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Abstract

Generative modeling of non-negative, discrete data, such as symbolic music, re-
mains challenging due to two persistent limitations in existing methods. Firstly,
many approaches rely on modeling continuous embeddings, which is suboptimal
for inherently discrete data distributions. Secondly, most models optimize varia-
tional bounds rather than exact data likelihood, resulting in inaccurate likelihood
estimates and degraded sampling quality. While recent diffusion-based models
have addressed these issues separately, we tackle them jointly. In this work, we
introduce the Information-Theoretic Discrete Poisson Diffusion Model (ItDPDM),
inspired by photon arrival process, which combines exact likelihood estimation
with fully discrete-state modeling. Central to our approach is an information-
theoretic Poisson Reconstruction Loss (PRL) that has a provable exact relationship
with the true data likelihood. ItDPDM achieves improved likelihood and sampling
performance over prior discrete and continuous diffusion models on a variety of
synthetic discrete datasets. Furthermore, on real-world datasets such as symbolic
music and images, ItDPDM attains superior likelihood estimates and competi-
tive generation quality—demonstrating a proof of concept for distribution-robust
discrete generative modeling.

1 Introduction and Background

Denoising diffusion models have advanced generative modeling, outperforming GANSs in image
synthesis [1]] and autoregressive models in likelihood-based tasks [2]. Their flexibility enables broad
industrial use—from open-ended text-to-image generation [3H5], to audio [6] and medical imaging
[7]. Diffusion has also been extended to multimodal and structured tasks, including video synthesis
[8]], cross-modal retrieval [9], and molecular modeling [[10} [11]].

Limitations of Existing Works: Diffusion models can be classified by timestep type: discrete (DT)
or continuous (CT) and latent space: discrete (DS) or continuous (CS), forming four classes: DTDS,
DTCS, CTDS, and CTCS, as shown in[Figure I| DTCS (e.g., VDM [2]) and CTCS (e.g., IT-Gaussian
diffusion [12]) are effective in continuous domains [2} [13]], but suboptimal for inherently discrete
non-Gaussian data distributions. As shown in[Figure I] the continuous-state models map discrete data
to continuous state space via z-scoring [[14]], tail normalization [[15]], or uniform dequantization [12].
However, these fail to close the discretization gap (e.g., Tlm for images), and lead to learning
suboptimal probability density functions (pdf) instead of probability mass functions (pmf) [[12].
IFigure 3|shows how continuous DDPMs miss the second mode in the evidently bimodal NYC Taxi
distribution [16]]. Moreover, discretizing outputs during post-processing introduces train-test mis-
match [12, (17, 18]. Recent discrete-state models directly operate in the discrete domain, addressing
these limitations by avoiding embedding into continuous spaces altogether.

Discrete-time discrete-state (DTDS) models [[15} 17} [19] operate natively in the discrete domain and
outperform variational Gaussian-based methods, but often ignore ordinal structure of integer-valued
data and need post-processing. Learning-to-Jump (LTJ) [20], a recent DTDS method using binomial
thinning and a variational objective, improves generation on non-negative, skewed data. However, LTJ
has two drawbacks: (1) its evidence lower bound (ELBO)-based training uses a variational relative
entropy loss, which lacks an exact relation to the data likelihood, yielding suboptimal likelihood and
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Figure 1: Classification of diffusion models based on latent state-space (DS/CS) and timesteps
(DT/CT), resulting in 4 combinations - DTCS, CTCS, DTDS, and CTDS

degraded generation quality; (2) denoising requires careful calibration of 7" (e.g., 1000), the number
of discrete denoising timesteps, without any flexibility to skip or subsample. (A detailed comparison
between LTJ and the proposed [tDPDM is provided in App. H)

Main Contributions. To address these limitations, we propose a novel information-theoretic Discrete
Poisson Diffusion Model (ItDPDM). As shown in[Figure 1] contrary to Gaussian diffusion, tDPDM
directly models discrete non-negative data using a Poisson process, avoiding the need for soft
discretization or dequantization. Contrary to variational DTDS models like LTJ, [tDPDM provides
closed-form likelihood estimates and thus generation quality. Our main contributions are as follows:

* We propose ItDPDM, a novel generative framework based on a Poisson diffusion process
for modeling non-negative discrete data. Unlike prior approaches relying on variational
ELBO objectives, [tDPDM enables exact likelihood computation, bypassing the limitations
of variational inference.

* We introduce the information-theoretic Poisson Reconstruction Loss (PRL), a Bregman
divergence tailored to Poisson processes and establish its exact relation to negative log-
likelihood (NLL) via the I-MPRL identity in Eq. (T7), enabling non-variational optimization
of discrete probability mass functions (PMFs).

» Experiments on synthetic datasets with varied data distributions show that tDPDM outper-
forms earlier baselines in Wasserstein-1 distance and NLL. ItDPDM’s discrete Poisson-
based diffusion generalizes well beyond Poisson distributed data.

* We also provide closed-form upper bounds on the negative log-likelihood (NLL) and
an importance-sampling estimator for efficient training, ensuring scalability to high-
dimensional settings. Empirically, tDPDM achieves lower NLLs on CIFAR-10 and Lakh
MIDI datasets while maintaining competitive generation quality.

—— Empirical

10-1 4! === Gaussian DDPM
1
1
Z i
2] 1
5 1
A 1024}
1
1
1
1
1
1
1073 +4

0 20 40 60 80 100 120
Pickup rate

Figure 3: Gaussian diffusion fails to accurately learn
Figure 2: Unconditional image samples generated by  the discrete probability density
ItDPDM
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Figure 4: Comparison of Gaussian (top) and Poisson diffusion processes (bottom).

This work presents a proof-of-concept for information-theoretic discrete Poisson diffusion models,
showing initial gains over baselines in modeling discrete, positive-valued data. It serves as a first step
toward principled diffusion modeling in discrete domains, not a state-of-the-art solution.

2 Information-Theoretic Diffusion

We briefly revisit the Information-Theoretic Gaussian Diffusion (ITDiff) framework from [12]], which
helps us draw parallels to ItDPDM in Sec 3] The Gaussian noise channel is defined as

=7x+e €e~N(0,I),
with signal-to-noise ratio (SNR) parameter “y” and data distribution p(x).
Relating Minimum Mean Square Error (MMSE) to Mutual Information

The “I-MMSE" relation [22] links mutual information / with minimum mean square error (MMSE):

d I(7;2y) =

1
™ — mmse(7y), (1)

2
where the MMSE is defined as: mmse(y) = ming . 1) Ep(z, ,2) [llz — &(2y,7)[13]. A pointwise
generalization of Eq. () to the KL divergence is as follows:

d 1
P (p(z-]2) || p(2)) = 5 mmse(z,7) @

From here, the following discrete probability estimator is derived as through an exact formulation of
the variational lower bound (VLB) for diffusion models [2] :

—log P(x / mmse(x,y) dy 3)

3 ItDPDM: Information-Theoretic Poisson Diffusion

Poisson Noise Channel: We define the canonical Poisson noise channel: given a non-negative input
x > 0, the output 2, is drawn from P (yx), where v denotes the SNR. The conditional PMF is

(y2) e

s Ry S NOa (4)
ny.

P(z]z) =
where P(-) denotes the Poisson distribution. This setup is motivated by Poisson channels arising in
direct-detection optical systems [23| 24], where photon counts follow a Poisson process with rate
determined by a combination of signal intensity and device-induced dark current [23]).

Diffusion with Poisson Noise: We propose an information-theoretic Poisson diffusion process, where
a source x ~ p(z) is corrupted at SNR + via z, ~ P(yz), producing discrete, non-negative integers
at each step. Unlike Gaussian noise, Poisson corruption is non-additive and not source-separable,
making denoising more challenging. Figure @ contrasts Gaussian and Poisson diffusion: Gaussian
begins from white noise, whereas Poisson diffusion starts from a black image with zero photons.



89
90
91
92
93

94

95
96

97
98
99

100

101

102

103

104

105
106
107

108
109
110
111
112
113
114
115

116
117
118
119
120
121

122

123

124
125
126
127

128

129

Poisson Reconstruction Loss (PRL): The function lo(z) = zlogz — z + 1, z > 0 (where log
denotes the natural logarithm) is the convex conjugate of the Poisson distribution’s log moment
generating function (proof in App. D.1) and often arises naturally in the analysis of continuous and
discrete-time jump Markov processes [20} 26] and for mutual information estimation in the Poisson
channel [27]. Building on this, we define the poisson reconstruction loss [(x, &) as:

Iz, 2) = &lo(a/2) :xlog(f) ot )
z
Analogous to the MMSE, we also define the minimum poisson reconstruction loss (MPRL) as:

mprl(y) = i{lzlinv) Ep(z, ) Uz, 2(2y,7))], (6)
v

where &(z., ) denotes the denoiser. The optimal denoiser " is the conditional expectation E[X |Z, ]
using the fact that the Poisson reconstruction loss is a Bregman divergence [28]] (proof in App.D.1).

:AE*(Z’W 7) = arg min mprl(’y) = E:cNP(:chw) [m} @)

The analytical solution is typically intractable due to the need to sample from the Poisson noise
channel’s posterior. We next highlight key properties [29]] of this loss, showing it is a natural fit for
evaluating reconstruction of non-negative data, analogous to squared error in the Gaussian case.

Lemma 1 (Poisson Reconstruction Loss). The loss function l(x, &) satisfies the following properties:
Non-negativity: [(z, &) > 0, with equality if and only if x = Z.

Convexity: l(x, ) is convex in & for each fixed x, and in x for each fixed %.

Scaling: For any oo > 0, l(ax, aZ) = ol(z, Z).

Unboundedness for underestimation: For any x > 0, lims_,o+ I(z, %) = oo.

SN S

Optimality of Conditional Expectation: For any non-negative random variable X with
E[X log™ X] < 00, the conditional expectation E[X|Y] uniquely minimizes the expected
loss E[l(X, &)].

Convexity makes the loss amenable to gradient-

() £(1, %) () Lo(x) =xlogx —x+1
based methods. Property 4 penalizes underes- 15 25
timation, making [(x, %) well-suited for non- a0
negative data, unlike common loss functions %" $e
(absolute/squared error). [Figure 5|illustrates the —~ os %:Z
behavior of the proposed PRL. As per Lemmal|T} oo o
the conditional expectation E[X|Y] uniquely oor a3 oo 2

minimizes the expected “mprl" loss function.

. . . Figure 5: Poisson Reconstruction Loss (PRL): (a) vs.
Conditional Expectation for Poisson Channel . 5;ceq pixel Z, for fixed ground truth pixel 1; (b) vs.

We define the angle bracket operator X as con- ground truth pixel z, for fixed denoised output 1.
ditional expectation given Z.,: (X) = E[X|Z,]

Unlike the linear Gaussian case, Poisson has a non-linear (X ), making Poisson-based denoising
fundamentally more complex. Nevertheless, it becomes linear under certain conditions, let (X)),
denote (X) evaluated at Z, = z then:

Lemma 2 (Linearity in Poisson Channel). Let Z, = P(yX). Then, (X). = az + b, if and only if
X ~ Gam (1_(1')’@’ g)foranyo <a< % and b > 0.

Though Poisson analysis is complex, it simplifies here since the Gamma distribution is its conjugate
prior [30], yielding a linear conditional variance (see App.D.2). This contrasts with the Gaussian case,
where conditional variance is constant. We now revisit the squared error loss ¢sg(z, %) = (z — 2)2,
which satisfies for any finite-variance X:

Our Poisson reconstruction loss (PRL) has a similar property stated below ([29]).

Lemma 3. For any non-negative random variable X with E[X log™ X] < oo, and any & € [0, 00),

EI(X, )] = E[l(X, E[X])] + [ (E[X], ) ©)



130
131

132
133
134

135

136
137
138

139

140
141
142
143

144
145
146

147
148
149
150
151

152
153
154
155

156
157

158
159

160

161
162
163

164

A result that immediately follows from Lemma (3], when combined with the non-negativity property
in Lemmal[l] is that E[X] uniquely minimizes E [I(X, )] over all &:

min B [I(X, #)] = E [l (X, E[X])] = E[X log X] — E[X]log E[X]. (10)

Interestingly, in Poisson channels, this estimator depends only on the marginal distribution of Z.,, a
property formalized by the Turing-Good-Robbins formula [31,|32]]. This result closely relates to the
Discrete Universal Denoiser (DUDE) [33]], which estimates discrete signals from noisy observations.

Lemma 4 (Optimal Estimator in Poisson Channel). Let Z., = P(vX). Then, for every v > 0,
1(z+1)Pz (241

oy, LEH PG Y
gl Pz (2)

The PRL objective provides a principled objective for modeling non-negative discrete data, directly
modeling PMFs and avoiding quantization artifacts inherent in squared error loss, which assumes

continuous outputs. The pointwise denoising relation for the Poisson channel is: (proof in App.F)
d
& D [P(zy]) [| P(2+)] = mprl(z, ), (12)

where p(zy) = [ p(z4|2)p(z)dx is the marginal distribution, and pointwise MPRL is defined as:

z2=0,1,... (11

The pointwise MPRL is the MPRL evaluated at a fixed «, and its expectation over p(x) recovers
the total MPRL. Taking expectation wrt z in Eq. (I2) recovers the I-MPRL relation in Eq. (T4).
Moreover, for a mismatched denoiser [29], integrating the excess pointwise loss over v equals the KL
divergence between the true and mismatched channel outputs (via Eq. (12)).

I-MPRL identity: Following the foundational result of [22]], which relates the mutual information
derivative to MMSE in Gaussian channels, [12] leverages this identity in generative modeling.
Analogously, we establish the I-MPRL identity for the Poisson channel, as follows:

d
%I(x; zy) = mprl(7y). (14)
A similar result holds for the derivative with respect to the dark current in a general Poisson channel.
Using the incremental channel technique from [22], we derive both results in App.D.3. This enables
exact relations between the proposed PRL objective and the likelihood, offering an information-
theoretic justification for Poisson diffusion. Detailed proofs of Lemmas [TH4] are in App.D.2, along
with Lemmas 5 and 6, stated and proved therein.

Thermodynamic Integration for Variational Bound: The pointwise denoiser yields a log-likelihood
expression akin to the variational bound. Unlike traditional methods that rely on expensive sampling,
diffusion models leverage the structure of the noise for efficient sampling at arbitrary noise levels
[34]. Letting P(z.|z) ~ P(vx), using thermodynamic integration method from [35} [36] yields:

71 d 71
[ dEDalpela) | Pe)dy = - [ mpra) 1s)
Yo 2 Yo
where mprl(z,v) = Ep(.. |0 [l (2, 2%(2,7))] is the pointwise MPRL for Poisson denoising. The
exact log-likelihood is given by:
71
~108 P(2) = Dict P o) | Per)+ Erl=log Plalzn)] - [ mpreyay o
Yo

Diftusion loss

Prior loss Reconstruction loss

We also outline a possible extension of the proposed Continuous-Time Discrete-State Poisson
Diffusion to a Continuous-Time Continuous-State equivalent of [12] in App. G.

Discrete Probability Estimation via MPRL: We derive a novel discrete probability estimator in the
Poisson channel setting, where = ~ P(z) and Z, ~ P(yz). In the limits 9 — oo and y; — 0, both
the prior and reconstruction loss vanish, which yields the following tractable expression:

Drp[P(z3[2)[[P(27,)] + Ep (2, ) [ = 10g P(2]2,)] = 0.
and, therefore Eq.[16]yields the exact likelihood relation:
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—log P(x) = /000 mprl(z,v)dy = | E[—log P(z)] = /Ooomprl('y) dry

To obtain an expression resembling the variational bound, taking an expectation in 2 ~ P(z) gives:
B[~ log P(x)] = E [ [ e ) dv} — [ Bl lar = [ E0GGE) by
0 0 0

= / E[XlogX — E[X|Z,|log E[X|Z,]] dy = / E {X log X] dr,

0o 0 (X125
here, X*(X,v) = E[X|Z,] denotes the optimal estimator. This section establishes a tractable,
non-variational estimator for discrete distributions in the Poisson channel by connecting the MPRL
objective to the true data likelihood. Additionally, we present in App.F.1 an equivalent score matching
formulation using a Poisson-adapted version of Tweedie’s formula denoising. See App.H for a
comprehensive comparison between our [tDPDM framework and LTJ [20].

Numerical details and Pseudocode: Numerical details can be found in App.|A} In the same section,
algorithms [T) and 2] present the pseudocode used for tDPDM training and generation respectively.

4 Experiments

We begin by evaluating on synthetic datasets exhibiting sparsity, skewness, and overdisper-
sion—settings where Gaussian diffusion models often underperform, along with extreme distributions
like Zipf where LTJ [20] underperforms. These tests validate both the theoretical formulation and
implementation of ItDPDM by recovering ground-truth NLL and improving modeling of discrete,
non-negative data. We then evaluate [tDPDM on real-world domains like CIFAR10 and Lakh MIDI,
where discrete structure is inherent. tDPDM consistently achieves superior NLL and competitive
generation quality, as measured by domain-specific metrics.

4.1 Synthetic Data

We consider various synthetic distributions containing univariate non-negative data x grouped into
two broad categories: discrete = € N, and continuous z € [0, co] to mimic distributions exhibiting
either sparse, heavy-tailed, skewed, zero-inflated or overdispersed behaviour.

Discrete counts (x € N): We generate six synthetic distributions capturing key real-world behaviors:
PoissMix (airport arrivals), ZIP, NBinomMix (forum activity), BNB, and two heavy-tailed laws:
Zipf and Yule-Simon (word frequencies). These cover bimodality, overdispersion, and long tails.
Distribution parameters are listed in Table 4 in Appendix, with design details in App. C.1.

Continuous non-negative (x € [0, 00)): We also include six skewed continuous densities—Gamma,
Log-Normal, Lomax, Half-Cauchy, Half-t, and Weibull—described in App. C.4.

Model Architecture: The neural denoiser model for all (discrete, continuous) cases uses a similar
architecture (ConditionalMLP) to ensure fair comparison: a 3-layer MLP with 64 hidden units,
LayerNorm, Leaky-ReLU activations (slope = 0.2). Further training details can be found in App. C.2.
To maintain computational tractability, most distributions are truncated at 50. For each distribution,
we draw 50,000 i.i.d. samples to form the training data and generate 50,000 samples for each run.

Metrics and results: We report Wasserstein-1 distance (WD) and negative log-likelihood (NLL)
between empirical distributions of generated and test samples (see App. C.2). summarizes
these metrics for ItDPDM and all baselines. To illustrate the quality of PMF modeling,
overlays the true and generated PMFs across all discrete datasets. As shown, ItDPDM consistently
outperforms DDPM across all datasets, achieving lower WD and NLL estimates that closely align
with the true values. It further outperforms LTJ in 4 out of 6 datasets, demonstrating strong
generalization of ItDPDM across diverse distributions, beyond just Poisson-mixture datasets. In
contrast, LTJ performs well primarily on binomial-related datasets, which are well-suited to its
variational count-thickening loss. More details on PMF estimation are in App. C.3.

4.2 Real-World Data
We evaluate ItDPDM on two discrete datasets: CIFAR-10 images and Lakh MIDI (LMD) sym-

bolic music and compare against existing baselines: Improved DDPM (IDDPM) [37]], information-
theoretic Gaussian diffusion (ITDiff) [12]], discrete masking-based (D3PM) [[17]], and learning-to-jump
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Table 1: Metrics for synthetic datasets ({ lower is better). Bold indicates best.

WD NLLJ'
Distribution DDPM TtDPDM LTJ True NLL | DDPM | ItDPDM | LTJ
PoissMix 376 +£0.32 | 099 +0.15 | 1.21+ 0.30 3.80 1.24 372 3.69
ZIP 2.31+0.66 | 0.56+0.43 | 0.69+0.24 2.13 1.67 2.22 2.30
NBinomMix | 4.89+0.59 | 1.39+0.37 | 1.15+0.41 0.87 1.84 1.43 1.30
BNB 1.89+0.45 | 0.67+0.23 | 0.65+0.32 2.06 2.56 1.87 2.01
Zipf 1.51+0.53 | 0.48+0.13 | 0.73+0.25 1.57 1.34 1.70 1.77
¥s 0.324+0.12 | 0.144+0.03 | 0.17+0.06 0.94 1.39 0.79 0.76
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Figure 6: Comparison of true and generated probability distributions

(LTJ) [20]. CIFAR-10 comprises 60,000 color images (32 x 32) across 10 classes [38]]. LMD con-
tains 648,574 symbolic music sequences of 1024 integers: 0 (rest), 1 (continuation), and 2—89
representing note pitches [39]. Unlike [[12]], which fine-tunes pre-trained models, the absence of pre-
trained models in our setting necessitates training from scratch. Denoiser architectures (U-Net [40],

ConvTransformer [[17], DenseDDPM [41]) are discussed in App. B.3.

4.3 Performance Comparison: Negative Log Likelihood (NLL)

Noising + Objective DDPM | IDDPM Noising + Objective NLL (total data)
TTDiff| 2.97 0.86 Gaussian + MSE 0.51

Gaussian + MSE 0.44 0.48 ItDPDM: Poisson + PRL 4.61 x 10°°
Gaussian + PRL 0.27 0.32 Noising + Objective NLL (without rests)
Poisson + MSE 0.23 0.22 Gaussian + MSE 1.41

ItDPDM: Poisson + PRL 0.18 0.17 ItDPDM: Poisson + PRL 0.23

ucheckpoint models provided by [12] directly used

Table 2: (a) (Left) CIFAR10 (image) test-set NLL; (b) (Right) LMD (music) test-set NLL.

Two architectural variants from DDPM [13]] and IDDPM [37] are used. reports test-set
NLLs on a CIFAR-10 subset, comparing ItDPDM to relevant baselines: (1) ITDiff [[12], which fine-
tunes pretrained Gaussian DDPM/IDDPM models, and (2) Gaussian + MSE, where DDPM/IDDPM
models are trained from scratch using the ITDiff objective, ensuring a fair comparison. [tDPDM
(Poisson + PRL) consistently achieves the lowest NLL across both backbones, with IDDPM slightly
outperforming DDPM. These results underscore the effectiveness of Poisson diffusion and PRL for
modeling discrete, non-negative data without requiring dequantization. shows denoising
loss curves across SNRs: MSE for ITDiff and Gaussian + MSE (Figure 7h), and PRL for ItDPDM
Elgure 7b) PRL remains lower at low SNRs, consistent with the NLL improvements observed in
Table 2| Similar trends are seen on symbolic music (Table 2p), where ItDPDM achieves even larger
NLL reductions, further demonstrating its suitability for discrete generative modeling.

4.4 Performance Comparison: Generation Quality

Next, for evaluating generation quality of the generated images and music, we use domain-specific
metrics: Structural Similarity Index Measure [42], and Fréchet Inception distance (FID) [43] for
generated images; Fréchet Audio distance (FAD) [44], Consistency (C) [43], Mel-Spectrogram
Inception Distance (MSID) [46]] and Wasserstein Distance (WD) [47] for generated music. As shown
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in ItDPDM can generate realistic-looking natural images. Due to the limited computational
budget available for training, the raw metrics for all models are lower than their reported values in
IDDPM [37] and LTJ [20]. The relative performance of the models gives us the necessary insights:
for image generation, IDDPM][37]] achieves the best FID, with ItDPDM ranking second. In symbolic
music, D3PM with categorical masking obtains the lowest FAD. [tDPDM outperforms LTJ for both
image and symbolic music cases, by virtue of our exact likelihood estimation, as opposed to LTJ’s
variational relative entropy loss. Further details along with generated piano rolls are in App. B.

Table 3: Domain-specific generative quality metrics. Image: FID, SSIM; Audio: FAD, C, MSID, WD

Baseline Image Audio
FID SSIM | FAD C MSID WD
DDPM [13] | 4.64 0.93 | 0.89 091 0.82 2.83

LTI [20] 4.97 0.90 0.66  0.92 0.71 2.23
D3PM [17] 9.11 086 | 0.61 098 059 199
ItDPDM 484 0091 0.64 094 0.67 2.14

4.5 Cross Training Paradigm

To isolate the benefits of Poisson diffusion and PRL objective, we perform cross-training: Gaussian
+ PRL and Poisson + MSE. As shown in [Table 2[a), ItDPDM (Poisson + PRL) yields the best
NLL, confirming PRL’s suitability for Poisson diffusion. Notably, Gaussian + PRL also outperforms
Gaussian + MSE, suggesting PRL’s broader effectiveness on discrete data. Moreover, tDPDM
converges faster and reaches lower loss than its Gaussian counterpart, as shown in ([Figure 7c—d).
We further validate the [-MPRL identity(T4) by comparing area-under-loss curves and final losses,
finding close numerical agreement between Poisson and Gaussian models, aligning with theory.

5 Related Work

Diffusion models are widely used in generative and restoration tasks [37, 48], grounded in denois-
ing autoencoders [49]], variational inference [2]], and score-based SDEs [50]. Recent works add
information-theoretic insights [[12], linking mutual information and MMSE [22] to likelihood bounds.
Non-Gaussian extensions via annealed score matching [[51}152]] and score-based SDEs [53] enhance
theoretical rigor. In the discrete setting, Blackout Diffusion[54] and Beta Diffusion[55]] use ir-
reversible priors without tractable likelihoods. SEDD[56] uses score-entropy loss for token-level
modeling but inherits ELBO-based approximations and lacks exact likelihood. LTJ[20] employs
binomial thinning but is non-reversible and discrete-time. Our method overcomes these by us-
ing a reversible Poisson process, enabling bidirectional corruption, exact likelihood, and efficient
continuous-time sampling. A more detailed discussion is provided in App. K.

6 Conclusion

We introduce ItDPDM, a diffusion framework for non-negative discrete data that combines a Poisson
noising process with a principled Poisson Reconstruction Loss (PRL), enabling exact likelihood
estimation and discrete sampling without dequantization. ItDPDM achieves lower NLL on both
synthetic and real data, enhances modeling quality on varied synthetic distributions, and delivers
competitive results in image and symbolic music generation. Though a proof-of-concept, tDPDM
lays a strong foundation for distribution-robust discrete generative modeling, with applications in
symbolic music, low-light imaging, and other count-based domains. Limitations of ItDPDM and
future work are discussed in App. [[]
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50 Appendix

1 A Numerical Details

452 A.1 MPRL Upper Bound

453 A key challenge is the inaccessibility of the posterior distribution in Eq. (7). To bound the intractable
454 marginal likelihood, we compare our (suboptimal) neural denoiser X (Z.,,~) with the intractable

455 optimal conditional expectation X*. This reformulates the expected loss entirely in terms of X (Zy,7)
456 from the Poisson diffusion model:

E[—log P(z)] = /O Oomprl(’y)d'y < /0 OOIE[Z(X,X)] dy (18)

457 It is important to note that the NLL upper bound in Eq. (T8)) is empirical, capturing the suboptimality
458 of the learned neural denoiser. Eq. yields an exact theoretical expression for the NLL, unlike
459 variational diffusion models, which introduce two layers of approximation: first via the ELBO, and
460 then through a bound on the denoiser.

46t Now we delve into the derivation of Eq. (I8). We first express the expected loss in terms of the
462 optimal estimator (using shorthand notation subsequently):
% *

El(X,X(X,y)]=E :E[Xlog {(}—FEleog)){( ~X+X

XlogAL—X—i—X(Xﬁ)
X(X,7)

*

(19)
463 Using the law of iterated expectation gives:

E[I(X, X)] = mprl(y) + E[I(X*, X)].
464 The second term above denotes the estimation gap, and rearranging the terms, we get:
El-log P(a)] = [ (BUX.) - EQCX. X)) do,
0

ae5  Using Jensen’s inequality here (based on the properties mentioned in Lemmal[I]), we have:

—E[I(X*, X)] < —E[X"]log E[j;] — E[X*]+ X = —-I(E[X], X). (20)

466 Now, using the relation from Lemma 2] gives us:
[ meneyan < [ BN B a0, @1
0 0

467 We obtain a more elegant bound in terms of our suboptimal neural denoiser by dropping the negative
468 term:

El-tog P(a)] = [~ mpriGyar < [ ECx ) @)

469 A.2 Parametrization:

a0 To ensure stability across SNR levels, we reparameterize the Poisson observation Z., ~ P(vX)

471 to mitigate mean and variance explosion. Instead of feeding Z, directly into the neural network,
a2 we define the normalized Z, = Z, /(1 + v), keeping it within [0, X] with high probability. This

473 transformation preserves interpretability: at high SNR, E[Z,] ~ X, while at low SNR (y — 0), it

474 tends to zero, aligning with Poisson behavior. We input (Z,, ) into the network in place of (Z.,,7).
475 Adopting the log-SNR parameterization o = log~y, we get:

oo oo

e“mprl(a) do < / e“Ell(X, X)] da. (23)

—00

Bl-log P(o)] = [

—00

476  We now present details on efficient numerical integration of this expression below.
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Algorithm 1 ItDPDM Training Algorithm 2 [tDPDM Sampling

Require: Dataset {xz z]'\il’ # log_SNR Samples Require: Trained model fg, # reverse steps T

S, SNR range [Vimin, Ymax)» denoiser fq 1: Compute {~;} (e.g. spaced in log-SNR)
1: fors=1,...,5do 2: Initialize z,, < O
2: Sample mini-batch B from {x;} 3:fort=T,T—-1,...,1do
3 Sample o ~ Logistic, v < exp(«) 4: o < fo(data_transform(z,,), 7¢)
4 Sample z., ~ Poisson(y z5) 5: Sample z,, , ~ Poisson(y;—1 Zo)
- e 6: end for
5 ip + fo(data_transform(z,), ) 7 return &
6: L+ >, PRL(2,3;), L < €/ q(c) i 0
7: Update 6 by gradient descent on L
8: end for
9: return 6

Numerical Integration:

This section outlines the effective computation of integral from (23). We first use importance
sampling to rewrite the integral as an expectation over a distribution, ¢(vy), allowing for unbiased
Monte Carlo estimation. This leads to our final numerical approximation of the loss function

Eyw) |~ logp(x)] < L, where

1 .
»C = Eq(a) @E(JC,Z’Y)[Z(X7 ZL’)]

We propose two paradigms for numerical integration: Logistic and Uniform Integration, respectively.
Logistic Integration. In Gaussian diffusion models, the log-SNR integral is approximated via
importance sampling with a truncated logistic distribution. The integrand, shaped by a mixture of
logistic CDFs influenced by data covariance eigenvalues )\;, is captured by matching the empirical

mean g and variance s of — log )\;, with integration bounds [y — 4s, p + 4s]. Samples drawn via the
logistic quantile function are weighted by 1/¢(«) to prioritize critical regions, reducing variance.

Uniform Integration. This simpler numerical method discretizes the log-SNR range [a, o] into
a uniform grid, applying trapezoidal or Riemann-sum integration without assuming an underlying
distribution. While simple, efficiency depends on grid density for broad ranges, favoring ease over
optimal sampling. The predefined range is [—28, 37] with uniform sampling.

A.3 MPRL Tail Bounds:

Since the integration on the RHS of Eq.(23) is intractable, we identify a finite integration range
(o, 1) beyond which the contribution becomes negligible. The RHS of Eq. can thus be written
in terms of ‘e’ as:

= /OZ1 e“mprl(a)da + (/% —|—/OO) e“mprl(a)da < /al e®BlI(X, X)] da+ f(ag,a1)

We analytically derive upper bounds for the left and right tail integrals, denoted by f(aq, 1) above
in App. E, and show that their contributions decay rapidly outside the relevant integration range.

Algorithms|[T]and [2] present the pseudocode used for tDPDM training and generation respectively.

B Experimental Details

B.1 Training Details (contd.)

For a fair comparison, we train both CIFAR and LMD models from scratch for 600 epochs. The
training starts with a learning rate of 2 x 10~° using the Adam optimizer. We adopt an 80-20 train-test
split for evaluating likelihoods. For image generation, we use a UNet-based model[40], while for
music generation, we employ the DenseDDPM|[41]] and convolutional-transformer(17]-based models

14
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for the continuous embeddings (DDPM-style) and discrete domain (D3PM[17]) respectively. The
training procedure ensures consistency across both domains, facilitating a meaningful comparison
of their performance. It is to be noted that we train all of the models from scratch, owing to a
lack of pre-trained Poisson diffusion baselines, to ensure fair comparison. Because of compute
resource constraints, we train the models upto 600 epochs, which falls short of the usual amount of
training required to achieve peak performance (e.g., LTJ[20] trains their models for 3600 epochs).
We also restrict ourselves to 100 1ogSNR values per image / music sample, and restrict the number of
denoising steps used in the DDPM / D3PM baselines to 100 as well (instead of 1000), to ensure fair
comparison. Thus, although the relative performance of the models is preserved, the absolute values
of the metrics underperform those presented in DDPM[13]] and LTJ[20].

B.2 Data and Model Normalization

We experimented with various schemes for data (Dn) before passing it through the noisy channel and
for model inputs (Mn) post-noising. CIFAR-10 data is normalized to [0, 1], [1, 2], [0, 255], [—1, 1];
Lakh MIDI to [0, 1], [1, 2], [0, 90], [—1, 1]. Poisson channels cannot handle negatives and since zero
inputs yield zeros, we shift inputs by ¢ = 10~%. For Gaussian noising, model normalization used
[0,1] or [—1, 1], while Poisson noising used only [0, 1]. The best results were achieved with [—1, 1]
(Gaussian) and [1, 2] (Poisson) for Dn, and [—1, 1] (Gaussian) and [0, 1] (Poisson) for Mn. Among
the integration paradigms used, logistic integrate yielded the best empirical results, and the 1oc and
scale parameters obtained for the mid-integral range were (6, 3) for Gaussian noising and (—1, 5)
for Poisson noising.

B.3 Denoiser Architecture

For CIFAR-10 images, we employ a U-Net architecture [40] with residual blocks and self-attention
layers. The encoder comprises four downsampling blocks (convolution — GroupNorm — SiLLU)
that reduce spatial resolution from 32 x 32 to 4 x 4, followed by a bottleneck with self-attention at
8 x 8 resolution. The decoder mirrors the encoder via transposed convolutions and skip connections.
For symbolic music synthesis on Lakh MIDI, we use a DenseDDPM|52]]-based architecture and
a convolutional transformer[19]-based model, for the continuous-state DDPM modeling and the
discrete D3PM[19] modeling respectively. For the continuous modeling, we adapt the DenseDDPM
architecture from [41]]. It first projects the input latent vector to an MLP hidden size (default
2048) with a single Dense layer, then runs it through 3 residual MLP blocks whose weights are
modulated by a 128-dimensional sinusoidal embedding of the diffusion timestep t. After these
conditioned residual blocks, it applies a LayerNorm and a final Dense layer that maps back to the
original latent dimensionality, yielding the denoised output. For the discrete modeling, we adapt an
NCSN++ backbone [52]] with a Convolutional Transformer encoder [19]]. The architecture includes a
512-dimensional embedding layer, six transformer layers with multi-head attention (8 heads) and
positional encodings, and time-dependent noise conditioning.

B.4 Symbolic Music Dataset Cleanup

We utilize the cleaned Lakh MIDI dataset [39], loading note sequences from .npy files with original
shape (x, 1024). For training, sequences are partitioned into individual 1D vectors of shape (1,1024),
representing discrete musical events. So, our method directly models symbolic music as discrete 1D
note sequences using Poisson diffusion, avoiding hybrid architectures or preprocessing.

B.5 Domain-Specific Metrics

To evaluate the generation quality of our model across image and audio domains, we utilize established
domain-specific metrics that quantify fidelity, diversity, and structural realism. Below, we provide
descriptions and implementation details for each metric employed in our evaluation.

Image Metrics All image-generation metrics were computed on 40,000 randomly selected ground-
truth images from the CIFAR-10 test split and 40,000 model-generated samples. Fréchet Inception
Distance (FID) was evaluated with the PyTorch torch-fidelity package (Inception-v3 network,
2048-dimensional pool3 activations).
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* Structural Similarity Index Measure (SSIM) [42]: SSIM measures the similarity between
two images by comparing their luminance, contrast, and structure. It is defined as:

(2papty + 1) (20ay + 2)
(12 4+ p2 +c1)(02 + 02 + c2)

SSIM(z,y) =

where 11 and o denote mean and standard deviation over local image patches. Higher SSIM
indicates better perceptual similarity.

* Fréchet Inception Distance (FID) [43]: FID evaluates the distance between real and
generated image distributions in the feature space of a pretrained Inception network. It is
calculated as:

FID = ||y — pig |2+ Tr (S0 + 4 — 2(5,5,)12)

where (u,, 2,) and (p4, 34) are the means and covariances of the feature embeddings of
real and generated samples.

Audio Metrics. All audio-based metrics are computed using 10,000 ground-truth samples and 10,000
generated samples per model. To enable consistent audio evaluation, we first convert model-generated
.npy files to MIDI format using the pretty_midi library. These MIDI files are then rendered
to WAV audio using FluidSynth [57] with the F1uidR3_GM soundfont, ensuring uniform timbre
across all samples. All tools and dependencies are managed within an automated evaluation pipeline.
This standardized conversion procedure ensures reproducibility and fair comparison of audio metrics
across all models.

* Fréchet Audio Distance (FAD) [44]: Analogous to FID, FAD computes the Fréchet distance
between embeddings of real and generated audio, extracted via a VGGish model pretrained
for audio classification. It reflects perceptual similarity in the feature space and is calculated
similarly to FID.

* Consistency (C): To evaluate sequence-level realism, we employ framewise self-similarity
based on overlapping Gaussian approximations of pitch histograms. Specifically, we use the
overlapping area (OA) from [45], applied to pitch only (since duration is fixed in our setup).
For sliding 4-measure windows with 2-measure hop:

C— U1 C— U2
OA(k,k+1)=1—erf + erf
ke =1t () e (52)

The resulting pitch OA values are compared to ground-truth sequences via:

C = max (0,1 - I“OA_“GT|)
MGt

2 2
(o — 0,
Var = max (07 1— |0A2(3T>
o
GT
Consistency (C) measures global similarity to ground truth, while variance (Var) captures

generation diversity. High C implies structured, music-like pitch transitions.

* Mel-Spectrogram Inception Distance (MSID) [46]: MSID adapts FID for audio by
computing the Fréchet distance over features extracted from Mel spectrograms. The key
steps include:

Convert generated . npy files to MIDI and synthesize audio using FluidSynth.
Compute 128-band Mel spectrograms (16kHz, FFT=2048, hop=512), as outlined
in

Extract features using a VGG16-based architecture trained on audio (VGGish).
Compute MSID using: MSID = ||y, — pg || + Tr(Z, + 2, — 2(2,2,)1/?)

MSID captures both spectral and perceptual differences, correlating with human audio
quality judgments.
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592 * Wasserstein Distance (WD) [47]: WD quantifies the distance between the token distribu-
593 tions of real and generated symbolic music. We compute a weighted Wasserstein distance
594 that prioritizes important token types (e.g., binary onsets or active pitches):

Wu(p,q) = inf Eqgyoyle(z,y)  wiz,y)]
~Y€Il(p,q)

595 Weights are assigned based on token values: 0.2 for Os, 0.5 for 1s, 1.0 for others. Tokens are
596 normalized and reshaped as needed. Lower WD values indicate better alignment of pitch
597 activation distributions.

se8 In addition to the core domain-specific metrics described in Appendix [B.5] we include the following
509 complementary metrics used for additional analysis presented in These metrics help analyze
600 fine-grained perceptual and structural properties of the generated data.

601 Images:

602 * Learned Perceptual Image Patch Similarity (LPIPS) [58]]: LPIPS measures perceptual
603 similarity by computing the distance between deep features extracted from pretrained vision
604 networks (e.g., VGG, AlexNet). It is defined as:

1
LPIPS(z,y) = 3 7 D llwn © (67 (hyw) = 6] (b w) 3
l h,w

605 where ¢7 and ¢ are feature activations from layer /, and w; are learned weights. Lower
606 LPIPS values indicate higher perceptual similarity between generated and reference images.

607 Audio:

608 * Spectral Convergence (SC): SC quantifies the relative difference between the magnitude
609 spectra of real and generated audio:
s — 1Seenl = ISl
[l Srell| 7
610 where Sgen and Sir are the STFTs (Short-Time Fourier Transforms) of generated and
611 reference audio, and || - || p denotes the Frobenius norm. Lower SC suggests higher spectral
612 alignment.
613 * Log Mean Spectral Distance (LMSD): LMSD captures differences in log-scaled spectral
614 magnitudes and is defined as:
1
LMSD = 3 |[log(e + |Sgen(8)]) — log(e + |Sat(t)]) s
t
615 where € is a small constant to ensure numerical stability, and the summation is over time
616 frames t. Lower LMSD implies improved perceptual quality in frequency response.
617 * Variance (Pitch Histogram Diversity): [41] As described in Appendix we also
618 compute the pitch variance metric (Var) to measure structural diversity in symbolic music:
2 _ 2
Var = max (O7 1-— w)
Gt
619 Higher variance indicates greater distributional diversity while maintaining similarity to
620 ground truth statistics. Together, these metrics offer a comprehensive, multi-faceted eval-
621 uation of image and audio generation quality, balancing fidelity, diversity, and perceptual
622 structure.

623 Mel Spectrogram Computation Parameters:

624 For the listed audio-based metrics (FAD, MSID, SC, LMSD), we first convert generated symbolic
625 music into waveform as discussed earlier [57]] and compute Mel spectrograms with the following
626 parameters:
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» Sampling rate: 16 kHz — chosen to balance temporal resolution and frequency coverage
for symbolic music.

* FFT size: 2048 — defines the window size for frequency analysis. This size gives sufficient
frequency granularity (=7.8 Hz per bin at 16 kHz).

* Hop length: 512 — determines the stride between successive STFT windows, corresponding
to 32 ms hop (suitable for music temporal structure).

* Mel bands: 128 — provides a perceptually motivated representation of frequency, empha-
sizing resolution in lower frequency ranges where musical structure is denser.

These parameters are consistent with best practices in neural audio synthesis [59]],[46] and ensure
compatibility with pretrained perceptual models like VGGish.

Additional Metrics:

Table 4: Auxiliary generative quality metrics. Image: LPIPS; Audio: SC, LMSD, LPIPS (Mel), Var

Baseline LPIPS (Img) SC LMSD LPIPS (Mel) Var
IDDPM [37] | 0.17£0.05 1.56 9.99 0.38+0.10 0.81
LTJ [20] 0.18 £ 0.06 1.51 9.81 0.33+0.10 0.87
D3PM [17] 0.29+0.09 | 1.41 9.63 0.28+0.09 0.90
1tDPDM 0.18 £0.08 1.49 9.71 0.30+0.09 0.85

B.5.1 Visualizing generated music samples:

Individual ItDPDM Samples: To examine local model behavior, we present isolated piano roll
visualizations of individual samples (see[Figure 8). Each plot shows the temporal and pitch structure
of a single sequence, with color indicating note velocity. These visualizations enable detailed
inspection of rhythmic patterns, pitch range, note density, and artifacts.

For example, tDPDM-generated samples exhibit consistent pitch contours and relatively uniform
spacing, occasionally disrupted by outlier notes or sparse regions. Such plots help diagnose issues
like over/under-generation, discontinuities, or anomalies, and complement the broader comparisons
across models.

100 200 300 4 100 200 300
Time (seconds) Time (seconds)

Figure 8: Isolated piano roll visualizations of four tDPDM-generated samples. Each plot shows
pitch over time, with note velocity indicated by color intensity.

Qualitative comparison: To qualitatively observe the generative performance of our models, we
visualize representative samples as piano rolls in Each row presents a different generated
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sequence, with columns corresponding to different models: DDPM (left), ASD3PM (center), and
ItDPDM (right). Each piano roll plot depicts note pitch (vertical axis) over time (horizontal axis),
with intensity indicating note onset.

DDPM (left): Samples from DDPM display high variability in pitch and rhythm, with note events
appearing scattered and less structured. While diverse, these outputs often lack recognizable musical
motifs or rthythmic regularity, indicating that the model struggles to capture long-range musical
structure.

ASD3PM (center): ASD3PM outputs, derived from perturbed ground truth MIDI sequences, exhibit
strong rhythmic and melodic coherence. These samples closely mirror the structure of real music,
featuring sustained motifs, consistent phrasing, and regular timing. This visual consistency aligns
with the model’s design, which prioritizes fidelity to the data manifold.

ItDPDM (right): Samples from ItDPDM demonstrate improved musical structure over DDPM. While
some randomness remains, many outputs show rhythmic grouping, pitch contours, and repeating
patterns, suggesting the model’s ability to learn and replicate fundamental elements of musical
organization. Overall, the visualizations highlight key differences in generative behavior. ASD3PM
achieves the highest structural fidelity, followed by ItDPDM, which balances diversity with coherence.
DDPM produces varied outputs but lacks the structured rhythmic and melodic features observed in
the other methods. These qualitative findings complement our quantitative results, offering insight
into how each model captures musical dependencies in time and pitch.

Figure 9: Piano roll visualizations of generated samples from DDPM (left), ASD3PM (middle), and
ItDPDM (right). Each row corresponds to a particular random sample. Higher vertical positions
represent higher pitches.

To further assess how the generated music matches the statistical properties of the training data, we
also compare the generated pitch distributions with the ground truth. Figure [I0]shows the histogram
of MIDI pitch values for tDPDM generated sequences alongside the empirical distribution from the
training data with a close alignment indicating that the model captures global pitch statistics, such
as register, range, and note density. Another observation is that in the generated samples, the note
velocity is slightly amplified in comparison to the ground truth distribution.

C Synthetic Benchmark Details

C.1 Discrete benchmark details
We evaluate model performance on a suite of synthetic univariate discrete distributions designed

to challenge generative models with features such as overdispersion, multimodality, sparsity, and
skewness. All distributions take values in Ny and are non-negative.
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Figure 10: Comparing pitch distributions for ground truth and [tDPDM generated samples

Poisson Mixture (PoissMix): This is a bimodal mixture of Poisson distributions:
0.1 - Poisson(A = 1) 4+ 0.9 - Poisson(A = 100),

producing a highly skewed and dispersed distribution with modes at both low and high counts,
simulating tasks where most values are large but a minority remain near zero.

Zero-Inflated Poisson (ZIP): To simulate data with an excess of zeros, we use a zero-inflated
Poisson distribution: which samples zero with probability 7, and otherwise follows a Poisson
distribution:

P(k) = e~ M\k with mp = 0.7, A = 5.
T7 k > 0

This models structured sparsity common in count data with dropout.

Negative Binomial Mixture (NBinomMix): This is a mixture of two negative binomial distribu-
tions: 0.8 -NB(1,0.9) 4+ 0.2 - NB(10, 0.1), where the first mode has high probability near zero, while
the second exhibits broader dispersion. It introduces skew and multimodality in count data.

Beta-Negative-Binomial (BNB): The BNB distribution integrates a Beta prior over the success
probability p of the negative binomial:

1
P(k) = / NB(k; 1,p) - Beta(p;a = 1.5,b = 1.5) dp, k € Np.
0

We use parameters ¢ = 0.5, b = 1.5, and » = 5, inducing a heavy-tailed count distribution with
long-range dependencies.

Zipf Distribution: This power-law distribution is defined as:

—Q

, where ((«) is the Riemann zeta function. Zipf distributions model naturally occurring frequencies,
such as word counts or node degrees.

Yule-Simon Distribution: The Yule-Simon distribution is defined as:
T(k)D(p+1)

P(k):P'B(kaP+1):P'm7

p=20ke Nzl,

20



697
698
699
700

701
702
703
704

706

707
708
709
710
71
712

713
714
715
716
717

718
719
720

721

722

723
724
725

726
727
728

where B is the Beta function and I' is the gamma function. It is used to model data with power-law
decay, often arising in preferential attachment or self-reinforcing (e.g. rich-get-richer) processes.
These distributions form a challenging testbed for evaluating generative performance on discrete,
non-negative data.

Table [5] summarizes the discrete synthetic benchmarks used in our study. Each distribution is selected
to represent a different pathological regime—bi-modality, zero-inflation, overdispersion, or power-law
behavior—intended to stress PMF concentration and test model robustness. For completeness, we
specify parameter values used in generation and annotate tail behaviors to clarify their impact on
sample complexity and generalization.

Distribution Parameters Tail behaviour
PoissMix A = {1,100} bi-modal
Zero-Inflated Poisson | mp = 0.7, A =15 spike at 0
NBinomMix (r,p) ={(1,0.9), (10,0.1)} | Var > E

BNB a=05b=15,r=5 power-law

Zipf a=1.7 ~gT¢
Yule-Simon p=20 heavier than Zipf

Table 5: Specification of discrete synthetic benchmarks. All distributions are heavy-tailed, zero-
inflated, or multi-modal, stressing PMF concentration.

C.2 Training Details & Metrics

In addition to the ConditionalMLP, a timestep embedding network additionally projects diffusion
steps into a 64-dimensional space using SiLU activations. Models are trained for 200 epochs using
the Adam optimizer (n = 1073, 8; = 0.9, B3 = 0.999) with a batch size of 128. The Gaussian
DDPM employs a linear noise schedule 3; € [107%,2 - 1072] over T' = 100 diffusion steps. Our
ItDPDM framework adopts a linear gamma schedule ~; € [1.0, 0.0] over the same number of steps.
For Poisson diffusion, the initial sample mean is set to 10.0.

Wasserstein-1 distance Wasserstein-1 distance [47] between two univariate distributions p and q is
defined as: W1(p, q) = [, g |* —yldn(z,y) = [x |P(z) — Q(z)| dx, where 7(z,y) is a joint cou-
pling of p and ¢, and P, () are their respective cumulative distribution functions (CDFs). When p and ¢
are empirical distributions of the same size n, this reduces to: W1 (p, ¢) = % |[sort(X) — sort(Y)]|, ,

where X, Y € R" are the sorted samples from p and q. "

For each empirical distribution of 50,000 generated samples over 5 runs, say Pgey, (With Py denoting
the empirical distribution of 50,000 test samples), we compute the Wasserstein-1 distance (WD) [47]]
and negative log-likelihood (NLL) as:

1
> 1og Paen(:) (24)

Test 3

WD = Wi(Prest, Peen), NLL = —

where x; denote the held—out samples.

C.3 Probability Mass Function Estimation:

For discrete distributions, we estimate the empirical probability mass function (PMF) p(z) from
generated samples {z;}¥ | using a histogram-based approach with binning over a finite support
X ={0,1,..., K}
1
pz) = % ; I(z; = x), (25)

where I(-) is the indicator function and K is the truncation value. We set K = 50 across all
experiments to standardize the support. To reduce sampling noise and better visualize differences
across models, we additionally compute a smoothed PMF estimate using a discrete Gaussian kernel:

N

. 1

psmooth(x) = N E -th(‘r - wi)7 (26)
=1
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where K,(-) is a Gaussian kernel defined on the integer lattice:
1 x?
Kn(z) = - XP (2]12) ; 27

. . . 12 .
with normalization constant Z = ), , exp (—2”?) ensuring that K sums to 1 over the support.

The bandwidth h is selected empirically per distribution to balance smoothness and fidelity to the
empirical histogram. To assess variability in PMF estimation, we also compute error bands via
non-parametric bootstrapping. Specifically, we generate 10 bootstrap resamples of the model outputs,
re-estimate the (smoothed) PMF for each, and plot the mean + standard deviation across these
resampled estimates. Each plot includes in Fig. [6|includes: a) ground-truth PMF (when known), and
b) the empirical unsmoothed and smoothed PMFs for each model (e.g., tDPDM, DDPM, LTJ), with
any shaded error bands reflecting bootstrap variability.

Implementation Details:

Aspect Details

Sample size N = 10,000 samples per model and distribution

Support X =1{0,1,...,50} for discrete; bounded x for continuous
Smoothing bandwidth | h tuned per distribution (discrete); KDE bandwidth default
Bootstrap 10 resamples per model for uncertainty estimation
Visualization True distribution, model estimates, and error bands plotted

Table 6: Summary of implementation settings for PMF and PDF estimation.

Zoomed-in look at PMF plots: Building on the analysis in Section 4] [Figure 11|and [Figure 12|
provides a magnified view of the Yule—Simon and Zipf fits produced by each model. [tDPDM exhibits
the closest alignment to the target distribution, particularly in the critical low-support region.

0.2
0.1 .
&
0.0
0 10 0 10
Figure 11: Zoomed-in Yule—Simon fits Figure 12: Zoomed-in Zipf law fits

C.4 Non-negative Continuous Scenarios

As stated earlier, we extend our analysis to six skewed continuous densities: Gamma, Log-Normal,
Lomax, Half-Cauchy, Half-t, Weibull, (along with Beta and Uniform distributions) as outlined in this
section. Our goal here is to assess how well generative models capture asymmetry, concentration,
and long-range dependencies in continuous data.

Descriptions and parameters:

Gamma Distribution: The Gamma distribution is defined by a shape parameter ‘a’ and a scale
parameter ‘0’:

1 a—1_—x/0
p(:v):F(a)eax e/ £ >0.

We use a = 0.5, & = 2, which produces a sharp mode near zero and a long right tail. Gamma
distributions are commonly used to model wait times, energy release, and insurance claims—making
them valuable for stress-testing the model’s handling of high variance and positive skew.

Log-Normal Distribution: A log-normal distribution arises when the logarithm of a variable is

normally distributed:
1 (logz — M)Q)
)= ——exp|———-—"—], 2>0.
p() sV 21 P ( 252
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We use 1 = 0, s = 1.5, producing a distribution with significant positive skew and heavy tails. Log-
normal models appear in financial returns, biological measurements, and natural language modeling,
where multiplicative effects dominate.

Lomax Distribution: Also known as the Pareto Type II distribution, the Lomax is defined as:
—(c+1)
p(a:)zg(l—I—{) , >0
s s

We use ¢ = 2.0, s = 1.0, resulting in a fat-tailed distribution often used in reliability engineering and
modeling rare, catastrophic events. It challenges models to capture high-probability mass near zero
with occasional large outliers.

Half-Cauchy Distribution: The Half-Cauchy is the positive part of a Cauchy distribution:

2
p(r) = ————, x> 0.

ms [1+ ()]
With s = 1, this distribution has undefined mean and variance, and extremely heavy tails. It is
commonly used as a prior in hierarchical Bayesian models due to its robustness to outliers.
Half-t Distribution: The Half-7 distribution is the absolute value of a Student’s #-distributed variable:
p(z) =2 - t(x;v,0,8), © > 0.

We use v = 3, s = 1, yielding a distribution with heavy but finite tails. This is another robust
prior used in Bayesian inference, particularly for variances in hierarchical models, where it prevents
over-shrinkage.

Weibull Distribution: The Weibull distribution, defined by shape & and scale ), is given by:

plx) =~ (%)]Pl e~ @V x> 0.

We use k = 1.5, A = 1, producing a distribution with increasing hazard rate and moderate skew. This
is widely used in survival analysis, material failure modeling, and wind speed distributions.

Beta Distribution (bounded support): Though often used on [0, 1], the Beta distribution provides
diverse shapes depending on the parameters:

B I'a+0b) ,_
PO = Tt

We use a = 2, b = 2, leading to a density concentrated near zero. The Beta distribution tests
the model’s ability to learn bounded distributions with asymmetric mass concentration, relevant in
probabilistic modeling and reinforcement learning. A key limitation to note here is that in case of
asymmetric/skewed beta distributions, all the models notably fail to learn the distribution.

(1-z)f L o<e<l.

Uniform Distribution (flat support): The uniform distribution provides a baseline for bounded,
structureless densities: 1
——.,a<z<bh

b—a

We set a = 0, b = 1, resulting in a constant density over the unit interval. Although simple, it serves
as a sanity check for model calibration and ability to avoid mode collapse under flat distributions.
Together, these distributions offer a comprehensive testbed for evaluating generative modeling under
varied support, skewness, and tail behavior. They also represent common scenarios encountered in
practice, ensuring relevance to real-world generative tasks.

p(z) =

Results:

Table[/|compares the Wasserstein distance for all the continuous cases, and in the continuous case,
we omit NLL values as they can be overly sensitive to skewness and outliers, making them unreliable
for fair comparison. More critically, whereas the true NLL in continuous distributions can often be
negative while our discrete estimator cannot possibly yield a negative NLL.

For each distribution, we visualize the estimated PDFs from all models alongside the true density.
Figure [[3] summarizes the results across all eight distributions, providing a qualitative comparison of
how closely each model recovers the underlying data-generating process.
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Table 7: WD for continuous cases (] lower is better). Bold indicates best.

WD

Distribution DDPM ItDPDM LTJ

Gamma 0.27 £ 0.09 0.12 + 0.05 0.14 +0.05
Log-Normal 2.39 £0.53 1.94+0.71 1.99 + 0.66
Lomax 0.39 +0.20 0.31 £0.17 1.15+0.41
Half-Cauchy 6.67 & 2.45 6.35 + 2.56 5.45 + 2.23
Half-t 0.20 + 0.07 0.21 +£0.02 0.22 +0.04
Weibull 0.29 +£0.05 0.23 + 0.02 0.23 £ 0.06
Beta 0.28 +0.07 0.18 £0.03 0.19 + 0.06
Uniform 0.12 +0.05 0.12 + 0.03 0.12 + 0.02

Log-Normal Lomax Uniform Weibull

Figure 13: Comparison of estimated PDFs for various continuous distributions in the synthetic dataset.
Each plot shows the true distribution and model-generated estimates.

793 PDF estimation:

794 For continuous non-negative distributions, we estimate the probability density function (PDF) f (z)
795 using kernel density estimation (KDE) with a Gaussian kernel:

N

£ 1 1 (1‘—%‘)2 —1/(d+4 -1/5

f(x):—E exp(—2 ,where by default h = o N~V g =1 = h=c N~/5,
Ni:l Vorh 2h

(28)

796 with o denoting the sample standard deviation of {x;} and N the number of samples.

797 We compute error bands by bootstrapping: for each model, we resample its generated samples
798 10 times, compute the KDE for each resample, and display the mean + standard deviation across
799 estimates. For bounded distributions (e.g., Beta, Uniform), we clip model-generated samples to the
goo distribution’s support before applying KDE. Each PDF plot includes: a) ground-truth PDF, and b) the
go1 average KDE for each model, with any shaded error bands indicating bootstrap uncertainty.

s D Section 3 Proofs

so3 D.1  On the Poisson Loss Function:

so+ Here, as outlined in 3.2, we establish that the function ly(z) = zlogz — 2 + 1 serves as the convex
gos conjugate of the Poisson distribution’s log moment generating function (log MGF). We begin by
gos deriving the log MGF of the Poisson distribution, and finally computing its convex conjugate through
go7 the Legendre-Fenchel transform. Let X be a random variable following a Poisson distribution with
gos parameter A > 0. The probability mass function (PMF) of X is given by:

/\k —A
P(X =k) = ke' , fork=0,1,2,...
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The moment generating function (MGF) can be evaluated as:

oo

X ik e Are e (Aeh)E “AAet Aet—1)
Mx (t) = Ele ]:Ze P(X:k):Ze =€ Z o= et =t
k=0 k=0 ’ k=0 ’

Let ¢(t) be the log moment generating function as shown:
o(t) = log Mx (1) = A(e! — 1)
Without any loss of generality, let A = 1 (since scaling does not affect the form of the conjugate),
implying ¢(¢) = e* — 1. The convex conjugate of a convex function ¢ : R — R U {+0c}, denoted
by ¢*(x), is defined as:
¢"(x) = sup{at — ¢()}
teR
This transformation maps the original function ¢(t) to its dual function ¢*(x), and then finds the
supremum of linear functions subtracted by ¢ ().

Let ¢(t) = e — 1 be the log moment generating function (log MGF) of a Poisson distribution with
parameter A = 1. Then, the convex conjugate of ¢, denoted by ¢*(x), is given by:

N _Jxlogz—xz+1 ifx >0,
¢"(@) = {+oo otherwise.

Proof. By definition: ¢*(z) = sup,cp{zt — ¢(t)} = sup,cp {ot —e® + 1}

To find the supremum, we find the value of ¢ that maximizes this expression. First-order conditions
imply: 4 (xt — e*) = 2 — e' = 0 so we have t = log z. This critical point exists only if z > 0, as
et > 0 for all t € R. From the second-order condition, we get:

d? t t

ﬁ(z‘t—e):—e <0 VteR

The negative second derivative confirms that the function is concave at ¢ = log x, ensuring a global
maximum at this point. So for t = log z,

¢*(z) = z(logz) — 8% + 1 =xlogz —z + 1

Therefore, for x > 0:
o*(x) =xlogr —z+1
For < 0, the supremum is unbounded above, leading to: ¢*(z) = +oo Combining these cases
gives:
v,y Jrlogr—xz+1 ifz >0,
¢ (x) = {Jroo otherwise.

This establishes that [o(z) = xlogz — x + 1 is the convex conjugate of the Poisson distribution’s
log moment generating function ¢(¢) = e* — 1 and therefore, a natural loss function.

Connection to Bregman Divergence

The Poisson loss function we defined I(x, ) is a member of the broader family of Bregman diver-
gences, which are pivotal in various domains such as machine learning, information theory, and
optimization. A Bregman divergence is defined for a strictly convex and differentiable function
1 : R — R as follows:

Ly(z,2) = P(x) — (&) — (VY(E),x — 2),
where (-, -) denotes the inner product in R%, and V(£) represents the gradient of ¢ evaluated at 7.
For the Poisson loss function, the generating function ¢ is chosen as:
Y(x) =zlogz — x.
Substituting this into the Bregman divergence definition yields:

Ly(z,2) =zloge —z — (Zlogs — &) — (logZ - (x — 2)).
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837 Simplifying the expression, we obtain:
Ly(z,2) = zlog (%) —T+ 1,

sss  which is precisely the Poisson loss function I(z, Z).

839 This framework not only encapsulates the Poisson loss but also generalizes it to encompass other
s40 widely-used loss functions by merely altering the generating function 1. Well-known examples
841 include squared error loss (choosing () = 1% and Itakura-Saito divergence (choosing ¢ (z) =
s42 — log x). Bregman divergences exhibit key properties that make them valuable in optimization and
843 learning. They are non-negative, vanishing only when x = Z, due to the strict convexity of .
844 They are also asymmetric, meaning L (x, &) # L (£, x) in general and their projection property

845 enables efficient optimization over convex sets.

ss6 By leveraging the Bregman divergence framework, Poisson and Gaussian diffusion schemes can be
847 unified under a single theoretical umbrella, where squared error loss (¢ (z) = %:1:2) corresponds to
s Gaussian noise, and Poisson loss aligns with count-based data modeling. This unification enables
849 extending optimization techniques across different noise models by adjusting the generating function
850 1. Viewing Poisson loss function as a Bregman divergence thus broadens its theoretical and practical
51 utility discrete data modelling.

ss2  Optimality of Conditional Expectation

sss Let ¢ : RY — R be a strictly convex and differentiable function. The Bregman divergence D,
854 induced by ¢ is defined by

Dy(X,Y) = ¢(X) = d(Y) = Vo(Y) (X ~Y).

855 Consider a random variable X € R? and a sigma-algebra o(Z) with Y = Y (Z) being any measurable
ss6 function of Z. Let Y* = F[X|Z] denote the conditional expectation of X given Z. The objective is
857 to show that Y* uniquely minimizes the expected Bregman loss E[D4(X,Y")] among all measurable
sss  functions Y (Z). For any such function Y, consider the difference in expected Bregman losses:

E[Dy(X,Y)]=E[Dy(X,Y")] = E [$(X) = ¢(Y) = Vo(Y) (X = Y)]-E [¢(X) = ¢(Y*) = Vo(Y*) (X —Y")]
859 Simplifying, the terms involving ¢(X ) cancel out, yielding
E[Dy(X,Y)] = E[Dy(X,Y")] = E [¢(Y*) = ¢(Y) = Vo(Y)  (Y* = Y)].

g0 Recognizing that Y™* is the conditional expectation E[X |Z], we utilize the law of total expectation to
861 express the above as

E[p(Y*) = o(Y) = VoY) (Y* = Y)] = E[Dy(Y",Y)].

ss2  Due to the strict convexity of ¢, the Bregman divergence satisfies Dy (u,v) > 0 for all u,v € R,
se3  with equality if and only if u = v. Therefore,

E[Dy(X,Y)] = E[Dy(X,Y")] = E[Dy(Y",Y)] > 0,
g4 with equality holding if and only if Y = Y almost surely. This establishes that
BIDy(X,Y)] = E[Dy(X, ")),
se5 for all measurable functions Y (Z), and thus Y* = FE[X|Z] is the unique minimizer of the expected

sss Bregman loss E[Dy(X,Y)]. .

g7 D.2 Section 3 Lemma Proofs

ses  Proof of Lemmall}: Properties of Poisson Loss Consider the loss function defined as [(z, #) =
seo & -lo (%), wherelo(z) = zlogz — 2z + 1.

s7o 1. Non-negativity: Since [o(z) achieves its minimum value of 0 at z = 1 and is non-negative for all
71z > 0, it follows that [(z,#) > 0 for all z,# > 0. Equality holds if and only if £ = 1,ie., x = 2.
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2. Convexity: The function [y(z) is convex in z because its second derivative Ijj (z) = % is positive
forall z > 0. Therefore, I(x, &) = &-1o (£) is convex in & for each fixed x, and similarly, it is convex
in x for each fixed Z, as the composition of a convex function with an affine transformation preserves
convexity. (We can also directly use the Bregman divergence framework to argue its convexity)

3. Scaling: For any o > 0, consider scaling both arguments of the loss function:
. . ax ) x .
laz,aZ) = ai -y (—A) =ai -l (7) =a-l(z, ).
fa% z
This demonstrates that the loss function scales linearly with a.

4. Unboundedness for Underestimation: For any fixed z > 0, as & — 07, the ratio Z = oo.
Evaluating the loss function in this limit:
N o X X T x .
Wz, 2)=1a- (7log (7) - = —|—1) =zxlog (7) —x+ I
z z z z
As i — 0T, log (%) grows without bound, causing [(x, &) — oo. This shows that the loss becomes
unbounded as & underestimates x.

Proof of Lemma Let Z., be a Poisson random variable with parameter vX, meaning Z, | X =
x ~ Pois(yzx). Suppose the conditional expectation (X), = E[X|Z, = z] is affine in z,

(X), =az+0b,
for some a and b, with 0 < a < 1/y and b > 0. We aim to show that X follows a Gamma distribution
with shape a = % andrate 3 = ¢, i.e.,

1—
X ~ Gamma( ’ya’ %)
Define U = X and Y = Z, ~ P(yU). Assume E[U|Y = z] = az + b. By the law of total
expectation,

0= E[U — (a¥ +))g(Y)]
for any function g satisfying integrability. Choosing g(Y) = e=*¥ for ¢t > 0,

E[(U = (aY +b))e"™] =0.
Rewriting Y ~ P(yU), we use the known conditional Laplace transform relation for a P(\) random
variable Y,

Bl |U = u] = exp(u(y(e ™ —1))).
Hence,
Ele™™] = Elexp(Uy(e™" - 1))],
which is the Laplace transform of U evaluated at s = v(1 — e~ *). Denote
Ly(s) = Ele™®Y], sothat Ele ] = Ly(y(1—e™?)).

Similarly,
d
EUe™]=—-—L
U] =~ Lu(s)

From the orthogonality condition,

EYe "] =——

—ty
th[e ].

s=y(1—e—t)’

E[(U - (aY +b))e ] =0.
Using the above expressions,
0=E[Ue™™] —aE[Ye ] —bE[e™"Y].
Substituting s = (1 — e~*) and differentiating as needed, we obtain a first-order linear differential
equation for Ly (s),
—((1 —ay) 4+ ays)Ly(s) = bLy(s).
The unique solution with Ly (0) = 1is

Ly(s) = (1+ l_brms)_ a

This is the Laplace transform of a Gamma(1=2%, %) random variable. Hence, U = X follows this

a
Gamma distribution. For the Gamma distribution to be well-defined with a positive shape parameter,
we require o = 17% > 0, which holds for 0 < a < % The rate parameter 3 = 7 > 0 requires

b > 0. Under these conditions, X ~ Gam( 1_(;’“, %), completing the proof.
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Proof of Lemma When X = 0 almost surely, F[X] = 0, and the identity holds by convention.
Else, E[X] > 0, and we have:

= E[Xlog X — Xlog E[X] — X + E[X]] + 1 (E[X], %)
— E[I(X, E[X])] + [ (E[X],2).

E[I(X,4)]=F [Xlog <X> X+§:} = E[Xlog X] — E[X logd] — E[X] + &

Proof of LemmaEl} Consider Z, = P(yX), where Z., is a Poisson random variable with parameter
vX. To determine (X), = E[X|Z, = z] for each z > 0, we start by applying the definition of
conditional expectation:

E[X - Py (2]X)]
Pz (2)

Given that Z,| X = x ~ Pois(yz), the conditional probability mass function is

<X>z =

(ya)e ®
Py, (21X = 2) = 2 —.

Substituting this into the expression for (X)), yields

B [x. 0]

z!

Pz, (2)

<X>z =

To relate (X). to Pz (z + 1), observe that

] = e [ ]

Pz (z+1) E{

Rearranging the above equation, we obtain

wX)—Ze—vX} =+
z!

E {X- Py (2 +1).

Substituting this back into the expression for (X) ., we have

(x). (2’7:1)1172v (z+1) (z4+1)Pz (2 +1)

1
Pz (z) v Pz(2)

P

This completes the proof of Lemma ]

The conditional expectation over a Poisson noise channel also has other unique properties, some of
which are stated below. The next property is useful in showing that the conditional expectation in this
case is unique for every input distribution.
Lemma 5. Let Z., = P(vX). Then, for every positive integer k and every non-negative integer z,
k-1
E[(vX)"2y =z = [[ EDX|Z, = = +1].
i=0

Proof of Lemma 5. Let Z, = P(yX). We claim that for every positive integer k£ and nonnegative
integer z,
k-1
E[(vX)"2, = 21 = [[ EWX12, = 2 +1).
i=0
From the affine formula in Lemma the conditional expectation of v.X given Z, = z is related to
the ratio of marginal probabilities. More generally, for higher-order moments,

z+ k) Pz (2 +k)
z! PZ7<Z)

Bl X)H|Z, = 2] = | | 29)
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922 We can also express (7X)* as a product of 7 X terms and use the Poisson shifting property of P (y.X).
923 Applying Lemma]and Eq. 29]for each shift 2 — z + i gives

k—1
E[(/X)"2, = 2] = [] BvX|2, = = +il.
=0

924 Each factor on the right captures the conditional expectation of vX at consecutive levels z, z +
925 1,...,z+ k — 1, so all higher-order moments of X follow from the first conditional moment
926 E[yX|Z, = z]. This completes the proof.

927 Proof Sketch of Eq.[29 The key observation behind the formula is that, for the Poisson distribution,

928 shifting from y to y 4+ k£ multiplies the corresponding probability mass by (aX+N)* . Evaluating

929 the expectatlon leverages the ratio of adjacent Poisson probabilities Py (y + & /C Py (y) and tracks
930 how (aX + \)* factors. In essence, a product expansion shows how each additional factor aX + A
931 increases the count from y to y + 1, and iterating this argument recovers the moment expression. As
932 shown in [60], for Poisson observations Z., ~ P(aX + X), the sequence of conditional expectations
93 {E[X|Z, = z]}.>0 uniquely determines the input distribution Px. This supports our information-
934 theoretic derivation and strengthens the foundation for learning in discrete-state noise models. For
935 our Poisson setting, we also have:

936 Lemma 6. Let Z, = P(yX). Then, for everyy > 0andy =0,1, ...,
4
dy

w7 where Py |x(—1|z) = Pz (1) = 0.

viPzw (y) =yPz, (y) — (y+1)Pz (y+1)

Py x(ylz) =z (P x(y — 1|z) — Pz x(y|z)) , dy

938 Proof of Lemma 6. Let Z, = P(vyX), where Z, is a Poisson random variable with parameter v.X .
939 We first compute the derivative of the conditional probability mass function Pz (z|X = z) with
940 respect to 7.

941 Since Z,, given X = x follows a Poisson distribution with mean vz, we have
(yz)¥e 7
y

942 Taking the derivative with respect to v and using product rule, we obtain:

iPZ (z|X =2) = d <(7x)ze—w> _ z(yx)* we” _ x(’yw)ze—“ﬂ.

PZ.Y(Z|X = .’E) =

dry dvy 2! z! z!
943 Simplifying the terms, we obtain

d (eyle”  (qa)e
aPZW(Z‘X =z)==x ( RS o > .

944 Notice that (1) )
yx)* e *
e~ Pele- X =),

945 we can rewrite the derivative as
d
dvy

a46 This establishes the first part of the lemma.

Py (2| X =2) =2 (Pz,(z — 1|X =2) — Pz (2|X =1)).

947 Next, we compute the derivative of the marginal probability Pz_(z) with respect to . By the law of
948  total probability, we have
Pz, (y) = E [Pz, (2|X)] .
949 Differentiating both sides with respect to ~, we obtain
d

TP =E | Lre %)
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Substituting the result from above, we get
&
dy

This can be expressed as

d
—P,
7dry Z.

Py (2)=FE [w (PZW(Z -1X) - PZW(Z|X>)} .

(2) =7vE [2Pz (2 — 1|1X)| —vE [2Pz, (2] X)] .

Noting that for a Poisson distribution, E [Pz (z|X)] = 2Pz, (z) and E [2Pz (2 — 1|X)] =
£ Pz, (z), we substitute to obtain

W%PZW (2) = 2Pz (2) = (2 +1)Pz (2 +1).

Thus, the second part of the lemma is established.

Other properties of the Conditional Expectation

Lemma 7. Let Z, = P(yX) where X is a nonnegative random variable, and v > 0. Then, for
every v > 0 and integer z > 0,

d

EE[X|Z,y =z]=—zyVar(X|Z,=2-1),

where Var (X|Z, = —1) = 0.
Proof. Fix an integer z > 0. Consider the conditional expectation

e 1= (10T

Differentiating both sides with respect to -y, we obtain
Applying the quotient rule to the derivative inside the parentheses, we get
d (P(szz—i—l)) B P(Z'y:Z)%P(Z'y:Z‘Fl)_P(Z'y:Z‘Fl)%P(ZW:Z)
dy \ P(Z,==z) P(Zy = z)? '
Using the properties of the Poisson distribution, specifically the identity
P(Z,=2z+1) v X

P(Zy=2) 241

Il
w
2

we can simplify the derivative expression. Substituting back, we obtain

d
%E[X|Z7 =z]=—zyVar(X|Z,=2-1).

For the case z = 0, the derivative simplifies to %E [X|Z, =0] =0, since Var (X|Z, = —-1) =0
by definition.

The result for higher moments follows similarly. For any positive integer k, differentiating
E [(7X )k |Z, = z] with respect to v and applying the quotient rule leads to the stated piecewise
expression. This completes the proof.

Moreover, for any positive integer k,

KE [(vX)12, = 0],

iE (W X)M|Zy =2] =4 (z+ k) E[(vX)* Y2, =2] E[yX|Zy =2—1] — 2 E [(vX)*|Z, = 2]

d
7 EnX|Z, =z —1]
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Lemma 8. Let Z., ~ P(yX). Then, for every fixed v > 0 and any non-degenerate X, the mapping
z v+ E[X|Z., = 2] is strictly increasing.

Proof. To show that E[X|Z., = z] is strictly increasing, we define U = X and consider the Poisson
marginal probability:

Py, (k)= EE [U*eY] (30)
Applying the Cauchy-Schwarz inequality, we obtain

Pz, (k) < & \/E Uk+1e-U] B [Uk-1¢-V). 31)

Rewriting in terms of factorial expressions, we get

Py (k) < k+1

L (k) <\~ =Pz, (k+ )Pz (k—1). 32)

Now, substituting this bound into the Turing-Good-Robbins (TGR) formula from Lemma [}
(z4+1)Pz (2 +1)

FlU|Z, =z| = , (33)
[ ‘ Y ] PZW (Z)
we obtain the lower bound
(z+1)57P3 (2)
FElU|Z, =z] > z (34)
[ | v } PZV( )PZ,Y(Z_]-)
Simplifying, this reduces to
2Pz (2)
Ulz, —_— 35
BUZ, =2 2 5 (39)
Using the same formulation for z — 1, we conclude
ElU|Z, =z > E[U|Z, =z —1]. (36)

Since X = U/, it follows that E[X|Z., = z] is strictly increasing in z, completing the proof.

D.3 Incremental Channel Approach to I-MPRL and related proofs:

Here, we derive interesting relations between the mutual information in a Poisson noise channel and
various parameters of the channel. The general distribution we consider here is Y ~ Poisson(aX +
A).
Lemma 9. Let A > 0 and let X be a positive random variable satisfying E{X log X} < oo.
Consider the Poisson random transformation X — Zx = P(X + X). Then, the derivative of the
mutual information between X and Z with respect to the dark current \ is given by
d
d\

where (X + ) = E[X + \|Z) = z].

I1(X;Z)) = Eflog(X + \) —log(X + \)],

Proof: Let Yo = P(X) and Ny = P(A) be independent Poisson random variables with means X
and ), respectively. Define Y), = Y; + N,,, which has the same distribution as P(X + \). By the
definition of mutual information,

I(X;Yy) — I(X;Y)) = E{L(X,Y0,Y))},
where the expectation is over the joint distribution of (X, Yy, Yy ), and the log-likelihood ratio is

Py, x (k|x) Py, x (£|z)
L =1 o — 1 A
(z,k,€) =log 20 %% P (1)

Given that Y5|X = = ~ P(x) and Y| X = x ~ P(z + A), the conditional probabilities are

ke (z + \)le= @+
L Pty = AT

Py, x (klz) =
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994 Substituting these into the log-likelihood ratio, we obtain
L(X,Yy,Y)) =Ylog X — Yylog(X + A\) + U,

995 where U encompasses terms involving the logarithms of the marginal probabilities. Taking the
996 expectation, we have

E[L] = E{Xlog X — (X + ) log(X + \)} + E[U].

997 Expanding Y, = Yy+ N, and leveraging the independence of V), from Yj, we analyze the behavior of
9e8 E[U] as A becomes small. Through a series of manipulations and applying the dominated convergence
999 theorem, we find that

I(X;Y,) - I(X;Yy) =\E [logéﬂ + o(A).
1000 Dividing both sides by A and taking the limit as A\ — 0, we obtain
C%I(X; Yy) = Eflog(X + A) — log(X + \)],
1001 where (X + \) = E[X + A|Y = 2]. This completes the proof of Lemmal9]
1002 Lemma 10. For every Poisson transformation Px with E{X log X} < oo, and as 6 — 0,

I(X;P((148)X)) — I(X;P(X)) = § E{X log X — (X)log(X)} + o(6).

1003 Proof: Consider first the case § — 07. Let Y = P(X) and Z = P(6X) be independent conditioned
1004 on X. Define Y5 =Y + Z. Then, the left-hand side of the lemma can be expressed as
Py x (Y5 X) PYX(YX)}

I(X;Y(;)—I(X;Y):E{log Py, (Y3) —log Pr(Y)

1005 Expanding the log-likelihood ratio, we have

NYs 7(1+5)X/
E{ZlogXéXlogE{(X) € D%}}.

E{(X")Y e XY}
1006 Here, X’ is identically distributed as X but independent of Y and Z.

1007 To analyze the expression as § — 0, we approximate A = P(§X) by a Bernoulli random variable
1008 that takes the value 1 with probability § X (conditioned on X)) and O otherwise. This approximation is
1009 valid because for small ¢, the Poisson distribution P(6.X) closely resembles a Bernoulli distribution.

1010 Substituting this approximation into the previous step, we obtain
I(X;Y5)~1(X5Y) = E{Zlog X = 6X ~log [(1 - 6X) B{(X")" e X[V} + 6X E{(X")" *e=¥'e=0¥|v}] }0(6)
(37

1011 Expanding e %X to first order in 8, we have e 9% ~ 1 — §X’. Therefore,

E{(X")Y e X' e X v} m B{(X)Y T e X |V} = 6E{(X")Y T2 X[V} +0(5) (38)

1012 Substituting this back into the logarithm and applying the first-order Taylor expansion log(1 + ¢) = €
1013 for small €, we obtain

log {(1 —0X) E{(X’)Ye*X'|Y} 16X E{(X/)Y+167X/|Y}
0X B{(X) e X |y} — oX B{(X") e X |y}
E{(X")Ye X[V} +0
EB{(X")Y e X'|v} — B{(X") e X|V}
E{(X")Ye X'|Y}

~log [B{(X")Y e X'V} + (9)

=log(X) —0X + 0(0),
1014 where (X) = E{X|Y'}.

32



1015

1016
1017

1018

1019

1020

1021

1022

1023
1024
1025

1026
1027
1028
1029

1030

1031

1032

1033
1034
1035

1036

Substituting this approximation back into equation[37] we get

I(X:Y;)—I(X;Y)=E {ZlogX —6X —log(X) +6X Eéﬁ;)::f;yi} } +0(8) (39)

Noting that Z is Poisson with parameter X, we have E{Z|X} = X, and thus E{Zlog X} =
E{Xlog X}.

Furthermore, we know that (X) = E{X|Y}, and from Lemma[4] we have
E {(X')Y+1e—X’ |Y} = (X)e~ (Y +1).
Substituting these into equation [39] we simplify to
I(X;Ys) — I(X;Y) = 6B{X log X — (X) log(X)} + (0),
Dividing both sides by ¢ and taking the limit as 6 — 0, we obtain

4 r(x:vp)

= = E[Xlog X — (X)log(X)],

5=0
where (X) = E[X|Y]. This completes the proof of the lemma.

E Tail Bounds

As we know the output z, given the input z is modeled as z, ~ P(yz), where > 0 is the
non-negative input random variable, and y represents the signal-to-noise ratio (SNR). The negative
log-likelihood when estimating z- using , is given by:

e (yx)™

Uz, 2y) = —log p(2y|7) = —log <Z,> = 7@ — 2y log(yx) + log 2!
N

We define the expected negative log-likelihood as M(v)=FE(, . ) [[(7, zy)] = E. [E(Z”w) [1(z, 29)]].
We now consider a mean constraint ¢ = E[z] in this case and our objective then is to determine the
input distribution px () over z > 0 that maximizes the above function. To compute the expected
loss, let us first evaluate £, |, [l(z, z,)] and using E._|,[z,] = v gives:

. i@, 2)] = Ex, s vz — 2, log(y) + log 2, 1] = (40)
yr —log(vz) - B, |2[2,] + E. |2[log 2,!] = v — yzlog(vz) + E. |, [log 2,!] 41)
We can write M(7) in terms of the the conditional entropy of z., given  as:

M(7) = Ex[H(zy|z)], since H(zy|x) = E. |5 [=logp(zy[2)] = E. o[l 2y)].

The entropy H (z|x) of a Poisson distribution with parameter vz is given by:

HS(yx) = — ZP(,Z,y =k)log P(zy = k)
k=0

where P(zy = k) = ("’”“)Zi,eﬂz So substituting this into the entropy expression, we obtain:
)kB*VT

L (yx)ker® yz)ke = (ve
HS(yx) = — Z 9} )k;! log <( )k! ) = vz — yxlog(vyx) + Z (’YT
k=0 k=0

log k!

It is natural to assume that the Shannon entropy H.S(\) of a Poisson distribution strictly increases
with A € (0, +00). We will prove this result, as well as the concavity property of HS(A), in the
following lemma.

Lemma 11. The Shannon entropy HS(X), A € (0, +00), is strictly increasing and concave in \.
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Proof. The Shannon entropy HS(\) of a Poisson distribution is as outlined above. To analyze the
monotonicity and concavity of H.S(\), we compute its first and second derivatives with respect to .

First, the first derivative HS’()\) is

A _ AP logk' = Ml og &
Hi(\) = —log (6)—1— AZ +e AZW (42)
1 1) 1
—log)\—i—e_’\zi)\ OglikJr Z al ng 43)
k=1

Simplifying, we get:
A= AR
HS'(A) = —logA+e Y Sy los(k +1)

It is clear that both terms on the right-hand side of (2) are non-negative for A € (0, 1], and the
second term is strictly positive. Therefore, Hg(A) > 0 for A € (0, 1]. Now, it remains to prove that
Hi (M) > 0for A > 1. Let’s calculate:

Hg(/\):—l 7)\2)\klog(k+1 Z/\k 1log k+ 1)
A k!
k=1
1 = Melog(k 4 2) Y AE 10g(k—|—1)
oy y Al oy Mokt
k=0 k=1

o Wlog (14 1)
1 g
— 5 e Mog2 ey b

k!
k=1
oo M\ _1
B _/\Zx\log<1+k+l)
/\ k!
1 ]_ :;f: k—%l
/\ /\k: (k+1)!
1 —Al A _
< — )\—|—e )\e =0

So, H(A) < 0 for all A > 0. Therefore, H () strictly decreases in A, proving concavity and it is
sufficient to prove that limy_,o, H5(\) > 0 After further simplification,

— Mlog(k +1
lim Hg(\) = )\lim log A (e_)‘(log)\)_1 Z % _ 1) 7
— 00 !

A—00
k=1

and it is sufficient to establish that

> Melog(k +1)
S e A —1
liminfe™"*(log \) E g > 1.

A—00
k=1
This inequality is outlined in [61]]. Using this, we get that H5(A) > 0 forall A > 0 and H(\) < 0
for all A > 0, hence the proof follows.

Given that H(z,|x) is an increasing and concave function of x for z > 0, we aim to maximize
E.[H(zy|x)] under the mean constraint F[z] = p. The functional to maximize is J[px(z)] =

Js° H(zy|2)px (z) dz, subject to the normalization and mean constraints: [~ px(z)dz =
1 and [ apx(z)de =p

Introducing Lagrange multipliers A and v for these constraints, the Lagrangian becomes:
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Cox(@l= [ il ([Toxtaras—1) v ([ apxw i u)

Taking the functional derivative of £ with respect to px () and setting it to zero for optimality yields:

61)‘;‘%31_) =H(zylz) - A—vz =0

Given the properties of H(z|x), the solution corresponds to an exponential distribution. The
exponential distribution with mean y is given by:

1
px(z) = fe_m/“, x>0
I

Maximizing the entropy of x leads to a distribution that spreads the probability mass, thereby
increasing uncertainty and consequently maximizing the mprl. Now, using this exponential prior, we
will derive an expression for mprl(y) which we use for deriving the left and right tail bounds.

Now, the prior distribution for X is assumed to be an exponential distribution:
fx(x) =Xe ™™

We introduce the latent variable Z., such that:

e (1)’
P(Zy = 2|X =) = —— -

which follows a Poisson distribution. The conditional density of X given Z, = z is derived as:

P(Z, = 41X = 1) fx (@)
P(Z, = z)

fX|Z($|Z) =

Ix1z(x|z) = LZV e e Bz

(Ba)*De=O+)z
2\P(Zy = z)

and we can notice that this is a Gamma distribution: X|Z, = z ~ Gamma(z + 1, A\ + ) The
posterior mean of X given Z, is:

z+1
A+

E|X|Z, =2 = (44)

and this serves as the optimal estimate X*. Now, let us consider the following expectation: (where [
is the previously defined Poisson loss function)

Ex|z, [I(X,X*)] = E[X log (?) ~X+X*=E [X log (}f) ’ZV] —E[X|Z,]+X* (45)

Using integration by parts and properties of the Gamma function, if W ~ Gamma(c, (3), then: [62]

E[W log W] = % [W(a + 1) —log ]

where we defined the digamma function ¢(«) as: /(o) = - log I'(v). The above results would
also follow from differentiating the moment formula:
I(a+n)

A= T
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1073 Applying this this result in our case gives us:
z+1
_|_

EXlog X|Zy| = [(z +2) —log(A + )]

>
sy

1074 We also have from Equation. [44}
log(X™) =log(z+ 1) — log(A + «)
1075 Taking expectation, the first term in Eq. [45]can be written as:

E [X log <;((*) ’Z] _ 2l [W(z +2) —log(A+ a)] — 2+l [log(z + 1) —log(A + )]

A48 A+«
(46)
1
= iiﬂ[w(w 2) — log(z + 1)]
(47)
1076 Now, we compute the marginal distribution as follows:
> )\ﬂz > z,—(A\+B)z
P(Z,=2)= P(Z,=z|X =z)fx(z)dx = . x%e dx.
0 ©Jo
1077 Using the Gamma integral property stated as follows:
o0 r 1
/ zre” MBI gy — 4(2 ha )17
0 (A+B)=F
1078 we obtain (since I'(z + 1) = z!):
AB%F T(z+1) AB? B
P(Z, =2z = . = = (1 —-p)p®, wh =—
( Y Z) 2| ()\+/B)Z+1 (>\+6>z+1 ( p)p , where p )\_’_6
1079 Now, the mprl(y) expression obtained is as follows:
mprl(7) = iu— W [2“ (= +2) — log(= + 1)]] I i(zﬂ) “ (= + 2) — log(z + 1)]
pri(y 2 b g Ot ) 2 p g :

1080 E.1 Left Tail Bound

1081 In case of (7yp,71) being the relevant range of integration, the left tail integral is defined as:
1082 [ mprl(v) dy
1083 First, we interchange the sum and the integral:

Y0 R B ; ~loa(s oA (s ’
0 mpﬂ(v)dv—;( + 1) [1(= + 2) — log( +1>]/0 EF=IE <H7> -

1084 We define the inner integral as

Yo by v z
I = 2 ()
/0 (A+7)? (A+v) i

1085 Substitute © = A 4 «, which implies v = v — A and dy = du. The bounds change accordingly:
1086 % = A when v = 0 and u = A 4+ 79 when y = <. The integral becomes

A+v0 —\)\2
I, = )\/ 7@ A) du.
A

uz+2

1087 Next, using the substitution v = “,;u)‘, leading to u =

Yo
A+70

1—v
when u = A + 7. Substituting these into the integral

A and du = ﬁdv. The bounds

1088 transformtov = 0 whenu = A and v =

1089 yields
Yo

A0 >
I, = v® dv.
0

36




1090

1091

1092
1093

1094

1095

1096

1097

1098

1099

1100

1101
1102

1103

1104

1105

1106

The integral I, can be evaluated as

7o Yo #+1
B 1}24—1 X+70 B ( o )
i z+1

0 N z+1
Substituting I, back into the expression for the expectation, gives:

Yo B i _ 0 =
i mprl(v) dy = ;[w(zw) log(z +1)] (H%>

Let the above sum be S which we use in the sections below. By re-indexing the sum with k = z + 1,
the final result can more elegantly be expressed as:

/OW mprl(y) dy = 3 [w(k+1)—1og(k)]< w )k

et A+ 70

We aim to establish an upper bound for the sum

o] z+1
= z z — loglz o
§=3 G+l +2) st + 01 (775 )

where 1) denotes the digamma function, 7y > 0, and A > 0.

Let us define x = )\10%. Given that g > 0 and A > 0, it follows that 0 < z < 1. From, [63], we

recall the expansion of the digamma function:

Y(z+2) = H.41 — 5,
where H,, is the n-th harmonic number and ~g is the Euler-Mascheroni constant. For large z,
1 1
H, ;=1 1 _ .
n =l H et sr TG e
Substituting this into the expression for ¢)(z + 2) yields:

Wz +2) —log(z+1) = 2(zl+1) N 12(zl+ nz

From this expansion, it is evident that
1
2(z+1)

for all z > 0, since the higher-order terms fm + - - - contribute negatively, thereby decreasing

(z+2)—log(z+1) <

the overall value.

Consequently, each term in the sum satisfies

(z+1) (2 +2) —log(z + 1)] 2"t < lx’zH.

2
Summing over z from 0 to co, we obtain
1 o0
- z+1
S < 5 Zx .
z2=0
Using the simplification of the geometric series » .o, z* !
> T 1 x
Zm”l = — S< = .
1—=x 21 —x
z=0
. o~
Substituting back = = +Ovo , we have
Y A x o ol
0 “+70 0
]_ —xr = 1 — e — = = —.
_ p)
A+ A+ l—z 2 A
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Putting this into the inequality for S, we obtain
L0
S < -—=.
2 A
Hence, the upper bound for the sum in the scalar case (for a single input-output realization) is

i ~ z+1 5
;(z +1) [¥(z +2) — log(z + 1) (A +°%> < ﬁ

(Note: This z is different from the 2., notation used throughout the paper.)

Extending this result to the vector case, consider a d-dimensional random vector z € X C Z? with
covariance matrix ¥, whose eigenvalues are {\;}%_,, all positive. Assuming the problem is separable
across the eigenbasis of X, each dimension can be treated independently.

For the vector case, the sum becomes

d oo z+1
B _ Yo
Stector = ;;)(z + 1) (= +2) —log(z + 1)) (Ai + 70) '

Applying the scalar bound to each eigenvalue \;, we have

- Yo e Y0
;(H 1) [4(z +2) — log(z + 1)] (/\i +%> < I

Summing over all ¢ from 1 to d, the vector sum satisfies

In the special case where the covariance matrix Y. is isotropic, meaning all eigenvalues A\; = X for
i =1,...,d, the bound simplifies to
d
ector S ﬂ'
2\
This concludes the derivation of the left tail bounds for both the scalar and vector cases.

Sy

E.2 Right Tail Bound
In case of (vp,71) being the relevant range of integration, the right tail integral is defined as:
S5, mprl(y) dy

Consider a discrete variable x = (z1,22,...,24) € X C Z%, where each component x; belongs to a
discrete set {i Ali € Z}. Observations are modeled as z, ; ~ P(yx;) for a large signal-to-noise ratio
(SNR) parameter . The estimator &, (z.,;) is typically the maximum likelihood estimator (MLE),
implemented by rounding z. ; to the nearest bin {k A}.

The loss function per component is defined as

L(x;,&;) = x;log (@) - + &y,
s

)

and the mprl(v) is given by E[L(x;,Z;)] over the randomness of z, ;. The right-tail integral of

interest is
o0
Ir = / FE
71

which we aim to upper bound.

d
> L, @i(zw,z'))l d,

i=1

At high SNR (v — o0), the noise is relatively small compared to z;, but rare rounding errors of size
JA can still occur. Focusing on a single component x;, an error of size jA happens if

T =x —JA <= zy; € [y(xi — A —05A),v(z; — jJA 4+ 0.5A)).
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For z.,; ~ Poisson(u) with 4 = ~yx;, the Poisson Chernoff bound [[64] provides that the probability
of such a deviation is at most exp(fc@ j ), where ¢;, ; > 0is a constant dependent on A, x;, and the
shift jA. Hence,

P(error of size jA) < e™ %7,
The per-component contribution to the mean MLE loss is
mprl;(v) = B, [L(2i, 5(24,:))] -
When the estimation error is jA, the loss becomes

Z‘LA) —x; + (xi _jA)~

T; —

L (z;,z; — jA) = z; log (

Therefore, the mean loss satisfies

JImax

mprl;(7) < Z [xz log (&) —x; + (@ JA)] em .,

Jj=1
Summing over all components ¢ = 1,. .., d, we obtain

d  Jmax

d
73 . i
mprl(y) = Zmprli(fy) < Z Z [xl log (x—jA) —x; + (x; — jA)} e~ Cid7,
i=1 ¢

i=1 j=1
The right-tail integral I can thus be bounded as
[o'e) d jmax T, o0
i . —Cij
I = mprl(y) dy < ; Z {xz log <xl—]A> -z + (z; — jA):| /W eV dn.

Y1 j=1 1

Evaluating the integral, we find

oo e CiiM
/ e Ny = ,
v .

1 Ci,j

Leading to the final right-tail bound

IR:/ E
71

In the above expression, c; ; > 0 represents the Chernoff-type exponent from the Poisson large-
deviation bound for the event causing an error of size jA in component i. We determine these
parameters empirically, and the parameter j,.x indicates the largest error shift considered, which
is typically small in practice and can be tuned empirically. For empirical purposes, it might also be
worthwhile to note that the bracketed term in Eq. [#7] can be approximated as the sum over a few
starting z beyond which it effectively dies out as illustrated in

d

d  Jmax ey s
T e CidM
in,fi d S xilo 71 —jA .
> L )] y ; [ g(gci_]A) j }

Ci
i=1 j=1 ©J

Wiz +2) - loglz+ 1)

By 40 0

Figure 14: Approximating the Digamma term
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F Proof Sketch of Pointwise Poisson Denoising Relation

For Poisson channel defined earlier, we derive the pointwise denoising relation:

Lemma 12. The KL divergence derivative satisfies:

é%DKdP@wwWP@ﬁ]anﬂ@rﬂ

where the pointwise MPRL is:
mprl(z,7) = Ep(z. |a) [l (x,2%(2y))]
with [(z,r*) = xlog % — x + " and *(2,) = E[X|z,].

Proof. For the Poisson channel Z,| X = z ~ Pois(yx) define

Ry(7) :== va(zbc) log p;(?za)c), &% (2,7) == E[X|Z, = 2], l(z,&) == xlog% —z+ 1.
220 v

Differentiate the series using the product rule to get

d P~ (z|x

aRx = Z Ovp~(z|z) log ;((L)) + va(z\x) (87 log p,(z|x) — 0, logpy(z)) =T + Ts.
z v z

Term 75. For the Poisson distribution with mean vz,

e (YT)*
py(zlx) =€ pa

Taking the derivative,
L tog p, (2la) = —a + =
—logp~(z|x) = -z + —.
dy 07 v
Hence, for the conditional Poisson law, we have

z
0y log py(2|z) = o x.

Similarly for the marginal,
pa(2) = [ b (ele) Pla)d
Taking the log-derivative,
d 1 z
— log p~ (2 :7/_334_,1) z|x)p(z)dx.
& ~(2) ) ( ,y)v(|)()

Identifying this as a conditional expectation gives:

0y log py(2) :E{—X+f‘Z:z} .

Hence 7
Ty = Ep (z12) [E[X|Z] — } .
Y
Term 7). Letr(z) :=log % and A := ~yz. Since 0,p,(z|x) = p,y(z\x)(% —x),

Z, 1
1= By, o | (2 = 2)r(2)| = 1B(2, - 07(2,)].
For Z. ~ Pois(\) the Poisson—Stein identity gives
E[(Zy = Nh(Zy)] = XE[h(Zy 4+ 1) — h(Z,)].
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With h =7,
A
T = ;E[V"(Z7 +1)—r(Z,)] =2 E[r(Z,+1) —r(Z,)].
Using the ratio formulas (from Lemma 4) gives:

py(z+1z) vz py(z+1)  y(X). B N
p’Y(Z‘x) oz pw(z) TN (X). = E[X‘Z"/ = z],

we get

r(z+1) —r(z) =log o T = xE[log W] .

Now, combining both the terms gives:
d x Z,
— +E(X)z, — 7] .
dy (X)z, } [< 12
Since E[Z.,|X = x] = ~x, the second expectation equals E[(X )z | — x, and hence

d x ok
%Rw = Ep.y(z\z) [xlog W -+ <X>Z7:| = Ep,y(z|x)|:€($7$ )}

R,=zF {log

We can also derive this equation as a special case of Lemma 4.2 from [29]].

Link to the MPRL Loss: We already defined the loss function:
K(xﬁc*) = xlog % —x+ 2% .am
If #* = E[X|z,] is the estimator of x given 2., then by standard properties of conditional expectation,
Ep(..|o)[%"] = E[E[X|2,]] = E[X] = (if x is deterministic, replace E[X] by x).
Hence,
Ep(z,|yll(x,2")] = E[zlogx — xloga™ —x + 1%] = xlogz — x — xE[log 2] + E[2"].

Since E[*] = «,

Ep(z,|2)[l(x,2")] = z(logz — Eflog £]).
One can show (by comparing with the final expression in the KL derivative) that this expectation
aligns with Ep (.| [E[X|2,] — %”], thus establishing the link between the MPRL and the derivative
of the KL divergence. We can generalize this relation to any loss function that belongs to the class of
Bregman divergences in a Poisson channel using the framework described in [65]].

F.1 Tweedie’s for Poisson Denoising

A well-known result in Gaussian denoising is Tweedie’s Formula, which expresses the conditional
expectation of the latent variable in terms of the derivative of the log-pdf of noisy observation. [32].
Specifically, for Z., = \/7X + ¢ with e ~ N(0, I), we have:

1
BIX|Z, = 2] = % + ;Vlog f2.(2), (48)

In the Poisson setting, we cannot directly take derivatives of log Pz_(z) with respect to discrete z
since they are undefined. Instead, the forward difference of the log of the marginal PMF serves as a
discrete analog. This culminates in the Turing-Good-Robbins (TGR) formula, already presented in
Lemma

Hence, just like Tweedie’s Formula in the continuous Gaussian case, TGR expresses the conditional
mean (X purely in terms of the marginal distribution Pz_(z), bypassing any need to compute the
conditional distribution Py . In effect, the ratio v - (X ). plays the role of a score function for the
Poisson channel, analogous to the logarithmic derivative in the Gaussian case. This discrete variant
underpins our Poisson diffusion framework, allowing us to efficiently compute the optimal denoiser
FE[X|Z,] directly from the marginal PMF.
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G Continuous Extension of ItDPDM

We extend the continuous-time channel with discrete states (CTDS) to continuous states through the
following construction:

Definition 1 (Continuous-Time Channel with States (CTCS)). Let {X;};>0 be a right-continuous
state process with left limits (cadlag) taking values in R . The output process {Yy }1>¢ is a counting

process satisfying:
t
Y, =P (/ Xsd5> (49)
0

where P(-) denotes a Poisson counting measure.

For measurable intensity X, the output increments also satisfy:
t+6
Yt+5—Yt~77</ Xsds>, vt, 0 >0 (50)
t

with {Yy, — Yy, }i_, independent given Xy 1| for any finite partition {t}.

The mutual information between state and observation processes over [0, T is given by:
dPYT | XT :|

dPyr D

I(XT, vy =E [1og
The key connection to discrete-time systems emerges through infinitesimal discretization:

Lemma 13 (Mutual Information Rate). For the CTCS in Definition|l| the mutual information rate
satisfies:
1 1
lim —I(XT;Y7T) = lim ~I(X5; Y, 2
A, (XY = iy 51 (X5: 1) 52
where X := X|o 5y and Y5 := Y5 — Y corresponds to the discrete-time channel P(6.X).

Proof Sketch. Consider time partitions 0 = tg < t; < -+ < ¢, = T with max |ty+1 — tx| < J. By
the chain rule of mutual information:

3
|
—

3

I(xT,y?h) = I(X" Y, [V

1T
|
= O

|
(]

I:I(X[tkathrl); }/[tkvtk+1)) + Ek]

k=0
where €, captures residual dependence between time intervals. Using the Markov property of Poisson
counters [66] and taking § — 0, the residual terms vanish by the Asymptotic Equipartition Property
(AEP) for Poisson processes [67]. The result follows from Lemma[9]applied to each infinitesimal
interval.

The continuous-time counterpart of the derivative relationship becomes:

Lemma 14 (Information Rate Derivative). For the CTCS system, the time derivative of mutual

information satisfies:

where (X;) := E[X|Y"] is the causal MPRL estimator

Proof. From Lemma|[I3]and the DTCS derivative, we have:
d 1
%I(Xt, Yt) = ;E}I}) 5 [I(Xt+§; K+5|Yt) - I(Xt, K)}

= lim 1E [6X;log Xy — 6(X¢) log(X)] + o(1)
500
The result follows by dominated convergence and the tower property of conditional expectation. This
continuous-time formulation preserves the essential duality between information and estimation seen
in discrete time, with the Poisson channel’s inherent noise characteristics governing both regimes.
The CTCS framework enables analysis of real-time filtering and prediction [68] through differential
versions of the key discrete-time identities.
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1222 H Detailed comparison of ItDPDM vs. Learning to Jump (LTJ, [20])

1224 Table[§]shows a detailed comparison below:

Table 8: Side-by-side comparison of our ItDPDM vs the Learning-to-Jump (LTJ) framework.
We note that both methods employ a Poisson-Bregman (relative-entropy) loss—denoted PRL for
ItDPDM and Dy, for LTJ but they diverge sharply in how that loss is used and how it connects to

1225
1226

1227

1228

1229
1230

1231
1232
1233

likelihood, as summarised below.

Aspect

ItDPDM (ours)

Learning-to-Jump (LTJ) [20]

Forward “noising”

Single-shot Poisson channel Z., ~
Pois(yX) with continuous SNR
7y € (0,00)

Binomial  thinning chain
2~ Binomial(ztfl,at/atfl)
fort=1,...,T

Reverse / generation

sampling operates in log-SNR
space via a continuous-time re-
verse SDE or ODE; sampling can
flexibly subsample the SNR con-
tinuum (e.g. 20-50 steps) without
quality loss, in contrast to fixed-
step chains

‘Count-thickening” Markov chain
with shifted-Poisson jumps; sam-
pling requires executing all 7" dis-
crete steps with no flexibility to
skip or subsample, so the full 7-
step chain is incurred for every
generated sample

Bounds on NLL

Information-theoretic, extends the

classic I-'MMSE identity to the

Poisson channel, giving the ex-

act relation: —logp(z) =
[e o]

fo MPRL(z, ) dy

Variational ELBO, multi-term
KL-divergence sum with bi-
nomial/Poisson factors; yields
only an approximate bound on
—log p()

Training Loss

PRL: /(x,%) = & - log(Z/x) —
T + x, integrated over continuous
v, producing an exact NLL upper
bound and provides analytic tail
bounds & an importance-sampling
estimator; empirically yields lower
NLL than all baselines.

Per-step relative-entropy
Dy(z, fo(z¢,t))  inside  an
ELBO with an identical Bregman
form, but summed over discrete
T only with no closed-form link
between the total loss and the true
likelihood.

Scheduling

Choose only a continuous SNR
grid (e.g., 1000-point logistic); no
o or T hyper-parameters.

Must hand-design thinning sched-
ule {a }7—; and pick T (typically
T'=1000).

Likelihood evaluation

Exact tail bounds + importance
sampling; likelihood (NLL) (in
bits-per-dim) on real-world data,
both WD & NLL on synthetic data
evaluated

Likelihood not estimated; evalu-
ation solely via Wasserstein dis-
tance (WD) of histograms.

CTCS extension.

Sampling speed Compatible with fast ODE solvers | Must run all 7" thickening steps.
(20-50 steps) due to continuous .

Theoretical extensions | Poisson-Tweedie identity; | —
mutual-information  derivative;

In the Learning-to-Jump (LTJ) framework [20], the per-step training loss is written as Dy (z, fo(2¢, 1)),

where

e r € Nis the true discrete count.

* 2z, is the noisy observation at step t, obtained by binomial thinning of z;_;.

estimate Z; of x.

* Dy(u,v) is the Bregman divergence induced by a convex generator ¢: Dgy(u,v) =
o(u) — p(v) — (Vp(v), u — v). For the Poisson channel one uses ¢(u) = ulog u, yielding

fo(zt,t) is the denoising network (parameterized by 6), which takes (z, t) and outputs an

Dy(z, &) =12 1og§ — & + z, i.e. the Poisson—Bregman (relative-entropy) loss.

43




MNoisy Image (Poisson) Denoised Image (Poisson)

250

200
200

150
150
100 100
[} 50
0 ]

Figure 15: Noisy Image (Poisson Noise) Figure 16: Denoised Image (Poisson Noise)
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Figure 17: Noisy Image (Gaussian Noise) Figure 18: Denoised Image (Gaussian Noise)

Figure 19: Comparison of noisy and denoised images for poisoned and Gaussian noise birds with
logsnr=4.01.

123¢ I Noised and Denoised Image Comparison

1235 Figure [I9] presents a comparison of noisy and denoised images under Gaussian and Poisson noise
1236 conditions at a logSNR of 4.01. The left column displays the input images corrupted by Gaussian
1237 (Figure[I7) and Poisson noise (Figure[I3), while the right column shows the corresponding denoised
1238 outputs (Figures [I6] and Figures [16). Notably, the Poisson noise case exhibits a higher level of
1239 degradation than the Gaussian noise case, making recovery more challenging. However, the denoising
1240 process effectively reconstructs meaningful image structures in both cases, demonstrating the model’s
1241 robustness to varying noise distributions.

1222 J Theoretical Runtime Analysis of tDPDM Architecture

1243 We present a theoretical runtime analysis of the proposed Information-Theoretic Discrete Poisson
1244 Diffusion Model (ItDPDM), focusing on the core components contributing to its computational cost
1245 during training and inference.

1246 Poisson Noise Sampling

1247 The forward diffusion process in ItDPDM is governed by a Poisson noise channel z, ~ Poisson(yz),

1248 where x € Rf denotes the input data vector and -y is the signal-to-noise ratio (SNR). Sampling from
1249 a Poisson distribution can be performed in O(1) per element using rejection sampling or table-based
1250 methods, resulting in a total cost of O (D) per data point.
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Neural Denoising

The denoiser is instantiated as a neural network, such as a U-Net (for images) or a Transformer
encoder (for symbolic music). The input to the denoiser is the reparameterized form

- Zy
Zy = s
T 14y

which improves numerical stability. The forward pass of the denoiser has cost O(D) per data point,
assuming conventional convolutional or attention-based layers.

Poisson Loss Function Evaluation
The proposed loss function is based on a Bregman divergence tailored to Poisson noise:
Uz, &) = xlog (f) —x+1,
T
which is convex, differentiable, and evaluated pointwise. The cost of loss evaluation and gradient
computation is O(D) per sample.
Integral Estimation over SNR

A defining component of the ItDPDM framework is the estimation of the negative log-likelihood
using thermodynamic integration:

o0
—log P(z) = / mprl(z,v) dv,
0

where MPRL denotes the minimum mean likelihood error. In practice, this integral is approximated
numerically using n log-SNR values (e.g., n = 1000), obtained via uniform or importance sampling
over o = log~.

Each SNR point requires a forward pass through the denoiser and loss computation, yielding a total
per-sample complexity of O(n - D). To reduce overhead, the model uses importance sampling from a
truncated logistic distribution over o and closed-form tail integral bounds to truncate the SNR domain
(see Egs. (28)—(29) in the main text).

Component Complexity | Description

Poisson noise sampling O(D) Efficient per-sample noise generation

Neural denoising O(D) Forward pass through CNN or Transformer

Poisson loss function O(D) Evaluated pointwise for each data coordi-
nate

Integral over SNR O(n- D) Dominant cost due to repeated inference
and loss evaluations

Total per-sample cost O(n - D) | For fixed number of SNR grid points

Table 9: Asymptotic complexity of key components in the tDPDM training pipeline.

Given a batch size B and number of training epochs FE, the overall training complexity becomes:
O(B - E -n- D). This is comparable to standard continuous-state diffusion models using discretized
time steps, but the Poisson-specific formulation and MPRL integral introduce unique architectural
and optimization challenges that are efficiently addressed via reparameterization and sampling
strategies. Additionally, in terms of wall-clock times for training/sampling, we observe that t{DPDM
is comparable to standard DDPM-style models.

K Extended Related Work

Diffusion models have evolved along two orthogonal dimensions—rnoise type and state space.
Classical DDPMs corrupt continuous data with additive Gaussian noise and learn the reverse process
with score matching or variational bounds [2} 37, 48H50]. An information-theoretic viewpoint links
these objectives to mutual-information integrals [12 [22]], and has recently motivated non-Gaussian
extensions based on annealed score matching [51} 52] and SDE formalisms [53]]. Parallel work
seeks native discrete-state alternatives: masking schemes such as Blackout Diffusion employ an
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irreversible “black” token that blocks exact likelihood computation [54]; Learning-to-Jump (LTJ)
replaces Gaussian noise by binomial thinning/thickening yet remains limited to discrete time and a
variational ELBO [20]. Very recent approaches move to continuous-time jump processes, but still
approximate the likelihood: [69] devise a categorical SDE whose reverse dynamics are learned by
discrete score matching, while [S6] estimate probability ratios rather than scores to reduce perplexity
on text.

Score Entropy Discrete Diffusion (SEDD) [56] represents a significant advancement in discrete
diffusion modeling. It introduces the Score Entropy loss, a novel objective that extends score matching
to discrete spaces by directly modeling the ratios of data probabilities. This approach addresses
the challenges of applying traditional score matching to discrete data and enables the construction
of discrete diffusion models that are both theoretically sound and empirically effective. SEDD
demonstrates competitive performance with autoregressive models like GPT-2 on standard language
modeling benchmarks. Notably, it achieves comparable zero-shot perplexities and offers advantages
in generation quality and efficiency. For instance, SEDD can generate high-quality text samples
with 4x lower generative perplexity when matching function evaluations and requires 16x fewer
function evaluations to match the generative perplexity of standard autoregressive sampling methods.
Moreover, SEDD enables arbitrary infilling beyond standard left-to-right prompting, matching the
quality of nucleus sampling without the need for specialized training or sampling techniques.

Concurrently, several non-Gaussian continuous diffusion models have been proposed to address the
limitations of traditional Gaussian-based approaches, particularly in handling data with bounded
support or preserving structural details in images.

Beta Diffusion [70] introduces a novel generative modeling method that integrates demasking and
denoising to generate data within bounded ranges. Utilizing scaled and shifted beta distributions, it
employs multiplicative transitions over time to create both forward and reverse diffusion processes.
This approach maintains beta distributions in both the forward marginals and the reverse conditionals,
given the data at any point in time. Unlike traditional diffusion models relying on additive Gaussian
noise and reweighted evidence lower bounds (ELBOs), Beta Diffusion is multiplicative and optimized
with KL-divergence upper bounds (KLUBs) derived from the convexity of the KL divergence.
Experimental results demonstrate its unique capabilities in generative modeling of range-bounded
data and validate the effectiveness of KLUBs in optimizing diffusion models.

Blurring Diffusion Models [71] propose a generalized class of diffusion models that offer the best
of both standard Gaussian denoising diffusion and inverse heat dissipation. By defining blurring
through a Gaussian diffusion process with non-isotropic noise, this approach bridges the gap between
inverse heat dissipation and denoising diffusion. It sheds light on the inductive bias resulting from this
modeling choice and demonstrates the capability to better learn the low-to-mid frequencies within
datasets, which plays a crucial role in representing shapes and structural information.

Edge-Preserving Noise [72] for diffusion introduces a content-aware diffusion model explicitly
trained to learn the non-isotropic edge information in a dataset. Inspired by anisotropic diffusion
in image processing, this model incorporates an edge-aware noise scheduler that varies between
edge-preserving and isotropic Gaussian noise. The generative process converges faster to results that
more closely match the target distribution and better learns the low-to-mid frequencies within the
dataset, crucial for representing shapes and structural information. This edge-preserving diffusion
process consistently outperforms state-of-the-art baselines in unconditional image generation and
is particularly robust for generative tasks guided by a shape-based prior, such as stroke-to-image
generation

While these models offer significant advancements in handling specific data characteristics, they still
require dequantization and rely on surrogate objectives. In contrast, tDPDM models corruption
with a reversible Poisson channel, maintaining a discrete latent space, supporting bidirectional
perturbations, and—via the [-MPRL identity—transforming the Minimum Poisson Reconstruction
Loss into an exact likelihood integral instead of a bound. This unifies the tractability of information-
theoretic Gaussian diffusion with the fidelity of discrete-state models, yielding closed-form NLLs,
scalable continuous-time sampling, and strong empirical performance on sparse, skewed, and over-
dispersed count data

ItDPDM differs fundamentally from the above lines. By modelling corruption with a reversible
Poisson channel, tDPDM keeps the latent space discrete, supports bidirectional perturbations,

46



1338
1339
1340
1341
1342

1343

1344
1345
1346
1347
1348
1349
1350

and—via the I-MPRL identity—turns the Minimum Poisson Reconstruction Loss into an exact
likelihood integral instead of a bound. This unifies the tractability of information-theoretic Gaussian
diffusion with the fidelity of discrete-state models, yielding closed-form NLLs, scalable continuous-
time sampling, and strong empirical performance on sparse, skewed, and over-dispersed count
data.

L Limitations and Future Work

Despite its theoretical strengths, performance benefits on diverse discrete distributions, and competi-
tive empirical results, tDPDM remains a proof of concept and does not yet match state-of-the-art
performance in real-world generative tasks. As discussed in these performance gaps are partly
due to limited training and architectural tuning, with details provided in App. B. Additionally,
logistic sampling parameters are fixed a priori without extensive hyperparameter tuning. We believe
that longer training schedules (3000+ epochs), systematic hyperparameter sweeps (e.g., number of
log-SNR steps), and targeted ablations could substantially improve ItDPDM’s performance.

47



	Introduction and Background
	Information-Theoretic Diffusion
	ItDPDM: Information-Theoretic Poisson Diffusion
	Experiments
	Synthetic Data
	Real-World Data
	Performance Comparison: Negative Log Likelihood (NLL)
	Performance Comparison: Generation Quality
	Cross Training Paradigm

	Related Work
	Conclusion
	Numerical Details
	MPRL Upper Bound
	Parametrization:
	MPRL Tail Bounds:

	Experimental Details
	Training Details (contd.)
	Data and Model Normalization
	Denoiser Architecture
	Symbolic Music Dataset Cleanup
	Domain-Specific Metrics
	Visualizing generated music samples:


	Synthetic Benchmark Details
	Discrete benchmark details
	Training Details & Metrics
	Probability Mass Function Estimation:
	Non-negative Continuous Scenarios

	Section 3 Proofs
	On the Poisson Loss Function:
	Section 3 Lemma Proofs
	Incremental Channel Approach to I-MPRL and related proofs:

	Tail Bounds
	Left Tail Bound
	Right Tail Bound

	Proof Sketch of Pointwise Poisson Denoising Relation
	Tweedie's for Poisson Denoising

	Continuous Extension of ItDPDM
	Detailed comparison of ItDPDM vs. Learning to Jump (LTJ, chen2023learningjumpthinningthickening)
	Noised and Denoised Image Comparison
	Theoretical Runtime Analysis of ItDPDM Architecture
	Extended Related Work
	Limitations and Future Work

