
An Information-Theoretic Discrete Poisson Diffusion
Framework

Anonymous Author(s)

Abstract

Generative modeling of non-negative, discrete data, such as symbolic music, re-1

mains challenging due to two persistent limitations in existing methods. Firstly,2

many approaches rely on modeling continuous embeddings, which is suboptimal3

for inherently discrete data distributions. Secondly, most models optimize varia-4

tional bounds rather than exact data likelihood, resulting in inaccurate likelihood5

estimates and degraded sampling quality. While recent diffusion-based models6

have addressed these issues separately, we tackle them jointly. In this work, we7

introduce the Information-Theoretic Discrete Poisson Diffusion Model (ItDPDM),8

inspired by photon arrival process, which combines exact likelihood estimation9

with fully discrete-state modeling. Central to our approach is an information-10

theoretic Poisson Reconstruction Loss (PRL) that has a provable exact relationship11

with the true data likelihood. ItDPDM achieves improved likelihood and sampling12

performance over prior discrete and continuous diffusion models on a variety of13

synthetic discrete datasets. Furthermore, on real-world datasets such as symbolic14

music and images, ItDPDM attains superior likelihood estimates and competi-15

tive generation quality—demonstrating a proof of concept for distribution-robust16

discrete generative modeling.17

1 Introduction and Background18

Denoising diffusion models have advanced generative modeling, outperforming GANs in image19

synthesis [1] and autoregressive models in likelihood-based tasks [2]. Their flexibility enables broad20

industrial use—from open-ended text-to-image generation [3–5], to audio [6] and medical imaging21

[7]. Diffusion has also been extended to multimodal and structured tasks, including video synthesis22

[8], cross-modal retrieval [9], and molecular modeling [10, 11].23

Limitations of Existing Works: Diffusion models can be classified by timestep type: discrete (DT)24

or continuous (CT) and latent space: discrete (DS) or continuous (CS), forming four classes: DTDS,25

DTCS, CTDS, and CTCS, as shown in Figure 1. DTCS (e.g., VDM [2]) and CTCS (e.g., IT-Gaussian26

diffusion [12]) are effective in continuous domains [2, 13], but suboptimal for inherently discrete27

non-Gaussian data distributions. As shown in Figure 1, the continuous-state models map discrete data28

to continuous state space via z-scoring [14], tail normalization [15], or uniform dequantization [12].29

However, these fail to close the discretization gap (e.g., 1
127.5 for images), and lead to learning30

suboptimal probability density functions (pdf) instead of probability mass functions (pmf) [12].31

Figure 3 shows how continuous DDPMs miss the second mode in the evidently bimodal NYC Taxi32

distribution [16]. Moreover, discretizing outputs during post-processing introduces train-test mis-33

match [12, 17, 18]. Recent discrete-state models directly operate in the discrete domain, addressing34

these limitations by avoiding embedding into continuous spaces altogether.35

Discrete-time discrete-state (DTDS) models [15, 17, 19] operate natively in the discrete domain and36

outperform variational Gaussian-based methods, but often ignore ordinal structure of integer-valued37

data and need post-processing. Learning-to-Jump (LTJ) [20], a recent DTDS method using binomial38

thinning and a variational objective, improves generation on non-negative, skewed data. However, LTJ39

has two drawbacks: (1) its evidence lower bound (ELBO)-based training uses a variational relative40

entropy loss, which lacks an exact relation to the data likelihood, yielding suboptimal likelihood and41
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Figure 1: Classification of diffusion models based on latent state-space (DS/CS) and timesteps
(DT/CT), resulting in 4 combinations - DTCS, CTCS, DTDS, and CTDS

degraded generation quality; (2) denoising requires careful calibration of T (e.g., 1000), the number42

of discrete denoising timesteps, without any flexibility to skip or subsample. (A detailed comparison43

between LTJ and the proposed ItDPDM is provided in App. H)44

Main Contributions. To address these limitations, we propose a novel information-theoretic Discrete45

Poisson Diffusion Model (ItDPDM). As shown in Figure 1, contrary to Gaussian diffusion, ItDPDM46

directly models discrete non-negative data using a Poisson process, avoiding the need for soft47

discretization or dequantization. Contrary to variational DTDS models like LTJ, ItDPDM provides48

closed-form likelihood estimates and thus generation quality. Our main contributions are as follows:49

• We propose ItDPDM, a novel generative framework based on a Poisson diffusion process50

for modeling non-negative discrete data. Unlike prior approaches relying on variational51

ELBO objectives, ItDPDM enables exact likelihood computation, bypassing the limitations52

of variational inference.53

• We introduce the information-theoretic Poisson Reconstruction Loss (PRL), a Bregman54

divergence [21] tailored to Poisson processes and establish its exact relation to negative log-55

likelihood (NLL) via the I-MPRL identity in Eq. (17), enabling non-variational optimization56

of discrete probability mass functions (PMFs).57

• Experiments on synthetic datasets with varied data distributions show that ItDPDM outper-58

forms earlier baselines in Wasserstein-1 distance and NLL. ItDPDM’s discrete Poisson-59

based diffusion generalizes well beyond Poisson distributed data.60

• We also provide closed-form upper bounds on the negative log-likelihood (NLL) and61

an importance-sampling estimator for efficient training, ensuring scalability to high-62

dimensional settings. Empirically, ItDPDM achieves lower NLLs on CIFAR-10 and Lakh63

MIDI datasets while maintaining competitive generation quality.64

Figure 2: Unconditional image samples generated by
ItDPDM
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Figure 4: Comparison of Gaussian (top) and Poisson diffusion processes (bottom).

This work presents a proof-of-concept for information-theoretic discrete Poisson diffusion models,65

showing initial gains over baselines in modeling discrete, positive-valued data. It serves as a first step66

toward principled diffusion modeling in discrete domains, not a state-of-the-art solution.67

2 Information-Theoretic Diffusion68

We briefly revisit the Information-Theoretic Gaussian Diffusion (ITDiff) framework from [12], which69

helps us draw parallels to ItDPDM in Sec 3. The Gaussian noise channel is defined as70

zγ =
√
γx+ ϵ, ϵ ∼ N (0, I),

with signal-to-noise ratio (SNR) parameter ‘γ’ and data distribution p(x).71

Relating Minimum Mean Square Error (MMSE) to Mutual Information72

The “I-MMSE" relation [22] links mutual information I with minimum mean square error (MMSE):73

d

dγ
I(x; zγ) =

1

2
mmse(γ), (1)

where the MMSE is defined as: mmse(γ) = minx̂(zγ ,γ) Ep(zγ ,x)
[
∥x− x̂(zγ , γ)∥22

]
. A pointwise74

generalization of Eq. (1) to the KL divergence is as follows:75

d

dγ
DKL

(
p(zγ |x) ∥ p(zγ)

)
=

1

2
mmse(x, γ) (2)

From here, the following discrete probability estimator is derived as through an exact formulation of76

the variational lower bound (VLB) for diffusion models [2] :77

− logP (x) =
1

2

∫ ∞

0

mmse(x, γ) dγ (3)

3 ItDPDM: Information-Theoretic Poisson Diffusion78

Poisson Noise Channel: We define the canonical Poisson noise channel: given a non-negative input79

x ≥ 0, the output zγ is drawn from P(γx), where γ denotes the SNR. The conditional PMF is80

P (zγ |x) =
(γx)zγe−γx

zγ !
, zγ ∈ N0, (4)

where P(·) denotes the Poisson distribution. This setup is motivated by Poisson channels arising in81

direct-detection optical systems [23, 24], where photon counts follow a Poisson process with rate82

determined by a combination of signal intensity and device-induced dark current [25].83

Diffusion with Poisson Noise: We propose an information-theoretic Poisson diffusion process, where84

a source x ∼ p(x) is corrupted at SNR γ via zγ ∼ P(γx), producing discrete, non-negative integers85

at each step. Unlike Gaussian noise, Poisson corruption is non-additive and not source-separable,86

making denoising more challenging. Figure 4 contrasts Gaussian and Poisson diffusion: Gaussian87

begins from white noise, whereas Poisson diffusion starts from a black image with zero photons.88
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Poisson Reconstruction Loss (PRL): The function l0(x) = x log x − x + 1, x > 0 (where log89

denotes the natural logarithm) is the convex conjugate of the Poisson distribution’s log moment90

generating function (proof in App. D.1) and often arises naturally in the analysis of continuous and91

discrete-time jump Markov processes [20, 26] and for mutual information estimation in the Poisson92

channel [27]. Building on this, we define the poisson reconstruction loss l(x, x̂) as:93

l(x, x̂) = x̂l0(x/x̂) = x log
(x
x̂

)
− x+ x̂, (5)

Analogous to the MMSE, we also define the minimum poisson reconstruction loss (MPRL) as:94

mprl(γ) ≡ min
x̂(zγ ,γ)

EP (zγ ,x) [l(x, x̂(zγ , γ))] , (6)

where x̂(zγ , γ) denotes the denoiser. The optimal denoiser x̂∗ is the conditional expectationE[X|Zγ ]95

using the fact that the Poisson reconstruction loss is a Bregman divergence [28] (proof in App.D.1).96

x̂∗(zγ , γ) ≡ argminmprl(γ) = Ex∼P (x|zγ)[x] (7)

The analytical solution is typically intractable due to the need to sample from the Poisson noise97

channel’s posterior. We next highlight key properties [29] of this loss, showing it is a natural fit for98

evaluating reconstruction of non-negative data, analogous to squared error in the Gaussian case.99

Lemma 1 (Poisson Reconstruction Loss). The loss function l(x, x̂) satisfies the following properties:100

1. Non-negativity: l(x, x̂) ≥ 0, with equality if and only if x = x̂.101

2. Convexity: l(x, x̂) is convex in x̂ for each fixed x, and in x for each fixed x̂.102

3. Scaling: For any α > 0, l(αx, αx̂) = αl(x, x̂).103

4. Unboundedness for underestimation: For any x > 0, limx̂→0+ l(x, x̂) =∞.104

5. Optimality of Conditional Expectation: For any non-negative random variable X with105

E[X log+X] <∞, the conditional expectation E[X|Y ] uniquely minimizes the expected106

loss E[l(X, x̂)].107

Figure 5: Poisson Reconstruction Loss (PRL): (a) vs.
denoised pixel x̂, for fixed ground truth pixel 1; (b) vs.
ground truth pixel x, for fixed denoised output 1.

Convexity makes the loss amenable to gradient-108

based methods. Property 4 penalizes underes-109

timation, making l(x, x̂) well-suited for non-110

negative data, unlike common loss functions111

(absolute/squared error). Figure 5 illustrates the112

behavior of the proposed PRL. As per Lemma 1,113

the conditional expectation E[X|Y ] uniquely114

minimizes the expected “mprl" loss function.115

Conditional Expectation for Poisson Channel116

We define the angle bracket operator X as con-117

ditional expectation given Zγ : ⟨X⟩ = E[X|Zγ ]118

Unlike the linear Gaussian case, Poisson has a non-linear ⟨X⟩, making Poisson-based denoising119

fundamentally more complex. Nevertheless, it becomes linear under certain conditions, let ⟨X⟩z120

denote ⟨X⟩ evaluated at Zγ = z then:121

Lemma 2 (Linearity in Poisson Channel). Let Zγ = P(γX). Then, ⟨X⟩z = az + b, if and only if122

X ∼ Gam
(
1−γa
a , ba

)
for any 0 < a < 1

γ and b > 0.123

Though Poisson analysis is complex, it simplifies here since the Gamma distribution is its conjugate124

prior [30], yielding a linear conditional variance (see App.D.2). This contrasts with the Gaussian case,125

where conditional variance is constant. We now revisit the squared error loss ℓSE(x, x̂) = (x− x̂)2,126

which satisfies for any finite-variance X:127

E[ℓSE(X, x̂)] = E[ℓSE(X,E[X])] + ℓSE(E[X], x̂) (8)

Our Poisson reconstruction loss (PRL) has a similar property stated below ([29]).128

Lemma 3. For any non-negative random variable X with E[X log+X] <∞, and any x̂ ∈ [0,∞),129

E [l(X, x̂)] = E [l (X,E[X])] + l (E[X], x̂) (9)
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A result that immediately follows from Lemma (3), when combined with the non-negativity property130

in Lemma 1, is that E[X] uniquely minimizes E [l(X, x̂)] over all x̂:131

min
x̂
E [l(X, x̂)] = E [l (X,E[X])] = E[X logX]− E[X] logE[X]. (10)

Interestingly, in Poisson channels, this estimator depends only on the marginal distribution of Zγ , a132

property formalized by the Turing-Good-Robbins formula [31, 32]. This result closely relates to the133

Discrete Universal Denoiser (DUDE) [33], which estimates discrete signals from noisy observations.134

Lemma 4 (Optimal Estimator in Poisson Channel). Let Zγ = P(γX). Then, for every γ > 0,135

⟨X⟩z =
1

γ

(z + 1)PZγ (z + 1)

PZγ
(z)

, z = 0, 1, . . . (11)

The PRL objective provides a principled objective for modeling non-negative discrete data, directly136

modeling PMFs and avoiding quantization artifacts inherent in squared error loss, which assumes137

continuous outputs. The pointwise denoising relation for the Poisson channel is: (proof in App.F)138

d

dγ
DKL [P (zγ |x) ∥ P (zγ)] = mprl(x, γ), (12)

where p(zγ) =
∫
p(zγ |x)p(x)dx is the marginal distribution, and pointwise MPRL is defined as:139

mprl(x, γ) ≡ EP (zγ |x) [l (x, x̂
∗(zγ , γ))] (13)

The pointwise MPRL is the MPRL evaluated at a fixed x, and its expectation over p(x) recovers140

the total MPRL. Taking expectation wrt x in Eq. (12) recovers the I-MPRL relation in Eq. (14).141

Moreover, for a mismatched denoiser [29], integrating the excess pointwise loss over γ equals the KL142

divergence between the true and mismatched channel outputs (via Eq. (12)).143

I-MPRL identity: Following the foundational result of [22], which relates the mutual information144

derivative to MMSE in Gaussian channels, [12] leverages this identity in generative modeling.145

Analogously, we establish the I-MPRL identity for the Poisson channel, as follows:146

d

dγ
I(x; zγ) = mprl(γ). (14)

A similar result holds for the derivative with respect to the dark current in a general Poisson channel.147

Using the incremental channel technique from [22], we derive both results in App.D.3. This enables148

exact relations between the proposed PRL objective and the likelihood, offering an information-149

theoretic justification for Poisson diffusion. Detailed proofs of Lemmas 1–4 are in App.D.2, along150

with Lemmas 5 and 6, stated and proved therein.151

Thermodynamic Integration for Variational Bound: The pointwise denoiser yields a log-likelihood152

expression akin to the variational bound. Unlike traditional methods that rely on expensive sampling,153

diffusion models leverage the structure of the noise for efficient sampling at arbitrary noise levels154

[34]. Letting P (zγ |x) ∼ P(γx), using thermodynamic integration method from [35, 36] yields:155 ∫ γ1

γ0

d

dγ
DKL[P (zγ |x) ∥ P (zγ)] dγ = −

∫ γ1

γ0

mprl(x, γ) dγ, (15)

where mprl(x, γ) ≡ Ep(zγ |x) [l (x, x̂∗(zγ , γ))] is the pointwise MPRL for Poisson denoising. The156

exact log-likelihood is given by:157

− logP (x) = DKL[P (zγ1 |x) ∥ P (zγ1)]︸ ︷︷ ︸
Prior loss

+EP [− logP (x|zγ0)]︸ ︷︷ ︸
Reconstruction loss

−
∫ γ1

γ0

mprl(x, γ) dγ︸ ︷︷ ︸
Diffusion loss

(16)

158
We also outline a possible extension of the proposed Continuous-Time Discrete-State Poisson159

Diffusion to a Continuous-Time Continuous-State equivalent of [12] in App. G.160

Discrete Probability Estimation via MPRL: We derive a novel discrete probability estimator in the161

Poisson channel setting, where x ∼ P (x) and Zγ ∼ P(γx). In the limits γ0 →∞ and γ1 → 0, both162

the prior and reconstruction loss vanish, which yields the following tractable expression:163

DKL[P (zγ1 |x)||P (zγ1)] + EP (zγ0 |x)[− logP (x|zγ0)] = 0.

and, therefore Eq. 16 yields the exact likelihood relation:164
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− logP (x) =

∫ ∞

0

mprl(x, γ) dγ =⇒ E[− logP (x)] =

∫ ∞

0

mprl(γ) dγ (17)

To obtain an expression resembling the variational bound, taking an expectation in x ∼ P (x) gives:165

E[− logP (x)] = E

[∫ ∞

0

mprl(x, γ) dγ
]
=

∫ ∞

0

E[mprl(x, γ)]dγ =

∫ ∞

0

E[l(X, X̂∗)] dγ

=

∫ ∞

0

E [X logX − E[X|Zγ ] logE[X|Zγ ]] dγ =

∫ ∞

0

E

[
X log

X

E[X|Zγ ]

]
dγ,

here, X̂∗(X, γ) = E[X|Zγ ] denotes the optimal estimator. This section establishes a tractable,166

non-variational estimator for discrete distributions in the Poisson channel by connecting the MPRL167

objective to the true data likelihood. Additionally, we present in App.F.1 an equivalent score matching168

formulation using a Poisson-adapted version of Tweedie’s formula denoising. See App.H for a169

comprehensive comparison between our ItDPDM framework and LTJ [20].170

Numerical details and Pseudocode: Numerical details can be found in App. A. In the same section,171

algorithms 1 and 2 present the pseudocode used for ItDPDM training and generation respectively.172

4 Experiments173

We begin by evaluating on synthetic datasets exhibiting sparsity, skewness, and overdisper-174

sion—settings where Gaussian diffusion models often underperform, along with extreme distributions175

like Zipf where LTJ [20] underperforms. These tests validate both the theoretical formulation and176

implementation of ItDPDM by recovering ground-truth NLL and improving modeling of discrete,177

non-negative data. We then evaluate ItDPDM on real-world domains like CIFAR10 and Lakh MIDI,178

where discrete structure is inherent. ItDPDM consistently achieves superior NLL and competitive179

generation quality, as measured by domain-specific metrics.180

4.1 Synthetic Data181

We consider various synthetic distributions containing univariate non-negative data x grouped into182

two broad categories: discrete x ∈ N, and continuous x ∈ [0,∞] to mimic distributions exhibiting183

either sparse, heavy-tailed, skewed, zero-inflated or overdispersed behaviour.184

Discrete counts (x ∈ N): We generate six synthetic distributions capturing key real-world behaviors:185

PoissMix (airport arrivals), ZIP, NBinomMix (forum activity), BNB, and two heavy-tailed laws:186

Zipf and Yule-Simon (word frequencies). These cover bimodality, overdispersion, and long tails.187

Distribution parameters are listed in Table 4 in Appendix, with design details in App. C.1.188

Continuous non-negative (x ∈ [0,∞)): We also include six skewed continuous densities—Gamma,189

Log-Normal, Lomax, Half-Cauchy, Half-t, and Weibull—described in App. C.4.190

Model Architecture: The neural denoiser model for all (discrete, continuous) cases uses a similar191

architecture (ConditionalMLP) to ensure fair comparison: a 3-layer MLP with 64 hidden units,192

LayerNorm, Leaky-ReLU activations (slope = 0.2). Further training details can be found in App. C.2.193

To maintain computational tractability, most distributions are truncated at 50. For each distribution,194

we draw 50,000 i.i.d. samples to form the training data and generate 50,000 samples for each run.195

Metrics and results: We report Wasserstein-1 distance (WD) and negative log-likelihood (NLL)196

between empirical distributions of generated and test samples (see App. C.2). Table 1 summarizes197

these metrics for ItDPDM and all baselines. To illustrate the quality of PMF modeling, Figure 6198

overlays the true and generated PMFs across all discrete datasets. As shown, ItDPDM consistently199

outperforms DDPM across all datasets, achieving lower WD and NLL estimates that closely align200

with the true values. It further outperforms LTJ in 4 out of 6 datasets, demonstrating strong201

generalization of ItDPDM across diverse distributions, beyond just Poisson-mixture datasets. In202

contrast, LTJ performs well primarily on binomial-related datasets, which are well-suited to its203

variational count-thickening loss. More details on PMF estimation are in App. C.3.204

4.2 Real-World Data205

We evaluate ItDPDM on two discrete datasets: CIFAR-10 images and Lakh MIDI (LMD) sym-206

bolic music and compare against existing baselines: Improved DDPM (IDDPM) [37], information-207

theoretic Gaussian diffusion (ITDiff) [12], discrete masking-based (D3PM) [17], and learning-to-jump208
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Table 1: Metrics for synthetic datasets (↓ lower is better). Bold indicates best.
WD NLL1

Distribution DDPM ItDPDM LTJ True NLL DDPM ItDPDM LTJ
PoissMix 3.76 ± 0.32 0.99 ± 0.15 1.21 ± 0.30 3.80 4.24 3.72 3.69
ZIP 2.31 ± 0.66 0.56 ± 0.43 0.69 ± 0.24 2.13 1.67 2.22 2.30
NBinomMix 4.89 ± 0.59 1.39 ± 0.37 1.15 ± 0.41 0.87 1.84 1.43 1.30
BNB 1.89 ± 0.45 0.67 ± 0.23 0.65 ± 0.32 2.06 2.56 1.87 2.01
Zipf 1.51 ± 0.53 0.48 ± 0.13 0.73 ± 0.25 1.57 1.34 1.70 1.77
YS 0.32 ± 0.12 0.14 ± 0.03 0.17 ± 0.06 0.94 1.39 0.79 0.76
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Figure 6: Comparison of true and generated probability distributions

(LTJ) [20]. CIFAR-10 comprises 60,000 color images (32× 32) across 10 classes [38]. LMD con-209

tains 648,574 symbolic music sequences of 1024 integers: 0 (rest), 1 (continuation), and 2−89210

representing note pitches [39]. Unlike [12], which fine-tunes pre-trained models, the absence of pre-211

trained models in our setting necessitates training from scratch. Denoiser architectures (U-Net [40],212

ConvTransformer [17], DenseDDPM [41]) are discussed in App. B.3.213

4.3 Performance Comparison: Negative Log Likelihood (NLL)214

Noising + Objective DDPM IDDPM
ITDiffa 2.97 0.86

Gaussian + MSE 0.44 0.48

Gaussian + PRL 0.27 0.32

Poisson + MSE 0.23 0.22

ItDPDM: Poisson + PRL 0.18 0.17

acheckpoint models provided by [12] directly used

Noising + Objective NLL (total data)
Gaussian + MSE 0.51

ItDPDM: Poisson + PRL 4.61 × 10−5

Noising + Objective NLL (without rests)
Gaussian + MSE 1.41

ItDPDM: Poisson + PRL 0.23

Table 2: (a) (Left) CIFAR10 (image) test-set NLL; (b) (Right) LMD (music) test-set NLL.

Two architectural variants from DDPM [13] and IDDPM [37] are used. Table 2 reports test-set215

NLLs on a CIFAR-10 subset, comparing ItDPDM to relevant baselines: (1) ITDiff [12], which fine-216

tunes pretrained Gaussian DDPM/IDDPM models, and (2) Gaussian + MSE, where DDPM/IDDPM217

models are trained from scratch using the ITDiff objective, ensuring a fair comparison. ItDPDM218

(Poisson + PRL) consistently achieves the lowest NLL across both backbones, with IDDPM slightly219

outperforming DDPM. These results underscore the effectiveness of Poisson diffusion and PRL for220

modeling discrete, non-negative data without requiring dequantization. Figure 7 shows denoising221

loss curves across SNRs: MSE for ITDiff and Gaussian + MSE (Figure 7a), and PRL for ItDPDM222

(Figure 7b). PRL remains lower at low SNRs, consistent with the NLL improvements observed in223

Table 2. Similar trends are seen on symbolic music (Table 2b), where ItDPDM achieves even larger224

NLL reductions, further demonstrating its suitability for discrete generative modeling.225

4.4 Performance Comparison: Generation Quality226

Next, for evaluating generation quality of the generated images and music, we use domain-specific227

metrics: Structural Similarity Index Measure [42], and Fréchet Inception distance (FID) [43] for228

generated images; Fréchet Audio distance (FAD) [44], Consistency (C) [45], Mel-Spectrogram229

Inception Distance (MSID) [46] and Wasserstein Distance (WD) [47] for generated music. As shown230
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Figure 7: (a) Test MSE vs. logSNR for Gaussian diffusion; (b) Test PRL vs. logSNR for ItDPDM; (c) Training
loss under Gaussian noise vs. PRL for 1D music; (d) Training loss under Gaussian noise vs. PRL for 2D images

in Figure 2, ItDPDM can generate realistic-looking natural images. Due to the limited computational231

budget available for training, the raw metrics for all models are lower than their reported values in232

IDDPM [37] and LTJ [20]. The relative performance of the models gives us the necessary insights:233

for image generation, IDDPM[37] achieves the best FID, with ItDPDM ranking second. In symbolic234

music, D3PM with categorical masking obtains the lowest FAD. ItDPDM outperforms LTJ for both235

image and symbolic music cases, by virtue of our exact likelihood estimation, as opposed to LTJ’s236

variational relative entropy loss. Further details along with generated piano rolls are in App. B.237

Table 3: Domain-specific generative quality metrics. Image: FID, SSIM; Audio: FAD, C, MSID, WD

Baseline Image Audio
FID SSIM FAD C MSID WD

DDPM [13] 4.64 0.93 0.89 0.91 0.82 2.83
LTJ [20] 4.97 0.90 0.66 0.92 0.71 2.23
D3PM [17] 9.11 0.86 0.61 0.98 0.59 1.99
ItDPDM 4.84 0.91 0.64 0.94 0.67 2.14

4.5 Cross Training Paradigm238

To isolate the benefits of Poisson diffusion and PRL objective, we perform cross-training: Gaussian239

+ PRL and Poisson + MSE. As shown in Table 2(a), ItDPDM (Poisson + PRL) yields the best240

NLL, confirming PRL’s suitability for Poisson diffusion. Notably, Gaussian + PRL also outperforms241

Gaussian + MSE, suggesting PRL’s broader effectiveness on discrete data. Moreover, ItDPDM242

converges faster and reaches lower loss than its Gaussian counterpart, as shown in ( Figure 7c–d).243

We further validate the I–MPRL identity(14) by comparing area-under-loss curves and final losses,244

finding close numerical agreement between Poisson and Gaussian models, aligning with theory.245

5 Related Work246

Diffusion models are widely used in generative and restoration tasks [37, 48], grounded in denois-247

ing autoencoders [49], variational inference [2], and score-based SDEs [50]. Recent works add248

information-theoretic insights [12], linking mutual information and MMSE [22] to likelihood bounds.249

Non-Gaussian extensions via annealed score matching [51, 52] and score-based SDEs [53] enhance250

theoretical rigor. In the discrete setting, Blackout Diffusion[54] and Beta Diffusion[55] use ir-251

reversible priors without tractable likelihoods. SEDD[56] uses score-entropy loss for token-level252

modeling but inherits ELBO-based approximations and lacks exact likelihood. LTJ[20] employs253

binomial thinning but is non-reversible and discrete-time. Our method overcomes these by us-254

ing a reversible Poisson process, enabling bidirectional corruption, exact likelihood, and efficient255

continuous-time sampling. A more detailed discussion is provided in App. K.256

6 Conclusion257

We introduce ItDPDM, a diffusion framework for non-negative discrete data that combines a Poisson258

noising process with a principled Poisson Reconstruction Loss (PRL), enabling exact likelihood259

estimation and discrete sampling without dequantization. ItDPDM achieves lower NLL on both260

synthetic and real data, enhances modeling quality on varied synthetic distributions, and delivers261

competitive results in image and symbolic music generation. Though a proof-of-concept, ItDPDM262

lays a strong foundation for distribution-robust discrete generative modeling, with applications in263

symbolic music, low-light imaging, and other count-based domains. Limitations of ItDPDM and264

future work are discussed in App. L.265
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Appendix450

A Numerical Details451

A.1 MPRL Upper Bound452

A key challenge is the inaccessibility of the posterior distribution in Eq. (7). To bound the intractable453

marginal likelihood, we compare our (suboptimal) neural denoiser X̂(Zγ , γ) with the intractable454

optimal conditional expectation X̂∗. This reformulates the expected loss entirely in terms of X̂(Zγ , γ)455

from the Poisson diffusion model:456

E[− logP (x)] =

∫ ∞

0

mprl(γ) dγ ≤
∫ ∞

0

E[ℓ(X, X̂)] dγ (18)

It is important to note that the NLL upper bound in Eq. (18) is empirical, capturing the suboptimality457

of the learned neural denoiser. Eq. (17) yields an exact theoretical expression for the NLL, unlike458

variational diffusion models, which introduce two layers of approximation: first via the ELBO, and459

then through a bound on the denoiser.460

Now we delve into the derivation of Eq. (18). We first express the expected loss in terms of the461

optimal estimator (using shorthand notation subsequently):462

E[l(X, X̂(X, γ))] = E

[
X log

X

X̂(X, γ)
−X + X̂(X, γ)

]
= E

[
X log

X

X̂∗

]
+ E

[
X log

X̂∗

X̂
−X + X̂

]
.

(19)
Using the law of iterated expectation gives:463

E[l(X, X̂)] = mprl(γ) + E[l(X̂∗, X̂)].

The second term above denotes the estimation gap, and rearranging the terms, we get:464

E[− logP (x)] =

∫ ∞

0

(
E[l(X, X̂)]− E[l(X̂∗, X̂)]

)
dγ.

Using Jensen’s inequality here (based on the properties mentioned in Lemma 1), we have:465

−E[l(X̂∗, X̂)] ≤ −E[X̂∗] log
E[X̂∗]

X̂
− E[X̂∗] + X̂ = −l(E[X], X̂). (20)

Now, using the relation from Lemma 2 gives us:466 ∫ ∞

0

mprl(γ) dγ ≤
∫ ∞

0

E[l(X,E[X])] dγ. (21)

We obtain a more elegant bound in terms of our suboptimal neural denoiser by dropping the negative467

term:468

E[− logP (x)] =

∫ ∞

0

mprl(γ) dγ ≤
∫ ∞

0

E[l(X, X̂)] dγ. (22)

A.2 Parametrization:469

To ensure stability across SNR levels, we reparameterize the Poisson observation Zγ ∼ P(γX)470

to mitigate mean and variance explosion. Instead of feeding Zγ directly into the neural network,471

we define the normalized Z̃γ = Zγ/(1 + γ), keeping it within [0, X] with high probability. This472

transformation preserves interpretability: at high SNR, E[Z̃γ ] ≈ X , while at low SNR (γ → 0), it473

tends to zero, aligning with Poisson behavior. We input (Z̃γ , γ) into the network in place of (Zγ , γ).474

Adopting the log-SNR parameterization α = log γ, we get:475

E[− logP (x)] =

∫ ∞

−∞
eαmprl(α) dα ≤

∫ ∞

−∞
eαE[l(X, X̂)] dα. (23)

We now present details on efficient numerical integration of this expression below.476
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Algorithm 1 ItDPDM Training

Require: Dataset {xi}Ni=1, # log-SNR samples
S, SNR range [γmin, γmax], denoiser fθ

1: for s = 1, . . . , S do
2: Sample mini-batch B from {xi}
3: Sample α ∼ Logistic, γ ← exp(α)

4: Sample zγ ∼ Poisson(γ xB)
1+γ

5: x̂B ← fθ
(
data_transform(zγ), γ

)
6: ℓ←

∑
i∈B PRL(xi, x̂i), L← ℓ / q(α)

7: Update θ by gradient descent on L
8: end for
9: return θ

Algorithm 2 ItDPDM Sampling

Require: Trained model fθ, # reverse steps T
1: Compute {γt} (e.g. spaced in log-SNR)
2: Initialize zγT ← 0
3: for t = T, T − 1, . . . , 1 do
4: x̂0 ← fθ

(
data_transform(zγt), γt

)
5: Sample zγt−1

∼ Poisson
(
γt−1 x̂0

)
6: end for
7: return x̂0

Numerical Integration:477

This section outlines the effective computation of integral from (23). We first use importance478

sampling to rewrite the integral as an expectation over a distribution, q(γ), allowing for unbiased479

Monte Carlo estimation. This leads to our final numerical approximation of the loss function480

Ep(x)
[
− log p(x)

]
≤ L, where481

L ≡ Eq(α)
[

1

q(α)
E(x,zγ)[l(X, x̂)]

]
.

We propose two paradigms for numerical integration: Logistic and Uniform Integration, respectively.482

Logistic Integration. In Gaussian diffusion models, the log-SNR integral is approximated via483

importance sampling with a truncated logistic distribution. The integrand, shaped by a mixture of484

logistic CDFs influenced by data covariance eigenvalues λi, is captured by matching the empirical485

mean µ and variance s of − log λi, with integration bounds [µ− 4s, µ+ 4s]. Samples drawn via the486

logistic quantile function are weighted by 1/q(α) to prioritize critical regions, reducing variance.487

Uniform Integration. This simpler numerical method discretizes the log-SNR range [α1, α2] into488

a uniform grid, applying trapezoidal or Riemann-sum integration without assuming an underlying489

distribution. While simple, efficiency depends on grid density for broad ranges, favoring ease over490

optimal sampling. The predefined range is [−28, 37] with uniform sampling.491

A.3 MPRL Tail Bounds:492

Since the integration on the RHS of Eq.(23) is intractable, we identify a finite integration range493

(α0, α1) beyond which the contribution becomes negligible. The RHS of Eq. (23) can thus be written494

in terms of ‘α’ as:495

=

∫ α1

α0

eαmprl(α)dα+

(∫ α0

−∞
+

∫ ∞

α1

)
eαmprl(α)dα ≤

∫ α1

α0

eαE[l(X, X̂)] dα+ f(α0, α1)

We analytically derive upper bounds for the left and right tail integrals, denoted by f(α0, α1) above496

in App. E, and show that their contributions decay rapidly outside the relevant integration range.497

Algorithms 1 and 2 present the pseudocode used for ItDPDM training and generation respectively.498

B Experimental Details499

B.1 Training Details (contd.)500

For a fair comparison, we train both CIFAR and LMD models from scratch for 600 epochs. The501

training starts with a learning rate of 2×10−5 using the Adam optimizer. We adopt an 80-20 train-test502

split for evaluating likelihoods. For image generation, we use a UNet-based model[40], while for503

music generation, we employ the DenseDDPM[41] and convolutional-transformer[17]-based models504
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for the continuous embeddings (DDPM-style) and discrete domain (D3PM[17]) respectively. The505

training procedure ensures consistency across both domains, facilitating a meaningful comparison506

of their performance. It is to be noted that we train all of the models from scratch, owing to a507

lack of pre-trained Poisson diffusion baselines, to ensure fair comparison. Because of compute508

resource constraints, we train the models upto 600 epochs, which falls short of the usual amount of509

training required to achieve peak performance (e.g., LTJ[20] trains their models for 3600 epochs).510

We also restrict ourselves to 100 logSNR values per image / music sample, and restrict the number of511

denoising steps used in the DDPM / D3PM baselines to 100 as well (instead of 1000), to ensure fair512

comparison. Thus, although the relative performance of the models is preserved, the absolute values513

of the metrics underperform those presented in DDPM[13] and LTJ[20].514

B.2 Data and Model Normalization515

We experimented with various schemes for data (Dn) before passing it through the noisy channel and516

for model inputs (Mn) post-noising. CIFAR-10 data is normalized to [0, 1], [1, 2], [0, 255], [−1, 1];517

Lakh MIDI to [0, 1], [1, 2], [0, 90], [−1, 1]. Poisson channels cannot handle negatives and since zero518

inputs yield zeros, we shift inputs by ϵ = 10−6. For Gaussian noising, model normalization used519

[0, 1] or [−1, 1], while Poisson noising used only [0, 1]. The best results were achieved with [−1, 1]520

(Gaussian) and [1, 2] (Poisson) for Dn, and [−1, 1] (Gaussian) and [0, 1] (Poisson) for Mn. Among521

the integration paradigms used, logistic integrate yielded the best empirical results, and the loc and522

scale parameters obtained for the mid-integral range were (6, 3) for Gaussian noising and (−1, 5)523

for Poisson noising.524

B.3 Denoiser Architecture525

For CIFAR-10 images, we employ a U-Net architecture [40] with residual blocks and self-attention526

layers. The encoder comprises four downsampling blocks (convolution→ GroupNorm→ SiLU)527

that reduce spatial resolution from 32× 32 to 4× 4, followed by a bottleneck with self-attention at528

8× 8 resolution. The decoder mirrors the encoder via transposed convolutions and skip connections.529

For symbolic music synthesis on Lakh MIDI, we use a DenseDDPM[52]-based architecture and530

a convolutional transformer[19]-based model, for the continuous-state DDPM modeling and the531

discrete D3PM[19] modeling respectively. For the continuous modeling, we adapt the DenseDDPM532

architecture from [41]. It first projects the input latent vector to an MLP hidden size (default533

2048) with a single Dense layer, then runs it through 3 residual MLP blocks whose weights are534

modulated by a 128-dimensional sinusoidal embedding of the diffusion timestep t. After these535

conditioned residual blocks, it applies a LayerNorm and a final Dense layer that maps back to the536

original latent dimensionality, yielding the denoised output. For the discrete modeling, we adapt an537

NCSN++ backbone [52] with a Convolutional Transformer encoder [19]. The architecture includes a538

512-dimensional embedding layer, six transformer layers with multi-head attention (8 heads) and539

positional encodings, and time-dependent noise conditioning.540

B.4 Symbolic Music Dataset Cleanup541

We utilize the cleaned Lakh MIDI dataset [39], loading note sequences from .npy files with original542

shape (x, 1024). For training, sequences are partitioned into individual 1D vectors of shape (1,1024),543

representing discrete musical events. So, our method directly models symbolic music as discrete 1D544

note sequences using Poisson diffusion, avoiding hybrid architectures or preprocessing.545

B.5 Domain-Specific Metrics546

To evaluate the generation quality of our model across image and audio domains, we utilize established547

domain-specific metrics that quantify fidelity, diversity, and structural realism. Below, we provide548

descriptions and implementation details for each metric employed in our evaluation.549

Image Metrics All image-generation metrics were computed on 40,000 randomly selected ground-550

truth images from the CIFAR-10 test split and 40,000 model-generated samples. Fréchet Inception551

Distance (FID) was evaluated with the PyTorch torch-fidelity package (Inception-v3 network,552

2048-dimensional pool3 activations).553
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• Structural Similarity Index Measure (SSIM) [42]: SSIM measures the similarity between554

two images by comparing their luminance, contrast, and structure. It is defined as:555

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where µ and σ denote mean and standard deviation over local image patches. Higher SSIM556

indicates better perceptual similarity.557

• Fréchet Inception Distance (FID) [43]: FID evaluates the distance between real and558

generated image distributions in the feature space of a pretrained Inception network. It is559

calculated as:560

FID = ∥µr − µg∥2 + Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)

where (µr,Σr) and (µg,Σg) are the means and covariances of the feature embeddings of561

real and generated samples.562

Audio Metrics. All audio-based metrics are computed using 10,000 ground-truth samples and 10,000563

generated samples per model. To enable consistent audio evaluation, we first convert model-generated564

.npy files to MIDI format using the pretty_midi library. These MIDI files are then rendered565

to WAV audio using FluidSynth [57] with the FluidR3_GM soundfont, ensuring uniform timbre566

across all samples. All tools and dependencies are managed within an automated evaluation pipeline.567

This standardized conversion procedure ensures reproducibility and fair comparison of audio metrics568

across all models.569

• Fréchet Audio Distance (FAD) [44]: Analogous to FID, FAD computes the Fréchet distance570

between embeddings of real and generated audio, extracted via a VGGish model pretrained571

for audio classification. It reflects perceptual similarity in the feature space and is calculated572

similarly to FID.573

• Consistency (C): To evaluate sequence-level realism, we employ framewise self-similarity574

based on overlapping Gaussian approximations of pitch histograms. Specifically, we use the575

overlapping area (OA) from [45], applied to pitch only (since duration is fixed in our setup).576

For sliding 4-measure windows with 2-measure hop:577

OA(k, k + 1) = 1− erf
(
c− µ1√
2σ1

)
+ erf

(
c− µ2√
2σ2

)
The resulting pitch OA values are compared to ground-truth sequences via:578

C = max

(
0, 1− |µOA − µGT|

µGT

)
579

Var = max

(
0, 1− |σ

2
OA − σ2

GT|
σ2

GT

)
Consistency (C) measures global similarity to ground truth, while variance (Var) captures580

generation diversity. High C implies structured, music-like pitch transitions.581

• Mel-Spectrogram Inception Distance (MSID) [46]: MSID adapts FID for audio by582

computing the Fréchet distance over features extracted from Mel spectrograms. The key583

steps include:584

– Convert generated .npy files to MIDI and synthesize audio using FluidSynth.585

– Compute 128-band Mel spectrograms (16kHz, FFT=2048, hop=512), as outlined586

in B.5.587

– Extract features using a VGG16-based architecture trained on audio (VGGish).588

– Compute MSID using: MSID = ∥µr − µg∥2 + Tr(Σr +Σg − 2(ΣrΣg)
1/2)589

MSID captures both spectral and perceptual differences, correlating with human audio590

quality judgments.591
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• Wasserstein Distance (WD) [47]: WD quantifies the distance between the token distribu-592

tions of real and generated symbolic music. We compute a weighted Wasserstein distance593

that prioritizes important token types (e.g., binary onsets or active pitches):594

Ww(p, q) = inf
γ∈Π(p,q)

E(x,y)∼γ [c(x, y) · w(x, y)]

Weights are assigned based on token values: 0.2 for 0s, 0.5 for 1s, 1.0 for others. Tokens are595

normalized and reshaped as needed. Lower WD values indicate better alignment of pitch596

activation distributions.597

In addition to the core domain-specific metrics described in Appendix B.5, we include the following598

complementary metrics used for additional analysis presented in Table 4. These metrics help analyze599

fine-grained perceptual and structural properties of the generated data.600

Images:601

• Learned Perceptual Image Patch Similarity (LPIPS) [58]: LPIPS measures perceptual602

similarity by computing the distance between deep features extracted from pretrained vision603

networks (e.g., VGG, AlexNet). It is defined as:604

LPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (ϕxl (h,w)− ϕ
y
l (h,w))∥

2
2

where ϕxl and ϕyl are feature activations from layer l, and wl are learned weights. Lower605

LPIPS values indicate higher perceptual similarity between generated and reference images.606

Audio:607

• Spectral Convergence (SC): SC quantifies the relative difference between the magnitude608

spectra of real and generated audio:609

SC =
∥|Sgen| − |Sref|∥F
∥|Sref|∥F

where Sgen and Sref are the STFTs (Short-Time Fourier Transforms) of generated and610

reference audio, and ∥ · ∥F denotes the Frobenius norm. Lower SC suggests higher spectral611

alignment.612

• Log Mean Spectral Distance (LMSD): LMSD captures differences in log-scaled spectral613

magnitudes and is defined as:614

LMSD =
1

T

∑
t

∥ log(ϵ+ |Sgen(t)|)− log(ϵ+ |Sref(t)|)∥1

where ϵ is a small constant to ensure numerical stability, and the summation is over time615

frames t. Lower LMSD implies improved perceptual quality in frequency response.616

• Variance (Pitch Histogram Diversity): [41] As described in Appendix B.5, we also617

compute the pitch variance metric (Var) to measure structural diversity in symbolic music:618

Var = max

(
0, 1− |σ

2
OA − σ2

GT|
σ2

GT

)
Higher variance indicates greater distributional diversity while maintaining similarity to619

ground truth statistics. Together, these metrics offer a comprehensive, multi-faceted eval-620

uation of image and audio generation quality, balancing fidelity, diversity, and perceptual621

structure.622

Mel Spectrogram Computation Parameters:623

For the listed audio-based metrics (FAD, MSID, SC, LMSD), we first convert generated symbolic624

music into waveform as discussed earlier [57] and compute Mel spectrograms with the following625

parameters:626
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• Sampling rate: 16 kHz — chosen to balance temporal resolution and frequency coverage627

for symbolic music.628

• FFT size: 2048 — defines the window size for frequency analysis. This size gives sufficient629

frequency granularity (≈7.8 Hz per bin at 16 kHz).630

• Hop length: 512 — determines the stride between successive STFT windows, corresponding631

to 32 ms hop (suitable for music temporal structure).632

• Mel bands: 128 — provides a perceptually motivated representation of frequency, empha-633

sizing resolution in lower frequency ranges where musical structure is denser.634

These parameters are consistent with best practices in neural audio synthesis [59],[46] and ensure635

compatibility with pretrained perceptual models like VGGish.636

Additional Metrics:

Table 4: Auxiliary generative quality metrics. Image: LPIPS; Audio: SC, LMSD, LPIPS (Mel), Var

Baseline LPIPS (Img) SC LMSD LPIPS (Mel) Var
IDDPM [37] 0.17± 0.05 1.56 9.99 0.38± 0.10 0.81
LTJ [20] 0.18± 0.06 1.51 9.81 0.33± 0.10 0.87
D3PM [17] 0.29± 0.09 1.41 9.63 0.28± 0.09 0.90
ItDPDM 0.18± 0.08 1.49 9.71 0.30± 0.09 0.85

637

B.5.1 Visualizing generated music samples:638

Individual ItDPDM Samples: To examine local model behavior, we present isolated piano roll639

visualizations of individual samples (see Figure 8). Each plot shows the temporal and pitch structure640

of a single sequence, with color indicating note velocity. These visualizations enable detailed641

inspection of rhythmic patterns, pitch range, note density, and artifacts.642

For example, ItDPDM-generated samples exhibit consistent pitch contours and relatively uniform643

spacing, occasionally disrupted by outlier notes or sparse regions. Such plots help diagnose issues644

like over/under-generation, discontinuities, or anomalies, and complement the broader comparisons645

across models.646

Figure 8: Isolated piano roll visualizations of four ItDPDM-generated samples. Each plot shows
pitch over time, with note velocity indicated by color intensity.

Qualitative comparison: To qualitatively observe the generative performance of our models, we647

visualize representative samples as piano rolls in Figure 9. Each row presents a different generated648

18



sequence, with columns corresponding to different models: DDPM (left), ASD3PM (center), and649

ItDPDM (right). Each piano roll plot depicts note pitch (vertical axis) over time (horizontal axis),650

with intensity indicating note onset.651

DDPM (left): Samples from DDPM display high variability in pitch and rhythm, with note events652

appearing scattered and less structured. While diverse, these outputs often lack recognizable musical653

motifs or rhythmic regularity, indicating that the model struggles to capture long-range musical654

structure.655

ASD3PM (center): ASD3PM outputs, derived from perturbed ground truth MIDI sequences, exhibit656

strong rhythmic and melodic coherence. These samples closely mirror the structure of real music,657

featuring sustained motifs, consistent phrasing, and regular timing. This visual consistency aligns658

with the model’s design, which prioritizes fidelity to the data manifold.659

ItDPDM (right): Samples from ItDPDM demonstrate improved musical structure over DDPM. While660

some randomness remains, many outputs show rhythmic grouping, pitch contours, and repeating661

patterns, suggesting the model’s ability to learn and replicate fundamental elements of musical662

organization. Overall, the visualizations highlight key differences in generative behavior. ASD3PM663

achieves the highest structural fidelity, followed by ItDPDM, which balances diversity with coherence.664

DDPM produces varied outputs but lacks the structured rhythmic and melodic features observed in665

the other methods. These qualitative findings complement our quantitative results, offering insight666

into how each model captures musical dependencies in time and pitch.667

Figure 9: Piano roll visualizations of generated samples from DDPM (left), ASD3PM (middle), and
ItDPDM (right). Each row corresponds to a particular random sample. Higher vertical positions
represent higher pitches.

To further assess how the generated music matches the statistical properties of the training data, we668

also compare the generated pitch distributions with the ground truth. Figure 10 shows the histogram669

of MIDI pitch values for ItDPDM generated sequences alongside the empirical distribution from the670

training data with a close alignment indicating that the model captures global pitch statistics, such671

as register, range, and note density. Another observation is that in the generated samples, the note672

velocity is slightly amplified in comparison to the ground truth distribution.673

C Synthetic Benchmark Details674

C.1 Discrete benchmark details675

We evaluate model performance on a suite of synthetic univariate discrete distributions designed676

to challenge generative models with features such as overdispersion, multimodality, sparsity, and677

skewness. All distributions take values in N0 and are non-negative.678
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Figure 10: Comparing pitch distributions for ground truth and ItDPDM generated samples

Poisson Mixture (PoissMix): This is a bimodal mixture of Poisson distributions:679

0.1 · Poisson(λ = 1) + 0.9 · Poisson(λ = 100),

producing a highly skewed and dispersed distribution with modes at both low and high counts,680

simulating tasks where most values are large but a minority remain near zero.681

Zero-Inflated Poisson (ZIP): To simulate data with an excess of zeros, we use a zero-inflated682

Poisson distribution: which samples zero with probability π0, and otherwise follows a Poisson683

distribution:684

P (k) =

π0 + (1− π0) · e−λ, k = 0

(1− π0) ·
e−λλk

k!
, k > 0

with π0 = 0.7, λ = 5.

This models structured sparsity common in count data with dropout.685

Negative Binomial Mixture (NBinomMix): This is a mixture of two negative binomial distribu-686

tions: 0.8 ·NB(1, 0.9)+ 0.2 ·NB(10, 0.1), where the first mode has high probability near zero, while687

the second exhibits broader dispersion. It introduces skew and multimodality in count data.688

Beta-Negative-Binomial (BNB): The BNB distribution integrates a Beta prior over the success689

probability p of the negative binomial:690

P (k) =

∫ 1

0

NB(k; 1, p) · Beta(p; a = 1.5, b = 1.5) dp, k ∈ N0.

We use parameters a = 0.5, b = 1.5, and r = 5, inducing a heavy-tailed count distribution with691

long-range dependencies.692

Zipf Distribution: This power-law distribution is defined as:693

P (x) =
x−α

ζ(α)
, α = 1.7

, where ζ(α) is the Riemann zeta function. Zipf distributions model naturally occurring frequencies,694

such as word counts or node degrees.695

Yule–Simon Distribution: The Yule–Simon distribution is defined as:696

P (k) = ρ ·B(k, ρ+ 1) = ρ · Γ(k)Γ(ρ+ 1)

Γ(k + ρ+ 1)
, ρ = 2.0, k ∈ N≥1,
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where B is the Beta function and Γ is the gamma function. It is used to model data with power-law697

decay, often arising in preferential attachment or self-reinforcing (e.g. rich-get-richer) processes.698

These distributions form a challenging testbed for evaluating generative performance on discrete,699

non-negative data.700

Table 5 summarizes the discrete synthetic benchmarks used in our study. Each distribution is selected701

to represent a different pathological regime—bi-modality, zero-inflation, overdispersion, or power-law702

behavior—intended to stress PMF concentration and test model robustness. For completeness, we703

specify parameter values used in generation and annotate tail behaviors to clarify their impact on704

sample complexity and generalization.705

Distribution Parameters Tail behaviour
PoissMix λ = {1, 100} bi-modal
Zero-Inflated Poisson π0 = 0.7, λ = 5 spike at 0
NBinomMix (r, p) = {(1, 0.9), (10, 0.1)} Var > E
BNB a = 0.5, b = 1.5, r = 5 power-law
Zipf α = 1.7 ∼ x−α
Yule-Simon ρ = 2.0 heavier than Zipf

Table 5: Specification of discrete synthetic benchmarks. All distributions are heavy-tailed, zero-
inflated, or multi-modal, stressing PMF concentration.

C.2 Training Details & Metrics706

In addition to the ConditionalMLP, a timestep embedding network additionally projects diffusion707

steps into a 64-dimensional space using SiLU activations. Models are trained for 200 epochs using708

the Adam optimizer (η = 10−3, β1 = 0.9, β2 = 0.999) with a batch size of 128. The Gaussian709

DDPM employs a linear noise schedule βt ∈ [10−4, 2 · 10−2] over T = 100 diffusion steps. Our710

ItDPDM framework adopts a linear gamma schedule γt ∈ [1.0, 0.0] over the same number of steps.711

For Poisson diffusion, the initial sample mean is set to 10.0.712

Wasserstein-1 distance Wasserstein-1 distance [47] between two univariate distributions p and q is713

defined as: W1(p, q) :=
∫
R×R |x− y| dπ(x, y) =

∫
R |P (x)−Q(x)| dx, where π(x, y) is a joint cou-714

pling of p and q, and P,Q are their respective cumulative distribution functions (CDFs). When p and q715

are empirical distributions of the same size n, this reduces to: W1(p, q) =
1
n ∥sort(X)− sort(Y )∥1 ,716

where X,Y ∈ Rn are the sorted samples from p and q.717

For each empirical distribution of 50,000 generated samples over 5 runs, say p̂gen (with p̂test denoting718

the empirical distribution of 50,000 test samples), we compute the Wasserstein-1 distance (WD) [47]719

and negative log-likelihood (NLL) as:720

WD =W1

(
p̂test, p̂gen

)
, NLL = − 1

ntest

∑
i

log p̂gen(xi) (24)

where xi denote the held–out samples.721

C.3 Probability Mass Function Estimation:722

For discrete distributions, we estimate the empirical probability mass function (PMF) p̂(x) from723

generated samples {xi}Ni=1 using a histogram-based approach with binning over a finite support724

X = {0, 1, . . . ,K}:725

p̂(x) =
1

N

N∑
i=1

I(xi = x), (25)

where I(·) is the indicator function and K is the truncation value. We set K = 50 across all726

experiments to standardize the support. To reduce sampling noise and better visualize differences727

across models, we additionally compute a smoothed PMF estimate using a discrete Gaussian kernel:728

p̂smooth(x) =
1

N

N∑
i=1

Kh(x− xi), (26)
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where Kh(·) is a Gaussian kernel defined on the integer lattice:729

Kh(x) =
1

Z
exp

(
− x2

2h2

)
, (27)

with normalization constant Z =
∑
x′∈X exp

(
− x′2

2h2

)
ensuring that Kh sums to 1 over the support.730

The bandwidth h is selected empirically per distribution to balance smoothness and fidelity to the731

empirical histogram. To assess variability in PMF estimation, we also compute error bands via732

non-parametric bootstrapping. Specifically, we generate 10 bootstrap resamples of the model outputs,733

re-estimate the (smoothed) PMF for each, and plot the mean ± standard deviation across these734

resampled estimates. Each plot includes in Fig. 6 includes: a) ground-truth PMF (when known), and735

b) the empirical unsmoothed and smoothed PMFs for each model (e.g., ItDPDM, DDPM, LTJ), with736

any shaded error bands reflecting bootstrap variability.737

Implementation Details:

Aspect Details
Sample size N = 10,000 samples per model and distribution
Support X = {0, 1, . . . , 50} for discrete; bounded x for continuous
Smoothing bandwidth h tuned per distribution (discrete); KDE bandwidth default
Bootstrap 10 resamples per model for uncertainty estimation
Visualization True distribution, model estimates, and error bands plotted

Table 6: Summary of implementation settings for PMF and PDF estimation.

738

Zoomed-in look at PMF plots: Building on the analysis in Section 4, Figure 11 and Figure 12739

provides a magnified view of the Yule–Simon and Zipf fits produced by each model. ItDPDM exhibits740

the closest alignment to the target distribution, particularly in the critical low-support region.741

Figure 11: Zoomed-in Yule–Simon fits Figure 12: Zoomed-in Zipf law fits

C.4 Non-negative Continuous Scenarios742

As stated earlier, we extend our analysis to six skewed continuous densities: Gamma, Log-Normal,743

Lomax, Half-Cauchy, Half-t, Weibull, (along with Beta and Uniform distributions) as outlined in this744

section. Our goal here is to assess how well generative models capture asymmetry, concentration,745

and long-range dependencies in continuous data.746

Descriptions and parameters:747

Gamma Distribution: The Gamma distribution is defined by a shape parameter ‘a’ and a scale748

parameter ‘θ’:749

p(x) =
1

Γ(a)θa
xa−1e−x/θ, x ≥ 0.

We use a = 0.5, θ = 2, which produces a sharp mode near zero and a long right tail. Gamma750

distributions are commonly used to model wait times, energy release, and insurance claims—making751

them valuable for stress-testing the model’s handling of high variance and positive skew.752

Log-Normal Distribution: A log-normal distribution arises when the logarithm of a variable is753

normally distributed:754

p(x) =
1

xs
√
2π

exp

(
− (log x− µ)2

2s2

)
, x > 0.
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We use µ = 0, s = 1.5, producing a distribution with significant positive skew and heavy tails. Log-755

normal models appear in financial returns, biological measurements, and natural language modeling,756

where multiplicative effects dominate.757

Lomax Distribution: Also known as the Pareto Type II distribution, the Lomax is defined as:758

p(x) =
c

s

(
1 +

x

s

)−(c+1)

, x ≥ 0.

We use c = 2.0, s = 1.0, resulting in a fat-tailed distribution often used in reliability engineering and759

modeling rare, catastrophic events. It challenges models to capture high-probability mass near zero760

with occasional large outliers.761

Half-Cauchy Distribution: The Half-Cauchy is the positive part of a Cauchy distribution:762

p(x) =
2

πs
[
1 +

(
x
s

)2] , x ≥ 0.

With s = 1, this distribution has undefined mean and variance, and extremely heavy tails. It is763

commonly used as a prior in hierarchical Bayesian models due to its robustness to outliers.764

Half-t Distribution: The Half-t distribution is the absolute value of a Student’s t-distributed variable:765

p(x) = 2 · t(x; ν, 0, s), x ≥ 0.

We use ν = 3, s = 1, yielding a distribution with heavy but finite tails. This is another robust766

prior used in Bayesian inference, particularly for variances in hierarchical models, where it prevents767

over-shrinkage.768

Weibull Distribution: The Weibull distribution, defined by shape k and scale λ, is given by:769

p(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k , x ≥ 0.

We use k = 1.5, λ = 1, producing a distribution with increasing hazard rate and moderate skew. This770

is widely used in survival analysis, material failure modeling, and wind speed distributions.771

Beta Distribution (bounded support): Though often used on [0, 1], the Beta distribution provides772

diverse shapes depending on the parameters:773

p(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1.

We use a = 2, b = 2, leading to a density concentrated near zero. The Beta distribution tests774

the model’s ability to learn bounded distributions with asymmetric mass concentration, relevant in775

probabilistic modeling and reinforcement learning. A key limitation to note here is that in case of776

asymmetric/skewed beta distributions, all the models notably fail to learn the distribution.777

Uniform Distribution (flat support): The uniform distribution provides a baseline for bounded,778

structureless densities:779

p(x) =
1

b− a
, a ≤ x ≤ b.

We set a = 0, b = 1, resulting in a constant density over the unit interval. Although simple, it serves780

as a sanity check for model calibration and ability to avoid mode collapse under flat distributions.781

Together, these distributions offer a comprehensive testbed for evaluating generative modeling under782

varied support, skewness, and tail behavior. They also represent common scenarios encountered in783

practice, ensuring relevance to real-world generative tasks.784

Results:785

Table 7 compares the Wasserstein distance for all the continuous cases, and in the continuous case,786

we omit NLL values as they can be overly sensitive to skewness and outliers, making them unreliable787

for fair comparison. More critically, whereas the true NLL in continuous distributions can often be788

negative while our discrete estimator cannot possibly yield a negative NLL.789

For each distribution, we visualize the estimated PDFs from all models alongside the true density.790

Figure 13 summarizes the results across all eight distributions, providing a qualitative comparison of791

how closely each model recovers the underlying data-generating process.792
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Table 7: WD for continuous cases (↓ lower is better). Bold indicates best.
WD

Distribution DDPM ItDPDM LTJ
Gamma 0.27 ± 0.09 0.12 ± 0.05 0.14 ± 0.05
Log-Normal 2.39 ± 0.53 1.94 ± 0.71 1.99 ± 0.66
Lomax 0.39 ± 0.20 0.31 ± 0.17 1.15 ± 0.41
Half-Cauchy 6.67 ± 2.45 6.35 ± 2.56 5.45 ± 2.23
Half-t 0.20 ± 0.07 0.21 ± 0.02 0.22 ± 0.04
Weibull 0.29 ± 0.05 0.23 ± 0.02 0.23 ± 0.06
Beta 0.28 ± 0.07 0.18 ± 0.03 0.19 ± 0.06
Uniform 0.12 ± 0.05 0.12 ± 0.03 0.12 ± 0.02

Beta Gamma Half-Cauchy Half-t

Log-Normal Lomax Uniform Weibull

Figure 13: Comparison of estimated PDFs for various continuous distributions in the synthetic dataset.
Each plot shows the true distribution and model-generated estimates.

PDF estimation:793

For continuous non-negative distributions, we estimate the probability density function (PDF) f̂(x)794

using kernel density estimation (KDE) with a Gaussian kernel:795

f̂(x) =
1

N

N∑
i=1

1√
2πh

exp

(
− (x− xi)2

2h2

)
,where by default h = σN−1/(d+4), d = 1⇒ h = σN−1/5,

(28)

with σ denoting the sample standard deviation of {xi} and N the number of samples.796

We compute error bands by bootstrapping: for each model, we resample its generated samples797

10 times, compute the KDE for each resample, and display the mean ± standard deviation across798

estimates. For bounded distributions (e.g., Beta, Uniform), we clip model-generated samples to the799

distribution’s support before applying KDE. Each PDF plot includes: a) ground-truth PDF, and b) the800

average KDE for each model, with any shaded error bands indicating bootstrap uncertainty.801

D Section 3 Proofs802

D.1 On the Poisson Loss Function:803

Here, as outlined in 3.2, we establish that the function l0(x) = x log x− x+ 1 serves as the convex804

conjugate of the Poisson distribution’s log moment generating function (log MGF). We begin by805

deriving the log MGF of the Poisson distribution, and finally computing its convex conjugate through806

the Legendre-Fenchel transform. Let X be a random variable following a Poisson distribution with807

parameter λ > 0. The probability mass function (PMF) of X is given by:808

P (X = k) =
λke−λ

k!
, for k = 0, 1, 2, . . .
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The moment generating function (MGF) can be evaluated as:809

MX(t) = E[etX ] =

∞∑
k=0

etkP (X = k) =

∞∑
k=0

etk
λke−λ

k!
= e−λ

∞∑
k=0

(λet)k

k!
= e−λeλe

t

= eλ(e
t−1)

Let ϕ(t) be the log moment generating function as shown:810

ϕ(t) = logMX(t) = λ(et − 1)

Without any loss of generality, let λ = 1 (since scaling does not affect the form of the conjugate),811

implying ϕ(t) = et − 1. The convex conjugate of a convex function ϕ : R→ R ∪ {+∞}, denoted812

by ϕ∗(x), is defined as:813

ϕ∗(x) = sup
t∈R
{xt− ϕ(t)}

This transformation maps the original function ϕ(t) to its dual function ϕ∗(x), and then finds the814

supremum of linear functions subtracted by ϕ(t).815

Let ϕ(t) = et − 1 be the log moment generating function (log MGF) of a Poisson distribution with816

parameter λ = 1. Then, the convex conjugate of ϕ, denoted by ϕ∗(x), is given by:817

ϕ∗(x) =

{
x log x− x+ 1 if x > 0,

+∞ otherwise.

Proof. By definition: ϕ∗(x) = supt∈R{xt− ϕ(t)} = supt∈R {xt− et + 1}818

To find the supremum, we find the value of t that maximizes this expression. First-order conditions819

imply: d
dt (xt− e

t) = x− et = 0 so we have t = log x. This critical point exists only if x > 0, as820

et > 0 for all t ∈ R. From the second-order condition, we get:821

d2

dt2
(
xt− et

)
= −et < 0 ∀t ∈ R

The negative second derivative confirms that the function is concave at t = log x, ensuring a global822

maximum at this point. So for t = log x,823

ϕ∗(x) = x(log x)− elog x + 1 = x log x− x+ 1

Therefore, for x > 0:824

ϕ∗(x) = x log x− x+ 1

For x ≤ 0, the supremum is unbounded above, leading to: ϕ∗(x) = +∞ Combining these cases825

gives:826

ϕ∗(x) =

{
x log x− x+ 1 if x > 0,

+∞ otherwise.

This establishes that l0(x) = x log x− x+ 1 is the convex conjugate of the Poisson distribution’s827

log moment generating function ϕ(t) = et − 1 and therefore, a natural loss function.828

Connection to Bregman Divergence829

The Poisson loss function we defined l(x, x̂) is a member of the broader family of Bregman diver-830

gences, which are pivotal in various domains such as machine learning, information theory, and831

optimization. A Bregman divergence is defined for a strictly convex and differentiable function832

ψ : Rd → R as follows:833

Lψ(x, x̂) = ψ(x)− ψ(x̂)− ⟨∇ψ(x̂), x− x̂⟩,

where ⟨·, ·⟩ denotes the inner product in Rd, and ∇ψ(x̂) represents the gradient of ψ evaluated at x̂.834

For the Poisson loss function, the generating function ψ is chosen as:835

ψ(x) = x log x− x.
Substituting this into the Bregman divergence definition yields:836

Lψ(x, x̂) = x log x− x− (x̂ log x̂− x̂)− (log x̂ · (x− x̂)) .
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Simplifying the expression, we obtain:837

Lψ(x, x̂) = x log
(x
x̂

)
− x+ x̂,

which is precisely the Poisson loss function l(x, x̂).838

This framework not only encapsulates the Poisson loss but also generalizes it to encompass other839

widely-used loss functions by merely altering the generating function ψ. Well-known examples840

include squared error loss (choosing ψ(x) = 1
2x

2 and Itakura-Saito divergence (choosing ψ(x) =841

− log x). Bregman divergences exhibit key properties that make them valuable in optimization and842

learning. They are non-negative, vanishing only when x = x̂, due to the strict convexity of ψ.843

They are also asymmetric, meaning Lψ(x, x̂) ̸= Lψ(x̂, x) in general and their projection property844

enables efficient optimization over convex sets.845

By leveraging the Bregman divergence framework, Poisson and Gaussian diffusion schemes can be846

unified under a single theoretical umbrella, where squared error loss (ψ(x) = 1
2x

2) corresponds to847

Gaussian noise, and Poisson loss aligns with count-based data modeling. This unification enables848

extending optimization techniques across different noise models by adjusting the generating function849

ψ. Viewing Poisson loss function as a Bregman divergence thus broadens its theoretical and practical850

utility discrete data modelling.851

Optimality of Conditional Expectation852

Let ϕ : Rd → R be a strictly convex and differentiable function. The Bregman divergence Dϕ853

induced by ϕ is defined by854

Dϕ(X,Y ) = ϕ(X)− ϕ(Y )−∇ϕ(Y )⊤(X − Y ).

Consider a random variableX ∈ Rd and a sigma-algebra σ(Z) with Y = Y (Z) being any measurable855

function of Z. Let Y ∗ = E[X|Z] denote the conditional expectation of X given Z. The objective is856

to show that Y ∗ uniquely minimizes the expected Bregman loss E[Dϕ(X,Y )] among all measurable857

functions Y (Z). For any such function Y , consider the difference in expected Bregman losses:858

E[Dϕ(X,Y )]−E[Dϕ(X,Y
∗)] = E

[
ϕ(X)− ϕ(Y )−∇ϕ(Y )⊤(X − Y )

]
−E

[
ϕ(X)− ϕ(Y ∗)−∇ϕ(Y ∗)⊤(X − Y ∗)

]
Simplifying, the terms involving ϕ(X) cancel out, yielding859

E[Dϕ(X,Y )]− E[Dϕ(X,Y
∗)] = E

[
ϕ(Y ∗)− ϕ(Y )−∇ϕ(Y )⊤(Y ∗ − Y )

]
.

Recognizing that Y ∗ is the conditional expectation E[X|Z], we utilize the law of total expectation to860

express the above as861

E
[
ϕ(Y ∗)− ϕ(Y )−∇ϕ(Y )⊤(Y ∗ − Y )

]
= E [Dϕ(Y

∗, Y )] .

Due to the strict convexity of ϕ, the Bregman divergence satisfies Dϕ(u, v) ≥ 0 for all u, v ∈ Rd,862

with equality if and only if u = v. Therefore,863

E[Dϕ(X,Y )]− E[Dϕ(X,Y
∗)] = E[Dϕ(Y

∗, Y )] ≥ 0,

with equality holding if and only if Y = Y ∗ almost surely. This establishes that864

E[Dϕ(X,Y )] ≥ E[Dϕ(X,Y
∗)],

for all measurable functions Y (Z), and thus Y ∗ = E[X|Z] is the unique minimizer of the expected865

Bregman loss E[Dϕ(X,Y )]. .866

D.2 Section 3 Lemma Proofs867

Proof of Lemma 1: Properties of Poisson Loss Consider the loss function defined as l(x, x̂) =868

x̂ · l0
(
x
x̂

)
, where l0(z) = z log z − z + 1.869

1. Non-negativity: Since l0(z) achieves its minimum value of 0 at z = 1 and is non-negative for all870

z > 0, it follows that l(x, x̂) ≥ 0 for all x, x̂ > 0. Equality holds if and only if xx̂ = 1, i.e., x = x̂.871
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2. Convexity: The function l0(z) is convex in z because its second derivative l′′0 (z) =
1
z is positive872

for all z > 0. Therefore, l(x, x̂) = x̂ · l0
(
x
x̂

)
is convex in x̂ for each fixed x, and similarly, it is convex873

in x for each fixed x̂, as the composition of a convex function with an affine transformation preserves874

convexity. (We can also directly use the Bregman divergence framework to argue its convexity)875

3. Scaling: For any α > 0, consider scaling both arguments of the loss function:876

l(αx, αx̂) = αx̂ · l0
(αx
αx̂

)
= αx̂ · l0

(x
x̂

)
= α · l(x, x̂).

This demonstrates that the loss function scales linearly with α.877

4. Unboundedness for Underestimation: For any fixed x > 0, as x̂ → 0+, the ratio x
x̂ → ∞.878

Evaluating the loss function in this limit:879

l(x, x̂) = x̂ ·
(x
x̂
log
(x
x̂

)
− x

x̂
+ 1
)
= x log

(x
x̂

)
− x+ x̂.

As x̂→ 0+, log
(
x
x̂

)
grows without bound, causing l(x, x̂)→∞. This shows that the loss becomes880

unbounded as x̂ underestimates x.881

Proof of Lemma 2. Let Zγ be a Poisson random variable with parameter γX , meaning Zγ |X =882

x ∼ Pois(γx). Suppose the conditional expectation ⟨X⟩z = E[X|Zγ = z] is affine in z,883

⟨X⟩z = az + b,

for some a and b, with 0 < a < 1/γ and b > 0. We aim to show thatX follows a Gamma distribution884

with shape α = 1−γa
a and rate β = a

b , i.e.,885

X ∼ Gamma
(1− γa

a
,
a

b

)
.

Define U = X and Y = Zγ ∼ P(γU). Assume E[U |Y = z] = az + b. By the law of total886

expectation,887

0 = E[(U − (aY + b))g(Y )]
for any function g satisfying integrability. Choosing g(Y ) = e−tY for t > 0,888

E[(U − (aY + b))e−tY ] = 0.

Rewriting Y ∼ P(γU), we use the known conditional Laplace transform relation for a P(λ) random889

variable Y ,890

E[e−tY |U = u] = exp(u(γ(e−t − 1))).
Hence,891

E[e−tY ] = E[exp(Uγ(e−t − 1))],
which is the Laplace transform of U evaluated at s = γ(1− e−t). Denote892

LU (s) = E[e−sU ], so that E[e−tY ] = LU (γ(1− e−t)).
Similarly,893

E[Ue−tY ] = − d

ds
LU (s)

∣∣∣
s=γ(1−e−t)

, E[Y e−tY ] = − d

dt
E[e−tY ].

From the orthogonality condition,894

E[(U − (aY + b))e−tY ] = 0.

Using the above expressions,895

0 = E[Ue−tY ]− aE[Y e−tY ]− bE[e−tY ].

Substituting s = γ(1− e−t) and differentiating as needed, we obtain a first-order linear differential896

equation for LU (s),897

−((1− aγ) + aγs)L′
U (s) = bLU (s).

The unique solution with LU (0) = 1 is898

LU (s) =
(
1 +

b

1− γa
s
)− 1−γa

a

.

This is the Laplace transform of a Gamma( 1−γaa , ab ) random variable. Hence, U = X follows this899

Gamma distribution. For the Gamma distribution to be well-defined with a positive shape parameter,900

we require α = 1−γa
a > 0, which holds for 0 < a < 1

γ . The rate parameter β = a
b > 0 requires901

b > 0. Under these conditions, X ∼ Gam( 1−γaa , ab ), completing the proof.902
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Proof of Lemma 3. When X = 0 almost surely, E[X] = 0, and the identity holds by convention.903

Else, E[X] > 0, and we have:904

E [l(X, x̂)] = E

[
X log

(
X

x̂

)
−X + x̂

]
= E[X logX]− E[X log x̂]− E[X] + x̂

= E [X logX −X logE[X]−X + E[X]] + l (E[X], x̂)

= E [l (X,E[X])] + l (E[X], x̂) .

Proof of Lemma 4. Consider Zγ = P(γX), where Zγ is a Poisson random variable with parameter905

γX . To determine ⟨X⟩z = E[X|Zγ = z] for each z ≥ 0, we start by applying the definition of906

conditional expectation:907

⟨X⟩z =
E
[
X · PZγ (z|X)

]
PZγ

(z)
.

Given that Zγ |X = x ∼ Pois(γx), the conditional probability mass function is908

PZγ
(z|X = x) =

(γx)ze−γx

z!
.

Substituting this into the expression for ⟨X⟩z yields909

⟨X⟩z =
E
[
X · (γX)ze−γX

z!

]
PZγ (z)

.

To relate ⟨X⟩z to PZγ (z + 1), observe that910

PZγ (z + 1) = E

[
(γX)z+1e−γX

(z + 1)!

]
=

γ

z + 1
E

[
X · (γX)ze−γX

z!

]
.

Rearranging the above equation, we obtain911

E

[
X · (γX)ze−γX

z!

]
=

(z + 1)

γ
PZγ

(z + 1).

Substituting this back into the expression for ⟨X⟩z , we have912

⟨X⟩z =
(z+1)
γ PZγ

(z + 1)

PZγ
(z)

=
1

γ

(z + 1)PZγ (z + 1)

PZγ
(z)

.

This completes the proof of Lemma 4.913

The conditional expectation over a Poisson noise channel also has other unique properties, some of914

which are stated below. The next property is useful in showing that the conditional expectation in this915

case is unique for every input distribution.916

Lemma 5. Let Zγ = P(γX). Then, for every positive integer k and every non-negative integer z,917

E
[
(γX)k|Zγ = z

]
=

k−1∏
i=0

E [γX|Zγ = z + i] .

Proof of Lemma 5. Let Zγ = P(γX). We claim that for every positive integer k and nonnegative918

integer z,919

E[(γX)k|Zγ = z] =

k−1∏
i=0

E[γX|Zγ = z + i].

From the affine formula in Lemma 4, the conditional expectation of γX given Zγ = z is related to920

the ratio of marginal probabilities. More generally, for higher-order moments,921

E[(γX)k|Zγ = z] =
(z + k)!

z!

PZγ (z + k)

PZγ
(z)

. (29)
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We can also express (γX)k as a product of γX terms and use the Poisson shifting property of P(γX).922

Applying Lemma 4 and Eq. 29 for each shift z → z + i gives923

E[(γX)k|Zγ = z] =

k−1∏
i=0

E[γX|Zγ = z + i].

Each factor on the right captures the conditional expectation of γX at consecutive levels z, z +924

1, . . . , z + k − 1, so all higher-order moments of γX follow from the first conditional moment925

E[γX|Zγ = z]. This completes the proof.926

Proof Sketch of Eq. 29: The key observation behind the formula is that, for the Poisson distribution,927

shifting from y to y + k multiplies the corresponding probability mass by (aX+λ)k

k! . Evaluating928

the expectation leverages the ratio of adjacent Poisson probabilities PY (y + k)/PY (y) and tracks929

how (aX + λ)k factors. In essence, a product expansion shows how each additional factor aX + λ930

increases the count from y to y + 1, and iterating this argument recovers the moment expression. As931

shown in [60], for Poisson observations Zγ ∼ P(aX + λ), the sequence of conditional expectations932

{E[X|Zγ = z]}z≥0 uniquely determines the input distribution PX . This supports our information-933

theoretic derivation and strengthens the foundation for learning in discrete-state noise models. For934

our Poisson setting, we also have:935

Lemma 6. Let Zγ = P(γX). Then, for every γ > 0 and y = 0, 1, . . .,936

d

dγ
PZγ |X(y|x) = x

(
PZγ |X(y − 1|x)− PZγ |X(y|x)

)
, γ

d

dγ
PZγ

(y) = yPZγ
(y)− (y + 1)PZγ

(y + 1)

where PZγ |X(−1|x) = PZγ (−1) = 0.937

Proof of Lemma 6. Let Zγ = P(γX), where Zγ is a Poisson random variable with parameter γX .938

We first compute the derivative of the conditional probability mass function PZγ (z|X = x) with939

respect to γ.940

Since Zγ given X = x follows a Poisson distribution with mean γx, we have941

PZγ (z|X = x) =
(γx)ye−γx

y!
.

Taking the derivative with respect to γ and using product rule, we obtain:942

d

dγ
PZγ

(z|X = x) =
d

dγ

(
(γx)ze−γx

z!

)
=
z(γx)z−1xe−γx

z!
− x(γx)ze−γx

z!
.

Simplifying the terms, we obtain943

d

dγ
PZγ (z|X = x) = x

(
(γx)z−1e−γx

(z − 1)!
− (γx)ze−γx

z!

)
.

Notice that944

(γx)z−1e−γx

(z − 1)!
= PZγ (z − 1|X = x),

we can rewrite the derivative as945

d

dγ
PZγ

(z|X = x) = x
(
PZγ

(z − 1|X = x)− PZγ
(z|X = x)

)
.

This establishes the first part of the lemma.946

Next, we compute the derivative of the marginal probability PZγ
(z) with respect to γ. By the law of947

total probability, we have948

PZγ
(y) = E

[
PZγ

(z|X)
]
.

Differentiating both sides with respect to γ, we obtain949

d

dγ
PZγ (z) = E

[
d

dγ
PZγ (z|X)

]
.
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Substituting the result from above, we get950

d

dγ
PZγ (z) = E

[
x
(
PZγ (z − 1|X)− PZγ (z|X)

)]
.

This can be expressed as951

γ
d

dγ
PZγ

(z) = γE
[
xPZγ

(z − 1|X)
]
− γE

[
xPZγ

(z|X)
]
.

Noting that for a Poisson distribution, E
[
xPZγ

(z|X)
]
= z

γPZγ
(z) and E

[
xPZγ

(z − 1|X)
]
=952

z
γPZγ

(z), we substitute to obtain953

γ
d

dγ
PZγ (z) = zPZγ (z)− (z + 1)PZγ (z + 1).

Thus, the second part of the lemma is established.954

Other properties of the Conditional Expectation955

Lemma 7. Let Zγ = P(γX) where X is a nonnegative random variable, and γ > 0. Then, for956

every γ > 0 and integer z ≥ 0,957

d

dγ
E [X|Zγ = z] = −zγVar (X|Zγ = z − 1) ,

where Var (X|Zγ = −1) = 0.958

Proof. Fix an integer z ≥ 0. Consider the conditional expectation959

E [X|Zγ = z] =
1

γ

(
(z + 1)

P (Zγ = z + 1)

P (Zγ = z)

)
.

Differentiating both sides with respect to γ, we obtain960

d

dγ
E [X|Zγ = z] =

1

γ

d

dγ

(
(z + 1)

P (Zγ = z + 1)

P (Zγ = z)

)
− 1

γ2

(
(z + 1)

P (Zγ = z + 1)

P (Zγ = z)

)
.

Applying the quotient rule to the derivative inside the parentheses, we get961

d

dγ

(
P (Zγ = z + 1)

P (Zγ = z)

)
=
P (Zγ = z) ddγP (Zγ = z + 1)− P (Zγ = z + 1) ddγP (Zγ = z)

P (Zγ = z)2
.

Using the properties of the Poisson distribution, specifically the identity962

P (Zγ = z + 1)

P (Zγ = z)
=

γX

z + 1
,

we can simplify the derivative expression. Substituting back, we obtain963

d

dγ
E [X|Zγ = z] = −zγVar (X|Zγ = z − 1) .

For the case z = 0, the derivative simplifies to d
dγE [X|Zγ = 0] = 0, since Var (X|Zγ = −1) = 0964

by definition.965

The result for higher moments follows similarly. For any positive integer k, differentiating966

E
[
(γX)k|Zγ = z

]
with respect to γ and applying the quotient rule leads to the stated piecewise967

expression. This completes the proof.968

Moreover, for any positive integer k,969

d

dγ
E
[
(γX)k∥Zγ = z

]
=


k E

[
(γX)k−1|Zγ = 0

]
, z = 0,

(z + k)E
[
(γX)k−1|Zγ = z

]
E [γX|Zγ = z − 1]− z E

[
(γX)k|Zγ = z

]
E [γX|Zγ = z − 1]

, z ≥ 1.
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Lemma 8. Let Zγ ∼ P(γX). Then, for every fixed γ > 0 and any non-degenerate X , the mapping970

z 7→ E[X|Zγ = z] is strictly increasing.971

Proof. To show that E[X|Zγ = z] is strictly increasing, we define U = γX and consider the Poisson972

marginal probability:973

PZγ (k) =
1

k!
E
[
Uke−U

]
(30)

Applying the Cauchy-Schwarz inequality, we obtain974

PZγ (k) ≤
1

k!

√
E [Uk+1e−U ]E [Uk−1e−U ]. (31)

Rewriting in terms of factorial expressions, we get975

PZγ
(k) ≤

√
k + 1

k
PZγ

(k + 1)PZγ
(k − 1). (32)

Now, substituting this bound into the Turing-Good-Robbins (TGR) formula from Lemma 4:976

E[U |Zγ = z] =
(z + 1)PZγ

(z + 1)

PZγ
(z)

, (33)

we obtain the lower bound977

E[U |Zγ = z] ≥
(z + 1) z

z+1P
2
Zγ

(z)

PZγ
(z)PZγ

(z − 1)
. (34)

Simplifying, this reduces to978

E[U |Zγ = z] ≥
zPZγ

(z)

PZγ
(z − 1)

. (35)

Using the same formulation for z − 1, we conclude979

E[U |Zγ = z] ≥ E[U |Zγ = z − 1]. (36)

Since X = U/γ, it follows that E[X|Zγ = z] is strictly increasing in z, completing the proof.980

D.3 Incremental Channel Approach to I-MPRL and related proofs:981

Here, we derive interesting relations between the mutual information in a Poisson noise channel and982

various parameters of the channel. The general distribution we consider here is Y ∼ Poisson(αX +983

λ).984

Lemma 9. Let λ > 0 and let X be a positive random variable satisfying E{X logX} < ∞.985

Consider the Poisson random transformation X 7→ Zλ = P(X + λ). Then, the derivative of the986

mutual information between X and Zλ with respect to the dark current λ is given by987

d

dλ
I(X;Zλ) = E [log(X + λ)− log⟨X + λ⟩] ,

where ⟨X + λ⟩ = E[X + λ|Zλ = z].988

Proof: Let Y0 = P(X) and Nλ = P(λ) be independent Poisson random variables with means X989

and λ, respectively. Define Yλ = Y0 +Nλ, which has the same distribution as P(X + λ). By the990

definition of mutual information,991

I(X;Y0)− I(X;Yλ) = E{L(X,Y0, Yλ)},
where the expectation is over the joint distribution of (X,Y0, Yλ), and the log-likelihood ratio is992

L(x, k, ℓ) = log
PY0|X(k|x)
PY0

(k)
− log

PYλ|X(ℓ|x)
PYλ

(ℓ)
.

Given that Y0|X = x ∼ P(x) and Yλ|X = x ∼ P(x+ λ), the conditional probabilities are993

PY0|X(k|x) = xke−x

k!
, PYλ|X(ℓ|x) = (x+ λ)ℓe−(x+λ)

ℓ!
.
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Substituting these into the log-likelihood ratio, we obtain994

L(X,Y0, Yλ) = Y0 logX − Yλ log(X + λ) + U,

where U encompasses terms involving the logarithms of the marginal probabilities. Taking the995

expectation, we have996

E[L] = E{X logX − (X + λ) log(X + λ)}+ E[U ].

Expanding Yλ = Y0+Nλ and leveraging the independence ofNλ from Y0, we analyze the behavior of997

E[U ] as λ becomes small. Through a series of manipulations and applying the dominated convergence998

theorem, we find that999

I(X;Yλ)− I(X;Y0) = λE

[
log

X

⟨X⟩

]
+ o(λ).

Dividing both sides by λ and taking the limit as λ→ 0, we obtain1000

d

dλ
I(X;Yλ) = E [log(X + λ)− log⟨X + λ⟩] ,

where ⟨X + λ⟩ = E[X + λ|Yλ = z]. This completes the proof of Lemma 9.1001

Lemma 10. For every Poisson transformation PX with E{X logX} <∞, and as δ → 0,1002

I
(
X;P((1 + δ)X)

)
− I
(
X;P(X)

)
= δ E{X logX − ⟨X⟩ log⟨X⟩}+ o(δ).

Proof: Consider first the case δ → 0+. Let Y = P(X) and Z = P(δX) be independent conditioned1003

on X . Define Yδ = Y + Z. Then, the left-hand side of the lemma can be expressed as1004

I(X;Yδ)− I(X;Y ) = E

{
log

PYδ|X(Yδ|X)

PYδ
(Yδ)

− log
PY |X(Y |X)

PY (Y )

}
.

Expanding the log-likelihood ratio, we have1005

= E

{
Z logX − δX − log

E{(X ′)Yδe−(1+δ)X′ |Yδ}
E{(X ′)Y e−X′ |Y }

}
.

Here, X ′ is identically distributed as X but independent of Y and Z.1006

To analyze the expression as δ → 0, we approximate ∆ = P(δX) by a Bernoulli random variable1007

that takes the value 1 with probability δX (conditioned on X) and 0 otherwise. This approximation is1008

valid because for small δ, the Poisson distribution P(δX) closely resembles a Bernoulli distribution.1009

Substituting this approximation into the previous step, we obtain1010

I(X;Yδ)−I(X;Y ) = E
{
Z logX − δX − log

[
(1− δX)E{(X ′)Y e−X

′
|Y }+ δX E{(X ′)Y+1e−X

′
e−δX

′
|Y }
]}

+o(δ)

(37)
Expanding e−δX

′
to first order in δ, we have e−δX

′ ≈ 1− δX ′. Therefore,1011

E{(X ′)Y+1e−X
′
e−δX

′
|Y } ≈ E{(X ′)Y+1e−X

′
|Y } − δE{(X ′)Y+2e−X

′
|Y }+ o(δ) (38)

Substituting this back into the logarithm and applying the first-order Taylor expansion log(1 + ϵ) ≈ ϵ1012

for small ϵ, we obtain1013

log
[
(1− δX)E{(X ′)Y e−X

′
|Y }+ δX E{(X ′)Y+1e−X

′
|Y }
]

≈ log
[
E{(X ′)Y e−X

′
|Y }
]
+
δX E{(X ′)Y+1e−X

′ |Y } − δX E{(X ′)Y e−X
′ |Y }

E{(X ′)Y e−X′ |Y }
+ o(δ)

= log⟨X⟩ − δXE{(X ′)Y e−X
′ |Y } − E{(X ′)Y+1e−X

′ |Y }
E{(X ′)Y e−X′ |Y }

+ o(δ),

where ⟨X⟩ = E{X|Y }.1014
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Substituting this approximation back into equation 37, we get1015

I(X;Yδ)− I(X;Y ) = E

{
Z logX − δX − log⟨X⟩+ δX

E{(X ′)Y+1e−X
′ |Y }

E{(X ′)Y e−X′ |Y }

}
+ o(δ) (39)

Noting that Z is Poisson with parameter X , we have E{Z|X} = X , and thus E{Z logX} =1016

E{X logX}.1017

Furthermore, we know that ⟨X⟩ = E{X|Y }, and from Lemma 4, we have1018

E
{
(X ′)Y+1e−X

′
|Y
}
= ⟨X⟩e−⟨X⟩(Y + 1).

Substituting these into equation 39, we simplify to1019

I(X;Yδ)− I(X;Y ) = δE{X logX − ⟨X⟩ log⟨X⟩}+ o(δ),

Dividing both sides by δ and taking the limit as δ → 0, we obtain1020

d

dδ
I(X;Yδ)

∣∣∣∣
δ=0

= E [X logX − ⟨X⟩ log⟨X⟩] ,

where ⟨X⟩ = E[X|Y ]. This completes the proof of the lemma.1021

E Tail Bounds1022

As we know the output zγ given the input x is modeled as zγ ∼ P(γx), where x ≥ 0 is the1023

non-negative input random variable, and γ represents the signal-to-noise ratio (SNR). The negative1024

log-likelihood when estimating zγ using x, is given by:1025

l(x, zγ) = − log p(zγ |x) = − log

(
e−γx(γx)zγ

zγ !

)
= γx− zγ log(γx) + log zγ !

We define the expected negative log-likelihood as M(γ)=E(x,zγ) [l(x, zγ)] = Ex
[
E(zγ |x) [l(x, zγ)]

]
.1026

We now consider a mean constraint µ = E[x] in this case and our objective then is to determine the1027

input distribution pX(x) over x ≥ 0 that maximizes the above function. To compute the expected1028

loss, let us first evaluate Ezγ |x[l(x, zγ)] and using Ezγ |x[zγ ] = γx gives:1029

Ezγ |x[l(x, zγ)] = Ezγ |x [γx− zγ log(γx) + log zγ !] = (40)

γx− log(γx) · Ezγ |x[zγ ] + Ezγ |x[log zγ !] = γx− γx log(γx) + Ezγ |x[log zγ !] (41)

We can write M(γ) in terms of the the conditional entropy of zγ given x as:1030

M(γ) = Ex[H(zγ |x)], since H(zγ |x) = Ezγ |x [− log p(zγ |x)] = Ezγ |x[l(x, zγ)].

The entropy H(zγ |x) of a Poisson distribution with parameter γx is given by:1031

HS(γx) = −
∞∑
k=0

P (zγ = k) logP (zγ = k)

where P (zγ = k) = (γx)ke−γx

k! . So substituting this into the entropy expression, we obtain:1032

HS(γx) = −
∞∑
k=0

(γx)ke−γx

k!
log

(
(γx)ke−γx

k!

)
= γx− γx log(γx) +

∞∑
k=0

(γx)ke−γx

k!
log k!

It is natural to assume that the Shannon entropy HS(λ) of a Poisson distribution strictly increases1033

with λ ∈ (0,+∞). We will prove this result, as well as the concavity property of HS(λ), in the1034

following lemma.1035

Lemma 11. The Shannon entropy HS(λ), λ ∈ (0,+∞), is strictly increasing and concave in λ.1036
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Proof. The Shannon entropy HS(λ) of a Poisson distribution is as outlined above. To analyze the1037

monotonicity and concavity of HS(λ), we compute its first and second derivatives with respect to λ.1038

First, the first derivative HS′(λ) is:1039

H ′
S(λ) = − log

(
λ

e

)
− 1− e−λ

∞∑
k=2

λk log k!

k!
+ e−λ

∞∑
k=2

λk−1 log k!

(k − 1)!
(42)

= − log λ+ e−λ
∞∑
k=1

λk log(k + 1)!

k!
− e−λ

∞∑
k=2

λk log k!

k!
(43)

Simplifying, we get:1040

HS′(λ) = − log λ+ e−λ
∞∑
k=1

λk

k!
log(k + 1)

It is clear that both terms on the right-hand side of (2) are non-negative for λ ∈ (0, 1], and the1041

second term is strictly positive. Therefore, H ′
S(λ) > 0 for λ ∈ (0, 1]. Now, it remains to prove that1042

H ′
S(λ) > 0 for λ > 1. Let’s calculate:1043

H ′′
S(λ) = −

1

λ
− e−λ

∞∑
k=1

λk log(k + 1)

k!
+ e−λ

∞∑
k=1

λk−1 log(k + 1)

(k − 1)!

= − 1

λ
+ e−λ

∞∑
k=0

λk log(k + 2)

k!
− e−λ

∞∑
k=1

λk log(k + 1)

k!

= − 1

λ
+ e−λ log 2 + e−λ

∞∑
k=1

λk log
(
1 + 1

k+1

)
k!

= − 1

λ
+ e−λ

∞∑
k=0

λk log
(
1 + 1

k+1

)
k!

< − 1

λ
+ e−λ

∞∑
k=0

λk

(k + 1)!
< − 1

λ
+ e−λ

1

λ

∞∑
k=0

λk+1

(k + 1)!

< − 1

λ
+ e−λ

1

λ
eλ = 0.

So, H ′′
S(λ) < 0 for all λ > 0. Therefore, H ′

S(λ) strictly decreases in λ, proving concavity and it is1044

sufficient to prove that limλ→∞H ′
S(λ) ≥ 0 After further simplification,1045

lim
λ→∞

H ′
S(λ) = lim

λ→∞
log λ

(
e−λ(log λ)−1

∞∑
k=1

λk log(k + 1)

k!
− 1

)
,

and it is sufficient to establish that1046

lim inf
λ→∞

e−λ(log λ)−1
∞∑
k=1

λk log(k + 1)

k!
≥ 1.

This inequality is outlined in [61]. Using this, we get that H ′
S(λ) > 0 for all λ ≥ 0 and H ′′

S(λ) < 01047

for all λ ≥ 0, hence the proof follows.1048

Given that H(zγ |x) is an increasing and concave function of x for x > 0, we aim to maximize1049

Ex[H(zγ |x)] under the mean constraint E[x] = µ. The functional to maximize is J [pX(x)] =1050 ∫∞
0
H(zγ |x)pX(x) dx, subject to the normalization and mean constraints:

∫∞
0
pX(x) dx =1051

1 and
∫∞
0
xpX(x) dx = µ1052

Introducing Lagrange multipliers λ and ν for these constraints, the Lagrangian becomes:1053
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L[pX(x)] =

∫ ∞

0

H(zγ |x)pX(x) dx− λ
(∫ ∞

0

pX(x) dx− 1

)
− ν

(∫ ∞

0

xpX(x) dx− µ
)

Taking the functional derivative of L with respect to pX(x) and setting it to zero for optimality yields:1054
δL

δpX(x) = H(zγ |x)− λ− νx = 01055

Given the properties of H(zγ |x), the solution corresponds to an exponential distribution. The1056

exponential distribution with mean µ is given by:1057

pX(x) =
1

µ
e−x/µ, x ≥ 0

Maximizing the entropy of x leads to a distribution that spreads the probability mass, thereby1058

increasing uncertainty and consequently maximizing the mprl. Now, using this exponential prior, we1059

will derive an expression for mprl(γ) which we use for deriving the left and right tail bounds.1060

Now, the prior distribution for X is assumed to be an exponential distribution:1061

fX(x) = λe−λx

We introduce the latent variable Zγ such that:1062

P (Zγ = z|X = x) =
e−γx(γx)z

z!

which follows a Poisson distribution. The conditional density of X given Zγ = z is derived as:1063

fX|Z(x|z) =
P (Zγ = z|X = x)fX(x)

P (Zγ = z)
1064

fX|Z(x|z) =
(βx)z

z!
λe−λxe−βx

1065

=
(βx)zλe−(λ+β)x

z!P (Zγ = z)

and we can notice that this is a Gamma distribution: X|Zγ = z ∼ Gamma(z + 1, λ + β) The1066

posterior mean of X given Zγ is:1067

E[X|Zγ = z] =
z + 1

λ+ β
(44)

and this serves as the optimal estimate X̂∗. Now, let us consider the following expectation: (where l1068

is the previously defined Poisson loss function)1069

EX|Zγ
[l(X,X∗)] = E[X log

(
X

X∗

)
−X+X∗] = E

[
X log

(
X

X∗

) ∣∣∣Zγ]−E[X|Zγ ]+X∗ (45)

Using integration by parts and properties of the Gamma function, if W ∼ Gamma(α, β), then: [62]1070

E[W logW ] =
α

β
[ψ(α+ 1)− log β]

where we defined the digamma function ψ(α) as: ψ(α) = d
dα log Γ(α). The above results would1071

also follow from differentiating the moment formula:1072

E[Xn] =
Γ(α+ n)

Γ(α)βn
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Applying this this result in our case gives us:1073

E[X logX|Zγ ] =
z + 1

λ+ β
[ψ(z + 2)− log(λ+ α)]

We also have from Equation. 44:1074

log(X∗) = log(z + 1)− log(λ+ α)

Taking expectation, the first term in Eq. 45 can be written as:1075

E

[
X log

(
X

X∗

) ∣∣∣Z] = z + 1

λ+ β
[ψ(z + 2)− log(λ+ α)]− z + 1

λ+ α
[log(z + 1)− log(λ+ α)]

(46)

=
z + 1

λ+ β
[ψ(z + 2)− log(z + 1)]

(47)

Now, we compute the marginal distribution as follows:1076

P (Zγ = z) =

∫ ∞

0

P (Zγ = z|X = x)fX(x) dx =
λβz

z!

∫ ∞

0

xze−(λ+β)xdx.

Using the Gamma integral property stated as follows:1077 ∫ ∞

0

xze−(λ+β)xdx =
Γ(z + 1)

(λ+ β)z+1
,

we obtain (since Γ(z + 1) = z!):1078

P (Zγ = z) =
λβz

z!
· Γ(z + 1)

(λ+ β)z+1
=

λβz

(λ+ β)z+1
= (1− p)pz, where p =

β

λ+ β

Now, the mprl(γ) expression obtained is as follows:1079

mprl(γ) =
∞∑
z=0

(1−p)pz
[
z + 1

λ+ β
[ψ(z + 2)− log(z + 1)]

]
=

λ

(λ+ β)2

∞∑
z=0

(z+1)pz [ψ(z + 2)− log(z + 1)] .

E.1 Left Tail Bound1080

In case of (γ0, γ1) being the relevant range of integration, the left tail integral is defined as:1081 ∫ γ0
0

mprl(γ) dγ1082

First, we interchange the sum and the integral:1083 ∫ γ0

0

mprl(γ) dγ =

∞∑
z=0

(z + 1)
[
ψ(z + 2)− log(z + 1)

] ∫ γ0

0

λ

(λ+ γ)2

(
γ

λ+ γ

)z
dγ.

We define the inner integral as1084

Iz =

∫ γ0

0

λ

(λ+ γ)2

(
γ

λ+ γ

)z
dγ.

Substitute u = λ + γ, which implies γ = u − λ and dγ = du. The bounds change accordingly:1085

u = λ when γ = 0 and u = λ+ γ0 when γ = γ0. The integral becomes1086

Iz = λ

∫ λ+γ0

λ

(u− λ)z

uz+2
du.

Next, using the substitution v = u−λ
u , leading to u = λ

1−v and du = λ
(1−v)2 dv. The bounds1087

transform to v = 0 when u = λ and v = γ0
λ+γ0

when u = λ+ γ0. Substituting these into the integral1088

yields1089

Iz =

∫ γ0
λ+γ0

0

vz dv.
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The integral Iz can be evaluated as1090

Iz =

[
vz+1

z + 1

] γ0
λ+γ0

0

=

(
γ0

λ+γ0

)z+1

z + 1
.

Substituting Iz back into the expression for the expectation, gives:1091 ∫ γ0

0

mprl(γ) dγ =

∞∑
z=0

[
ψ(z + 2)− log(z + 1)

]( γ0
λ+ γ0

)z+1

Let the above sum be S which we use in the sections below. By re-indexing the sum with k = z + 1,1092

the final result can more elegantly be expressed as:1093 ∫ γ0

0

mprl(γ) dγ =

∞∑
k=1

[
ψ(k + 1)− log(k)

]( γ0
λ+ γ0

)k
.

We aim to establish an upper bound for the sum1094

S =

∞∑
z=0

(z + 1) [ψ(z + 2)− log(z + 1)]

(
γ0

λ+ γ0

)z+1

,

where ψ denotes the digamma function, γ0 > 0, and λ > 0.1095

Let us define x = γ0
λ+γ0

. Given that γ0 > 0 and λ > 0, it follows that 0 < x < 1. From, [63], we1096

recall the expansion of the digamma function:1097

ψ(z + 2) = Hz+1 − γE ,
where Hn is the n-th harmonic number and γE is the Euler-Mascheroni constant. For large z,1098

Hz+1 = log(z + 1) + γE +
1

2(z + 1)
− 1

12(z + 1)2
+ · · · .

Substituting this into the expression for ψ(z + 2) yields:1099

ψ(z + 2)− log(z + 1) =
1

2(z + 1)
− 1

12(z + 1)2
+ · · · .

From this expansion, it is evident that1100

ψ(z + 2)− log(z + 1) <
1

2(z + 1)

for all z ≥ 0, since the higher-order terms − 1
12(z+1)2 + · · · contribute negatively, thereby decreasing1101

the overall value.1102

Consequently, each term in the sum satisfies1103

(z + 1) [ψ(z + 2)− log(z + 1)]xz+1 <
1

2
xz+1.

Summing over z from 0 to∞, we obtain1104

S <
1

2

∞∑
z=0

xz+1.

Using the simplification of the geometric series
∑∞
z=0 x

z+11105

∞∑
z=0

xz+1 =
x

1− x
=⇒ S <

1

2

x

1− x
.

Substituting back x = γ0
λ+γ0

, we have1106

1− x = 1− γ0
λ+ γ0

=
λ

λ+ γ0
=⇒ x

1− x
=

γ0
λ+γ0
λ

λ+γ0

=
γ0
λ
.
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Putting this into the inequality for S, we obtain1107

S <
1

2

γ0
λ
.

Hence, the upper bound for the sum in the scalar case (for a single input-output realization) is1108

∞∑
z=0

(z + 1) [ψ(z + 2)− log(z + 1)]

(
γ0

λ+ γ0

)z+1

≤ γ0
2λ
.

(Note: This z is different from the zγ notation used throughout the paper.)1109

Extending this result to the vector case, consider a d-dimensional random vector x ∈ X ⊂ Zd with1110

covariance matrix Σ, whose eigenvalues are {λi}di=1, all positive. Assuming the problem is separable1111

across the eigenbasis of Σ, each dimension can be treated independently.1112

For the vector case, the sum becomes1113

Svector =

d∑
i=1

∞∑
z=0

(z + 1) [ψ(z + 2)− log(z + 1)]

(
γ0

λi + γ0

)z+1

.

Applying the scalar bound to each eigenvalue λi, we have1114

∞∑
z=0

(z + 1) [ψ(z + 2)− log(z + 1)]

(
γ0

λi + γ0

)z+1

≤ γ0
2λi

.

Summing over all i from 1 to d, the vector sum satisfies1115

Svector ≤
d∑
i=1

γ0
2λi

=
γ0
2

d∑
i=1

1

λi
.

In the special case where the covariance matrix Σ is isotropic, meaning all eigenvalues λi = λ for1116

i = 1, . . . , d, the bound simplifies to1117

Svector ≤
dγ0
2λ

.

This concludes the derivation of the left tail bounds for both the scalar and vector cases.1118

E.2 Right Tail Bound1119

In case of (γ0, γ1) being the relevant range of integration, the right tail integral is defined as:1120 ∫∞
γ1

mprl(γ) dγ1121

Consider a discrete variable x = (x1, x2, . . . , xd) ∈ X ⊂ Zd, where each component xi belongs to a1122

discrete set {i∆|i ∈ Z}. Observations are modeled as zγ,i ∼ P(γxi) for a large signal-to-noise ratio1123

(SNR) parameter γ. The estimator x̂i(zγ,i) is typically the maximum likelihood estimator (MLE),1124

implemented by rounding zγ,i to the nearest bin {k∆}.1125

The loss function per component is defined as1126

L(xi, x̂i) = xi log

(
xi
x̂i

)
− xi + x̂i,

and the mprl(γ) is given by E[L(xi, x̂i)] over the randomness of zγ,i. The right-tail integral of1127

interest is1128

IR =

∫ ∞

γ1

E

[
d∑
i=1

L(xi, x̂i(zγ,i))

]
dγ,

which we aim to upper bound.1129

At high SNR (γ →∞), the noise is relatively small compared to xi, but rare rounding errors of size1130

j∆ can still occur. Focusing on a single component xi, an error of size j∆ happens if1131

x̂i = xi − j∆ ⇐⇒ zγ,i ∈ [γ(xi − j∆− 0.5∆), γ(xi − j∆+ 0.5∆)) .
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For zγ,i ∼ Poisson(µ) with µ = γxi, the Poisson Chernoff bound [64] provides that the probability1132

of such a deviation is at most exp(−ci,jγ), where ci,j > 0 is a constant dependent on ∆, xi, and the1133

shift j∆. Hence,1134

P (error of size j∆) ≤ e−ci,jγ .
The per-component contribution to the mean MLE loss is1135

mprli(γ) = Ezγ,i
[L(xi, x̂i(zγ,i))] .

When the estimation error is j∆, the loss becomes1136

L (xi, xi − j∆) = xi log

(
xi

xi − j∆

)
− xi + (xi − j∆).

Therefore, the mean loss satisfies1137

mprli(γ) ≤
jmax∑
j=1

[
xi log

(
xi

xi − j∆

)
− xi + (xi − j∆)

]
e−ci,jγ .

Summing over all components i = 1, . . . , d, we obtain1138

mprl(γ) =
d∑
i=1

mprli(γ) ≤
d∑
i=1

jmax∑
j=1

[
xi log

(
xi

xi − j∆

)
− xi + (xi − j∆)

]
e−ci,jγ .

The right-tail integral IR can thus be bounded as1139

IR =

∫ ∞

γ1

mprl(γ) dγ ≤
d∑
i=1

jmax∑
j=1

[
xi log

(
xi

xi − j∆

)
− xi + (xi − j∆)

] ∫ ∞

γ1

e−ci,jγdγ.

Evaluating the integral, we find1140 ∫ ∞

γ1

e−ci,jγdγ =
e−ci,jγ1

ci,j
,

Leading to the final right-tail bound1141

IR =

∫ ∞

γ1

E

[
d∑
i=1

L(xi, x̂i)

]
dγ ≤

d∑
i=1

jmax∑
j=1

[
xi log

(
xi

xi − j∆

)
− j∆

]
e−ci,jγ1

ci,j
.

In the above expression, ci,j > 0 represents the Chernoff-type exponent from the Poisson large-1142

deviation bound for the event causing an error of size j∆ in component i. We determine these1143

parameters empirically, and the parameter jmax indicates the largest error shift considered, which1144

is typically small in practice and can be tuned empirically. For empirical purposes, it might also be1145

worthwhile to note that the bracketed term in Eq. 47 can be approximated as the sum over a few1146

starting z beyond which it effectively dies out as illustrated in Figure 14.

Figure 14: Approximating the Digamma term

1147
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F Proof Sketch of Pointwise Poisson Denoising Relation1148

For Poisson channel defined earlier, we derive the pointwise denoising relation:1149

Lemma 12. The KL divergence derivative satisfies:1150

d

dγ
DKL[P (zγ |x)∥P (zγ)] = mprl(x, γ)

where the pointwise MPRL is:1151

mprl(x, γ) ≡ EP (zγ |x) [l (x, x̂
∗(zγ))]

with l(x, x∗) = x log x
x∗ − x+ x∗ and x̂∗(zγ) = E[X|zγ ].1152

Proof. For the Poisson channel Zγ |X = x ∼ Pois(γx) define1153

Rx(γ) :=
∑
z≥0

pγ(z|x) log
pγ(z|x)
pγ(z)

, x̂∗(z, γ) := E[X|Zγ = z], ℓ(x, x̂) := x log
x

x̂
− x+ x̂.

Differentiate the series using the product rule to get1154

d

dγ
Rx =

∑
z

∂γpγ(z|x) log
pγ(z|x)
pγ(z)

+
∑
z

pγ(z|x)
(
∂γ log pγ(z|x)− ∂γ log pγ(z)

)
= T1 + T2.

Term T2. For the Poisson distribution with mean γx,1155

pγ(z|x) = e−γx
(γx)z

z!
.

Taking the derivative,1156

d

dγ
log pγ(z|x) = −x+

z

γ
.

Hence, for the conditional Poisson law, we have1157

∂γ log pγ(z|x) =
z

γ
− x.

Similarly for the marginal,1158

pγ(z) =

∫
pγ(z|x)P (x)dx.

Taking the log-derivative,1159

d

dγ
log pγ(z) =

1

pγ(z)

∫
(−x+

z

γ
)pγ(z|x)p(x)dx.

Identifying this as a conditional expectation gives:1160

∂γ log pγ(z) = E

[
−X +

Z

γ

∣∣∣∣Z = z

]
.

Hence1161

T2 = Epγ(z|x)

[
E[X|Z]− Z

γ

]
.

Term T1. Let r(z) := log
pγ(z|x)
pγ(z)

and λ := γx. Since ∂γpγ(z|x) = pγ(z|x)
(
z
γ − x

)
,1162

T1 = Epγ(z|x)

[(Zγ
γ
− x
)
r(Zγ)

]
=

1

γ
E
[
(Zγ − λ) r(Zγ)

]
.

For Zγ ∼ Pois(λ) the Poisson–Stein identity gives1163

E
[
(Zγ − λ)h(Zγ)

]
= λE

[
h(Zγ + 1)− h(Zγ)

]
.
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With h = r,1164

T1 =
λ

γ
E
[
r(Zγ + 1)− r(Zγ)

]
= xE

[
r(Zγ + 1)− r(Zγ)

]
.

Using the ratio formulas (from Lemma 4) gives:1165

pγ(z + 1|x)
pγ(z|x)

=
γx

z + 1
,
pγ(z + 1)

pγ(z)
=
γ ⟨X⟩z
z + 1

, ⟨X⟩z := E[X|Zγ = z],

we get1166

r(z + 1)− r(z) = log
x

⟨X⟩z
, T1 = xE

[
log

x

⟨X⟩Zγ

]
.

Now, combining both the terms gives:1167

d

dγ
Rx = xE

[
log

x

⟨X⟩Zγ

]
+ E

[
⟨X⟩Zγ

− Zγ
γ

]
.

Since E[Zγ |X = x] = γx, the second expectation equals E[⟨X⟩Zγ
]− x, and hence1168

d

dγ
Rx = Epγ(z|x)

[
x log

x

⟨X⟩Zγ

− x+ ⟨X⟩Zγ

]
= Epγ(z|x)

[
ℓ(x, x̂∗)

]
.

□1169

We can also derive this equation as a special case of Lemma 4.2 from [29].1170

Link to the MPRL Loss: We already defined the loss function:1171

ℓ
(
x, x̂∗

)
= x log

x

x̂∗
− x+ x̂∗.am

If x̂∗ ≡ E[X|zγ ] is the estimator of x given zγ , then by standard properties of conditional expectation,1172

EP (zγ |x)[x̂
∗] = E[E[X|zγ ]] = E[X] = x (if x is deterministic, replace E[X] by x).

Hence,1173

EP (zγ |x)[ℓ(x, x̂
∗)] = E[x log x− x log x̂∗ − x+ x̂∗] = x log x− x− xE[log x̂∗] + E[x̂∗].

Since E[x̂∗] = x,1174

EP (zγ |x)[ℓ(x, x̂
∗)] = x(log x− E[log x̂∗]).

One can show (by comparing with the final expression in the KL derivative) that this expectation1175

aligns with EP (zγ |x)[E[X|zγ ]− zγ
γ ], thus establishing the link between the MPRL and the derivative1176

of the KL divergence. We can generalize this relation to any loss function that belongs to the class of1177

Bregman divergences in a Poisson channel using the framework described in [65].1178

F.1 Tweedie’s for Poisson Denoising1179

A well-known result in Gaussian denoising is Tweedie’s Formula, which expresses the conditional1180

expectation of the latent variable in terms of the derivative of the log-pdf of noisy observation. [32].1181

Specifically, for Zγ =
√
γX + ε with ε ∼ N (0, I), we have:1182

E[X|Zγ = z] =
z
√
γ
+

1

γ
∇ log fZγ (z), (48)

In the Poisson setting, we cannot directly take derivatives of logPZγ
(z) with respect to discrete z1183

since they are undefined. Instead, the forward difference of the log of the marginal PMF serves as a1184

discrete analog. This culminates in the Turing-Good-Robbins (TGR) formula, already presented in1185

Lemma 4.1186

Hence, just like Tweedie’s Formula in the continuous Gaussian case, TGR expresses the conditional1187

mean ⟨X⟩z purely in terms of the marginal distribution PZγ
(z), bypassing any need to compute the1188

conditional distribution PX|Zγ
. In effect, the ratio γ · ⟨X⟩z plays the role of a score function for the1189

Poisson channel, analogous to the logarithmic derivative in the Gaussian case. This discrete variant1190

underpins our Poisson diffusion framework, allowing us to efficiently compute the optimal denoiser1191

E[X|Zγ ] directly from the marginal PMF.1192
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G Continuous Extension of ItDPDM1193

We extend the continuous-time channel with discrete states (CTDS) to continuous states through the1194

following construction:1195

Definition 1 (Continuous-Time Channel with States (CTCS)). Let {Xt}t≥0 be a right-continuous1196

state process with left limits (càdlàg) taking values in R+. The output process {Yt}t≥0 is a counting1197

process satisfying:1198

Yt = P
(∫ t

0

Xsds

)
(49)

where P(·) denotes a Poisson counting measure.1199

For measurable intensity Xt, the output increments also satisfy:1200

Yt+δ − Yt ∼ P

(∫ t+δ

t

Xsds

)
, ∀t, δ ≥ 0 (50)

with {Ytk − Ytk−1
}nk=1 independent given X[0,T ] for any finite partition {tk}.1201

The mutual information between state and observation processes over [0, T ] is given by:1202

I(XT ;Y T ) = E

[
log

dPY T |XT

dPY T

]
(51)

The key connection to discrete-time systems emerges through infinitesimal discretization:1203

Lemma 13 (Mutual Information Rate). For the CTCS in Definition 1, the mutual information rate1204

satisfies:1205

lim
T→∞

1

T
I(XT ;Y T ) = lim

δ→0

1

δ
I(Xδ;Yδ) (52)

where Xδ := X[0,δ) and Yδ := Yδ − Y0 corresponds to the discrete-time channel P(δX).1206

Proof Sketch. Consider time partitions 0 = t0 < t1 < · · · < tn = T with max |tk+1 − tk| ≤ δ. By1207

the chain rule of mutual information:1208

I(XT ;Y T ) =

n−1∑
k=0

I(Xtk+1 ;Ytk+1
|Y tk)

=

n−1∑
k=0

[
I(X[tk,tk+1);Y[tk,tk+1)) + ϵk

]
where ϵk captures residual dependence between time intervals. Using the Markov property of Poisson1209

counters [66] and taking δ → 0, the residual terms vanish by the Asymptotic Equipartition Property1210

(AEP) for Poisson processes [67]. The result follows from Lemma 9 applied to each infinitesimal1211

interval.1212

The continuous-time counterpart of the derivative relationship becomes:1213

Lemma 14 (Information Rate Derivative). For the CTCS system, the time derivative of mutual1214

information satisfies:1215

d

dt
I(Xt;Y t) = E [Xt logXt − ⟨Xt⟩ log⟨Xt⟩] (53)

where ⟨Xt⟩ := E[Xt|Y t] is the causal MPRL estimator.1216

Proof. From Lemma 13 and the DTCS derivative, we have:1217

d

dt
I(Xt;Y t) = lim

δ→0

1

δ

[
I(Xt+δ;Yt+δ|Y t)− I(Xt;Yt)

]
= lim
δ→0

1

δ
E [δXt logXt − δ⟨Xt⟩ log⟨Xt⟩] + o(1)

The result follows by dominated convergence and the tower property of conditional expectation. This1218

continuous-time formulation preserves the essential duality between information and estimation seen1219

in discrete time, with the Poisson channel’s inherent noise characteristics governing both regimes.1220

The CTCS framework enables analysis of real-time filtering and prediction [68] through differential1221

versions of the key discrete-time identities.1222

42



H Detailed comparison of ItDPDM vs. Learning to Jump (LTJ, [20])1223

Table 8 shows a detailed comparison below:1224

Table 8: Side-by-side comparison of our ItDPDM vs the Learning-to-Jump (LTJ) framework.
We note that both methods employ a Poisson-Bregman (relative-entropy) loss—denoted PRL for
ItDPDM and Dϕ for LTJ but they diverge sharply in how that loss is used and how it connects to
likelihood, as summarised below.

Aspect ItDPDM (ours) Learning-to-Jump (LTJ) [20]
Forward “noising” Single-shot Poisson channel Zγ ∼

Pois(γX) with continuous SNR
γ ∈ (0,∞)

Binomial thinning chain
zt ∼ Binomial

(
zt−1, αt/αt−1

)
for t = 1, . . . , T

Reverse / generation sampling operates in log-SNR
space via a continuous-time re-
verse SDE or ODE; sampling can
flexibly subsample the SNR con-
tinuum (e.g. 20–50 steps) without
quality loss, in contrast to fixed-
step chains

‘Count-thickening’ Markov chain
with shifted-Poisson jumps; sam-
pling requires executing all T dis-
crete steps with no flexibility to
skip or subsample, so the full T -
step chain is incurred for every
generated sample

Bounds on NLL Information-theoretic, extends the
classic I-MMSE identity to the
Poisson channel, giving the ex-
act relation: −log p(x) =∫∞
0

MPRL(x, γ) dγ

Variational ELBO, multi-term
KL-divergence sum with bi-
nomial/Poisson factors; yields
only an approximate bound on
−log p(x)

Training Loss PRL: ℓ(x, x̂) = x̂ · log(x̂/x) −
x̂+ x, integrated over continuous
γ, producing an exact NLL upper
bound and provides analytic tail
bounds & an importance-sampling
estimator; empirically yields lower
NLL than all baselines.

Per-step relative-entropy
Dϕ(x, fθ(zt, t)) inside an
ELBO with an identical Bregman
form, but summed over discrete
T only with no closed-form link
between the total loss and the true
likelihood.

Scheduling Choose only a continuous SNR
grid (e.g., 1000-point logistic); no
αt or T hyper-parameters.

Must hand-design thinning sched-
ule {αt}Tt=1 and pick T (typically
T =1000).

Likelihood evaluation Exact tail bounds + importance
sampling; likelihood (NLL) (in
bits-per-dim) on real-world data,
both WD & NLL on synthetic data
evaluated

Likelihood not estimated; evalu-
ation solely via Wasserstein dis-
tance (WD) of histograms.

Sampling speed Compatible with fast ODE solvers
(20–50 steps) due to continuous γ.

Must run all T thickening steps.

Theoretical extensions Poisson-Tweedie identity;
mutual-information derivative;
CTCS extension.

—

In the Learning-to-Jump (LTJ) framework [20], the per-step training loss is written asDϕ(x, fθ(zt, t)),1225

where1226

• x ∈ N is the true discrete count.1227

• zt is the noisy observation at step t, obtained by binomial thinning of zt−1.1228

• fθ(zt, t) is the denoising network (parameterized by θ), which takes (zt, t) and outputs an1229

estimate x̂t of x.1230

• Dϕ(u, v) is the Bregman divergence induced by a convex generator ϕ: Dϕ(u, v) =1231

ϕ(u)− ϕ(v)− ⟨∇ϕ(v), u− v⟩. For the Poisson channel one uses ϕ(u) = u log u, yielding1232

Dϕ(x, x̂) = x̂ log x̂x − x̂+ x, i.e. the Poisson–Bregman (relative-entropy) loss.1233
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Figure 15: Noisy Image (Poisson Noise) Figure 16: Denoised Image (Poisson Noise)

Figure 17: Noisy Image (Gaussian Noise) Figure 18: Denoised Image (Gaussian Noise)

Figure 19: Comparison of noisy and denoised images for poisoned and Gaussian noise birds with
logsnr=4.01.

I Noised and Denoised Image Comparison1234

Figure 19 presents a comparison of noisy and denoised images under Gaussian and Poisson noise1235

conditions at a logSNR of 4.01. The left column displays the input images corrupted by Gaussian1236

(Figure 17) and Poisson noise (Figure 15), while the right column shows the corresponding denoised1237

outputs (Figures 16 and Figures 16). Notably, the Poisson noise case exhibits a higher level of1238

degradation than the Gaussian noise case, making recovery more challenging. However, the denoising1239

process effectively reconstructs meaningful image structures in both cases, demonstrating the model’s1240

robustness to varying noise distributions.1241

J Theoretical Runtime Analysis of ItDPDM Architecture1242

We present a theoretical runtime analysis of the proposed Information-Theoretic Discrete Poisson1243

Diffusion Model (ItDPDM), focusing on the core components contributing to its computational cost1244

during training and inference.1245

Poisson Noise Sampling1246

The forward diffusion process in ItDPDM is governed by a Poisson noise channel zγ ∼ Poisson(γx),1247

where x ∈ RD+ denotes the input data vector and γ is the signal-to-noise ratio (SNR). Sampling from1248

a Poisson distribution can be performed in O(1) per element using rejection sampling or table-based1249

methods, resulting in a total cost of O(D) per data point.1250

44



Neural Denoising1251

The denoiser is instantiated as a neural network, such as a U-Net (for images) or a Transformer1252

encoder (for symbolic music). The input to the denoiser is the reparameterized form1253

z̃γ =
zγ

1 + γ
,

which improves numerical stability. The forward pass of the denoiser has cost O(D) per data point,1254

assuming conventional convolutional or attention-based layers.1255

Poisson Loss Function Evaluation1256

The proposed loss function is based on a Bregman divergence tailored to Poisson noise:1257

ℓ(x, x̂) = x log
(x
x̂

)
− x+ x̂,

which is convex, differentiable, and evaluated pointwise. The cost of loss evaluation and gradient1258

computation is O(D) per sample.1259

Integral Estimation over SNR1260

A defining component of the ItDPDM framework is the estimation of the negative log-likelihood1261

using thermodynamic integration:1262

− logP (x) =

∫ ∞

0

mprl(x, γ) dγ,

where MPRL denotes the minimum mean likelihood error. In practice, this integral is approximated1263

numerically using n log-SNR values (e.g., n = 1000), obtained via uniform or importance sampling1264

over α = log γ.1265

Each SNR point requires a forward pass through the denoiser and loss computation, yielding a total1266

per-sample complexity of O(n ·D). To reduce overhead, the model uses importance sampling from a1267

truncated logistic distribution over α and closed-form tail integral bounds to truncate the SNR domain1268

(see Eqs. (28)–(29) in the main text).1269

Component Complexity Description
Poisson noise sampling O(D) Efficient per-sample noise generation
Neural denoising O(D) Forward pass through CNN or Transformer
Poisson loss function O(D) Evaluated pointwise for each data coordi-

nate
Integral over SNR O(n ·D) Dominant cost due to repeated inference

and loss evaluations
Total per-sample cost O(n ·D) For fixed number of SNR grid points
Table 9: Asymptotic complexity of key components in the ItDPDM training pipeline.

Given a batch size B and number of training epochs E, the overall training complexity becomes:1270

O(B ·E · n ·D). This is comparable to standard continuous-state diffusion models using discretized1271

time steps, but the Poisson-specific formulation and MPRL integral introduce unique architectural1272

and optimization challenges that are efficiently addressed via reparameterization and sampling1273

strategies. Additionally, in terms of wall-clock times for training/sampling, we observe that ItDPDM1274

is comparable to standard DDPM-style models.1275

K Extended Related Work1276

Diffusion models have evolved along two orthogonal dimensions—noise type and state space.1277

Classical DDPMs corrupt continuous data with additive Gaussian noise and learn the reverse process1278

with score matching or variational bounds [2, 37, 48–50]. An information-theoretic viewpoint links1279

these objectives to mutual–information integrals [12, 22], and has recently motivated non-Gaussian1280

extensions based on annealed score matching [51, 52] and SDE formalisms [53]. Parallel work1281

seeks native discrete-state alternatives: masking schemes such as Blackout Diffusion employ an1282
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irreversible “black” token that blocks exact likelihood computation [54]; Learning-to-Jump (LTJ)1283

replaces Gaussian noise by binomial thinning/thickening yet remains limited to discrete time and a1284

variational ELBO [20]. Very recent approaches move to continuous-time jump processes, but still1285

approximate the likelihood: [69] devise a categorical SDE whose reverse dynamics are learned by1286

discrete score matching, while [56] estimate probability ratios rather than scores to reduce perplexity1287

on text.1288

Score Entropy Discrete Diffusion (SEDD) [56] represents a significant advancement in discrete1289

diffusion modeling. It introduces the Score Entropy loss, a novel objective that extends score matching1290

to discrete spaces by directly modeling the ratios of data probabilities. This approach addresses1291

the challenges of applying traditional score matching to discrete data and enables the construction1292

of discrete diffusion models that are both theoretically sound and empirically effective. SEDD1293

demonstrates competitive performance with autoregressive models like GPT-2 on standard language1294

modeling benchmarks. Notably, it achieves comparable zero-shot perplexities and offers advantages1295

in generation quality and efficiency. For instance, SEDD can generate high-quality text samples1296

with 4× lower generative perplexity when matching function evaluations and requires 16× fewer1297

function evaluations to match the generative perplexity of standard autoregressive sampling methods.1298

Moreover, SEDD enables arbitrary infilling beyond standard left-to-right prompting, matching the1299

quality of nucleus sampling without the need for specialized training or sampling techniques.1300

Concurrently, several non-Gaussian continuous diffusion models have been proposed to address the1301

limitations of traditional Gaussian-based approaches, particularly in handling data with bounded1302

support or preserving structural details in images.1303

Beta Diffusion [70] introduces a novel generative modeling method that integrates demasking and1304

denoising to generate data within bounded ranges. Utilizing scaled and shifted beta distributions, it1305

employs multiplicative transitions over time to create both forward and reverse diffusion processes.1306

This approach maintains beta distributions in both the forward marginals and the reverse conditionals,1307

given the data at any point in time. Unlike traditional diffusion models relying on additive Gaussian1308

noise and reweighted evidence lower bounds (ELBOs), Beta Diffusion is multiplicative and optimized1309

with KL-divergence upper bounds (KLUBs) derived from the convexity of the KL divergence.1310

Experimental results demonstrate its unique capabilities in generative modeling of range-bounded1311

data and validate the effectiveness of KLUBs in optimizing diffusion models.1312

Blurring Diffusion Models [71] propose a generalized class of diffusion models that offer the best1313

of both standard Gaussian denoising diffusion and inverse heat dissipation. By defining blurring1314

through a Gaussian diffusion process with non-isotropic noise, this approach bridges the gap between1315

inverse heat dissipation and denoising diffusion. It sheds light on the inductive bias resulting from this1316

modeling choice and demonstrates the capability to better learn the low-to-mid frequencies within1317

datasets, which plays a crucial role in representing shapes and structural information.1318

Edge-Preserving Noise [72] for diffusion introduces a content-aware diffusion model explicitly1319

trained to learn the non-isotropic edge information in a dataset. Inspired by anisotropic diffusion1320

in image processing, this model incorporates an edge-aware noise scheduler that varies between1321

edge-preserving and isotropic Gaussian noise. The generative process converges faster to results that1322

more closely match the target distribution and better learns the low-to-mid frequencies within the1323

dataset, crucial for representing shapes and structural information. This edge-preserving diffusion1324

process consistently outperforms state-of-the-art baselines in unconditional image generation and1325

is particularly robust for generative tasks guided by a shape-based prior, such as stroke-to-image1326

generation1327

While these models offer significant advancements in handling specific data characteristics, they still1328

require dequantization and rely on surrogate objectives. In contrast, ItDPDM models corruption1329

with a reversible Poisson channel, maintaining a discrete latent space, supporting bidirectional1330

perturbations, and—via the I-MPRL identity—transforming the Minimum Poisson Reconstruction1331

Loss into an exact likelihood integral instead of a bound. This unifies the tractability of information-1332

theoretic Gaussian diffusion with the fidelity of discrete-state models, yielding closed-form NLLs,1333

scalable continuous-time sampling, and strong empirical performance on sparse, skewed, and over-1334

dispersed count data1335

ItDPDM differs fundamentally from the above lines. By modelling corruption with a reversible1336

Poisson channel, ItDPDM keeps the latent space discrete, supports bidirectional perturbations,1337
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and—via the I-MPRL identity—turns the Minimum Poisson Reconstruction Loss into an exact1338

likelihood integral instead of a bound. This unifies the tractability of information-theoretic Gaussian1339

diffusion with the fidelity of discrete-state models, yielding closed-form NLLs, scalable continuous-1340

time sampling, and strong empirical performance on sparse, skewed, and over-dispersed count1341

data.1342

L Limitations and Future Work1343

Despite its theoretical strengths, performance benefits on diverse discrete distributions, and competi-1344

tive empirical results, ItDPDM remains a proof of concept and does not yet match state-of-the-art1345

performance in real-world generative tasks. As discussed in 4.4, these performance gaps are partly1346

due to limited training and architectural tuning, with details provided in App. B. Additionally,1347

logistic sampling parameters are fixed a priori without extensive hyperparameter tuning. We believe1348

that longer training schedules (3000+ epochs), systematic hyperparameter sweeps (e.g., number of1349

log-SNR steps), and targeted ablations could substantially improve ItDPDM’s performance.1350
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