAR-10, CIFAR-100, MNIST, N-MNIST and DVS-Gesture datasets.

Dataset	Method	Network	Node sparsity
CIFAR-10	SD-SNN	6Conv 2FC	0.28%
	CH-SNN	6Conv 2FC	1.21%
CIFAR-100	SD-SNN	6Conv 2FC	0.46%
	CH-SNN	6Conv 2FC	0.69%
MNIST	SD-SNN	2Conv 2FC	0.02%
	CH-SNN	2Conv 2FC	0.04%
	SD-SNN	2FC	0.77%
	CH-SNN	2FC	2.03%
N-MNIST	SD-SNN	2Conv 2FC	6.32%
	CH-SNN	2Conv 2FC	8.09%
DVS-Gesture	SD-SNN	2Conv 2FC	1.28%
	CH-SNN	2Conv 2FC	6.35%

110

111

112

A.9 ROBUSTNESS ANALYSIS

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

We train ultra-sparse networks using CH-SNN. In comparison to fully-connected (FC) networks, increasing the structural sparsity leads to a corresponding increase in temporal sparsity. This phenomenon reduces both the number of active spiking neurons and the total spike count. We hypothesize that this loss of information may adversely affect robustness. To test this and evaluate the robustness of CH-SNN, we conduct experiments where the models, trained on clean data, are exposed to corrupted inputs during testing. The corruption involves three noise types: (1) **Bit-flip noise**. This noise randomly flips 0s to 1s and 1s to 0s. Its destructive nature stems from a dual effect: it corrupts the input by both adding spurious spikes and removing authentic ones. (2) **False-spike noise**. This corruption randomly changes 0s to 1s, which generates extraneous spikes. This directly compromises the timing precision fundamental to SNN operation. (3) **Spike-dropout noise**. This type randomly changes 1s to 0s, thereby dropping genuine spikes. It is designed to emulate spike loss in real neuromorphic hardware.

Table 10: Accuracy on the MNIST dataset with input noise, where P denotes the noise ratio.

Dataset	Method	$P = 0\%$	$P = 5\%$	$P = 10\%$	$P = 15\%$	$P = 20\%$
Bit-flip	FC	97.91%	97.64%	95.78%	83.19%	68.25%
	CH-SNN	98.21%	97.86%	94.75%	81.19%	65.03%
False-spike	FC	97.91%	97.74%	96.50%	89.97%	78.39%
	CH-SNN	98.21%	97.73%	95.74%	86.72%	75.25%
Spike-dropout	FC	97.91%	97.25%	94.37%	87.25%	67.65%
	CH-SNN	98.21%	97.48%	93.84%	83.81%	66.58%

1134 Our experimental investigation aimed to evaluate the noise robustness of the proposed CH-SNN. All
 1135 models in this study were implemented as 3FC networks with a 99% structural sparsity. The testing
 1136 protocol involved corrupting the input with three noise types across a range of intensities. The noise
 1137 intensity was controlled by the noise ratio, defined as the proportion of timesteps in the input spike
 1138 train that are altered. We report the classification accuracy on the MNIST, N-MNIST, CIFAR-10,
 1139 and DVS-Gesture datasets under these conditions, with the complete results presented in Tables 10,
 1140 11, 12, 13.

1141

1142

Table 11: Accuracy on the N-MNIST dataset with input noise, where P denotes the noise ratio.

Dataset	Method	P = 0%	P = 1%	P = 2%	P = 3%	P = 4%
Bit-flip	FC	95.82%	93.09%	83.76%	73.65%	62.35%
	CH-SNN	96.62%	94.00%	83.47%	74.97%	65.87%
False-spike	FC	95.82%	93.19%	84.13%	74.03%	63.96%
	CH-SNN	96.62%	94.08%	83.89%	75.7%	67.32%
Spike-dropout	FC	95.82%	95.85%	95.77%	95.78%	95.78%
	CH-SNN	96.62%	96.53%	96.43%	96.54%	96.47%

1144

1145

1146

1147

1148

1149

1150

1151

1152

Table 12: Accuracy on the CIFAR-10 dataset with input noise, where P denotes the noise ratio.

Dataset	Method	P = 0%	P = 1%	P = 2%	P = 3%	P = 4%
Bit-flip	FC	79.23%	65.55%	56.16%	48.15%	42.63%
	CH-SNN	79.27%	60.68%	49.42%	41.58%	35.17%
False-spike	FC	79.23%	66.89%	57.31%	49.73%	43.28%
	CH-SNN	79.27%	60.76%	49.82%	41.22%	34.43%
Spike-dropout	FC	79.23%	79.19%	79.03%	78.85%	78.75%
	CH-SNN	79.27%	79.14%	79.03%	78.88%	78.62%

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

Our results delineate a sharp contrast in robustness against different noise corruptions. Models demonstrate substantial tolerance to spike-dropout noise. With a dropout rate under 5%, accuracy remains largely stable, and we observe a slight performance enhancement on CIFAR-10 and DVS-Gesture. This robustness implies that the random omission of a small number of spikes acts as a mild form of regularization, which is insufficient to alter the overall network output. This finding holds for both sparse and dense networks.

1168

1169

1170

1171

1172

Conversely, bit-flip and false-spike noise cause pronounced performance degradation. Their destructive nature stems from the introduction of spurious spikes, which corrupts the inherent timing-dependent computation in SNNs. This forces neurons to fire at incorrect timesteps, thereby compromising the integrity of the final decision and resulting in substantial accuracy loss, regardless of network sparsity.

1173

1174

1175

Table 13: Accuracy on the DVS-Gesture dataset with input noise, where P denotes the noise ratio.

Dataset	Method	P = 0%	P = 1%	P = 2%	P = 3%	P = 4%
Bit-flip	FC	87.12%	83.33%	79.32%	78.79%	57.58%
	CH-SNN	87.12%	84.85%	79.92%	75.38%	63.26%
False-spike	FC	87.12%	84.47%	77.65%	69.32%	60.98%
	CH-SNN	87.12%	87.12%	79.55%	74.62%	64.02%
Spike-dropout	FC	87.12%	87.12%	87.12%	87.50%	87.50%
	CH-SNN	87.12%	87.12%	87.50%	87.50%	87.50%

1183

1184

1185

1186

1187

The robustness of the model is quantified using the Relative Performance Degradation Rate (RPDR). The RPDR metric is formally defined as Equation 27:

$$RPDR = \frac{ACC_{clean} - ACC_{noise}}{ACC_{clean}} \quad (27)$$

1188 where ACC_{clean} is the baseline accuracy on unperturbed data, and ACC_{noise} is the accuracy evaluated
 1189 under a specific noise corruption. This metric is interpreted as follows: a smaller RPDR denotes
 1190 stronger robustness, as it reflects a smaller relative drop in accuracy. Table 14 presents a comprehensive
 1191 summary, detailing the RPDR for each noise type alongside the mean RPDR aggregated over
 1192 all noise conditions.

1193

1194 Table 14: The relative performance degradation rate of the model under the three types of noise.

1195

Dataset	Method	Bit-flip	False-spike	Spike-dropout	Average
MNIST	FC	11.95%	7.41%	11.52%	10.29%
	CH-SNN	13.75%	9.52%	13.01%	12.09%
N-MNIST	FC	18.38%	17.73%	0.03%	12.05%
	CH-SNN	17.64%	16.95%	0.13%	11.57%
CIFAR-10	FC	32.95%	31.46%	0.35%	21.59%
	CH-SNN	41.07%	41.27%	0.44%	27.59%
DVS-Gesture	FC	14.19%	16.09%	-0.22%	10.02%
	CH-SNN	12.93%	12.39%	-0.33%	8.33%

1205

1206

1207 **Analysis on non-spiking datasets (MNIST, CIFAR-10).** On these converted datasets, where static
 1208 images are encoded into spike trains, the FC baseline exhibits greater robustness on average com-
 1209 pared to the CH-SNN. We postulate that the densely and uniformly distributed information in static
 1210 images aligns better with the FC network’s inherent redundancy, granting it higher fault tolerance.
 1211 The structural sparsity of CH-SNN, while beneficial in other contexts, leads to increased temporal
 1212 sparsity that offers no robustness advantage here. Consequently, achieving robustness on such tasks
 1213 would necessitate a design with lower structural sparsity.

1214

1215

1216 **Analysis on native spiking datasets (DVS-Gesture, N-MNIST).** The scenario reverses for native
 1217 spiking data. When subjected to the most destructive noise types (bit-flip and false-spike), CH-
 1218 SNN consistently shows a lower performance degradation rate than its FC counterpart. This result
 1219 underscores that CH-SNN’s sparse architecture effectively leverages the inherent sparsity of the data
 1220 to filter out corrupting noise and protect crucial information, thus validating its stronger robustness
 1221 for event-based computation.

1222

1223

A.10 REPRODUCIBILITY STATEMENT

1224

1225

1226 Regarding the experimental results in Table 1, we provide the following two-part clarifications on
 1227 reproducibility to ensure all comparisons are fair.

1228

1229 **Comparison with other sparse training methods.** For SD-SNN, whose code is publicly available,
 1230 we faithfully reproduced its sparse training procedure. Specifically, we first trained a dense neural
 1231 network as the baseline. Under identical experimental conditions, we then applied both SD-SNN and
 1232 our CH-SNN to obtain their respective sparse networks from this common baseline, guaranteeing a
 1233 fully fair comparison between the two methods.

1234

1235

1236 For other sparse training methods (e.g., Grad), since their code is not open-source, we did not attempt
 1237 to reimplement them. Therefore, the results shown in Table 1 for these methods, along with their
 1238 corresponding dense baseline performances, are directly quoted from their original publications.

1239

1240

1241 **Comparison between dense and sparse networks.** When comparing the dense network with the
 1242 sparse network trained via CH-SNN, we ensured strict fairness: all training settings and hyper-
 1243 parameters are kept identical, with the only difference being the introduced sparsity.

1244

1245

A.11 PERFORMANCE ON DIFFERENT TIMESTEPS

1246

1247

1248

1249

1250

1251 The number of timesteps (T) is a critical hyperparameter in SNNs, governing a fundamental trade-
 1252 off between latency and accuracy. A shorter T reduces latency by shortening spike trains but risks
 1253 creating an information bottleneck that degrades performance. Conversely, a longer T enhances
 1254 temporal resolution and accuracy at the expense of increased latency. To empirically analyze this
 1255 trade-off in our CH-SNN framework, we conducted a controlled study by training sparse networks

under identical settings while systematically varying T . The results shown in Table 15 clearly illustrate this balance and identify $T = 8$ as the optimal operating point, delivering strong performance with moderate latency.

Table 15: Performance on different timesteps.

Dataset	Network	$T = 2$	$T = 4$	$T = 8$	$T = 16$
N-MNIST	2CONV2FC	96.20%	98.32%	99.15%	99.20%
MNIST	2CONV2FC	98.55%	98.89%	99.53%	99.55%
DVS-Gesture	6CONV2FC	85.60%	90.63%	95.45%	95.45%
CIFAR-10	6CONV2FC	75.33%	87.21%	94.60%	94.71%
CIFAR-100	6CONV2FC	72.04%	73.52%	75.22%	75.34%

A.12 EXTENSION EXPERIMENT

To validate our approach on more complex datasets and deeper network architectures, we evaluate our CH-SNN against DPAP (Han et al., 2025b), currently the leading sparse training method for SNNs, on the Tiny-ImageNet and ImageNet datasets using a ResNet-18-based SNN architecture. To demonstrate the scalability of our approach, we apply the same core methodology to two distinct layer types. CH-CNN (Hanming et al., 2025) is used to sparsify the convolutional layers, while CH-SNN sparsifies the linear layers in the SNN architecture. The comparative top-1 accuracy results are summarized in the table 16, demonstrating the competitive performance and strong scalability of our method.

Table 16: Performance on Tiny ImageNet and ImageNet.

Dataset	Method	Sparsity	ACC.(sparse)	ACC.(dense)	Acc loss
Tiny ImageNet	CH-SNN	69.37%	44.97%	45.98%	1.01%
	CH-SNN	66.94%	62.77%	63.62%	0.85%
ImageNet	DPAP	51.71%	60.41%	65.74%	5.33%
	DPAP	37.76%	63.35%	65.74%	2.39%
	DPAP	22.69%	63.74%	65.74%	2.00%

On the Tiny-ImageNet dataset, we report the results for CH-SNN as comparative results for DPAP are not available in the literature. Our CH-SNN model achieves an accuracy of 44.97% while maintaining a 69.37% sparsity rate, a performance level that is comparable to the dense baseline.

On the ImageNet dataset, We directly report the results for DPAP and its corresponding FC baseline from the original publication. This approach ensures a faithful comparison and avoids potential implementation discrepancies. For our CH-SNN, we adopted the identical ResNet-18 architecture used in DPAP and conducted a fair comparison by training both a fully-connected (FC) model and a sparse CH-SNN model under the same experimental protocol. The results demonstrate that CH-SNN achieves a high structural sparsity of 66.94% while attaining competitive performance, with only a 0.85% accuracy drop compared to the FC baseline.

A.13 USAGE OF LARGE LANGUAGE MODELS.

In the process of preparing this manuscript, we utilized the DeepSeek large language model to assist in polishing the English writing and refining the wording of the Abstract, Introduction and Conclusion sections. The core ideas, theoretical contributions, experimental design, data analysis, and results remain entirely the work of the authors. The authors take full responsibility for the entire content of this paper.