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Figure 1. We present GALA, a novel 3DGS-based framework for open-vocabulary scene understanding. It delivers strong performance in
both 2D and 3D open-vocabulary queries, while preserving high intra-instance feature consistency to boost segmentation quality.

Abstract

3D scene reconstruction and understanding have gained
increasing popularity, yet existing methods struggle to cap-
ture fine-grained, language-aware 3D representations from
2D images. In this paper, we present GALA, a novel frame-
work for open-vocabulary 3D scene understanding with
3D Gaussian Splatting (3DGS). GALA distills a scene-
specific 3D instance feature field via self-supervised con-
trastive learning. To further extend this to generalized lan-
guage feature fields, we introduce a core contribution of
GALA, a cross-attention module with two learnable code-
books that encode view-independent semantic embeddings.
This design not only ensures intra-instance feature similar-
ity but also supports seamless 2D and 3D open-vocabulary
queries. It reduces memory consumption by avoiding per-
Gaussian high-dimensional feature learning. Extensive ex-
periments on real-world datasets demonstrate GALA’s re-
markable open-vocabulary performance on both 2D and
3D.

*Equal contribution.

1. Introduction

Understanding 3D scenes is a central challenge in 3D com-
puter vision (3DV), with wide-ranging applications in au-
tonomous driving [3, 8, 40, 41], robotics [1, 11, 19, 24], and
augmented or virtual reality [5, 34]. Open-vocabulary scene
understanding not only enables robots to perceive and rea-
son about the world but also opens new possibilities for in-
tuitive human-robots interaction, allowing users to explore
and query scenes through natural language. This integra-
tion of spatial understanding with language grounding rep-
resents a promising direction towards more intelligent sys-
tems.

Neural Radiance Fields (NeRF) [2, 25, 26, 43] offer the
potential to store additional semantic information within the
field. Several methods [14, 15, 45] extend NeRF by distill-
ing semantic or language features from 2D images. How-
ever, NeRF-based methods suffer from inefficient encoding
and incur high computational costs for training and render-
ing. 3D Gaussian Splatting (3DGS) [9, 13, 20, 23, 27, 46]
provides an explicit and more efficient alternative by repre-
senting scenes with a set of 3D Gaussian shape primitives.
Subsequent works [12, 21, 31, 32, 47] incorporate feature



attributes into these Gaussians, enabling semantic feature
rasterization and language-based interactions.

Robotic systems with limited computing resources such
as those for navigation, are often performed in 2D, even
though the robots operate in a 3D world. Therefore, 2D
perception remains essential. Recent works [31, 47] ad-
dress this by distilling high-dimensional 2D language fea-
tures [ 16, 33] into 3D Gaussians through compressing high-
dimensional language features into low-dimensional rep-
resentations, followed by novel view synthesis to enable
arbitrary-view 2D open-vocabulary querying. However,
such compression inevitably leads to information loss, and
their segmentation results exhibit low intra-instance consis-
tency and blurred object boundaries, which hinder accurate
semantic segmentation.

Instead of prioritizing efficient 2D open-vocabulary seg-
mentation, some works focus on enhancing 3D scene se-
mantics. However, storing high-dimensional language
features for each Gaussian is computationally time- and
memory-intensive. Recent methods [18, 42] address this
issue with clustering: Gaussians are grouped into clusters,
each assigned a low-dimensional scene-specific feature, and
are matched to preprocessed per-instance language features
via 2D-3D associations. Yet, purely KNN-based cluster-
ing without explicit supervision can cause one cluster to
span multiple instances or split a single instance, leading
to misalignment and degraded segmentation performance.
Others [6, 12] average multi-view language features with-
out training, achieving strong 3D reconstruction but offer-
ing limited or memory-heavy 2D semantic rendering, mak-
ing them unsuitable for real-time robotics and navigation.

Although reconstructing and perceiving the world in 3D
is important, interacting with it in 2D is often the most ef-
ficient strategy for robotics [1, 10, 17], existing approaches
tend to focus only on one side of the problem. We propose a
Guided Attention method with Language Alignment Gaus-
sian Splatting (GALA), a novel framework that enables both
2D and 3D open-vocabulary scene understanding demon-
strating its broad applicability to diverse perception tasks, as
illustrated in Figure 1. The key idea is to enforce instance-
consistent semantics: instead of storing noisy or redundant
per-Gaussian language features, GALA learns to associate
each Gaussian with a shared instance-level language em-
bedding, ensuring that the semantics of each instance re-
main consistent not only across different spatial locations
and viewpoints but also within the 3D scene. Our main con-
tributions can be summarized as follows:

* We propose to store per-instance semantics via code-
books, associating each instance with a language embed-
ding and ultimately generating intra-instance consistent
semantic features for better segmentation.

* By employing an attention mechanism that maps each
Gaussian feature to its corresponding instance, we enable

effective 2D and 3D open-vocabulary segmentation.

* We improve the segmentation with an attention-weighted
entropy loss, which encourages a clear one-to-one map-
ping between Gaussian instance features and codebook
embeddings.

Extensive experiments on public real-world datasets,

LERF-OVS [14] and ScanNet-v2 [7], demonstrate the ef-

fectiveness of GALA on both 2D and 3D semantic segmen-

tation and open-vocabulary localization compared to the
state-of-the-art. The code and models will be released upon
acceptance.

2. Related Works
2.1. Zero-Shot 2D Scene Understanding

The success of 2D visual foundation models has been
demonstrated across a wide range of vision tasks, which en-
hances both perceptual and reasoning abilities. CLIP [33]
aligns image and text features through contrastive learn-
ing, enabling robust cross-modal understanding in a shared
embedding space. DINO [28], a self-supervised Vision
Transformer, learns rich semantic representations from un-
labeled images, capturing object boundaries and scene lay-
outs. Building on these models, Grounding DINO [22]
extends DINO with open-vocabulary detection capabilities
guided by textual queries, through tight visual-language fu-
sion. SAM [16], a promptable segmentation model, enables
zero-shot instance segmentation with impressive general-
ization. Grounded SAM [35] combines SAM with Ground-
ing DINO to support arbitrary text-driven semantic seg-
mentation and detection. APE [36] introduces a unified
visual perception framework for tasks like segmentation
and grounding, using lightweight visual-language fusion for
efficient and generalizable performance. However, these
powerful models are inherently limited to 2D image un-
derstanding, restricting their applicability in tasks requiring
holistic 3D scene understanding.

2.2. Open-Vocabulary 3D Scene Understanding

Understanding 3D scenes requires consistent semantic rea-
soning across multiple views and spatial dimensions. Re-
cent efforts have explored transferring powerful language
features from 2D models into 3D representations to allow
robots to perceive the world like humans. OpenScene [29]
distills CLIP features into 3D point clouds for zero-shot seg-
mentation and language queries, but suffers from limited
spatial resolution and reduced generalization due to point-
based representation. More recent methods [4, 14, 15, 45]
integrate semantics into continuous neural radiance field by
distilling 2D language features, enabling open-vocabulary
3D understanding. However, NeRFs remain slow to render,
depend heavily on high-quality 2D masks, and struggle with
scalability due to volumetric computation.



In contrast, 3D Gaussian Splatting (3DGS) provides an
explicit and efficient representation better suited for real-
time 3D understanding. LangSplat [31] applies hierarchi-
cal feature distillation by assigning each Gaussian a low-
dimensional feature that is rasterized into a 2D feature
map. A pretrained autoencoder is used to compress high-
dimensional language features for supervision. Similarly,
Feature3DGS [47] leverages a convolutional neural network
(CNN) for feature dimension lifting. While both methods
reduce the dimensionality of the supervision signal, this
compression inevitably causes information loss. Further-
more, they learn per-Gaussian semantic features without en-
forcing intra-instance feature consistency, which may lead
to ambiguous object representations and hinder robotic in-
teraction and navigation. OpenGaussian [42] and Instance-
Gaussian [ 18] place greater emphasis on 3D awareness by
enabling point-level 3D segmentation through hierarchical
feature clustering and 3D-2D feature association, mapping
scene-specific instance features to language features. How-
ever, misalignment in this mapping can cause significant
performance drops.

Rather than training a semantic feature field per scene,
Dr. Splat [12] and Occam’s LGS [6] propose an aggrega-
tion method that averages multi-view language features in
a single forward pass, greatly improving efficiency. Al-
though these methods improve 3D semantic reconstruction,
generating accurate 2D semantic maps remains crucial for
robotics, enabling fast and reliable perception from on-
board camera images. SuperGSeg [21] clusters thousands
of Gaussians into SuperGaussians sharing language embed-
dings, enabling efficient high-dimensional feature rendering
and improving performance. However, its MLP-based clus-
ter update is complex and may lack semantic coherence,
sometimes grouping irrelevant or noisy points. Moreover,
the K-Nearest Neighbors (KNN)-based initialization de-
pends on point density, so sparse regions can cause a Super-
Gaussian to span multiple objects with conflicting seman-
tics, degrading segmentation quality. GOI [32] and CCL-
LGS [38] both introduce a single trainable feature code-
book to store language embeddings and use a multi-layer
perceptron (MLP) to predict discrete codebook indices for
the rasterized 2D feature maps. While this approach com-
presses semantics spatially rather than dimensionally pre-
serving semantic richness, the MLP applies fixed weights
uniformly across all input elements, lacking the flexibility
to dynamically prioritize important information. This limi-
tation makes it less effective at capturing context-dependent
relevance compared to attention mechanisms.

Therefore, we propose a dual-codebook design com-
bined with a guided cross-attention module. Our method
computes similarity scores for soft, continuous assignments
between Gaussian features and codebook embeddings, en-
abling instance-level semantics in a differentiable manner.

Despite relying on 2D supervision, the fully linear attention
and rasterization modules enhance generalization from 2D
tasks to 3D tasks and effectively reduce the multi-view in-
consistencies found in prior work.

3. Preliminaries

3D Gaussian Splatting (3DGS) [13] employs a set of 3D
points to effectively render images from given viewpoints,
each characterized by a Gaussian function with 3D mean
w; € R3, covariance matrix ¥; € R3*3, opacity value o; €
R, RGB color value ¢; € R3, and sometimes with feature
value m; € R%:

0i(X) = a; * exp <—;(X — ) TS (x — Mz)) .

Given a 3D position x, 0;(x) represents current opac-
ity value contributed by the i-th Gaussian. To facilitate op-
timization, X; = R;S; SiT RiT is factorized into the prod-
uct of a scaling matrix S;, represented by scale factors
s; € R3, and a rotation matrix R; encoded by a quater-
nion r; € R, Color value C(u) and feature value M(u) at
pixel u are rendered by NV projected and ordered Gaussians
using point-based a-blending:

{C,M}(u) = ZTiUi X {ci,mi}, (2)

i€EN

where T; = H;;ll(l — 0;). Scaffold-GS [23] introduces a
neural variant of 3DGS by voxelizing a set of point clouds
as anchor points V' € RV*3_ Each anchor point v; € V
is associated with a feature f; € R<, scaling factor [; € R3
and K learnable offsets {O;, € R3 | k = 0,...,K —
1}. Then K neural Gaussians {{; 0, ..., i, k-1 = Vi +
{0i0,...,0; k_1} - l; are generated from a given anchor
point x,. The remaining attributes of each Gaussian g; €
{i ks Ci ks, Riky Sik, my i} are predicted as:

{gi,()v"'?gi,K—l} :\Fg(fiv(si?d:;)) (3)
where §; = ||v; — x|, d, = ﬁ, X, is the camera

center, and Fg is corresponding attribute decoder.

4. Methods

As shown in Figure 2, our method builds on neural Gaussian
Splatting [23] with two-stage training: (1) self-supervised
reconstruction of scene geometry and a scene-specific in-
stance feature field, and (2) rendering these features to 2D
and mapping them to generalized language features via
guided attention with dual learnable codebooks. The lin-
ear attention design enables seamless segmentation in both
2D and 3D using only 2D training, while the per-instance
codebooks and attention-weights entropy loss enforce one-
to-one mappings, enhancing intra-instance feature consis-
tency.
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Figure 2. Overview of GALA. In Stage 1, we reconstruct the 3D scene and distill a scene-specific feature field in a self-supervised manner.
In Stage 2, a rasterized instance feature map is used to train a Guided Attention module, which learns to map the scene-specific feature
field to a generalized language field via two learnable codebooks. During inference (right), GALA supports open-vocabulary querying and

segmentation in both 2D (top) and 3D (bottom).

4.1. Scene Reconstruction and Feature Distillation

SuperGSeg [21] builds on Scaffold-GS [23] to perform joint
3D reconstruction and scene-specific instance and hierar-
chical feature distillation, where these features are used for
clustering. In contrast, our method does not rely on hier-
archical features for clustering and instead focuses solely
on instance learning in a self-supervised manner. Con-
sequently, each anchor point in our method is assigned
to two types of features. Using Eq. 3, a geometry fea-
ture £/ € R% is decoded into K Gaussian attributes
{&ik:Cik, Rik, Sik}. and a segmentation feature f7 €
R%e is decoded into K instance features m;; € R%ns,
These attributes and features are then rasterized as a ren-
dered color map C € R¥*W >3 and a instance feature map
M e RH*Wxdns through Eq. 2.

LangSplat [31] and Feature3DGS [47] learn per-
Gaussian semantic features independently, without any
instance-level constraints. Our method adopts a self-
supervised method [42, 45] to distill a scene-specific in-
stance field with instance contrastive learning. We first gen-
erate a set of instance masks {m; € R | ¢ = 0,..., M}
for each view using Segment Anything Model (SAM) [16].
For a given instance mask m;, we denote each pixel feature
within the mask as {rh; ; € R | j = 1,...,n}, where
subscript ¢ denotes the mask index and subscript j denotes
the pixel index. We compute the mean feature value within
the mask as m; € R%s. To distill the 3D instance field in a
self-supervised manner and enhance intra-instance feature
similarity, we employ contrastive learning to pull features
within the same mask closer together, while pushing fea-

tures from different masks further apart:

1
£ins: sz_log

i=1 j=1

exp(mi,j . ml/ﬂ)

i - — .
Eq;ﬁi exp(m,; - Mq/Tq)

“)

Therefore, the overall objective function for the first
stage is:
ﬁl == ERGB + Ainsﬁinsa (5)

where Ay is the penalty coefﬁcier}t. And Lrgs =
0.8 x |C—C|+0.2 x SSIM(C — C) is the photometric
loss [13] where C is the ground-truth color image.

4.2. Semantic Codebooks

Prior works such as OpenGaussian [42], InstanceGaus-
sian [ 18], and SuperGSeg [21] adopt a bottom-up approach:
they first cluster low-level features to form clusters and then
learn instance-level segmentation by aggregating these clus-
ters. However, this strategy can lead to several issues, in-
cluding over-segmentation, one single cluster representing
multiple distinct objects, or different parts of the same ob-
ject being assigned to separate clusters. To address this, we
introduce a codebook module designed to represent each in-
stance in the scene with a unique embedding. A codebook
consists of N, learnable embeddings, where N, approxi-
mates the number of instances in the scene. Specifically, we
define an Instance Codebook C;,,s € RN*%ins where each
entry captures a distinct instance-level representation. In
parallel, we define a Language Codebook Cjgy,y € RNeXde
which stores language embeddings with a one-to-one cor-
respondence to the entries in C;,,5;. Each codebook entry is



intended to represent a unique instance in the scene. The
proposed codebooks decouple semantics from spatial posi-
tions and allow for unambiguous, per-instance embedding
assignments, ensuring intra-instance feature similarity.

4.3. Guided Attention with Codebooks

Perceiving the world through human language is a key
goal of 3D scene understanding, for which a purely scene-
specific feature field is insufficient. Prior works [18,
42] attempt to align low-dimensional features with high-
dimensional language semantics via 2D-3D associations,
while others [31, 47] compress high-dimensional supervi-
sion to reduce overhead. However, these approaches are
either designed for 3D or 2D segmentation tasks, suffer-
ing from information loss, or leading to limited general-
ization. Our method introduces a guided cross-attention
module with codebooks proposed in Section 4.2 that maps
scene-specific features to the generalized language field, en-
abling both 2D and 3D open-vocabulary queries.
Attention with Codebooks. An attention module [39] is
adopted with learnable codebooks and residual connections.
We use the rasterized instance feature map M as the query
@, the instance codebook C;,s as the key K and the lan-
guage codebook Ciqpq as the value V:

AM) = Attn(Q, K, V) + Q e REW>de ()

A
L = Fiie(A) € RIWXons, ™
where Q = N (M x W?), K = N(Cins),V = N (Clang)»
N represents layer normalization opertor which is applied
to avoid scale discrepancies, W€ is the linear transforma-
tion which is applied to project the original input into a
same space of instance codebook and J; s, is an MLP to lift
the feature dimensionality. During training, we apply only
2D supervision with cosine similarity loss between the pre-
dicted language map L and the preprocessed ground-truth
language map L:

Limg = 1 — cos(L, L). (®)

It is worth noting that the attention operation .4 defined
in Eq. 6 is linear. As the rasterization in Eq. 2 involves a
weighted summation, applying A to the 2D rasterized fea-
tures is mathematically equivalent to applying it directly to
the underlying 3D Gaussians:

A(M) = A(ZTiUi X mi) = ZTiai X A(ml) (9)

This property allows us to train the codebooks solely us-
ing 2D feature maps as supervision, and during inference,
however, the same model can be directly applied to the 3D
Gaussians, enabling open-vocabulary semantic queries in
both 2D and 3D space. By compacting per-Gaussian’s se-
mantic features into per-instance embeddings, we not only

reduce training costs but also enforce intra-instance feature
consistency in both 2D and 3D.

Probability Guidance. OpenGaussian [42] adopts two-
level clustering with positional embedding to model
instance-level representations. However, without explicit
supervision, it struggles to establish a one-to-one correspon-
dence between instances and clusters. Our method lever-
ages attention weights to guide a clear one-to-one mapping
between instances and codebook embeddings. The atten-
tion weights:

P = softmaxz(QK " /\/dins) € REW*Ne, (10)

indicate the relevance probability of each codebook embed-
ding with respect to each feature query. To encourage a
one-to-one correspondence, we apply the entropy loss on
the attention weights:

Eentropy = - ij IOg(pj)v (11)
j=1

where p; € P represents the attention probability distri-
bution over the N, codebook entries for feature query j.
This enforces the probability distribution for each query to
be unimodal, meaning each query is associated with a sin-
gle codebook embedding, ensuring that each instance cor-
responds to only one embedding in the codebook.
Therefore, the overall objective function of the second
stage is:
£2 = Elang + /\em Eemropw (12)

where \¢y is the penalty coefficient.

5. Experiments
5.1. Experimental Setup

Datasets. We comprehensively evaluate our method on two
real-world datasets: ScanNet-v2 [7] and LERF-OVS [14].
Following OpenGaussian [42], 8 scenes are selected from
the ScanNet-v2.

Baselines. We compare our method in both 2D and
3D with LERF [14], LangSplat [31], Feature-3DGS [47],
GS-Grouping [44], LEGaussians [37], GOI [32], Su-
perGSeg [21] and OpenGaussian [42].

Metrics. We follow common practice and report open-
vocabulary segmentation and object selection evaluation
with mean Intersection-over-Union (mloU) for segmenta-
tion accuracy and mean accuracy (mAcc) for localization
accuracy. While understanding the world in 3D is essen-
tial, perceiving it in 2D offers a more efficient pathway for
real-time performance in robotics. Therefore, we report our
performance both in 2D and 3D to demonstrate the broad
applicability of our method to diverse perception tasks.
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Figure 3. Qualitative Results of 2D Open-Vocabulary Query. We visualize 2D Open-Vocabulary query results on LERF-OVS
dataset [14]. LangSplat fails to localize objects accurately, leading to mismatching or incomplete masks. Our method delivers precise

and consistent queries across diverse queries.

Mean Figurines Teatime Ramen Waldo _kitchen

Eval. Method mloUT mAccT mloU mAcc mloU mAcc mloU mAcc mloU mAcc
LERF [14] 37.40 73.60  38.60 75.00 45.00 84.80 2820 62.00 3790 72.70
LangSplat [31] 51.40 8430 4470 8040 65.10 88.10 51.20 73.20 44.50 95.50
Feature-3DGS [47]  45.70 77.00  58.80 77.20 4050 73.40 4370 69.80 39.60 87.60

2D GS-Grouping [44] 46.30 76.50 6090 75.00 40.00 7430 4550 68.60 38.70 88.20
LEGaussians [37] 46.90 7720 6030 75.60 4080 7520 46.00 67.50 39.40 90.30

GAGS [30] 54.12 81.66 5359 7857 6029 88.14 46.81 69.01 55.80 9091

GOI [32] 50.60 8440 63.70 88.60 4450 8290 @ 52.60 75.50 41.40 90.40

Ours 55.49 73.43 5935 82.14 76.73 88.14 35.13 50.70 50.75 72.73
LangSplat [31] 9.66 12.41 10.16 893 1138 2034 792 1127 9.18 9.09
LEGaussians [37] 16.21 23.82 17.99 2322 1927 27.12 1579 2676 11.78 18.18

3D OpenGaussian [42] = 38.36 51.43 39.29 5536 6044 7627 31.01 4225 2270 31.82
SuperGSeg [21] 35.94 52.02 4368 60.71 5531 7797 18.07 2394 2671 4545

Ours 36.71 59.71 4525 69.64 5327 8475 17.08 2535 31.22 59.09

Table 1. 2D and 3D Evaluation on LERF-OVS. We report mloU and mAcc on the LERF-OVS dataset [14]. Note that OpenGaussian [42]
and SuperGSeg [21] by default do not report 2D evaluation. LERF [14], Feature-3DGS [47], GS-Grouping [44], GAGS [30] and GOI [32]

by default do not support 3D evaluation.

Implementation Details. We perform single-GPU training
(NVIDIA RTX 3090). For stage 1, we train 30,000 itera-
tions with Aj,s = 0.001 and for stage 2 we train 15,000 itera-
tions with ey, = 10. We set the dimension of both instance
codebook and language codebook as d;,s = d. = 16. We
use SAM [16] and CLIP [33] to preprocess the ground-truth
language map, and set djqng = 512. For more implementa-
tion details, please refer to the supp. mat..

5.2. 2D Evaluation

Table 1 presents the 2D results on the LERF-OVS dataset.
We report both per-scene and average evaluations, where
our method achieves the highest average mloU (55.49%)
among all existing approaches. In scenes with clearly sepa-
rated objects, such as Teatime, our method delivers precise
performance in both open-vocabulary segmentation and lo-
calization, achieving 76.73% mloU and 88.14% mAcc. Our
method also performs robustly in more cluttered environ-
ments like Waldo_Kitchen, attaining 50.75% mloU, where
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Figure 4. Qualitative Results of 3D Open-Vocabulary Segmentation. We visualize the language feature point cloud on LERF-OVS [14]
and ScanNet-v2 dataset [7] by compressing the features into the RGB point cloud. Note that the colors for visualization are consistent only

within each method and not method-to-method.

it better distinguishes complex domestic objects compared
to LangSplat and GOI. Figure 3 demonstrates that our
method can accurately distinguish the “Green Apple” with-
out ambiguity, whereas LangSplat incorrectly selects both
the green and red apples. Overall, our method achieves
precise object segmentation with sharp and well-defined
boundaries.

5.3. 3D Evaluation

3D Evaluation on LERF-OVS. Following the evaluation
protocol of LangSplat [31], Table 1 showcases the strong
performance of our method in 3D segmentation and local-
ization on the LERF-OVS dataset. Thanks to the linear-
ity of the proposed attention module, our method, trained
exclusively with 2D supervision, generalizes seamlessly
to 3D tasks without any architectural modifications. Our
method even outperforms the 3D-only method OpenGaus-
sian on Figurines and Waldo kitchen, which, however, can-
not easily produce 2D segmentation outputs. In contrast,
the 2D-only method LangSplat struggles with 3D evalua-
tion, as it is trained solely with 2D supervision and lacks

3D-aware segmentation. We also visualize the feature point
cloud in Figure 4. Our method achieves both better ge-
ometry reconstruction and 3D segmentation compared with
LangSplat [31] and OpenGaussian [42].

3D Evaluation on ScanNet-v2. Table 2 reports the 3D
point cloud segmentation results on the ScanNet-v2 dataset,
as ScanNet-v2 provides ground-truth semantic point cloud.
We present the mean mloU and mAcc across eight selected
scenes containing different numbers of classes. Our method
consistently outperforms OpenGaussian on all metrics, de-
livering strong 3D reconstruction and segmentation accu-
racy alongside high-quality 3D localization. Figure 4 vi-
sualizes the language-featured point clouds. By default,
OpenGaussian does not densify Gaussians on ScanNet-v2,
resulting in sparse features and lower appearance quality.
Our method surpasses OpenGaussian both quantitatively
and qualitatively.

5.4. Intra-Instance Feature Consistency

Previous methods learn semantic features per Gaussian
or cluster, causing variations across positions and view-



19 Classes 15 Classes 10 Classes

Method mloU T mAcc® mloU?T mAcct mloU 1 mAcc T
LangSplat [31] 2.94 11.63 3.80 1398  6.60 22.24
OpenGaussian [42] 1547  26.04 1742 2882 2346 37.73
Ours 21.54 3747 2520 42.06 3585 57.02

Table 2. 3D Evaluation on ScanNet-v2. We report the average
3D mloU and mAcc on 8 scenes of the ScanNet-v2 dataset [7].

Teatime Ramen
go 4

LangSplat

GALA(Ours)

Figure 5. Intra-Instance Feature Consistency. We visualize the
rendered language feature map and show that our method provides
a consistent intra-instance feature map and a clear boundary, which
enhances the segmentation performance.

points. Our method addresses this issue in Stage 1 through
instance-level contrastive learning, and further reinforces
feature consistency via a per-instance codebook design.
As shown in Figure 4, on the Teatime and Waldo_kitchen
scenes, the feature point clouds produced by LangSplat are
highly noisy. On Scene0097_00, the door features from
LangSplat are difficult to distinguish, and OpenGaussian
oversegments the floor. Figure 5 visualizes the results with
rendered 2D language feature maps. Our method yields ho-
mogeneous feature maps with well-defined boundaries.

5.5. Ablation Study

All ablations are on Teatime of LERF-OVS [14].

Ablation on Codebook. Table 3 shows an ablation on the
number of codes. Teatime contains around 64 instances;
therefore, the best performance is achieved with 64 codes,
matching the number of instances and enabling a near one-
to-one mapping between embeddings and objects. Figure 6
shows that too few codes cause semantic ambiguity. The
codebook size matching the expected number of instances
achieves the best balance of accuracy and efficiency.
Ablation on Attention Module. We also report ablation
on the structure of the proposed attention module. In Ta-
ble 4, we show results that a) with lifting MLP Eq. 7 only,

\

GT Image

Code 14 (N, = 16) Code 14 (N, = 64)
Figure 6. Ablation on the Number of Codes. We visualize an
embedding from the codebook as the semantic mask. With codes
number N. = 16, code 14 represents both the sheep and plate
in the featime scene of LERF-OVS. With N. = 64, our method
clearly isolates the sheep, demonstrating improved instance sepa-
ration.

N, = 16 32 64 128

mloU1 6022 71.65 76.73 68.33
mAcc T 72.88 83.05 88.14 83.05

Table 3. Ablation on Number of Codes.

# MLP Attn Res. Prob. mloU?T mAcc?

a) v 72.60 86.44
b) v 35.48 42.37
c) v v 74.25 88.13
d) v v v 75.02 86.44
€) v v v v 76.73 88.14

Table 4. Ablation on Attention and Probability Guidance.

b) with attention Eq. 6 only and set the language codebook
as Clang € RN<*%12, ¢) the attention together with lifting
MLP but without residual connection Fy; ¢ (A(Q, K,V)),
e) our full model. We find that our full model achieves the
best overall performance. In case b), applying the attention
module directly without the MLP leads to high computa-
tional cost and convergence difficulties. Comparing cases
¢) and d), we observe that introducing a residual connection
significantly improves training stability.

Ablation on Probability Guidance. In Table 4, we show
results that d) without probability guidance. Our guided at-
tention model is better able to assign distinct embeddings to
separate object instances, leading to more accurate and in-
terpretable segmentation. The right column of Figure 6 vi-
sualizes a selected embedding from our proposed codebook,
showing that each embedding indeed captures meaningful
instance-level semantics. For more ablations and runtime
analysis, please refer to supp. mat..

6. Conclusions

We presented GALA, a framework for open-vocabulary
3D scene understanding using 3D Gaussian Splatting. By
combining self-supervised instance-level feature distilla-
tion with a cross-attention module and learnable code-
books, GALA produces consistent, view-independent se-
mantic embeddings, supports 2D and 3D open-vocabulary
queries, and reduces memory usage. Experiments on real-
world datasets demonstrate its effectiveness in generating
reliable and efficient 3D and 2D feature representations.
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