
Under review as a conference paper at ICLR 2024

MORPHGROWER: A SYNCHRONIZED LAYER-BY-LAYER
GROWING APPROACH FOR PLAUSIBLE AND DIVERSE
NEURONAL MORPHOLOGY GENERATION

ABSTRACT

Neuronal morphology is essential for studying brain functioning and understanding
neurodegenerative disorders, e.g. Alzheimer. As the acquiring of real-world
morphology data is expensive, computational approaches especially learning-based
ones e.g. MorphVAE for morphology generation were recently studied, which are
often conducted in a way of randomly augmenting a given authentic morphology
to achieve both plausibility and diversity. Under such a setting, this paper proposes
MorphGrower which aims to generate more plausible morphology samples by
mimicking the natural growth mechanism instead of a one-shot treatment as done
in MorphVAE. In particular, MorphGrower generates morphologies layer by layer
synchronously and chooses a pair of sibling branches as the basic generation block,
and the generation of each layer is conditioned on the morphological structure
of previous layers and then generate morphologies via a conditional variational
autoencoder with spherical latent space. Extensive experimental results on four
real-world datasets demonstrate that MorphGrower outperforms MorphVAE by a
notable margin. Our code will be publicly available to facilitate future research.

1 INTRODUCTION AND RELATED WORKS

Neurons are the building blocks of the nervous system and constitute the computational units of the
brain (Yuste, 2015). The morphology of neurons plays a central role in brain functioning (Torben-
Nielsen & De Schutter, 2014) and has been a standing research area dating back to a century
ago (Cajal, 1911). The morphology determines which spatial domain can be reached for a certain
neuron, governing the connectivity of the neuronal circuits (Memelli et al., 2013).

A mammalian brain typically has billions of neurons (Kandel et al., 2000), and the computational
description and investigation of the brain functioning require a rich number of neuronal morpholo-
gies (Lin et al., 2018). However, it can be very expensive to collect quality neuronal morphologies
due to its complex collecting procedure with three key steps (Parekh & Ascoli, 2013): i) histological
preparation, ii) microscopic visualization, and iii) accurate tracing. Such a procedure is known to
be labor-intensive, time-consuming and potentially subject to human bias and error (Schmitz et al.,
2011; Choromanska et al., 2012; Yang et al., 2020).

Efforts have been made to generate plausible neuronal morphologies by computational approaches,
which are still immature. Traditional neuronal morphology generation methods which mainly aim for
generation from scratch, can be classified into two main categories: sampling based (Samsonovich
& Ascoli, 2005; da Fontoura Costa & Coelho, 2005; Farhoodi & Kording, 2018) and growth-rule
based (Shinbrot, 2006; Krottje & Ooyen, 2007; Stepanyants et al., 2008) methods. Sampling-based
methods do not consider the biological processes underlying neural growth (Zubler & Douglas, 2009).
They often generate from a simple morphology and iteratively make small changes via e.g. Markov-
Chain Monte-Carlo. They suffer from high computation overhead. As for the growth-rule-based
methods, they simulate the neuronal growth process according to some preset rules or priors (Kanari
et al., 2022) which can be sensitive to hyperparameters.

Beyond the above traditional methods, until very recently, learning-based methods start to shed light
on this field MorphVAE (Laturnus & Berens, 2021). Besides its technical distinction to the above
non-learning traditional methods, it also advocates a useful generation setting that motivates our work:
generating new morphologies which are similar to a given morphology while with some (random)
difference akin to the concept of data augmentation in machine learning. The rationale and value
of this ‘augmentation’ task are that many morphologies could be similar to each other due to their
same gene expression (Sorensen et al., 2015; Paulsen et al., 2022; Janssen & Budd, 2022), located in
the same brain region etc (Oh et al., 2014; Economo et al., 2018; Winnubst et al., 2019). Moreover,

1

Under review as a conference paper at ICLR 2024

generation-based on a given reference could be easier and has the potential of requiring less human
interference, and the augmentation step could be combined with and enhance the ‘from scratch
generation’ as a post-processing step where the reference is generated by the traditional methods1.

Specifically, MorphVAE proposes to generate morphologies from given samples and use those
generated data to augment the existing neuronal morphology database. It defines the path from
soma to a tip (see detailed definitions of soma and tip in Sec. 2) as a 3D-walk and uses a sequence-
to-sequence variational autoencoder to generate those 3D-walks. MorphVAE adopts a post-hoc
clustering method on the generated 3D-walks to aggregate some nodes of different 3D-walks. This
way, MorphVAE can construct nodes with two or more outgoing edges and obtain a final generated
morphology. Meanwhile, MorphVAE has limitations. It chooses the 3D-walk as a basic generation
block. Yet 3D-walks usually span a wide range in 3D space, which means each 3D-walk is composed
of many nodes in most cases. Such a long sequence of node 3D coordinates is difficult to generate via
a seq2seq VAE. In fact, little domain-specific prior knowledge is incorporated into the model design,
e.g., the impacts on subsequent branches exerted by previous branches. Moreover, after the post-hoc
clustering, there may exist other nodes that have more than two outgoing edges in the final generated
morphology apart from the soma. This violates the fundamental rule that soma is the only node
allowed to have more than two outgoing branches (Bray, 1973; Wessells & Nuttall, 1978; Szebenyi
et al., 1998). That is to say that morphologies generated by MorphVAE may be invalid in terms of
topology (see an example in Appendix C.1).

In contrast to the one-shot generation scheme of MorphVAE, we resort to a progressive way to
generate the neuronal morphologies for three reasons: 1) the growth of a real neuronal morphology
itself needs one or more weeks from an initial soma (Budday et al., 2015; Sorrells et al., 2018; Sarnat,
2023). There may exist dependency over time or even causality (Pelt & Uylings, 2003). Hence
mimicking such dynamics could be of benefit; 2) the domain knowledge is also often associated with
the growth pattern and can be more easily infused in a progressive generation model (Harrison, 1910;
Scott & Luo, 2001; Tamariz & Varela-Echavarría, 2015; Shi et al., 2022); 3) generating the whole
morphology is complex while it can be much easier to generate a local part e.g. a layer in each step.

Accordingly, we propose a novel method entitled MorphGrower, which generates high-quality
neuronal morphologies at a finer granularity than MorphVAE to augment the available morphology
database. Specifically, we adopt a layer-by-layer generation strategy (which in this paper is simplified
as layer-wise synchronized though in reality the exact dynamics can be a bit asynchronous) and
choose to generate branches in pairs at each layer. In this way, our method can strictly adhere to the
rule that only soma can have more than two outgoing branches throughout the generation process, thus
ensuring the topological validity of generated morphologies. Moreover, based on the key observation
that previous branches have an influence on subsequent branches, which has been shown in extensive
works (Burke et al., 1992; Van Pelt et al., 1997; Cuntz et al., 2007; Purohit & Smith, 2016), we
frame each generation step to be conditioned on the intermediate generated morphology during the
inference. The highlights of the paper (with code publicly available) are:

1) To handle the complexity of morphology (given the authentic morphology as reference), mimicking
its biologically growing nature, we devise a layer-by-layer conditional morphology generation scheme
called MorphGrower. To our best knowledge, this is the first morphological plausibility-aware deep
model for morphology generation, particularly in contrast to the peer MorphVAE which generates
the whole morphology in one shot and lacks an explicit mechanism to respect the topology validity.

2) Quantitative and qualitative results on real-world datasets show that MorphGrower can generate
more diverse and plausible morphologies than MorphVAE. As a side product, it can also generate
snapshots of morphologies in different growing stages. We believe the computational recovery of
dynamic growth procedure would be an interesting future direction which is currently rarely studied.

2 PRELIMINARIES

A neuronal morphology can be represented as a directed tree (a special graph) T = (V,E). V =

{vi}Nv
i=1 denotes the set of nodes, where vi ∈ R3 are the 3D coordinates of nodes and Nv represents

the number of nodes. E denotes the set of directed edges in T . An element ei,j ∈ E represents a

1As from-scratch generation quality is still far from reality without experts’ careful finetuning (Kanari et al.,
2022), so it is non-trivial for first scratch generation then post augmentation which we leave for future work.

2

Under review as a conference paper at ICLR 2024

Training Inference

Encoder

D
ecoder

Morphology	𝑇 soma	branch	𝑇1 (")

Layer	1		𝐿!

Model Model

Layer	2		𝐿"

𝑇"Reference	𝑇

Layer	0	Layer	1	Layer	2	

𝑇1 ($) 𝑇1 (%)

Mean

𝑏$ 𝑏%

𝑏1$ 𝑏1%

ℎ&'()&

ℎ*&'+)&

𝑟+! , 𝑟+"

𝜇 𝑧

𝑧, ∼ vMF 𝜇, 𝜅
𝐿*! 𝐿*"

Figure 2: Overview of MorphGrower. It takes the branch pair and its previous layers as inputs. The
branch pairs as well as the previous layers as conditions determine the mean direction µ of latent
space which follows a von-Mises Fisher distribution with fixed variance κ. Latent variables are then
sampled from the distribution zi ∼ vMF(µ, κ). Finally, the decoder reconstructs the branch pairs
from the latent variable z and the given condition. In inference, the model is called regressively,
taking the generated subtree T̂ (i) and the (i+ 1)-th layer Li+1 of the reference morphology as input
and outputting a new layer L̂i+1 of the final generated morphology.

directed edge, which starts from vi and ends with vj . The definitions of key terms used in this paper
or within the scope of neuronal morphology are presented as follows:
Definition 1 (Soma & Tip & Bifurcation). Given a neuronal morphology T , soma is the root node
of T and tips are those leaf nodes. Soma is the only node that is allowed to have more than two
outgoing edges, while tips have no outgoing edge. There is another special kind of nodes called
bifurcations. Each bifurcation has two outgoing edges. Soma and bifurcation are two disjoint classes
and are collectively referred to as multifurcation.
Definition 2 (Compartment & Branch). Given a neuronal morphology T = (V,E), each element
ei,j ∈ E is also named as compartment. A branch is defined as a directed path, e.g. in the form of
ei,j → ej,k → . . . ep,q → eq,s, which means that this branch starts from vi and ends at vs. We can
abbreviate such a branch as bis. The beginning node vi must be a multifurcation (soma or bifurcation)
and the ending node must be a multifurcation or a tip. Note that there is no other bifurcation on
a branch apart from its two ends. Especially, those branches starting from soma are called soma
branches and constitute the soma branch layer. Besides, we define a pair of branches starting from
the same bifurcation as sibling branches.

branch

compartment

soma branch 0-
th

la

ye
r

1-
th

la

ye
r

Node View Branch View

Figure 1: Neuronal morphology in node and
branch views. Blue node represents soma and
pink nodes represent bifurcations.

To facilitate understanding of the above definitions,
we provide a node-view topological demonstration
of neuronal morphology in the left part of Figure 1.
Based on the concept of the branch, as shown in
the right part of Figure 1, a neuronal morphology
T now can be decomposed into a set of branches
and re-represented by a set of branches which are
arranged in a Breadth First Search (BFS) like manner,
i.e. T = {{b01, b02, . . . , b0N0}, {b11, b12, . . . , b1N1}, . . .}.
bki denotes the i-th branch at the k-th layer and Nk is
the number of branches at the k-th layer. We specify
the soma branch layer as the 0-th layer.

3 METHODOLOGY

In this section, we propose MorphGrower to generate diverse high-quality realistic-looking neuronal
morphologies. We highlight our model in Figure 2.

3.1 GENERATION PROCEDURE FORMULATION

Layer-by-layer Generation Strategy. The number of nodes and branches varies among neuronal
morphologies and there exists complex dependency among nodes and edges, making generating T
all at once directly challenging. As previously noted, we can represent a morphology via a set of
branches and these branches can be divided into different groups according to their corresponding
layer number. This implies a feasible solution that we could resort to generating a morphology layer
by layer. This layer-by-layer generation strategy is consistent with the natural growth pattern of

3

Under review as a conference paper at ICLR 2024

neurons. In practice, dendrites or axons grow from soma progressively and may diverge several times
in the growing process (Harrison, 1910; Scott & Luo, 2001; Tamariz & Varela-Echavarría, 2015; Shi
et al., 2022). In contrast, MorphVAE (Laturnus & Berens, 2021) defines the path from soma to tip as
a 3D-walk and generates 3D-walks one by one. This strategy fails to consider bifurcations along the
3D-walks. Thus it violates this natural pattern.

Following such a layer-by-layer strategy, a new morphology can be obtained by generating new layers
and merging them to intermediate generated morphology regressively. In the following, we further
discuss the details of how to generate a certain layer next.

Generate Branches in Pairs. Since the leaf nodes of an intermediate morphology are either
bifurcations or tips, branches grow in pairs at each layer except the soma branch layer, implying that
N i is even for i ≥ 1. As pointed out in previous works (Uylings & Smit, 1975; Kim et al., 2012; Bird
& Cuntz, 2016; Otopalik et al., 2017), there exists a complex dependency between sibling branches. If
we separate sibling branches from each other and generate each of them individually, this dependency
will be hard to model. A natural idea is that one can regard sibling branches as a whole and generate
sibling branches in pairs each time, to implicitly model their internal dependency. Following Laturnus
& Berens (2021), we adopt a seq2seq variational autoencoder (VAE) for generation. Different from
the work by Laturnus & Berens (2021), which uses a VAE to generate 3D-walks with greater lengths
in 3D space than branches, increasing the difficulty of generation, our branch-pair-based method can
generate high-quality neuronal morphologies more easily.

Conditional Generation. In addition, a body of literature on neuronal morphology (Burke et al.,
1992; Van Pelt et al., 1997; Cuntz et al., 2007; Purohit & Smith, 2016) has consistently shown such an
observation in neuronal growth: grown branches could influence their subsequent branches. Hence,
taking the structural information of the first i layers into consideration when generating branches at
i-th layer is more reasonable and benefits the generation.

To incorporate the structural information of the previous layers into the generation of their subsequent
layers, in this paper, we propose to encode the intermediate morphology which has been generated
into an embedding and restrict the generation of branch pairs in the following layer to be conditioned
on this embedding we obtain. Considering the conditional generation setting, we turn to use a seq2seq
conditional variational autoencoder (CVAE) (Sohn et al., 2015) instead. We next present how we
encode the structural information of the previous layers in detail.

We split the conditions extracted from the structural information of previous layers into two parts
and name them local and global conditions respectively. Assuming that we are generating the pair
highlighted in Fig. 2, we define the path from soma to the bifurcation from which the pair to be
generated starts as the local condition and its previous layers structure as the global condition. We
provide justifications for the significance of both local and global conditions from a neuron science
perspective as follows and the details of encoding conditions are presented in Sec. 3.2.

Justifications for the Conditions. Local: Previous studies (Samsonovich & Ascoli, 2003; López-
Cruz et al., 2011) show that the dendrites or axons usually extend away from the soma without
making any sharp change of direction, thus reflecting that the orientation of a pair of sibling branches
is mainly determined by the overall orientation of the path from the soma to the start point of the
siblings. Global: Dendrites/axons establish territory coverage by following the organizing principle of
self-avoidance (Sweeney et al., 2002; Sdrulla & Linden, 2006; Matthews et al., 2007). Self-avoidance
refers to dendrites/axons that should avoid crossing, thus spreading evenly over a territory (Kramer &
Kuwada, 1983). Since the global condition can be regarded as a set of the local conditions and each
local condition can roughly decide the orientation of a corresponding pair of branches, the global
condition helps us better organize the branches in the same layer and achieve an even spread.

The Distinction of the Soma Branch Layer. Under the aforementioned methodology formulation,
we can observe that the soma branch layer differs from other layers in two folds. Firstly, 2 may not
be a divisor of the branch number of the soma branch layer (i.e. N0 mod 2 = 0 may not hold).
Secondly, the soma branch layer cannot be unified to the conditional generation formulation due to
that there is no proper definition of conditions for it. Its distinction requires specific treatment.

In some other generation task settings (Liu et al., 2018; Liao et al., 2019), a little prior knowledge about
the reference is introduced to the model as hints to enhance the realism of generations. Therefore, a
straightforward solution is to adopt a similar approach: we can explicitly present the soma branches

4

Under review as a conference paper at ICLR 2024

as conditional input to the model, which are fairly small in number compared to all the branches2.
Another slightly more complex approach is to generate the soma branch layer using another VAE
without any conditions. In the experimental section, we demonstrated the results of both having the
soma branch layer directly provided and not provided.

We have given a description of our generation procedure and will present the instantiations next.

3.2 MODEL INSTANTIATION

We use CVAE to model the distribution over branch pairs conditioned on the structure of their
previous layers. The encoder encodes the branch pair as well as the condition to obtain a latent
variable z ∈ Rd , where d ∈ N+ denotes the embedding size. The decoder generates the branch
pairs from the latent variable z under the encoded conditions. Our goal is to obtain an encoder
fθ(z|b1, b2, C) for a branch pair (b1, b2) and condition C , and a decoder gϕ(b1, b2|z, C) such that
gϕ(fθ(b1, b2, C), C) ≈ b1, b2. The encoder and decoder are parameterized by θ and ϕ respectively.

Encode Single Branch. A branch bi can also be represented by a sequence of 3D coordinates,
denoted as bi = {vi1 , vi2 , . . . , viL(i)

}, where L(i) denotes the number of nodes included in bi and
every pair of adjacent coordinates (vik , vik+1

) is connected via an edge eik,ik+1
. Notice that the

length and the number of compartments constructing a branch vary from branch to branch, so as the
start point vi1 , making it difficult to encode the morphology information of a branch thereby. Thus
we first translate the branch to make it start from the point (0, 0, 0) in 3D space and then perform a
resampling algorithm before encoding, which rebuilds the branches with L new node coordinates and
all compartments on a branch share the same length after the resampling operation. We present the
details of the resampling algorithm in Appendix A. The branch bi after resampling can be written as
b′i = {v′i1 , v′i2 , . . . , v′iL}. In the following text, all branches have been obtained after the resampling
process. In principle, they should be denoted with an apostrophe. However, to maintain a more
concise notation in the subsequent text, we will omit the use of the apostrophe.

Following MorphVAE (Laturnus & Berens, 2021), we use Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) to encode the branch morphological information since
a branch can be represented by a sequence of 3D coordinates. Each input coordinate will first be
embedded into a high-dimension space via a linear layer, i.e. xi = Win · v′i and Win ∈ Rd×3. The
obtained sequence of xi is then fed into an LSTM. The internal hidden state hi and the cell state ci
of the LSTM network for i ≥ 1 are updated by:

hi, ci = LSTM(xi,hi−1, ci−1). (1)

The initial two states h0 and c0 are both set to zero vectors. Finally, for a input branch b, we can
obtain the corresponding representation rb by concatenating hL and cL, i.e.,

rb = CONCAT[hL, cL]. (2)

Encode Global Condition. The global condition for a branch pair to be generated is obtained from
the whole morphological structure of its previous layers. Note that the previous layers – exactly
a subtree of the whole morphology, form an extremely sparse graph. Most nodes on the tree have
no more than 3k k-hop3 neighbors, thereby limiting the receptive field of nodes. Furthermore, as
morphology is a hierarchical tree-like structure, vanilla Graph Neural Networks (Kipf & Welling,
2017) have difficulty in modeling such sparse hierarchical trees and encoding the global condition.

To tackle the challenging problem, instead of treating each coordinate as a node, we regard a branch as
a node. Then the re-defined nodes will be connected by a directed edge ebi,bj starting from bi if bj is
the succession of bi. We can find the original subtree now is transformed into a forest F = (V F , EF)
composed of N0 trees, where N0 is the number of soma branches. V F and EF denote the set of
nodes and edges in F respectively. The root of each included tree corresponds to a soma branch and
each tree is denser than the tree made up of coordinate nodes before. Meanwhile, the feature of each
re-defined node, extracted from a branch rather than a single coordinate, is far more informative than
those of the original nodes, making the message passing among nodes more efficient.

Inspired by Tree structure-aware Graph Neural Network (T-GNN) (Qiao et al., 2020), we use a GNN
combined with the Gated Recurrent Unit (GRU) (Chung et al., 2014) to integrate the hierarchical and

2For example, soma branches only account for approximately two percent of the total number in RGC dataset.
3Here, "k-hop neighbors of a node v" refers to all neighbors within a distance of k from node v.

5

Under review as a conference paper at ICLR 2024

sequential neighborhood information on the tree structure to node representations. Similar to T-GNN,
We also perform a bottom-up message passing within the tree until we update the feature of the root
node. For a branch bi located at depth k in the tree4, its corresponding node feature h

(k)
bi

is given by:

h
(k)
bi

=

{
GRU(rbi ,

∑
bj∈N+(bi)

Wh
(k+1)
bj

), N+(bi) ̸= ∅
rbi , N+(bi) = ∅

, (3)

where W is a linear transformation, GRU is shared between different layers, and N+(bi) is the
neighbors of bi who lies in deeper layer than bi, which are exactly two subsequent branches of bi. rbi
is obtained by encoding the branch using the aforementioned LSTM. The global feature is obtained
by aggregating the features of root nodes be all trees in the forest F :

hglobal = READOUT
{
h
(0)
bi

|bi ∈ RF
}
, (4)

where RF denotes the roots of trees in F as and mean-pooling is used as the READOUT function.

Encode Local Condition. For a branch at the l-th layer, we denote the sequence of its ancestor
branches as A = {a0, a1, . . . , al−1} sorted by depth in ascending order where a0 is a soma branch.
As mentioned in Sec. 3.1, the growth of a branch is influenced by its ancestor branches. The closer
ancestor branches might exert more influence on it. Thus we use Exponential Moving Average
(EMA) (Lawrance & Lewis, 1977) to calculate the local feature. Denoting the feature aggregated
from the first k elements of A as DA

k and DA
0 = ra0

. For k ≥ 1,

DA
k = αrak

+ (1− α)DA
k−1, 0 ≤ α ≤ 1, (5)

where α is a hyper-parameter. The local condition hlocal for a branch at the l-th layer is DA
l−1, i.e.,

hlocal = DA
l−1. (6)

The global condition ensures consistency within the layer, while the local condition varies among
different pairs, only depending on their respective ancestor branches. Therefore, the generation order
of branch pairs within the same layer does not have any impact, enabling synchronous generation.

Design of Encoder and Decoder. The encoder models a von-Mises Fisher (vMF) distribution (Xu
& Durrett, 2018) with fixed variance κ and mean µ obtained by aggregating branch information
and conditions. The encoder takes a branch pair (b1, b2) and the corresponding global condition
F , local condition A as input. All these input are encoded into features rb1 rb2 , hglobal and
hlocal respectively by the aforementioned procedure. The branches after resampling are denoted as
b′1 = {v(1)1 , v

(1)
2 , . . . , v

(1)
L } and b′2 = {v(2)1 , v

(2)
2 , . . . , v

(2)
L }. Then all the features are concatenated

and fed to a linear layer Wlat to obtain the mean µ = Wlat ·CONCAT[rb1 , rb2 ,hglobal,hlocal]. We
take the average of five samples from zi ∼ vMF(µ, κ) via rejection sampling as the latent variable z.

As for the decoder gϕ(b1, b2|z, C = (A,F)), we use another LSTM to generate two branches node
by node from the latent variable z and condition representations, i.e. hglobal and hlocal. First, we
concatenate latent variable z as well as the condition features hglobal and hlocal together and feed
it to two different linear layers Wsta1,Wsta2 to determine the initial internal state for decoding
branch b̂1 and b̂2. After that, a linear projection W′

in ∈ R3×d is used to project the first coordinates
v
(1)
1 and v

(2)
1 of each branch into a high-dimension space y

(1)
1 = W′

in · v(1)1 ,y
(2)
1 = W′

in · v(2)1 .
Then the LSTM predicts y(t)

i+1 from y
(t)
i and its internal states repeatedly, where t ∈ {1, 2}. Finally,

another linear transformation Wout ∈ R3×d is used to transform each y
(t)
i into coordinate v̂

(t)
i =

Wout · y(t)
i , t ∈ {1, 2} and we can get the generated branch pair b̂1 = {v̂(1)1 , v̂

(1)
2 , . . . , v̂

(1)
L } and

b̂2 = {v̂(2)1 , v̂
(2)
2 , . . . , v̂

(2)
L }. In summary:

µ = Wlat · CONCAT[rb1 , rb2 ,hglobal,hlocal], zi ∼ vMF(µ, κ), z =
1

5

5∑
i=1

zi,

h
′(1)
0 , c

′(1)
0 = Wsta1 · CONCAT[z,hglobal,hlocal] h

′(2)
0 , c

′(2)
0 = Wsta2 · CONCAT[z,hglobal,hlocal],

y
(t)
1 = W′

in · v(t)1 , t ∈ {1, 2}, h
′(t)
i+1, c

′(t)
i+1 = LSTM(yi,h

′(t)
i , c

′(t)
i), t ∈ {1, 2},

v̂
(t)
i = Wout · y(t)

i , t ∈ {1, 2}, b̂t = {v̂(t)1 , v̂
(t)
2 , . . . , v̂

(t)
L }, t ∈ {1, 2}.

(7)

4Here, "tree" refers to the trees in F and not to the tree structure of the morphology.

6

Under review as a conference paper at ICLR 2024

Table 1: Performance on the four datasets by the six quantitative metrics. We leave MorphVAE’s
numbers on MBPL and MAPS blank because it may generate nodes with more than two subsequent
branches that conflict with the definition of MBPL and MAPS for bifurcations. MorphGrower
denotes the version where soma branches are directly provided. Meanwhile, MorphGrower†
generates soma branches using another unconditional VAE. Reference corresponds to the statistical
indicators derived from the realistic samples. A closer alignment with Reference indicates better
performance. The best and the runner-up results are highlighted in bold and underline respectively.

Dataset Method MBPL / µm MMED / µm MMPD / µm MCTT / % MASB / ◦ MAPS / ◦

V
PM

Reference 51.33 ± 0.59 162.99 ± 2.25 189.46 ± 3.81 0.936 ± 0.001 65.35 ± 0.55 36.04 ± 0.38
MorphVAE 41.87 ± 0.66 126.73 ± 2.54 132.50 ± 2.61 0.987 ± 0.001
MorphGrower 48.29 ± 0.34 161.65 ± 1.68 180.53 ± 2.70 0.920 ± 0.004 72.71 ± 1.50 43.80 ± 0.98
MorphGrower† 46.86 ± 0.57 159.62 ± 3.19 179.44 ± 5.23 0.929 ± 0.006 59.15 ± 3.25 46.59 ± 3.24

R
G

C

Reference 26.52 ± 0.75 308.85 ± 8.12 404.73 ± 12.05 0.937 ± 0.003 84.08 ± 0.28 50.60 ± 0.13
MorphVAE 43.23 ± 1.06 248.62 ± 9.05 269.92 ± 10.25 0.984 ± 0.004
MorphGrower 25.15 ± 0.71 306.83 ± 7.76 384.34 ± 11.85 0.945 ± 0.003 82.68 ± 0.53 51.33 ± 0.31
MorphGrower† 23.32 ± 0.52 287.09 ± 5.88 358.31 ± 8.54 0.926 ± 0.004 76.27 ± 0.86 49.67 ± 0.41

M
1-

E
X

C Reference 62.74 ± 1.73 414.39 ± 6.16 497.43 ± 12.42 0.891 ± 0.004 76.34 ± 0.63 46.74 ± 0.85
MorphVAE 52.13 ± 1.30 195.49 ± 9.91 220.72 ± 12.96 0.955 ± 0.005
MorphGrower 58.16 ± 1.26 413.78 ± 14.73 473.25 ± 19.37 0.922 ± 0.002 73.12 ± 2.17 48.16 ± 1.00
MorphGrower† 54.63 ± 1.07 398.85 ± 18.84 463.24 ± 22.61 0.908 ± 0.003 63.54 ± 2.02 48.77 ± 0.87

M
1-

IN
H Reference 45.03 ± 1.04 396.73 ± 15.89 705.28 ± 34.02 0.877 ± 0.002 84.40 ± 0.68 55.23 ± 0.78

MorphVAE 50.79 ± 1.77 244.49 ± 15.62 306.99 ± 23.19 0.965 ± 0.002
MorphGrower 41.50 ± 1.02 389.06 ± 13.54 659.38 ± 30.05 0.898 ± 0.002 82.43 ± 1.41 61.44 ± 4.23
MorphGrower† 37.72 ± 0.96 349.66 ± 11.40 617.89 ± 27.87 0.876 ± 0.002 78.66 ± 1.12 57.87 ± 0.96

We jointly optimize the parameters (θ, ϕ) of the encoder and decoder by maximizing the Evidence
Lower BOund (ELBO), which is composed of a KL term and a reconstruction term:

L(B = (b1, b2), C = (A,F); θ, ϕ) = Efθ(z|B,C)[log gϕ(B|z, C)]−KL(fθ(z|B,C)∥gϕ(z|C))], (8)

where we abbreviate (b1, b2) as B. We use a uniform vMF distribution gϕ(z|C) = vMF(·, 0) as the
prior. According to the property of vMF distribution, the KL term will become a constant depending
on only the choice of κ. Then the loss function in Eq. 8 is reduced to the reconstruction term and can
be rewritten as follows, estimated by the sum of mean-squared error between (b1, b2) and (b̂1, b̂2),

L(B,C; θ, ϕ) = Efθ(z|B,C)[log gϕ(B|z, C)]. (9)

3.3 SAMPLING NEW MORPHOLOGIES

Given a reference morphology T , a new morphology can be generated by calling our model regres-
sively. In the generation of the i-th layer, the reference branch pairs on the i-th layer on T and the
generated previous i− 1 layers will be taken as the model input. We use Li = {bi1, bi2, . . . , biNi} and
L̂i = {b̂i1, b̂i2, . . . , b̂iNi} to represent the set of reference branches and those branches we generate at
the i-th layer respectively. As mentioned in Sec. 3.1, we start the generation on the basis of the given
soma branch layer. In general, the generation process can be formulated as:

T̂ (0) = {L0}, T̂ (i) = T̂ (i−1) ∪ {L̂i},
L̂i = gϕ(fθ(Li, T̂

(i−1)), T̂ (i−1)),
(10)

where T̂ (i) is the intermediate morphology after generating the i-th layer and L̂i is the collection of
generated branches at the i-th layer of the new morphology.

4 EXPERIMENTS

We evaluate the overall morphological statistics to directly compare the distribution of generation
with the given reference in Sec. 4.2. Then we develop protocols to evaluate the generation plausibility
and diversity in Sec. 4.3 and Sec. 4.4, respectively. Sec. 4.5 illustrates the dynamic snapshots of
growing morphology which is a unique ability of our method compared to the peer work MorphVAE.
We place some additional results, such as the ablation study, in Appendix J due to the limited space.

4.1 EVALUATION PROTOCOLS

Datasets. We use four popular datasets all sampled from adult mice: 1) VPM is a set of ventral
posteromedial nucleus neuronal morphologies (Landisman & Connors, 2007; Peng et al., 2021); 2)
RGC is a morphology dataset of retinal ganglion cell dendrites (Reinhard et al., 2019); 3) M1-EXC;

7

Under review as a conference paper at ICLR 2024

20 40 60 80

BPL

100 200

MPD

50 100 150 200 250

MED

0.85 0.90 0.95 1.00

CTT

Reference MorphVAE Ours

Figure 3: Distributions of four morphological metrics: MPD, BPL, MED and CTT on VPM dataset.
and 4) M1-INH refer to the excitatory pyramidal cell dendrites and inhibitory cell axons in M1. We
split each dataset into training/validation/test sets by 8:1:1. See Appendix I for more dataset details.

Baseline. To our knowledge, there is no learning-based morphology generator except Mor-
phVAE (Laturnus & Berens, 2021) which pioneers in generating neuronal morphologies resembling
the given references. Grid search of learning rate over {1e− 2, 5e− 3, 1e− 3} and dropout rate over
{0.1, 0.3, 0.5} is performed to select the optimal hyper-parameters for MorphVAE. For fairness, both
MorphVAE and ours use a 64 embedding size. Refer to Appendix H for more configuration details.

4.2 QUANTITATIVE RESULTS ON MORPHOLOGICAL STATISTICS

Quantitative Metrics. Rather than the Inception Score (IS) (Salimans et al., 2016) and Fréchet
Inception Distance (FID) (Heusel et al., 2017) used in vision, there are tailored metrics as widely-used
in computational neuronal morphology generation software tools. These metrics (as defined in
L-measure (Scorcioni et al., 2008)) include: BPL, MED, MPD, CTT, ASB, APS which in fact are
computed for a single instance. We further compute their mean over the dataset as MBPL, MMED,
MMPD, MCTT, MASB and MAPS, and use these six metrics as our final metrics. The first four
metrics relate to branch length and shape and the other two measure the amplitudes between branches.
Detailed metric definitions are in Appendix B. Given the morphologies as references for generation
from the dataset, we run MorphGrower/MorphVAE to generate the corresponding fake morphology.

As shown in Table 1, we can observe that the performance of our approach does not achieve a
significant boost from re-using the soma branches as initial structures simply for convenience. Even
without providing soma branches, MorphGrower still outperforms MorphVAE across all the datasets,
except for the MBPL metric on the M1-INH dataset, suggesting the effectiveness of our progressive
generation approach compared to the one-shot one in MorphVAE, especially for the four metrics
related to branch length and shape. Due to the fact that MorphVAE uses 3D-walks as its basic
generation units at a coarser granularity and resamples them, it loses many details of individual
branches. In contrast, our MorphGrower uses branch pairs as its basic units at a finer granularity and
performs branch-level resampling. A 3D-walk often consists of many branches, and with the same
number of sampling points, our method can preserve more of the original morphology details. This is
why MorphGrower performs better in the first four metrics. In addition, regarding MASB and MAPS
that measure the amplitudes between branches and thus can reflect the orientations and layout of
branches, the generation by MorphGrower is close to the reference data. We believe that this is owed
to our incorporation of the neuronal growth principle, namely previous branches help in orientating
and better organizing the subsequent branches. To further illustrate the performance gain, we plot the
distributions of MPD, BPL, MED and CTT over the reference samples and generated morphologies
on VPM in Fig. 3 (see the other datasets in Appendix N.2).

4.3 GENERATION PLAUSIBILITY WITH REAL/FAKE CLASSIFIER

The above six human-defined metrics can reflect the generation quality to some extent, while we
seek a more data-driven way, especially considering the inherent complexity of the morphology data.
Inspired by the scheme of generative adversarial networks (GAN) (Goodfellow et al., 2014), we here
propose to train a binary classifier with the ratio 1 : 1 for using the real-world morphologies as positive
and generated ones as negative samples (one classifier for one generation method respectively). Then
this classifier serves a role similar to the discriminator in GAN to evaluate the generation plausibility.

Specifically, features are prepared as input to the classifier. Given a 3-D neuron, we project its
morphology onto the xy, xz and yz planes and obtain three corresponding projections. Inspired by
the works in vision on multi-view representation (Prakash et al., 2021; Shao et al., 2022), we feed these
three multi-view projections to three CNN blocks and obtain three corresponding representations.
Here each CNN block adopts ResNet18 (He et al., 2016) as the backbone. Then, we feed each
representation to a linear layer and obtain a final representation for each projection. Finally, the
representations are concatenated and fed to the classifier, which is implemented with a linear layer
followed by a sigmoid function. The whole pipeline is shown in Appendix H.3.

8

Under review as a conference paper at ICLR 2024

Table 2 reports the classification accuracy on the test set by the same data split as in Sec. 4.2. It is
much more difficult for the neuronal morphologies generated by MorphGrower to be differentiated
by the trained classifier, suggesting its plausibility. Moreover, we present the generated neuronal
morphologies to neuroscience domain experts and receive positive feedback for their realistic looking.

4.4 GENERATION DIVERSITY EVALUATION

In neuronal morphology literature, BlastNeuron Distance (BND) (Wan et al., 2015) is a widely
recognized metric for diversity, which measures the pairwise difference between two morphologies
(see details in Appendix B.3). Due to its massive computing overhead for the whole dataset, here we
use sub-sets of the datasets for evaluation. Specifically, we randomly select five neurons from the
test set of each dataset as the reference morphologies and denote them as T1, T2, ..., T5. For each
Ti, we apply MorphVAE and MorphGrower to generate 50 corresponding samples, respectively. We
randomly pick one from 50 generated samples and calculate its BND between other 49 samples.

(a) (b) (c)

Figure 4: An example from VPM dataset. (a),
(b) and (c) are the projections onto the xy plane.
(a): the reference; (b) and (c): samples generated
by MorphVAE and MorphGrower, respectively.

Table 3 reports the average BND over these five
randomly selected reference samples from the
VPM dataset. Results show morphologies gener-
ated by MorphGrower consistently achieve higher
average BNDs. In fact, the clustering operation in
MorphVAE merges different 3D walks all together,
which may reduce its diversity. Similar findings
are observed in other datasets in Appendix J.4.

Fig. 4 visualizes the 2-D projection of the afore-
mentioned 50 generated samples by MorphVAE
and MorphGrower given the reference T1. Specif-

ically, in Fig. 4(b) and 4(c), we randomly pick a generated one and color it black, while the shading
represents the other 49 samples. The samples generated by MorphGrower look more like the ref-
erence. Furthermore, we see that the width of shading in Fig. 4(c) is greater than that in Fig. 4(b),
indicating the higher diversity.

Table 2: Classification accuracy (%). Accuracy
approaching 50% indicates higher plausibility.

Method
Dataset VPM RGC M1-EXC M1-INH

MorphVAE 86.75 ± 06.87 94.60 ± 01.02 80.72 ± 10.58 91.76 ± 12.14
MorphGrower 54.73 ± 03.36 62.70 ± 05.24 55.00 ± 02.54 54.74 ± 01.63

Table 3: Average BlastNeuron Distance on VPM.

Method
Reference

T1 T2 T3 T4 T5

MorphVAE 3782.31 4616.16 1938.97 1713.91 6154.55
MorphGrower 4306.11 5635.86 6177.03 4905.25 11760.74

T̂(i−1) T̂(i) T̂(i+1)

Figure 5: Projections onto xy plane of three ad-
jacent intermediate morphologies of a generated
sample from RGC. For each T̂ (j), the pink rep-
resents newly generated layer L̂j while the blue
represents last intermediate morphology T̂ (j−1).

4.5 SNAPSHOTS OF THE GROWING MORPHOLOGIES

We present three adjacent snapshots of the intermediate generated morphologies of a randomly picked
sample from the RGC in Fig. 5. More examples are given in Appendix N.3. We believe such studies
are informative for the field, though have been rarely performed before.

5 CONCLUSION AND OUTLOOK

To achieve plausible and diverse neuronal morphology generation, we propose a biologically inspired
neuronal morphology growing approach based on the given morphology as a reference. During the
inference stage, the morphology is generated layer by layer in an auto-regressive manner whereby
the domain knowledge about the growing constraints can be effectively introduced. Quantitative and
qualitative results show the efficacy of our approach against the state-of-the-art baseline MorphVAE.

Our aspiration is that the fruits of our research will significantly augment the efficiency with which
morphological samples of neurons are procured. This enhancement may pave the way for the
generation of biologically realistic networks encompassing entire brain regions (Kanari et al., 2022),
fostering a deeper understanding of the complex mechanisms that underpin neural computation.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Juan Beauquis, Patricio Pavía, Carlos Pomilio, Angeles Vinuesa, Natalia Podlutskaya, Verónica
Galvan, and Flavia Saravia. Environmental enrichment prevents astroglial pathological changes in
the hippocampus of app transgenic mice, model of alzheimer’s disease. Experimental Neurology,
239:28–37, 2013.

Alex D Bird and Hermann Cuntz. Optimal current transfer in dendrites. PLoS computational biology,
12(5):e1004897, 2016.

D Bray. Branching patterns of individual sympathetic neurons in culture. The Journal of Cell Biology,
56(3):702–712, 1973.

Silvia Budday, Paul Steinmann, and Ellen Kuhl. Physical biology of human brain development.
Frontiers in cellular neuroscience, 9:257, 2015.

RE Burke, WB Marks, and B Ulfhake. A parsimonious description of motoneuron dendritic mor-
phology using computer simulation. Journal of Neuroscience, 12(6):2403–2416, 1992.

Ramon S Cajal. Histologie du système nerveux de l’homme & des vertébrés: Cervelet, cerveau moyen,
rétine, couche optique, corps strié, écorce cérébrale générale & régionale, grand sympathique,
volume 2. A. Maloine, 1911.

Anna Choromanska, Shih-Fu Chang, and Rafael Yuste. Automatic reconstruction of neural mor-
phologies with multi-scale tracking. Frontiers in neural circuits, 6:25, 2012.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Eduardo Conde-Sousa, Peter Szücs, Hanchuan Peng, and Paulo Aguiar. N3dfix: an algorithm for
automatic removal of swelling artifacts in neuronal reconstructions. Neuroinformatics, 15:5–12,
2017.

Hermann Cuntz, Alexander Borst, and Idan Segev. Optimization principles of dendritic structure.
Theoretical Biology and Medical Modelling, 4(1):1–8, 2007.

Hermann Cuntz, Friedrich Forstner, Alexander Borst, and Michael Häusser. The trees tool-
box—probing the basis of axonal and dendritic branching, 2011.

Luciano da Fontoura Costa and Regina Célia Coelho. Growth-driven percolations: the dynamics
of connectivity in neuronal systems. The European Physical Journal B-Condensed Matter and
Complex Systems, 47(4):571–581, 2005.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspherical
variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI
2018, pp. 856–865. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.

Michael N Economo, Sarada Viswanathan, Bosiljka Tasic, Erhan Bas, Johan Winnubst, Vilas Menon,
Lucas T Graybuck, Thuc Nghi Nguyen, Kimberly A Smith, Zizhen Yao, et al. Distinct descending
motor cortex pathways and their roles in movement. Nature, 563(7729):79–84, 2018.

Roozbeh Farhoodi and Konrad Paul Kording. Sampling neuron morphologies. BioRxiv, pp. 248385,
2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, , and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems (NeurIPS), pp. 2672–2680, 2014.

Ross Granville Harrison. The outgrowth of the nerve fiber as a mode of protoplasmic movement.
Journal of Experimental Zoology, 9(4):787–846, 1910.

Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000. URL https:
//cds.cern.ch/record/478079.

10

https://cds.cern.ch/record/478079
https://cds.cern.ch/record/478079

Under review as a conference paper at ICLR 2024

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pp. 770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems (NeurIPS), 30, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Ralf Janssen and Graham E Budd. Expression of netrin and its receptors uncoordinated-5 and
frazzled in arthropods and onychophorans suggests conserved and diverged functions in neuronal
pathfinding and synaptogenesis. Developmental Dynamics, 2022.

Gregory SXE Jefferis, Christopher J Potter, Alexander M Chan, Elizabeth C Marin, Torsten Rohlfing,
Calvin R Maurer, and Liqun Luo. Comprehensive maps of drosophila higher olfactory centers:
spatially segregated fruit and pheromone representation. Cell, 128(6):1187–1203, 2007.

Lida Kanari, Hugo Dictus, Athanassia Chalimourda, Alexis Arnaudon, Werner Van Geit, Benoit
Coste, Julian Shillcock, Kathryn Hess, and Henry Markram. Computational synthesis of cortical
dendritic morphologies. Cell Reports, 39(1):110586, 2022.

Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth, Sarah
Mack, et al. Principles of neural science, volume 4. McGraw-hill New York, 2000.

Yihwa Kim, Robert Sinclair, Nol Chindapol, Jaap A Kaandorp, and Erik De Schutter. Geometric
theory predicts bifurcations in minimal wiring cost trees in biology are flat. PLoS computational
biology, 8(4):e1002474, 2012.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

AP Kramer and JY Kuwada. Formation of the receptive fields of leech mechanosensory neurons
during embryonic development. Journal of Neuroscience, 3(12):2474–2486, 1983.

Johannes K Krottje and Arjen van Ooyen. A mathematical framework for modeling axon guidance.
Bulletin of Mathematical Biology, 69(1):3–31, 2007.

Carole E Landisman and Barry W Connors. Vpm and pom nuclei of the rat somatosensory thalamus:
intrinsic neuronal properties and corticothalamic feedback. Cerebral cortex, 17(12):2853–2865,
2007.

Sophie Laturnus, Dmitry Kobak, and Philipp Berens. A systematic evaluation of interneuron
morphology representations for cell type discrimination. Neuroinformatics, 18:591–609, 2020a.

Sophie Laturnus, Adam von Daranyi, Ziwei Huang, and Philipp Berens. Morphopy: A python
package for feature extraction of neural morphologies. Journal of Open Source Software, 5(52):
2339, 2020b.

Sophie C Laturnus and Philipp Berens. Morphvae: Generating neural morphologies from 3d-walks
using a variational autoencoder with spherical latent space. In International Conference on Machine
Learning (ICML), pp. 6021–6031. PMLR, 2021.

AJ Lawrance and PAW Lewis. An exponential moving-average sequence and point process (ema1).
Journal of Applied Probability, 14(1):98–113, 1977.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems (NeurIPS), 32, 2019.

Youngshin Lim, Il-Taeg Cho, Leah J Schoel, Ginam Cho, and Jeffrey A Golden. Hereditary spastic
paraplegia-linked reep1 modulates endoplasmic reticulum/mitochondria contacts. Annals of
neurology, 78(5):679–696, 2015.

11

Under review as a conference paper at ICLR 2024

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988,
2017.

Xianghong Lin, Zhiqiang Li, Huifang Ma, and Xiangwen Wang. An evolutionary developmental
approach for generation of 3d neuronal morphologies using gene regulatory networks. Neurocom-
puting, 273:346–356, 2018.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph variational
autoencoders for molecule design. Advances in neural information processing systems (NeurIPS),
31, 2018.

Pedro L López-Cruz, Concha Bielza, Pedro Larrañaga, Ruth Benavides-Piccione, and Javier DeFelipe.
Models and simulation of 3d neuronal dendritic trees using bayesian networks. Neuroinformatics,
9(4):347–369, 2011.

Pengfei Lu and Zena Werb. Patterning mechanisms of branched organs. Science, 322(5907):
1506–1509, 2008.

Benjamin J Matthews, Michelle E Kim, John J Flanagan, Daisuke Hattori, James C Clemens,
S Lawrence Zipursky, and Wesley B Grueber. Dendrite self-avoidance is controlled by dscam.
Cell, 129(3):593–604, 2007.

Heraldo Memelli, Benjamin Torben-Nielsen, and James Kozloski. Self-referential forces are sufficient
to explain different dendritic morphologies. Frontiers in Neuroinformatics, 7:1, 2013.

Seung Wook Oh, Julie A Harris, Lydia Ng, Brent Winslow, Nicholas Cain, Stefan Mihalas, Quanxin
Wang, Chris Lau, Leonard Kuan, Alex M Henry, et al. A mesoscale connectome of the mouse
brain. Nature, 508(7495):207–214, 2014.

Adriane G Otopalik, Marie L Goeritz, Alexander C Sutton, Ted Brookings, Cosmo Guerini, and
Eve Marder. Sloppy morphological tuning in identified neurons of the crustacean stomatogastric
ganglion. Elife, 6:e22352, 2017.

Adam M Packer, Daniel J McConnell, Elodie Fino, and Rafael Yuste. Axo-dendritic overlap and
laminar projection can explain interneuron connectivity to pyramidal cells. Cerebral cortex, 23
(12):2790–2802, 2013.

Ruchi Parekh and Giorgio A Ascoli. Neuronal morphology goes digital: a research hub for cellular
and system neuroscience. Neuron, 77(6):1017–1038, 2013.

Bruna Paulsen, Silvia Velasco, Amanda J Kedaigle, Martina Pigoni, Giorgia Quadrato, Anthony J
Deo, Xian Adiconis, Ana Uzquiano, Rafaela Sartore, Sung Min Yang, et al. Autism genes converge
on asynchronous development of shared neuron classes. Nature, 602(7896):268–273, 2022.

Jaap Van Pelt and Harry BM Uylings. Growth functions in dendritic outgrowth. Brain and Mind, 4:
51–65, 2003.

Hanchuan Peng, Peng Xie, Lijuan Liu, Xiuli Kuang, Yimin Wang, Lei Qu, Hui Gong, Shengdian
Jiang, Anan Li, Zongcai Ruan, et al. Morphological diversity of single neurons in molecularly
defined cell types. Nature, 598(7879):174–181, 2021.

Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for end-to-end
autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7077–7087, 2021.

Prashant K Purohit and Douglas H Smith. A model for stretch growth of neurons. Journal of
biomechanics, 49(16):3934–3942, 2016.

Ziyue Qiao, Pengyang Wang, Yanjie Fu, Yi Du, Pengfei Wang, and Yuanchun Zhou. Tree structure-
aware graph representation learning via integrated hierarchical aggregation and relational metric
learning. In 2020 IEEE International Conference on Data Mining (ICDM), pp. 432–441. IEEE,
2020.

12

Under review as a conference paper at ICLR 2024

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

Katja Reinhard, Chen Li, Quan Do, Emily G Burke, Steven Heynderickx, and Karl Farrow. A
projection specific logic to sampling visual inputs in mouse superior colliculus. Elife, 8:e50697,
2019.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems
(NeurIPS), 29, 2016.

Alexei V Samsonovich and Giorgio A Ascoli. Statistical morphological analysis of hippocampal
principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of
neuroscience research, 71(2):173–187, 2003.

Alexei V Samsonovich and Giorgio A Ascoli. Statistical determinants of dendritic morphology in
hippocampal pyramidal neurons: a hidden markov model. Hippocampus, 15(2):166–183, 2005.

Harvey B Sarnat. Axonal pathfinding during the development of the nervous system. Annals of the
Child Neurology Society, 2023.

Sabine K Schmitz, JJ Johannes Hjorth, Raoul MS Joemai, Rick Wijntjes, Susanne Eijgenraam, Petra
de Bruijn, Christina Georgiou, Arthur PH de Jong, Arjen van Ooyen, Matthijs Verhage, et al.
Automated analysis of neuronal morphology, synapse number and synaptic recruitment. Journal
of neuroscience methods, 195(2):185–193, 2011.

Ruggero Scorcioni, Sridevi Polavaram, and Giorgio A Ascoli. L-measure: a web-accessible tool for
the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature
protocols, 3(5):866–876, 2008.

Ethan K Scott and Liqun Luo. How do dendrites take their shape? Nature neuroscience, 4(4):
359–365, 2001.

Andrei D Sdrulla and David J Linden. Dynamic imaging of cerebellar purkinje cells reveals a
population of filopodia which cross-link dendrites during early postnatal development. The
Cerebellum, 5(2):105–115, 2006.

Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. Safety-enhanced autonomous
driving using interpretable sensor fusion transformer. arXiv preprint arXiv:2207.14024, 2022.

Zheng Shi, Sarah Innes-Gold, and Adam E Cohen. Membrane tension propagation couples axon
growth and collateral branching. Science Advances, 8(35):eabo1297, 2022.

Troy Shinbrot. Simulated morphogenesis of developmental folds due to proliferative pressure. Journal
of theoretical biology, 242(3):764–773, 2006.

DA1244622 Sholl. Dendritic organization in the neurons of the visual and motor cortices of the cat.
Journal of anatomy, 87(Pt 4):387, 1953.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems (NeurIPS), 28,
2015.

Staci A Sorensen, Amy Bernard, Vilas Menon, Joshua J Royall, Katie J Glattfelder, Tsega Desta,
Karla Hirokawa, Marty Mortrud, Jeremy A Miller, Hongkui Zeng, et al. Correlated gene expression
and target specificity demonstrate excitatory projection neuron diversity. Cerebral cortex, 25(2):
433–449, 2015.

13

Under review as a conference paper at ICLR 2024

Shawn F Sorrells, Mercedes F Paredes, Arantxa Cebrian-Silla, Kadellyn Sandoval, Dashi Qi, Kevin W
Kelley, David James, Simone Mayer, Julia Chang, Kurtis I Auguste, et al. Human hippocampal
neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555(7696):377–381,
2018.

Armen Stepanyants, Judith A Hirsch, Luis M Martinez, Zoltán F Kisvárday, Alex S Ferecskó, and
Dmitri B Chklovskii. Local potential connectivity in cat primary visual cortex. Cerebral Cortex,
18(1):13–28, 2008.

Uygar Sümbül, Sen Song, Kyle McCulloch, Michael Becker, Bin Lin, Joshua R Sanes, Richard H
Masland, and H Sebastian Seung. A genetic and computational approach to structurally classify
neuronal types. Nature communications, 5(1):3512, 2014.

Neal T Sweeney, Wenjun Li, and Fen-Biao Gao. Genetic manipulation of single neurons in vivo
reveals specific roles of flamingo in neuronal morphogenesis. Developmental biology, 247(1):
76–88, 2002.

Györgyi Szebenyi, John L Callaway, Erik W Dent, and Katherine Kalil. Interstitial branches develop
from active regions of the axon demarcated by the primary growth cone during pausing behaviors.
Journal of Neuroscience, 18(19):7930–7940, 1998.

Elisa Tamariz and Alfredo Varela-Echavarría. The discovery of the growth cone and its influence on
the study of axon guidance. Frontiers in neuroanatomy, 9:51, 2015.

Benjamin Torben-Nielsen and Erik De Schutter. Context-aware modeling of neuronal morphologies.
Frontiers in neuroanatomy, 8:92, 2014.

HBM Uylings and GJ Smit. Three-dimensional branching structure of pyramidal cell dendrites.
Brain Research, 87(1):55–60, 1975.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Jaap Van Pelt, Alexander E Dityatev, and Harry BM Uylings. Natural variability in the number of
dendritic segments: model-based inferences about branching during neurite outgrowth. Journal of
Comparative Neurology, 387(3):325–340, 1997.

Yinan Wan, Fuhui Long, Lei Qu, Hang Xiao, Michael Hawrylycz, Eugene W Myers, and Hanchuan
Peng. Blastneuron for automated comparison, retrieval and clustering of 3d neuron morphologies.
Neuroinformatics, 13(4):487–499, 2015.

Tomoko Watanabe and Frank Costantini. Real-time analysis of ureteric bud branching morphogenesis
in vitro. Developmental biology, 271(1):98–108, 2004.

Norman K Wessells and Robert P Nuttall. Normal branching, induced branching, and steering of
cultured parasympathetic motor neurons. Experimental cell research, 115(1):111–122, 1978.

Pete A Williams, Rebecca A Thirgood, Huw Oliphant, Aura Frizzati, Elinor Littlewood, Marcela
Votruba, Mark A Good, Julie Williams, and James E Morgan. Retinal ganglion cell dendritic
degeneration in a mouse model of alzheimer’s disease. Neurobiology of aging, 34(7):1799–1806,
2013.

Johan Winnubst, Erhan Bas, Tiago A Ferreira, Zhuhao Wu, Michael N Economo, Patrick Edson,
Ben J Arthur, Christopher Bruns, Konrad Rokicki, David Schauder, et al. Reconstruction of 1,000
projection neurons reveals new cell types and organization of long-range connectivity in the mouse
brain. Cell, 179(1):268–281, 2019.

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4503–4513, 2018.

Jian Yang, Yishan He, and Xuefeng Liu. Retrieving similar substructures on 3d neuron reconstructions.
Brain Informatics, 7(1):1–9, 2020.

14

Under review as a conference paper at ICLR 2024

Rafael Yuste. From the neuron doctrine to neural networks. Nature reviews neuroscience, 16(8):
487–497, 2015.

Frederic Zubler and Rodney Douglas. A framework for modeling the growth and development of
neurons and networks. Frontiers in computational neuroscience, pp. 25, 2009.

15

Under review as a conference paper at ICLR 2024

Appendix of MorphGrower

CONTENTS

A Data Preprocess 17

A.1 Resampling Algorithm . 17

A.2 Preprocessing of The Raw Neuronal Morphology Samples 17

B Definitions of Metrics 18

B.1 Metric Adopted in Section 4.2 . 18

B.2 Metric Adopted in Section 4.3 . 21

B.3 Metric Adopted in Section 4.4 . 21

C More Discussion on MorphVAE 21

C.1 Failure to Ensure Topological Validty of Generated Morphologies 22

C.2 Failure to Generate Morphologies with Relatively Longer 3D-walks 22

D Significant Distinctions from Graph Generation Task 22

E Supplementary Clarifications for Resampling Operation 24

F Motivation of the Choice of Architectures 25

F.1 Using LSTM as Our Branch Encoder . 25

F.2 Using vMF-VAE . 25

F.3 Treating A Branch as A node and Employing T-GNN-like Networks. 25

G Limitations and Future Work 25

G.1 Limitations . 25

G.2 Future Directions . 25

G.2.1 Inclusion of the Branch Diameter . 25

G.2.2 Inclusion of the Spines or Boutons . 26

G.2.3 Use of Dense Imaging Data . 26

G.3 Other Potential Applications . 26

H Implementation Details 27

H.1 MorphVAE . 27

H.2 Our Method . 27

H.3 Supplementary Descriptions for Section 4.3 . 28

H.4 Supplementary Descriptions for Section 4.4 . 28

I More Dataset Information 28

16

Under review as a conference paper at ICLR 2024

J More Experiment Results 29

J.1 Ablation Study . 29

J.2 Quantitative Results on Morphological Statistics Excluding Soma Branches 30

J.3 Plausibility Evaluation for the Samples Generated without Soma Branches Given . 31

J.4 More Generation Diversity Evaluation . 31

J.5 Sensitivity to the embedding size . 31

J.6 Evaluation in terms of FID and KID . 33

K Notations 33

L The Distinct Scope of MorphGrower vs. MorphVAE 33

M Potential Negative Impacts 34

N Visualization 34

N.1 Visualization of the Learned Global Condition Using t-SNE 35

N.2 Visualization of the Distribution of Four Metrics 35

N.3 Illustration of the Layer-by-layer Generation . 35

N.4 Sholl Analysis . 35

N.5 More Visualization Results of Generated Morphologies 36

A DATA PREPROCESS

A.1 RESAMPLING ALGORITHM

The resampling algorithm is performed on a single branch and aims to solve the uneven sample
node density over branches issue. x ∈ (a, b) means that a coordinate x is on the segment with
endpoints a and b where a and b are also coordinates and we define the euclidean distance between
a and b as dist(a, b). Then for a branch b = {v1, v2, . . . , vl}, after resampling b, we can obtain
b′ = {v′1, v′2, . . . , v′l′}, where vi and v′i are 3D coordinates and v′i satisfies the following constraints:

Len =

∑l−1
i=1 dist(vi, vi+1)

l′ − 1
.

∀ j ∈ {1, 2, . . . , l′},∃ i ∈ {1, 2, . . . , l − 1}, v′j ∈ (vi, vi+1).

∀ v′j ∈ (va, va+1) and v′j+1 ∈ (vb, vb+1), if a ̸= b, dist(v′j , va+1) +
b−1∑

i=a+1

dist(vi, vi+1) + dist(vb, v
′
j+1) = Len.

∀ v′j ∈ (va, va+1) and v′j+1 ∈ (vb, vb+1), if a = b, dist(v′j , v
′
j+1) = Len.

(11)

A.2 PREPROCESSING OF THE RAW NEURONAL MORPHOLOGY SAMPLES

Reason for preprocessing. Neuronal morphology is manually reconstructed from mesoscopic
resolution 3D image stack, usually imaging from optical sectioning tomography imaging techniques
to obtain images, and mechanical slicing yields a lower resolution in the z-axis than the resolution
in xy-axis obtained from imaging. Limited by the resolution, the reconstruction algorithm can only
connect two points by pixel-by-pixel, and the sampled point coordinates are aligned with the image
coordinates, forming a series of jagged straight lines as shown in Fig. 6(a). Therefore, directly using
the raw data for training is unsuitable and preprocessing is necessary.

To denoise the raw morphology samples, the preprocessing strategy we adopted in this paper is
demonstrated as follows and it contains four key operations:

17

Under review as a conference paper at ICLR 2024

• Merging pseudo somas. In some morphology samples, there may exist multiple somas at the same
time, where we call them pseudo somas. Due to that the volume of soma is relatively larger, we use
multiple pseudo somas to describe the shape of soma and the coordinates of these pseudo somas
are quite close to each other. In line with MorphoPy (Laturnus et al., 2020b), which is a python
package tailored for neuronal morphology data, the coordinates of pseudo somas will be merged to
the centroid of their convex hull as a final true soma.

• Inserting Nodes. As noted in Sec. 1, only the soma is allowed to have more than two outgoing
branches (Bray, 1973; Wessells & Nuttall, 1978; Szebenyi et al., 1998). However, in some cases,
two or even more bifurcations would be so close that they may share the same coordinate after
reconstruction from images due to some manual errors. Notice that these cases are different from
pseudo somas. We solve this problem by inserting points. For a non-soma node v with more
than two outgoing branches, we denote the set of the closest nodes on each subsequent branches
as {vclose1 , vclose2 , . . . , vcloseNclose

}, where Nclose represents the number of branches extending
away from v. We only reserve two edges ev,vclose1 , ev,vclose2 and delete the rest edges ev,vclosei for
3 ≤ i ≤ Nclose. Then we insert a new node which is located at the midpoint between node v and
vclose1 and denote it as vmid1

. Next we reconnect the vclose3 , . . . , vcloseNclose
to node vmid1

, i.e.
adding edges evmid1

,vclosei
for 3 ≤ i ≤ Nclose. We repeat such procedure until there is no other

node having more than two outgoing edges apart from the soma.
• Resampling branches. We perform resampling algorithm described in Appendix A.1 over branches

of each neuronal morphology sample. The goal of this step is two-fold: i) distribute the nodes on
branches evenly so that the following smoothing step could be easier; ii) cut down the number of
node coordinates to reduce IO workloads during training.

• Smoothing branches. As shown in Fig. 6(a), the raw morphology contains a lot of jagged
straight line, posing an urgency for smoothing the branches. We smooth the branches via a
sliding window. The window size is set to 2w + 1, where w is hyper-parameter. Given a branch
bi = {vi1 , vi2 , . . . , viL(i)

}, for a node vij on bj , if there are at least w nodes on bi before it and at
least w nodes on bi after it, we directly calculate the average coordinate of vij ’s previous w nodes,
vij ’s subsequent w nodes and vij itself. Then, we obtain a new node v′ij at the average coordinate
calculated. We denote the set of nodes that are involved in calculating the coordinate of v′ij as
Nsmooth(vij). For those nodes which are close to the two ends of bi, the number of nodes before
or after them may be less than w. To solve this issue, we define Nsmooth(vij) as follows:

Nsmooth(vij) = {vij−p
, vij−p+1

, . . . , vij−1
, vij , vij+1

, . . . , vij+s−1
, vij+s

}, (12)

where p = min{w, j − 1, η(L(i) − j)} and s = min{w,L(i) − j, η(j − 1)}. η ∈ N+ a is
hyper-parameter in case of the extreme imbalance between the number of nodes before vij and
the number of nodes after vij . We reserve the two ends of bi and calculate new coordinates by
averaging the coordinates of Nsmooth(vij) for 2 ≤ j ≤ L(i)−1. Finally, we can obtain a smoother
branch b′i = {vi1 , v′i2 , . . . , v′iL(i)−1

, viL(i)
}.

Remark. Due to the low quality of raw M1-EXC and M1-INH datasets, the above data preprocessing
procedure is applied to both of them. As for the raw VPM and RGC datasets, their quality is gooed
enough. Therefore, we do not apply the above preprocessing procedure to them. We show an example
morphology sample before and after preprocessing from M1-EXC dataset in Fig. 6.

B DEFINITIONS OF METRICS

In this section, we present the detailed definitions of all metrics we adopt for evaluation in this paper.

B.1 METRIC ADOPTED IN SECTION 4.2

Before introducing the metrics, we first present the descriptions of their related quantitative character-
izations as follows. Recall that all these adopted quantitative characterizations are defined on a single
neuronal morphology.

Branch Path Length (BPL). Given a neuronal morphology sample T , we denote the set of
branches it contains as B. For a branch bi = {vi1 , vi2 , . . . , viL(i)

}, its path length is calculated

18

Under review as a conference paper at ICLR 2024

(a) Before preprocessing. (b) After preprocessing.

Figure 6: An example morphology sample from M1-EXC dataset for illustrating the preprocessing.
We demonstrate the projections of the morphology sample onto the xy plane before and after
preprocessing here.

by
∑L(i)−1

j=1 dist(vij , vij+1). BPL means the mean path length of branches over T , i.e.,

BPL(T) =
1

|B|
∑
bi∈B

L(i)−1∑
j=1

dist(vij , vij+1). (13)

Maximum Euclidean Distance (MED). Given a neuronal morphology sample T = (V,E), we
denote the soma as vsoma. The MED(T) is defined as:

MED(T) = max
vi∈V

dist(vi, vsoma). (14)

Maximum Path Distance (MPD). Given a neuronal morphology sample T = (V,E), we
denote the soma as vsoma. For a node vi ∈ V , {vsoma, vi1 , vi2 , . . . , viAv(i) , vi} is the se-
quence of nodes contained on the path beginning from soma and ending at vi, where Av(i) de-
notes the number of vi’s ancestor nodes except soma. The path distance of vi is defined as
dist(vsoma, vi1) +

∑Av(i)−1
j=1 dist(vij , vij+1) + dist(viAv(i) , vi). Therefore, the maximum path

distance (MPD) of T is formulated as:

MPD(T) = max
vi∈V

dist(vsoma, vi1) +

Av(i)−1∑
j=1

dist(vij , vij+1) + dist(viAv(i) , vi). (15)

ConTracTion (CTT). CTT measures the mean degree of wrinkling of branches over a morphology
T , and we denote the set of branches included in T as B. For a branch bi = {vi1 , vi2 , . . . , viL(i)

}, its

degree of wrinkling is calculated by
dist(vi1 ,viL(i)

)∑L(i)−1
j=1 dist(vij ,vij+1

)
. Hence, the definition of CTT is:

CTT(T) =
1

|B|
∑
bi∈B

dist(vi1 , viL(i)
)∑L(i)−1

j=1 dist(vij , vij+1
)
. (16)

Amplitude between a pair of Sibling Branches (ASB). Given a morphology sample T , we denote
the set of bifurcations it contains as Vbifurcation. For any bifurcation node vi ∈ Vbifurcation, there is a
pair of sibling branches extending away from vi. We denote the endpoints of these two branches as

19

Under review as a conference paper at ICLR 2024

A
B C

D

Previous Subsequent

Figure 7: Illustrations for BAR and APS to facilitate understanding the deifinitions of them. Birfurca-
tions are colored red.

vi1 and vi2, respectively. The order of sibling branches does not matter here. The vector −−→vivi1 and−−→vivi2 can form a amplitude like the amplitude β in Fig. 7. ASB represents the mean amplitude size of
all such instances over T . Hence, ASB(T) is defined as:

ASB(T) =
1

|Vbifurcation|
∑

vi∈Vbifurcation

∠vi1vivi2. (17)

Amplitude between of a Previous branch and its Subsequent branch (APS). Given a morphology
sample T , we denote the set of bifurcations it contains as Vbifurcation. For any bifurcation node
vi ∈ Vbifurcation, there is a pair of sibling branches extending away from vi. Notice that vi itself
is not only the start point of these but also the ending point of another branch. As demonstrated in
Fig. 7, node B is a bifurcation. There is a pair of sibling branches extending away from B. Node C
and D are the ending points of the sibling branches. In the meanwhile, B is the ending point of the
branch whose start point is A.

−−→
AB and

−−→
BC can form a amplitude i.e. the amplitude γ. In general, we

denote the start point of the branch ending with vi as vistart . We use viend1 and viend2 to represent
the ending points of two subsequent branches. APS(T) equals to the mean amplitude size of all
amplitudes like γ over T and can be formulated as follows with < ·, · > representing the amplitude
size between two vectors:

APS(T) =
1

2 · |Vbifurcation|
∑

vi∈Vbifurcation

∠ < −−−−→vistartvi,
−−−−→viviend1 > +∠ < −−−−→vistartvi,

−−−−→viviend2 > .

(18)

Now, we have presented detailed definitions of all six quantitative characterizations. Recalling that
the six metrics adopted are just the expectation of these six characterizations over the dataset, we
denote the dataset as T = {Ti}NT

i=1, where NT represents the number of morphology samples. Then
the six metrics are defined as below:

• Mean BPL (MBPL):

MBPL =
1

NT

NT∑
i=1

BPL(Ti). (19)

• Mean MED (MMED):

MMED =
1

NT

NT∑
i=1

MED(Ti). (20)

• Mean MPD (MMPD):

MMPD =
1

NT

NT∑
i=1

MPD(Ti). (21)

• Mean CTT (MCTT):

MCTT =
1

NT

NT∑
i=1

CTT(Ti). (22)

20

Under review as a conference paper at ICLR 2024

x
y

z

3D Space xy yz xz

Figure 8: A topologically invalid neuronal morphology generated by MorphVAE. Nodes with more
than two outgoing edges are circled in red. The first one demonstrates the morphology in 3D space.
The three picture (from left to right) on the right are the projections of the sample onto xy, yz and xz
planes, respectively.

• Mean ASB (MASB):

MASB =
1

NT

NT∑
i=1

ASB(Ti). (23)

• Mean APS (MAPS):

MAPS =
1

NT

NT∑
i=1

APS(Ti). (24)

B.2 METRIC ADOPTED IN SECTION 4.3

In the discrimination test, we adopt the Accuracy as metric for evaluation, which is widely-used
in classification tasks. We abbreviate the true-positives, false-negatives, true-negatives and false-
negatives as TP, FP, TN and FN, respectively. Then Accuracy is formulated as:

Accuracy =
|TP|+ |TN|

|TP|+ |TN|+ |FP|+ |FN| . (25)

B.3 METRIC ADOPTED IN SECTION 4.4

We use the average BlastNeuron Distance (BND) (Wan et al., 2015) among the generated samples
of a given reference morphology T to evaluate the diversity of generated samples. The BlastNeuron
distance is defined on a pair of neuron morphologies and is based on topological structure and path
shape alignment. For the given morphology pair, a series of morphological metrics are extracted from
the neuronal morphologies to initially estimate the distance between the morphologies, and then an
alignment approach based on graph matching combined with 3D coordinates is applied to identify
local similarity. Since our numerous morphologies from the same sample are morphologically similar
by nature, we only apply the local alignment algorithm to determine distances. We denote the
BlastNeuron distance between two morphologies T1 and T2 as BND(T1, T2). Higher BND(T1, T2)
indicates that the difference between T1 and T2 is greater. For a series of generated morphology
{T̂1, T̂2, . . . , T̂n}, the average BlastNeuron distance is defined as:

1

n− 1

n∑
i=2

BND(T̂i, T̂1). (26)

C MORE DISCUSSION ON MORPHVAE

Here we present examples to illustrate some limitations of MorphVAE (Laturnus & Berens, 2021).

21

Under review as a conference paper at ICLR 2024

Table 4: The topological validity rate of morphologies generated by MorphVAE on each dataset.

Dataset VPM M1-EXC M1-INH RGC
validity rate 0.052± 0.019 0.319± 0.088 0.038± 0.025 0.005± 0.010

C.1 FAILURE TO ENSURE TOPOLOGICAL VALIDTY OF GENERATED MORPHOLOGIES

In the generation process, MorphVAE does not impose a constraint that only soma is allowed to have
more than two outgoing edges, thereby failing to ensure the topological validty of generated samples.
Here, we present an example generated by MorphVAE from VPM dataset, where there are more than
one node that have more than two outgoing edges in Fig. 8.

Elaboration on Topological Validity.

• Under the majority of circumstances, neurons exhibit bifurcations (Lu & Werb, 2008; Peng et al.,
2021), which signifies that branching points, excluding the soma node, typically have only two
subsequent branches. Specifically, in the extensive morphological dataset presented in the work
by Peng et al. (2021), the authors underscored the importance of treating trifurcations as topological
errors that necessitate removal during post-processing quality assessment. Moreover, numerous
tools for neuronal morphology analysis, such as the TREE toolbox (Cuntz et al., 2011), operate
under the assumption that only binary neuron trees constitute valid and compatible data.

• In the infrequent instances where trifurcations have been observed, they were found to occur
exclusively during the growth phase (Watanabe & Costantini, 2004). As a neuron reaches full
maturation, these trifurcations often transform into two distinct bifurcations.

Consequently, there is no pragmatic rationale for intentionally generating or preserving trifurcations
in a synthetic neuron. The indiscriminate and unregulated incorporation of trifurcations is ill-advised.
Indeed, MorphVAE failed to adequately account for this factor, resulting in the generation of neurons
with 3/4/5/n-furcations.

We have computed the Topologically Validity Rate of samples generated by MorphVAE on the four
datasets, indicating the proportion of samples that strictly adhere to a binary tree structure. The
results are presented in Table 4, where we observe that the validity rate of MorphVAE is generally
low. This highlights the significant improvement in topological plausibility offered by MorphGrower.
Our generation mechanism ensures that our samples are all topologically valid.

Employing rejection sampling with the baseline MorphVAE to retain only topologically valid samples
could be one potential approach. However, based on the results provided, especially on the RGC
dataset where the validity rate is less than one percent, implementing rejection sampling might not
yield a sufficient number of samples for a comprehensive evaluation.

C.2 FAILURE TO GENERATE MORPHOLOGIES WITH RELATIVELY LONGER 3D-WALKS

Given a authentic morphology, MorphVAE aims to generate a resembling morphology. MorphVAE
regards 3D-walks as the basic generation blocks. Note that the length of 3D-walks varies. MorphVAE
determines to truncate those relatively longer 3D-walks during the encoding stage. Hence, in the final
generated samples, its difficult to find morphologies with relatively longer 3D-walks. We provide
two examples from M1-EXC dataset in Fig. 9 to show this limitation of MorphVAE.

D SIGNIFICANT DISTINCTIONS FROM GRAPH GENERATION TASK

In this section, we aim to highlight the significant differences between the neural morphology
generation task discussed in this paper and the graph generation task.

Graph generation primarily focuses on creating topological graphs with specific structural properties,
whereas neuronal morphology generation aims to generate geometric shapes that conform to specific
requirements and constraints within the field of neuroscience. Morphology is defined by a set of

22

Under review as a conference paper at ICLR 2024

x

−100

0

100

200

300

400

y
(µ

m
)

Reference
MorphVAE

x

−100

0

100

200

300

400

500

600

y
(µ

m
)

Reference
MorphVAE

Figure 9: Each picture shows the projection of a pair of reference sample and the generated sample by
MorphVAE, which is expected to resemble the target, onto the xy plane. We can see that MorphVAE
does fail to generate morphologies with relatively longer 3D-walks.

coordinate points in 3D space and their connection relationships. It is important to note that two
different morphologies can share the same topological structure. For example, as illustrated in Fig. 10,
the two neurons depicted in the first and second rows respectively possess the same topological
structure in terms of algebraic topology (Hatcher, 2000) (i.e., the same Betti number-0 of 1 and the
same Betti number-1 of 0), but are entirely distinct in morphology.

x
y

z

3D Space xy yz xz

x
y

z

Figure 10: Two distinct neural morphology data are shown in two rows respectively. Both of them
are trees composed of branches only connected by the root node (soma).

When attempting to adapt graph generation methods to the task of generating neuronal morphologies,
scalability and efficiency pose significant challenges. Neuronal morphologies typically have far more
nodes than the graphs used for training in graph generation. For example, the average number of
nodes in the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), which is a commonly
used dataset for molecular generation tasks, is 18, while the average number of nodes in the VPM
dataset (Landisman & Connors, 2007; Peng et al., 2021), the dataset used in our paper, is 948. Graph
generation methods require generating an adjacency matrix with Θ(n2) size, where n is the number
of nodes, resulting in unaffordable computational overhead.

23

Under review as a conference paper at ICLR 2024

The most significant difference between graph and morphology generation is that every neuron
morphology is a tree with special structural constraints. Thus, the absence of loops is a crucial
criterion for valid generated morphology samples. We surveyed numerous graph generation-related
articles and found that existing algorithms do not impose explicit constraints to ensure loop-free graph
samples. This is primarily due to the application scenarios of current graph generation tasks, which
mainly focus on molecular generation. Since molecules naturally have the possibility of containing
loops, there is no need to consider the no-loop constraint. Furthermore, as stated in Appendix C.1,
in most cases, neurons have only bifurcations (Lu & Werb, 2008; Peng et al., 2021) (i.e., branching
points except for the soma node have only two subsequent branches). This implies that the trees in this
study, except for the soma node, must be at most binary, resulting in even more stringent generated
constraints. Nevertheless, current graph generation methods cannot ensure strict compliance with the
aforementioned constraints.

Overall, there are significant differences between the graph generation task and the neuronal mor-
phology generation task, which make it non-trivial to adapt existing graph generation methods to the
latter. This is also why neither MorphVAE nor our paper chose any existing graph generation method
as a baseline for comparison.

E SUPPLEMENTARY CLARIFICATIONS FOR RESAMPLING OPERATION

Although recurrent neural networks (RNNs) are able to encode or generate branches of any length,
the second resampling operation is still necessary for the following reasons. Unlike numerous
sequence-to-sequence tasks in the natural language processing (NLP) field, neuron branches are
composed of 3D coordinates, which are continuous data type rather than discrete type. Therefore, it
is difficult to use an approach like outputting an <END> token to halt generation. Additionally, it is
challenging to calculate reconstruction loss between branches of different lengths.

In our experiments, we resample each branch to a fixed number of nodes, setting the hyperparameter
at 32, which exceeds the original node count for most branches in the raw data. To demonstrate
that our resampling operation does not have a significant impact on the morphology of neurons, we
conducted the following statistics. We refer to branches with over 32 nodes in the raw data as “large
branches”. As shown in Table 5, for the majority of branches, we perform upsampling rather than
downsampling, thereby preserving the morphology well.

Table 5: Statistics related to large branches.

Dataset VPM M1-EXC M1-INH RGC
total # of branches 26,395 18,088 114,139 232,315

total # of large branches 2,127 0 0 92
percentage large

all / % 8.05 0.00 0.00 0.00

We designed an experiment to further investigate the impact of our resampling operation on the
original branches, particularly on the large branches. We defined a metric called path length difference
(abbreviated as PLD) to reflect the difference between two branches. We use PLD to measure
the difference between the same branch before and after resampling. For two branches b1 =
{x(1), x(2), · · · , x(i)} and b2 = {y(1), y(2), · · · , y(j)} the PLD is defined as:∣∣∣∣∣∣

i−1∑
c=1

√√√√ 3∑
d=1

(x
(c)
d − x

(c+1)
d)2 −

j−1∑
c=1

√√√√ 3∑
d=1

(y
(c)
d − y

(c+1)
d)2

∣∣∣∣∣∣ . (27)

The result is shown in Table 6 and since there are no large branches in M1-EXC and M1-INH, the
corresponding results are missing.

From the table above, we can observe that compared to the original branch lengths, the length
differences of the branches after resampling are quite small across all datasets, even for large
branches. This further indicates that our resampling operation can effectively preserve the original
neuronal morphology.

24

Under review as a conference paper at ICLR 2024

Table 6: PLD results for branches before and after resampling. Due to the absence of large branches
in the M1-EXC and M1-INH datasets, data related to large branches are missing on the two datasets.

Dataset RGC VPM M1-EXC M1-INH
avg. PLD on all branches 0.13 ± 0.42 0.17 ± 0.26 0.37 ± 0.68 0.30 ± 0.70

avg. path length of all original branches 24.31 ± 25.30 52.20 ± 46.29 60.32 ± 51.03 43.30 ± 43.48

avg. PLD on large branches 7.65 ± 3.16 0.65 ± 0.37
avg. path length of all large branches 264.29 ± 44.00 139.82 ± 14.02

F MOTIVATION OF THE CHOICE OF ARCHITECTURES

In the main text, we have already presented the rationale behind our selection of specific architectures.
Here, we provide a concise summary of the motivation behind our choice of key architectures.

F.1 USING LSTM AS OUR BRANCH ENCODER

Our baseline MorphVAE incorporates LSTM as its branch encoder and decoder. To ensure a fair
comparison, we have followed the same approach as our baseline and also employed LSTM as our
branch encoder.

Due to our limited data samples, we are uncertain if more complex sequence-based models like
the Transformer would be effectively trainable. As an experiment, we replace our LSTM branch
encoder with a Transformer, and the results, which are presented in Appendix J.1, indicate that the
Transformer does not demonstrate significant advantages over the LSTM in terms of performance.
This suggests that the LSTM is already sufficiently powerful for this task.

F.2 USING VMF-VAE

The vMF-VAE with a fixed κ is proposed to prevent the KL collapse typically observed in the
Gaussian VAE setting (Xu & Durrett, 2018; Davidson et al., 2018). By fixing κ, the KL distance
between the posterior distribution vMF(·, κ) and the prior distribution vMF(·, 0) remains constant,
thus avoiding the KL collapse.

F.3 TREATING A BRANCH AS A NODE AND EMPLOYING T-GNN-LIKE NETWORKS.

The reasons for this aspect have already been explained in great detail in Section 3.2 Encode Global
Condition of the main text, so we will not reiterate them here.

G LIMITATIONS AND FUTURE WORK

G.1 LIMITATIONS

There are two aspects limiting our approach, both in terms of data availability. First, we only have
morphology information regarding the coordinates of the nodes, hence the generation may inherently
suffer from the illness of missing information (e.g. the diameter). Second, the real-world samples
for learning do not reflect the dynamic growing procedure and thus learning such dynamics can be
challenging. In our paper, we have simplified the procedure by imposing synchronized layer growth
which in reality could be asynchronous to some extent with growing randomness. In both cases,
certain prior knowledge need to be introduced as preliminarily done in this paper which could be
further improved for future work.

G.2 FUTURE DIRECTIONS

G.2.1 INCLUSION OF THE BRANCH DIAMETER

In our paper, we focus on the three-dimensional spatial coordinates of each node, with each node
corresponding to a three-dimensional representation. To incorporate the diameter, we would simply

25

Under review as a conference paper at ICLR 2024

add an extra dimension to the node representation, expanding the original three-dimensional represen-
tation to four dimensions. Incorporating the diameter into our method is relatively straightforward and
does not necessitate significant modifications to our model design. Furthermore, diameter variations
within neurons are generally smooth. Even when significant changes in diameter occur, as noted
in the work by Conde-Sousa et al. (2017), we generally ascribe these inconsistencies to problems
encountered during tissue preprocessing and the staining procedure. This indicates that differences
in this dimension are less significant compared to the other three dimensions (spatial coordinates),
making the training process for this dimension more stable and easier for the model to learn. Initially,
we considered including the diameter in our model learning process, but given that the neuron’s 3D
geometry is of greater importance than the diameter and remains the primary focus, we ultimately
chose not to include it. Additionally, due to limitations in imaging technology, not all neuron datasets
contain diameter information, which is another reason why we did not take diameter into account.
However, it is important to note that diameter information is essential for characterizing more specific
neurons. We believe that as neuronal imaging technology advances, this information will gradually
become more available. With sufficient training data and the inclusion of diameter information, our
method should be capable of generating more detailed neurons.

G.2.2 INCLUSION OF THE SPINES OR BOUTONS

As mentioned in the limitations section of our paper, the existing data only contains spatial coordinate
information, lacking additional input. If we could obtain splines/boutons information, we have a
simple and feasible idea: for each spline/bouton, we can learn a feature and then share that feature
with the surrounding nodes. This can be concatenated with the features they already encode, forming
a new representation for each node. This design can make use of the additional splines/boutons
information provided and does not require significant modifications to our model. However, this
idea is just an initial simple attempt, and there may be better ways to utilize this extra information.
Similarly, to the diameter mentioned earlier, data on spines/boutons is also scarce at this stage. If we
have access to a wealth of such data, we believe it could further improve our neuron morphology
generation results.

G.2.3 USE OF DENSE IMAGING DATA

We believe that the dense imaging data can serve two main purposes as below:

• Since dense imaging data encompasses a vast amount of information about individual neurons, we
are confident that it will facilitate the enhanced generation of single neuron morphologies in the
future.

• Dense imaging data illustrates the intricate connections between neurons, which will prove highly
valuable for generating simulated neuron populations down the line.

G.3 OTHER POTENTIAL APPLICATIONS

Our approach is not limited to the neuronal morphology generation task alone. In fact, our method
can be adapted to generate data with similar tree-like branching structures in morphology (or even
beyond). For instance, retinal capillaries are also scarce in data, and we can attempt to generate
more retinal capillary data using our method to address this data insufficiency issue. With additional
capillary samples, the related segmentation models can be trained more effectively, promoting the
development of biomedical engineering and bioimaging fields. Therefore, the scope of our method’s
application is not narrow.

Moreover, as emphasized in the introduction section of our paper, the current process of obtaining
single neuron morphology data is time-consuming and labor-intensive. Therefore, the motivation
behind our method is to design an efficient generation method for single neuron morphology samples.
In the future, we can also try to use our method as a basic building block to construct a neuron
population, which will help us gain a deeper understanding of information transmission within the
nervous system and further our knowledge of brain function.

26

Under review as a conference paper at ICLR 2024

H IMPLEMENTATION DETAILS

This section describes the detailed experimental setup or training configurations for MorphVAE and
MorphGrower in order for reproducibility. We firstly list the configurations of our environments and
packages as below:

• Ubuntu: 20.04.2

• CUDA: 10.1

• Python: 3.7.0

• Numpy: 1.21.6

• Pytorch: 1.12.1

• PyTorch Geometric: 2.1.0

• Scipy: 1.7.3

Experiments are repeated 5 times with mean and standard deviation reported, running on a machine
with i9-10920X CPU, RTX 3090 GPU and 128G RAM.

H.1 MORPHVAE

Resampling Distance. MorphVAE (Laturnus & Berens, 2021) regards a 3D-walk as a basic building
block when generating neuronal morphologies. Following the data preparation steps of MorphVAE,
all the morphologies are first resampled at a certain distance and then scaled down according to the
resampling distance to make the training and clustering easier. The resampling distances over datasets
are all shown in Table 7.

Table 7: The resample distance for each dataset. We adopt the default distance used in the original
paper for RGC, M1-EXC and M1-INH. As for VPM, which is not adopted in MorphVAE for
evaluation, we set its corresponding resampling distance to 30 µm.

Dataset VPM RGC M1-EXC M1-INH
Resampling Distance / µm 30 30 50 40

Hyper Parameter Selection. Apart from the hyper-parameters mentioned in Section 4, we also
perform grid search for the supervised-learning proportion over {1, 0.5, 0.1, 0} on all datasets except
VPM because no cell type label is provided for VPM and the classifier is not set up for this dataset.
Following the original paper, we set the 3D walk length as 32 and κ = 500. The teaching-force for
training decoder is set to 0.5. As for the distance threshold for agglomerative clustering, we use 0.5
for VPM, M1-EXC, M1-INH and 1.0 for RGC.

Pretraining. Following the original paper of MorphVAE, to better encode the branch information,
we pretrain MorphVAE on the artificially generated toy dataset. Then model weight of pretrained
LSTM is also used to initialize the LSTM part of the single branch encoder in our MorphGrower.

H.2 OUR METHOD

We implement our method in Pytorch and adopt grid search to tune the hyper parameters. The
learning rate is searched within {5e − 2, 1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e − 4, 5e − 5, 1e − 5}
and dropout rate is searched within {0.1, 0.3, 0.5, 0.7}. In line with MorphVAE, we also the set the
teaching-force for training decoder to 0.5. In line with morphvae, we use κ = 500 for training. The
number of nodes rebuilding a branch, i.e. the hyper parameter L, is set to 32. The weight α in Eq. 5 is
set to 0.5. Besides, the hyper-parameter m in Eq. 4 is set to 2. We adopt Adam optimizer to optimize
learnable parameters.

27

Under review as a conference paper at ICLR 2024

&11
%ORFN /L

QH
DU

&11
%ORFN /L

QH
DU

&11
%ORFN /L

QH
DU

&
2
1
&
$7

&
OD
VV
LIL
HU

[\

[]

\]

Figure 11: The overview of the pipeline for the discrimination test.

H.3 SUPPLEMENTARY DESCRIPTIONS FOR SECTION 4.3

Rationale behind evaluating plausibility using the CV method. Neurons have complicated, unique
and type-defining structures, making their visual appearances a discriminative characteristics. It
is important that a synthetic neuron “looks” real, either by human or by a computer. Thus, as an
additional proof, we designed a vision-based classifier and tried to see if the generated neurons can
“deceive” it. As reported in Table 2, the classifier cannot well differentiate our generated data from
the real ones, while the MorphVAE results can be well identified. Furthermore, our use of three views
as inputs to assess the plausibility of the generated neuronal morphology samples is well-founded.
This can be supported by many cell typing studies (Jefferis et al., 2007; Sümbül et al., 2014; Laturnus
et al., 2020a), researchers adopt density maps as descriptors for samples, where the so-called density
map is essentially the projection of a sample’s 3D morphology onto a specific coordinate plane.

Learning Objective. We adopt the Focal-Loss as the learning objective for training the classifier,
which is widely-used in classification tasks. It is a dynamically scaled Cross-Entropy-Loss, where
the scaling factor decays to zero as confidence in the correct class increases (Lin et al., 2017).

Pipeline Overview. We demonstrate the whole pipeline in Fig. 11.

Hyper Parameter Selection. We search the optimal hyper-parameters by ranging learning rate over
{1e−3, 5e−3, 1e−4, 5e−4, 1e−5, 5e−5} and dropout rate over {0.2, 0.5, 0.8}. Adam optimizer
is adopted to optimize learnable parameters.

H.4 SUPPLEMENTARY DESCRIPTIONS FOR SECTION 4.4

The BlastNeuron Distance, which has been introduced in Appendix B.3, is relatively sensitive to the
number of coordinates on the given morphologies. For fair comparison, we resample all the generated
samples obtain from MorphVAE and MorphGrower at a distance of 2 µm, using the python package
MorphoPy (Laturnus et al., 2020b).

I MORE DATASET INFORMATION

The statistics of the four datasets are reported in Table 8 and their download links are as follows:

• VPM: https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/

• RGC: https://osf.io/b4qtr/wiki/home/

• M1-EXC & M1-INH: https://github.com/berenslab/mini-atlas

Remark. Axons in the VPM dataset typically have long-range projections, which can be dozens
of times longer than other branches, and they target specific brain regions that they must innervate.

28

https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/
https://osf.io/b4qtr/wiki/home/
https://github.com/berenslab/mini-atlas

Under review as a conference paper at ICLR 2024

Table 8: Datasets Statistics. “#train/#valid/#test” denotes the number of samples in the train-
ing/validation/test set, respectively. “avg. / max # of branches” represents the average and maximum
number of branches that a neuron contains respectively.

Dataset #train #valid #test avg. / max # of branches
VPM 266 57 57 69.46/153
RGC 534 114 115 303.47/2327
M1-EXC 192 41 42 65.77/156
M1-INH 259 55 57 307.65/913

Table 9: The result of ablation study on the four datasets by six quantitative metrics. The best and the
runner-up in each columns are highlighted in bold and underline respectively. We leave MorphVAE’s
numbers on MBPL and MAPS blank because it may generate nodes with more than two subsequent
branches that conflict with the definition of MBPL and MAPS for bifurcations. A closer alignment
with Reference indicates better performance.

Dataset Method MBPL / µm MMED / µm MMPD / µm MCTT / % MASB / ◦ MAPS / ◦

V
PM

Reference 51.33 ± 0.59 162.99 ± 2.25 189.46 ± 3.81 0.936 ± 0.001 65.35 ± 0.55 36.04 ± 0.38
MorphVAE 41.87 ± 0.66 126.73 ± 2.54 132.50 ± 2.61 0.987 ± 0.001
MorphGrower 48.29 ± 0.34 161.65 ± 1.68 180.53 ± 2.70 0.920 ± 0.004 72.71 ± 1.50 43.80 ± 0.98
LSTM → Transformers 47.40 ± 0.88 162.46 ± 3.82 180.87 ± 3.09 0.943 ± 0.010 70.94 ± 2.77 53.86 ± 0.99
- Local Condition 40.90 ± 0.79 137.47 ± 2.63 162.53 ± 3.24 0.911 ± 0.006 74.55 ± 0.88 58.22 ± 0.32
- Global Condition 44.51 ± 0.78 153.84 ± 3.56 173.58 ± 5.41 0.938 ± 0.003 71.29 ± 3.56 47.06 ± 0.59
- EMA 45.24 ± 0.22 155.11 ± 1.98 173.68 ± 2.86 0.936 ± 0.005 67.79 ± 1.45 46.28 ± 0.08

R
G

C

Reference 26.52 ± 0.75 308.85 ± 8.12 404.73 ± 12.05 0.937 ± 0.003 84.08 ± 0.28 50.60 ± 0.13
MorphVAE 43.23 ± 1.06 248.62 ± 9.05 269.92 ± 10.25 0.984 ± 0.004
MorphGrower 25.15 ± 0.71 306.83 ± 7.76 384.34 ± 11.85 0.945 ± 0.003 82.68 ± 0.53 51.33 ± 0.31
LSTM → Transformers 25.10 ± 0.65 308.35 ± 7.34 387.67 ± 10.55 0.948 ± 0.003 84.04 ± 0.33 52.35 ± 0.14
- Local Condition 23.56 ± 0.74 294.01 ± 8.21 363.86 ± 11.36 0.954 ± 0.003 79.67 ± 1.17 54.44 ± 0.36
- Global Condition 22.99 ± 0.83 293.87 ± 9.01 354.95 ± 11.85 0.954 ± 0.006 78.19 ± 4.10 50.96 ± 0.63
- EMA 23.38 ± 0.66 295.09 ± 8.76 359.76 ± 8.76 0.951 ± 0.005 78.47 ± 1.84 52.25 ± 0.44

M
1-

E
X

C

Reference 62.74 ± 1.73 414.39 ± 6.16 497.43 ± 12.42 0.891 ± 0.004 76.34 ± 0.63 46.74 ± 0.85
MorphVAE 52.13 ± 1.30 195.49 ± 9.91 220.72 ± 12.96 0.955 ± 0.005
MorphGrower 58.16 ± 1.26 413.78 ± 14.73 473.25 ± 19.37 0.922 ± 0.002 73.12 ± 2.17 48.16 ± 1.00
LSTM → Transformers 56.75 ± 1.49 415.90 ± 4.39 472.30 ± 7.99 0.942 ± 0.005 72.97 ± 1.75 51.06 ± 0.98
- Local Condition 55.85 ± 1.24 409.66 ± 7.36 464.18 ± 9.07 0.940 ± 0.004 73.81 ± 1.24 51.54 ± 0.84
- Global Condition 55.01 ± 0.65 404.42 ± 8.67 453.58 ± 11.90 0.955 ± 0.007 71.72 ± 1.23 48.48 ± 1.04
- EMA 55.71 ± 1.24 407.29 ± 16.28 458.49 ± 12.29 0.951 ± 0.008 72.61 ± 4.35 50.20 ± 0.83

M
1-

IN
H

Reference 45.03 ± 1.04 396.73 ± 15.89 705.28 ± 34.02 0.877 ± 0.002 84.40 ± 0.68 55.23 ± 0.78
MorphVAE 50.79 ± 1.77 244.49 ± 15.62 306.99 ± 23.19 0.965 ± 0.002
MorphGrower 41.50 ± 1.02 389.06 ± 13.54 659.38 ± 30.05 0.898 ± 0.002 82.43 ± 1.41 61.44 ± 4.23
LSTM → Transformers 40.55 ± 0.82 378.98 ± 12.21 645.68 ± 28.83 0.903 ± 0.003 84.32 ± 0.85 59.89 ± 0.91
- Local Condition 39.33 ± 1.02 383.21 ± 10.06 641.00 ± 23.99 0.918 ± 0.003 77.30 ± 10.86 60.53 ± 0.75
- Global Condition 38.12 ± 0.26 372.66 ± 10.30 613.76 ± 33.09 0.929 ± 0.003 78.29 ± 3.19 57.21 ± 0.48
- EMA 38.97 ± 0.82 383.77 ± 14.04 636.61 ± 40.45 0.921 ± 0.004 80.09 ± 3.24 58.77 ± 0.91

Therefore, simultaneous modeling of the axon and dendrite of the VPM dataset is not appropriate,
and we focused solely on generating the dendrite part.

J MORE EXPERIMENT RESULTS

Due to the limited pages for main paper, we present more experimental results in this section. Recall
that we use ’MorphGrower†’ to represent the version that does not require the provision of soma
branches, while ’MorphGrower’ represents the version where we directly provide soma branches.

J.1 ABLATION STUDY

We conduct additional experiments to analyze the contributions of various model components to the
overall performance. This included evaluating the effects of removing the local condition (Eq. 6) or
the global condition (Eq. 4), as well as replacing the Exponential Moving Average (EMA) (Eq. 5)
with a simpler Mean Pooling of ancestor branch representations for our local condition.

29

Under review as a conference paper at ICLR 2024

Table 9 empirically indicates that each proposed technique has effectively enhanced the performance
of our model. Additionally, we experimented with replacing LSTM with Transformer and found that
performance improvement was not significant, suggesting that LSTM is already sufficiently powerful
for this task.

J.2 QUANTITATIVE RESULTS ON MORPHOLOGICAL STATISTICS EXCLUDING SOMA
BRANCHES

Recall that MorphGrower represents the version where we choose to directly give the soma branches
instead of also generating them. Section 4.2 evaluates methods in terms of the overall neuronal
morphologies, thus including the given reference soma branches when evaluating the performance of
our method. Here, we report the quantitative results the with soma branches excluded.

Remark. Here, given a neuronal morphology T , we delete all edges on soma branches. Then the
morphology T is decomposed into several isolated nodes and several subtrees. Each root of the
subtrees is the ending point of the original soma branches in T . Now, we regard each subtree as a
new single neuronal morphology. Notice that the branches in the 1-th layer of the original T now
turn to new soma branches in those substrees.

Table 10 summarizes the quantitative results excluding the soma branches. We see that the morpholo-
gies generated by MorphGrower also well fits all six selected quantitative characterizations of given
reference data.

Table 10: Quantitative Results of our MorphGrower on the VPM, RGC, M1-EXC and M1-INH
datasets in terms of six quantitative metrics excluding soma branches.

Dataset Method MBPL / µm MMED / µm MMPD / µm MCTT / % MASB / ◦ MAPS / ◦

V
PM

Reference 59.66 ± 0.72 117.74 ± 1.19 133.71 ± 0.71 0.928 ± 0.001 74.93 ± 1.15 29.49 ± 0.58
MorphGrower 55.53 ± 0.58 116.17 ± 1.67 125.72 ± 1.78 0.920 ± 0.005 82.96 ± 2.01 36.00 ± 1.13

R
G

C Reference 27.03 ± 0.81 212.73 ± 5.61 276.53 ± 7.72 0.936 ± 0.001 141.09 ± 1.47 49.36 ± 0.67
MorphGrower 25.56 ± 0.80 210.87 ± 5.34 261.60 ± 7.30 0.945 ± 0.001 138.23 ± 2.30 50.08 ± 0.90

M
1-

E
X

C Reference 67.43 ± 1.81 168.29 ± 3.07 198.03 ± 3.03 0.887 ± 0.004 68.39 ± 2.64 30.56 ± 1.25
MorphGrower 61.79 ± 1.23 166.68 ± 3.93 184.85 ± 4.12 0.930 ± 0.003 68.83 ± 1.91 31.84 ± 1.42

M
1-

IN
H Reference 58.54 ± 1.88 181.32 ± 7.84 254.79 ± 11.23 0.888 ± 0.002 89.06 ± 4.16 36.39 ± 2.01

MorphGrower 54.28 ± 1.62 177.74 ± 7.33 237.60 ± 9.99 0.916 ± 0.004 88.37 ± 3.59 41.78 ± 4.92

Table 11: Classification accuracy (%). The closer accuracy to 50% indicates higher generation
plausibility. The best and the runner-up plausible in each columns are highlighted in bold and
underline respectively.

Method
Dataset VPM RGC M1-EXC M1-INH

MorphVAE 86.75 ± 06.87 94.60 ± 01.02 80.72 ± 10.58 91.76 ± 12.14
MorphGrower 54.73 ± 03.36 62.70 ± 05.24 55.00 ± 02.54 54.74 ± 01.63
MorphGrower† 59.47 ± 04.53 54.99 ± 03.08 55.26 ± 02.42 55.47 ± 03.43

Table 12: Results of the average BlastNeuron Distance on RGC.

Method
Reference

T1 T2 T3 T4 T5

MorphVAE 15109.85 15358.16 12591.39 11898.83 40403.69
MorphGrower 384673.12 55149.68 134330.53 65100.22 938817.33

30

Under review as a conference paper at ICLR 2024

Table 13: Results of the average BlastNeuron Distance on M1-EXC.

Method
Reference

T1 T2 T3 T4 T5

MorphVAE 1392.08 5071.27 2177.73 12477.61 2011.50
MorphGrower 97910.19 48697.82 19896.38 34297.98 45347.52

Table 14: Results of the average BlastNeuron Distance on M1-INH.

Method
Reference

T1 T2 T3 T4 T5

MorphVAE 1174.03 4086.11 16625.34 35649.40 4671.48
MorphGrower 29634.89 43372.90 119178.31 207115.29 69570.35

J.3 PLAUSIBILITY EVALUATION FOR THE SAMPLES GENERATED WITHOUT SOMA BRANCHES
GIVEN

We conducted an additional evaluation experiment regarding the "plausibility" of generated morphol-
ogy samples without soma branches directly given. The results are presented in Table 11. Based on the
table, it is evident that MorphGrower and MorphGrower† perform similarly in this evaluation, making
it challenging to decisively determine which one exhibits superior performance. However, both
MorphGrower and MorphGrower† consistently generate samples with higher plausibility compared
to the baseline MorphVAE.

J.4 MORE GENERATION DIVERSITY EVALUATION

In the main paper, we only evaluate the generation diversity on VPM dataset. Here, we present
evaluation on the other three datasets: RGC, M1-EXC and M1-INH.

We also randomly pick five neuronal morphologies from the test set of RGC, M1-EXC and M1-INH
datasets as references, respectively. For each reference, we generate 50 corresponding samples
using both MorphVAE and MorphGrower. Then, we also report the average BND over five selected
morphologies on each dataset. Results are demonstrated in Table 12, Table 13 and Table 14. Results
show that the average BNDs of morphologies generated by MorphGrower are consistently higher on
the other three datasets, indicating that the diversity of samples generated by MorphGrower is greater
than the MorphVAE.

J.5 SENSITIVITY TO THE EMBEDDING SIZE

In this section, we investigate the sensitivity of our method and the baseline MorphVAE to the
embedding size.

Figure 12 illustrates the performance of baseline MorphVAE and our MorphVAE on six metrics used
in Sec. 4.2 as the embedding size varies. We selected four embedding sizes: {16, 32, 64, 128}. It
can be observed that MorphVAE’s performance on these four embedding size choices is inferior to
MorphGrower with the same embedding size.

MorphGrower shows an improvement in performance in metrics such as MBPL, MMED, MMPD,
and MCTT as the embedding size increases, but then it decreases as the embedding size further
increases. This might be due to the limited amount of data, making it challenging to fit a larger
model. On the other hand, in metrics like MASB and MAPS, the model’s performance improves as
the embedding size increases for these four different choices. This is likely because larger models
help capture complex patterns and relationships related to angle correlations in the data.

31

Under review as a conference paper at ICLR 2024

16 32 64 128

Feature Dim

0.10

0.15

0.20

R
at

io

MBPL

16 32 64 128

Feature Dim

0.00

0.05

0.10

0.15

0.20

R
at

io

MMED

16 32 64 128

Feature Dim

0.05

0.10

0.15

0.20

0.25

0.30

R
at

io

MMPD

16 32 64 128

Feature Dim

0.02

0.03

0.04

0.05

0.06

R
at

io

MCTT

16 32 64 128

Feature Dim

0.1

0.2

0.3

R
at

io

MASB

16 32 64 128

Feature Dim

0.10

0.15

0.20

0.25

R
at

io

MAPS

MorphGrower MorphVAE

Figure 12: Performance curves of MorphVAE and MorphGrower as the embedding size varies, in
terms of MBPL, MMED, MMPD, MCTT, MASB, and MAPS. The horizontal axis represents the
embedding size, while the vertical axis indicates the ratio of the deviation from real data metrics to
the real data metrics themselves. A lower ratio indicates better performance. We leave MorphVAE’s
curves on MBPL and MAPS blank because it may generate nodes with more than two subsequent
branches that conflict with the definition of MBPL and MAPS for bifurcations.

32

Under review as a conference paper at ICLR 2024

J.6 EVALUATION IN TERMS OF FID AND KID

FID (Fréchet Inception Distance) and KID (Kernel Inception Distance) are commonly used as
evaluation metrics for image generation methods. However, it’s important to note that they typically
require feature extraction from samples before computation, which is often done using pre-trained
networks like ResNet (He et al., 2016) in the realm of computer vision. Yet, neuronal morphology
generation isn’t an image generation task, and there aren’t any pre-trained extractors available for
neuron morphology data on extensive datasets. Therefore, strictly speaking, we cannot provide
convincing results based on FID and KID.

Nevertheless, we still try our best to present some results from the perspectives of FID and KID.
Recalling our main content in Sec. 4.3, we utilize the network architecture displayed in Fig. 11 to
train a real vs. fake classifier to evaluate the plausibility of generated samples. Here, we continue to
consider leveraging computer vision techniques to extract features for morphologies. Please refer
to Appendix H.3 for our rationale behind this approach. We adopt the network architecture from
Fig. 11 to train a feature extractor. Initially, we set up an experiment to further verify if such an
architecture indeed can learn useful representations: As neurons from different categories (i.e., from
various datasets) have different morphological features, we combine real samples from the four
datasets. Using the dataset as a label, our goal is to train a ResNet18-based model for classification.
We conduct this experiment with diverse data splits five times at random, and the mean and variance
of the classification accuracy across these results are 0.9188 and 0.0220, respectively. Clearly, this
model can acquire useful representations that generalize to unseen data.

Subsequently, we employ the newly trained ResNet18-based model as a feature extractor to compute
results on both KID and FID metrics. Table 15 showcases the results in terms of KID and FID.

All results were averaged from five experiments. From the results, we can observe that whether it’s
the KID or FID metric, our method significantly outperforms the baseline MorphVAE across all
datasets. Because we adopted the evaluation method of image generation here, it further confirms that
the samples generated by our method are visually closer to real samples compared to those produced
by the baseline MorphVAE.

Table 15: Evaluation of generation performance on the VPM, RGC, M1-EXC and M1-INH datasets
in terms of FID and KID.

Metric Method VPM RGC M1-EXC M1-INH

FI
D MorphVAE 85.95 ± 5.13 208.42 ± 4.39 168.63 ± 9.82 1651.17 ± 91.51

MorphGrower 23.71 ± 5.06 106.16 ± 8.33 17.07 ± 5.73 62.37 ± 14.38

K
ID MorphVAE 5.83 ± 0.76 22.65 ± 1.84 7.86 ± 0.73 356.67 ± 22.07

MorphGrower 1.48 ± 0.34 9.42 ± 0.85 0.10 ± 0.12 19.87 ± 7.17

K NOTATIONS

We summarize the notations used in this paper in Table 16 to facilitate reading.

L THE DISTINCT SCOPE OF MORPHGROWER vs. MORPHVAE

MorphVAE primarily addresses two main issues:

• It introduces method for augmenting neuronal morphology data using 3D walks as the fundamental
generation unit.

• It proposes a method for extracting an overall representation of neuron morphology data: a pooling
operation is applied to the latent embeddings corresponding to all walks. This overall representation
can be applied to downstream tasks such as neuron classification.

In MorphVAE, the generation module and the downstream classifier are trained simultaneously.
However, it’s worth noting that MorphVAE’s primary focus and contribution lie in augmenting

33

Under review as a conference paper at ICLR 2024

VPM M1-EXC

M1-INH RGC

global condition for the 1-th layer global condition for the 2-th layer global condition for the 3-th layer

Figure 13: We use t-SNE to visualize the global conditions learned by MorphGrower on four datasets.

neuron morphology data. The extraction of overall features of neuron morphology, as described in the
second point, can be considered an additional byproduct. Additionally, MorphVAE uses a relatively
large step size for resampling neuron data, resulting in the loss of a substantial amount of fine-grained
information and the possibility of introducing multiple branching points in the augmented data. This
does not align with the reasonable requirements of neuronal morphology topology, further indicating
that MorphVAE may not be a particularly suitable model for augmenting neuronal morphology data.

MorphGrower focuses on augmenting neuron morphology data at a finer granularity: We employ a
layer-by-layer generation strategy and generate branches in pairs within each layer. We do not aim to
learn an overall representation of neuronal morphology for downstream tasks. However, it is worth
noting that we have found that the global condition module proposed by MorphGrower also has the
ability to capture complex patterns in the data, as detailed in Appendix N.1. Additionally, we use a
more reasonable data preprocessing approach by using a smaller step size for normalizing neuron
samples. These measures ensure that our augmentation pipeline results in neuron data with more
detail and guarantees the topological validity of generated samples.

M POTENTIAL NEGATIVE IMPACTS

As far as we are concerned, we have not identified any negative social impact of this work.

N VISUALIZATION

In this section, we present more visualization results.

34

Under review as a conference paper at ICLR 2024

N.1 VISUALIZATION OF THE LEARNED GLOBAL CONDITION USING T-SNE

Figure 13 visualizes the global conditions learned by MorphGrower using t-SNE (Van der Maaten &
Hinton, 2008). Since the morphologies in all four datasets typically include at least four layers of
tree structure (requiring the extraction of global conditions three times for generating four layers), in
Fig. 13, we chose to depict the global conditions extracted when generating the 1-th, 2-th, and 3-th
layers (in our paper, layer indexing starts from 0). We can see that the global conditions for different
layers can be well classified, indicating that MorphGrower can indeed capture certain patterns in
the data. Therefore, the representations of the extracted global conditions are meaningful, which
further confirms that MorphGrower can effectively model the influence of predecessor branches on
subsequent branches.

N.2 VISUALIZATION OF THE DISTRIBUTION OF FOUR METRICS

We only plot the distributions of MPD, BPL, MED and CTT over the reference samples and generated
morphologies on the VPM dataset in the main paper due to the limited space. Here, we plot the their
distributions over the other three datasets in Fig. 14, Fig. 15 and Fig. 16.

N.3 ILLUSTRATION OF THE LAYER-BY-LAYER GENERATION

We demonstrate the complete sequence of the intermediate generated morphologies and the final
generated morphology for the selected example from the RGC dataset in Sec. 4.5 in Fig. 18.

Besides, we also randomly pick a generated morphology from each of the other three datasets
and demonstrate the sequence of the intermediate generated morphologies and the final generated
morphology for each corresponding example in Fig. 17, Fig. 19 and Fig. 20.

We see that MorphGrower can generate snapshots of morphologies in different growing stages. Such a
computational recovery of neuronal dynamic growth procedure may be an interesting future research
direction and help in further unravelling the neuronal growth mechanism.

N.4 SHOLL ANALYSIS

In this study, we utilize the Sholl analysis method (Sholl, 1953) to quantitatively evaluate the
complexity of morphological differences between reference and generated neurons. The Sholl
intersection profile of a specific neuron is represented as a one-dimensional distribution, which is
derived by enumerating the number of branch intersections at varying distances from the soma. This
analytical approach enables the quantitative comparison of morphologically distinct neurons and
facilitates the mapping of synaptic contact or mitochondrial distribution within dendritic arbors (Lim
et al., 2015). Moreover, the Sholl analysis has proven instrumental in illustrating alterations in
dendritic morphology resulting from neuronal diseases (Beauquis et al., 2013), degeneration (Williams
et al., 2013), or therapeutic interventions (Packer et al., 2013).

We conduct Sholl analysis on each neural morphology data in the testing set of each dataset to
investigate dendritic arborization. Prior to analysis, we standardized each morphology data by
translating the soma (root node) to the origin (0, 0, 0). Thereafter, we generated 20 concentric spheres
with the soma as the center such that they were equidistant from one another and spanned the maximal
coordinate range. We assess the number of dendritic intersections between each concentric sphere
and different neuron samples and depicted the results as a plot such that the average number of
intersections was depicted on the y-axis and the radius of the concentric sphere on the x-axis. The
findings are represented in Fig. 21, Fig. 22, Fig. 23 and Fig. 24. The visualized distribution indicates
that our method closely approximates the real samples in the testing set, whereas the performance of
MorphVAE significantly deviates from them.

Additionally, we randomly select a morphology sample from each dataset and perform a Sholl
analysis on samples generated by various methods, utilizing the chosen sample as a reference. The
visualized outcomes are illustrated in Fig. 25, Fig. 26, Fig. 27 and Fig. 28. Notably, the samples
generated by MorphVAE display a considerable divergence from the reference realistic sample, while
the samples generated by both MorphGrower and MorphGrower† closely resemble the reference.

35

Under review as a conference paper at ICLR 2024

N.5 MORE VISUALIZATION RESULTS OF GENERATED MORPHOLOGIES

We present more visualizations of some neuronal morphologies generated by our proposed Mor-
phGrower in Fig. 29, Fig. 30, Fig. 31 and Fig. 32. Owing to image size constraints, we were unable
to render the 3D image with uniform scaling across all three axes. In reality, the unit scales for the x,
y, and z axes in the 3D image differ, leading to some distortion and making the elongation in specific
directions less noticeable. The 2D projection images feature consistent unit scaling for each axis,
which explains why the observed neuronal morphology appears distinct from the 3D image.

36

Under review as a conference paper at ICLR 2024

Table 16: Notations.

Notation Description
T an neuronal morphology instance
T̂ the generated morphology
T̂ (i) the top i layer subtree of the final generated morphology
V the node set of a given neuronal morphology
E the edge set of a given neuronal morphology
bi a branch instance
b̂i a generated branch using bi as reference
v̂i a node instance on the generated morphology
bis the branch which starts from vi and ends at vs
vi the 3D coordinates of a node instance
Nv the node number of a given neuronal morphology
ei,j the directed edge beginning from vi and ending with vj

N+(bi) two subsequent branches of bi
F the forest composed of branch trees, serves as the global condition
L(i) the number of nodes included in bi
Li the branch collection of the i-th layer
L̂i the branch collection of the generated morphology at the i-th layer
Nk the number of branches at the k-th layer
m the iteration number in Eq. 4
µ the mean of the vMF distribution
κ the variance of the vMF distribution
B the branch pair input
C the input for encoding the global condition and local contidion
A the sequence of ancestor branches
DA

k the feature extracted from the first k element of A
hi the internal hidden state of the LSTM network in encoder
ci the internal cell state of the LSTM network in decoder

h
′(t)
i the internal hidden state of LSTM network in decoder

c
′(t)
i the internal hidden state of LSTM network in decoder
xi the high dimension embedding projected by Win in encoder
yi the output of LSTM in decoder

Win, W′
in the linear transform that projects 3D coordinate into high dimension space in encoder, decoder

Wsta1 , Wsta2 the linear transform to obtain the initial internal state for decoding the branch pair
Wout the linear transform that transforms yi into 3D coordinate
W(k) the linear transform in the k-th iteration of GNN while encoding global condition

rb the encoded representation of branch b
rbi the encoded representation of a specific branch bi
h
(k)
bi

the node feature of branch bi which is located at k-th layer
k in Eq. 3 depth in the tree (starting from 0)

hlocal the encoded representation of local condition
hglobal the encoded representation of global condition

θ the learnable parameters of the encoder
ϕ the learnable parameters of the decoder

fθ(·) the encoder
gϕ(·) the decoder
z the latent variable

37

Under review as a conference paper at ICLR 2024

0 20 40 60 80

BPL

0 250 500 750 1000

MPD

0 200 400 600 800

MED

0.90 0.95 1.00

CTT

Reference MorphVAE Ours

Figure 14: Distributions of the four morphological metrics: MPD, BPL, MED and CTT on the RGC
dataset.

25 50 75 100

BPL

0 500 1000

MPD

0 250 500 750 1000

MED

0.8 0.9 1.0

CTT

Reference MorphVAE Ours

Figure 15: Distributions of the four morphological metrics: MPD, BPL, MED and CTT on the
M1-EXC dataset.

20 40 60 80

BPL

0 500 1000 1500

MPD

0 250 500 750

MED

0.8 0.9 1.0

CTT

Reference MorphVAE Ours

Figure 16: Distributions of the four morphological metrics: MPD, BPL, MED and CTT on the
M1-INH dataset.

38

Under review as a conference paper at ICLR 2024

T̂(0) T̂(1) T̂(2) T̂(3) T̂(4) T̂(5) T̂(6)

Figure 17: An example from the VPM dataset. We demonstrate the projections onto the xy plane of
the sequence of the intermediate morphologies {T̂ (i)}5i=0 and the final generated morphology T̂ (6).

T̂(0) T̂(1) T̂(2) T̂(3) T̂(4)

T̂(5) T̂(6) T̂(7) T̂(8) T̂(9)

Figure 18: An example from the RGC dataset. We demonstrate the projections onto the xy plane of
the sequence of the intermediate morphologies {T̂ (i)}8i=0 and the final generated morphology T̂ (9).

39

Under review as a conference paper at ICLR 2024

T̂(0) T̂(1) T̂(2) T̂(3) T̂(4) T̂(5)

T̂(6) T̂(7) T̂(8) T̂(9) T̂(10) T̂(11)

T̂(12) T̂(13) T̂(14) T̂(15) T̂(16) T̂(17)

Figure 19: An example from the M1-EXC dataset. We demonstrate the projections onto the xy plane
of the sequence of the intermediate morphologies {T̂ (i)}16i=0 and the final generated morphology
T̂ (17).

T̂(0) T̂(1) T̂(2) T̂(3) T̂(4)

T̂(5) T̂(6) T̂(7) T̂(8) T̂(9)

Figure 20: An example from the M1-INH dataset. We demonstrate the projections onto the xy plane
of the sequence of the intermediate morphologies {T̂ (i)}8i=0 and the final generated morphology
T̂ (9).

40

Under review as a conference paper at ICLR 2024

100 200
0

10

20

30
Reference

100 200

MorphVAE

100 200

MorphGrower

100 200

MorphGrower†

Figure 21: Visualized distribution on the VPM dataset. The horizontal axis represents the radius of
the concentric spheres, and the vertical axis represents the average number of intersections between
different neuron samples and the concentric spheres.

200 400 600
0

5

10

15

20

25
Reference

200 400 600

MorphVAE

200 400 600

MorphGrower

200 400 600

MorphGrower†

Figure 22: Visualized distribution on the RGC dataset. The horizontal axis represents the radius of
the concentric spheres, and the vertical axis represents the average number of intersections between
different neuron samples and the concentric spheres.

250 500 750
0

5

10

15

20

Reference

250 500 750

MorphVAE

250 500 750

MorphGrower

250 500 750

MorphGrower†

Figure 23: Visualized distribution on the M1-EXC dataset. The horizontal axis represents the radius
of the concentric spheres, and the vertical axis represents the average number of intersections between
different neuron samples and the concentric spheres.

200 400 600
0

10

20

30

40

Reference

200 400 600

MorphVAE

200 400 600

MorphGrower

200 400 600

MorphGrower†

Figure 24: Visualized distribution on the M1-INH dataset. The horizontal axis represents the radius
of the concentric spheres, and the vertical axis represents the average number of intersections between
different neuron samples and the concentric spheres.

41

Under review as a conference paper at ICLR 2024

−200 0 200
−200

−100

0

100

200
R

ad
ia

lD
is

ta
nc

e

Reference

−200 0 200

MorphVAE

−200 0 200

MorphGrower

−200 0 200

MorphGrower†

0

40

C
ou

nt
of

In
te

rs
ct

io
ns

Figure 25: Visualization of Sholl analysis for a real sample from the VPM dataset and for neuronal
morphologies generated by different methods.

−250 0 250
−400

−200

0

200

400

R
ad

ia
lD

is
ta

nc
e

Reference

−250 0 250

MorphVAE

−250 0 250

MorphGrower

−250 0 250

MorphGrower†

0

28

C
ou

nt
of

In
te

rs
ct

io
ns

Figure 26: Visualization of Sholl analysis for a real sample from the RGC dataset and for neuronal
morphologies generated by different methods

−200 0 200

−200

0

200

R
ad

ia
lD

is
ta

nc
e

Reference

−200 0 200

MorphVAE

−200 0 200

MorphGrower

−200 0 200

MorphGrower†

0

28

C
ou

nt
of

In
te

rs
ct

io
ns

Figure 27: Visualization of Sholl analysis for a real sample from the M1-EXC dataset and for neuronal
morphologies generated by different methods

−200 0 200

−200

0

200

R
ad

ia
lD

is
ta

nc
e

Reference

−200 0 200

MorphVAE

−200 0 200

MorphGrower

−200 0 200

MorphGrower†

0

70

C
ou

nt
of

In
te

rs
ct

io
ns

Figure 28: Visualization of Sholl analysis for a real sample from the M1-INH dataset and for neuronal
morphologies generated by different methods

42

Under review as a conference paper at ICLR 2024

x
y

z

3D Space xy yz xz

x
y

z

x
y

z

x
y

z

x
y

z

x
y

z

Figure 29: Visualization of some neuronal morphologies generated by MorphGrower over the VPM
dataset. The first column demonstrates the morphologies in 3D space. The three columns (from left to
right) on the right are the projections of morphology samples onto xy, yz and xz planes, respectively.
A group of pictures on each row corresponds to a generated neuronal morphology.

43

Under review as a conference paper at ICLR 2024

x
y

z

3D Space xy yz xz

x
y

z

x
y

z

x
y

z

x
y

z

x
y

z

Figure 30: Visualization of some neuronal morphologies generated by MorphGrower over the RGC
dataset. The first column demonstrates the morphologies in 3D space. The three columns (from left to
right) on the right are the projections of morphology samples onto xy, yz and xz planes, respectively.
A group of pictures on each row corresponds to a generated neuronal morphology.

44

Under review as a conference paper at ICLR 2024

x
y

z

3D Space xy yz xz

x
y

z

x
y

z

x
y

z

x
y

z

x
y

z

Figure 31: Visualization of some neuronal morphologies generated by MorphGrower over the
M1-EXC dataset. The first column demonstrates the morphologies in 3D space. The three columns
(from left to right) on the right are the projections of morphology samples onto xy, yz and xz planes,
respectively. A group of pictures on each row corresponds to a generated neuronal morphology.

45

Under review as a conference paper at ICLR 2024

x
y

z

3D Space xy yz xz

x
y

z

x
y

z

x
y

z

x
y

z

x
y

z

Figure 32: Visualization of some neuronal morphologies generated by MorphGrower over the
M1-INH dataset. The first column demonstrates the morphologies in 3D space. The three columns
(from left to right) on the right are the projections of morphology samples onto xy, yz and xz planes,
respectively. A group of pictures on each row corresponds to a generated neuronal morphology.

46

	Introduction and Related Works
	Preliminaries
	Methodology
	Generation Procedure Formulation
	Model Instantiation
	Sampling New Morphologies

	Experiments
	Evaluation Protocols
	Quantitative Results on Morphological Statistics
	Generation Plausibility with Real/Fake Classifier
	Generation Diversity Evaluation
	Snapshots of the Growing Morphologies

	Conclusion and Outlook
	Data Preprocess
	Resampling Algorithm
	Preprocessing of The Raw Neuronal Morphology Samples

	Definitions of Metrics
	Metric Adopted in Section 4.2
	Metric Adopted in Section 4.3
	Metric Adopted in Section 4.4

	More Discussion on MorphVAE
	Failure to Ensure Topological Validty of Generated Morphologies
	Failure to Generate Morphologies with Relatively Longer 3D-walks

	Significant Distinctions from Graph Generation Task
	Supplementary Clarifications for Resampling Operation
	Motivation of the Choice of Architectures
	Using LSTM as Our Branch Encoder
	Using vMF-VAE
	Treating A Branch as A node and Employing T-GNN-like Networks.

	Limitations and Future Work
	Limitations
	Future Directions
	Inclusion of the Branch Diameter
	Inclusion of the Spines or Boutons
	Use of Dense Imaging Data

	Other Potential Applications

	Implementation Details
	MorphVAE
	Our Method
	Supplementary Descriptions for Section 4.3
	Supplementary Descriptions for Section 4.4

	More Dataset Information
	More Experiment Results
	Ablation Study
	Quantitative Results on Morphological Statistics Excluding Soma Branches
	Plausibility Evaluation for the Samples Generated without Soma Branches Given
	More Generation Diversity Evaluation
	Sensitivity to the embedding size
	Evaluation in terms of FID and KID

	Notations
	The Distinct Scope of MorphGrower vs. MorphVAE
	Potential Negative Impacts
	Visualization
	Visualization of the Learned Global Condition Using t-SNE
	Visualization of the Distribution of Four Metrics
	Illustration of the Layer-by-layer Generation
	Sholl Analysis
	More Visualization Results of Generated Morphologies

