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ABSTRACT

To understand better good generalization performance in state-of-the-art neural
network (NN) models, and in particular the success of the AlphaHat metric based
on Heavy-Tailed Self-Regularization (HT-SR) theory, we analyze of a corpus of
models that was made publicly-available for a contest to predict the generaliza-
tion accuracy of NNs. These models include a wide range of qualities and were
trained with a range of architectures and regularization hyperparameters. We break
AlphaHat into its two subcomponent metrics: a scale-based metric; and a shape-
based metric. We identify what amounts to a Simpson’s paradox: where “scale”
metrics (from traditional statistical learning theory) perform well in aggregate, but
can perform poorly on subpartitions of the data of a given depth, when regulariza-
tion hyperparameters are varied; and where “shape” metrics (from HT-SR theory)
perform well on each subpartition of the data, when hyperparameters are varied for
models of a given depth, but can perform poorly overall when models with varying
depths are aggregated. Our results highlight the subtlety of comparing models
when both architectures and hyperparameters are varied; the complementary role of
implicit scale versus implicit shape parameters in understanding NN model quality;
and the need to go beyond one-size-fits-all metrics based on upper bounds from
generalization theory to describe the performance of NN models. Our results also
clarify further why the AlphaHat metric from HT-SR theory works so well at
predicting generalization across a broad range of CV and NLP models.

1 INTRODUCTION
It is of increasing interest to develop metrics to measure and monitor the quality of Deep Neural Net-
work (DNN) models, especially in production environments, where data pipelines can unexpectedly
fail, training data can become corrupted, and errors can be difficult to detect. There are few good
methods which can readily diagnose problems at a layer-by-layer level and in an automated way.

Motivated by this, recent work introduced the AlphaHat metric, (i.e., α̂), showing that it can
predict trends in the quality, or generalization capacity, of state-of-the-art (SOTA) DNN models
without access to any training or testing data (Martin et al., 2021)—outperforming other metrics from
statistical learning theory (SLT) in a large meta-analysis of hundreds of SOTA models from computer
vision (CV) and natural language processing (NLP). The α̂ metric is based on the recently-developed
Heavy-Tailed Self-Regularization (HT-SR) theory (Martin & Mahoney, 2021; 2019; 2020), which
is based on statistical mechanics and Heavy-Tailed (HT) random matrix theory. Further, being a
weighted average of layer metrics, understanding why AlphaHat works will help practitioners to
diagnose potential problems layer-by-layer.

In this paper, we evaluate the AlphaHat (α̂) metric (and its subcomponents) on a series of pre-
trained DNN models from a recent contest (“the Contest”) to predict generalization in deep learn-
ing (Jiang et al., 2020a;b). The Contest was interested in metrics that were “causally informative
of generalization,” and it wanted participants to propose a “robust and general complexity mea-
sure” (Jiang et al., 2020a;b). These Contest models were smaller and more narrow than those
analyzed in the large-scale meta-analysis (Martin et al., 2021). However, for that narrower class of
models, the Contest data was more detailed. There were models with a wider range of test accura-
cies, including models that generalize well, generalize poorly, and even models which appear to be
overtrained. The models are partitioned into sub-groups of fixed depth, where regularization hyperpa-
rameters (and width) are varied. This more fine-grained set of pre-trained models lets us evaluate
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the α̂ metric, and its subcomponents, across the opposing dimensions of depth and hyperparameter
changes, and more finely than analyzed previously on SOTA models.

Our analysis here provides new insights—on how theories for generalization perform on well-trained
versus poorly-trained models; on how this depends in subtle ways on what can be interpreted as
implicit scale versus implicit shape parameters of the models learned by these DNNs; and on how
model quality metrics depend on architectural parameters versus solver parameters. Most importantly,
this work helps clarify why the AlphaHat metric performs so well across so many models.
Background: Heavy-Tailed Self-Regularization (HT-SR) Theory. HT-SR theory is a phe-
nomenology, based on Random Matrix Theory (RMT), and motivated by the statistical mechanics of
learning, that explains empirical results on the spectral (eigenvalue) properties of SOTA DNNs (Mar-
tin & Mahoney, 2021). (A detailed discussion of HT-ST theory can be found in Martin & Mahoney
(2021); here we can only summarize the basics.) Empirical results (Martin & Mahoney, 2021; 2019;
2020) show that, for nearly all well-trained DNN models (in CV and NLP), the layer Correlation
Matrices X = 1

NWTW are HT, in the sense of being well-fit to a Power Law (PL) or truncated PL
distribution (even though individual matrices W are not HT elementwise). Moreover, HT-SR theory
indicates that as training proceeds and/or regularization is increased, the HTness of the correlations
(however it is measured) generally increases (Martin & Mahoney, 2021). Using these facts, HT-SR
theory allows one to construct various generalization capacity metrics for DNNs (which are imple-
mented in the WeightWatcher open source tool (wei, 2018)) that measure the model average
HTness (Alpha, AlphaHat, LogSpectralNorm, etc.) as a proxy for generalization capacity.

For moderately and very HT weight matrices, it is possible to quantify the HTness using a standard
PL fit of the ESD. In this case, smaller PL exponents (α) correspond to heavier tails. Given a
DNN weight matrix W, (N ×M, N ≥ M), let λ be an eigenvalue of the correlation matrix
X = 1

NWTW. The Empirical Spectral Density (ESD), ρ(λ), is the just an empirical fit of the
histogram of the M eigenvalues. In looking at hundreds of models and thousands of weight matrices,
the tail of the ESDs of well trained DNNs can nearly always be well fit to a PL distribution:

ρtail(λ) ∼ λ−α, xmin ≤ λ ≤ xmax. (1)
Here, xmax = λmax is the maximum eigenvalue of the ESD, and xmin is the start, fit using
the procedure of Clauset et al. (2009). The best fit is given by the KS-distance DKS (denoted
QualityOfAlphaFit below). For models that generalize well, the fitted α & 2.0 for (nearly)
every layer (Martin & Mahoney, 2021; 2019; 2020). Models that generalize better generally have a
smaller (weighted) average α, AlphaHat (α̂), when compared within an architecture series (VGG,
ResNet, ...) or with different size data sets (GPT vs GPT2) (Martin et al., 2021).

Still one may ask, “Why are the layer correlations matrices X HT, but the weight matrices W
themselves are not ?” For the ESD of W to be HT, either W must be HT elementwise, having many
spuriously large elements Wi,j , and/or X simply has many large eigenvalues. It is well known that
the well-regularized models should not contain spuriously large elements Wij , and methods like
L2-regularization attempt to ensure this. In contrast, the largest eigenvalues of X will correspond to
eigenvectors with the most important non-random information. Consequently, λmax will become
larger, not smaller, as more information is learned. (This is well known from RMT. However, it is
also known in machine learning, as it is the basis for methods like Latent Semantic Analysis (LSA).)
The HT-SR theory exploits these facts to build a theory of generalization for DNNs.

Using layer PL fits, one can define the HT-based AlphaHat metric for an entire DNN model. This
metric can predict trends in the quality of SOTA DNNs, even without access to training or testing
data (Martin et al., 2021). AlphaHat (α̂) is a weighted average over L layers of two complementary
metrics, the PL exponent α and the logarithm maximum eigenvalue log λmax:

α̂ =

L∑
l=1

αl log λ
max
l (2)

AlphaHat is both a weighted-average Alpha, weighted by the Scale of the layer ESD (log λmaxl ),
and a weighted-average LogSpectralNorm, weighted by the Shape of the layer ESD(α). We
therefore evaluate how these two subcomponents, the Alpha and LogSpectralNorm metrics,
individually perform when varying the opposing dimensions of depth (number of layers L) and
regularization hyperparameters (θ), such as dropout, momentum, weight decay, etc.

In investigating “why AlphaHat works,” we discovered that the Alpha and LogSpectralNorm
metrics frequently display a Simpson’s paradox. Being aware of challenges with designing good
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contests and with extracting causality from correlation (Pearl, 2009), we did not use the causal
metric provided by the Contest. Instead, we adopted a different approach: we identified Simpson’s
paradoxes within the Contest data; and we used this to understand better the AlphaHat metric from
HT-SR theory. A Simpson’s paradox can arise when looking for trends in a large data set containing
of multiple sub-groups; it occurs when a trend for the total data set reverses–or disappears–when
considering the sub-groups individually (Simpson, 1951; Bickel et al., 1975; Robinson, 2009; Kievit
et al., 2013). Simpson’s paradoxes are particularly relevant when one wants to understand the data
and attribute causal interpretations to the underlying data or model.

Because AlphaHat combines two complementary metrics, the LogSpectralNorm and Alpha,
we consider two classes of metrics that have been used to predict DNN model quality: norm-based
metrics from SLT (LogSpectralNorm); and HT-based metrics from HT-SR theory (Alpha). The
norm-based metrics describe the Scale associated with the model implicitly-learned by the training
process, and they have been used to provide generalization theory upper bound on simple models.
Empirically, they can perform in strange and counter-intuitive ways on even moderately-large realistic
models (Jiang et al., 2019). The HT (or other PL) metrics describe the HTness of the layer correlations
using the Shape of the implicitly-learned model, are related to HT-SR theory (Martin & Mahoney,
2021; 2019; 2020). The Shape-based Alpha metric has been conjectured to predict test accuracy
when only varying regularization hyperparameters, and the AlphaHat metric was developed to
improve Alpha by correcting for the Scale of different layers when comparing similar models of
differing depth (i.e., VGG11 – VGG19) (Martin & Mahoney, 2021; Martin et al., 2021).

Our main results. We apply these SLT and HT-SR metrics to predict generalization accuracies of
the pre-trained models provided in the Contest, as a function of both model depth L and regularization
hyperparameters θ. Our main contributions are the following.
New shape-based metrics. Based on our preliminary analysis of the data, we introduce two new
data-free quality metrics—Alpha and QualityOfAlphaFit, motivated by the HT-SR theory.
Existence of Simpson’s paradox in Contest data. We examine models provided by the Contest,
and we identify Simpson’s paradoxes. Depending on the specific Contest task and model sub-group,
LogSpectralNorm and Alpha are either strongly anti-correlated or modestly to weakly anti-
correlated with each other. For both Contest tasks (Task1 and Task2), and each model sub-group,
the LogSpectralNorm trend (at best) increases with increasing model quality (in disagreement
with SLT). For Task1, it increases when considering all models together; however, for Task2, it
decreases when grouping all models, exhibiting a clear Simpson’s paradox. Also, for both Contest
tasks, and for each model subgroup, Alpha decreases with increasing model quality (in agreement
with HT-SR theory). For Task1, it decreases when considering all models together; however, for
Task2, it increases when aggregating all models, again exhibiting a clear Simpson’s paradox.

That is: (1) for both LogSpectralNorm and Alpha, the Task2 models exhibit a Simpson’s para-
dox; (2) the predictions of LogSpectralNorm disagree with (SLT) theory, except when aggregated
when a Simpson’s paradox is present; and (3) the predictions of Alpha (and LogSpectralNorm)
agree agree with (HT-SR) theory, except when aggregated when a Simpson’s paradox is present.
Shape parameters and hyperparameter variation. The Scale based LogSpectralNorm can do
well when the data are aggregated, but it does very poorly when the data are segmented by architecture
type (here, depth). More generally, this metric predicts test accuracy with large architectural changes,
e.g., depth. However, it may behave oppositely to that suggested by bounding theorems, meaning
that it can be anti-correlated with test accuracies, when varying the regularization hyperparameters.
This confirms unexplained observations made in a different setting (Jiang et al., 2019).

The Shape based Alpha from HT-SR theory is predictive of test accuracy as hyperparameters vary,
with large-scale architectural changes held fixed. Our results are the first to demonstrate that Alpha—
a Shape metric—predicts test accuracy, as hyperparameters θ are varied independently. Also, and
importantly, the Alpha metric performs better for higher quality models; this is evident comparing
results for the Task2 2xx versus 6xx models. For models with better test accuracies, the Alpha
metric predicts them better. This is seen visually in Figure 5, and also in Table 5, which compares
both linear and rank correlation metrics, for model sub-groups with a fixed number of layers L.
Extracting scale and shape metrics from pre-trained DNN models. While computing norm-based
Scale metrics is straightforward, computing HT-based Shape metrics is much more subtle. From
HT-SR theory (Martin & Mahoney, 2021), we want to fit the tail of ESD of layer weight matrices
to a PL distribution, as in Eqn. (1). This is accomplished with the WeightWatcher tool) (wei,
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2018). The parameters xmax (the largest eigenvalue) and α (the PL exponent) in Eqn. (1) (below)
have a natural interpretation in terms of the scale and shape of the PL distribution, so we interpret the
corresponding LogSpectralNorm and Alpha as Scale and Shape DNN model quality metrics.

2 PRELIMINARIES AND RELATED WORK
Predicting trends in model quality. There is a large body of (older (Bartlett, 1997) and more
recent (Neyshabur et al., 2015; Bartlett et al., 2017; Arora et al., 2018)) work from SLT on providing
upper bounds on generalization quality of models; and there is a smaller body of (older (Engel & den
Broeck, 2001) and more recent (Zdeborová & Krzakala, 2016; Martin & Mahoney, 2021; Bahri et al.,
2020)) work using ideas from statistical mechanics to predict performance of models. Most relevant
for us are the recent results on “Predicting trends in the quality of state-of-the-art neural networks
without access to training or testing data” (Martin et al., 2021) and “Fantastic generalization measures
and where to find them” (Jiang et al., 2019). The former work (Martin et al., 2021) considered a very
broad range of CV and NLP models, including nearly every publicly-available pre-trained model,
totaling to hundreds of SOTA models; and it focused on metrics that perform well on SOTA, without
any access to training and/or testing data. The latter work (Jiang et al., 2019) considered a larger
number models drawn from a much narrower range of CV models; and it considered a broad range of
metrics, most of which require access to the training and/or testing data.

The Contest used a casual measure, similar to that in Jiang et al. (2019), to evaluate all the models,
for both tasks, in aggregate, as opposed to evaluating the individual sub-groups, as we do here. This
causal metric is highly suspect. In particular, we point to Dziugaite et al. (2020), who used very
different methods than ours to obtain conclusions consistent with ours. They noted that the kind
of causal measures proposed by Jiang et al. (2019) can obscure failures and successes; and they
argued that generalization studies should be evaluated using an aggregate measure of “distributional
robustness.” There is also work that attempts to identify reliable generalization metrics, but using
different evaluation methods than ours (Dziugaite et al., 2020; Liao et al., 2018; Thomas et al., 2019).

None of the works above, however, have considered that Simpson’s paradoxes can arise in this kind
of analysis. Pearl has argued for some time that causal relationships can not be inferred directly from
observational data because of the presence of potential Simpson’s paradoxes (Pearl, 2009). Simpson’s
paradoxes often arise in social science and biomedicine, since understanding causal relationships is
particularly important in those areas. To our knowledge, this is the first application of these ideas in
this area. Importantly, we would not have been able to observe the tradeoff between Scale and Shape
metrics if we had chosen to use an aggregate, or, worse, a causal measure, here.

Models from a contest. The Contest (Jiang et al., 2020a;b) covered a rather narrow class of CV
models, but it provided multiple versions of each, trained with different numbers of layers (depths)
and regularization hyperparameters. The approximately 150 CV models were organized into two
architectural types, VGG-like models and Network-in-Network models, each with several sub-groups
of fixed depth (number of layers L), and trained with different batch sizes, dropout, and weight decay.

See Table 4 in Appendix B for a summary of the models and sub-groups. There are two model groups:
Task1 and Task2. In every model sub-group (each row in Table 4), all models have the same depth
(number of layers). Task1 contains 2 Conv2D widths in each subgroup, whereas in Task2, only
the the regularization is varied. Briefly, the models are:

• Task1 (‘task1_v4”): 96 VGG-like models, trained on CIFAR10, with 4 subgroups having 24
models each: 0xx, 1xx, 2xx, 5xx, 6xx, and 7xx.

• Task2 (“task2_v1”): 54 models, with stacked Dense layers, trained on SVHN, with 3 subgroups
having 18 models each: 2xx, 6xx, 9xx, and 10xx.

3 EXTRACTING SCALE / SHAPE PARAMETERS FROM PRE-TRAINED MODELS

3.1 COMPUTING SCALE AND SHAPE PARAMETERS WITH NORMS AND PL EXPONENTS

For completeness, we have evaluated several quality metrics, including: two from SLT (including
LogSpectralNorm and LogFrobeniusNorm) (Jiang et al., 2019; 2020a;b); two from statistical
mechanics and HT-SR Theory (including AlphaHat and LogAlphaShattenNorm) (Martin &
Mahoney, 2021; 2019; 2020); and two (Alpha and QualityOfAlphaFit) that we introduce in
this paper. See Table 3 and the discussion in Appendix A for a summary of the best performing.

All metrics reported are averages over the individual layer-metrics, as computed using the publi-
cally available and open-source WeightWatchertool (wei, 2018). Both computing the norm
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(a) ESD (log-log plot) (b) ESD (lin-lin plot) (c) ESD (log-lin plot) (d) PL fit quality vs xmin

Figure 1: Illustration of the role of the ESD shape in determining the PL parameter α in the PL fit.
Shown is VGG16, FC3 (a nearly “ideal” example). (See Appendix C for less ideal examples.)

metrics and fitting HT distributions has subtleties (Clauset et al., 2009; Newman, 2005), and
WeightWatcher encaspulates the process, making it straightforward and reproducible.

“Scale” parameters. The LogSpectralNorm and LogFrobeniusNorm are layer averages
over the logarithm of the corresponding norm (Jiang et al., 2019). (See Table 4 for details.) These
norms have natural interpretation as a layer “scale” implicitly learned by the NN during training.
The LogSpectralNorm is also measure of average HTness, and is anti-correlated with Alpha in
many cases.

“Shape” parameters. The Alpha metric takes the layer average of the PL exponent α, as fit to
the tail of the layer ESD ρtail(λ). The parameter α that is the same one that arises in the recently-
developed HT-SR theory (Martin & Mahoney, 2021; 2019; 2020). The QualityOfAlphaFit
metric is the average Goodness of Fit, determined using a Kolmogorov-Smirnov test (or KS-test),
denoted DKS . Neither Alpha nor QualityOfAlphaFit have been considered previously.

Combining shape and scale. The AlphaHat (Martin et al., 2021) and
LogAlphaShattenNorm (Martin & Mahoney, 2020) combine Shape and Scale. AlphaHat
which is a weighted average of layer α, weighted by the layer log λmax. LogAlphaShattenNorm
is logarithm of the Shatten norm of layer weight matrices, where the Shatten parameter for
each layer is the α from the PL fit of that layer. The AlphaHat metric approximates the
LogAlphaShattenNorm for the tail of the ESD, but both give similar results in practice.

3.2 FITTING ESDS TO PLS

In practice, these PL fits require some care to obtain consistent, reliable results; and, for this reason,
here we describe some of these issues. Among other things, it is important to understand the behavior
of the PL fit as xmin is varied. See Figure 1 for an illustrative (very “nice”) example; and see
Appendix C for more discussion of these fitting issues, including dealing with non-ideal ESDs.
(These figures can be generated by the WeightWatcher tool.)

In Figure 1, we consider the third fully connected (FC) layer from VGG16 (which was studied
previously (Martin & Mahoney, 2021; Martin et al., 2021)), which is a nearly “ideal” example that
we use to illustrate the method. In 1(a), 1(b), and 1(c), respectively, we show the ESD in log-log plot,
linear-linear plot, and log-linear plot; and in each of those plots, we mark the position of xmax, the
xmin found by the fitting procedure, and a suboptimal value of xmin chosen by hand.

The log-log plots, in 1(a) highlight the (well-known but often finicky) linear trend on a log-log plot.
To aid the eye, in 1(a), we show the slopes on a log-log plot, as determined by the α fit for that
value of xmin. The linear-linear plots, in 1(b), the usual so-called Scree plots, are not particularly
informative. The log-linear plots, in 1(c), shows that the optimal value of xmin is near the peak of the
distribution, and that the distribution is clearly not log-normal, having a strong right-ward bias, with
a spreading out of larger eigenvalues as λmax is approached.

In 1(d), we show the quality of the fit, measured by the KS distance, as a function of xmin. The
interpretation of these PL fits is that, above that value of xmin and below the value of xmax, the ESD
is fit to a line, with slope −α, in a log-log plot. In 1(d), we see that the suboptimal value of xmin was
chosen to be a local minimum in the the KS distance plot, and that the fit quality gradually degrades
as xmin increases. Looking at 1(c), we see that there is a very slight “shelf” in the ESD probability
mass; and that the suboptimal value of xmin corresponds to fitting a much smaller portion of the ESD
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with a PL fit. For high-quality models, like this one, smaller values of α corresponds to better models,
and decreasing α is well-correlated with increasing λmax.1

3.3 COMPARING SCALE VERSUS SHAPE PARAMETERS

Here, we compare Shape versus Scale parameters, illustrating that they capture different infor-
mation about models, as task, depth, and regularization / solver hyperparameters are varied.

(a) Task1 models. (b) Task2 models.

Figure 2: Comparison of the LogSpectralNorm and
Alpha metrics, for Task1 and Task2 models.

See Figure 2, which compares Alpha
and LogSpectralNorm for mod-
els from Table 4, segmented into sub-
groups corresponding to models with
the same depth. See also Table 1 for
more detailed numerical results. For
some model sub-groups, Alpha and
LogSpectralNorm are strongly
anti-correlated; while for other sub-
groups, they are modestly to weakly
anti-correlated, at best.

R2 Kendall-τ Correlation
Task1- 0xx 0.162 0.29 Weak
Task1- 1xx 0.405 0.394 Modest
Task1- 2xx 0.803 0.788 Strong
Task1- 5xx 0.124 0.117 Weak
Task1- 6xx 0.124 0.263 Weak
Task1- 7xx 0.64 0.909 Strong
Task1- AVG 0.38 0.46
Task2- 2xx 0.113 0.0327 None
Task2- 6xx 0.282 0.451 Modest
Task2- 9xx 0.754 0.600 Strong
Task2- 10xx 0.273 0.636 Modest
Task2- AVG 0.36 0.43

Table 1: Comparison of the Alpha and
LogSpectralNorm metrics, for Task1 and Task2
models. R2 and Kendall-τ for Task1 and Task2, both
aggregated and partitioned into model sub-groups.

For example, for Task1, in the 2xx
and 9xx models, the two metrics are
strongly anti-correlated metrics, with
R2 > 0.6 and a Kendall-τ rank
correlation metric of τ > 0.75;2

in the 1xx models, they are mod-
estly so, with R2 ∼ 0.4 and τ ∼
0.4; and in the remaining model sub-
groups, R2 < 0.2 and τ ≤ 0.3,
which we identify as weakly cor-
related. Similarly, in Task2, we
can identify model sub-group 9xx
has having well anti-correlated av-
erage metrics, with large R2 and
Kendall-τ ; model sub-groups 6xx and
10xx exhibit intermediate behavior,
as R2 < 0.3 for each; and model
sub-group 2xx shows no substantial
correlation at all between Alpha
and LogSpectralNorm. See Ap-
pendix D for more details on two il-
lustrative pairs of examples.

4 A SIMPSON’S PARADOX: ARCHITECTURE VERSUS SOLVER KNOBS

4.1 BASIC PROPERTIES OF THE DATA

The obvious Baseline for model quality is the training accuracy. If we have access only to pre-
trained models and no data (as in prior work (Martin et al., 2021) and as is assumed with Alpha and
LogSpectralNorm), then we cannot check this baseline. Similarly, if the training error is exactly
zero, then this is not a useful baseline. Otherwise, we can check against it, and we expect testing
accuracy to improve as training accuracy improves.

In a practical setting, for a properly trained model, one expects that test accuracy will increase
with increasing training accuracy, or at least not decrease, when the model capacity and dataset
it fixed.3 If the test accuracy does decrease, this indicates that the model may be somewhat

1This is predicted by HT-SR Theory (Martin & Mahoney, 2021; Martin et al., 2021), but it can be surprising
from the perspective of SLT (Jiang et al., 2019; 2020a;b).

2Likewise, a strong linear correlation, not just good rank correlation, is predicted for good models by HT-SR
theory (Martin & Mahoney, 2021), and this has been observed previously for SOTA CV and NLP models (Martin
et al., 2021).

3When the model capacity or data set size is changed, then test accuracy may not track the training accuracy
due to the Double Descent phenomena (Belkin et al., 2019), and the fact that NNs can exhibit complex phase
behavior (Martin & Mahoney, 2017). While unlikely, we can not totally discount this for the Task1 models.
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overtrained and therefore will not generalize well. To examine this, we look at different model-
groups which have a fixed depth (L). Figure 3 plots the relationship between training and testing
accuracies for the Task1 and Task2 models, color-coded by model_number (0xx, 1xx, . . . ).

(a) Task1 models. (b) Task2 models.

Figure 3: Relationship between training accuracy and testing
accuracy for Task1 and Task2 models. One expects a
positive correlation or (if the training error is near zero)
at least not a negative correlation. Observe, however, that
in many cases they are strongly anti-correlated. See also
Table 2.

See also Table 2 for more detailed nu-
merical results. By looking at the both
the trendlines and the distribution of
points in Figure 3, we can identify
such overtrained models here: almost
all of the Task1 models (except per-
haps the very highly accurate 5xx and
6xx models, and the moderately accu-
rate 0xx and 1xx models); the Task2
9xx model; and to a lesser extent the
Task2 2xx model.

For both Task1 and Task2, there
is a very large gap between the train-
ing and testing accuracies. A posi-
tive correlation in Figure 3 indicates
that improving the training accuracy,
even marginally, would lead to im-
proved testing accuracy. Instead, we
see that for Task1, for most model
sub-groups (1xx, 2xx, 6xx, and 7xx),
training and testing accuracies are (very) anti-correlated. For other two (0xx and 5xx), the trendline
is only weakly anti-correlated. For all models, however, as the training accuracy approaches 1, the
test accuracy plummets (except for a few outliers in the 5xx and 6xx groups). In this sense, these
Task1 models are over-trained; they clump into two sub-groups, those for this R2 ≈ 0 and those
for which R2 > 0.1. Similarly, for Task2, for model_number 9xx, they are (very) anti-correlated,
and otherwise they are (slightly) anti-correlated for 2xx. The other two models show essentially no
discernible trend. In all cases, improving training accuracy leads either to no noticeable improvement
in test accuracy, or to worse testing performance.

R2 RMSE Kendall-τ Correlation
Task1 0xx 0.01 0.02 0.10 Weak
Task1 1xx 0.12 0.02 0.33 Modest
Task1 2xx 0.22 0.02 0.54 Strong
Task1 5xx 0.01 0.04 0.01 Weak
Task1 6xx 0.16 0.05 0.31 Modest
Task1 7xx 0.78 0.02 0.60 Strong
Task1 AVG 0.22 0.03 0.31
Task2 2xx 0.24 0.02 0.25 Modest
Task2 6xx 0.02 0.02 -0.05 Weak
Task2 9xx 0.83 0.01 0.73 Strong
Task2 10xx 0.02 0.02 0.02 Weak
Task2 AVG 0.28 0.02 0.24

Table 2: Quality metrics (for R2, larger is better; for RMSE,
smaller is better; and for Kendall-τ rank correlation, larger
magnitude is better) for the relationship between training
error and testing error, as illustrated in Figure 3.

Overall, many of the Task1 mod-
els, as well as model Task2 9xx, be-
have qualitatively and quantitatively
differently than the reasonably well-
trained Task2 models. The Task1
models are generally of lower qual-
ity. Some interpolate exactly to 0 test
error while others do not—a signif-
icant difference. We suspect some
may be overtrained. Notably, only
the Task2 models display the Simp-
son’s paradoxes we identify here. It is
those where we can understand why
the AlphaHat metric works.

4.2 VISUALIZING THE SIMPSON’S
PARADOX IN DNN MODELS

We now consider how the test
accuracy varies against the
LogSpectralNorm and Alpha,
respectively, overall and broken down
for each model sub-group, for all models from Table 4. See Figure 4 and Figure 5 for a summary.
In our analysis, we first look at each model sub-group (0xx, 1xx, 2xx, . . . ) individually, which
corresponds to a specific depth L, and we measure the regression and rank correlation metrics on the
test accuracy as the hyperparameters vary.
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(a) Task1 models. (b) Task2 models.

Figure 4: Test accuracy versus LogSpectralNorm, for
Task1 and Task2, overall and segmented by model sub-
group. Observe the Simpson’s paradox for Task2 models.

From Figure 4, for each model
sub-group, the LogSpectralNorm
increases with increasing model
quality. For Task1, the
LogSpectralNorm increases
when all models are considered
together; but for Task2, the
LogSpectralNorm decreases
when all models are considered
together, exhibiting a clear Simpson’s
paradox.

From Figure 5, for each model sub-
group, the Alpha decreases with in-
creasing model quality. For Task1,
the Alpha decreases when all mod-
els are considered together; but for Task2, the Alpha increases when all models are considered
together, exhibiting a clear Simpson’s paradox.

(a) Task1 models. (b) Task2 models.

Figure 5: Test accuracy versus Alpha, for Task1 and
Task2, overall and segmented by model sub-group. Observe
the Simpson’s paradox, in particular for Task2 models.

Both metrics exhibit a clear Simpson’s
paradox for Task2.

Based on bounding theorems from
SLT, one might expect that smaller val-
ues of LogSpectralNorm would
correspond to better models. Sim-
ilarly, based on HT-SR theory, one
would expect that smaller values of
Alpha would correspond to better
models. With respect to these refer-
ences, the LogSpectralNorm be-
haves the opposite of what SLT would
suggest, except when considering the
aggregated data (all models) when
a Simpson’s paradox is present (i.e.,
in Task2). On the other hand, the
Alpha behaves precisely as what the HT-SR theory predicts, except when considering the aggregated
data when a Simpson’s paradox is present. As shown below, however, by combining both into the
AlphaHat metric, the Simpson’s paradox in Alpha for the Task2 models can be alleviated.

4.3 CHANGING ARCHITECTURES VERSUS CHANGING SOLVER HYPERPARAMETERS

Here, we provide a more detailed analysis of the main results presented in Figure 4 and Fig-
ure 5. See Figure 6 for histograms summarizing some of these results, in particular for Alpha
and LogSpectralNorm. See also Table 5 and Table 6 in Appendix E for detailed statistics,
including R2 and Kendall-τ statistics, for metrics from Table 3.

From these, we see that Alpha (the mean PL exponent, averaged over all layers, which corresponds
to a Shape parameter) is correlated with the test accuracy for each DNN, when changing just the
hyperparameters, θ. While it does not always exhibit the strongest correlation, it is the most consistent.
We also see that LogSpectralNorm (the mean log10 spectral norm, also averaged over all layers,
which corresponds to a Scale parameter) is correlated with the test accuracy, when changing the
number of layers, but it is anti-correlated when changing the hyperparameters. Thus, it performs
quite poorly when trying to identify more fine-scale structure.

For completeness, we have also included LogFrobeniusNorm, showing that it is often but not
always correlated with test accuracy, and QualityOfAlphaFit (the KS distance), showing that it
is correlated with test accuracy in about half the cases.

Finally, consider Figure 7, which shows the test accuracy versus AlphaHat, for Task1 and
Task2, segmented by model sub-group, and compare this with Figure 4 (for LogSpectralNorm)
and Figure 5 (for Alpha). Recall that AlphaHat may be viewed either as a weighted Alpha
(weighted by the layer λmaxl ) or as a weighted LogSpectralNorm (weighted by the layer αl).
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(a) Task1, R2 (b) Task2, R2 (c) Task1, Kendall-τ (d) Task2, Kendall-τ

Figure 6: Comparison of predictions for test accuracies by Alpha 〈α〉 and LogSpectralNorm
〈log10 ‖W‖22〉, as measured using R2 and Kendall-τ correlation and rank correlation metrics, respec-
tively, for Task1 and Task2, for each model sub-group. (See Table 5 for more details.)

As a weighted Alpha, the spectral norm weighting corrects for the fact that Alpha is scale-
invariant, accounting for the variation in the scale of each weight matrix across different layers. As a
weighted LogSpectralNorm, the α weighting corrects for the fact that the LogSpectralNorm
is anti-correlated with the test accuracy when varying the regularization hyperparameters.

(a) Task1. (b) Task2.

Figure 7: Test accuracy versus AlphaHat, for Task1 and
Task2, segmented by model sub-group. (Similar results are
seen for LogAlphaShattenNorm.)

In either case, this combination “cor-
rects for” the Simpson’s paradoxes
observed in Figures 4 and 5. This
is the explanation for the previously-
observed success of this metric at pre-
dicting the quality of SOTA DNN
models (Martin et al., 2021).

5 CONCLUSION

A goal of the HT-SR theory is to
develop model quality metrics, like
Alpha and AlphaHat, that can be
applied to so-called pre-trained DNN
models, by only watching the weights,
i.e., without the need for access to
training/testing data; and, in doing so,
to also provide layer-by-layer quality
metrics. Previous work demonstrated
the utility of the AlphaHat metric when applied to a wide range of large scale and production,
pre-trained CV and NLP models (Martin et al., 2021).

Here, we seek to better understand why the AlphaHat model quality metric works so well. We
also present, for the first time, evidence that the Alpha metric correlates well with changes in
regularization hyperparameters, and, in fact, works better with better performing models.

To accomplish this, we evaluated the AlphaHat metric and its subcomponent metrics, Alpha
and LogSpectralNorm, on a set of publicly-available pre-trained models made available from
a recent machine learning contest aimed at understanding causes of good generalization. To our
initial surprise, we identified a clear Simpson’s paradox in the data. From our exploration of that,
we discovered the complementary roles of Scale metrics versus Shape metrics in evaluating model
quality. Overall, our analysis explains the success of the WeightWatcherAlphaHat metric;
it combines Scale and Shape information (Martin et al., 2021), and also shed light on previously-
observed peculiarities of norm-based metrics (Jiang et al., 2019). Our results also highlight the need
to go beyond one-size-fits-all– especially causal metrics– to describe the performance of SOTA NNs.

Based on our findings, we expect that LogSpectralNorm (and related Scale-based metrics) can
capture coarse model trends due to changes in depth / number of layers whereas Alpha (and related
Shape-based metrics) can capture fine-scale model properties (e.g., changes in regularization and
other hyperparameters, including batch size, step scale, etc.) more generally, providing data-free
diagnostics for DNNs on layer-by-layer basis. (See Appendix F for some additional discussion.)
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A METRICS CONSIDERED IN OUR ANALYSIS

As mentioned in Section 2, we considered a range of metrics in our analysis. See Table 3 for a
summary of the best performing. This includes both average PL metrics, from HT-SR Theory, and
average log-norm metrics, from SLT, as well as metrics that combine the two approaches. (Other
metrics performed worse, exhibited similar qualitative trends, or required access to training and
testing data.)

Complexity Metric Average Ref. Scale or
Shape?

Need
data?

Need
initial

weights?

Need
GPUs?

LogSpectralNorm 〈log10 ‖W‖22〉 (Jiang et al. (2019)) Scale No No No
LogFrobeniusNorm 〈log10 ‖W‖2F 〉 (Jiang et al. (2019)) Scale No No No
Alpha 〈α〉 (this paper) Shape No No No
QualityOfAlphaFit DKS (this paper) Shape No No No
AlphaHat α̂ (Martin et al. (2021)) Both No No No
LogAlphaShattenNorm 〈log10 ‖W‖2α2α〉 (Martin et al. (2021)) Both No No No

Table 3: Overview of model quality metrics. Based on our initial analysis of Contest models, we
propose and evaluate Alpha and QualityOfAlphaFit. The metrics in this table do not need
access to training/testing data; they do not need information such as the initial weight distribution;
and they do not require training/retraining (and thus access to GPUs).

Average Power-Law (PL) metrics. Given a (pre-)trained DNN with L layer weight matrices W,
PL metrics are computed by fitting the ESD of the correlation matrix X = WTW of each layer to a
PL, and then averaging over all layers.4 In more detail, the tail of each layer ESD is fit to a PL of the
form:

ρtail(λ) ∼ λ−α, xmin ≤ λ ≤ xmax.

The fitting procedure selects the optimal PL exponent α, and the adjustable parameter xmin. The PL
exponent α characterizes the tail of the ESD; it measures what may be interpreted as the “shape” of
most important part of the spectrum.

• Alpha: 〈α〉 = 1
L

∑
l αl. This is a simple average of fitted α over all layers L. From the perspective

of statistical mechanics, Alpha quantifies amount of correlation in the layer weight matrices.5
From the perspective of statistics, Alpha may be viewed a shape parameter.

• QualityOfAlphaFit: 〈DKS〉. For the given set of parameters (α, xmin, xmax), the quality
of the PL fit can be measured by the Kolmogorov-Smirnov (KS) distance (DKS) between the
empirical and theoretical distributions. The smaller DKS is, the better the fit.

We describe the PL fitting procedure in more detail (in Section 3.1), and we give examples of both
high and low quality fits (in Appendix C). To our knowledge, we are the first to use Alpha and
QualityOfAlphaFit to gauge model complexity.6

Average Log-Norm metrics. Log-Norm metrics are related to product-norm measures of the
model complexity C. Given a (pre-)trained DNN with L layers, and layer weight matrices Wl, we
define the C as the product over a norm of the layer weight matrices

C := ‖W1‖ × ‖W2‖ × · · · ‖WL‖, (3)

4For Conv2D(k, k,N,M) layers, we extract N = k × k matrices of shape N ×M ; typically, k = 1 or 3.
5Prior work (Martin & Mahoney, 2021) has argued that NNs resemble the strongly correlated systems, e.g.,

in electronic structure theory and statistical mechanics, which was the origin of early work in heavy-tailed
random matrix theory (Bouchaud & Potters, 2003).

6Prior work (Martin et al., 2021) used a weighted version of this metric (AlphaHat). There, PL exponents
α were computed, but they were not evaluated as a measure of test accuracy, and they were not shown to correlate
with variations in solver hyperparameters (such as batch size, dropout, weight decay, etc.), as we do for the first
time here.
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where ‖Wl‖ denotes some arbitrary matrix norm for layer l.7 If we take the logarithm of both side,
we can express this complexity as an average over all layers (L), in log-units

log10 C ∼ 〈log10 ‖W‖〉 :=
1

L

N∑
l=1

log10 ‖Wl‖. (4)

Metrics of this form provide a measure of the “scale” (in log units) of a model.

• LogSpectralNorm: 〈log10 ‖W‖22〉. This is the (average) of the log of the layer Spectral norms.
The layer Spectral Norm is just maximum eigenvalue λmax of the correlation matrix X.8

• LogFrobeniusNorm: 〈log10 ‖W‖2F 〉. This is the average of the log of the Frobenius norm for
each layer weight matrix. It is included for completeness.

Importantly, these metrics take a layer average, and not a sum, since otherwise these metrics will
trivially depend on the depth L of the network.

Combining PL and Log-Norm metrics. Previous work considered metrics that combine “scale”
and “shape” ideas (Martin & Mahoney, 2020; Martin et al., 2021), two of which we consider here.

• AlphaHat: α̂ = 1
L

∑
l αl log10 λ

max
l . This has been used previously as a complexity measure

for a large number of pre-trained NNs of varying depth and hyperparameters (Martin & Ma-
honey, 2020; Martin et al., 2021). AlphaHat may be viewed in one of two complementary
ways: either as a weighted Alpha (weighted by the layer λmaxl ); or, equivalently, as a weighted
LogSpectralNorm (weighted by the layer αl). As a weighted Alpha, the spectral norm weight-
ing corrects for the fact that Alpha is scale-invariant, accounting for the variation in the scale of
each weight matrix across different layers. As a weighted LogSpectralNorm, the α weighting
corrects for the fact that the LogSpectralNorm is anti-correlated with the test accuracy when
varying the regularization hyperparameters.

• LogAlphaShattenNorm: 〈log10 ‖W‖2α2α〉 = 〈log10 ‖X‖αα〉. This has been used previ-
ously (Martin & Mahoney, 2020), and it is the average of the Log of the standard Shatten norm,
defined with the value of 2α from the PL fit of the ESD of each layer weight matrix W. The
AlphaHat metric approximates the LogAlphaShattenNorm under certain conditions (Martin
& Mahoney, 2020).

Table 3 provides a summary of the metrics we considered. There are many other metrics that we
examined but that we do not describe here: the path norm and Fisher-Rao metrics (Jiang et al.,
2020a;b) are more expensive, perform worse, and/or don’t add new insight; the Jacobian Norm is
also too expensive to compute; and other metrics described in the Contest (Jiang et al., 2020a;b)
either were uninteresting (e.g., the sum—not average—of layer norms, which is a proxy for depth) or
performed very poorly. 9

B MODELS CONSIDERED IN OUR ANALYSIS

See Table 4 for a summary of the models we considered in our analysis. These are described in more
detail in Section 2. See also Jiang et al. (2020a;b) for more details.

C MORE ON DETERMINING SHAPE PARAMETERS (FITTING ESDS TO PLS),
FROM SECTION 3.2

Fitting data to PLs is very finicky (Newman, 2005; Sornette, 2007; Clauset et al., 2009; Beggs &
Timme, 2012; Alstott et al., 2014; Marshall et al., 2005). We have found it best to proceed with a
combination of visual inspection and analysis with the WeightWatcher tool (wei, 2018).

7We drop the layer subscript l when it is clear from the context.
8Prior work has shown that using norm-based metrics in log-scale tends to be superior to working with them

in non-log scale (Martin et al., 2021). Even when taking averages, however, norm-based metrics, unlike Alpha,
are not scale invariant.

9For the Conv2D layers, extracting the layer weight matrices some arbitrary choices; see Martin & Mahoney
(2020) for a discussion of how the WeightWatcher tool does this
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Series # L Batch Size Dropout Weight Decay Conv Width Dense (k)
Task1 0xx 4 8, 32, 512 0.0, 0.5 0.0, 0.001 256, 512 1 1
“task1_v4” 1xx 5 8, 32, 512 0.0, 0.5 0.001 256, 512 2 1
(VGG-like) 2xx 5 8, 32, 512 0.0, 0.5 0.0 256, 512 2 1

5xx 8 8, 32, 512 0.0, 0.5 0.001 256, 512 1 3
6xx 8 8, 32, 512 0.0, 0.5 0.0 256, 512 2 3
7xx 9 8, 32, 512 0.0, 0.5 0.0 256, 512 2 3

Task2 2xx 13 32, 512, 1024 0.0, 0.25, 0.5 0.0, 0.001 512 - -
“task2_v1” 6xx 7 32, 512, 1024 0.0, 0.25, 0.5 0.0, 0.001 512 - -
(Network- 9xx 10 1024 0.0, 0.25, 0.5 0.0, 0.001 512 - -
in-Network) 10xx 10 32, 512 0.0, 0.25, 0.5 0.0, 0.001 512 - -

Table 4: Overview of models we considered in each task and sub-group, including variations in
depth (L), regularization hyperparameters (Batch Size, amount of Dropout, and Weight Decay),
and architectural changes (Width of selected Convolutional Layers, number of selected Dense
layers, and kernel-size (k = 1, 3) for selected Convolutional layers). See Jiang et al. (2020a;b) for
complete details.

Visual inspection of ESDs. The following advice, taken directly from Sornette (Sornette, 2007), is
particularly helpful for visual inspection of ESDs: “we recommend a preliminary visual exploration by
plotting the survival and density distributions in (i) linear-linear coordinates, (ii) log-linear coordinates
(linear abscissa and logarithmic ordinate) and (iii) log-log coordinates (logarithmic abscissa and
logarithmic ordinate). The visual comparison between these three plots provides a fast and intuitive
view of the nature of the data.

• A power law distribution will appear as a convex curve in the linear-linear and log-linear
plots and as a straight line in the log-log plot.

• A Gaussian distribution will appear as a bell-shaped curve in the linear-linear plot, as an
inverted parabola in the log-linear plot and as strongly concave sharply falling curve in the
log-log plot.

• An exponential distribution will appear as a convex curve in the linear-linear plot, as a
straight line in the log-linear plot and as a concave curve in the log-logp lot.

Having in mind the shape of these three reference distributions in these three representations provides
fast and useful reference points to classify the unknown distribution under study.” It is helpful to
examine ESDs such as those in Figure 1 (in Section 3.2) and Figure 8 (here) in light of these comments.

Of course, such a visual inspection is just a first step to a more detailed analysis, since by itself
visual analysis of HT data can be misleading. Sornette (Sornette, 2007) goes on to say: “While we
recommend a first visual inspection, it is only a first indication, not a proof. It is a necessary step to
convince oneself (and the reviewers and journal editors) but certainly not a sufficient condition. It
is a standard rule of thumb that a power law scaling is thought to be meaningful if it holds over at
least two to three decades on both axes and is bracketed by deviations on both sides whose origins
can be understood (for instance, due to insufficient sampling and/or finite-size effects).” It is for
these reasons that understanding the behavior of the ESDs near xmin and xmax (of Eqn. (1)) is so
important.

Fitting to non-ideal ESDs. In Figure 1, we illustrated how PL fits of ESDs perform on a nearly
“ideal” example. Here, we discuss how it performs on less-than-ideal examples (that occurred in the
Contest data). See Figure 8.

In Figure 8, we see several examples of layers that are less well-fit by a PL. In these cases, we
see that the linear-linear plots are non-informative; the log-linear plots show that the distributions
have a strong left-ward bias, indicating a tail of increasingly small eigenvalues; and there is not
a broad range of large eigenvalues on the right of the distribution. This relative paucity of large
eigenvalues is seen on the log-linear plots by a (more or less aggressive) truncation in probability
mass for larger eigenvalues, and on the log-log plots by a steeper downward slope on the right
of the ESD. (In these cases, compare with Figure 1.) The first row (Task1, model 152, layer 1)
illustrates an incompletely-developed right tail (alternatively a “bulk-plus-spikes” model may be
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(a) ESD (log-log plot) (b) ESD (lin-lin plot) (c) ESD (log-lin plot) (d) PL fit quality vs xmin

(e) ESD (log-log plot) (f) ESD (lin-lin plot) (g) ESD (log-lin plot) (h) PL fit quality vs xmin

Figure 8: Illustration of the role of the ESD shape in determining the PL parameter α in the PL fit.
Rows correspond to different layers in different models. Columns correspond to viewing the same
ESD in different ways—on a log-log plot (first column), a linear-linear plot (second column), and
a log-linear plot (third)—and the KS Distance D of the PL fit as a function of xmin (final column).
Row 1: Task1, model 152, layer 1. Row 2: Task2, model 1006, layer 10.

a more appropriate fit than a PL fit), meaning that the spectral norm is somewhat smaller and that
the fitting procedure has difficulty choosing xmin near the peak of the distribution. The second row
(Task2, model 1006, layer 10) illustrates an aggressively-shortened (effectively truncated, i.e., not
even spikes) right tail, which leads to a much smaller spectral norm (xmax) and thus a much larger
xmin (since there is such a small range over which a linear fit is appropriate), as well as a broad range
of (large) xmin values over which low-quality fits are obtained. In each of these of these cases, the
KS distance plots have less of a well-defined minimum as a function of xmin.

Additional discussion. In simple cases, scale and shape parameters do capture similar information.
For models whose ESDs are very well-approximated by a Marchenko-Pastur (MP) distribution or a
MP bulk-plus-spike distribution (RANDOM-LIKE and BULK+SPIKES phases from Martin & Mahoney
(2021)), visual inspection of ESD plots often yields insight, and there is a strong correspondence
between norm-based scale metrics and random MP-based shape metrics. Similarly, for models
whose ESDs are very well-approximated by PL distributions (HEAVY-TAILED phase from Martin &
Mahoney (2021), where the xmax = λmax truncation is not significant (Martin & Mahoney, 2021)
to the fit), there is a strong correspondence between norm-based scale metrics and PL-based shape
metrics, in the sense that smaller α values correspond closely to larger λmax values. For realistic
models, however, and for the models from Table 4, these two metrics can be very different and can
reveal very different information.

The broad range of behavior seen in the Contest data arises since ESDs look like ones in the rows
of Figure 8 (rather than the more “ideal” case shown in Figure 1) where the linear fit to the ESD on
log-scale is not very good. For models where Alpha against LogSpectralNorm behave more
similarly, the ESDs look more like Figure 1. For the Contest models shown in Figure 8 (and others),
for a simple (non-truncated, long tail) PL distribution, smaller exponents α correspond to a longer
tail, which corresponds to a larger λmax. However, since the tail of the ESDs are typically best fit by
a PL—often with exponents α much larger than expected, since many of the models from Table 4 are
of lower quality—the situation is not so simple. This simple connection only holds for a few model
sub-groups. Generally speaking, these scale and shape metrics (LogSpectralNorm and Alpha)
characterize the model ESDs differently and capture different properties of the models.

D ILLUSTRATIVE EXAMPLES: COMPARING SCALE VERSUS SHAPE
PARAMETERS

We saw in Figure 2 a comparison of the Alpha and LogSpectralNorm metrics, for Task1 and
Task2 models. To get more detailed insight, Figure 9 plots Alpha versus LogSpectralNorm for
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(a) Task1, 2xx (b) Task1, 5xx (c) Task2, 2xx (d) Task2, 10xx

Figure 9: Comparison of Alpha and LogSpectralNorm for selected model sub-groups from
both tasks. Lines (simply to guide the eye) shows a linear regression on the data.

two illustrative pairs of examples, from each of Task1 and Task2. Consider, as a baseline example,
Task1, model sub-group 2xx, in Figure 9(a). Here, the two metrics are strongly anti-correlated,
with linear correlation metric R2 = 0.803 and Kendall-τ rank correlation metric τ = 0.788. In
contrast, for Task1, model sub-group 5xx, shown in 9(b), the two metrics are (at best) only weakly
correlated, with R2 = 0.124 and τ = 0.177. This is typical; some model sub-groups exhibit large
rank and/or linear correlations, others virtually none at all. For Task2, model sub-group 2xx, versus
Task2, model sub-group 10xx, shown in 9(c) and 9(d), we see an example where the two plots
look similar visually, and both have small(ish) linear correlation R2, but they have very different
Kendall-τ rank correlation metrics.

E ADDITIONAL DETAILS ON CHANGING ARCHITECTURES VERSUS CHANGING
SOLVER HYPERPARAMETERS

LogSpectralNorm LogFrobeniusNorm Alpha
R2 Kendall-τ R2 Kendall-τ R2 Kendall-τ

Task1- 0xx 0.34 0.41 0.00 -0.03 0.55 -0.55
Task1- 1xx 0.68 0.73 0.29 -0.30 0.88 -0.48
Task1- 2xx 0.59 0.73 0.42 0.55 0.69 -0.52
Task1- 5xx 0.58 0.60 0.19 -0.25 0.09 -0.10
Task1- 6xx 0.22 0.59 0.05 -0.10 0.67 -0.32
Task1- 7xx 0.58 0.61 0.38 0.58 0.45 -0.51
Task1- AVG 0.50 0.61 0.22 0.07 0.55 -0.41
Task2- 2xx 0.05 0.01 0.67 -0.84 0.69 -0.74
Task2- 10xx 0.32 0.60 0.60 -0.53 0.62 -0.67
Task2- 6xx 0.21 0.36 0.01 -0.05 0.36 -0.25
Task2- 9xx 0.17 0.47 0.65 -0.87 0.64 -0.87
Task2- AVG 0.19 0.36 0.48 -0.57 0.58 -0.63

Table 5: Model quality for different metrics (all those mentioned in Table 3), for Task1 and Task2,
both overall and by model sub-group. (This table is part 1 of 2; see also Table 6.) Bar plots for
Alpha and LogSpectralNorm data from here are shown in Figure 6.

See Table 5 and Table 6 for additional details on changing architectures versus changing solver
hyperparameters, from Section 4.3.

F ADDITIONAL DISCUSSION

We conclude with a few more general thoughts on our results.

As is well known, trying to extract causality from correlation is difficult—precisely since there may
be Simpson’s-like paradoxes present in the data, depending on how the data are partitioned. When
confronted with a Simpson’s paradox, one is tempted to ask whether the marginal associations or
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AlphaHat LogAlphaShattenNorm QualityOfAlphaFit
R2 Kendall-τ R2 Kendall-τ R2 Kendall-τ

Task1- 0xx 0.00 -0.06 0.00 -0.02 0.02 -0.10
Task1- 1xx 0.01 0.00 0.00 -0.03 0.00 0.15
Task1- 2xx 0.49 0.70 0.48 0.61 0.67 -0.82
Task1- 5xx 0.01 0.10 0.00 0.08 0.04 0.18
Task1- 6xx 0.00 -0.04 0.01 -0.03 0.10 -0.13
Task1- 7xx 0.04 -0.06 0.07 -0.03 0.60 -0.58
Task1- AVG 0.09 0.11 0.09 0.10 0.24 -0.22
Task2- 2xx 0.77 -0.75 0.62 -0.73 0.89 -0.83
Task2- 10xx 0.41 -0.38 0.46 -0.42 0.70 -0.67
Task2- 6xx 0.12 -0.14 0.12 -0.08 0.35 -0.25
Task2- 9xx 0.59 -0.87 0.65 -0.87 0.91 -0.87
Task2- AVG 0.47 -0.53 0.46 -0.53 0.71 -0.66

Table 6: Model quality for different metrics (all those mentioned in Table 3), for Task1 and Task2,
both overall and by model sub-group. (This table is part 2 of 2; see also Table 5.) Bar plots for
Alpha and LogSpectralNorm data from here are shown in Figure 6.

partial associations are correct. Often, the answer is that both are correct, depending on what is of
interest. In particular, simple statistical analysis does not provide any guidance as to causal rela-
tionships and whether the marginal association or the partial association is the spurious relationship.
For that reason, rather than trying to extract causality, we took a different approach: we looked for
a Simpson’s paradox; and when we found it, we tried to interpret it in terms of scale versus shape
metrics from SLT and HT-SR theory.

One might wonder “why” LogSpectralNorm and Alpha perform as well as they do, when
restricted to changes in the model depth and/or solver hyperparameters, respectively. Establishing
such a causal explanation, of course, requires going beyond the data at hand and requires some sort
of counterfactual analysis. This is beyond the scope of this paper. A plausible hypothesis, however,
is the following. Since upper bounds from SLT suggest that models with smaller norms have less
capacity, these norms are used (either explicitly as a regularizer, or implicitly by adjusting large
matrix elements/columns/rows) during the training process, in particular when one varies coarse
model parameters such as depth. On the other hand, coming from HT-SR theory, Alpha is not used
explicitly or implicitly during the training process. Instead, the training process extracts correlations
over many size scales from the data, and it is these correlations that are captured by smaller Alpha
values, consistent with HT-SR theory and practice (Martin & Mahoney, 2021; 2019). This hypothesis
is consistent with “why” fitted PL metrics from HT-SR theory—in particular the fitted AlphaHat
metric–perform so well, both for the models considered in this contest, as well as for a much wider
range of publicly-available SOTA DNN Models (Martin et al., 2021). Testing this hypothesis is an
important question raised by our results.
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