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Abstract

Graph data organizes complex relationships001
and interactions between objects, facilitating002
advanced analysis and decision-making across003
different fields. In this paper, we propose a004
new paradigm for interactive and instructional005
graph data understanding and reasoning. In-006
stead of adopting complex graph neural mod-007
els or heuristic graph-to-text instruction de-008
sign, we leverage Vision-Language Models009
(VLMs) to encode the graph images with vary-010
ing structures across different domains. This011
paper first evaluates the capabilities of public012
VLMs in graph learning from multiple aspects.013
Then it introduces a novel instruction-following014
dataset for multimodal graph understanding015
and reasoning in English and Chinese. Besides,016
by fine-tuning MiniGPT-4 and LLaVA on our017
dataset, we achieved an accuracy increase of018
5%-15% compared to baseline models, with the019
best-performing model attaining scores com-020
parable to Gemini in GPT-asissted Evaluation.021
This research not only showcases the potential022
of integrating VLMs with graph data but also023
opens new avenues for advancement in graph024
data understanding.025

1 Introduction026

Graph is an important form of structured data,027

which is capable of storing and representing the028

complex relationships between objects. Down-029

stream tasks performed on graph data include node030

classification (Xiao et al., 2022), link prediction031

(Zhang and Chen, 2018), graph reasoning (Chen032

et al., 2020) etc. In early days, graph learning is033

commonly modelled using graph networks, with034

a wealth of seminal literature supporting this ap-035

proach. In recent years, graph neural networks(Li036

et al., 2015; Dai et al., 2018; Battaglia et al., 2018;037

Fan et al., 2019; Zhang and Chen, 2018) provide a038

more flexible and effective means of dealing with039

the diversity and complexity in graph structures.040

By propagating and aggregating node information041

within the graph structure, GNNs capture complex 042

graph features. 043

With the rise of Large Language Models (LLMs), 044

there has been extensive research in the field of 045

natural language-guided interactive graph data un- 046

derstanding, showcasing two main strategies. The 047

first approach constructs prompts by explicitly rep- 048

resenting graph structures in a sequential format. 049

Constructing prompts for LLMs involves innova- 050

tive techniques such as self-prompting (Guo et al., 051

2023), graph-syntax trees (Zhao et al., 2023b), nat- 052

ural language descriptions of graphs’ structures 053

and features (Ye et al., 2023b), and graph-structure 054

prompting in various modalities (Das et al., 2023) 055

The second strategy transforms GNN-learned fea- 056

tures into LLM-comprehensible tokens. Models 057

like GIT-Former (Liu et al., 2024a) GIMLET (Zhao 058

et al., 2023a) and MolCA (Liu et al., 2024b) con- 059

sider graph as a mode and integrate all modality 060

data into a unified latent space. 061

However, due to the inherent differences be- 062

tween graph structures and language models, cur- 063

rent integration methods face significant limitations. 064

First, sequence-based prompt representations in- 065

evitably lose crucial graph structural information, 066

which is vital for complex graph understanding and 067

reasoning(Ge et al., 2023; Li et al., 2024). Sec- 068

ond, integrating GNN-learned features into LLMs 069

presents alignment challenges, as the represen- 070

tation learning space of GNNs cannot be easily 071

mapped onto the token space of LLMs through 072

simple function mappings(Xue et al., 2023). 073

Considering these limitations, this work intro- 074

duces a new paradigm for graph data understand- 075

ing based on VLMs. Our basic idea is to trans- 076

form graph data into images, either through their 077

natural representations like maps or visualization 078

methods1. This is followed by utilizing an image 079

encoder to interpret the visual information, thereby 080

1https://www.ownthink.com/
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understanding the semantic information of nodes081

and relationships within the graph data. The final082

step of this process involves the fusion of image083

and text encoders, which is inherently supported in084

specific VLMs (Kim et al., 2021; Li et al., 2022a;085

Liu et al., 2023), offering a novel approach to graph086

data comprehension. Figure 1 shows an example of087

graph data access based on visual language models.088

Instruction:
What is the relationship between Da Vinci and the Mona Lisa?
Response:
Da Vinci painted the Mona Lisa.

Figure 1: Graph understanding with the paradigm of
instruction following by vision-language models.

Utilizing visual language models for graph data089

comprehension offers friendly and natural inter-090

action, reducing manual labor costs, and unifies091

diverse graph structures globally, handling vari-092

ous graph-related tasks through natural language093

instructions. Leveraging state-of-the-art visual lan-094

guage models trained on extensive datasets facili-095

tates knowledge transfer and promises high perfor-096

mance potential in this paradigm of graph under-097

standing and reasoning.098

This work introduces a novel dataset on various099

graph formats for multimodal graph understanding100

and reasoning in English and Chinese. Instructions101

involve simple queries and complex multi-hop rea-102

soning on the graphs, with difficulty levels varying103

from simple to medium and difficult. Additionally,104

based on this dataset, we conducted a comprehen-105

sive evaluation of current open models from vari-106

ous perspectives. In conclusion, the current models107

exhibit significantly better performance in English108

compared to Chinese. Even the most powerful109

models like Genimi or GPT-4V achieve accuracy110

rates below 30%. Finally, in fine-tuning LLaVA111

and MiniGPT-4 on our dataset, experimental re-112

sults revealed that the fine-tuned LLaVA model113

on English&Chinese datasets outperformed base-114

line LLaVA on both English and Chinese dataset115

and achieved comparable performance with Gen-116

imi in Chinese. To enhance the open-source mod-117

els’ ability in recognizing Chinese characters, we118

also proposed incorporating OCR data transformed 119

into instruction data into our Chinese datasets. The 120

model refined through this approach exhibited sig- 121

nificant improvements on the Chinese dataset after 122

fine-tuning. 123

Our main contributions are as follows: 124

• We constructed a dataset for multimodal graph 125

understanding and reasoning, providing in- 126

structions for graph-related questions and cor- 127

responding ground truth answers. 128

• We evaluated the capabilities of public VLMs 129

in graph learning, analyzing their performance 130

and limitations across various graph tasks. 131

• We fine-tuned the open-source models LLaVA 132

and MiniGPT-4 using the constructed dataset, 133

resulting in significant improvements on both 134

Chinese and English datasets. 135

2 Related Work 136

2.1 Integrate LLMs with Graph Learning 137

With the emergence of Large Language Models 138

(LLMs), the applications in graph-related tasks 139

have surpassed traditional GNN-based methods. 140

Currently, there are three main ways of integrating 141

large language models with graph data. 142

LLMs-as-Enhancers. This research line aims to 143

enrich the node attribute and relation representa- 144

tions using the capabilities of LLMs. For example, 145

TAPE (He et al., 2023) leverages the knowledge 146

of large language models to generate high-quality 147

node features, thereby enhancing the quality of 148

initial node embeddings in GNNs. Knowledge- 149

Enhanced Augmentation (KEA) (Chen et al., 2024) 150

enriches text attributes by providing additional in- 151

formation, stimulating LLMs to generate lists of 152

knowledge entities and their descriptions and en- 153

coding them through fine-tuned PLMs and deep 154

sentence embedding models. 155

LLMs-as-Predictors. This method represents 156

graph node attributes and structures in the form 157

of prompts, using LLMs to directly generate pre- 158

dictive patterns. For instance, InstructGLM (Ye 159

et al., 2023b)replaces GNN’s predictors with LLMs. 160

GPT4Graph (Guo et al., 2023) adopts graph de- 161

scription language of prompt engineering, improv- 162

ing collaborative working methods in various situa- 163

tions. GraphGPT (Tang et al., 2023) aligns LLMs 164

with graph structural knowledge through a graph- 165

guided tuning paradigm. 166
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# Train # Test # English # Chinese Overall
Knowledge Graph 1644 413 986 1071 2057
Route Map 1616 406 1071 951 2022
Flowchart 636 160 714 82 796
Mind Map 950 238 594 594 1188
Gantt Chart 475 138 564 49 613
Overall 5321 1355 3929 2747 6676

Table 1: An overview of our multimodal instruction-following benchmark on graph data. "#" means the
number of instruction-response pairs. dataset-stat.

LLM and Graph Collaboration. Aligning the167

embedding spaces of graph models and LLMs168

achieves the integration of graph and text modal-169

ities. Text2Mol (Edwards et al., 2021) proposes170

a cross-modal attention mechanism using trans-171

former decoder for early fusion of graph and text172

embeddings. "Think on Graph" (Sun et al., 2024)173

presents the "LLM ⊗ KG" paradigm, a new ap-174

proach integrating LLMs and KGs. It treats large175

language models as agents for interactively explor-176

ing entities and relations in Knowledge Graphs.177

RLMRec (Ren et al., 2023) suggests aligning the178

semantic space of LLMs with the representation179

space of collaborative relational signals in recom-180

mendation systems through contrastive modeling.181

2.2 Multimodal Large Language Models182

Recently, with the rapid advancement of large lan-183

guage models and their demonstrated powerful in-184

teractive capabilities, a new paradigm has been185

proposed for the vision-language tasks. Based on186

an encoder-decoder framework and utilizing LLMs187

as decoders (Liu et al., 2023; Li et al., 2023; Wang188

et al., 2023; Su et al., 2023), Multimodal Large Lan-189

guage Models (MLLMs) exhibit significant multi-190

modal capabilities across various benchmarks. This191

approach leverages cross-modal transfer, enabling192

the sharing of knowledge between language and193

multimodal domains (Zhu et al., 2023).194

Visual instruction tuning (Liu et al., 2023)195

is employed to develop a MLLM that is adept196

at general-purpose visual and language under-197

standing. LLaVA (Liu et al., 2023) extends the198

self-instruction (Wang et al., 2022) approach to199

the multimodal field by translating images into200

texts with captions and bounding boxes. Besides201

LLaVA, many other powerful MLLMs have also202

emerged built upon LLMs (Yin et al., 2023), in-203

cluding the open-source ones, e.g., MiniGPT-4204

(Zhu et al., 2023), mPLUG-Owl2 (Ye et al., 2023a),205

Multimodal-GPT (Gong et al., 2023), and the com- 206

mercial models, e.g., GPT-4V (OpenAI, 2023) and 207

Gemini (Team et al., 2023). 208

3 Dataset 209

We constructed two multimodal instruction- 210

following datasets on graphs in English and Chi- 211

nese respectively. Each dataset includes five types 212

of graphs: knowledge graph, route map, mind 213

map, flowchart, and Gantt chart. The images were 214

crawled from search engines and filtered for rele- 215

vance and accuracy by humans. The construction 216

of multimodal instructions involves two steps. The 217

first step prompts GPT-4V to generate candidate 218

instructions and responses for each image. The sec- 219

ond step involves human evaluation and annotation 220

to ensure the validation of instructions and accu- 221

racy of responses. For images containing mixed 222

language content, such as English text in Chinese 223

images or vice versa, we have already discarded 224

these during the manual filtering process to ensure 225

language consistency in our dataset. 226

3.1 Data Annotation 227

After manually filtering out unclear and irrelevant 228

images which don’t belong to any graph type2, We 229

obtained a total of 2,807 images. Among these, 230

1,493 are Chinese images, including 517 knowl- 231

edge graphs, 335 mind maps, 584 route maps, 49 232

flowcharts, and 8 Gantt charts. The 1,314 English 233

images are comprised of 251 flowcharts, 208 Gantt 234

charts, 257 knowledge graphs, 216 mind maps, and 235

382 route maps. The proportion of Chinese to En- 236

glish annotated images is approximately 1.14:1. 237

Given a valid image, we first annotated it by 238

GPT-4V under our elaborated prompts as shown in 239

Figure 14, during which Chinese images were anno- 240

tated using prompts in Chinese and English images 241

2Images containing mixed language content, such as En-
glish in Chinese images or vice versa, were discarded.
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Valid rate GPT-4V Gemini LLaVA MiniGPT-4
Chinese 30.6 36.0 20.0 0
English 97.2 88.9 88.5 73.0

Table 2: The VLMs’ ability to generate instructions in response to Chinese and English images. The
numbers in the table represent the valid rate for Chinese images or English images in percentage form.
The best results are identified with bold. ins-generation.

were annotated with English prompts. For each242

image, under our prompt, GPT-4V usually posed243

three questions: simple, medium, and complex, as244

shown in Figure 19 and Figure 20 in Appendix A.4.245

Following this automatic annotation process, we246

conducted an evaluation of the relevance of the in-247

structions generated by GPT-4V in relation to the248

images. This critical analysis aimed to ascertain249

the extent to which GPT-4V’s output aligned with250

the images. In our in-depth examination, the in-251

structions generated by GPT-4V might be invalid252

due to either of the following two aspect:253

• Instructions are completely unrelated to the254

image’s content.255

• Instructions are related to the image’s theme256

but involving nodes or edges not present in257

the image.258

For each image with several instruction-response259

pairs, we then implemented a manual fine-260

annotation strategy. Valid instructions were re-261

tained while invalid ones were discarded. Sub-262

sequently, we checked the correctness of responses263

corresponding to the valid instructions and cor-264

rected any incorrect responses. In cases where all265

instructions for an image were deemed invalid, we266

manually supplemented two instruction-response267

pairs: one simple instruction and one complex in-268

struction. This approach ensures a high standard of269

instruction-response pairs in our benchmarks.270

3.2 Data Statistics and Analysis271

Table 1 presents the statistical information of272

our multimodal instruction-following benchmark273

dataset. All dataset construction processes undergo274

rigorous manual evaluation to ensure high quality.275

To demonstrate this, we asked an unseen annotator276

to randomly select a sample of 50 Chinese and En-277

glish samples (i.e., image, instruction, response),278

respectively. Each image was subjected to a rigor-279

ous quality assessment within the selected samples.280

Our analysis revealed that out of the 100 samples,281

an impressive 97 were classified as qualified, high- 282

lighting the dataset’s high standard of clarity and 283

uniqueness. 284

3.3 Evaluation Protocols 285

To facilitate the evaluation of model performance 286

using our graph vision-language dataset, we pro- 287

vided two evaluation protocols. The first is a man- 288

ual assessment of model accuracy, where human 289

evaluators were asked to determine whether the 290

model response satisfies the instruction conditioned 291

on an image (Zhu et al., 2023). The second eval- 292

uation protocol we used is a GPT-assisted visual 293

instruction assessment. Building on a previous 294

work (Liu et al., 2023) that employed GPT-4 (text- 295

only) to score answers by comparing the output of 296

GPT-4 with that of another model, we have adopted 297

a similar approach for GPT-4V evaluation and de- 298

signed an English prompt shown in Figure 16 and 299

a Chinese prompt in Figure 17 in Appendix A.3. 300

4 Evaluation on Public Vision-Language 301

Models 302

4.1 What Abilities Do We Focus On? 303

The initial phase of our study involved a manual 304

evaluation of GPT-4V (OpenAI, 2023), Gemini 305

(Team et al., 2023), LLaVA (Liu et al., 2023), and 306

MiniGPT-4 (Zhu et al., 2023)’s capability to gener- 307

ate and follow instructions in response to images. 308

Instruction Generation Ability. Given an image 309

of graph, we first evaluate the capability of VLMs 310

on generating graph-related instructions. We deter- 311

mined the validity of each instruction as described 312

in (Sec 4.3). 313

Various Instruction Following Abilities. Given 314

a valid instruction of an image, we also evaluated 315

the correctness of the response generated by exist- 316

ing VLMs. We assessed various ability dimensions, 317

including simple and intermediate-level instruction 318

following ability, complex instruction following 319

ability, multi-hop reasoning ability, robustness to 320

noise, performance across different information 321
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Model Simple Medium Complex Multi-hop Information noise Dense Sparse
Results of response accuracy for Chinese images.
MiniGPT-4 8 0 0 0 0 0 4
LLaVA 32 12 0 0 0 16 20
Gemini 60 24 12 4 4 20 36
GPT-4V 56 40 28 20 8 48 52
Results of response accuracy for English images.
MiniGPT-4 36 24 32 20 28 8 48
LLaVA 52 20 40 52 0 24 52
Gemini 80 64 68 76 28 24 52
GPT-4V 76 80 72 64 56 64 88

Table 3: Results of response accuracy under different types of instructions. Dense and sparse represent the
information density of images. Simple, medium and complex represent the difficulty level of instructions.
The numbers in the table represent the accuracy rate in percentage form. The best results are identified
with bold. instruction-eval.

densities, and an ablation study on different types322

of graphs. These dimensions were explored by pro-323

viding corresponding instructions (see Section 4.4,324

4.5, 4.6, 4.7, 4.8, 4.9).325

4.2 Evaluation Settings326

Instruction Validity. We sampled a set of 50 im-327

ages for the experiment, encompassing five types328

of graphs with a balanced distribution between En-329

glish and Chinese. The prompts we used are shown330

in Figure 14 in Appendix A.3. As mentioned in331

Section 3.1, there may exist two types of invalid332

instructions. The distribution of valid rate for dif-333

ferent models is detailed in Table 2.334

Response to Various Instructions. For each abil-335

ity dimension, we randomly sampled 25 instruc-336

tions for evaluation from our dataset. To enhance337

the quality of responses, we utilized pre-established338

prompts as detailed in Figure 15 in Appendix A.3.339

The evaluation metric focused on the accuracy340

of the VLMs’ responses to the instructions. This341

was determined by human evaluators. To provide a342

comprehensive understanding, we separately eval-343

uated the performance of VLMs on images with344

content in Chinese and English 3. The assessment345

result is presented in Table 3.346

4.3 Instruction Generation Ability347

During the Chinese image instruction generation,348

we observed low performance for all the models,349

with less than 40% valid rate and none of the in-350

structions asked by MiniGPT-4 were valid. The351

3In cases where images contain both Chinese and English
content, classification as Chinese or English was determined
based on the predominant language used in the nodes and
edges of the graph.

main reason for the low performance was the mis- 352

recognition of node names. Specifically they strug- 353

gled to correctly identify the Chinese characters 354

within them. As a result, these models tend to gen- 355

erate error node and relaton names based on their 356

internal knowledge. We illustrate this hallucination 357

by an example in Figure 21 in Appendix A.4. 358

4.4 Simple and Medium Instruction Following 359

Ability 360

As mentioned in Section 3.1, the instructions of 361

our dataset were initially generated by GPT-4V, 362

where each sample was additionally labeled with 363

simple, medium, or complex. The accuracy results 364

for simple and medium instructions are shown in 365

Table 3. 366

MiniGPT-4 lacked basic cognition in discerning 367

graph types and was unable to differentiate between 368

types of graphs. A common challenge faced by all 369

these models, including GPT-4V, Gemini, LLaVA, 370

and MiniGPT-4, was their struggle with identifying 371

the number of nodes in graph-type data. 372

4.5 Complex Instruction Following Ability 373

Complex instruction following tasks require un- 374

derstanding intricate commands but may result in 375

simple answers. The corresponding evaluation re- 376

sults are shown in Table 3. 377

When processing images containing English con- 378

tent, the performance of Gemini, LLaVA, and 379

MiniGPT-4 in complex instructions surpasses their 380

accuracy in medium instructions. This improved 381

performance can be attributed to the nature of com- 382

plex instructions, which some encompass open- 383

ended questions relying on coarse-grained visual 384

information. Such scenarios play to the strengths 385
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Model Knowledge
Graph

Mind
Map

Route
Map Flowchart Gantt

Chart Overall

Results of response accuracy for Chinese images.
MiniGPT-4 8 0 4 4 0 3.2
LLaVA 20 12 20 20 8 16
Gemini 24 44 24 20 40 29.6
GPT-4V 32 40 32 36 28 32
Results of response accuracy for English images.
MiniGPT-4 64 16 8 40 24 30.4
LLaVA 56 28 16 44 32 35.2
Gemini 76 72 60 80 40 65.6
GPT-4V 96 80 76 72 42 73.2

Table 4: Results of response accuracy under different types of graphs. Knowledge graph, mind map,
route map, flowchant, and Gantt chart represent the type of graph in the image. The numbers in the table
represent the accuracy rate in percentage form. The best results are identified with bold. graph-eval.

of LLMs, leveraging their robust linguistic capa-386

bilities to effectively interpret and respond to these387

complex instructions.388

4.6 Multi-hop Reasoning Ability389

As mentioned in Section 4.5, complex instructions390

may result in simple answers. In contrast, multi-391

hop reasoning instructions involve linking several392

logical steps, usually leading to more elaborate393

responses. This posed a significant challenge for394

VLMs in providing completely accurate responses395

to multi-hop reasoning tasks. The corresponding396

evaluation results are shown in Table 3.397

4.7 Robustness to Noise398

As mentioned in Section 3.1, we have excluded399

blurry images from our dataset. In this part, we400

have additionally collected a set of noisy images,401

comprising 25 instructions each for both Chinese402

and English content. The corresponding results are403

shown in Table 3.404

MiniGPT-4 occasionally struggled with noisy405

images, which was evident in instances of lan-406

guage confusion, such as responding in English407

to prompts and images that are in Chinese, and pro-408

ducing meaningless repetitive answers. GPT-4V409

tended to offer vague responses or guiding sugges-410

tions, stating that due to image quality limitations,411

it couldn’t give valid responses.412

4.8 Performance across Different Information413

Densities414

Different images can contain varying content and415

details, i.e., different information densities. Infor-416

mation density, typically judged by the number of417

nodes and edges in a graph, ranged from sparse418

to dense and is assessed manually. This section 419

explores how the VLMs perform with images of 420

varying information densities. The corresponding 421

evaluation results are shown in Table 3 and GPT- 422

4V outperformed other VLMs in processing image 423

information densities in both English and Chinese 424

contexts. 425

4.9 Ablation Study on Different Types of 426

Graphs 427

To comprehensively assess how the VLMs perform 428

across various types of graphs, we randomly sam- 429

pled 25 instructions for each graph type, with the 430

related results being displayed in Table 4. 431

In the analysis of images containing English con- 432

tent, all four VLMs displayed a relative familiarity 433

with the structure of knowledge graphs, achieving 434

their highest accuracy in this category. In route 435

maps, GPT-4V not only led in accuracy for both 436

Chinese and English content images but also pro- 437

vided more precise and standardized responses, 438

using both absolute directions(north, south, east, 439

west) and relative directions(up, down, left, right). 440

In contrast, Gemini used only absolute directions, 441

while LLaVA and MiniGPT-4 depended entirely 442

on relative directions. 443

5 Experiment 444

5.1 Baseline Models and Settings 445

MiniGPT-4 consists of a vision encoder with a 446

pretrained ViT (Dosovitskiy et al., 2021) and Q- 447

Former (Li et al., 2022b), a single linear projection 448

layer, and an advanced Vicuna (Chiang et al., 2023) 449

large language model. During the training process, 450

only the parameters of the Q-Former and linear 451
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Manual Evaluation GPT-assisted Evaluation
Model English Chinese English&Chinese English Chinese English&Chinese

Gemini 82 36 53 6.42 4.12 5.15
GPT-4V 74 44 59 8.66 6.66 7.55
MiniGPT-4 14 1 5 1.92 1.13 1.38
LLaVA 40 13 25 4.20 2.47 3.59
MiniGPT-4 +English 22(+8) - - 2.17(+0.25) - -
MiniGPT-4 +Chinese - 5(+4) - - 1.42(+0.29) -
MiniGPT-4 +English&Chinese - - 13(+8) - - 2.32(+0.94)
LLaVA +English 55(+15) - - 6.03(+1.83) - -
LLaVA +Chinese - 27(+14) - - 3.34(+0.87) -
LLaVA +English&Chinese - - 40(+15) - - 4.91(+1.32)

Table 5: Fine-tuned model results. The numbers in the table under the "Manual Evaluation" column
represent the accuracy rate in percentage form. In the "GPT-assisted Evaluation" column, the numbers
represent the scores given to each model by GPT-4V. Each model receives an overall score on a scale of 1
to 10, based on a comparison between the responses generated by the model and the ground truth answers,
along with an accompanying explanation. result.

projection layers are fine-tuned, while the param-452

eters of the language and visual models are kept453

unchanged.454

LLaVA uses language-only GPT-4 to generate455

multimodal language-image instruction-following456

data. This approach allows LLaVA to connect a457

vision encoder and a language model for general-458

purpose applications. The fine-tuning stage in-459

volved updating both the pre-trained weights of460

the projection layer and LLM in LLaVA, while461

keeping the vision encoder fixed.462

Both LLaVA and MiniGPT-4 were trained for463

10 epochs. Performance was evaluated after all464

the intervals, and the model demonstrating the best465

performance was then selected for data generation.466

Experiment Details We divided the training set467

and the test set according to the ratio of 4:1. Spe-468

cific data is shown in Table 1. We used the English469

training sets, the Chinese training sets and the com-470

bination of Chinese and English training sets for471

fine tuning, respectively.472

5.2 Results473

5.2.1 Qualitative Analysis474

After fine-tuning, the model demonstrates many475

advanced abilities compared to the baseline model.476

Here, we will analyze and explain in detail with477

specific examples based on the best-performing478

model, named LLaVA FT. These cases are shown479

in Appendix A.1.480

In Figure 2, LLaVA FT effectively utilizes vi-481

sual cues to discern pertinent information within482

images, enabling accurate interpretation of de-483

picted processes. In constrast, the baseline LLaVA484

model relies solely on contextual understanding, 485

thereby neglecting crucial image details in its re- 486

sponses. The scenario depicted in Figure 3 high- 487

lights LLaVA FT’s proficiency in accurately arrang- 488

ing tasks based on their sequence in Gantt charts, 489

resulting in precise identifications. Conversely, the 490

baseline LLaVA model struggles to precisely iden- 491

tify the sequence and frequently misinterprets pre- 492

sented tasks. And Figure 4 demonstrates LLaVA 493

FT’s proficiency in identifying and categorizing 494

relationships within a knowledge graph, while Fig- 495

ure 5 showcases its enhanced ability to determine 496

the quantity of nodes within a given graph, provid- 497

ing specific and relevant responses. 498

These cases demonstrate the enhanced capa- 499

bilities of the fine-tuned model in understanding 500

flowcharts, Gantt charts, knowledge graphs, and 501

mind maps. The fine-tuned model’s ability to an- 502

swer questions based on graphical data in both En- 503

glish and Chinese has been significantly improved. 504

5.2.2 Quantitative Analysis 505

We used the evaluation method described in Section 506

3.3. In Manual Evaluation, we randomly sampled 507

100 instructions from the test sets. Human evalu- 508

ators assessed the correctness and reasonableness 509

of the model-generated responses. In GPT-assisted 510

Evaluation, we calculated the average value of GPT- 511

4V scores for each model to measure the effect of 512

fine-tuning models.The results were compared with 513

the baseline and are presented in Table 5. 514

After fine-tuning, MiniGPT-4 improved by 8%, 515

while LLaVA improved by 15% over the base- 516

line. Mixed-language fine-tuning in both Chinese 517

and English showed similar effectiveness to single- 518

language fine-tuning. The most effective model, 519
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Manual Evaluation
Model English Chinese English&Chinese

LLaVA+Chinese - 27 -
LLaVA+Chinese w OCR - 30 -
LLaVA+English&Chinese 50 28 40
LLaVA+English&Chinese w OCR 68 24 46
LLaVA+English&Chinese w Multimodal CoT 58 19 41

Table 6: Ablation results. The numbers in the table represent the accuracy rate in percentage form.ablation.

LLaVA+English&Chinese, achieved significant im-520

provements, with 28% accuracy on the Chinese test521

set, 54% on the English test set, and 39.4% overall.522

Particularly noteworthy is its performance on the523

Chinese test set, matching that of Gemini.524

5.3 Ablation Study525

5.3.1 OCR Instructions526

In our evaluation in Section 4.4, both MiniGPT-527

4 and LLaVA exhibited a significant decrease in528

accuracy when providing responses to Chinese im-529

ages. To enhance their ability to recognize Chinese530

characters in image datasets, we have devised tar-531

geted OCR instructions. We utilized the training532

set provided in the Chinese Scene Text Recognition533

Technology Innovation Competition.4 The training534

dataset consists of 212,023 images containing tex-535

tual information. We tokenized OCR text from im-536

ages and selected 2,224 closely aligned images for537

fine-tuning. We created the instruction set by using538

the prompt "Please recognize the text in the im-539

age" and pairing it with the text recognition results540

from the training dataset. The prompts we used are541

shown in Figure 18 in Appendix A.3. Subsequently,542

we combined the OCR instructions with Chinese543

fine-tuning instructions, adhering to a data augmen-544

tation model, to enhance the OCR capabilities. We545

separately added the OCR instruction to the Chi-546

nese fine-tuning dataset and the English&Chinese547

fine-tuning dataset.548

5.3.2 CoT Augumented549

In our model, we generated a series of interme-550

diate reasoning steps, referred to as Chain-of-551

Thought(CoT), to enhance the capability for com-552

plex reasoning problems. For complex questions,553

it is necessary to integrate information from both554

text and images for reasoning, so we used Multi-555

modal CoT (Zhang et al., 2024), which consists556

of two stages: Rationale Generation and Answer557

Inference. Initially, caption text and visual features558

4https://aistudio.baidu.com/datasetdetail/8429

are utilized to obtain a more accurate Rationale (R). 559

Subsequently, the final Answer is derived from R, 560

along with text and visual features. 561

Our Ablation results are presented in Table 6. 562

There was a noticeable improvement in both the 563

Chinese test set and the Chinese-English mixed 564

test set after incorporating OCR fine-tuning. Par- 565

ticularly, on the mixed-language test set, the per- 566

formance increased to 46%, marking a substan- 567

tial improvement of 21% compared to the baseline 568

LLaVA model. The multimodal CoT approach re- 569

suls in some improvement compared to the original 570

model. However, there is still a need to design a 571

more suitable multimodal fusion method tailored 572

for graph-related problems, involving the identifi- 573

cation of nodes and relationships within the graph. 574

6 Conclusion and Future Work 575

This study focuses on natural language-guided in- 576

teractive graph data understanding, distinguishing 577

itself from traditional graph network modeling by 578

utilizing VLMs to enable flexible interactions with 579

graph data. We constructed a benchmark dataset 580

to address the lack of available data in this domain, 581

further supporting the development and evaluation 582

of models in this field. By fine-tuning LLaVA and 583

MiniGPT-4 with our dataset, we observed notable 584

improvements in performance on both Chinese and 585

English datasets, marking a significant advance- 586

ment in the field of graph data understanding. In 587

the future, we will advance this work from the fol- 588

lowing two directions. (1) Designing dedicated im- 589

age encoders to capture the pixels related to nodes 590

and edges more sensitively. (2) Supporting large 591

graph (with thousands of nodes or edges) under- 592

standing by splitting a big image into a sequence 593

of sub-images. It requires that the VLMs have the 594

ability to understand the internal content in a sin- 595

gle image as well as the contents across different 596

sub-images, for a more accurate understanding of 597

the original large graph content. 598
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7 Limitations599

7.1 Imbalanced Dataset600

While there is an abundance of available graphic601

data resources, obtaining them in the form of im-602

ages can be particularly challenging. In our con-603

structed dataset, the samples for Gantt charts and604

flowcharts are notably scarce. This scarcity is pri-605

marily due to the limited availability of these spe-606

cific types of images on the internet, resulting in607

fewer instructions in our dataset compared to the608

other three graph types. Despite our efforts to man-609

ually filter out noisy images, as highlighted in Sec-610

tion 3.2, where we found that out of 100 randomly611

sampled images, an impressive 97 were deemed612

of high quality, our dataset may still contain im-613

ages of duplication and blurriness. Hence, there’s a614

necessity to explore more reliable automated data615

cleaning pipelines.616

7.2 Hallucination617

Our model is built upon LLMs and inherits its618

limitations. It may suffer from illusions when619

faced with non-existent knowledge. When query-620

ing nodes and relationships in images, the model621

may respond with nodes not present in the image,622

relying on its own common sense for answers. As623

shown in Figure 21 in Appendix A.4, this example624

demonstrates the model’s hallucination in interpret-625

ing Chinese instructions, where it incorrectly rec-626

ognizes "Apply for a refund" as "Select a product"627

.628
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A Appendix804

A.1 More Qualitative Results805

Here we list some qualitative results. Yellow high-806

lights correct but irrelevant information. Green807

highlights the correct response and Red highlights808

the wrong response.

Input Image

Instruction

LLaVA

After creating project documentation, what is the next 
step in the flowchart?

In the flowchart, the next step after creating project documentation 
is to create a project schedule. This involves setting up a timeline 
for the project, including milestones, deadlines, and dependencies 
between tasks. The project schedule helps ensure that all tasks are 
completed on time and that the project stays on track.

The next step is to "Assign Tasks/Processes".LLaVA FT

Figure 2: Flowchart in English

Input Image

Instruction           What is the first task listed in the Gantt chart?

LLaVA              The first task listed in the Gantt chart is "Design Solution".

LLaVA  FT       The first task listed is "Research".

Figure 3: Gantt Chart in English

809

Input Image

Instruction

LLaVA

图中“源节点1”通过什么关系连接到“目标节点”？

Translation: What is the relationship between "source node 1" 
and "target node" in the diagram?

“源节点1”通过“节点2”连接到“目标节点”。这个图是一个网络图，
其中每个节点代表一个实体或事件，而连接线表示它们之间的关系。

Translation: The "source node 1" is connected to the "target 
node" through "node 2".. The graph is a network diagram, where 
each node represents an entity or event, and the connecting lines 
represent the relationships between them.

LLaVA FT “源节点1”通过“知识迁移”关系连接到“目标节点”。

Translation: The "source node 1" is connected to the "target node" 
through a "knowledge transfer" relationship.

Figure 4: Knowledge Graph in Chinese

Input Image

Instruction

LLaVA

图中有几个人物被连接起来了？

Translation: How many characters are connected in the picture?

在图中，有几个人物被连接起来了。这些人物包括一个男性和一个女
性，他们被连接在一起，并且还有其他人物被连接在他们周围。

Translation: In the picture, there are several figures that are 
connected. These figures include a male and a female who are 
connected together and there are other figures connected around 
them.

LLaVA FT 图中有十个人物被连接起来了。

Translation: There are ten figures in the picture that are connected.

Figure 5: Mind Map in Chinese

Input Image

Instruction

LLaVA

What is the central idea represented in this mind map?

The central idea represented in this mind map is creativity. 
The image features a yellow light bulb, which symbolizes creativity, 
at the center of the map, surrounded by various text boxes and 
arrows. 

The central idea represented in this mind map is "Creative Mind 
Map".  

LLaVA FT

Figure 6: Mind Map in English
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A.2 More Quantitative Results810

A.2.1 Manual Evaluation811

Here we some quantitative results. Yellow high-812

lights correct but irrelevant information. Green813

highlights the correct response and Red highlights814

the wrong response.815

Input Image

Instruction

MiniGPT-4

LLaVA

LLaVA FT

MiniGPT-4 FT

Gemini

GPT-4V

The first step in the Problem Solving Flow Chart is to \"Choose the Correct Method of 
Calculation.\"

The first step is to \"Read the question.\"

Define the problem: Clearly and concisely define the problem to be solved, including all 
relevant information and constraints. This helps ensure that everyone  involved in the 
problem-solving process has a shared understanding of the problem."

The first step in the Problem Solving Flow Chart is to read the question"

The first step is to \"Read\" the question and identify the important information.

What is the first step in the Problem Solving Flow Chart?

The first step in the Problem Solving Flow Chart is to Read the problem and 
identify important information.

Figure 7: Fine-tuned model results on English&Chinese
dataset

Input Image

Instruction

MiniGPT-4

LLaVA

LLaVA FT

MiniGPT-4 FT

Gemini

GPT-4V

There are five tasks scheduled to start on the first Monday of Week 1.

There are two tasks scheduled to start on the first Monday of Week 1.

3 tasks are scheduled to start on the first Monday of Week 1.

1 task is scheduled to start on the first Monday of Week 1.

There are 2 tasks scheduled to start on the first Monday of Week 1.

How many tasks are scheduled to start on the first Monday of Week 1?

Two tasks are scheduled to start on the first Monday of Week 1 (Task 1 and 
Task 5).

Figure 8: Fine-tuned model results on English dataset

A.2.2 GPT-assisted Evaluation816

Here, we list some GPT-assisted score results of the817

VLMs, including the best-performing fine-tuned818

models.819

Input Image

Instruction 如果用户通过输入设备输入了一个数据，这个数据会如何在这个系统中流动并最终显示在输出设备上？
Translation: What is the relationship between "source node 1" and "target node" in the diagram?

在这个系统中，如果用户通过“新建”创建了一个进程，这个进程将在系统中的各个节点进行执行。进程的执行过程可以通过系统调用
（例如，系统调用API）来实现。系统调用API将进程的代码和数据传递给目标节点，并在节点执行完成后返回结果。在进程执行过程
中，系统会根据进程的需求来分配资源。
Translation:In this system, if a user creates a process via "new", the process will be executed on various nodes in the system. The execution of the 

process can be achieved through system calls . The system call APIs pass the code and data of the process to the target node, and return the result 

after the execution on the node is completed. During the execution of the process, the system will allocate resources based on the process's 

requirements.

首先，“新建”创建的进程会被分配一个进程ID，存储在进程控制表。当进程状态变为就绪时，它会被入进程队列，等待调度器的批处理。调度
器选择一个合适的进程来批处理。批处理完毕后，进程会更新状态，如果完成了正常，则会被标记为已完成。进程完成后，它的进程控制表记录
会被删除，进程ID不再有效。
Translation: First, the process created by “new” will be assigned a process ID, which is stored in the process control block. When the process state becomes 

ready, it will be placed into the process queue, waiting for the scheduler to batch process it. The scheduler selects a suitable process for batching . After the 

batch processing is complete, the process will update its state.Once the process is completed, its record in the process control block will be deleted, and the 

process ID will no longer be valid.

MiniGPT-4

LLaVA

LLaVA FT

在这个过程中，进程会被存储在系统中的内存中，并由操作系统来管理。如果进程运行得意，操作系统可能会释放其资源以便将其重新使用。
Translation:During this process, the process will be stored in the system's memory and managed by the operating system. If the process runs smoothly, 

the operating system may release its resources for reuse. 

MiniGPT-4 FT
如果用户通过输入设备输入了一个数据，那么该数据会从系统中的“表单监控”节点流转到“漏洞管理”节点，再流转到“后台服务”
节点。在“后台服务”节点下，该数据会被存储到后台服务数据库中，并被标记为处理完成。
Translation:If a user inputs data through an input device, the data will flow from the "form monitoring" node in the system to the "vulnerability 

management" node, and then to the "backend service" node. Under the "backend service" node, the data will be stored in the backend service 

database and marked as processed.

Gemini 当用户通过“新建”创建了一个进程后，系统会为该进程分配一个唯一的PID。接下来，系统会将该进程的状态设置为“就
绪”，并将其加入到就绪队列中。当该进程被调度到CPU上时，它便会开始执行。当该进程执行完毕后，它会将自己的状
态设置为“终止”，并从就绪队列中删除。
Translation:When a user creates a process through "new", the system will assign a unique PID for the process and add it to the 

process table. Next, the system will set the process state to "ready" and add it to the ready queue. When the process is scheduled on the 

CPU, it will begin execution. After the process completes execution, it will set its own state to "terminated" and remove itself from the 

ready queue.

GPT-4V 用户通过“新建”创建了一个进程，进程首先到达就绪状态。然后，“就绪”通过CPU时间片调度使进程运行，“运行
”后通过终止进程、释放资源到达终止状态。
Translation:The user creates a process through "new", and the process initially enters the ready state. Then, the "ready" state is 

scheduled by CPU time slicing to run the process, and after running, it reaches the terminated state by terminating the process and 

releasing resources.

Figure 9: Fine-tuned model results on Chinese dataset
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Figure 10: Average Scores

Figure 11: Median Scores
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Figure 12: Maximum Scores

Figure 13: Minimum Scores

14



A.3 Prompts820

The prompt used to generate image-based conver-821

sation from GPT-4V is shown in Figure 14. Under822

this prompt, GPT-4V usually posed three questions823

for each image: simple, medium, or complex.824

English Prompt

Prompt Template

Chinese Prompt

You are an expert in the field of knowledge graph. You must ensure that the image is 
correctly identified, and that the questions raised and answers are correct. Please ask 
and answer some questions based on this image. The questions should preferably be 
based on specific nodes/edges of the image and should range from simple to complex. 
The answer should be given in the format of Simple: Question: Answer: Medium:... 
Complex:...

你是知识图谱方面的专家，你一定要保证识别图片正确，提出且回答问题正确。
请根据这张图提出且回答一些问题，最好基于该图的具体节点/边来提问，并且
提出的问题从简单到复杂,回答按照Simple: Question: Answer: 
Medium:... Complex:...的格式给出。

Figure 14: Example prompt for guiding GPT-4V to cre-
ate image-based instruction-following data, featuring
three levels of complexity: simple, medium, and com-
plex. The bond indicates the type of graph, which can
be replaced by a flowchart, mind map, Gantt chart, or
route map. Yellow highlights the expert identification.
Green highlights ensuring correctness and Red high-

lights the response form.

The prompt used for prompting VLMs to answes825

the instructions based on an given image is showed826

in Figure 15.827

English Prompt

Prompt For Responding to Images

Chinese Prompt

You are an expert in the field of knowledge graph. You must ensure that the image is 
correctly identified, and that the answers are correct. Please answer some questions 
based on this image. 

你是知识图谱方面的专家，你一定要保证识别图片正确，且回答问题正确。请
根据这张图回答一些问题。

Figure 15: English and Chinese prompts for guiding
VLMs to give responses to instructions based on a given
image. The bond indicates the type of graph, which can
be replaced by a flowchart, mind map, Gantt chart, or
route map. Yellow highlights the expert identification.
Green highlights ensuring correctness.

The prompt used for a GPT-4V-assisted visual828

instruction assessment are shown in Figure 16 and 829

Figure 17. 830

GPT-4V-Assisted Prompt 

{
"system_prompt" :  "You are a helpful and precise assistant for checking the quality of the 

answer.",
"prompt_template" : "[Image Input] [Question]{question}
[Human] : {answer_0}[End of Human]
[Assistant 1] : {answer_1}[End of Assistant 1]
[Assistant 2] : {answer_2}[End of Assistant 2]
……
[Assistant 6] : {answer_6}[End of Assistant 6]",
"prompt" : "We request your evaluation of six AI assistants' responses to a user question 

based on an image. The user question is provided above and a reference image is uploaded. 
Additionally, a high-quality and accurate response from a human is given for comparison. Please 
rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant 
receives an overall score on a scale of 1 to 10, where a higher score indicates better overall 
performance.Please first output a single line containing only 6 values indicating the scores for 
Assistant 1 to 6, respectively. The six scores are separated by a space.In the subsequent line, 
please provide a comprehensive explanation of your evaluation, avoiding any potential bias and 
ensuring that the order in which the responses were presented does not affect your judgment."
}

Figure 16: English prompt for guiding GPT-4V to
rate the answers from GPT-4V,Gemini,LLaVA and
MiniGPT-4.

GPT-4V-Assisted Prompt 

{
"system_prompt" :  "你是一位非常有帮助且精确的助手，用于检查答案的质量。",
"prompt_template" : "[Image Input] [问题]{question}
[人类] : {答案_0}[人类回复结束]
[助手1] : {答案_1}[助手1回复结束]
[助手2] : {答案_2}[助手2回复结束]
……
[助手6] : {答案_6}[助手6回复结束]",
“prompt” : “我们请求您根据一张图片，评估六位AI助手对用户问题的回答。用户的

问题已经提供在上方，且参考图片已上传。此外，为了对比，还提供了一个人类给出的高
质量且准确的回答。请评价它们的回答在有用性、相关性、准确性、细节层次上的表现。
每位助手都会在1到10的范围内得到一个总分，分数越高表示总体表现越好。请首先输出
仅包含6个分数的单行，分别代表助手1至6的得分，四个分数之间用空格分隔。在随后的
行中，请提供一个全面的评价解释，避免任何潜在的偏见，并确保回答呈现的顺序不影响
您的判断。"
}

Figure 17: Chinese prompt for guiding GPT-4V to
rate the answers from GPT-4V,Gemini,LLaVA and
MiniGPT-4.

OCR Prompt 

       

"image": "ocr_image.jpg",
        "conversations": [
            {
                "from": "human",
                "value": "<image>\n请识别图片中的文字"
            },
            {
                "from": "gpt",
                "value": "图片中显示的文字是：\"上海公司\""
            }

Figure 18: Chinese OCR prompt.
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A.4 Data831

Figure 19 presents an example of a knowledge832

graph with English content, where the instructions833

and responses were generated by GPT-4V follow-834

ing the specified English prompt.835

You are an expert in the field of knowledge graph. 
You must ensure that the image is correctly 
identified, and that the questions raised and answers 
are correct. Please ask and answer some questions 
based on this image. The questions should 
preferably be based on specific nodes/edges of the 
image and should range from simple to complex.

Of course! The provided knowledge graph appears to 
revolve around Apple Inc., its products, executives, 
and related entities. Here are some questions based 
on the graph, categorized from simple to complex:

1. Simple:
- Q: Who is the successor of Steve Jobs as CEO of 
Apple Inc.?
     A: The successor of Steve Jobs as CEO of Apple 
Inc. is Tim Cook.

2. Medium:
- Q: Where is Apple Inc. located?
     A: Apple Inc. is located in California.

3. Complex:
- Q: Based on the information, can you deduce a 
possible indirect relationship between Rachel and 
Apple Inc.?
     A: Yes, Rachel owns an iPhone, which is a product 
of Apple Inc. Therefore, Rachel can be deduced as a 
customer of Apple Inc.

User’s Image

GPT4-V

User’s Prompt

Figure 19: The instructions and answers followed by
the user prompt for a given image in English.

Similarly, Figure 20 illustrates a flowchart with836

Chinese content, with instructions and responses837

produced by GPT-4V in accordance with the838

adapted Chinese prompt.839

你是流程图方面的专家，你一定要保证识别图
片正确，提出且回答问题正确。请根据这张图
提出且回答一些问题，最好基于该图的具体节
点/边来提问，并且提出的问题从简单到复杂。

1.Simple:

问题: 流程图上有哪几个主要的角色？

答案: 流程图上的主要角色有：投稿人、审稿人、财务
部门和出版人。

问题: 当决策是“同意”时，流程将会如何发展？

答案: 当决策是“同意”时，流程将会继续到“审稿”
这一步，然后进入“财务”进行相关的财务处理，最后
达到“付款”的环节。

2.Medium:

问题: 如果审稿人的决策是“不同意”，流程会如何？

答案: 如果审稿人的决策是“不同意”，流程将会结束，
并不会进入财务和付款的环节。

问题: 财务部门在流程中起到什么作用？

答案: 财务部门在流程中起到了处理稿费和进行付款的
作用。

3.Complex:

问题: 如果一个投稿人希望从提交稿件到最后获得付款，
他需要经过哪些关键的决策点？

答案: 一个投稿人从提交稿件到最后获得付款需要经过
以下关键决策点：审稿人对稿件的审查决策，以及财务
部门的付款决策。

User’s Image GPT4-V

User’s Prompt

Figure 20: The instructions and answers followed
by the user prompt for a given image in Chinese.

你是流程图方面的专家，你一定要保证识别图
片正确，提出且回答问题正确。请根据这张图
提出且回答一些问题，最好基于该图的具体节
点/边来提问，并且提出的问题从简单到复杂。

Question:流程图的第一个步骤是什么?

Translation：

What is the first step in this flow chart?

Answer: 第一个步骤是“选择商品”。

Translation:

The first step is “Select a product”.

User’s Image LLaVA

User’s Prompt

Figure 21: This figure is an illustration of the mod-
els’ hallucination when responsing to Chinese in-
structions. Red highligthts the hallucination in
the response of the model. The meaning of the
Chinese characters in the first step is "Apply for a
refund" in Chinese while LLaVA recognized it as
"Select a product" in Chinese.
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