
An Information-Theoretic Discrete Poisson Diffusion Framework

Anonymous Author(s)

Abstract

1 Generative modeling of non-negative, discrete data, such as symbolic music, re-
2 mains challenging due to two persistent limitations in existing methods. Firstly,
3 many approaches rely on modeling continuous embeddings, which is suboptimal
4 for inherently discrete data distributions. Secondly, most models optimize varia-
5 tional bounds rather than exact data likelihood, resulting in inaccurate likelihood
6 estimates and degraded sampling quality. While recent diffusion-based models
7 have addressed these issues separately, we tackle them jointly. In this work, we
8 introduce the Information-Theoretic Discrete Poisson Diffusion Model (ItDPDM),
9 inspired by photon arrival process, which combines exact likelihood estimation
10 with fully discrete-state modeling. Central to our approach is an information-
11 theoretic Poisson Reconstruction Loss (PRL) that has a provable exact relationship
12 with the true data likelihood. ItDPDM achieves improved likelihood and sampling
13 performance over prior discrete and continuous diffusion models on a variety of
14 synthetic discrete datasets. Furthermore, on real-world datasets such as symbolic
15 music and images, ItDPDM attains superior likelihood estimates and competi-
16 tive generation quality—demonstrating a proof of concept for distribution-robust
17 discrete generative modeling.

18

1 Introduction and Background

19 Denoising diffusion models have advanced generative modeling, outperforming GANs in image
20 synthesis [1] and autoregressive models in likelihood-based tasks [2]. Their flexibility enables broad
21 industrial use—from open-ended text-to-image generation [3–5], to audio [6] and medical imaging
22 [7]. Diffusion has also been extended to multimodal and structured tasks, including video synthesis
23 [8], cross-modal retrieval [9], and molecular modeling [10, 11].

24 **Limitations of Existing Works:** Diffusion models can be classified by timestep type: discrete (DT)
25 or continuous (CT) and latent space: discrete (DS) or continuous (CS), forming four classes: DTDS,
26 DTCS, CTDS, and CTCS, as shown in Figure 1. DTCS (e.g., VDM [2]) and CTCS (e.g., IT-Gaussian
27 diffusion [12]) are effective in continuous domains [2, 13], but suboptimal for inherently discrete
28 non-Gaussian data distributions. As shown in Figure 1, the continuous-state models map discrete data
29 to continuous state space via z-scoring [14], tail normalization [15], or uniform dequantization [12].
30 However, these fail to close the discretization gap (e.g., $\frac{1}{127.5}$ for images), and lead to learning
31 suboptimal probability density functions (pdf) instead of probability mass functions (pmf) [12].
32 Figure 3 shows how continuous DDPMs miss the second mode in the evidently bimodal NYC Taxi
33 distribution [16]. Moreover, discretizing outputs during post-processing introduces train-test mis-
34 match [12, 17, 18]. Recent discrete-state models directly operate in the discrete domain, addressing
35 these limitations by avoiding embedding into continuous spaces altogether.

36 Discrete-time discrete-state (DTDS) models [15, 17, 19] operate natively in the discrete domain and
37 outperform variational Gaussian-based methods, but often ignore ordinal structure of integer-valued
38 data and need post-processing. Learning-to-Jump (LTJ) [20], a recent DTDS method using binomial
39 thinning and a variational objective, improves generation on non-negative, skewed data. However, LTJ
40 has two drawbacks: (1) its evidence lower bound (ELBO)-based training uses a variational relative
41 entropy loss, which lacks an exact relation to the data likelihood, yielding suboptimal likelihood and

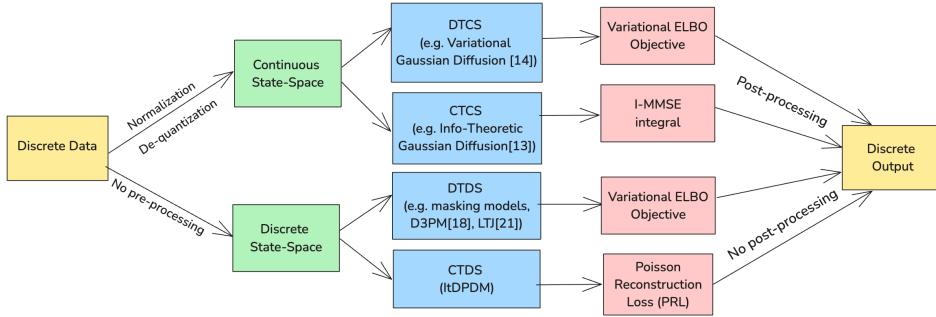


Figure 1: Classification of diffusion models based on latent state-space (DS/CS) and timesteps (DT/CT), resulting in 4 combinations - DTCS, CTCS, DTDS, and CTDS

42 degraded generation quality; (2) denoising requires careful calibration of T (e.g., 1000), the number
 43 of discrete denoising timesteps, without any flexibility to skip or subsample. (A detailed comparison
 44 between LTJ and the proposed ItDPDM is provided in App. H)

45 **Main Contributions.** To address these limitations, we propose a novel information-theoretic **Discrete**
 46 **Poisson Diffusion Model (ItDPDM)**. As shown in Figure 1, contrary to Gaussian diffusion, ItDPDM
 47 directly models discrete non-negative data using a Poisson process, avoiding the need for soft
 48 discretization or dequantization. Contrary to variational DTDS models like LTJ, ItDPDM provides
 49 closed-form likelihood estimates and thus generation quality. Our main contributions are as follows:

- 50 • We propose **ItDPDM**, a novel generative framework based on a Poisson diffusion process
 51 for modeling non-negative discrete data. Unlike prior approaches relying on variational
 52 ELBO objectives, ItDPDM enables exact likelihood computation, bypassing the limitations
 53 of variational inference.
- 54 • We introduce the information-theoretic *Poisson Reconstruction Loss (PRL)*, a Bregman
 55 divergence [21] tailored to Poisson processes and establish its exact relation to negative log-
 56 likelihood (NLL) via the **I-MPRL identity** in Eq. (17), enabling non-variational optimization
 57 of discrete probability mass functions (PMFs).
- 58 • Experiments on synthetic datasets with varied data distributions show that ItDPDM outper-
 59 forms earlier baselines in **Wasserstein-1** distance and NLL. ItDPDM’s discrete Poisson-
 60 based diffusion generalizes well beyond Poisson distributed data.
- 61 • We also provide closed-form upper bounds on the negative log-likelihood (NLL) and
 62 an importance-sampling estimator for efficient training, ensuring scalability to high-
 63 dimensional settings. Empirically, ItDPDM achieves lower NLLs on CIFAR-10 and Lakh
 64 MIDI datasets while maintaining competitive generation quality.

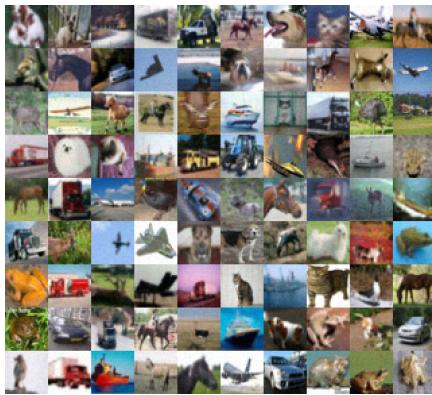


Figure 2: Unconditional image samples generated by ItDPDM

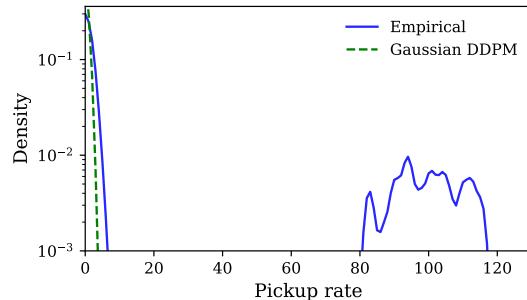


Figure 3: Gaussian diffusion fails to accurately learn the discrete probability density

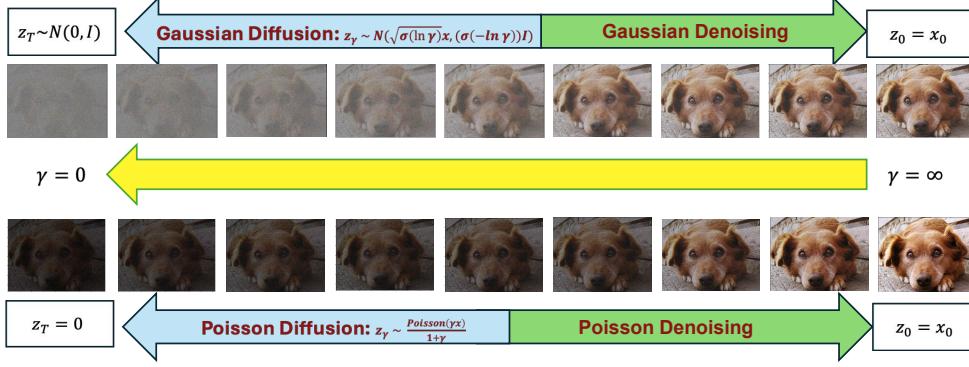


Figure 4: Comparison of Gaussian (top) and Poisson diffusion processes (bottom).

65 This work presents a proof-of-concept for information-theoretic discrete Poisson diffusion models,
66 showing initial gains over baselines in modeling discrete, positive-valued data. It serves as a first step
67 toward principled diffusion modeling in discrete domains, not a state-of-the-art solution.

68 2 Information-Theoretic Diffusion

69 We briefly revisit the Information-Theoretic Gaussian Diffusion (ITDiff) framework from [12], which
70 helps us draw parallels to ItDPDM in Sec 3. The Gaussian noise channel is defined as

$$71 z_\gamma = \sqrt{\gamma}x + \epsilon, \quad \epsilon \sim \mathcal{N}(0, I),$$

72 with signal-to-noise ratio (SNR) parameter ‘ γ ’ and data distribution $p(x)$.

72 Relating Minimum Mean Square Error (MMSE) to Mutual Information

73 The “I-MMSE” relation [22] links mutual information I with minimum mean square error (MMSE):

$$74 \frac{d}{d\gamma} I(x; z_\gamma) = \frac{1}{2} \text{mmse}(\gamma), \quad (1)$$

75 where the MMSE is defined as: $\text{mmse}(\gamma) = \min_{\hat{x}(z_\gamma, \gamma)} \mathbb{E}_{p(z_\gamma, x)} [\|x - \hat{x}(z_\gamma, \gamma)\|_2^2]$. A pointwise
76 generalization of Eq. (1) to the KL divergence is as follows:

$$77 \frac{d}{d\gamma} D_{KL}(p(z_\gamma|x) \| p(z_\gamma)) = \frac{1}{2} \text{mmse}(x, \gamma) \quad (2)$$

76 From here, the following discrete probability estimator is derived as through an exact formulation of
77 the variational lower bound (VLB) for diffusion models [2] :

$$78 -\log P(x) = \frac{1}{2} \int_0^\infty \text{mmse}(x, \gamma) d\gamma \quad (3)$$

78 3 ItDPDM: Information-Theoretic Poisson Diffusion

79 **Poisson Noise Channel:** We define the canonical Poisson noise channel: given a non-negative input
80 $x \geq 0$, the output z_γ is drawn from $\mathcal{P}(\gamma x)$, where γ denotes the SNR. The conditional PMF is

$$81 P(z_\gamma|x) = \frac{(\gamma x)^{z_\gamma} e^{-\gamma x}}{z_\gamma!}, \quad z_\gamma \in \mathbb{N}_0, \quad (4)$$

82 where $\mathcal{P}(\cdot)$ denotes the Poisson distribution. This setup is motivated by Poisson channels arising in
83 direct-detection optical systems [23, 24], where photon counts follow a Poisson process with rate
84 determined by a combination of signal intensity and device-induced dark current [25].

84 **Diffusion with Poisson Noise:** We propose an information-theoretic Poisson diffusion process, where
85 a source $x \sim p(x)$ is corrupted at SNR γ via $z_\gamma \sim \mathcal{P}(\gamma x)$, producing discrete, non-negative integers
86 at each step. Unlike Gaussian noise, Poisson corruption is non-additive and not source-separable,
87 making denoising more challenging. Figure 4 contrasts Gaussian and Poisson diffusion: Gaussian
88 begins from white noise, whereas Poisson diffusion starts from a black image with zero photons.

89 **Poisson Reconstruction Loss (PRL):** The function $l_0(x) = x \log x - x + 1$, $x > 0$ (where \log denotes the natural logarithm) is the convex conjugate of the Poisson distribution's log moment generating function (proof in App. D.1) and often arises naturally in the analysis of continuous and discrete-time jump Markov processes [20, 26] and for mutual information estimation in the Poisson channel [27]. Building on this, we define the **poisson reconstruction loss** $l(x, \hat{x})$ as:

$$l(x, \hat{x}) = \hat{x} l_0(x/\hat{x}) = x \log\left(\frac{x}{\hat{x}}\right) - x + \hat{x}, \quad (5)$$

94 Analogous to the MMSE, we also define the minimum poisson reconstruction loss (MPRL) as:

$$\text{mprl}(\gamma) \equiv \min_{\hat{x}(\mathbf{z}_\gamma, \gamma)} E_{P(\mathbf{z}_\gamma, \mathbf{x})} [l(\mathbf{x}, \hat{x}(\mathbf{z}_\gamma, \gamma))], \quad (6)$$

95 where $\hat{x}(\mathbf{z}_\gamma, \gamma)$ denotes the denoiser. The optimal denoiser \hat{x}^* is the conditional expectation $E[X|Z_\gamma]$ 96 using the fact that the Poisson reconstruction loss is a Bregman divergence [28] (proof in App.D.1).

$$\hat{x}^*(\mathbf{z}_\gamma, \gamma) \equiv \arg \min \text{mprl}(\gamma) = E_{\mathbf{x} \sim P(\mathbf{x}|\mathbf{z}_\gamma)} [\mathbf{x}] \quad (7)$$

97 The analytical solution is typically intractable due to the need to sample from the Poisson noise 98 channel's posterior. We next highlight key properties [29] of this loss, showing it is a natural fit for 99 evaluating reconstruction of non-negative data, analogous to squared error in the Gaussian case.

100 **Lemma 1** (Poisson Reconstruction Loss). *The loss function $l(x, \hat{x})$ satisfies the following properties:*

- 101 1. **Non-negativity:** $l(x, \hat{x}) \geq 0$, with equality if and only if $x = \hat{x}$.
- 102 2. **Convexity:** $l(x, \hat{x})$ is convex in \hat{x} for each fixed x , and in x for each fixed \hat{x} .
- 103 3. **Scaling:** For any $\alpha > 0$, $l(\alpha x, \alpha \hat{x}) = \alpha l(x, \hat{x})$.
- 104 4. **Unboundedness for underestimation:** For any $x > 0$, $\lim_{\hat{x} \rightarrow 0^+} l(x, \hat{x}) = \infty$.
- 105 5. **Optimality of Conditional Expectation:** For any non-negative random variable X with 106 $E[X \log^+ X] < \infty$, the conditional expectation $E[X|Y]$ uniquely minimizes the expected 107 loss $E[l(X, \hat{x})]$.

108 Convexity makes the loss amenable to gradient-based methods. Property 4 penalizes underestimation, making $l(x, \hat{x})$ well-suited for non-negative data, unlike common loss functions (absolute/squared error). Figure 5 illustrates the behavior of the proposed PRL. As per Lemma 1, the conditional expectation $E[X|Y]$ uniquely minimizes the expected “mprl” loss function.

116 **Conditional Expectation for Poisson Channel**

117 We define the angle bracket operator X as conditional expectation given Z_γ : $\langle X \rangle = E[X|Z_\gamma]$ 118 Unlike the linear Gaussian case, Poisson has a non-linear $\langle X \rangle$, making Poisson-based denoising 119 fundamentally more complex. Nevertheless, it becomes linear under certain conditions, let $\langle X \rangle_z$ 120 denote $\langle X \rangle$ evaluated at $Z_\gamma = z$ then:

122 **Lemma 2** (Linearity in Poisson Channel). *Let $Z_\gamma = \mathcal{P}(\gamma X)$. Then, $\langle X \rangle_z = az + b$, if and only if 123 $X \sim \text{Gam}\left(\frac{1-\gamma a}{a}, \frac{b}{a}\right)$ for any $0 < a < \frac{1}{\gamma}$ and $b > 0$.*

124 Though Poisson analysis is complex, it simplifies here since the Gamma distribution is its conjugate 125 prior [30], yielding a linear conditional variance (see App.D.2). This contrasts with the Gaussian case, 126 where conditional variance is constant. We now revisit the squared error loss $\ell_{\text{SE}}(x, \hat{x}) = (x - \hat{x})^2$, 127 which satisfies for any finite-variance X :

$$E[\ell_{\text{SE}}(X, \hat{x})] = E[\ell_{\text{SE}}(X, E[X])] + \ell_{\text{SE}}(E[X], \hat{x}) \quad (8)$$

128 Our Poisson reconstruction loss (PRL) has a similar property stated below ([29]).

129 **Lemma 3.** *For any non-negative random variable X with $E[X \log^+ X] < \infty$, and any $\hat{x} \in [0, \infty)$,*

$$E[l(X, \hat{x})] = E[l(X, E[X])] + l(E[X], \hat{x}) \quad (9)$$

130 A result that immediately follows from Lemma (3), when combined with the non-negativity property
 131 in Lemma 1, is that $E[X]$ uniquely minimizes $E[l(X, \hat{x})]$ over all \hat{x} :

$$\min_{\hat{x}} E[l(X, \hat{x})] = E[l(X, E[X])] = E[X \log X] - E[X] \log E[X]. \quad (10)$$

132 Interestingly, in Poisson channels, this estimator depends only on the marginal distribution of Z_γ , a
 133 property formalized by the *Turing-Good-Robbins* formula [31, 32]. This result closely relates to the
 134 Discrete Universal Denoiser (DUDE) [33], which estimates discrete signals from noisy observations.

135 **Lemma 4** (Optimal Estimator in Poisson Channel). *Let $Z_\gamma = \mathcal{P}(\gamma X)$. Then, for every $\gamma > 0$,*

$$\langle X \rangle_z = \frac{1}{\gamma} \frac{(z+1)P_{Z_\gamma}(z+1)}{P_{Z_\gamma}(z)}, \quad z = 0, 1, \dots \quad (11)$$

136 The PRL objective provides a principled objective for modeling non-negative discrete data, directly
 137 modeling PMFs and avoiding quantization artifacts inherent in squared error loss, which assumes
 138 continuous outputs. The pointwise denoising relation for the Poisson channel is: (proof in App.F)

$$\frac{d}{d\gamma} D_{KL}[P(z_\gamma|x) \parallel P(z_\gamma)] = \text{mprl}(x, \gamma), \quad (12)$$

139 where $p(z_\gamma) = \int p(z_\gamma|x)p(x)dx$ is the marginal distribution, and **pointwise MPRL** is defined as:

$$\text{mprl}(x, \gamma) \equiv E_{P(z_\gamma|x)}[l(x, \hat{x}^*(z_\gamma, \gamma))] \quad (13)$$

140 The **pointwise MPRL** is the MPRL evaluated at a fixed x , and its expectation over $p(x)$ recovers
 141 the total MPRL. Taking expectation wrt x in Eq. (12) recovers the I-MPRL relation in Eq. (14).
 142 Moreover, for a mismatched denoiser [29], integrating the excess pointwise loss over γ equals the KL
 143 divergence between the true and mismatched channel outputs (via Eq. (12)).

144 **I-MPRL identity:** Following the foundational result of [22], which relates the mutual information
 145 derivative to MMSE in Gaussian channels, [12] leverages this identity in generative modeling.
 146 Analogously, we establish the I-MPRL identity for the Poisson channel, as follows:

$$\frac{d}{d\gamma} I(x; z_\gamma) = \text{mprl}(\gamma). \quad (14)$$

147 A similar result holds for the derivative with respect to the *dark current* in a general Poisson channel.
 148 Using the **incremental channel** technique from [22], we derive both results in App.D.3. This enables
 149 exact relations between the proposed PRL objective and the likelihood, offering an *information-
 150 theoretic justification for Poisson diffusion*. Detailed proofs of Lemmas 1–4 are in App.D.2, along
 151 with Lemmas 5 and 6, stated and proved therein.

152 **Thermodynamic Integration for Variational Bound:** The pointwise denoiser yields a log-likelihood
 153 expression akin to the variational bound. Unlike traditional methods that rely on expensive sampling,
 154 diffusion models leverage the structure of the noise for efficient sampling at arbitrary noise levels
 155 [34]. Letting $P(z_\gamma|x) \sim \mathcal{P}(\gamma x)$, using thermodynamic integration method from [35, 36] yields:

$$\int_{\gamma_0}^{\gamma_1} \frac{d}{d\gamma} D_{KL}[P(z_\gamma|x) \parallel P(z_\gamma)] d\gamma = - \int_{\gamma_0}^{\gamma_1} \text{mprl}(x, \gamma) d\gamma, \quad (15)$$

156 where $\text{mprl}(x, \gamma) \equiv \mathbb{E}_{p(z_\gamma|x)}[l(x, \hat{x}^*(z_\gamma, \gamma))]$ is the pointwise MPRL for Poisson denoising. The
 157 exact log-likelihood is given by:

$$-\log P(x) = \underbrace{D_{KL}[P(z_{\gamma_1}|x) \parallel P(z_{\gamma_0})]}_{\text{Prior loss}} + \underbrace{E_P[-\log P(x|z_{\gamma_0})]}_{\text{Reconstruction loss}} - \underbrace{\int_{\gamma_0}^{\gamma_1} \text{mprl}(x, \gamma) d\gamma}_{\text{Diffusion loss}} \quad (16)$$

158 We also outline a possible extension of the proposed Continuous-Time Discrete-State Poisson
 159 Diffusion to a Continuous-Time Continuous-State equivalent of [12] in App. G.

160 **Discrete Probability Estimation via MPRL:** We derive a novel discrete probability estimator in the
 161 Poisson channel setting, where $x \sim P(x)$ and $Z_\gamma \sim \mathcal{P}(\gamma x)$. In the limits $\gamma_0 \rightarrow \infty$ and $\gamma_1 \rightarrow 0$, both
 163 the prior and reconstruction loss vanish, which yields the following tractable expression:

$$D_{KL}[P(z_{\gamma_1}|x) \parallel P(z_{\gamma_0})] + E_{P(z_{\gamma_0}|x)}[-\log P(x|z_{\gamma_0})] = 0.$$

164 and, therefore Eq. 16 yields the *exact likelihood relation*:

$$-\log P(x) = \int_0^\infty \text{mprl}(x, \gamma) d\gamma \implies \boxed{E[-\log P(x)] = \int_0^\infty \text{mprl}(\gamma) d\gamma} \quad (17)$$

165 To obtain an expression resembling the variational bound, taking an expectation in $x \sim P(x)$ gives:

$$\begin{aligned} E[-\log P(x)] &= E \left[\int_0^\infty \text{mprl}(x, \gamma) d\gamma \right] = \int_0^\infty E[\text{mprl}(x, \gamma)] d\gamma = \int_0^\infty E[l(X, \hat{X}^*)] d\gamma \\ &= \int_0^\infty E[X \log X - E[X|Z_\gamma] \log E[X|Z_\gamma]] d\gamma = \int_0^\infty E \left[X \log \frac{X}{E[X|Z_\gamma]} \right] d\gamma, \end{aligned}$$

166 here, $\hat{X}^*(X, \gamma) = E[X|Z_\gamma]$ denotes the optimal estimator. This section establishes a tractable,
167 non-variational estimator for discrete distributions in the Poisson channel by connecting the MPRL
168 objective to the true data likelihood. Additionally, we present in App.F.1 an equivalent score matching
169 formulation using a Poisson-adapted version of *Tweedie’s formula* denoising. See App.H for a
170 comprehensive comparison between our ItDPDM framework and LTJ [20].

171 **Numerical details and Pseudocode:** Numerical details can be found in App. A. In the same section,
172 algorithms 1 and 2 present the pseudocode used for ItDPDM training and generation respectively.

173 4 Experiments

174 We begin by evaluating on synthetic datasets exhibiting sparsity, skewness, and overdispersion—
175 settings where Gaussian diffusion models often underperform, along with extreme distributions
176 like Zipf where **LTJ** [20] underperforms. These tests validate both the theoretical formulation and
177 implementation of **ItDPDM** by recovering ground-truth NLL and improving modeling of discrete,
178 non-negative data. We then evaluate ItDPDM on real-world domains like CIFAR10 and Lakh MIDI,
179 where discrete structure is inherent. ItDPDM consistently achieves superior NLL and competitive
180 generation quality, as measured by domain-specific metrics.

181 4.1 Synthetic Data

182 We consider various synthetic distributions containing univariate non-negative data x grouped into
183 two broad categories: discrete $x \in \mathbb{N}$, and continuous $x \in [0, \infty]$ to mimic distributions exhibiting
184 either sparse, heavy-tailed, skewed, zero-inflated or overdispersed behaviour.

185 **Discrete counts ($x \in \mathbb{N}$):** We generate six synthetic distributions capturing key real-world behaviors:
186 PoissMix (airport arrivals), ZIP, NBinomMix (forum activity), BNB, and two heavy-tailed laws:
187 Zipf and Yule-Simon (word frequencies). These cover bimodality, overdispersion, and long tails.
188 Distribution parameters are listed in Table 4 in Appendix, with design details in App. C.1.

189 **Continuous non-negative ($x \in [0, \infty)$):** We also include six skewed continuous densities—Gamma,
190 Log-Normal, Lomax, Half-Cauchy, Half-t, and Weibull—described in App. C.4.

191 **Model Architecture:** The neural denoiser model for all (discrete, continuous) cases uses a similar
192 architecture (ConditionalMLP) to ensure fair comparison: a 3-layer MLP with 64 hidden units,
193 LayerNorm, Leaky-ReLU activations (slope = 0.2). Further training details can be found in App. C.2.
194 To maintain computational tractability, most distributions are truncated at 50. For each distribution,
195 we draw 50,000 i.i.d. samples to form the training data and generate 50,000 samples for each run.

196 **Metrics and results:** We report Wasserstein-1 distance (WD) and negative log-likelihood (NLL)
197 between empirical distributions of generated and test samples (see App. C.2). Table 1 summarizes
198 these metrics for **ItDPDM** and all baselines. To illustrate the quality of PMF modeling, Figure 6
199 overlays the true and generated PMFs across all discrete datasets. As shown, **ItDPDM** consistently
200 outperforms DDPM across all datasets, achieving lower WD and NLL estimates that closely align
201 with the true values. It further outperforms **LTJ** in 4 out of 6 datasets, demonstrating strong
202 generalization of ItDPDM across diverse distributions, beyond just Poisson-mixture datasets. In
203 contrast, LTJ performs well primarily on binomial-related datasets, which are well-suited to its
204 variational count-thickening loss. More details on PMF estimation are in App. C.3.

205 4.2 Real-World Data

206 We evaluate ItDPDM on two discrete datasets: CIFAR-10 images and Lakh MIDI (LMD) sym-
207 bolic music and compare against existing baselines: Improved DDPM (IDDPDM) [37], information-
208 theoretic Gaussian diffusion (ITDiff) [12], discrete masking-based (D3PM) [17], and learning-to-jump

Table 1: Metrics for synthetic datasets (\downarrow lower is better). Bold indicates best.

Distribution	WD			NLL ¹			
	DDPM	ItDPDM	LTJ	True	DDPM	ItDPDM	LTJ
PoissMix	3.76 \pm 0.32	0.99 \pm 0.15	1.21 \pm 0.30	3.80	4.24	3.72	3.69
ZIP	2.31 \pm 0.66	0.56 \pm 0.43	0.69 \pm 0.24	2.13	1.67	2.22	2.30
NBinomMix	4.89 \pm 0.59	1.39 \pm 0.37	1.15 \pm 0.41	0.87	1.84	1.43	1.30
BNB	1.89 \pm 0.45	0.67 \pm 0.23	0.65 \pm 0.32	2.06	2.56	1.87	2.01
Zipf	1.51 \pm 0.53	0.48 \pm 0.13	0.73 \pm 0.25	1.57	1.34	1.70	1.77
YS	0.32 \pm 0.12	0.14 \pm 0.03	0.17 \pm 0.06	0.94	1.39	0.79	0.76

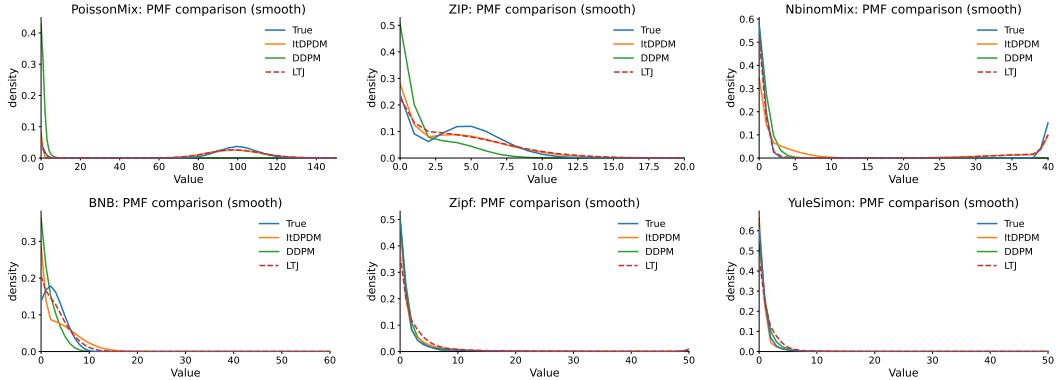


Figure 6: Comparison of true and generated probability distributions

209 (LTJ) [20]. CIFAR-10 comprises 60,000 color images (32×32) across 10 classes [38]. LMD contains 210 648,574 symbolic music sequences of 1024 integers: 0 (rest), 1 (continuation), and 2–89 211 representing note pitches [39]. Unlike [12], which fine-tunes pre-trained models, the absence of pre- 212 trained models in our setting necessitates training from scratch. Denoiser architectures (U-Net [40], 213 ConvTransformer [17], DenseDDPM [41]) are discussed in App. B.3.

214 4.3 Performance Comparison: Negative Log Likelihood (NLL)

Noising + Objective	DDPM	ItDPDM
ITDiff ^a	2.97	0.86
Gaussian + MSE	0.44	0.48
Gaussian + PRL	0.27	0.32
Poisson + MSE	0.23	0.22
ItDPDM : Poisson + PRL	0.18	0.17

^acheckpoint models provided by [12] directly used

Noising + Objective	NLL (total data)
Gaussian + MSE	0.51
ItDPDM : Poisson + PRL	4.61×10^{-5}
Noising + Objective	NLL (without rests)
Gaussian + MSE	1.41
ItDPDM : Poisson + PRL	0.23

Table 2: (a) (Left) CIFAR10 (image) test-set NLL; (b) (Right) LMD (music) test-set NLL.

215 Two architectural variants from **DDPM** [13] and **IDDPM** [37] are used. Table 2 reports test-set 216 NLLs on a CIFAR-10 subset, comparing **ItDPDM** to relevant baselines: (1) ITDiff [12], which fine- 217 tunes pretrained Gaussian DDPM/IDDPM models, and (2) Gaussian + MSE, where DDPM/IDDPM 218 models are trained from scratch using the ITDiff objective, ensuring a fair comparison. ItDPDM 219 (Poisson + PRL) consistently achieves the lowest NLL across both backbones, with IDDPM slightly 220 outperforming DDPM. These results underscore the effectiveness of Poisson diffusion and PRL for 221 modeling discrete, non-negative data without requiring dequantization. Figure 7 shows denoising 222 loss curves across SNRs: MSE for ITDiff and Gaussian + MSE (Figure 7a), and PRL for ItDPDM 223 (Figure 7b). PRL remains lower at low SNRs, consistent with the NLL improvements observed in 224 Table 2. Similar trends are seen on symbolic music (Table 2b), where ItDPDM achieves even larger 225 NLL reductions, further demonstrating its suitability for discrete generative modeling.

226 4.4 Performance Comparison: Generation Quality

227 Next, for evaluating generation quality of the generated images and music, we use domain-specific 228 metrics: Structural Similarity Index Measure [42], and Fréchet Inception distance (FID) [43] for 229 generated images; Fréchet Audio distance (FAD) [44], Consistency (C) [45], Mel-Spectrogram 230 Inception Distance (MSID) [46] and Wasserstein Distance (WD) [47] for generated music. As shown

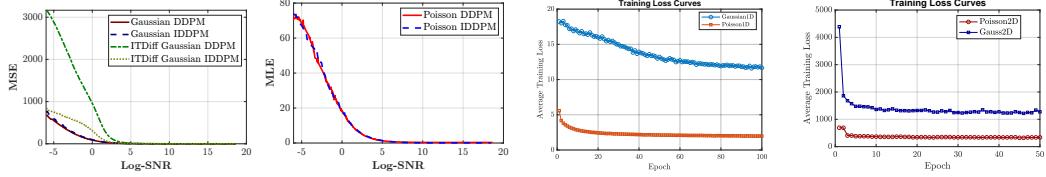


Figure 7: (a) Test MSE vs. logSNR for Gaussian diffusion; (b) Test PRL vs. logSNR for ItDPDM; (c) Training loss under Gaussian noise vs. PRL for 1D music; (d) Training loss under Gaussian noise vs. PRL for 2D images

231 in Figure 2, ItDPDM can generate realistic-looking natural images. Due to the limited computational
 232 budget available for training, the raw metrics for all models are lower than their reported values in
 233 IDDPDM [37] and LTJ [20]. The relative performance of the models gives us the necessary insights:
 234 for image generation, IDDPDM[37] achieves the best FID, with ItDPDM ranking second. In symbolic
 235 music, D3PM with categorical masking obtains the lowest FAD. ItDPDM outperforms LTJ for both
 236 image and symbolic music cases, by virtue of our exact likelihood estimation, as opposed to LTJ’s
 237 variational relative entropy loss. Further details along with generated piano rolls are in App. B.

Table 3: Domain-specific generative quality metrics. Image: FID, SSIM; Audio: FAD, C, MSID, WD

Baseline	Image		Audio			
	FID	SSIM	FAD	C	MSID	WD
DDPM [13]	4.64	0.93	0.89	0.91	0.82	2.83
LTJ [20]	4.97	0.90	0.66	0.92	0.71	2.23
D3PM [17]	9.11	0.86	0.61	0.98	0.59	1.99
ItDPDM	4.84	0.91	0.64	0.94	0.67	2.14

238 4.5 Cross Training Paradigm

239 To isolate the benefits of Poisson diffusion and PRL objective, we perform cross-training: Gaussian
 240 + PRL and Poisson + MSE. As shown in Table 2(a), ItDPDM (Poisson + PRL) yields the best
 241 NLL, confirming PRL’s suitability for Poisson diffusion. Notably, Gaussian + PRL also outperforms
 242 Gaussian + MSE, suggesting PRL’s broader effectiveness on discrete data. Moreover, ItDPDM
 243 converges faster and reaches lower loss than its Gaussian counterpart, as shown in (Figure 7c-d).
 244 We further validate the I-MPRL identity(14) by comparing area-under-loss curves and final losses,
 245 finding close numerical agreement between Poisson and Gaussian models, aligning with theory.

246 5 Related Work

247 Diffusion models are widely used in generative and restoration tasks [37, 48], grounded in denoising
 248 autoencoders [49], variational inference [2], and score-based SDEs [50]. Recent works add
 249 information-theoretic insights [12], linking mutual information and MMSE [22] to likelihood bounds.
 250 Non-Gaussian extensions via annealed score matching [51, 52] and score-based SDEs [53] enhance
 251 theoretical rigor. In the discrete setting, **Blackout Diffusion**[54] and **Beta Diffusion**[55] use ir-
 252 reversible priors without tractable likelihoods. **SEDD**[56] uses score-entropy loss for token-level
 253 modeling but inherits ELBO-based approximations and lacks exact likelihood. **LTJ**[20] employs
 254 binomial thinning but is non-reversible and discrete-time. Our method overcomes these by us-
 255 ing a reversible Poisson process, enabling bidirectional corruption, exact likelihood, and efficient
 256 continuous-time sampling. A more detailed discussion is provided in App. K.

257 6 Conclusion

258 We introduce **ItDPDM**, a diffusion framework for non-negative discrete data that combines a Poisson
 259 noising process with a principled Poisson Reconstruction Loss (PRL), enabling exact likelihood
 260 estimation and discrete sampling without dequantization. ItDPDM achieves lower NLL on both
 261 synthetic and real data, enhances modeling quality on varied synthetic distributions, and delivers
 262 competitive results in image and symbolic music generation. Though a proof-of-concept, ItDPDM
 263 lays a strong foundation for distribution-robust discrete generative modeling, with applications in
 264 symbolic music, low-light imaging, and other count-based domains. Limitations of ItDPDM and
 265 future work are discussed in App. L.

266 **References**

267 [1] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis.
268 *Advances in Neural Information Processing Systems*, 34:8780–8794, 2021.

269 [2] Durk P Kingma, Tim Salimans, Jonathan Ho, and Xi Chen. Variational diffusion models.
270 *Advances in Neural Information Processing Systems*, 34:21696–21707, 2021.

271 [3] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
272 Chen, and Ilya Sutskever. Hierarchical text-conditional image generation with clip latents. *arXiv*
273 *preprint arXiv:2204.06125*, 2022.

274 [4] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
275 Kamyar Seyed Ghaseimpour, Burcu Karagol Ayan, Soroosh Mahdavi, Raphael Lopes, et al.
276 Photorealistic text-to-image diffusion models with deep language understanding. *Advances in*
277 *Neural Information Processing Systems*, 35:12302–12314, 2022.

278 [5] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
279 High-resolution image synthesis with latent diffusion models. *Proceedings of the IEEE/CVF*
280 *Conference on Computer Vision and Pattern Recognition*, pages 10684–10695, 2022.

281 [6] Zhifeng Kong, Wei Ping, Jingguang Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A
282 versatile diffusion model for audio synthesis. *arXiv preprint arXiv:2009.09761*, 2021.

283 [7] Zahid Mulyukov, Geoffrey Dinsdale, Ben Glocker, and Michiel Schaap. Medical diffusion:
284 Denoising diffusion probabilistic models for 3d medical image generation. *arXiv preprint*
285 *arXiv:2211.02386*, 2022.

286 [8] Jonathan Ho, Chitwan Saharia, William Chan, Saurabh Saxena, Aravind Srinivas, Seyed
287 Kamyar Seyed Ghaseimpour, Raphael Lopes, Huimin Hu, Ariel Barzelay, Raphael Gontijo-
288 Lopes, et al. Imagen video: High definition video generation with diffusion models. *arXiv*
289 *preprint arXiv:2210.02303*, 2022.

290 [9] Ori Avrahami, Oshri Bar-Tal, Shai Shahar, Sagie Benaim, and Tal Hassner. Retrieve
291 first, generate later: Towards retrieval-augmented text-to-image generation. *arXiv preprint*
292 *arXiv:2209.15189*, 2022.

293 [10] Bowen Jing, Jakob S Eismann, Victor Garcia Satorras, and Fabian B Fuchs. Torsional diffusion
294 for molecular conformer generation. *arXiv preprint arXiv:2206.01729*, 2022.

295 [11] Brian L Trippe, David Baker, Regina Barzilay, and Tommi Jaakkola. Diffusion probabilis-
296 tic modeling of protein backbones in 3d for the motif-scaffolding problem. *arXiv preprint*
297 *arXiv:2206.04119*, 2022.

298 [12] Xianghao Kong, Rob Brekelmans, and Greg Ver Steeg. Information-theoretic diffusion, 2023.
299 URL <https://arxiv.org/abs/2302.03792>.

300 [13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances*
301 *in Neural Information Processing Systems*, 33:6840–6851, 2020.

302 [14] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, Najim Dehak, and
303 William Chan. Wavegrad 2: Iterative refinement for text-to-speech synthesis, 2021. URL
304 <https://arxiv.org/abs/2106.09660>.

305 [15] E. Hoogeboom et al. Categorical diffusion with gumbel-softmax. *arXiv preprint*
306 *arXiv:2107.08447*, 2021. URL <https://arxiv.org/abs/2107.08447>.

307 [16] New York City Taxi and Limousine Commission. New york city taxi trip data, 2009–2018,
308 2019. URL <https://www.icpsr.umich.edu/web/ICPSR/studies/37254>.

309 [17] Jacob Austin, Daniel Johnson, Jonathan Ho, Daniel Tarlow, Rianne van den Berg, and Pieter
310 Abbeel. Structured denoising diffusion models in discrete state-spaces. *Advances in Neural*
311 *Information Processing Systems*, 34:17981–17993, 2021.

312 [18] Cindy M. Nguyen, Eric R. Chan, Alexander W. Bergman, and Gordon Wetzstein. Diffusion in
 313 the dark: A diffusion model for low-light text recognition, 2023. URL <https://arxiv.org/abs/2303.04291>.

315 [19] Matthias Plasser, Silvan Peter, and Gerhard Widmer. Discrete diffusion probabilistic models for
 316 symbolic music generation, 2023. URL <https://arxiv.org/abs/2305.09489>.

317 [20] Tianqi Chen and Mingyuan Zhou. Learning to jump: Thinning and thickening latent counts for
 318 generative modeling, 2023. URL <https://arxiv.org/abs/2305.18375>.

319 [21] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering with
 320 bregman divergences. *Journal of Machine Learning Research*, 6:1705–1749, 2005.

321 [22] Dongning Guo, Shlomo Shamai, and Sergio Verdú. Mutual information and minimum mean-
 322 square error in gaussian channels. *IEEE Transactions on Information Theory*, 51(4):1261–1282,
 323 2005.

324 [23] Sergio Verdú. Poisson communication theory. 2004. URL <https://api.semanticscholar.org/CorpusID:2997862>.

326 [24] I. Bar-David. Communication under the poisson regime. *IEEE Transactions on Information
 327 Theory*, 15(1):31–37, 1969. doi: 10.1109/TIT.1969.1054238.

328 [25] S. Shamai and A.D. Wyner. A binary analog to the entropy-power inequality. *IEEE Transactions
 329 on Information Theory*, 36(6):1428–1430, 1990. doi: 10.1109/18.59938.

330 [26] Paul Dupuis and Richard S. Ellis. The large deviation principle for a general class of queueing
 331 systems i. *Transactions of the American Mathematical Society*, 347(8):2689–2751, 1995. ISSN
 332 00029947. URL <http://www.jstor.org/stable/2154753>.

333 [27] R. S. Liptser and A. N. Shirayev. *Statistics of Random Processes II: Applications*, volume 6 of
 334 *Applications of Mathematics*. Springer, Berlin, Heidelberg, 2nd edition, 2001. ISBN 978-3-
 335 540-21292-6. doi: 10.1007/978-3-662-04574-4. Part of the Stochastic Modelling and Applied
 336 Probability series.

337 [28] A. Banerjee, Xin Guo, and Hui Wang. On the optimality of conditional expectation as a
 338 bregman predictor. *IEEE Transactions on Information Theory*, 51(7):2664–2669, 2005. doi:
 339 10.1109/TIT.2005.850145.

340 [29] Rami Atar and Tsachy Weissman. Mutual information, relative entropy, and estimation in the
 341 poisson channel, 2010. URL <https://arxiv.org/abs/1101.0302>.

342 [30] Persi Diaconis and Donald Ylvisaker. Conjugate priors for exponential families. *The Annals of
 343 Statistics*, 7(2):269–281, 1979. ISSN 00905364, 21688966. URL <http://www.jstor.org/stable/2958808>.

345 [31] I. J. Good. The population frequencies of species and the estimation of population parameters.
 346 *Biometrika*, 40(3-4):237–264, 1953. doi: 10.1093/biomet/40.3-4.237.

347 [32] Herbert Robbins. An empirical bayes approach to statistics. In *Proceedings of the Third
 348 Berkeley Symposium on Mathematical Statistics and Probability*, volume 1, pages 157–163.
 349 University of California Press, 1956.

350 [33] Tsachy Weissman, Erik Ordentlich, Gad Seroussi, Sergio Verdu, and Marcelo J. Weinberger.
 351 Universal discrete denoising: Known channel. *IEEE Transactions on Information Theory*, 51
 352 (1):5–28, 2005.

353 [34] Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, and Aram Galstyan. All in
 354 the exponential family: Bregman duality in thermodynamic variational inference, 2020. URL
 355 <https://arxiv.org/abs/2007.00642>.

356 [35] Yoshihiko Ogata. A monte carlo method for high dimensional integration. *Numer. Math.*,
 357 55(2):137–157, March 1989. ISSN 0029-599X. doi: 10.1007/BF01406511. URL <https://doi.org/10.1007/BF01406511>.

359 [36] Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From importance
360 sampling to bridge sampling to path sampling. *Statistical Science*, 13(2):163–185, 1998. ISSN
361 08834237, 21688745. URL <http://www.jstor.org/stable/2676756>.

362 [37] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
363 models. *International Conference on Machine Learning*, pages 8162–8171, 2021.

364 [38] Alex Krizhevsky. Learning multiple layers of features from tiny images. <https://www.cs.toronto.edu/~kriz/cifar.html>, 2009.

366 [39] Christoph Vogl, Jesse Ranzijn, Ian Millwood, and Gabriel Essl. The lakh midi dataset. <https://colinraffel.com/projects/lmd/>, 2017.

368 [40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
369 for biomedical image segmentation. *ArXiv*, abs/1505.04597, 2015. URL <https://api.semanticscholar.org/CorpusID:3719281>.

371 [41] Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation
372 with diffusion models, 2021. URL <https://arxiv.org/abs/2103.16091>.

373 [42] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
374 From error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):
375 600–612, 2004.

376 [43] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
377 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances
378 in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017.

379 [44] Kevin Kilgour, Robin Clark, Karen Simonyan, and Matt Sharifi. Fréchet audio distance:
380 A reference-free metric for evaluating music enhancement algorithms. In *Proceedings of
381 Interspeech*, pages 2350–2354. ISCA, 2019.

382 [45] Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation
383 with diffusion models. In *Proceedings of the 22nd International Society for Music Information
384 Retrieval Conference*, 2021. URL <https://arxiv.org/abs/2103.16091>.

385 [46] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. A study of evaluation metrics for music
386 generative models. In *Proceedings of the 21st International Society for Music Information
387 Retrieval Conference (ISMIR)*, pages 175–182, 2020.

388 [47] Gabriel Peyré and Marco Cuturi. Computational optimal transport. *Foundations and Trends in
389 Machine Learning*, 11(5-6):355–607, 2019.

390 [48] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
391 Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. *Proceedings of
392 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11461–11471,
393 2022.

394 [49] Pascal Vincent. A connection between score matching, denoising autoencoders and density
395 estimation. *Advances in Neural Information Processing Systems*, 24, 2011.

396 [50] Yang Song, Jascha Sohl-Dickstein, Durk P Kingma, Abhishek Kumar, Stefano Ermon, and
397 Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv
398 preprint arXiv:2011.13456*, 2020.

399 [51] A. Hyvärinen. Estimating the gradients of the log-density. In *Advances in Neural Information
400 Processing Systems (NeurIPS)*, 2005. URL <https://papers.nips.cc/paper/2005>.

401 [52] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
402 In *Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS
403 2019)*, 2019. URL <https://papers.nips.cc/paper/2019>.

404 [53] Thomas Dökhörn, Hyungjin Chung, Stefano Ermon, and Gunnar Rätsch. Score-based generative
405 models for high-dimensional inverse problems. *Advances in Neural Information Processing
406 Systems*, 35:17506–17518, 2022.

407 [54] Javier E. Santos, Zachary R. Fox, Nicholas Lubbers, and Yen Ting Lin. Blackout diffusion:
 408 Generative diffusion models in discrete-state spaces. In *Proceedings of the 40th International*
 409 *Conference on Machine Learning (ICML)*, volume 202 of *Proceedings of Machine Learning*
 410 *Research*, Honolulu, Hawaii, USA, 2023. PMLR. URL <https://proceedings.mlr.press/v202/santos23a.html>.

412 [55] Mingyuan Zhou, Tianqi Chen, Zhendong Wang, and Huangjie Zheng. Beta diffusion, 2023.
 413 URL <https://arxiv.org/abs/2309.07867>.

414 [56] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the
 415 ratios of the data distribution, 2024. URL <https://arxiv.org/abs/2310.16834>.

416 [57] FluidSynth Developers. Fluidsynth: Software synthesizer based on the soundfont 2 specifica-
 417 tions. <https://www.fluidsynth.org/>, 2025. Accessed: 2025-05-19.

418 [58] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-
 419 able effectiveness of deep features as a perceptual metric. *CVPR*, pages 586–595, 2018.

420 [59] Jesse Engel, Lee Hantrakul, Chenjie Gu, and Adam Roberts. Gansynth: Adversarial neural
 421 audio synthesis. In *International Conference on Learning Representations (ICLR)*, 2019.

422 [60] Alex Dytso and H. V. Poor. Estimation in poisson noise: Properties of the conditional mean
 423 estimator. *IEEE Transactions on Information Theory*, 66(7):4304–4323, 2020. doi: 10.1109/TIT.2020.2979978.

425 [61] Volodymyr Braiman, Anatoliy Malyarenko, Yuliya Mishura, and Yevheniia Anastasiia Rudyk.
 426 Properties of shannon and rényi entropies of the poisson distribution as the functions of intensity
 427 parameter, 2024. URL <https://arxiv.org/abs/2403.08805>.

428 [62] Kenneth S. Miller. *Mathematical Statistics: Basic Ideas and Selected Topics*. Pearson Education,
 429 2nd edition, 2006. ISBN 9780131520780.

430 [63] M. Abramowitz and I. A. Stegun. *Handbook of Mathematical Functions with Formulas, Graphs,*
 431 *and Mathematical Tables*. Dover Publications, 1964.

432 [64] H. Chernoff. *Measure of Asymptotic Efficiency for Statistical Tests*. Annals of Mathematical
 433 Statistics, 1952.

434 [65] Liming Wang, Miguel Rodrigues, and Lawrence Carin. Generalized bregman divergence
 435 and gradient of mutual information for vector poisson channels. In *2013 IEEE International*
 436 *Symposium on Information Theory*, pages 454–458, 2013. doi: 10.1109/ISIT.2013.6620267.

437 [66] M. Davis. *Markov Models and Optimization*. Chapman & Hall, 1993.

438 [67] T. Duncan. On the calculation of mutual information. *SIAM Journal on Applied Mathematics*,
 439 1970.

440 [68] D. Snyder. Filtering and detection for doubly stochastic poisson processes. *IEEE Transactions*
 441 *on Information Theory*, 1972.

442 [69] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
 443 discrete diffusion models. *arXiv preprint arXiv:2211.16750*, 2022.

444 [70] Mingyuan Zhou, Tianqi Chen, Zhendong Wang, and Huangjie Zheng. Beta diffusion. In
 445 *Advances in Neural Information Processing Systems*, 2023.

446 [71] Emiel Hoogeboom and Tim Salimans. Blurring diffusion models. *arXiv preprint*
 447 *arXiv:2209.05557*, 2022.

448 [72] Jente Vandersanden, Sascha Holl, Xingchang Huang, and Gurprit Singh. Edge-preserving noise
 449 for diffusion models. *arXiv preprint arXiv:2410.01540*, 2024.

450

Appendix

451 **A Numerical Details**452 **A.1 MPRL Upper Bound**

453 A key challenge is the inaccessibility of the posterior distribution in Eq. (7). To bound the intractable
 454 marginal likelihood, we compare our (suboptimal) neural denoiser $\hat{X}(Z_\gamma, \gamma)$ with the intractable
 455 optimal conditional expectation \hat{X}^* . This reformulates the expected loss entirely in terms of $\hat{X}(Z_\gamma, \gamma)$
 456 from the Poisson diffusion model:

$$E[-\log P(x)] = \int_0^\infty \text{mprl}(\gamma) d\gamma \leq \int_0^\infty \mathbb{E}[\ell(X, \hat{X})] d\gamma \quad (18)$$

457 It is important to note that the NLL upper bound in Eq. (18) is empirical, capturing the suboptimality
 458 of the learned neural denoiser. Eq. (17) yields an exact theoretical expression for the NLL, unlike
 459 variational diffusion models, which introduce two layers of approximation: first via the ELBO, and
 460 then through a bound on the denoiser.

461 Now we delve into the derivation of Eq. (18). We first express the expected loss in terms of the
 462 optimal estimator (using shorthand notation subsequently):

$$E[\ell(X, \hat{X}(X, \gamma))] = E\left[X \log \frac{X}{\hat{X}(X, \gamma)} - X + \hat{X}(X, \gamma)\right] = E\left[X \log \frac{X}{\hat{X}^*}\right] + E\left[X \log \frac{\hat{X}^*}{\hat{X}} - X + \hat{X}\right]. \quad (19)$$

463 Using the law of iterated expectation gives:

$$E[\ell(X, \hat{X})] = \text{mprl}(\gamma) + E[\ell(\hat{X}^*, \hat{X})].$$

464 The second term above denotes the estimation gap, and rearranging the terms, we get:

$$E[-\log P(x)] = \int_0^\infty \left(E[\ell(X, \hat{X})] - E[\ell(\hat{X}^*, \hat{X})] \right) d\gamma.$$

465 Using Jensen's inequality here (based on the properties mentioned in Lemma 1), we have:

$$-E[\ell(\hat{X}^*, \hat{X})] \leq -E[\hat{X}^*] \log \frac{E[\hat{X}^*]}{\hat{X}} - E[\hat{X}^*] + \hat{X} = -l(E[X], \hat{X}). \quad (20)$$

466 Now, using the relation from Lemma 2 gives us:

$$\int_0^\infty \text{mprl}(\gamma) d\gamma \leq \int_0^\infty E[\ell(X, E[X])] d\gamma. \quad (21)$$

467 We obtain a more elegant bound in terms of our suboptimal neural denoiser by dropping the negative
 468 term:

$$E[-\log P(x)] = \int_0^\infty \text{mprl}(\gamma) d\gamma \leq \int_0^\infty E[\ell(X, \hat{X})] d\gamma. \quad (22)$$

469 **A.2 Parametrization:**

470 To ensure stability across SNR levels, we reparameterize the Poisson observation $Z_\gamma \sim \mathcal{P}(\gamma X)$
 471 to mitigate mean and variance explosion. Instead of feeding Z_γ directly into the neural network,
 472 we define the normalized $\tilde{Z}_\gamma = Z_\gamma/(1 + \gamma)$, keeping it within $[0, X]$ with high probability. This
 473 transformation preserves interpretability: at high SNR, $E[\tilde{Z}_\gamma] \approx X$, while at low SNR ($\gamma \rightarrow 0$), it
 474 tends to zero, aligning with Poisson behavior. We input $(\tilde{Z}_\gamma, \gamma)$ into the network in place of (Z_γ, γ) .
 475 Adopting the log-SNR parameterization $\alpha = \log \gamma$, we get:

$$E[-\log P(x)] = \int_{-\infty}^\infty e^\alpha \text{mprl}(\alpha) d\alpha \leq \int_{-\infty}^\infty e^\alpha E[\ell(X, \hat{X})] d\alpha. \quad (23)$$

476 We now present details on efficient numerical integration of this expression below.

Algorithm 1 ItDPDM Training

Require: Dataset $\{x_i\}_{i=1}^N$, # log-SNR samples S , SNR range $[\gamma_{\min}, \gamma_{\max}]$, denoiser f_θ

- 1: **for** $s = 1, \dots, S$ **do**
- 2: Sample mini-batch B from $\{x_i\}$
- 3: Sample $\alpha \sim \text{Logistic}$, $\gamma \leftarrow \exp(\alpha)$
- 4: Sample $z_\gamma \sim \frac{\text{Poisson}(\gamma x_B)}{1+\gamma}$
- 5: $\hat{x}_B \leftarrow f_\theta(\text{data_transform}(z_\gamma), \gamma)$
- 6: $\ell \leftarrow \sum_{i \in B} \text{PRL}(x_i, \hat{x}_i)$, $L \leftarrow \ell / q(\alpha)$
- 7: Update θ by gradient descent on L
- 8: **end for**
- 9: **return** θ

Algorithm 2 ItDPDM Sampling

Require: Trained model f_θ , # reverse steps T

- 1: Compute $\{\gamma_t\}$ (e.g. spaced in log-SNR)
- 2: Initialize $z_{\gamma_T} \leftarrow \mathbf{0}$
- 3: **for** $t = T, T-1, \dots, 1$ **do**
- 4: $\hat{x}_0 \leftarrow f_\theta(\text{data_transform}(z_{\gamma_t}), \gamma_t)$
- 5: Sample $z_{\gamma_{t-1}} \sim \text{Poisson}(\gamma_{t-1} \hat{x}_0)$
- 6: **end for**
- 7: **return** \hat{x}_0

477 **Numerical Integration:**

478 This section outlines the effective computation of integral from (23). We first use importance
479 sampling to rewrite the integral as an expectation over a distribution, $q(\gamma)$, allowing for unbiased
480 Monte Carlo estimation. This leads to our final numerical approximation of the loss function
481 $E_{p(x)}[-\log p(x)] \leq \mathcal{L}$, where

$$\mathcal{L} \equiv E_{q(\alpha)} \left[\frac{1}{q(\alpha)} E_{(x, z_\gamma)}[l(X, \hat{x})] \right].$$

482 We propose two paradigms for numerical integration: **Logistic** and **Uniform** Integration, respectively.

483 **Logistic Integration.** In Gaussian diffusion models, the log-SNR integral is approximated via
484 importance sampling with a truncated logistic distribution. The integrand, shaped by a mixture of
485 logistic CDFs influenced by data covariance eigenvalues λ_i , is captured by matching the empirical
486 mean μ and variance s of $-\log \lambda_i$, with integration bounds $[\mu - 4s, \mu + 4s]$. Samples drawn via the
487 logistic quantile function are weighted by $1/q(\alpha)$ to prioritize critical regions, reducing variance.

488 **Uniform Integration.** This simpler numerical method discretizes the log-SNR range $[\alpha_1, \alpha_2]$ into
489 a uniform grid, applying trapezoidal or Riemann-sum integration without assuming an underlying
490 distribution. While simple, efficiency depends on grid density for broad ranges, favoring ease over
491 optimal sampling. The predefined range is $[-28, 37]$ with uniform sampling.

492 **A.3 MPRL Tail Bounds:**

493 Since the integration on the RHS of Eq.(23) is intractable, we identify a finite integration range
494 (α_0, α_1) beyond which the contribution becomes negligible. The RHS of Eq. (23) can thus be written
495 in terms of ‘ α ’ as:

$$= \int_{\alpha_0}^{\alpha_1} e^\alpha \text{mprl}(\alpha) d\alpha + \left(\int_{-\infty}^{\alpha_0} + \int_{\alpha_1}^{\infty} \right) e^\alpha \text{mprl}(\alpha) d\alpha \leq \int_{\alpha_0}^{\alpha_1} e^\alpha E[l(X, \hat{X})] d\alpha + f(\alpha_0, \alpha_1)$$

496 We analytically derive upper bounds for the left and right tail integrals, denoted by $f(\alpha_0, \alpha_1)$ above
497 in App. E, and show that their contributions decay rapidly outside the relevant integration range.

498 Algorithms 1 and 2 present the pseudocode used for ItDPDM training and generation respectively.

499 **B Experimental Details**500 **B.1 Training Details (contd.)**

501 For a fair comparison, we train both CIFAR and LMD models from scratch for 600 epochs. The
502 training starts with a learning rate of 2×10^{-5} using the Adam optimizer. We adopt an 80-20 train-test
503 split for evaluating likelihoods. For image generation, we use a UNet-based model[40], while for
504 music generation, we employ the DenseDDPM[41] and convolutional-transformer[17]-based models

505 for the continuous embeddings (DDPM-style) and discrete domain (D3PM[17]) respectively. The
506 training procedure ensures consistency across both domains, facilitating a meaningful comparison
507 of their performance. It is to be noted that we train all of the models from scratch, owing to a
508 lack of pre-trained Poisson diffusion baselines, to ensure fair comparison. Because of compute
509 resource constraints, we train the models upto 600 epochs, which falls short of the usual amount of
510 training required to achieve peak performance (e.g., LTJ[20] trains their models for 3600 epochs).
511 We also restrict ourselves to 100 logSNR values per image / music sample, and restrict the number of
512 denoising steps used in the DDPM / D3PM baselines to 100 as well (instead of 1000), to ensure fair
513 comparison. Thus, although the relative performance of the models is preserved, the absolute values
514 of the metrics underperform those presented in DDPM[13] and LTJ[20].

515 **B.2 Data and Model Normalization**

516 We experimented with various schemes for data (D_n) before passing it through the noisy channel and
517 for model inputs (M_n) post-noising. CIFAR-10 data is normalized to $[0, 1], [1, 2], [0, 255], [-1, 1]$;
518 Lakh MIDI to $[0, 1], [1, 2], [0, 90], [-1, 1]$. Poisson channels cannot handle negatives and since zero
519 inputs yield zeros, we shift inputs by $\epsilon = 10^{-6}$. For Gaussian noising, model normalization used
520 $[0, 1]$ or $[-1, 1]$, while Poisson noising used only $[0, 1]$. The best results were achieved with $[-1, 1]$
521 (Gaussian) and $[1, 2]$ (Poisson) for D_n , and $[-1, 1]$ (Gaussian) and $[0, 1]$ (Poisson) for M_n . Among
522 the integration paradigms used, logistic integrate yielded the best empirical results, and the `loc` and
523 `scale` parameters obtained for the mid-integral range were $(6, 3)$ for Gaussian noising and $(-1, 5)$
524 for Poisson noising.

525 **B.3 Denoiser Architecture**

526 For CIFAR-10 images, we employ a U-Net architecture [40] with residual blocks and self-attention
527 layers. The encoder comprises four downsampling blocks (convolution \rightarrow GroupNorm \rightarrow SiLU)
528 that reduce spatial resolution from 32×32 to 4×4 , followed by a bottleneck with self-attention at
529 8×8 resolution. The decoder mirrors the encoder via transposed convolutions and skip connections.
530 For symbolic music synthesis on Lakh MIDI, we use a DenseDDPM[52]-based architecture and
531 a convolutional transformer[19]-based model, for the continuous-state DDPM modeling and the
532 discrete D3PM[19] modeling respectively. For the continuous modeling, we adapt the DenseDDPM
533 architecture from [41]. It first projects the input latent vector to an MLP hidden size (default
534 2048) with a single Dense layer, then runs it through 3 residual MLP blocks whose weights are
535 modulated by a 128-dimensional sinusoidal embedding of the diffusion timestep t . After these
536 conditioned residual blocks, it applies a LayerNorm and a final Dense layer that maps back to the
537 original latent dimensionality, yielding the denoised output. For the discrete modeling, we adapt an
538 NCSN++ backbone [52] with a Convolutional Transformer encoder [19]. The architecture includes a
539 512-dimensional embedding layer, six transformer layers with multi-head attention (8 heads) and
540 positional encodings, and time-dependent noise conditioning.

541 **B.4 Symbolic Music Dataset Cleanup**

542 We utilize the cleaned Lakh MIDI dataset [39], loading note sequences from `.npy` files with original
543 shape $(x, 1024)$. For training, sequences are partitioned into individual 1D vectors of shape $(1, 1024)$,
544 representing discrete musical events. So, our method directly models symbolic music as discrete 1D
545 note sequences using Poisson diffusion, avoiding hybrid architectures or preprocessing.

546 **B.5 Domain-Specific Metrics**

547 To evaluate the generation quality of our model across image and audio domains, we utilize established
548 domain-specific metrics that quantify fidelity, diversity, and structural realism. Below, we provide
549 descriptions and implementation details for each metric employed in our evaluation.

550 **Image Metrics** All image-generation metrics were computed on 40,000 randomly selected ground-
551 truth images from the CIFAR-10 test split and 40,000 model-generated samples. Fréchet Inception
552 Distance (FID) was evaluated with the PyTorch `torch-fidelity` package (Inception-v3 network,
553 2048-dimensional pool3 activations).

554
555

- **Structural Similarity Index Measure (SSIM)** [42]: SSIM measures the similarity between two images by comparing their luminance, contrast, and structure. It is defined as:

$$\text{SSIM}(x, y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

556 where μ and σ denote mean and standard deviation over local image patches. Higher SSIM
557 indicates better perceptual similarity.

558
559
560

- **Fréchet Inception Distance (FID)** [43]: FID evaluates the distance between real and generated image distributions in the feature space of a pretrained Inception network. It is calculated as:

$$\text{FID} = \|\mu_r - \mu_g\|^2 + \text{Tr} \left(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2} \right)$$

561 where (μ_r, Σ_r) and (μ_g, Σ_g) are the means and covariances of the feature embeddings of
562 real and generated samples.

563 **Audio Metrics.** All audio-based metrics are computed using 10,000 ground-truth samples and 10,000
564 generated samples per model. To enable consistent audio evaluation, we first convert model-generated
565 .npy files to MIDI format using the `pretty_midi` library. These MIDI files are then rendered
566 to WAV audio using FluidSynth [57] with the FluidR3_GM soundfont, ensuring uniform timbre
567 across all samples. All tools and dependencies are managed within an automated evaluation pipeline.
568 This standardized conversion procedure ensures reproducibility and fair comparison of audio metrics
569 across all models.

570
571
572
573

- **Fréchet Audio Distance (FAD)** [44]: Analogous to FID, FAD computes the Fréchet distance between embeddings of real and generated audio, extracted via a VGGish model pretrained for audio classification. It reflects perceptual similarity in the feature space and is calculated similarly to FID.
- **Consistency (C):** To evaluate sequence-level realism, we employ framewise self-similarity based on overlapping Gaussian approximations of pitch histograms. Specifically, we use the overlapping area (OA) from [45], applied to pitch only (since duration is fixed in our setup). For sliding 4-measure windows with 2-measure hop:

$$\text{OA}(k, k+1) = 1 - \text{erf} \left(\frac{c - \mu_1}{\sqrt{2}\sigma_1} \right) + \text{erf} \left(\frac{c - \mu_2}{\sqrt{2}\sigma_2} \right)$$

578 The resulting pitch OA values are compared to ground-truth sequences via:

$$C = \max \left(0, 1 - \frac{|\mu_{\text{OA}} - \mu_{\text{GT}}|}{\mu_{\text{GT}}} \right)$$

$$\text{Var} = \max \left(0, 1 - \frac{|\sigma_{\text{OA}}^2 - \sigma_{\text{GT}}^2|}{\sigma_{\text{GT}}^2} \right)$$

580 Consistency (C) measures global similarity to ground truth, while variance (Var) captures
581 generation diversity. High C implies structured, music-like pitch transitions.

582
583
584

- **Mel-Spectrogram Inception Distance (MSID)** [46]: MSID adapts FID for audio by computing the Fréchet distance over features extracted from Mel spectrograms. The key steps include:

- Convert generated .npy files to MIDI and synthesize audio using FluidSynth.
- Compute 128-band Mel spectrograms (16kHz, FFT=2048, hop=512), as outlined in B.5.
- Extract features using a VGG16-based architecture trained on audio (VGGish).
- Compute MSID using: $\text{MSID} = \|\mu_r - \mu_g\|^2 + \text{Tr}(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2})$

590 MSID captures both spectral and perceptual differences, correlating with human audio
591 quality judgments.

592 • **Wasserstein Distance (WD)** [47]: WD quantifies the distance between the token distributions of real and generated symbolic music. We compute a *weighted Wasserstein distance* that prioritizes important token types (e.g., binary onsets or active pitches):

$$W_w(p, q) = \inf_{\gamma \in \Pi(p, q)} \mathbb{E}_{(x, y) \sim \gamma} [c(x, y) \cdot w(x, y)]$$

595 Weights are assigned based on token values: 0.2 for 0s, 0.5 for 1s, 1.0 for others. Tokens are
596 normalized and reshaped as needed. Lower WD values indicate better alignment of pitch
597 activation distributions.

598 In addition to the core domain-specific metrics described in Appendix B.5, we include the following
599 complementary metrics used for additional analysis presented in Table 4. These metrics help analyze
600 fine-grained perceptual and structural properties of the generated data.

601 **Images:**

602 • **Learned Perceptual Image Patch Similarity (LPIPS)** [58]: LPIPS measures perceptual
603 similarity by computing the distance between deep features extracted from pretrained vision
604 networks (e.g., VGG, AlexNet). It is defined as:

$$\text{LPIPS}(x, y) = \sum_l \frac{1}{H_l W_l} \sum_{h, w} \|w_l \odot (\phi_l^x(h, w) - \phi_l^y(h, w))\|_2^2$$

605 where ϕ_l^x and ϕ_l^y are feature activations from layer l , and w_l are learned weights. Lower
606 LPIPS values indicate higher perceptual similarity between generated and reference images.

607 **Audio:**

608 • **Spectral Convergence (SC):** SC quantifies the relative difference between the magnitude
609 spectra of real and generated audio:

$$\text{SC} = \frac{\| |S_{\text{gen}}| - |S_{\text{ref}}| \|_F}{\| |S_{\text{ref}}| \|_F}$$

610 where S_{gen} and S_{ref} are the STFTs (Short-Time Fourier Transforms) of generated and
611 reference audio, and $\| \cdot \|_F$ denotes the Frobenius norm. Lower SC suggests higher spectral
612 alignment.

613 • **Log Mean Spectral Distance (LMSD):** LMSD captures differences in log-scaled spectral
614 magnitudes and is defined as:

$$\text{LMSD} = \frac{1}{T} \sum_t \|\log(\epsilon + |S_{\text{gen}}(t)|) - \log(\epsilon + |S_{\text{ref}}(t)|)\|_1$$

615 where ϵ is a small constant to ensure numerical stability, and the summation is over time
616 frames t . Lower LMSD implies improved perceptual quality in frequency response.

617 • **Variance (Pitch Histogram Diversity):** [41] As described in Appendix B.5, we also
618 compute the pitch variance metric (Var) to measure structural diversity in symbolic music:

$$\text{Var} = \max \left(0, 1 - \frac{|\sigma_{\text{OA}}^2 - \sigma_{\text{GT}}^2|}{\sigma_{\text{GT}}^2} \right)$$

619 Higher variance indicates greater distributional diversity while maintaining similarity to
620 ground truth statistics. Together, these metrics offer a comprehensive, multi-faceted eval-
621 uation of image and audio generation quality, balancing fidelity, diversity, and perceptual
622 structure.

623 **Mel Spectrogram Computation Parameters:**

624 For the listed audio-based metrics (FAD, MSID, SC, LMSD), we first convert generated symbolic
625 music into waveform as discussed earlier [57] and compute Mel spectrograms with the following
626 parameters:

627 • **Sampling rate:** 16 kHz — chosen to balance temporal resolution and frequency coverage
628 for symbolic music.

629 • **FFT size:** 2048 — defines the window size for frequency analysis. This size gives sufficient
630 frequency granularity (≈ 7.8 Hz per bin at 16 kHz).

631 • **Hop length:** 512 — determines the stride between successive STFT windows, corresponding
632 to 32 ms hop (suitable for music temporal structure).

633 • **Mel bands:** 128 — provides a perceptually motivated representation of frequency, empha-
634 sisizing resolution in lower frequency ranges where musical structure is denser.

635 These parameters are consistent with best practices in neural audio synthesis [59],[46] and ensure
636 compatibility with pretrained perceptual models like VGGish.

Additional Metrics:

Table 4: Auxiliary generative quality metrics. Image: LPIPS; Audio: SC, LMSD, LPIPS (Mel), Var

Baseline	LPIPS (Img)	SC	LMSD	LPIPS (Mel)	Var
IDDPM [37]	0.17 ± 0.05	1.56	9.99	0.38 ± 0.10	0.81
LTI [20]	0.18 ± 0.06	1.51	9.81	0.33 ± 0.10	0.87
D3PM [17]	0.29 ± 0.09	1.41	9.63	0.28 ± 0.09	0.90
ItDPDM	0.18 ± 0.08	1.49	9.71	0.30 ± 0.09	0.85

637

638 B.5.1 Visualizing generated music samples:

639 **Individual ItDPDM Samples:** To examine local model behavior, we present isolated piano roll
640 visualizations of individual samples (see Figure 8). Each plot shows the temporal and pitch structure
641 of a single sequence, with color indicating note velocity. These visualizations enable detailed
642 inspection of rhythmic patterns, pitch range, note density, and artifacts.

643 For example, ItDPDM-generated samples exhibit consistent pitch contours and relatively uniform
644 spacing, occasionally disrupted by outlier notes or sparse regions. Such plots help diagnose issues
645 like over/under-generation, discontinuities, or anomalies, and complement the broader comparisons
646 across models.

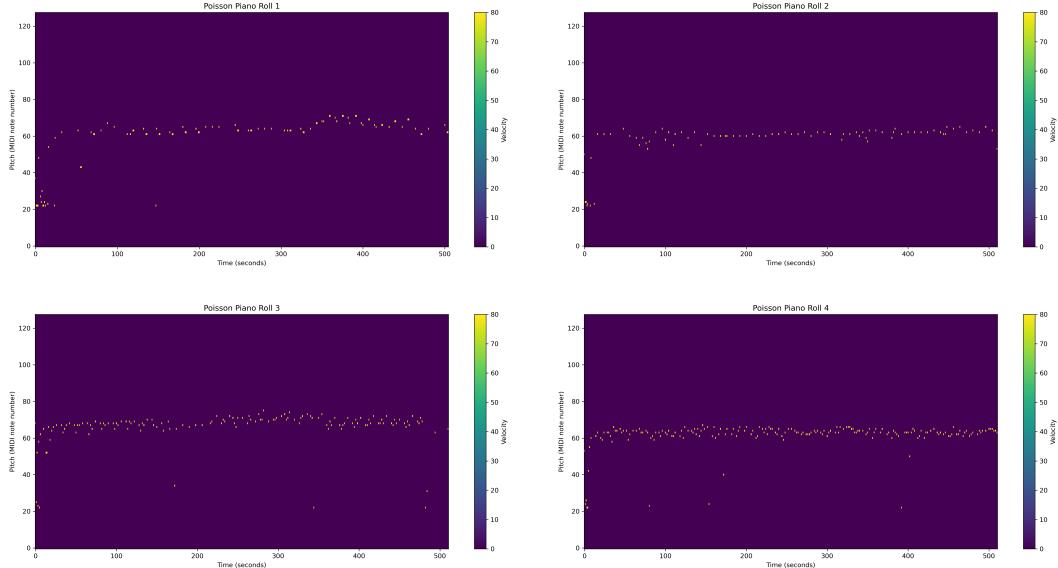


Figure 8: Isolated piano roll visualizations of four ItDPDM-generated samples. Each plot shows pitch over time, with note velocity indicated by color intensity.

647 **Qualitative comparison:** To qualitatively observe the generative performance of our models, we
648 visualize representative samples as piano rolls in Figure 9. Each row presents a different generated

649 sequence, with columns corresponding to different models: DDPM (left), ASD3PM (center), and
 650 ItDPDM (right). Each piano roll plot depicts note pitch (vertical axis) over time (horizontal axis),
 651 with intensity indicating note onset.

652 **DDPM (left):** Samples from DDPM display high variability in pitch and rhythm, with note events
 653 appearing scattered and less structured. While diverse, these outputs often lack recognizable musical
 654 motifs or rhythmic regularity, indicating that the model struggles to capture long-range musical
 655 structure.

656 **ASD3PM (center):** ASD3PM outputs, derived from perturbed ground truth MIDI sequences, exhibit
 657 strong rhythmic and melodic coherence. These samples closely mirror the structure of real music,
 658 featuring sustained motifs, consistent phrasing, and regular timing. This visual consistency aligns
 659 with the model’s design, which prioritizes fidelity to the data manifold.

660 **ItDPDM (right):** Samples from ItDPDM demonstrate improved musical structure over DDPM. While
 661 some randomness remains, many outputs show rhythmic grouping, pitch contours, and repeating
 662 patterns, suggesting the model’s ability to learn and replicate fundamental elements of musical
 663 organization. Overall, the visualizations highlight key differences in generative behavior. ASD3PM
 664 achieves the highest structural fidelity, followed by ItDPDM, which balances diversity with coherence.
 665 DDPM produces varied outputs but lacks the structured rhythmic and melodic features observed in
 666 the other methods. These qualitative findings complement our quantitative results, offering insight
 667 into how each model captures musical dependencies in time and pitch.

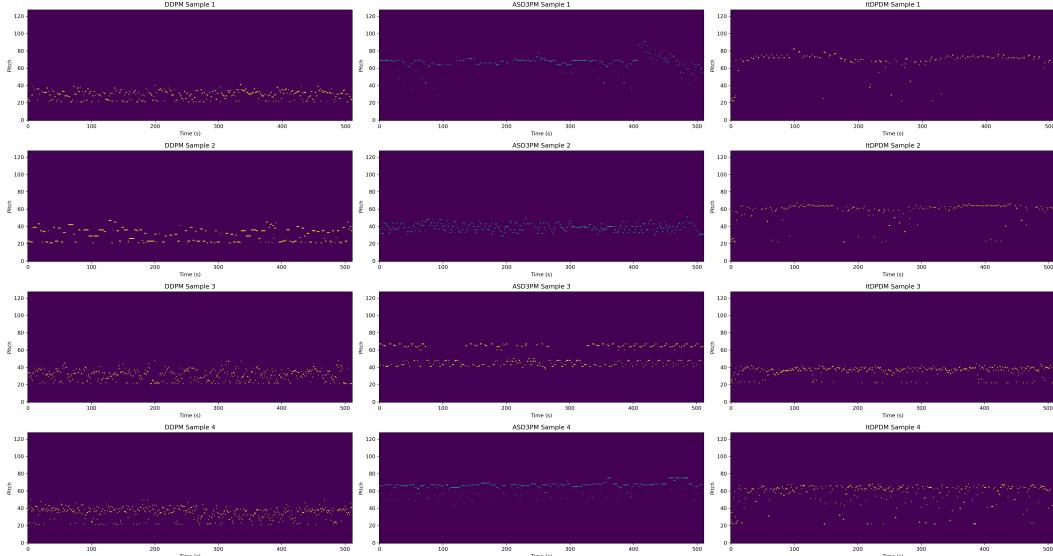


Figure 9: Piano roll visualizations of generated samples from DDPM (left), ASD3PM (middle), and ItDPDM (right). Each row corresponds to a particular random sample. Higher vertical positions represent higher pitches.

668 To further assess how the generated music matches the statistical properties of the training data, we
 669 also compare the generated pitch distributions with the ground truth. Figure 10 shows the histogram
 670 of MIDI pitch values for ItDPDM generated sequences alongside the empirical distribution from the
 671 training data with a close alignment indicating that the model captures global pitch statistics, such
 672 as register, range, and note density. Another observation is that in the generated samples, the note
 673 velocity is *slightly amplified* in comparison to the ground truth distribution.

674 C Synthetic Benchmark Details

675 C.1 Discrete benchmark details

676 We evaluate model performance on a suite of synthetic univariate discrete distributions designed
 677 to challenge generative models with features such as overdispersion, multimodality, sparsity, and
 678 skewness. All distributions take values in \mathbb{N}_0 and are non-negative.

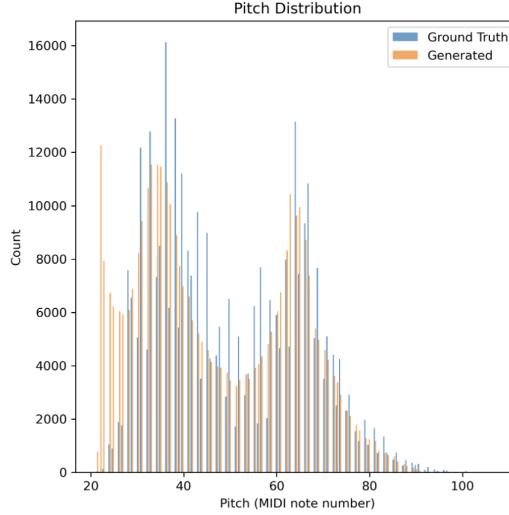


Figure 10: Comparing pitch distributions for ground truth and ItDPDM generated samples

679 **Poisson Mixture (PoissMix):** This is a bimodal mixture of Poisson distributions:

$$0.1 \cdot \text{Poisson}(\lambda = 1) + 0.9 \cdot \text{Poisson}(\lambda = 100),$$

680 producing a highly skewed and dispersed distribution with modes at both low and high counts,
681 simulating tasks where most values are large but a minority remain near zero.

682 **Zero-Inflated Poisson (ZIP):** To simulate data with an excess of zeros, we use a zero-inflated
683 Poisson distribution: which samples zero with probability π_0 , and otherwise follows a Poisson
684 distribution:

$$P(k) = \begin{cases} \pi_0 + (1 - \pi_0) \cdot e^{-\lambda}, & k = 0 \\ (1 - \pi_0) \cdot \frac{e^{-\lambda} \lambda^k}{k!}, & k > 0 \end{cases} \text{ with } \pi_0 = 0.7, \lambda = 5.$$

685 This models structured sparsity common in count data with dropout.

686 **Negative Binomial Mixture (NBinomMix):** This is a mixture of two negative binomial distributions: $0.8 \cdot \text{NB}(1, 0.9) + 0.2 \cdot \text{NB}(10, 0.1)$, where the first mode has high probability near zero, while
687 the second exhibits broader dispersion. It introduces skew and multimodality in count data.
688

689 **Beta-Negative-Binomial (BNB):** The BNB distribution integrates a Beta prior over the success
690 probability p of the negative binomial:

$$P(k) = \int_0^1 \text{NB}(k; 1, p) \cdot \text{Beta}(p; a = 1.5, b = 1.5) dp, k \in \mathbb{N}_0.$$

691 We use parameters $a = 0.5$, $b = 1.5$, and $r = 5$, inducing a heavy-tailed count distribution with
692 long-range dependencies.

693 **Zipf Distribution:** This power-law distribution is defined as:

$$P(x) = \frac{x^{-\alpha}}{\zeta(\alpha)}, \alpha = 1.7$$

694 , where $\zeta(\alpha)$ is the Riemann zeta function. Zipf distributions model naturally occurring frequencies,
695 such as word counts or node degrees.

696 **Yule–Simon Distribution:** The Yule–Simon distribution is defined as:

$$P(k) = \rho \cdot B(k, \rho + 1) = \rho \cdot \frac{\Gamma(k)\Gamma(\rho + 1)}{\Gamma(k + \rho + 1)}, \rho = 2.0, k \in \mathbb{N}_{\geq 1},$$

697 where B is the Beta function and Γ is the gamma function. It is used to model data with power-law
698 decay, often arising in preferential attachment or self-reinforcing (e.g. rich-get-richer) processes.
699 These distributions form a challenging testbed for evaluating generative performance on discrete,
700 non-negative data.

701 Table 5 summarizes the discrete synthetic benchmarks used in our study. Each distribution is selected
702 to represent a different pathological regime—bi-modality, zero-inflation, overdispersion, or power-law
703 behavior—intended to stress PMF concentration and test model robustness. For completeness, we
704 specify parameter values used in generation and annotate tail behaviors to clarify their impact on
705 sample complexity and generalization.

Distribution	Parameters	Tail behaviour
PoissMix	$\lambda = \{1, 100\}$	bi-modal
Zero-Inflated Poisson	$\pi_0 = 0.7, \lambda = 5$	spike at 0
NBinomMix	$(r, p) = \{(1, 0.9), (10, 0.1)\}$	Var > E
BNB	$a = 0.5, b = 1.5, r = 5$	power-law
Zipf	$\alpha = 1.7$	$\sim x^{-\alpha}$
Yule-Simon	$\rho = 2.0$	heavier than Zipf

Table 5: Specification of discrete synthetic benchmarks. All distributions are heavy-tailed, zero-inflated, or multi-modal, stressing PMF concentration.

706 C.2 Training Details & Metrics

707 In addition to the ConditionalMLP, a timestep embedding network additionally projects diffusion
708 steps into a 64-dimensional space using SiLU activations. Models are trained for 200 epochs using
709 the Adam optimizer ($\eta = 10^{-3}, \beta_1 = 0.9, \beta_2 = 0.999$) with a batch size of 128. The Gaussian
710 DDPM employs a linear noise schedule $\beta_t \in [10^{-4}, 2 \cdot 10^{-2}]$ over $T = 100$ diffusion steps. Our
711 ItDPDM framework adopts a linear gamma schedule $\gamma_t \in [1.0, 0.0]$ over the same number of steps.
712 For Poisson diffusion, the initial sample mean is set to 10.0.

713 **Wasserstein-1 distance** Wasserstein-1 distance [47] between two univariate distributions p and q is
714 defined as: $W_1(p, q) := \int_{\mathbb{R} \times \mathbb{R}} |x - y| d\pi(x, y) = \int_{\mathbb{R}} |P(x) - Q(x)| dx$, where $\pi(x, y)$ is a joint
715 coupling of p and q , and P, Q are their respective cumulative distribution functions (CDFs). When p and q
716 are empirical distributions of the same size n , this reduces to: $W_1(p, q) = \frac{1}{n} \|\text{sort}(X) - \text{sort}(Y)\|_1$,
717 where $X, Y \in \mathbb{R}^n$ are the sorted samples from p and q .

718 For each empirical distribution of 50,000 generated samples over 5 runs, say \hat{p}_{gen} (with \hat{p}_{test} denoting
719 the empirical distribution of 50,000 test samples), we compute the Wasserstein-1 distance (WD) [47]
720 and negative log-likelihood (NLL) as:

$$\text{WD} = W_1(\hat{p}_{\text{test}}, \hat{p}_{\text{gen}}), \text{NLL} = -\frac{1}{n_{\text{test}}} \sum_i \log \hat{p}_{\text{gen}}(x_i) \quad (24)$$

721 where x_i denote the held-out samples.

722 C.3 Probability Mass Function Estimation:

723 For discrete distributions, we estimate the empirical probability mass function (PMF) $\hat{p}(x)$ from
724 generated samples $\{x_i\}_{i=1}^N$ using a histogram-based approach with binning over a finite support
725 $\mathcal{X} = \{0, 1, \dots, K\}$:

$$\hat{p}(x) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(x_i = x), \quad (25)$$

726 where $\mathbb{I}(\cdot)$ is the indicator function and K is the truncation value. We set $K = 50$ across all
727 experiments to standardize the support. To reduce sampling noise and better visualize differences
728 across models, we additionally compute a *smoothed PMF estimate* using a discrete Gaussian kernel:

$$\hat{p}_{\text{smooth}}(x) = \frac{1}{N} \sum_{i=1}^N K_h(x - x_i), \quad (26)$$

729 where $K_h(\cdot)$ is a Gaussian kernel defined on the integer lattice:

$$K_h(x) = \frac{1}{Z} \exp\left(-\frac{x^2}{2h^2}\right), \quad (27)$$

730 with normalization constant $Z = \sum_{x' \in \mathcal{X}} \exp\left(-\frac{x'^2}{2h^2}\right)$ ensuring that K_h sums to 1 over the support.

731 The bandwidth h is selected empirically per distribution to balance smoothness and fidelity to the
732 empirical histogram. To assess variability in PMF estimation, we also compute error bands via
733 non-parametric bootstrapping. Specifically, we generate 10 bootstrap resamples of the model outputs,
734 re-estimate the (smoothed) PMF for each, and plot the mean \pm standard deviation across these
735 resampled estimates. Each plot includes in Fig. 6 includes: a) ground-truth PMF (when known), and
736 b) the empirical unsmoothed and smoothed PMFs for each model (e.g., ItDPDM, DDPM, LTJ), with
737 any shaded error bands reflecting bootstrap variability.

Implementation Details:

Aspect	Details
Sample size	$N = 10,000$ samples per model and distribution
Support	$\mathcal{X} = \{0, 1, \dots, 50\}$ for discrete; bounded x for continuous
Smoothing bandwidth	h tuned per distribution (discrete); KDE bandwidth default
Bootstrap	10 resamples per model for uncertainty estimation
Visualization	True distribution, model estimates, and error bands plotted

Table 6: Summary of implementation settings for PMF and PDF estimation.

738

739 **Zoomed-in look at PMF plots:** Building on the analysis in Section 4, Figure 11 and Figure 12
740 provides a magnified view of the Yule–Simon and Zipf fits produced by each model. ItDPDM exhibits
741 the closest alignment to the target distribution, particularly in the critical low-support region.

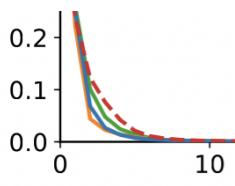


Figure 11: Zoomed-in Yule–Simon fits

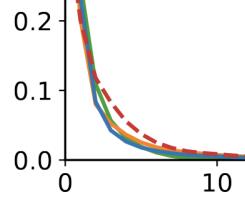


Figure 12: Zoomed-in Zipf law fits

742 C.4 Non-negative Continuous Scenarios

743 As stated earlier, we extend our analysis to six skewed continuous densities: Gamma, Log-Normal,
744 Lomax, Half-Cauchy, Half-t, Weibull, (along with Beta and Uniform distributions) as outlined in this
745 section. Our goal here is to assess how well generative models capture asymmetry, concentration,
746 and long-range dependencies in continuous data.

747 Descriptions and parameters:

748 **Gamma Distribution:** The Gamma distribution is defined by a shape parameter ‘ a ’ and a scale
749 parameter ‘ θ ’:

$$p(x) = \frac{1}{\Gamma(a)\theta^a} x^{a-1} e^{-x/\theta}, \quad x \geq 0.$$

750 We use $a = 0.5$, $\theta = 2$, which produces a sharp mode near zero and a long right tail. Gamma
751 distributions are commonly used to model wait times, energy release, and insurance claims—making
752 them valuable for stress-testing the model’s handling of high variance and positive skew.

753 **Log-Normal Distribution:** A log-normal distribution arises when the logarithm of a variable is
754 normally distributed:

$$p(x) = \frac{1}{x s \sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^2}{2s^2}\right), \quad x > 0.$$

755 We use $\mu = 0, s = 1.5$, producing a distribution with significant positive skew and heavy tails. Log-
 756 normal models appear in financial returns, biological measurements, and natural language modeling,
 757 where multiplicative effects dominate.

758 **Lomax Distribution:** Also known as the Pareto Type II distribution, the Lomax is defined as:

$$p(x) = \frac{c}{s} \left(1 + \frac{x}{s}\right)^{-(c+1)}, \quad x \geq 0.$$

759 We use $c = 2.0, s = 1.0$, resulting in a fat-tailed distribution often used in reliability engineering and
 760 modeling rare, catastrophic events. It challenges models to capture high-probability mass near zero
 761 with occasional large outliers.

762 **Half-Cauchy Distribution:** The Half-Cauchy is the positive part of a Cauchy distribution:

$$p(x) = \frac{2}{\pi s \left[1 + \left(\frac{x}{s}\right)^2\right]}, \quad x \geq 0.$$

763 With $s = 1$, this distribution has undefined mean and variance, and extremely heavy tails. It is
 764 commonly used as a prior in hierarchical Bayesian models due to its robustness to outliers.

765 **Half-t Distribution:** The Half- t distribution is the absolute value of a Student's t -distributed variable:

$$p(x) = 2 \cdot t(x; \nu, 0, s), \quad x \geq 0.$$

766 We use $\nu = 3, s = 1$, yielding a distribution with heavy but finite tails. This is another robust
 767 prior used in Bayesian inference, particularly for variances in hierarchical models, where it prevents
 768 over-shrinkage.

769 **Weibull Distribution:** The Weibull distribution, defined by shape k and scale λ , is given by:

$$p(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}, \quad x \geq 0.$$

770 We use $k = 1.5, \lambda = 1$, producing a distribution with increasing hazard rate and moderate skew. This
 771 is widely used in survival analysis, material failure modeling, and wind speed distributions.

772 **Beta Distribution (bounded support):** Though often used on $[0, 1]$, the Beta distribution provides
 773 diverse shapes depending on the parameters:

$$p(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, \quad 0 \leq x \leq 1.$$

774 We use $a = 2, b = 2$, leading to a density concentrated near zero. The Beta distribution tests
 775 the model's ability to learn bounded distributions with asymmetric mass concentration, relevant in
 776 probabilistic modeling and reinforcement learning. A key limitation to note here is that in case of
 777 asymmetric/skewed beta distributions, all the models notably fail to learn the distribution.

778 **Uniform Distribution (flat support):** The uniform distribution provides a baseline for bounded,
 779 structureless densities:

$$p(x) = \frac{1}{b-a}, \quad a \leq x \leq b.$$

780 We set $a = 0, b = 1$, resulting in a constant density over the unit interval. Although simple, it serves
 781 as a sanity check for model calibration and ability to avoid mode collapse under flat distributions.
 782 Together, these distributions offer a comprehensive testbed for evaluating generative modeling under
 783 varied support, skewness, and tail behavior. They also represent common scenarios encountered in
 784 practice, ensuring relevance to real-world generative tasks.

785 **Results:**

786 Table 7 compares the Wasserstein distance for all the continuous cases, and in the continuous case,
 787 we omit NLL values as they can be overly sensitive to skewness and outliers, making them unreliable
 788 for fair comparison. More critically, whereas the true NLL in continuous distributions can often be
 789 negative while our discrete estimator cannot possibly yield a negative NLL.

790 For each distribution, we visualize the estimated PDFs from all models alongside the true density.
 791 Figure 13 summarizes the results across all eight distributions, providing a qualitative comparison of
 792 how closely each model recovers the underlying data-generating process.

Table 7: WD for continuous cases (\downarrow lower is better). Bold indicates best.

Distribution	WD		
	DDPM	ItDPDM	LTJ
Gamma	0.27 \pm 0.09	0.12 \pm 0.05	0.14 \pm 0.05
Log-Normal	2.39 \pm 0.53	1.94 \pm 0.71	1.99 \pm 0.66
Lomax	0.39 \pm 0.20	0.31 \pm 0.17	1.15 \pm 0.41
Half-Cauchy	6.67 \pm 2.45	6.35 \pm 2.56	5.45 \pm 2.23
Half-t	0.20 \pm 0.07	0.21 \pm 0.02	0.22 \pm 0.04
Weibull	0.29 \pm 0.05	0.23 \pm 0.02	0.23 \pm 0.06
Beta	0.28 \pm 0.07	0.18 \pm 0.03	0.19 \pm 0.06
Uniform	0.12 \pm 0.05	0.12 \pm 0.03	0.12 \pm 0.02

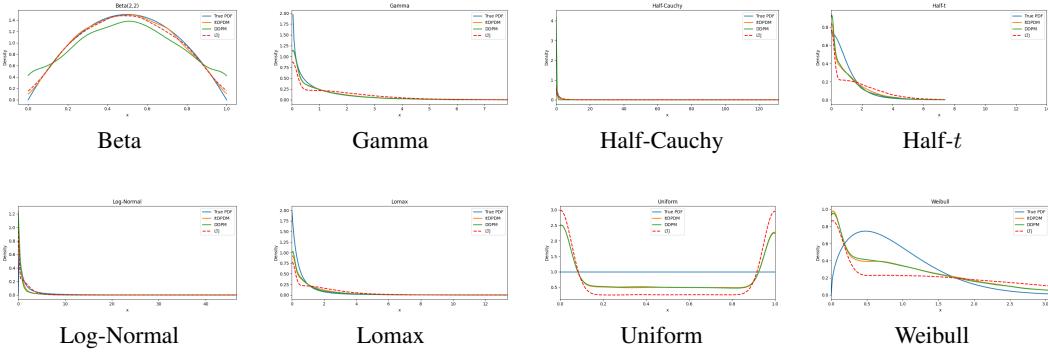


Figure 13: Comparison of estimated PDFs for various continuous distributions in the synthetic dataset. Each plot shows the true distribution and model-generated estimates.

793 **PDF estimation:**

794 For continuous non-negative distributions, we estimate the probability density function (PDF) $\hat{f}(x)$
 795 using kernel density estimation (KDE) with a Gaussian kernel:

$$\hat{f}(x) = \frac{1}{N} \sum_{i=1}^N \frac{1}{\sqrt{2\pi}h} \exp\left(-\frac{(x-x_i)^2}{2h^2}\right), \text{ where by default } h = \sigma N^{-1/(d+4)}, d = 1 \Rightarrow h = \sigma N^{-1/5}, \quad (28)$$

796 with σ denoting the sample standard deviation of $\{x_i\}$ and N the number of samples.

797 We compute error bands by bootstrapping: for each model, we resample its generated samples
 798 10 times, compute the KDE for each resample, and display the mean \pm standard deviation across
 799 estimates. For bounded distributions (e.g., Beta, Uniform), we clip model-generated samples to the
 800 distribution's support before applying KDE. Each PDF plot includes: a) ground-truth PDF, and b) the
 801 average KDE for each model, with any shaded error bands indicating bootstrap uncertainty.

802 **D Section 3 Proofs**

803 **D.1 On the Poisson Loss Function:**

804 Here, as outlined in 3.2, we establish that the function $l_0(x) = x \log x - x + 1$ serves as the convex
 805 conjugate of the Poisson distribution's log moment generating function (log MGF). We begin by
 806 deriving the log MGF of the Poisson distribution, and finally computing its convex conjugate through
 807 the Legendre-Fenchel transform. Let X be a random variable following a Poisson distribution with
 808 parameter $\lambda > 0$. The probability mass function (PMF) of X is given by:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad \text{for } k = 0, 1, 2, \dots$$

809 The moment generating function (MGF) can be evaluated as:

$$M_X(t) = E[e^{tX}] = \sum_{k=0}^{\infty} e^{tk} P(X = k) = \sum_{k=0}^{\infty} e^{tk} \frac{\lambda^k e^{-\lambda}}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!} = e^{-\lambda} e^{\lambda e^t} = e^{\lambda(e^t - 1)}$$

810 Let $\phi(t)$ be the log moment generating function as shown:

$$\phi(t) = \log M_X(t) = \lambda(e^t - 1)$$

811 Without any loss of generality, let $\lambda = 1$ (since scaling does not affect the form of the conjugate),
 812 implying $\phi(t) = e^t - 1$. The **convex conjugate** of a convex function $\phi : \mathbb{R} \rightarrow \mathbb{R} \cup \{+\infty\}$, denoted
 813 by $\phi^*(x)$, is defined as:

$$\phi^*(x) = \sup_{t \in \mathbb{R}} \{xt - \phi(t)\}$$

814 This transformation maps the original function $\phi(t)$ to its dual function $\phi^*(x)$, and then finds the
 815 supremum of linear functions subtracted by $\phi(t)$.

816 Let $\phi(t) = e^t - 1$ be the log moment generating function (log MGF) of a Poisson distribution with
 817 parameter $\lambda = 1$. Then, the convex conjugate of ϕ , denoted by $\phi^*(x)$, is given by:

$$\phi^*(x) = \begin{cases} x \log x - x + 1 & \text{if } x > 0, \\ +\infty & \text{otherwise.} \end{cases}$$

818 *Proof.* By definition: $\phi^*(x) = \sup_{t \in \mathbb{R}} \{xt - \phi(t)\} = \sup_{t \in \mathbb{R}} \{xt - e^t + 1\}$

819 To find the supremum, we find the value of t that maximizes this expression. First-order conditions
 820 imply: $\frac{d}{dt} (xt - e^t) = x - e^t = 0$ so we have $t = \log x$. This critical point exists only if $x > 0$, as
 821 $e^t > 0$ for all $t \in \mathbb{R}$. From the second-order condition, we get:

$$\frac{d^2}{dt^2} (xt - e^t) = -e^t < 0 \quad \forall t \in \mathbb{R}$$

822 The negative second derivative confirms that the function is concave at $t = \log x$, ensuring a global
 823 maximum at this point. So for $t = \log x$,

$$\phi^*(x) = x(\log x) - e^{\log x} + 1 = x \log x - x + 1$$

824 Therefore, for $x > 0$:

$$\phi^*(x) = x \log x - x + 1$$

825 For $x \leq 0$, the supremum is unbounded above, leading to: $\phi^*(x) = +\infty$ Combining these cases
 826 gives:

$$\phi^*(x) = \begin{cases} x \log x - x + 1 & \text{if } x > 0, \\ +\infty & \text{otherwise.} \end{cases}$$

827 This establishes that $l_0(x) = x \log x - x + 1$ is the convex conjugate of the Poisson distribution's
 828 log moment generating function $\phi(t) = e^t - 1$ and therefore, a natural loss function.

829 Connection to Bregman Divergence

830 The Poisson loss function we defined $l(x, \hat{x})$ is a member of the broader family of Bregman diver-
 831 gences, which are pivotal in various domains such as machine learning, information theory, and
 832 optimization. A Bregman divergence is defined for a strictly convex and differentiable function
 833 $\psi : \mathbb{R}^d \rightarrow \mathbb{R}$ as follows:

$$\mathcal{L}_\psi(x, \hat{x}) = \psi(x) - \psi(\hat{x}) - \langle \nabla \psi(\hat{x}), x - \hat{x} \rangle,$$

834 where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^d , and $\nabla \psi(\hat{x})$ represents the gradient of ψ evaluated at \hat{x} .

835 For the Poisson loss function, the generating function ψ is chosen as:

$$\psi(x) = x \log x - x.$$

836 Substituting this into the Bregman divergence definition yields:

$$\mathcal{L}_\psi(x, \hat{x}) = x \log x - x - (\hat{x} \log \hat{x} - \hat{x}) - (\log \hat{x} \cdot (x - \hat{x})).$$

837 Simplifying the expression, we obtain:

$$\mathcal{L}_\psi(x, \hat{x}) = x \log\left(\frac{x}{\hat{x}}\right) - x + \hat{x},$$

838 which is precisely the Poisson loss function $l(x, \hat{x})$.

839 This framework not only encapsulates the Poisson loss but also generalizes it to encompass other
 840 widely-used loss functions by merely altering the generating function ψ . Well-known examples
 841 include squared error loss (choosing $\psi(x) = \frac{1}{2}x^2$) and Itakura-Saito divergence (choosing $\psi(x) =$
 842 $-\log x$). Bregman divergences exhibit key properties that make them valuable in optimization and
 843 learning. They are **non-negative**, vanishing only when $x = \hat{x}$, due to the strict convexity of ψ .
 844 They are also **asymmetric**, meaning $\mathcal{L}_\psi(x, \hat{x}) \neq \mathcal{L}_\psi(\hat{x}, x)$ in general and their **projection property**
 845 enables efficient optimization over convex sets.

846 By leveraging the Bregman divergence framework, Poisson and Gaussian diffusion schemes can be
 847 unified under a single theoretical umbrella, where squared error loss ($\psi(x) = \frac{1}{2}x^2$) corresponds to
 848 Gaussian noise, and Poisson loss aligns with count-based data modeling. This unification enables
 849 extending optimization techniques across different noise models by adjusting the generating function
 850 ψ . Viewing Poisson loss function as a Bregman divergence thus broadens its theoretical and practical
 851 utility discrete data modelling.

852 Optimality of Conditional Expectation

853 Let $\phi : \mathbb{R}^d \rightarrow \mathbb{R}$ be a strictly convex and differentiable function. The Bregman divergence D_ϕ
 854 induced by ϕ is defined by

$$D_\phi(X, Y) = \phi(X) - \phi(Y) - \nabla\phi(Y)^\top(X - Y).$$

855 Consider a random variable $X \in \mathbb{R}^d$ and a sigma-algebra $\sigma(Z)$ with $Y = Y(Z)$ being any measurable
 856 function of Z . Let $Y^* = E[X|Z]$ denote the conditional expectation of X given Z . The objective is
 857 to show that Y^* uniquely minimizes the expected Bregman loss $E[D_\phi(X, Y)]$ among all measurable
 858 functions $Y(Z)$. For any such function Y , consider the difference in expected Bregman losses:

$$E[D_\phi(X, Y)] - E[D_\phi(X, Y^*)] = E[\phi(X) - \phi(Y) - \nabla\phi(Y)^\top(X - Y)] - E[\phi(X) - \phi(Y^*) - \nabla\phi(Y^*)^\top(X - Y^*)]$$

859 Simplifying, the terms involving $\phi(X)$ cancel out, yielding

$$E[D_\phi(X, Y)] - E[D_\phi(X, Y^*)] = E[\phi(Y^*) - \phi(Y) - \nabla\phi(Y)^\top(Y^* - Y)].$$

860 Recognizing that Y^* is the conditional expectation $E[X|Z]$, we utilize the law of total expectation to
 861 express the above as

$$E[\phi(Y^*) - \phi(Y) - \nabla\phi(Y)^\top(Y^* - Y)] = E[D_\phi(Y^*, Y)].$$

862 Due to the strict convexity of ϕ , the Bregman divergence satisfies $D_\phi(u, v) \geq 0$ for all $u, v \in \mathbb{R}^d$,
 863 with equality if and only if $u = v$. Therefore,

$$E[D_\phi(X, Y)] - E[D_\phi(X, Y^*)] = E[D_\phi(Y^*, Y)] \geq 0,$$

864 with equality holding if and only if $Y = Y^*$ almost surely. This establishes that

$$E[D_\phi(X, Y)] \geq E[D_\phi(X, Y^*)],$$

865 for all measurable functions $Y(Z)$, and thus $Y^* = E[X|Z]$ is the unique minimizer of the expected
 866 Bregman loss $E[D_\phi(X, Y)]$.

867 D.2 Section 3 Lemma Proofs

868 **Proof of Lemma 1: Properties of Poisson Loss** Consider the loss function defined as $l(x, \hat{x}) =$
 869 $\hat{x} \cdot l_0\left(\frac{x}{\hat{x}}\right)$, where $l_0(z) = z \log z - z + 1$.

870 **1. Non-negativity:** Since $l_0(z)$ achieves its minimum value of 0 at $z = 1$ and is non-negative for all
 871 $z > 0$, it follows that $l(x, \hat{x}) \geq 0$ for all $x, \hat{x} > 0$. Equality holds if and only if $\frac{x}{\hat{x}} = 1$, i.e., $x = \hat{x}$.

872 **2. Convexity:** The function $l_0(z)$ is convex in z because its second derivative $l_0''(z) = \frac{1}{z}$ is positive
873 for all $z > 0$. Therefore, $l(x, \hat{x}) = \hat{x} \cdot l_0\left(\frac{x}{\hat{x}}\right)$ is convex in \hat{x} for each fixed x , and similarly, it is convex
874 in x for each fixed \hat{x} , as the composition of a convex function with an affine transformation preserves
875 convexity. (We can also directly use the Bregman divergence framework to argue its convexity)

876 **3. Scaling:** For any $\alpha > 0$, consider scaling both arguments of the loss function:

$$l(\alpha x, \alpha \hat{x}) = \alpha \hat{x} \cdot l_0\left(\frac{\alpha x}{\alpha \hat{x}}\right) = \alpha \hat{x} \cdot l_0\left(\frac{x}{\hat{x}}\right) = \alpha \cdot l(x, \hat{x}).$$

877 This demonstrates that the loss function scales linearly with α .

878 **4. Unboundedness for Underestimation:** For any fixed $x > 0$, as $\hat{x} \rightarrow 0^+$, the ratio $\frac{x}{\hat{x}} \rightarrow \infty$.
879 Evaluating the loss function in this limit:

$$l(x, \hat{x}) = \hat{x} \cdot \left(\frac{x}{\hat{x}} \log\left(\frac{x}{\hat{x}}\right) - \frac{x}{\hat{x}} + 1 \right) = x \log\left(\frac{x}{\hat{x}}\right) - x + \hat{x}.$$

880 As $\hat{x} \rightarrow 0^+$, $\log\left(\frac{x}{\hat{x}}\right)$ grows without bound, causing $l(x, \hat{x}) \rightarrow \infty$. This shows that the loss becomes
881 unbounded as \hat{x} underestimates x .

882 **Proof of Lemma 2.** Let Z_γ be a Poisson random variable with parameter γX , meaning $Z_\gamma | X = x \sim \text{Pois}(\gamma x)$. Suppose the conditional expectation $\langle X \rangle_z = E[X | Z_\gamma = z]$ is affine in z ,

$$\langle X \rangle_z = az + b,$$

884 for some a and b , with $0 < a < 1/\gamma$ and $b > 0$. We aim to show that X follows a Gamma distribution
885 with shape $\alpha = \frac{1-\gamma a}{a}$ and rate $\beta = \frac{a}{b}$, i.e.,

$$X \sim \text{Gamma}\left(\frac{1-\gamma a}{a}, \frac{a}{b}\right).$$

886 Define $U = X$ and $Y = Z_\gamma \sim \mathcal{P}(\gamma U)$. Assume $E[U | Y = z] = az + b$. By the law of total
887 expectation,

$$0 = E[(U - (aY + b))g(Y)]$$

888 for any function g satisfying integrability. Choosing $g(Y) = e^{-tY}$ for $t > 0$,

$$E[(U - (aY + b))e^{-tY}] = 0.$$

889 Rewriting $Y \sim \mathcal{P}(\gamma U)$, we use the known conditional Laplace transform relation for a $\mathcal{P}(\lambda)$ random
890 variable Y ,

$$E[e^{-tY} | U = u] = \exp(u(\gamma(e^{-t} - 1))).$$

891 Hence,

$$E[e^{-tY}] = E[\exp(U\gamma(e^{-t} - 1))],$$

892 which is the Laplace transform of U evaluated at $s = \gamma(1 - e^{-t})$. Denote

$$L_U(s) = E[e^{-sU}], \quad \text{so that} \quad E[e^{-tY}] = L_U(\gamma(1 - e^{-t})).$$

893 Similarly,

$$E[ue^{-tY}] = -\frac{d}{ds} L_U(s) \Big|_{s=\gamma(1-e^{-t})}, \quad E[ye^{-tY}] = -\frac{d}{dt} E[e^{-tY}].$$

894 From the orthogonality condition,

$$E[(U - (aY + b))e^{-tY}] = 0.$$

895 Using the above expressions,

$$0 = E[ue^{-tY}] - aE[ye^{-tY}] - bE[e^{-tY}].$$

896 Substituting $s = \gamma(1 - e^{-t})$ and differentiating as needed, we obtain a first-order linear differential
897 equation for $L_U(s)$,

$$-((1 - a\gamma) + a\gamma s)L'_U(s) = bL_U(s).$$

898 The unique solution with $L_U(0) = 1$ is

$$L_U(s) = \left(1 + \frac{b}{1 - \gamma a}s\right)^{-\frac{1-\gamma a}{a}}.$$

899 This is the Laplace transform of a $\text{Gamma}(\frac{1-\gamma a}{a}, \frac{a}{b})$ random variable. Hence, $U = X$ follows this
900 Gamma distribution. For the Gamma distribution to be well-defined with a positive shape parameter,
901 we require $\alpha = \frac{1-\gamma a}{a} > 0$, which holds for $0 < a < \frac{1}{\gamma}$. The rate parameter $\beta = \frac{a}{b} > 0$ requires
902 $b > 0$. Under these conditions, $X \sim \text{Gam}(\frac{1-\gamma a}{a}, \frac{a}{b})$, completing the proof.

903 **Proof of Lemma 3.** When $X = 0$ almost surely, $E[X] = 0$, and the identity holds by convention.
904 Else, $E[X] > 0$, and we have:

$$\begin{aligned} E[l(X, \hat{x})] &= E\left[X \log\left(\frac{X}{\hat{x}}\right) - X + \hat{x}\right] = E[X \log X] - E[X \log \hat{x}] - E[X] + \hat{x} \\ &= E[X \log X - X \log E[X] - X + E[X]] + l(E[X], \hat{x}) \\ &= E[l(X, E[X])] + l(E[X], \hat{x}). \end{aligned}$$

905 **Proof of Lemma 4.** Consider $Z_\gamma = \mathcal{P}(\gamma X)$, where Z_γ is a Poisson random variable with parameter
906 γX . To determine $\langle X \rangle_z = E[X|Z_\gamma = z]$ for each $z \geq 0$, we start by applying the definition of
907 conditional expectation:

$$\langle X \rangle_z = \frac{E[X \cdot P_{Z_\gamma}(z|X)]}{P_{Z_\gamma}(z)}.$$

908 Given that $Z_\gamma|X = x \sim \text{Pois}(\gamma x)$, the conditional probability mass function is

$$P_{Z_\gamma}(z|X = x) = \frac{(\gamma x)^z e^{-\gamma x}}{z!}.$$

909 Substituting this into the expression for $\langle X \rangle_z$ yields

$$\langle X \rangle_z = \frac{E\left[X \cdot \frac{(\gamma X)^z e^{-\gamma X}}{z!}\right]}{P_{Z_\gamma}(z)}.$$

910 To relate $\langle X \rangle_z$ to $P_{Z_\gamma}(z+1)$, observe that

$$P_{Z_\gamma}(z+1) = E\left[\frac{(\gamma X)^{z+1} e^{-\gamma X}}{(z+1)!}\right] = \frac{\gamma}{z+1} E\left[X \cdot \frac{(\gamma X)^z e^{-\gamma X}}{z!}\right].$$

911 Rearranging the above equation, we obtain

$$E\left[X \cdot \frac{(\gamma X)^z e^{-\gamma X}}{z!}\right] = \frac{(z+1)}{\gamma} P_{Z_\gamma}(z+1).$$

912 Substituting this back into the expression for $\langle X \rangle_z$, we have

$$\langle X \rangle_z = \frac{\frac{(z+1)}{\gamma} P_{Z_\gamma}(z+1)}{P_{Z_\gamma}(z)} = \frac{1}{\gamma} \frac{(z+1) P_{Z_\gamma}(z+1)}{P_{Z_\gamma}(z)}.$$

913 This completes the proof of Lemma 4.

914 The conditional expectation over a Poisson noise channel also has other unique properties, some of
915 which are stated below. The next property is useful in showing that the conditional expectation in this
916 case is unique for every input distribution.

917 **Lemma 5.** Let $Z_\gamma = \mathcal{P}(\gamma X)$. Then, for every positive integer k and every non-negative integer z ,

$$E[(\gamma X)^k | Z_\gamma = z] = \prod_{i=0}^{k-1} E[\gamma X | Z_\gamma = z+i].$$

918 **Proof of Lemma 5.** Let $Z_\gamma = \mathcal{P}(\gamma X)$. We claim that for every positive integer k and nonnegative
919 integer z ,

$$E[(\gamma X)^k | Z_\gamma = z] = \prod_{i=0}^{k-1} E[\gamma X | Z_\gamma = z+i].$$

920 From the affine formula in Lemma 4, the conditional expectation of γX given $Z_\gamma = z$ is related to
921 the ratio of marginal probabilities. More generally, for higher-order moments,

$$E[(\gamma X)^k | Z_\gamma = z] = \frac{(z+k)!}{z!} \frac{P_{Z_\gamma}(z+k)}{P_{Z_\gamma}(z)}. \quad (29)$$

922 We can also express $(\gamma X)^k$ as a product of γX terms and use the Poisson shifting property of $\mathcal{P}(\gamma X)$.
923 Applying Lemma 4 and Eq. 29 for each shift $z \rightarrow z + i$ gives

$$E[(\gamma X)^k | Z_\gamma = z] = \prod_{i=0}^{k-1} E[\gamma X | Z_\gamma = z + i].$$

924 Each factor on the right captures the conditional expectation of γX at consecutive levels $z, z + 1, \dots, z + k - 1$, so all higher-order moments of γX follow from the first conditional moment $E[\gamma X | Z_\gamma = z]$. This completes the proof.

927 *Proof Sketch of Eq. 29:* The key observation behind the formula is that, for the Poisson distribution,
928 shifting from y to $y + k$ multiplies the corresponding probability mass by $\frac{(aX + \lambda)^k}{k!}$. Evaluating
929 the expectation leverages the ratio of adjacent Poisson probabilities $P_Y(y+k)/P_Y(y)$ and tracks
930 how $(aX + \lambda)^k$ factors. In essence, a product expansion shows how each additional factor $aX + \lambda$
931 increases the count from y to $y + 1$, and iterating this argument recovers the moment expression. As
932 shown in [60], for Poisson observations $Z_\gamma \sim \mathcal{P}(aX + \lambda)$, the sequence of conditional expectations
933 $\{\mathbb{E}[X | Z_\gamma = z]\}_{z \geq 0}$ uniquely determines the input distribution P_X . This supports our information-
934 theoretic derivation and strengthens the foundation for learning in discrete-state noise models. For
935 our Poisson setting, we also have:

936 **Lemma 6.** *Let $Z_\gamma = \mathcal{P}(\gamma X)$. Then, for every $\gamma > 0$ and $y = 0, 1, \dots$,*

$$\frac{d}{d\gamma} P_{Z_\gamma | X}(y|x) = x (P_{Z_\gamma | X}(y-1|x) - P_{Z_\gamma | X}(y|x)), \quad \gamma \frac{d}{d\gamma} P_{Z_\gamma}(y) = y P_{Z_\gamma}(y) - (y+1) P_{Z_\gamma}(y+1)$$

937 where $P_{Z_\gamma | X}(-1|x) = P_{Z_\gamma}(-1) = 0$.

938 **Proof of Lemma 6.** Let $Z_\gamma = \mathcal{P}(\gamma X)$, where Z_γ is a Poisson random variable with parameter γX .
939 We first compute the derivative of the conditional probability mass function $P_{Z_\gamma}(z|X = x)$ with
940 respect to γ .

941 Since Z_γ given $X = x$ follows a Poisson distribution with mean γx , we have

$$P_{Z_\gamma}(z|X = x) = \frac{(\gamma x)^z e^{-\gamma x}}{z!}.$$

942 Taking the derivative with respect to γ and using product rule, we obtain:

$$\frac{d}{d\gamma} P_{Z_\gamma}(z|X = x) = \frac{d}{d\gamma} \left(\frac{(\gamma x)^z e^{-\gamma x}}{z!} \right) = \frac{z(\gamma x)^{z-1} x e^{-\gamma x}}{z!} - \frac{x(\gamma x)^z e^{-\gamma x}}{z!}.$$

943 Simplifying the terms, we obtain

$$\frac{d}{d\gamma} P_{Z_\gamma}(z|X = x) = x \left(\frac{(\gamma x)^{z-1} e^{-\gamma x}}{(z-1)!} - \frac{(\gamma x)^z e^{-\gamma x}}{z!} \right).$$

944 Notice that

$$\frac{(\gamma x)^{z-1} e^{-\gamma x}}{(z-1)!} = P_{Z_\gamma}(z-1|X = x),$$

945 we can rewrite the derivative as

$$\frac{d}{d\gamma} P_{Z_\gamma}(z|X = x) = x (P_{Z_\gamma}(z-1|X = x) - P_{Z_\gamma}(z|X = x)).$$

946 This establishes the first part of the lemma.

947 Next, we compute the derivative of the marginal probability $P_{Z_\gamma}(z)$ with respect to γ . By the law of
948 total probability, we have

$$P_{Z_\gamma}(y) = E [P_{Z_\gamma}(z|X)].$$

949 Differentiating both sides with respect to γ , we obtain

$$\frac{d}{d\gamma} P_{Z_\gamma}(z) = E \left[\frac{d}{d\gamma} P_{Z_\gamma}(z|X) \right].$$

950 Substituting the result from above, we get

$$\frac{d}{d\gamma} P_{Z_\gamma}(z) = E \left[x (P_{Z_\gamma}(z-1|X) - P_{Z_\gamma}(z|X)) \right].$$

951 This can be expressed as

$$\gamma \frac{d}{d\gamma} P_{Z_\gamma}(z) = \gamma E \left[x P_{Z_\gamma}(z-1|X) \right] - \gamma E \left[x P_{Z_\gamma}(z|X) \right].$$

952 Noting that for a Poisson distribution, $E \left[x P_{Z_\gamma}(z|X) \right] = \frac{z}{\gamma} P_{Z_\gamma}(z)$ and $E \left[x P_{Z_\gamma}(z-1|X) \right] =$
953 $\frac{z}{\gamma} P_{Z_\gamma}(z)$, we substitute to obtain

$$\gamma \frac{d}{d\gamma} P_{Z_\gamma}(z) = z P_{Z_\gamma}(z) - (z+1) P_{Z_\gamma}(z+1).$$

954 Thus, the second part of the lemma is established.

955 Other properties of the Conditional Expectation

956 **Lemma 7.** *Let $Z_\gamma = \mathcal{P}(\gamma X)$ where X is a nonnegative random variable, and $\gamma > 0$. Then, for
957 every $\gamma > 0$ and integer $z \geq 0$,*

$$\frac{d}{d\gamma} E[X|Z_\gamma = z] = -z\gamma \text{Var}(X|Z_\gamma = z-1),$$

958 where $\text{Var}(X|Z_\gamma = -1) = 0$.

959 *Proof.* Fix an integer $z \geq 0$. Consider the conditional expectation

$$E[X|Z_\gamma = z] = \frac{1}{\gamma} \left((z+1) \frac{P(Z_\gamma = z+1)}{P(Z_\gamma = z)} \right).$$

960 Differentiating both sides with respect to γ , we obtain

$$\frac{d}{d\gamma} E[X|Z_\gamma = z] = \frac{1}{\gamma} \frac{d}{d\gamma} \left((z+1) \frac{P(Z_\gamma = z+1)}{P(Z_\gamma = z)} \right) - \frac{1}{\gamma^2} \left((z+1) \frac{P(Z_\gamma = z+1)}{P(Z_\gamma = z)} \right).$$

961 Applying the quotient rule to the derivative inside the parentheses, we get

$$\frac{d}{d\gamma} \left(\frac{P(Z_\gamma = z+1)}{P(Z_\gamma = z)} \right) = \frac{P(Z_\gamma = z) \frac{d}{d\gamma} P(Z_\gamma = z+1) - P(Z_\gamma = z+1) \frac{d}{d\gamma} P(Z_\gamma = z)}{P(Z_\gamma = z)^2}.$$

962 Using the properties of the Poisson distribution, specifically the identity

$$\frac{P(Z_\gamma = z+1)}{P(Z_\gamma = z)} = \frac{\gamma X}{z+1},$$

963 we can simplify the derivative expression. Substituting back, we obtain

$$\frac{d}{d\gamma} E[X|Z_\gamma = z] = -z\gamma \text{Var}(X|Z_\gamma = z-1).$$

964 For the case $z = 0$, the derivative simplifies to $\frac{d}{d\gamma} E[X|Z_\gamma = 0] = 0$, since $\text{Var}(X|Z_\gamma = -1) = 0$
965 by definition.

966 The result for higher moments follows similarly. For any positive integer k , differentiating
967 $E[(\gamma X)^k|Z_\gamma = z]$ with respect to γ and applying the quotient rule leads to the stated piecewise
968 expression. This completes the proof.

969 Moreover, for any positive integer k ,

$$\frac{d}{d\gamma} E[(\gamma X)^k|Z_\gamma = z] = \begin{cases} k E[(\gamma X)^{k-1}|Z_\gamma = 0], & z = 0, \\ \frac{(z+k) E[(\gamma X)^{k-1}|Z_\gamma = z] E[\gamma X|Z_\gamma = z-1] - z E[(\gamma X)^k|Z_\gamma = z]}{E[\gamma X|Z_\gamma = z-1]}, & z \geq 1. \end{cases}$$

970 **Lemma 8.** Let $Z_\gamma \sim \mathcal{P}(\gamma X)$. Then, for every fixed $\gamma > 0$ and any non-degenerate X , the mapping
971 $z \mapsto E[X|Z_\gamma = z]$ is strictly increasing.

972 *Proof.* To show that $E[X|Z_\gamma = z]$ is strictly increasing, we define $U = \gamma X$ and consider the Poisson
973 marginal probability:

$$P_{Z_\gamma}(k) = \frac{1}{k!} E[U^k e^{-U}] \quad (30)$$

974 Applying the Cauchy-Schwarz inequality, we obtain

$$P_{Z_\gamma}(k) \leq \frac{1}{k!} \sqrt{E[U^{k+1} e^{-U}] E[U^{k-1} e^{-U}]} \quad (31)$$

975 Rewriting in terms of factorial expressions, we get

$$P_{Z_\gamma}(k) \leq \sqrt{\frac{k+1}{k} P_{Z_\gamma}(k+1) P_{Z_\gamma}(k-1)} \quad (32)$$

976 Now, substituting this bound into the Turing-Good-Robbins (TGR) formula from Lemma 4:

$$E[U|Z_\gamma = z] = \frac{(z+1)P_{Z_\gamma}(z+1)}{P_{Z_\gamma}(z)}, \quad (33)$$

977 we obtain the lower bound

$$E[U|Z_\gamma = z] \geq \frac{(z+1) \frac{z}{z+1} P_{Z_\gamma}^2(z)}{P_{Z_\gamma}(z) P_{Z_\gamma}(z-1)} \quad (34)$$

978 Simplifying, this reduces to

$$E[U|Z_\gamma = z] \geq \frac{z P_{Z_\gamma}(z)}{P_{Z_\gamma}(z-1)} \quad (35)$$

979 Using the same formulation for $z-1$, we conclude

$$E[U|Z_\gamma = z] \geq E[U|Z_\gamma = z-1] \quad (36)$$

980 Since $X = U/\gamma$, it follows that $E[X|Z_\gamma = z]$ is strictly increasing in z , completing the proof.

981 D.3 Incremental Channel Approach to I-MPRL and related proofs:

982 Here, we derive interesting relations between the mutual information in a Poisson noise channel and
983 various parameters of the channel. The general distribution we consider here is $Y \sim \text{Poisson}(\alpha X + \lambda)$.
984

985 **Lemma 9.** Let $\lambda > 0$ and let X be a positive random variable satisfying $E\{X \log X\} < \infty$.
986 Consider the Poisson random transformation $X \mapsto Z_\lambda = \mathcal{P}(X + \lambda)$. Then, the derivative of the
987 mutual information between X and Z_λ with respect to the dark current λ is given by

$$\frac{d}{d\lambda} I(X; Z_\lambda) = E[\log(X + \lambda) - \log\langle X + \lambda \rangle],$$

988 where $\langle X + \lambda \rangle = E[X + \lambda|Z_\lambda = z]$.

989 *Proof:* Let $Y_0 = \mathcal{P}(X)$ and $N_\lambda = \mathcal{P}(\lambda)$ be independent Poisson random variables with means X
990 and λ , respectively. Define $Y_\lambda = Y_0 + N_\lambda$, which has the same distribution as $\mathcal{P}(X + \lambda)$. By the
991 definition of mutual information,

$$I(X; Y_0) - I(X; Y_\lambda) = E\{L(X, Y_0, Y_\lambda)\},$$

992 where the expectation is over the joint distribution of (X, Y_0, Y_λ) , and the log-likelihood ratio is

$$L(x, k, \ell) = \log \frac{P_{Y_0|X}(k|x)}{P_{Y_0}(k)} - \log \frac{P_{Y_\lambda|X}(\ell|x)}{P_{Y_\lambda}(\ell)}.$$

993 Given that $Y_0|X = x \sim \mathcal{P}(x)$ and $Y_\lambda|X = x \sim \mathcal{P}(x + \lambda)$, the conditional probabilities are

$$P_{Y_0|X}(k|x) = \frac{x^k e^{-x}}{k!}, \quad P_{Y_\lambda|X}(\ell|x) = \frac{(x + \lambda)^\ell e^{-(x+\lambda)}}{\ell!}.$$

994 Substituting these into the log-likelihood ratio, we obtain

$$L(X, Y_0, Y_\lambda) = Y_0 \log X - Y_\lambda \log(X + \lambda) + U,$$

995 where U encompasses terms involving the logarithms of the marginal probabilities. Taking the
996 expectation, we have

$$E[L] = E\{X \log X - (X + \lambda) \log(X + \lambda)\} + E[U].$$

997 Expanding $Y_\lambda = Y_0 + N_\lambda$ and leveraging the independence of N_λ from Y_0 , we analyze the behavior of
998 $E[U]$ as λ becomes small. Through a series of manipulations and applying the dominated convergence
999 theorem, we find that

$$I(X; Y_\lambda) - I(X; Y_0) = \lambda E \left[\log \frac{X}{\langle X \rangle} \right] + o(\lambda).$$

1000 Dividing both sides by λ and taking the limit as $\lambda \rightarrow 0$, we obtain

$$\frac{d}{d\lambda} I(X; Y_\lambda) = E [\log(X + \lambda) - \log\langle X + \lambda \rangle],$$

1001 where $\langle X + \lambda \rangle = E[X + \lambda | Y_\lambda = z]$. This completes the proof of Lemma 9.

1002 **Lemma 10.** *For every Poisson transformation \mathcal{P}_X with $E\{X \log X\} < \infty$, and as $\delta \rightarrow 0$,*

$$I(X; \mathcal{P}((1 + \delta)X)) - I(X; \mathcal{P}(X)) = \delta E\{X \log X - \langle X \rangle \log\langle X \rangle\} + o(\delta).$$

1003 *Proof:* Consider first the case $\delta \rightarrow 0^+$. Let $Y = \mathcal{P}(X)$ and $Z = \mathcal{P}(\delta X)$ be independent conditioned
1004 on X . Define $Y_\delta = Y + Z$. Then, the left-hand side of the lemma can be expressed as

$$I(X; Y_\delta) - I(X; Y) = E \left\{ \log \frac{P_{Y_\delta|X}(Y_\delta|X)}{P_{Y_\delta}(Y_\delta)} - \log \frac{P_{Y|X}(Y|X)}{P_Y(Y)} \right\}.$$

1005 Expanding the log-likelihood ratio, we have

$$= E \left\{ Z \log X - \delta X - \log \frac{E\{(X')^{Y_\delta} e^{-(1+\delta)X'} | Y_\delta\}}{E\{(X')^Y e^{-X'} | Y\}} \right\}.$$

1006 Here, X' is identically distributed as X but independent of Y and Z .

1007 To analyze the expression as $\delta \rightarrow 0$, we approximate $\Delta = \mathcal{P}(\delta X)$ by a Bernoulli random variable
1008 that takes the value 1 with probability δX (conditioned on X) and 0 otherwise. This approximation is
1009 valid because for small δ , the Poisson distribution $\mathcal{P}(\delta X)$ closely resembles a Bernoulli distribution.

1010 Substituting this approximation into the previous step, we obtain

$$I(X; Y_\delta) - I(X; Y) = E \left\{ Z \log X - \delta X - \log \left[(1 - \delta X) E\{(X')^Y e^{-X'} | Y\} + \delta X E\{(X')^{Y+1} e^{-X'} e^{-\delta X'} | Y\} \right] \right\} + o(\delta) \quad (37)$$

1011 Expanding $e^{-\delta X'}$ to first order in δ , we have $e^{-\delta X'} \approx 1 - \delta X'$. Therefore,

$$E\{(X')^{Y+1} e^{-X'} e^{-\delta X'} | Y\} \approx E\{(X')^{Y+1} e^{-X'} | Y\} - \delta E\{(X')^{Y+2} e^{-X'} | Y\} + o(\delta) \quad (38)$$

1012 Substituting this back into the logarithm and applying the first-order Taylor expansion $\log(1 + \epsilon) \approx \epsilon$
1013 for small ϵ , we obtain

$$\begin{aligned} & \log \left[(1 - \delta X) E\{(X')^Y e^{-X'} | Y\} + \delta X E\{(X')^{Y+1} e^{-X'} | Y\} \right] \\ & \approx \log \left[E\{(X')^Y e^{-X'} | Y\} \right] + \frac{\delta X E\{(X')^{Y+1} e^{-X'} | Y\} - \delta X E\{(X')^Y e^{-X'} | Y\}}{E\{(X')^Y e^{-X'} | Y\}} + o(\delta) \\ & = \log\langle X \rangle - \delta X \frac{E\{(X')^Y e^{-X'} | Y\} - E\{(X')^{Y+1} e^{-X'} | Y\}}{E\{(X')^Y e^{-X'} | Y\}} + o(\delta), \end{aligned}$$

1014 where $\langle X \rangle = E\{X | Y\}$.

1015 Substituting this approximation back into equation 37, we get

$$I(X; Y_\delta) - I(X; Y) = E \left\{ Z \log X - \delta X - \log \langle X \rangle + \delta X \frac{E\{(X')^{Y+1} e^{-X'} | Y\}}{E\{(X')^Y e^{-X'} | Y\}} \right\} + o(\delta) \quad (39)$$

1016 Noting that Z is Poisson with parameter X , we have $E\{Z|X\} = X$, and thus $E\{Z \log X\} = E\{X \log X\}$.

1018 Furthermore, we know that $\langle X \rangle = E\{X|Y\}$, and from Lemma 4, we have

$$E\{(X')^{Y+1} e^{-X'} | Y\} = \langle X \rangle e^{-\langle X \rangle} (Y+1).$$

1019 Substituting these into equation 39, we simplify to

$$I(X; Y_\delta) - I(X; Y) = \delta E\{X \log X - \langle X \rangle \log \langle X \rangle\} + o(\delta),$$

1020 Dividing both sides by δ and taking the limit as $\delta \rightarrow 0$, we obtain

$$\frac{d}{d\delta} I(X; Y_\delta) \Big|_{\delta=0} = E[X \log X - \langle X \rangle \log \langle X \rangle],$$

1021 where $\langle X \rangle = E[X|Y]$. This completes the proof of the lemma.

1022 E Tail Bounds

1023 As we know the output z_γ given the input x is modeled as $z_\gamma \sim \mathcal{P}(\gamma x)$, where $x \geq 0$ is the
1024 non-negative input random variable, and γ represents the signal-to-noise ratio (SNR). The negative
1025 log-likelihood when estimating z_γ using x , is given by:

$$l(x, z_\gamma) = -\log p(z_\gamma|x) = -\log \left(\frac{e^{-\gamma x} (\gamma x)^{z_\gamma}}{z_\gamma!} \right) = \gamma x - z_\gamma \log(\gamma x) + \log z_\gamma!$$

1026 We define the expected negative log-likelihood as $M(\gamma) = E_{(x, z_\gamma)} [l(x, z_\gamma)] = E_x [E_{(z_\gamma|x)} [l(x, z_\gamma)]]$.

1027 We now consider a mean constraint $\mu = E[x]$ in this case and our objective then is to determine the
1028 input distribution $p_X(x)$ over $x \geq 0$ that maximizes the above function. To compute the expected
1029 loss, let us first evaluate $E_{z_\gamma|x} [l(x, z_\gamma)]$ and using $E_{z_\gamma|x} [z_\gamma] = \gamma x$ gives:

$$E_{z_\gamma|x} [l(x, z_\gamma)] = E_{z_\gamma|x} [\gamma x - z_\gamma \log(\gamma x) + \log z_\gamma!] = \quad (40)$$

$$\gamma x - \log(\gamma x) \cdot E_{z_\gamma|x} [z_\gamma] + E_{z_\gamma|x} [\log z_\gamma!] = \gamma x - \gamma x \log(\gamma x) + E_{z_\gamma|x} [\log z_\gamma!] \quad (41)$$

1030 We can write $M(\gamma)$ in terms of the the conditional entropy of z_γ given x as:

$$M(\gamma) = E_x [H(z_\gamma|x)], \text{ since } H(z_\gamma|x) = E_{z_\gamma|x} [-\log p(z_\gamma|x)] = E_{z_\gamma|x} [l(x, z_\gamma)].$$

1031 The entropy $H(z_\gamma|x)$ of a Poisson distribution with parameter γx is given by:

$$HS(\gamma x) = - \sum_{k=0}^{\infty} P(z_\gamma = k) \log P(z_\gamma = k)$$

1032 where $P(z_\gamma = k) = \frac{(\gamma x)^k e^{-\gamma x}}{k!}$. So substituting this into the entropy expression, we obtain:

$$HS(\gamma x) = - \sum_{k=0}^{\infty} \frac{(\gamma x)^k e^{-\gamma x}}{k!} \log \left(\frac{(\gamma x)^k e^{-\gamma x}}{k!} \right) = \gamma x - \gamma x \log(\gamma x) + \sum_{k=0}^{\infty} \frac{(\gamma x)^k e^{-\gamma x}}{k!} \log k!$$

1033 It is natural to assume that the Shannon entropy $HS(\lambda)$ of a Poisson distribution strictly increases
1034 with $\lambda \in (0, +\infty)$. We will prove this result, as well as the concavity property of $HS(\lambda)$, in the
1035 following lemma.

1036 **Lemma 11.** *The Shannon entropy $HS(\lambda)$, $\lambda \in (0, +\infty)$, is strictly increasing and concave in λ .*

1037 *Proof.* The Shannon entropy $HS(\lambda)$ of a Poisson distribution is as outlined above. To analyze the
 1038 monotonicity and concavity of $HS(\lambda)$, we compute its first and second derivatives with respect to λ .

1039 First, the first derivative $HS'(\lambda)$ is:

$$HS'(\lambda) = -\log\left(\frac{\lambda}{e}\right) - 1 - e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^k \log k!}{k!} + e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-1} \log k!}{(k-1)!} \quad (42)$$

$$= -\log \lambda + e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k \log(k+1)!}{k!} - e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^k \log k!}{k!} \quad (43)$$

1040 Simplifying, we get:

$$HS'(\lambda) = -\log \lambda + e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} \log(k+1)$$

1041 It is clear that both terms on the right-hand side of (2) are non-negative for $\lambda \in (0, 1]$, and the
 1042 second term is strictly positive. Therefore, $HS'(\lambda) > 0$ for $\lambda \in (0, 1]$. Now, it remains to prove that
 1043 $HS'(\lambda) > 0$ for $\lambda > 1$. Let's calculate:

$$\begin{aligned} HS''(\lambda) &= -\frac{1}{\lambda} - e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k \log(k+1)}{k!} + e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1} \log(k+1)}{(k-1)!} \\ &= -\frac{1}{\lambda} + e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k \log(k+2)}{k!} - e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k \log(k+1)}{k!} \\ &= -\frac{1}{\lambda} + e^{-\lambda} \log 2 + e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k \log\left(1 + \frac{1}{k+1}\right)}{k!} \\ &= -\frac{1}{\lambda} + e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k \log\left(1 + \frac{1}{k+1}\right)}{k!} \\ &< -\frac{1}{\lambda} + e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{(k+1)!} < -\frac{1}{\lambda} + e^{-\lambda} \frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k+1}}{(k+1)!} \\ &< -\frac{1}{\lambda} + e^{-\lambda} \frac{1}{\lambda} e^{\lambda} = 0. \end{aligned}$$

1044 So, $HS''(\lambda) < 0$ for all $\lambda > 0$. Therefore, $HS'(\lambda)$ strictly decreases in λ , proving **concavity** and it is
 1045 sufficient to prove that $\lim_{\lambda \rightarrow \infty} HS'(\lambda) \geq 0$. After further simplification,

$$\lim_{\lambda \rightarrow \infty} HS'(\lambda) = \lim_{\lambda \rightarrow \infty} \log \lambda \left(e^{-\lambda} (\log \lambda)^{-1} \sum_{k=1}^{\infty} \frac{\lambda^k \log(k+1)}{k!} - 1 \right),$$

1046 and it is sufficient to establish that

$$\liminf_{\lambda \rightarrow \infty} e^{-\lambda} (\log \lambda)^{-1} \sum_{k=1}^{\infty} \frac{\lambda^k \log(k+1)}{k!} \geq 1.$$

1047 This inequality is outlined in [61]. Using this, we get that $HS'(\lambda) > 0$ for all $\lambda \geq 0$ and $HS''(\lambda) < 0$
 1048 for all $\lambda \geq 0$, hence the proof follows.

1049 Given that $H(z_\gamma|x)$ is an increasing and concave function of x for $x > 0$, we aim to maximize
 1050 $E_x[H(z_\gamma|x)]$ under the mean constraint $E[x] = \mu$. The functional to maximize is $J[p_X(x)] =$
 1051 $\int_0^\infty H(z_\gamma|x)p_X(x) dx$, subject to the normalization and mean constraints: $\int_0^\infty p_X(x) dx =$
 1052 1 and $\int_0^\infty x p_X(x) dx = \mu$

1053 Introducing Lagrange multipliers λ and ν for these constraints, the Lagrangian becomes:

$$\mathcal{L}[p_X(x)] = \int_0^\infty H(z_\gamma|x)p_X(x) dx - \lambda \left(\int_0^\infty p_X(x) dx - 1 \right) - \nu \left(\int_0^\infty x p_X(x) dx - \mu \right)$$

1054 Taking the functional derivative of \mathcal{L} with respect to $p_X(x)$ and setting it to zero for optimality yields:
1055 $\frac{\delta \mathcal{L}}{\delta p_X(x)} = H(z_\gamma|x) - \lambda - \nu x = 0$

1056 Given the properties of $H(z_\gamma|x)$, the solution corresponds to an exponential distribution. The
1057 exponential distribution with mean μ is given by:

$$p_X(x) = \frac{1}{\mu} e^{-x/\mu}, \quad x \geq 0$$

1058 Maximizing the entropy of x leads to a distribution that spreads the probability mass, thereby
1059 increasing uncertainty and consequently maximizing the mprl. Now, using this exponential prior, we
1060 will derive an expression for $\text{mprl}(\gamma)$ which we use for deriving the left and right tail bounds.

1061 Now, the prior distribution for X is assumed to be an exponential distribution:

$$f_X(x) = \lambda e^{-\lambda x}$$

1062 We introduce the latent variable Z_γ such that:

$$P(Z_\gamma = z|X = x) = \frac{e^{-\gamma x}(\gamma x)^z}{z!}$$

1063 which follows a Poisson distribution. The conditional density of X given $Z_\gamma = z$ is derived as:

$$\begin{aligned} f_{X|Z}(x|z) &= \frac{P(Z_\gamma = z|X = x)f_X(x)}{P(Z_\gamma = z)} \\ 1064 \quad f_{X|Z}(x|z) &= \frac{(\beta x)^z}{z!} \lambda e^{-\lambda x} e^{-\beta x} \\ 1065 \quad &= \frac{(\beta x)^z \lambda e^{-(\lambda+\beta)x}}{z! P(Z_\gamma = z)} \end{aligned}$$

1066 and we can notice that this is a Gamma distribution: $X|Z_\gamma = z \sim \text{Gamma}(z + 1, \lambda + \beta)$ The
1067 posterior mean of X given Z_γ is:

$$E[X|Z_\gamma = z] = \frac{z + 1}{\lambda + \beta} \tag{44}$$

1068 and this serves as the optimal estimate \hat{X}^* . Now, let us consider the following expectation: (where l
1069 is the previously defined Poisson loss function)

$$E_{X|Z_\gamma}[l(X, X^*)] = E[X \log \left(\frac{X}{X^*} \right) - X + X^*] = E \left[X \log \left(\frac{X}{X^*} \right) \middle| Z_\gamma \right] - E[X|Z_\gamma] + X^* \tag{45}$$

1070 Using integration by parts and properties of the Gamma function, if $W \sim \text{Gamma}(\alpha, \beta)$, then: [62]

$$E[W \log W] = \frac{\alpha}{\beta} [\psi(\alpha + 1) - \log \beta]$$

1071 where we defined the **digamma function** $\psi(\alpha)$ as: $\psi(\alpha) = \frac{d}{d\alpha} \log \Gamma(\alpha)$. The above results would
1072 also follow from differentiating the moment formula:

$$E[X^n] = \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)\beta^n}$$

1073 Applying this this result in our case gives us:

$$E[X \log X | Z_\gamma] = \frac{z+1}{\lambda+\beta} [\psi(z+2) - \log(\lambda+\alpha)]$$

1074 We also have from Equation. 44:

$$\log(X^*) = \log(z+1) - \log(\lambda+\alpha)$$

1075 Taking expectation, the first term in Eq. 45 can be written as:

$$E \left[X \log \left(\frac{X}{X^*} \right) | Z \right] = \frac{z+1}{\lambda+\beta} [\psi(z+2) - \log(\lambda+\alpha)] - \frac{z+1}{\lambda+\alpha} [\log(z+1) - \log(\lambda+\alpha)] \quad (46)$$

$$= \frac{z+1}{\lambda+\beta} [\psi(z+2) - \log(z+1)] \quad (47)$$

1076 Now, we compute the marginal distribution as follows:

$$P(Z_\gamma = z) = \int_0^\infty P(Z_\gamma = z | X = x) f_X(x) dx = \frac{\lambda \beta^z}{z!} \int_0^\infty x^z e^{-(\lambda+\beta)x} dx.$$

1077 Using the Gamma integral property stated as follows:

$$\int_0^\infty x^z e^{-(\lambda+\beta)x} dx = \frac{\Gamma(z+1)}{(\lambda+\beta)^{z+1}},$$

1078 we obtain (since $\Gamma(z+1) = z!$):

$$P(Z_\gamma = z) = \frac{\lambda \beta^z}{z!} \cdot \frac{\Gamma(z+1)}{(\lambda+\beta)^{z+1}} = \frac{\lambda \beta^z}{(\lambda+\beta)^{z+1}} = (1-p)p^z, \text{ where } p = \frac{\beta}{\lambda+\beta}$$

1079 Now, the $\text{mprl}(\gamma)$ expression obtained is as follows:

$$\text{mprl}(\gamma) = \sum_{z=0}^{\infty} (1-p)p^z \left[\frac{z+1}{\lambda+\beta} [\psi(z+2) - \log(z+1)] \right] = \frac{\lambda}{(\lambda+\beta)^2} \sum_{z=0}^{\infty} (z+1)p^z [\psi(z+2) - \log(z+1)].$$

1080 E.1 Left Tail Bound

1081 In case of (γ_0, γ_1) being the relevant range of integration, the left tail integral is defined as:
1082 $\int_0^{\gamma_0} \text{mprl}(\gamma) d\gamma$

1083 First, we interchange the sum and the integral:

$$\int_0^{\gamma_0} \text{mprl}(\gamma) d\gamma = \sum_{z=0}^{\infty} (z+1) [\psi(z+2) - \log(z+1)] \int_0^{\gamma_0} \frac{\lambda}{(\lambda+\gamma)^2} \left(\frac{\gamma}{\lambda+\gamma} \right)^z d\gamma.$$

1084 We define the inner integral as

$$I_z = \int_0^{\gamma_0} \frac{\lambda}{(\lambda+\gamma)^2} \left(\frac{\gamma}{\lambda+\gamma} \right)^z d\gamma.$$

1085 Substitute $u = \lambda + \gamma$, which implies $\gamma = u - \lambda$ and $d\gamma = du$. The bounds change accordingly:
1086 $u = \lambda$ when $\gamma = 0$ and $u = \lambda + \gamma_0$ when $\gamma = \gamma_0$. The integral becomes

$$I_z = \lambda \int_{\lambda}^{\lambda+\gamma_0} \frac{(u-\lambda)^z}{u^{z+2}} du.$$

1087 Next, using the substitution $v = \frac{u-\lambda}{u}$, leading to $u = \frac{\lambda}{1-v}$ and $du = \frac{\lambda}{(1-v)^2} dv$. The bounds
1088 transform to $v = 0$ when $u = \lambda$ and $v = \frac{\gamma_0}{\lambda+\gamma_0}$ when $u = \lambda + \gamma_0$. Substituting these into the integral
1089 yields

$$I_z = \int_0^{\frac{\gamma_0}{\lambda+\gamma_0}} v^z dv.$$

1090 The integral I_z can be evaluated as

$$I_z = \left[\frac{v^{z+1}}{z+1} \right]_0^{\frac{\gamma_0}{\lambda+\gamma_0}} = \frac{\left(\frac{\gamma_0}{\lambda+\gamma_0} \right)^{z+1}}{z+1}.$$

1091 Substituting I_z back into the expression for the expectation, gives:

$$\int_0^{\gamma_0} \text{mprl}(\gamma) d\gamma = \sum_{z=0}^{\infty} [\psi(z+2) - \log(z+1)] \left(\frac{\gamma_0}{\lambda+\gamma_0} \right)^{z+1}$$

1092 Let the above sum be S which we use in the sections below. By re-indexing the sum with $k = z+1$,
1093 the final result can more elegantly be expressed as:

$$\int_0^{\gamma_0} \text{mprl}(\gamma) d\gamma = \sum_{k=1}^{\infty} [\psi(k+1) - \log(k)] \left(\frac{\gamma_0}{\lambda+\gamma_0} \right)^k.$$

1094 We aim to establish an upper bound for the sum

$$S = \sum_{z=0}^{\infty} (z+1) [\psi(z+2) - \log(z+1)] \left(\frac{\gamma_0}{\lambda+\gamma_0} \right)^{z+1},$$

1095 where ψ denotes the digamma function, $\gamma_0 > 0$, and $\lambda > 0$.

1096 Let us define $x = \frac{\gamma_0}{\lambda+\gamma_0}$. Given that $\gamma_0 > 0$ and $\lambda > 0$, it follows that $0 < x < 1$. From, [63], we
1097 recall the expansion of the digamma function:

$$\psi(z+2) = H_{z+1} - \gamma_E,$$

1098 where H_n is the n -th harmonic number and γ_E is the Euler-Mascheroni constant. For large z ,

$$H_{z+1} = \log(z+1) + \gamma_E + \frac{1}{2(z+1)} - \frac{1}{12(z+1)^2} + \dots$$

1099 Substituting this into the expression for $\psi(z+2)$ yields:

$$\psi(z+2) - \log(z+1) = \frac{1}{2(z+1)} - \frac{1}{12(z+1)^2} + \dots$$

1100 From this expansion, it is evident that

$$\psi(z+2) - \log(z+1) < \frac{1}{2(z+1)}$$

1101 for all $z \geq 0$, since the higher-order terms $-\frac{1}{12(z+1)^2} + \dots$ contribute negatively, thereby decreasing
1102 the overall value.

1103 Consequently, each term in the sum satisfies

$$(z+1) [\psi(z+2) - \log(z+1)] x^{z+1} < \frac{1}{2} x^{z+1}.$$

1104 Summing over z from 0 to ∞ , we obtain

$$S < \frac{1}{2} \sum_{z=0}^{\infty} x^{z+1}.$$

1105 Using the simplification of the geometric series $\sum_{z=0}^{\infty} x^{z+1}$

$$\sum_{z=0}^{\infty} x^{z+1} = \frac{x}{1-x} \implies S < \frac{1}{2} \frac{x}{1-x}.$$

1106 Substituting back $x = \frac{\gamma_0}{\lambda+\gamma_0}$, we have

$$1-x = 1 - \frac{\gamma_0}{\lambda+\gamma_0} = \frac{\lambda}{\lambda+\gamma_0} \implies \frac{x}{1-x} = \frac{\frac{\gamma_0}{\lambda+\gamma_0}}{\frac{\lambda}{\lambda+\gamma_0}} = \frac{\gamma_0}{\lambda}.$$

1107 Putting this into the inequality for S , we obtain

$$S < \frac{1}{2} \frac{\gamma_0}{\lambda}.$$

1108 Hence, the upper bound for the sum in the scalar case (for a single input-output realization) is

$$\boxed{\sum_{z=0}^{\infty} (z+1) [\psi(z+2) - \log(z+1)] \left(\frac{\gamma_0}{\lambda + \gamma_0} \right)^{z+1} \leq \frac{\gamma_0}{2\lambda}.}$$

1109 **(Note:** This z is different from the z_γ notation used throughout the paper.)

1110 Extending this result to the vector case, consider a d -dimensional random vector $x \in X \subset \mathbb{Z}^d$ with
1111 covariance matrix Σ , whose eigenvalues are $\{\lambda_i\}_{i=1}^d$, all positive. Assuming the problem is separable
1112 across the eigenbasis of Σ , each dimension can be treated independently.

1113 For the vector case, the sum becomes

$$S_{\text{vector}} = \sum_{i=1}^d \sum_{z=0}^{\infty} (z+1) [\psi(z+2) - \log(z+1)] \left(\frac{\gamma_0}{\lambda_i + \gamma_0} \right)^{z+1}.$$

1114 Applying the scalar bound to each eigenvalue λ_i , we have

$$\sum_{z=0}^{\infty} (z+1) [\psi(z+2) - \log(z+1)] \left(\frac{\gamma_0}{\lambda_i + \gamma_0} \right)^{z+1} \leq \frac{\gamma_0}{2\lambda_i}.$$

1115 Summing over all i from 1 to d , the vector sum satisfies

$$S_{\text{vector}} \leq \sum_{i=1}^d \frac{\gamma_0}{2\lambda_i} = \frac{\gamma_0}{2} \sum_{i=1}^d \frac{1}{\lambda_i}.$$

1116 In the special case where the covariance matrix Σ is isotropic, meaning all eigenvalues $\lambda_i = \lambda$ for
1117 $i = 1, \dots, d$, the bound simplifies to

$$S_{\text{vector}} \leq \frac{d\gamma_0}{2\lambda}.$$

1118 This concludes the derivation of the left tail bounds for both the scalar and vector cases.

1119 E.2 Right Tail Bound

1120 In case of (γ_0, γ_1) being the relevant range of integration, the right tail integral is defined as:
1121 $\int_{\gamma_1}^{\infty} \text{mprl}(\gamma) d\gamma$

1122 Consider a discrete variable $x = (x_1, x_2, \dots, x_d) \in X \subset \mathbb{Z}^d$, where each component x_i belongs to a
1123 discrete set $\{i\Delta | i \in \mathbb{Z}\}$. Observations are modeled as $z_{\gamma,i} \sim \mathcal{P}(\gamma x_i)$ for a large signal-to-noise ratio
1124 (SNR) parameter γ . The estimator $\hat{x}_i(z_{\gamma,i})$ is typically the maximum likelihood estimator (MLE),
1125 implemented by rounding $z_{\gamma,i}$ to the nearest bin $\{k\Delta\}$.

1126 The loss function per component is defined as

$$L(x_i, \hat{x}_i) = x_i \log \left(\frac{x_i}{\hat{x}_i} \right) - x_i + \hat{x}_i,$$

1127 and the $\text{mprl}(\gamma)$ is given by $\mathbb{E}[L(x_i, \hat{x}_i)]$ over the randomness of $z_{\gamma,i}$. The right-tail integral of
1128 interest is

$$I_R = \int_{\gamma_1}^{\infty} E \left[\sum_{i=1}^d L(x_i, \hat{x}_i(z_{\gamma,i})) \right] d\gamma,$$

1129 which we aim to upper bound.

1130 At high SNR ($\gamma \rightarrow \infty$), the noise is relatively small compared to x_i , but rare rounding errors of size
1131 $j\Delta$ can still occur. Focusing on a single component x_i , an error of size $j\Delta$ happens if

$$\hat{x}_i = x_i - j\Delta \iff z_{\gamma,i} \in [\gamma(x_i - j\Delta - 0.5\Delta), \gamma(x_i - j\Delta + 0.5\Delta)).$$

1132 For $z_{\gamma,i} \sim \text{Poisson}(\mu)$ with $\mu = \gamma x_i$, the Poisson Chernoff bound [64] provides that the probability
 1133 of such a deviation is at most $\exp(-c_{i,j}\gamma)$, where $c_{i,j} > 0$ is a constant dependent on Δ , x_i , and the
 1134 shift $j\Delta$. Hence,

$$P(\text{error of size } j\Delta) \leq e^{-c_{i,j}\gamma}.$$

1135 The per-component contribution to the mean MLE loss is

$$\text{mprl}_i(\gamma) = E_{z_{\gamma,i}} [L(x_i, \hat{x}_i(z_{\gamma,i}))].$$

1136 When the estimation error is $j\Delta$, the loss becomes

$$L(x_i, x_i - j\Delta) = x_i \log \left(\frac{x_i}{x_i - j\Delta} \right) - x_i + (x_i - j\Delta).$$

1137 Therefore, the mean loss satisfies

$$\text{mprl}_i(\gamma) \leq \sum_{j=1}^{j_{\max}} \left[x_i \log \left(\frac{x_i}{x_i - j\Delta} \right) - x_i + (x_i - j\Delta) \right] e^{-c_{i,j}\gamma}.$$

1138 Summing over all components $i = 1, \dots, d$, we obtain

$$\text{mprl}(\gamma) = \sum_{i=1}^d \text{mprl}_i(\gamma) \leq \sum_{i=1}^d \sum_{j=1}^{j_{\max}} \left[x_i \log \left(\frac{x_i}{x_i - j\Delta} \right) - x_i + (x_i - j\Delta) \right] e^{-c_{i,j}\gamma}.$$

1139 The right-tail integral I_R can thus be bounded as

$$I_R = \int_{\gamma_1}^{\infty} \text{mprl}(\gamma) d\gamma \leq \sum_{i=1}^d \sum_{j=1}^{j_{\max}} \left[x_i \log \left(\frac{x_i}{x_i - j\Delta} \right) - x_i + (x_i - j\Delta) \right] \int_{\gamma_1}^{\infty} e^{-c_{i,j}\gamma} d\gamma.$$

1140 Evaluating the integral, we find

$$\int_{\gamma_1}^{\infty} e^{-c_{i,j}\gamma} d\gamma = \frac{e^{-c_{i,j}\gamma_1}}{c_{i,j}},$$

1141 Leading to the final right-tail bound

$$I_R = \int_{\gamma_1}^{\infty} E \left[\sum_{i=1}^d L(x_i, \hat{x}_i) \right] d\gamma \leq \sum_{i=1}^d \sum_{j=1}^{j_{\max}} \left[x_i \log \left(\frac{x_i}{x_i - j\Delta} \right) - j\Delta \right] \frac{e^{-c_{i,j}\gamma_1}}{c_{i,j}}.$$

1142 In the above expression, $c_{i,j} > 0$ represents the Chernoff-type exponent from the Poisson large-
 1143 deviation bound for the event causing an error of size $j\Delta$ in component i . We determine these
 1144 parameters empirically, and the parameter j_{\max} indicates the largest error shift considered, which
 1145 is typically small in practice and can be tuned empirically. For empirical purposes, it might also be
 1146 worthwhile to note that the bracketed term in Eq. 47 can be approximated as the sum over a few
 starting z beyond which it effectively dies out as illustrated in Figure 14.

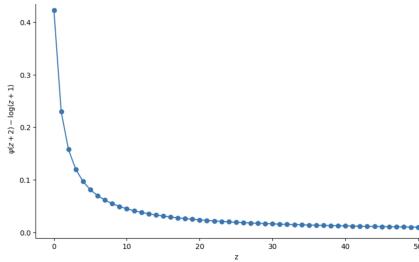


Figure 14: Approximating the Digamma term

1147

1148 **F Proof Sketch of Pointwise Poisson Denoising Relation**

1149 For Poisson channel defined earlier, we derive the pointwise denoising relation:

1150 **Lemma 12.** *The KL divergence derivative satisfies:*

$$\frac{d}{d\gamma} D_{KL}[P(z_\gamma|x) \| P(z_\gamma)] = \text{mprl}(x, \gamma)$$

1151 *where the pointwise MPRL is:*

$$\text{mprl}(x, \gamma) \equiv E_{P(z_\gamma|x)} [l(x, \hat{x}^*(z_\gamma))]$$

1152 *with $l(x, x^*) = x \log \frac{x}{x^*} - x + x^*$ and $\hat{x}^*(z_\gamma) = E[X|z_\gamma]$.*

1153 *Proof.* For the Poisson channel $Z_\gamma|X = x \sim \text{Pois}(\gamma x)$ define

$$R_x(\gamma) := \sum_{z \geq 0} p_\gamma(z|x) \log \frac{p_\gamma(z|x)}{p_\gamma(z)}, \quad \hat{x}^*(z, \gamma) := E[X|Z_\gamma = z], \quad \ell(x, \hat{x}) := x \log \frac{x}{\hat{x}} - x + \hat{x}.$$

1154 Differentiate the series using the product rule to get

$$\frac{d}{d\gamma} R_x = \sum_z \partial_\gamma p_\gamma(z|x) \log \frac{p_\gamma(z|x)}{p_\gamma(z)} + \sum_z p_\gamma(z|x) \left(\partial_\gamma \log p_\gamma(z|x) - \partial_\gamma \log p_\gamma(z) \right) = T_1 + T_2.$$

1155 **Term T_2 .** For the Poisson distribution with mean γx ,

$$p_\gamma(z|x) = e^{-\gamma x} \frac{(\gamma x)^z}{z!}.$$

1156 Taking the derivative,

$$\frac{d}{d\gamma} \log p_\gamma(z|x) = -x + \frac{z}{\gamma}.$$

1157 Hence, for the conditional Poisson law, we have

$$\partial_\gamma \log p_\gamma(z|x) = \frac{z}{\gamma} - x.$$

1158 Similarly for the marginal,

$$p_\gamma(z) = \int p_\gamma(z|x) P(x) dx.$$

1159 Taking the log-derivative,

$$\frac{d}{d\gamma} \log p_\gamma(z) = \frac{1}{p_\gamma(z)} \int (-x + \frac{z}{\gamma}) p_\gamma(z|x) p(x) dx.$$

1160 Identifying this as a conditional expectation gives:

$$\partial_\gamma \log p_\gamma(z) = E \left[-X + \frac{Z}{\gamma} \mid Z = z \right].$$

1161 Hence

$$T_2 = E_{p_\gamma(z|x)} \left[E[X|Z] - \frac{Z}{\gamma} \right].$$

1162 **Term T_1 .** Let $r(z) := \log \frac{p_\gamma(z|x)}{p_\gamma(z)}$ and $\lambda := \gamma x$. Since $\partial_\gamma p_\gamma(z|x) = p_\gamma(z|x) \left(\frac{z}{\gamma} - x \right)$,

$$T_1 = E_{p_\gamma(z|x)} \left[\left(\frac{Z_\gamma}{\gamma} - x \right) r(Z_\gamma) \right] = \frac{1}{\gamma} E[(Z_\gamma - \lambda) r(Z_\gamma)].$$

1163 For $Z_\gamma \sim \text{Pois}(\lambda)$ the Poisson–Stein identity gives

$$E[(Z_\gamma - \lambda) h(Z_\gamma)] = \lambda E[h(Z_\gamma + 1) - h(Z_\gamma)].$$

1164 With $h = r$,

$$T_1 = \frac{\lambda}{\gamma} E[r(Z_\gamma + 1) - r(Z_\gamma)] = x E[r(Z_\gamma + 1) - r(Z_\gamma)].$$

1165 Using the ratio formulas (from Lemma 4) gives:

$$\frac{p_\gamma(z+1|x)}{p_\gamma(z|x)} = \frac{\gamma x}{z+1}, \frac{p_\gamma(z+1)}{p_\gamma(z)} = \frac{\gamma \langle X \rangle_z}{z+1}, \langle X \rangle_z := E[X|Z_\gamma = z],$$

1166 we get

$$r(z+1) - r(z) = \log \frac{x}{\langle X \rangle_z}, T_1 = x E \left[\log \frac{x}{\langle X \rangle_{Z_\gamma}} \right].$$

1167 Now, combining both the terms gives:

$$\frac{d}{d\gamma} R_x = x E \left[\log \frac{x}{\langle X \rangle_{Z_\gamma}} \right] + E \left[\langle X \rangle_{Z_\gamma} - \frac{Z_\gamma}{\gamma} \right].$$

1168 Since $E[Z_\gamma|X = x] = \gamma x$, the second expectation equals $E[\langle X \rangle_{Z_\gamma}] - x$, and hence

$$\frac{d}{d\gamma} R_x = E_{p_\gamma(z|x)} \left[x \log \frac{x}{\langle X \rangle_{Z_\gamma}} - x + \langle X \rangle_{Z_\gamma} \right] = E_{p_\gamma(z|x)} [\ell(x, \hat{x}^*)].$$

1169

□

1170 We can also derive this equation as a special case of Lemma 4.2 from [29].

1171 **Link to the MPRL Loss:** We already defined the loss function:

$$\ell(x, \hat{x}^*) = x \log \frac{x}{\hat{x}^*} - x + \hat{x}^* \cdot am$$

1172 If $\hat{x}^* \equiv E[X|z_\gamma]$ is the estimator of x given z_γ , then by standard properties of conditional expectation,

$$E_{P(z_\gamma|x)}[\hat{x}^*] = E[E[X|z_\gamma]] = E[X] = x \quad (\text{if } x \text{ is deterministic, replace } E[X] \text{ by } x).$$

1173 Hence,

$$E_{P(z_\gamma|x)}[\ell(x, \hat{x}^*)] = E[x \log x - x \log \hat{x}^* - x + \hat{x}^*] = x \log x - x - x E[\log \hat{x}^*] + E[\hat{x}^*].$$

1174 Since $E[\hat{x}^*] = x$,

$$E_{P(z_\gamma|x)}[\ell(x, \hat{x}^*)] = x(\log x - E[\log \hat{x}^*]).$$

1175 One can show (by comparing with the final expression in the KL derivative) that this expectation
1176 aligns with $E_{P(z_\gamma|x)}[E[X|z_\gamma] - \frac{z_\gamma}{\gamma}]$, thus establishing the link between the MPRL and the derivative
1177 of the KL divergence. We can generalize this relation to any loss function that belongs to the class of
1178 Bregman divergences in a Poisson channel using the framework described in [65].

1179 F.1 Tweedie's for Poisson Denoising

1180 A well-known result in Gaussian denoising is *Tweedie's Formula*, which expresses the conditional
1181 expectation of the latent variable in terms of the derivative of the log-pdf of noisy observation. [32].
1182 Specifically, for $Z_\gamma = \sqrt{\gamma}X + \varepsilon$ with $\varepsilon \sim \mathcal{N}(0, I)$, we have:

$$E[X|Z_\gamma = z] = \frac{z}{\sqrt{\gamma}} + \frac{1}{\gamma} \nabla \log f_{Z_\gamma}(z), \quad (48)$$

1183 In the Poisson setting, we cannot directly take derivatives of $\log P_{Z_\gamma}(z)$ with respect to discrete z
1184 since they are undefined. Instead, the *forward difference* of the log of the marginal PMF serves as a
1185 discrete analog. This culminates in the Turing-Good-Robbins (TGR) formula, already presented in
1186 Lemma 4.

1187 Hence, just like Tweedie's Formula in the continuous Gaussian case, TGR expresses the conditional
1188 mean $\langle X \rangle_z$ purely in terms of the marginal distribution $P_{Z_\gamma}(z)$, bypassing any need to compute the
1189 conditional distribution $P_{X|Z_\gamma}$. In effect, the ratio $\gamma \cdot \langle X \rangle_z$ plays the role of a *score function* for the
1190 Poisson channel, analogous to the logarithmic derivative in the Gaussian case. This discrete variant
1191 underpins our Poisson diffusion framework, allowing us to efficiently compute the optimal denoiser
1192 $E[X|Z_\gamma]$ directly from the marginal PMF.

1193 **G Continuous Extension of ItDPDM**

1194 We extend the continuous-time channel with discrete states (CTDS) to continuous states through the
 1195 following construction:

1196 **Definition 1** (Continuous-Time Channel with States (CTCS)). *Let $\{X_t\}_{t \geq 0}$ be a right-continuous
 1197 state process with left limits (càdlàg) taking values in \mathbb{R}_+ . The output process $\{Y_t\}_{t \geq 0}$ is a counting
 1198 process satisfying:*

$$Y_t = \mathcal{P} \left(\int_0^t X_s ds \right) \quad (49)$$

1199 where $\mathcal{P}(\cdot)$ denotes a Poisson counting measure.

1200 For measurable intensity X_t , the output increments also satisfy:

$$Y_{t+\delta} - Y_t \sim \mathcal{P} \left(\int_t^{t+\delta} X_s ds \right), \quad \forall t, \delta \geq 0 \quad (50)$$

1201 with $\{Y_{t_k} - Y_{t_{k-1}}\}_{k=1}^n$ independent given $X_{[0,T]}$ for any finite partition $\{t_k\}$.

1202 The mutual information between state and observation processes over $[0, T]$ is given by:

$$I(X^T; Y^T) = E \left[\log \frac{dP_{Y^T|X^T}}{dP_{Y^T}} \right] \quad (51)$$

1203 The key connection to discrete-time systems emerges through infinitesimal discretization:

1204 **Lemma 13** (Mutual Information Rate). *For the CTCS in Definition 1, the mutual information rate
 1205 satisfies:*

$$\lim_{T \rightarrow \infty} \frac{1}{T} I(X^T; Y^T) = \lim_{\delta \rightarrow 0} \frac{1}{\delta} I(X_\delta; Y_\delta) \quad (52)$$

1206 where $X_\delta := X_{[0,\delta]}$ and $Y_\delta := Y_\delta - Y_0$ corresponds to the discrete-time channel $\mathcal{P}(\delta X)$.

1207 *Proof Sketch.* Consider time partitions $0 = t_0 < t_1 < \dots < t_n = T$ with $\max |t_{k+1} - t_k| \leq \delta$. By
 1208 the chain rule of mutual information:

$$\begin{aligned} I(X^T; Y^T) &= \sum_{k=0}^{n-1} I(X^{t_{k+1}}; Y_{t_{k+1}} | Y^{t_k}) \\ &= \sum_{k=0}^{n-1} [I(X_{[t_k, t_{k+1}]}; Y_{[t_k, t_{k+1}]}) + \epsilon_k] \end{aligned}$$

1209 where ϵ_k captures residual dependence between time intervals. Using the Markov property of Poisson
 1210 counters [66] and taking $\delta \rightarrow 0$, the residual terms vanish by the Asymptotic Equipartition Property
 1211 (AEP) for Poisson processes [67]. The result follows from Lemma 9 applied to each infinitesimal
 1212 interval.

1213 The continuous-time counterpart of the derivative relationship becomes:

1214 **Lemma 14** (Information Rate Derivative). *For the CTCS system, the time derivative of mutual
 1215 information satisfies:*

$$\frac{d}{dt} I(X^t; Y^t) = E [X_t \log X_t - \langle X_t \rangle \log \langle X_t \rangle] \quad (53)$$

1216 where $\langle X_t \rangle := E[X_t | Y^t]$ is the causal MPRL estimator.

1217 *Proof.* From Lemma 13 and the DTCS derivative, we have:

$$\begin{aligned} \frac{d}{dt} I(X^t; Y^t) &= \lim_{\delta \rightarrow 0} \frac{1}{\delta} [I(X_{t+\delta}; Y_{t+\delta} | Y^t) - I(X_t; Y_t)] \\ &= \lim_{\delta \rightarrow 0} \frac{1}{\delta} E [\delta X_t \log X_t - \delta \langle X_t \rangle \log \langle X_t \rangle] + o(1) \end{aligned}$$

1218 The result follows by dominated convergence and the tower property of conditional expectation. This
 1219 continuous-time formulation preserves the essential duality between information and estimation seen
 1220 in discrete time, with the Poisson channel's inherent noise characteristics governing both regimes.
 1221 The CTCS framework enables analysis of real-time filtering and prediction [68] through differential
 1222 versions of the key discrete-time identities.

1223 **H Detailed comparison of ItDPDM vs. Learning to Jump (LTJ, [20])**

1224 Table 8 shows a detailed comparison below:

Table 8: Side-by-side comparison of our **ItDPDM** vs the **Learning-to-Jump** (LTJ) framework. We note that both methods employ a Poisson-Bregman (relative-entropy) loss—denoted PRL for ItDPDM and D_ϕ for LTJ but they diverge sharply in how that loss is used and how it connects to likelihood, as summarised below.

Aspect	ItDPDM (ours)	Learning-to-Jump (LTJ) [20]
Forward “noising”	Single-shot Poisson channel $Z_\gamma \sim \text{Pois}(\gamma X)$ with <i>continuous</i> SNR $\gamma \in (0, \infty)$	Binomial thinning chain $z_t \sim \text{Binomial}(z_{t-1}, \alpha_t / \alpha_{t-1})$ for $t = 1, \dots, T$
Reverse / generation	sampling operates in log-SNR space via a continuous-time reverse SDE or ODE; sampling can flexibly subsample the SNR continuum (e.g. 20–50 steps) without quality loss, in contrast to fixed-step chains	‘Count-thickening’ Markov chain with shifted-Poisson jumps; sampling requires executing all T discrete steps with no flexibility to skip or subsample, so the full T -step chain is incurred for every generated sample
Bounds on NLL	<i>Information-theoretic</i> , extends the classic I-MMSE identity to the Poisson channel, giving the exact relation: $-\log p(x) = \int_0^\infty \text{MPRL}(x, \gamma) d\gamma$	<i>Variational ELBO</i> , multi-term KL-divergence sum with binomial/Poisson factors; yields only an approximate bound on $-\log p(x)$
Training Loss	PRL : $\ell(x, \hat{x}) = \hat{x} \cdot \log(\hat{x}/x) - \hat{x} + x$, integrated over <i>continuous</i> γ , producing an exact NLL upper bound and provides analytic tail bounds & an importance-sampling estimator; empirically yields lower NLL than all baselines.	Per-step relative-entropy $D_\phi(x, f_\theta(z_t, t))$ inside an ELBO with an identical Bregman form, <i>but</i> summed over discrete T only with no closed-form link between the total loss and the true likelihood.
Scheduling	Choose only a continuous SNR grid (e.g., 1000-point logistic); no α_t or T hyper-parameters.	Must hand-design thinning schedule $\{\alpha_t\}_{t=1}^T$ and pick T (typically $T=1000$).
Likelihood evaluation	Exact tail bounds + importance sampling; likelihood (NLL) (in bits-per-dim) on real-world data, both WD & NLL on synthetic data evaluated	Likelihood <i>not</i> estimated; evaluation solely via Wasserstein distance (WD) of histograms.
Sampling speed	Compatible with fast ODE solvers (20–50 steps) due to continuous γ .	Must run all T thickening steps.
Theoretical extensions	Poisson-Tweedie identity; mutual-information derivative; CTCS extension.	—

1225 In the Learning-to-Jump (LTJ) framework [20], the per-step training loss is written as $D_\phi(x, f_\theta(z_t, t))$,
1226 where

- 1227 $x \in \mathbb{N}$ is the true discrete count.
- 1228 z_t is the noisy observation at step t , obtained by binomial thinning of z_{t-1} .
- 1229 $f_\theta(z_t, t)$ is the denoising network (parameterized by θ), which takes (z_t, t) and outputs an
1230 estimate \hat{x}_t of x .
- 1231 $D_\phi(u, v)$ is the Bregman divergence induced by a convex generator ϕ : $D_\phi(u, v) =$
1232 $\phi(u) - \phi(v) - \langle \nabla \phi(v), u - v \rangle$. For the Poisson channel one uses $\phi(u) = u \log u$, yielding
1233 $D_\phi(x, \hat{x}) = \hat{x} \log \frac{\hat{x}}{x} - \hat{x} + x$, i.e. the Poisson–Bregman (relative-entropy) loss.

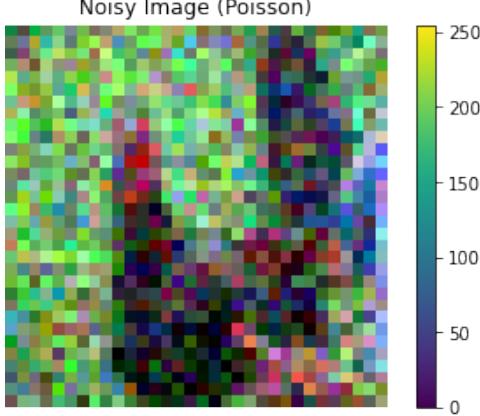


Figure 15: Noisy Image (Poisson Noise)
Noisy Image (Gaussian)

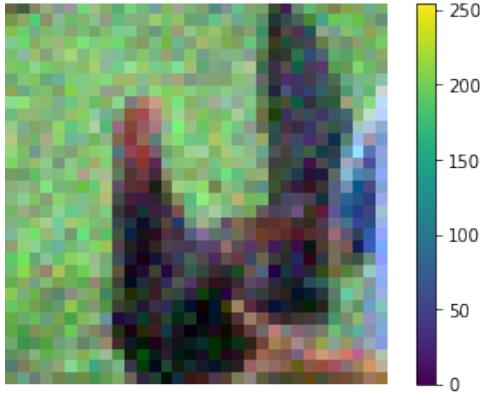


Figure 17: Noisy Image (Gaussian Noise)

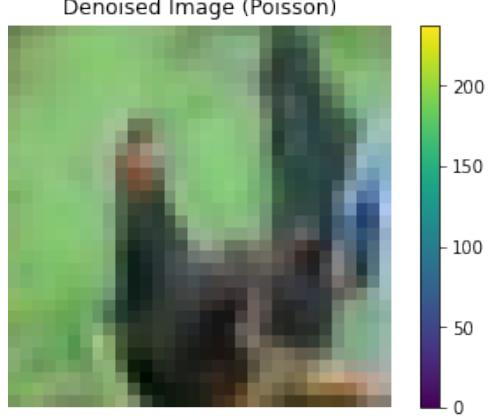


Figure 16: Denoised Image (Poisson Noise)
Denoised Image (Gaussian)

Figure 18: Denoised Image (Gaussian Noise)

Figure 19: Comparison of noisy and denoised images for poisoned and Gaussian noise birds with logsnr=4.01.

1234 I Noised and Denoised Image Comparison

1235 Figure 19 presents a comparison of noisy and denoised images under Gaussian and Poisson noise
1236 conditions at a logSNR of 4.01. The left column displays the input images corrupted by Gaussian
1237 (Figure 17) and Poisson noise (Figure 15), while the right column shows the corresponding denoised
1238 outputs (Figures 16 and Figures 16). Notably, the Poisson noise case exhibits a higher level of
1239 degradation than the Gaussian noise case, making recovery more challenging. However, the denoising
1240 process effectively reconstructs meaningful image structures in both cases, demonstrating the model's
1241 robustness to varying noise distributions.

1242 J Theoretical Runtime Analysis of ItDPDM Architecture

1243 We present a theoretical runtime analysis of the proposed *Information-Theoretic Discrete Poisson*
1244 *Diffusion Model* (ItDPDM), focusing on the core components contributing to its computational cost
1245 during training and inference.

1246 Poisson Noise Sampling

1247 The forward diffusion process in ItDPDM is governed by a Poisson noise channel $z_\gamma \sim \text{Poisson}(\gamma x)$,
1248 where $x \in \mathbb{R}_+^D$ denotes the input data vector and γ is the signal-to-noise ratio (SNR). Sampling from
1249 a Poisson distribution can be performed in $\mathcal{O}(1)$ per element using rejection sampling or table-based
1250 methods, resulting in a total cost of $\mathcal{O}(D)$ per data point.

1251 **Neural Denoising**

1252 The denoiser is instantiated as a neural network, such as a U-Net (for images) or a Transformer
 1253 encoder (for symbolic music). The input to the denoiser is the reparameterized form

$$\tilde{z}_\gamma = \frac{z_\gamma}{1 + \gamma},$$

1254 which improves numerical stability. The forward pass of the denoiser has cost $\mathcal{O}(D)$ per data point,
 1255 assuming conventional convolutional or attention-based layers.

1256 **Poisson Loss Function Evaluation**

1257 The proposed loss function is based on a Bregman divergence tailored to Poisson noise:

$$\ell(x, \hat{x}) = x \log\left(\frac{x}{\hat{x}}\right) - x + \hat{x},$$

1258 which is convex, differentiable, and evaluated pointwise. The cost of loss evaluation and gradient
 1259 computation is $\mathcal{O}(D)$ per sample.

1260 **Integral Estimation over SNR**

1261 A defining component of the ItDPDM framework is the estimation of the negative log-likelihood
 1262 using thermodynamic integration:

$$-\log P(x) = \int_0^\infty \text{mprl}(x, \gamma) d\gamma,$$

1263 where MPRL denotes the minimum mean likelihood error. In practice, this integral is approximated
 1264 numerically using n log-SNR values (e.g., $n = 1000$), obtained via uniform or importance sampling
 1265 over $\alpha = \log \gamma$.

1266 Each SNR point requires a forward pass through the denoiser and loss computation, yielding a total
 1267 per-sample complexity of $\mathcal{O}(n \cdot D)$. To reduce overhead, the model uses importance sampling from a
 1268 truncated logistic distribution over α and closed-form tail integral bounds to truncate the SNR domain
 1269 (see Eqs. (28)–(29) in the main text).

Component	Complexity	Description
Poisson noise sampling	$\mathcal{O}(D)$	Efficient per-sample noise generation
Neural denoising	$\mathcal{O}(D)$	Forward pass through CNN or Transformer
Poisson loss function	$\mathcal{O}(D)$	Evaluated pointwise for each data coordinate
Integral over SNR	$\mathcal{O}(n \cdot D)$	Dominant cost due to repeated inference and loss evaluations
Total per-sample cost	$\mathcal{O}(n \cdot D)$	For fixed number of SNR grid points

Table 9: Asymptotic complexity of key components in the ItDPDM training pipeline.

1270 Given a batch size B and number of training epochs E , the overall training complexity becomes:
 1271 $\mathcal{O}(B \cdot E \cdot n \cdot D)$. This is comparable to standard continuous-state diffusion models using discretized
 1272 time steps, but the Poisson-specific formulation and MPRL integral introduce unique architectural
 1273 and optimization challenges that are efficiently addressed via reparameterization and sampling
 1274 strategies. Additionally, in terms of wall-clock times for training/sampling, we observe that ItDPDM
 1275 is comparable to standard DDPM-style models.

1276 **K Extended Related Work**

1277 Diffusion models have evolved along two orthogonal dimensions—*noise type* and *state space*.
 1278 Classical DDPMs corrupt continuous data with additive Gaussian noise and learn the reverse process
 1279 with score matching or variational bounds [2, 37, 48–50]. An information-theoretic viewpoint links
 1280 these objectives to mutual-information integrals [12, 22], and has recently motivated non-Gaussian
 1281 extensions based on annealed score matching [51, 52] and SDE formalisms [53]. Parallel work
 1282 seeks native *discrete-state* alternatives: masking schemes such as Blackout Diffusion employ an

1283 irreversible “black” token that blocks exact likelihood computation [54]; Learning-to-Jump (LTJ)
1284 replaces Gaussian noise by binomial thinning/thickening yet remains limited to discrete time and a
1285 variational ELBO [20]. Very recent approaches move to continuous-time jump processes, but still
1286 approximate the likelihood: [69] devise a categorical SDE whose reverse dynamics are learned by
1287 discrete score matching, while [56] estimate probability *ratios* rather than scores to reduce perplexity
1288 on text.

1289 **Score Entropy Discrete Diffusion (SEDD)** [56] represents a significant advancement in discrete
1290 diffusion modeling. It introduces the *Score Entropy* loss, a novel objective that extends score matching
1291 to discrete spaces by directly modeling the ratios of data probabilities. This approach addresses
1292 the challenges of applying traditional score matching to discrete data and enables the construction
1293 of discrete diffusion models that are both theoretically sound and empirically effective. SEDD
1294 demonstrates competitive performance with autoregressive models like GPT-2 on standard language
1295 modeling benchmarks. Notably, it achieves comparable zero-shot perplexities and offers advantages
1296 in generation quality and efficiency. For instance, SEDD can generate high-quality text samples
1297 with $4\times$ lower generative perplexity when matching function evaluations and requires $16\times$ fewer
1298 function evaluations to match the generative perplexity of standard autoregressive sampling methods.
1299 Moreover, SEDD enables arbitrary infilling beyond standard left-to-right prompting, matching the
1300 quality of nucleus sampling without the need for specialized training or sampling techniques.

1301 Concurrently, several non-Gaussian *continuous* diffusion models have been proposed to address the
1302 limitations of traditional Gaussian-based approaches, particularly in handling data with bounded
1303 support or preserving structural details in images.

1304 **Beta Diffusion** [70] introduces a novel generative modeling method that integrates demasking and
1305 denoising to generate data within bounded ranges. Utilizing scaled and shifted beta distributions, it
1306 employs multiplicative transitions over time to create both forward and reverse diffusion processes.
1307 This approach maintains beta distributions in both the forward marginals and the reverse conditionals,
1308 given the data at any point in time. Unlike traditional diffusion models relying on additive Gaussian
1309 noise and reweighted evidence lower bounds (ELBOs), Beta Diffusion is multiplicative and optimized
1310 with KL-divergence upper bounds (KLUBs) derived from the convexity of the KL divergence.
1311 Experimental results demonstrate its unique capabilities in generative modeling of range-bounded
1312 data and validate the effectiveness of KLUBs in optimizing diffusion models.

1313 **Blurring Diffusion Models** [71] propose a generalized class of diffusion models that offer the best
1314 of both standard Gaussian denoising diffusion and inverse heat dissipation. By defining blurring
1315 through a Gaussian diffusion process with non-isotropic noise, this approach bridges the gap between
1316 inverse heat dissipation and denoising diffusion. It sheds light on the inductive bias resulting from this
1317 modeling choice and demonstrates the capability to better learn the low-to-mid frequencies within
1318 datasets, which plays a crucial role in representing shapes and structural information.

1319 **Edge-Preserving Noise** [72] for diffusion introduces a content-aware diffusion model explicitly
1320 trained to learn the non-isotropic edge information in a dataset. Inspired by anisotropic diffusion
1321 in image processing, this model incorporates an edge-aware noise scheduler that varies between
1322 edge-preserving and isotropic Gaussian noise. The generative process converges faster to results that
1323 more closely match the target distribution and better learns the low-to-mid frequencies within the
1324 dataset, crucial for representing shapes and structural information. This edge-preserving diffusion
1325 process consistently outperforms state-of-the-art baselines in unconditional image generation and
1326 is particularly robust for generative tasks guided by a shape-based prior, such as stroke-to-image
1327 generation

1328 While these models offer significant advancements in handling specific data characteristics, they still
1329 require dequantization and rely on surrogate objectives. In contrast, **ItDPDM** models corruption
1330 with a *reversible Poisson channel*, maintaining a discrete latent space, supporting bidirectional
1331 perturbations, and—via the I-MPRL identity—transforming the Minimum Poisson Reconstruction
1332 Loss into an *exact* likelihood integral instead of a bound. This unifies the tractability of information-
1333 theoretic Gaussian diffusion with the fidelity of discrete-state models, yielding closed-form NLLs,
1334 scalable continuous-time sampling, and strong empirical performance on sparse, skewed, and over-
1335 dispersed count data

1336 **ItDPDM** differs fundamentally from the above lines. By modelling corruption with a *reversible*
1337 *Poisson channel*, ItDPDM keeps the latent space discrete, supports bidirectional perturbations,

1338 and—via the I-MPRL identity—turns the Minimum Poisson Reconstruction Loss into an *exact*
1339 likelihood integral instead of a bound. This unifies the tractability of information-theoretic Gaussian
1340 diffusion with the fidelity of discrete-state models, yielding closed-form NLLs, scalable continuous-
1341 time sampling, and strong empirical performance on sparse, skewed, and over-dispersed count
1342 data.

1343 **L Limitations and Future Work**

1344 Despite its theoretical strengths, performance benefits on diverse discrete distributions, and competi-
1345 tive empirical results, **ItDPDM** remains a proof of concept and does not yet match state-of-the-art
1346 performance in real-world generative tasks. As discussed in 4.4, these performance gaps are partly
1347 due to limited training and architectural tuning, with details provided in App. B. Additionally,
1348 logistic sampling parameters are fixed *a priori* without extensive hyperparameter tuning. We believe
1349 that longer training schedules (3000+ epochs), systematic hyperparameter sweeps (e.g., number of
1350 log-SNR steps), and targeted ablations could substantially improve ItDPDM’s performance.