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Abstract

Active learning aims to efficiently build a labeled training set by strategically selecting sam-
ples to query labels from annotators. In this sequential process, each sample acquisition
influences subsequent selections, causing dependencies among samples in the labeled set.
However, these dependencies are overlooked during the model parameter estimation stage
when updating the model using Maximum Likelihood Estimation (MLE), a conventional
method that assumes independent and identically distributed (i.i.d.) data. We propose
Dependency-aware MLE (DMLE), which corrects MLE within the active learning framework
by addressing sample dependencies typically neglected due to the i.i.d. assumption, ensur-
ing consistency with active learning principles in the model parameter estimation process.
This improved method achieves superior performance across multiple benchmark datasets,
reaching higher performance in earlier cycles compared to conventional MLE. Specifically,
we observe average accuracy improvements of 6%, 8.6%, and 10.5% for k = 1, k = 5, and
k = 10 respectively, after collecting the first 100 samples, where entropy is the acquisition
function and k is the query batch size acquired at every active learning cycle.

1 Introduction

Supervised learning methods rely on the availability of abundant labeled data (Alzubaidi et al., 2023). The
significance of large labeled sets becomes more acute with over-parameterized deep learning models that can
be prone to overfitting (Brigato & Iocchi, 2021). Resource constraints in acquiring labeled data present a
practical challenge and must be balanced against the benefits of having more labeled data (Alzubaidi et al.,
2023; Bansal et al., 2022). In particular, the costs associated with labeling motivate the need to use labeling
resources as effectively as possible. Data augmentation (Shorten & Khoshgoftaar, 2019) and transfer learning
methods (Tan et al., 2018; Yu et al., 2022) have been adopted as methods to deal with this (labeled) data
scarcity challenge. In contrast to these methods, active learning aims to intentionally select which samples
to acquire or labels to request based on the latest available model, attempting to achieve a high return on
performance improvement per data acquisition or labeling resource spent (Ren et al., 2021).

Active learning is an iterative process that alternates between two steps: (1) querying samples/labels and
(2) adapting or retraining the model with the updated training set (Settles, 2009) as illustrated in Figure 2.
Each complete iteration of these steps is referred to as a cycle. In each cycle, the model might either acquire
one sample or a batch of samples during the query sampling step. So, in an active learning setup, previously
selected data have control over the selection of new samples at each cycle through the updated model
parameters. This sequential nature of data collection in active learning inherently introduces dependencies
between samples across cycles in the labeled set. However, conventional Maximum Likelihood Estimation
(MLE) assumes samples are i.i.d., overlooking dependencies during model parameter estimation; hence, we
refer to it as Independent MLE (IMLE).

Sample dependency has been studied in the literature by revisiting the sample acquisition stage (Sener &
Savarese, 2018; Ash et al., 2019a) or re-weighting the objective function (Farquhar et al., 2021; Beygelz-
imer et al., 2008), however, these approaches are insufficient to capture the dependency within the objective
function, as they still rely on the i.i.d. assumption of MLE. Neglecting sample dependency during model
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Passive learning with IMLE (700 sam-
ples)

Active learning with IMLE and entropy
as an acquisition function (140 samples)

Active learning with DMLE and entropy
as an acquisition function (140 samples)

Figure 1: Comparison of decision boundaries and selected samples across different learning scenarios: On the
left, all 700 samples are used for model training without active learning. In the active learning experiments
shown in the middle and right, the entropy acquisition function is used for sample selection, with one sample
acquired at each cycle, resulting in a total of 140 samples. The middle setup employs IMLE for model
parameter updates, while the right setup uses DMLE. The shaded regions represent the decision boundaries,
and the yellow crosses in the active learning setups highlight the selected informative samples. Both the
model trained with all samples using IMLE and the active learning model updated with DMLE achieve 99.5%
accuracy, while the active learning model using IMLE for parameter updates achieves only 92% accuracy.

parameter estimation is fundamentally incompatible with the nature of active learning. Ignoring this depen-
dency during training leads to a vicious cycle of suboptimal model parameter estimation and, in turn, poor
sample acquisition decisions in upcoming cycles as illustrated in Figure 1. The model updated with DMLE,
using the same number of samples, outperforms the one updated with IMLE, creating a decision boundary
similar to the one achieved by using all data samples. The diverse and well-separated sample selections made
by the DMLE-updated model show that a better model leads to more effective sample selection and better
results with fewer samples. This motivates us to explore ways to model this dependency in the training ob-
jective. To the best of our knowledge, this is the first work that attempts to correct for dependencies among
samples across active learning cycles during model parameter estimation by removing the incompatible i.i.d.
data assumption from the training objective. Our main contributions are as follows:

• We propose Dependency-aware Maximum Likelihood Estimation (DMLE), a novel approach that
corrects MLE by eliminating the i.i.d. data assumption and aligning with active learning principles
through explicit modeling of sample dependencies during the parameter estimation stage.

• We theoretically derive the dependency term in MLE that arises from the influence of previously
selected samples on subsequent sample selections within the active learning framework.

• Our empirical results and hypothesis tests indicate that, in an active learning process, DMLE out-
performs the conventional independent MLE (IMLE) approach in various benchmark datasets and
several sample selection strategies.

The remainder of this paper is organized as follows. The related works are discussed in Section 2. Section 3
provides the necessary definitions and background in active learning. We present the proposed methodology
of DMLE to use MLE within active learning in Section 4. Experiments and results are presented in Section 5
while final remarks are made in Section 6.

2 Related Work

In machine learning, the dataset used for training plays a significant role in resulting model performance (Shui
et al., 2020; Gal et al., 2017). However, labeling large datasets is not always convenient and straightfor-
ward, especially in domains such as medicine (Hoi et al., 2006; Smailagic et al., 2018; Budd et al., 2021),
hyperspectral imaging (Cao et al., 2020; Lei et al., 2022; Thoreau et al., 2022), or bioinformatics (Mohamed
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Figure 2: Components of active learning procedure. In active learning, the model selects the samples to be
acquired where the model parameters are cyclically updated with the updated labeled set. First, uncertainty
scores for the samples in the unlabeled sample pool Ut are calculated using the current model with the
acquisition function a(x, D). Next, samples St+1 selected based on the sample selection strategy are labeled
by an oracle and included in the labeled set Dt, resulting in Dt+1 = Dt ∪{(x, y), x ∈ St+1}. After the query
sampling step, the updated labeled set is used for the model update with a model parameter estimation
method, concluding one cycle.

et al., 2010; De Angeli et al., 2021). In the active learning paradigm, the model is allowed to choose the
data from which it learns, aiming to enhance labeling efficiency (Settles, 2009). Thus, using active learning
becomes crucial to create the best training set under limited resources. For the optimization of this sample
selection procedure, extensive research in active learning has been focused on developing various acquisition
strategies (Schohn & Cohn, 2000; Zheng & Padmanabhan, 2002; Sourati et al., 2017; Ash et al., 2021; Kim
et al., 2023) aiming to make better selections at each cycle.

Initial work in active learning aimed to combine this paradigm with simple machine learning models, such
as Support Vector Machine (SVM), decision tree classifier (Lewis & Catlett, 1994a), nearest neighbor clas-
sifier (Lindenbaum et al., 2004), and logistic regression model (Schein & Ungar, 2007; Zhang & Oles, 2000).
With neural networks’ increasing popularity, the deep active learning research focused on combining neural
networks with active learning has become accelerated (Wang et al., 2021; Ban et al., 2023). Despite the mer-
its of deep active learning, Settles (2011) draws attention to the sample correlation problem that emerges
in batch sample acquisition. While batch selection may reduce the overall computational expenses of train-
ing after each cycle, it can lead to redundant labeling if the trade-off between uncertainty and diversity of
samples is not well-balanced, potentially hindering the objectives of active learning (Settles, 2011; Krishnan
et al., 2021). To solve this issue, various corrective approaches have been proposed mainly attempting to
balance inference uncertainty and sample diversity during batch sample selection (Sener & Savarese, 2018;
Ash et al., 2019a; Kirsch et al., 2019b; Ash et al., 2019b; Bıyık et al., 2019; Citovsky et al., 2021; Kirsch et al.,
2019a). Kirsch et al. (2021) highlights computational expenses of methods aiming to combine uncertainty
and diversity of samples and proposes a stochastic batch sampling strategy with less additional costs during
the sample selection. Although sample correlations are comprehensively researched, the focus has so far
been on the dependency between the batch of samples selected in a cycle, primarily addressing the sample
dependency within the sample acquisition stage. Our aim differs from the earlier works as we emphasize
sample dependency across cycles and address it during the model parameter estimation stage.

Achieving good results at earlier cycles even when starting from a few or zero labeled samples is highly
preferable in active learning (Jin et al., 2022; Yuan et al., 2020; Houlsby et al., 2014). Challenges include
dealing with biased data (Gudovskiy et al., 2020; Singh et al., 2023), the creation of imbalanced training data
across the cycles (Kottke et al., 2021; Yang & Loog, 2022; Szűcs & Papp, 2022), the selection of outliers (Chen
et al., 2022; Beygelzimer et al., 2008; Prabhu et al., 2019; Dasgupta & Hsu, 2008), or sample dependency
in data collection leading to a possible discrepancy between the acquired training data distribution and the
actual population distribution (Dasgupta, 2011). Among the listed challenges, the one most aligned with our
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focus is the emphasis on sample dependency. Previous work on this issue has proposed using re-weighting
the objective function (Farquhar et al., 2021; Beygelzimer et al., 2008) or clustering techniques (Dasgupta
& Hsu, 2008) to address sample dependency, with a focus on achieving a representative approximation of
the true distribution. While Dasgupta & Hsu (2008) proposes a clustering-based sample selection process
aimed at ensuring good representation of the population with the selected sample set, their approach is
limited to optimizing the sample acquisition stage with a similar goal to that of batch sample selection
methods. Beygelzimer et al. (2008) on the other hand, proposes an importance-weighted active learning
method to address the sample dependency relationship by applying importance-sampling corrections in a
stream-based active learning scenario, which is limited to simple binary classifier models. Although Farquhar
et al. (2021) also focuses on neural networks and addresses an unlabeled pool scenario similar to ours, their
method is limited to re-weighting within the objective aiming to come up with an unbiased risk estimator.
They conclude that applying this methodology with neural networks leads to performance deficiencies due
to the loss of generalizability. However, the sample dependency issue we highlight arises specifically during
the model parameter estimation stage due to the i.i.d. data assumption inherent in MLE. The proposed
methods cannot capture this issue, as fixing it by re-weighting the loss term for each sample during training
will still rely on the i.i.d. assumption and neglect the dependency term (See Appendix D for experimental
comparison on MNIST dataset).

3 Background

We consider an active learning setup (Settles, 2009; Takezoe et al., 2023; Joshi et al., 2009), in which a large
number of unlabeled samples are available for an evaluation in terms of an acquisition score and labeling
by an oracle (e.g., an expert) on demand. An active learning algorithm proceeds in stages, collecting a
batch of k labels from the labeling oracle, training a model from the labeled data, and selecting which
batch to collect next. At cycle t, we define the unlabeled dataset as Ut = {xi}

Nt
U

i=1 and the labeled set as
Dt = {(xi, yi)}Nt

L
i=1 where xi ∈ X ⊂ Rdx are the features, yi ∈ Y = {1, . . . , K} are categorical labels. We also

denote by N t
U the number of unlabeled samples and N t

L the number of labeled samples at cycle t. We assume
that, conditioned on parameters θ and sample features x, label y is sampled from a conditional distribution
P (· | x; θ) parameterized by θ ∈ Rdθ . For example, in a deep neural-network (DNN) setting, where the DNN
model is represented by function fθ : X → {0, 1}K , the probability would be given by the softmax function,
i.e., P (y | x, θ) = e(fθ(x))y /

∑
y′ e(fθ(x))y′ , for y, y′ ∈ Y.

Overall, the above active learning algorithm is formally defined by two components, illustrated in Figure
2: query sampling, which includes an acquisition function and a sample selection strategy, and a model
parameter estimation method.

3.1 Acquisition Function

Acquisition functions (Lewis & Catlett, 1994b; Settles, 2009) model the value of acquiring a label for an
unlabeled sample towards the quality of the trained model. Formally, the acquisition function a : X×Rdθ → R
takes as arguments an x ∈ Ut, current labeled set Dt, model parameters θ, and returns the value of the
sample given the current parameters.

This is often modeled through the uncertainty of the label prediction of the classifier trained so far at an
unlabeled sample. Examples include the entropy (Shannon, 1948), Bayesian Active Learning by Disagreement
(BALD) (Houlsby et al., 2011), margin sampling (Roth & Small, 2006), and least confidence (Settles, 2009).
The entropy acquisition function quantifies the uncertainty of a sample using the entropy of label y as follows:

a(x, Dt, θ) = H[y|x, θ; Dt] = −
∑
y∈Y

P (y | x; Dt, θ) ln P (y | x; Dt, θ). (1)

The BALD acquisition function evaluates the uncertainty of a sample as the mutual information between
label predictions and model posterior:

a(x, Dt, θ) = H[y|x, Dt, θ]− Ep(θ|Dt)[H[y|x, θ]]. (2)
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Table 1: Possible sample selection probability distributions spanned by the sampling method of Kirsch et al.
(2021). Here, a(x, D, θ) represents the acquisition score, r is the descending ranking of the acquisition scores
a(x, D, θ), with the smallest rank as 1, and β denotes the coldness parameter.

Distribution P (x|Dt; θ)
Softmax ∝ eβa(x,Dt,θ)

Power ∝ a(x, Dt, θ)β

Soft-rank ∝ r−β

The least confidence acquisition function quantifies the uncertainty of a sample as:

a(x, Dt, θ) = 1−max
y

P (y | x; Dt, θ). (3)

Some acquisition methods extend beyond uncertainty-based selection by incorporating sample diversity,
ensuring that selected samples cover a broader representation of the data. This approach is considered
deterministic, as demonstrated by methods such as Core-set (Sener & Savarese, 2018), BADGE (Ash et al.,
2019b), and Cluster Margin (Citovsky et al., 2021). Depending on the acquisition method, acquisition
scores can be designed to align with the selection procedure. We provide an acquisition score for the Core-
set method below, where C is the set of cluster centers derived from Dt, and the feature representations
extracted by the model with parameters θ are denoted as ϕ(x, θ):

a(x, Dt, θ) = min
x′∈C

||ϕ(x, θ)− ϕ(x′, θ)||2. (4)

3.2 Sample Selection Strategy

The selection strategy determines the samples from the unlabeled set to be labeled in the next cycle relying
on the acquisition scores. Two of the most widely employed approaches for sample selection are Top-k
selection (Gal et al., 2017; Kirsch et al., 2019a) and stochastic batch sampling: proposed recently. The latter
was shown to outperform Top-k in selecting informative samples (Kirsch et al., 2021) with less computational
expenses which makes it preferable for sample selection during cycles. Independently of the selection strategy,
having selected St+1, the corresponding labels are collected from the labeler, yielding a dataset

∂Dt+1 = {(x, y) : x ∈ St+1}.

and sets Dt and Ut are adjusted accordingly, i.e., Dt+1 = Dt ∪ ∂Dt+1 and Ut+1 = Ut \ St+1.

Top-k Selection. In Top-k selection procedure, the selected batch of size k is given by:

St+1 = arg max
S⊂Ut:|S|=k

∑
x∈S

a(x, Dt, θ), (5)

where Dt is the labeled set at cycle t and Ut is the unlabeled set. As the objective function in equation 5 is
submodular, it is maximized by the items of the highest acquisition value (Kirsch et al., 2021).

Stochastic Batch Selection. For stochastic batch selection, Kirsch et al. (2021) propose three probabilistic
sampling schemes: Softmax, Power, and Soft-Rank Acquisition, as listed in Table 1. Stochastic batch selec-
tion methods differ from the conventional Top-k selection method by perturbing the acquisition scores/ranks
of the samples in the unlabeled set with Gumbel noise prior to the Top-k acquisition, formulated as follows:

St+1 = arg max
S⊂Ut:|S|=k

∑
x∈S

[
ã(x, Dt, θ) + ϵ

]
. (6)

where ã is a modified acquisition function and ϵ is Gumbel noise. This perturbation introduces proba-
bilistic selection into the sample selection procedure. Kirsch et al. (2021) show that, given an acquisition
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function a(·), the sample selection distributions P (x|Dt; θ) presented on Table 1 can be implemented via
equation 6, through an appropriate choice of ã(·) and parameters of the Gumbel noise. Details are provided
in Appendix A in the supplement.

There are two ways to incorporate clustering-based active learning methods as acquisition functions with
the selection methods outlined here. The first approach involves using a measurement based on the cluster-
ing/diversity method as the acquisition score, which can be used for stochastic softmax sampling, stochastic
power sampling, or top-k sampling. The second approach entails developing a ranking of the samples in the
unlabeled set to be used with stochastic soft-rank sampling. As long as acquisition scores or ranks can be
computed, sample dependency can be integrated into model training within any active learning framework.

3.3 Model Parameter Estimation

In the model adaptation/re-training step, typically, Maximum Likelihood parameter Estimation (MLE) is
preferred:

θ̂MLE
t+1 = arg max

θ
ln P (Dt+1; θ) = arg max

θ

∑
(x,y)∈Dt+1

ln P (y | x; θ) +
t+1∑
τ=1

ln P (Sτ | Dτ−1; θ) (7)

The foundational assumption of i.i.d. data in MLE (Bishop, 2006) causes the ln P (Sτ |Dτ−1; θ) term to be a
constant and leads to the following conventional objective function:

θ̂MLE
t+1 = arg max

θ

∑
(x,y)∈Dt+1

ln P (y | x; θ) (8)

which we refer to as Independent Maximum Likelihood Estimation (IMLE) in the rest of the paper to
highlight this sample independence assumption (see Appendix B for detailed derivation).

4 Dependency-aware Maximum Likelihood Estimation

In the iterative framework of active learning, the sample acquisition is followed by the adaptation/re-training
of the model. Conventional approaches often employ MLE given in equation 8 as a way of doing model pa-
rameter estimation during this stage. Conventional MLE, referred to here as IMLE, introduces a fundamental
incompatibility in active learning: its assumption of sample independence conflicts with the sequential nature
of sample acquisition. The i.i.d. data assumption in IMLE eliminates the contribution of sample dependen-
cies during estimation (see Appendix B). However, labels in Dt+1 are in fact not independent, as the data
samples in the labeled set are not i.i.d.: their selection is determined via the active learning algorithm itself,
which in turn depends on the past collected labels. As a result, IMLE is an approximation of reality and
overlooks sample dependencies in the estimate of θ. Our major contribution is to account for these sample
dependencies during model parameter estimation.

Ideally, we aim to preserve the valuable information embedded in sample dependencies within the likelihood
P (Dt+1; θ), which is typically disregarded under the i.i.d. assumption. In equation 7, if the second term
is not eliminated due to the i.i.d. assumption, it gives rise to the dependency term in equation 11. This
dependency appears as a conditional probability term of the form P (Sτ | Dτ−1; θ). This accounts for the
dependence of batches on previous cycles and may enable a conditional chain computation of the likelihood
P (Dt+1; θ) as follows:
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θ̂DMLE
t+1 = arg max

θ

t+1∑
τ=1

[
k∑

i=1
ln P (yτ,i | xτ,i; θ) + ln P (Sτ | Dτ−1; θ)

]
(9)

= arg max
θ

∑
(x,y)∈Dt+1

ln P (y | x; θ) +
t+1∑
τ=1

ln P (Sτ | Dτ−1; θ) (10)

= arg max
θ

∑
(x,y)∈Dt+1

ln P (y | x; θ)

︸ ︷︷ ︸
IMLE

+
t+1∑
τ=1

∑
x∈Sτ

ln P (x|Dτ−1; θ)︸ ︷︷ ︸
Dependency

(11)

We propose taking into account these dependencies as evident in equation 11, during the model parameter
estimation. We refer to this approach as Dependency-aware Maximum Likelihood Estimation (DMLE), in
which model parameters are updated while incorporating the sample dependencies introduced during active
learning cycles.

However, this poses a challenge, as P (Sτ | Dτ−1; θ) distribution is difficult to express in a closed form: it
depends on the labels in Dt+1 through the generation of an estimate of θ, which affects the acquisition function
and in turn the sample selection. Fortunately, when utilizing the stochastic batch sampling approaches
introduced by Kirsch et al. (2021) and discussed in Section 3.2, an appropriate corresponding probability
distribution P (Sτ | Dτ−1; θ) is associated with them (see Table 1). This allows us to introduce an appropriate
correction term for equation 11. When using the Top-k sampling discussed in Section 3.2, we approximate
P (Sτ | Dτ−1; θ) by the Softmax distribution given in Table 1 (Bishop, 2006).

The comparison of DMLE in equation 11 with IMLE in equation 8 highlights their discrepancy in the latter
term. We interpret this term as accounting for the sample dependencies resulting from active learning in
MLE. Indeed, this term incorporates the likelihood of observed sample features (rather than labels alone)
under a given θ, as induced by sampling. Thus, the selection of the sampling strategy results in varying
terms in the objective function, which are proportionate to the summation of acquisition scores of samples in
the labeled set, as can be deduced from Table 1 (see Appendix A for the corresponding objective functions).
This likelihood function directly influences the Fisher Information matrix by incorporating the dependencies
between selected samples, leading to a stronger information measure. As a result, the estimator benefits
from lower variance guarantees. In Appendix C.1, we prove:

Theorem 1 Let IIMLE(θ) and IDMLE(θ) be the Fisher Information matrices for IMLE and DMLE, respec-
tively. As DMLE accounts for sample dependencies, IDMLE(θ) ⪰ IIMLE(θ). By the Cramér-Rao bound, this
implies Cov(θ̂DMLE) ⪯ Cov(θ̂IMLE), ensuring that DMLE provides lower variance estimates compared to
IMLE.

Thus, the incorporation of sample dependencies in DMLE strengthens the estimator, leading to improved
parameter precision. To better understand the impact of training with DMLE, it is helpful to examine the
expected log-likelihood over samples drawn from P true which is the true data distribution. This provides
a theoretical justification for DMLE, as it reveals how the decomposition of the log-likelihood guides the
alignment of model distributions with the true data distribution. In Appendix C.2, we show:

Theorem 2 Let P true be the true data distribution, (x′, y′) ∼ P true, and P (y′ | x′, Dt; θ̂) and P (x′ | Dt; θ̂)
be the distributions estimated from actively selected training data Dt. The expected log-likelihood on this data
decomposes as:

E(x′,y′)∼P true

[
ln L(θ̂)

]
= −DKL(P (y′ | x′) ∥ P (y′ | x′, Dt; θ̂))−DKL(P (x′) ∥ P (x′ | Dt; θ̂)).

When the training data is actively selected, DMLE, which includes both terms in the log-likelihood decom-
position, minimizes the sum of two KL divergences, ensuring better alignment with the true distribution
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compared to IMLE, which ignores the dependency term. The dependency term, DKL

(
P (x′) ∥ P (x′ | Dt; θ̂)

)
,

measures the discrepancy between the true distribution P (x′) and the model’s estimate P (x′ | Dt; θ̂) learned
from the actively selected data. Maximizing the expected log-likelihood is equivalent to minimizing the
sum of two KL divergences, ensuring that both the predictive and data distributions of the model remain
close to the true distributions. By addressing this discrepancy, DMLE reduces distributional mismatch and
enhances the model’s approximation of the true data distribution. In contrast, IMLE, by neglecting this
term, risks a greater distributional gap. The dependency term ensures that the model’s input distribution
remains aligned with the true data distribution. The overall algorithm with DMLE in the active learning
framework is provided in Alg. 1.

Algorithm 1 Maximum Likelihood Estimation for Active Learning
Input: Unlabeled dataset Uτ = {xi}

Nτ
U

i=1, Labeled dataset Dτ = {(xi, yi)}Nτ
L

i=1, Model fθ, Sample selection
size k
for τ = 1, ..., T do

Acqusition Function: Compute acquisition scores a(x, Dτ , θ) for all x ∈ Uτ with fθ

Sample Selection Strategy: Select batch Sτ+1 ⊂ Uτ of size k
Oracle Labeling
- Request labels from Oracle for samples in Sτ+1
- Obtain labeled samples {(xi, yi)}xi∈Sτ+1

- Update Labeled Dataset Dτ+1 ← Dτ ∪ {(xi, yi) | xi ∈ Sτ+1}
- Update Unlabeled Dataset Uτ+1 ← Uτ \ Sτ+1
Model Parameter Estimation
- Compute acquisition scores a(x, Dτ , θ) for all x ∈ Dτ+1
- Update model parameters θ̂τ+1 with DMLE ( equation 11) on Dτ+1

end for

5 Experiments

5.1 Experiment Setting

Datasets and Models. We evaluate the impact of including the dependency term during model parameter
estimation for the active learning process on the model’s prediction performance by testing it on datasets
consisting of images, texts, or features; to have diverse experiments, we used datasets with different sizes
and complexities. We use eight classification datasets: Iris (Fisher, 1988), Mnist (Deng, 2012), Fashion-
Mnist (FMnist) (Xiao et al., 2017), SVHN (Netzer et al., 2011), Reuters-21578 (Reuters) (Lewis, 1997),
Emnist-Letters (Emnist) (Cohen et al., 2017), Cifar-10 (Krizhevsky et al., 2009), and Tiny ImageNet (Le &
Yang, 2015). We randomly sample a portion of each dataset and assume that only the subset was available
during training. We used a subset of 30000 samples for Mnist and FMnist, 110 samples for Iris, 14651
samples for SVHN, 8083 samples for Reuters, 4440 samples for Emnist, 3000 samples for Cifar-10, and 1500
samples for Tiny ImageNet. Depending on the dataset, we adjust the complexity of the model. We used
LeNet (Lecun et al., 1998) for Mnist, FMnist, SVHN, and Emnist, a two-layer MLP for Iris, a neural network
with embedding and convolutional layers for Reuters, ResNet-50 (He et al., 2015) for Cifar-10, and a visual
transformer (ViT-B/16) with 200 classes fine-tuned from ImageNet weights (Dosovitskiy et al., 2021).

Comparing methods. In this paper, we address the i.i.d. data assumption in model parameter estima-
tion, emphasizing its fundamental incompatibility with active learning. We propose the Dependency-aware
Maximum Likelihood Estimation (DMLE) method, which accounts for dependencies between data points, a
problem that has not been tackled in the literature before, and applies to any setup irrespective of the em-
ployed sample selection strategy or acquisition function. Thus, we compare our method with the conventional
model parameter estimation technique in active learning setups, which we refer to as Independent Maxi-
mum Likelihood Estimation (IMLE). With the experiments, we assess the performance disparity between
using DMLE and IMLE while utilizing different combinations of acquisition functions and sample selection
strategies to show the impact of considering sample dependency during the model parameter estimation.
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We use Keras for the implementation of the neural networks (Chollet et al., 2015). Aiming a fair comparison,
at each active learning cycle, for all combinations, we use the same number of epochs, the same hyperpa-
rameter combinations, and the same acquisition functions. We present results with β = 1 for the stochastic
batch selection as practiced and suggested by Kirsch et al. (2021) which can be important for the model and
acquisition performance. Different values for β might be explored further for better results. For all models,
we use Adam optimizer (Kingma & Ba, 2017) with a learning rate of 0.001.

At each cycle, we select a fixed number of new samples and acquire the labels corresponding to them. Each
experiment starts with the selection of one sample randomly and continues with the selection of the remaining
samples with an acquisition function through active learning cycles. For each combination, we repeat the
experiments eight times with different seeds.

Hardware. We utilized two different computing resources during the experiments. For the experiments
with smaller models and datasets like Iris, we used an Intel(R) Core(TM) i9-10900KF processor paired with
RTX 3090 GPU. For larger datasets and more complex models, which constitute the rest, we used an internal
cluster with an Nvidia Tesla K80 GPU.

Evaluation metrics. We report the test accuracy on separate test sets for each dataset where the test
sets for Mnist and FMnist consist of 384 samples while Iris has 30 samples, SVHN has 510 samples, Reuters
has 450 samples, Emnist has 336 samples, Cifar-10 has 386 samples, and Tiny ImageNet has 296 samples.
Additionally, we have separate validation sets of similar size to the test sets of each dataset.

Time complexity. The time complexity analysis consists of two parts: sample acquisition and model
parameter estimation. Sample acquisition is identical for IMLE and DMLE, as they differ only in the model
parameter estimation process. The complexity of the sample selection process is O(NU (k + c)) for both
Top-k and Stochastic Batch Selection methods, where NU is the number of samples in the unlabeled pool, k
is the size of the batch of samples selected in each cycle, and c is the cost of making an acquisition call per
sample.

The complexity of model parameter estimation differs between IMLE and DMLE due to the dependency
term in the DMLE objective function, which requires additional calculations per sample. We perform the
complexity analysis per sample in an epoch, assuming the use of Stochastic Gradient Descent for gradient
updates and disregarding its associated complexity. Under these conditions, the time complexity of IMLE is
O(NL), while that of DMLE is O(cNL), where NL represents the number of labeled samples. Experimental
timing results are provided in Appendix F.

5.2 Results

Accuracy results: With the experiments, we seek to highlight the impact of not eliminating the depen-
dency term during the model parameter estimation. Thus, the experiments present the test performance
discrepancy between using DMLE vs. IMLE for multiple benchmark datasets with various sample selection
schemes and acquisition functions. We provide the experiment results with the entropy and Core-set acquisi-
tion functions below. A similar case study for BALD and least confidence acquisition functions is presented
in Appendix E.

Table 2 demonstrates the test accuracy results of using DMLE vs. IMLE after 100 collected samples
across seven datasets, employing entropy as the acquisition function, with four different sample selection
schemes—Stochastic Softmax Sampling (SSMS), Stochastic Power Sampling (SPS), Stochastic Soft-rank
Sampling (SSRS), and Top-k sampling—along with batch sizes k ∈ {1, 5, 10}. When SSMS or SPS are used
for the sample selection, DMLE leads to better test accuracy results for all datasets and batch sizes except
for the Iris dataset with k = 1. In the case of SSRS as the sample selection strategy, test accuracies are
either improved when DMLE is employed as the method of model parameter estimation or competitive with
IMLE, except for FMnist with k = 1 or k = 10. For Top-k selection, DMLE either outperforms or leads to
comparable results with IMLE in all cases except Emnist with k = 5, FMnist with k = 1, and Cifar-10 with
k = 1. The average test accuracy improvements of 9.6%, 7%, 3.9%, and 11.8% are observed for SSMS, SPS,
SSRS, and Top-k sampling strategies respectively, which underline the significance of sample dependencies
in model parameter estimation. Using different k values for the sample selection size yields average test
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Table 2: Comparison of mean classification test accuracies ±1 standard deviation for different sample selec-
tion sizes (k) during cycles and different sample selection strategies where number of samples in the labeled
set NL = 100. We use entropy for the acquisition function and SSMS (Stochastic Softmax Sampling), SPS
(Stochastic Power Sampling), SSRS (Stochastic Soft-rank Sampling), and Top-k sampling for the sample
selection strategy. The bold text highlights the higher mean accuracy and lower standard deviation when
comparing DMLE and IMLE under various sampling schemes.

Dataset k
SSMS SPS SSRS Top-k

DMLE IMLE DMLE IMLE DMLE IMLE DMLE IMLE

MNIST
1 0.81± 0.03 0.79± 0.02 0.83± 0.03 0.82± 0.01 0.78± 0.04 0.75± 0.06 0.72± 0.07 0.69± 0.04
5 0.82± 0.02 0.75± 0.03 0.82± 0.02 0.79± 0.03 0.75± 0.04 0.74± 0.04 0.68± 0.05 0.61± 0.07
10 0.80± 0.02 0.76± 0.03 0.79± 0.03 0.77± 0.05 0.73± 0.05 0.71± 0.07 0.64± 0.08 0.48± 0.06

EMNIST
1 0.39± 0.03 0.37± 0.02 0.39± 0.02 0.36± 0.03 0.35± 0.04 0.33± 0.03 0.32± 0.03 0.30± 0.03
5 0.39± 0.03 0.35± 0.02 0.40± 0.04 0.36± 0.01 0.36± 0.03 0.33± 0.02 0.31± 0.04 0.31± 0.03
10 0.40± 0.01 0.37± 0.02 0.40± 0.02 0.38± 0.03 0.35± 0.02 0.34± 0.04 0.28± 0.03 0.24± 0.03

REUTERS
1 0.55± 0.02 0.47± 0.02 0.54± 0.01 0.50± 0.02 0.48± 0.05 0.46± 0.04 0.45± 0.06 0.40± 0.06
5 0.54± 0.02 0.51± 0.02 0.52± 0.02 0.51± 0.03 0.47± 0.07 0.46± 0.04 0.47± 0.04 0.34± 0.06
10 0.52± 0.01 0.49± 0.02 0.50± 0.02 0.48± 0.02 0.47± 0.04 0.46± 0.03 0.41± 0.04 0.32± 0.11

SVHN
1 0.30± 0.02 0.27± 0.03 0.30± 0.02 0.28± 0.03 0.25± 0.03 0.23± 0.03 0.22± 0.01 0.17± 0.03
5 0.27± 0.05 0.23± 0.02 0.25± 0.04 0.24± 0.03 0.22± 0.03 0.20± 0.04 0.22± 0.02 0.19± 0.02
10 0.26± 0.03 0.22± 0.01 0.24± 0.04 0.22± 0.01 0.21± 0.03 0.21± 0.03 0.21± 0.01 0.20± 0.03

FMNIST
1 0.74± 0.02 0.72± 0.03 0.75± 0.02 0.71± 0.02 0.70± 0.04 0.71± 0.04 0.52± 0.07 0.53± 0.06
5 0.74± 0.02 0.71± 0.02 0.74± 0.02 0.73± 0.02 0.68± 0.06 0.66± 0.03 0.49± 0.08 0.49± 0.08
10 0.73± 0.03 0.72± 0.02 0.72± 0.01 0.72± 0.04 0.69± 0.04 0.70± 0.04 0.48± 0.11 0.43± 0.05

CIFAR-10
1 0.24± 0.02 0.21± 0.02 0.23± 0.02 0.22± 0.02 0.22± 0.03 0.21± 0.02 0.18± 0.03 0.19± 0.02
5 0.22± 0.03 0.19± 0.01 0.22± 0.03 0.19± 0.02 0.21± 0.03 0.19± 0.03 0.17± 0.03 0.17± 0.03
10 0.20± 0.04 0.17± 0.02 0.20± 0.02 0.16± 0.02 0.19± 0.02 0.19± 0.02 0.17± 0.03 0.15± 0.02

IRIS
1 0.96± 0.02 0.97± 0.01 0.96± 0.02 0.96± 0.01 0.97± 0.01 0.97± 0.01 0.99± 0.01 0.94± 0.02
5 0.96± 0.03 0.87± 0.02 0.96± 0.03 0.87± 0.02 0.93± 0.03 0.86± 0.04 0.92± 0.05 0.81± 0.06
10 0.93± 0.03 0.79± 0.03 0.93± 0.03 0.79± 0.03 0.85± 0.03 0.81± 0.02 0.85± 0.08 0.77± 0.05

accuracy improvements of 6%, 8.6%, and 10.5% for k = 1, k = 5, and k = 10 respectively. We observe
performance degradation as the sample selection size k increases for both DMLE and IMLE. We conjecture
that this drop occurs due to the reduced diversity in the collected samples, where similar samples might have
been collected in an active learning cycle. Even though we observe a trend for the test accuracy to drop
when k is increased, the reported average accuracy improvements for different k values suggest that DMLE
leads to better results than IMLE. The experiments in Appendix E) further underline the importance of
using DMLE in active learning for model parameter estimation and its impact on model performance.

To analyze the accuracy evolution over the active learning cycles we plot the mean test accuracy ±1 standard
deviation for DMLE and IMLE using four sample selection strategies with entropy acquisition function.
Figure 3 shows such curves for the Iris, SVHN, Reuters, and Tiny ImageNet datasets where the sample
selection size is k = 1 for the first three and k = 5 for Tiny ImageNet, with the remaining four datasets
(MNIST, Fashion-Mnist, Emnist, and Cifar-10) provided in Appendix E. In the first row of Figure 3, the test
accuracy performance for the Iris dataset after 100 cycles of collecting one sample at each cycle is shown for
different sample selection schemes. The initial unlabeled set size for the Iris dataset is 110 which means after
100 cycles, we collected almost all of the samples in the unlabeled set. Thus, it is observed that DMLE and
IMLE exhibit similar performance in the later cycles, while DMLE yields better test accuracy in the earlier
cycles, demonstrating its advantage within the active learning framework. In the second and third rows
of Figure 3, the average test accuracy plots for 500 cycles on SVHN and Reuters datasets are given. The
improvement gained by accounting for sample dependencies during model parameter estimation with DMLE
is evident in all plots, regardless of the sample selection strategy employed. In the last row of Figure 3,
the performance difference between DMLE and IMLE is evident across all selection strategies for the Tiny
ImageNet dataset, with DMLE showing a particularly greater improvement when Top-k selection is used.
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Figure 3: The average test accuracy comparison with ±1 standard deviation for DMLE and IMLE over
cycles for Iris, SVHN, Reuters, and Tiny ImageNet datasets for different sample selection strategies,
namely Stochastic Softmax Sampling(SSMS), Stochastic Power Sampling(SPS), Stochastic Soft-rank Sam-
pling(SSRS), and Top-k Sampling where sample selection size k = 1 for all except Tiny ImageNet and k = 5
for Tiny ImageNet.

In Figure 4, we provide the accuracy plots for the Core-set acquisition score, which is a diversity-based
clustering approach for sample selection where k = 5, 10. It can be observed that, across all sample selection
strategies combined with this acquisition function, DMLE consistently outperforms IMLE from the earlier
cycles onward. This demonstrates that taking into account the dependency term during model parameter
estimation is an important problem regardless of the acquisition function and can be applicable to any active
learning setup as long as acquisition scores/ranks can be obtained.

Hypothesis testing: We used the Wilcoxon signed-rank test (Conover, 1971) to compare the performance
of DMLE and IMLE, based on 8 random seeds per experiment for the experiments shown in Table 2, Table 3,
and Table 4. As this non-parametric test does not assume normality, it is suitable for cases where the
differences between paired observations may not follow a normal distribution, such as accuracy values in
active learning experiments with varying random initializations. Our results show that DMLE outperforms
IMLE in 92% of these experiments, with statistical significance (p < 0.05). This suggests that DMLE
outperforms IMLE significantly, providing strong evidence of its effectiveness in improving model accuracy
by accounting for sample dependencies.
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Figure 4: The experiments comparing DMLE and IMLE using the clustering-based Coreset approach with
different sample selection strategies—SSMS, SPS, SSRS, and Top-k Sampling—are presented. The average
test accuracy plots with ±1 standard deviation over cycles are shown, with sample selection size k = 5 for the
first row and k = 10 for the second row. The plots demonstrate that DMLE outperforms IMLE, particularly
in the earlier cycles, consistent with our observations using uncertainty-based acquisition functions.

6 Conclusion and Future Works

In this paper, we introduced Dependency-aware Maximum Likelihood Estimation (DMLE) for the active
learning framework, a novel approach that highlights the incompatibility of the i.i.d. data assumption in
conventional parameter estimation methods with the active learning paradigm. Specifically, DMLE preserves
the sample dependency that would otherwise be overlooked in conventional independent MLE (IMLE), en-
suring they are properly taken into account in the estimation. We examined the impact of this dependency
term across various acquisition functions, sample selection strategies, and sample sizes, evaluating its effect
on multiple benchmark datasets with varying model complexities. Our experiments revealed a significant
improvement in average test accuracy when using DMLE compared to IMLE, underlining the critical role of
accounting for sample dependencies in model parameter estimation. A promising direction for future work
is the theoretical characterization of the dependency term’s distribution under Top-k selection strategies,
beyond the current empirical analysis we provide. This would lead to deeper insights into the approximation
behavior of DMLE and help identify scenarios where its benefits may diminish. Additionally, examining
DMLE’s performance across varying uncertainty and diversity conditions represents a valuable line of re-
search, with potential to inform improvements in the acquisition process. Another promising direction is
exploring connections between DMLE and submodular optimization frameworks for large-batch selection.
Prior work has shown that submodularity can effectively guide the selection of informative and diverse sub-
sets under efficiency constraints (Golovin & Krause, 2017). Adapting DMLE within such a combinatorial
framework may help scale its benefits to larger selection sizes while maintaining tractable optimization.
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Appendix

A Stochastic Batch Selection

Recently, Kirsch et al. (2021) have proposed Stochastic Batch Acquisition as a probabilistic sampling strategy
in active learning, which is known to outperform conventional Top-k sampling while avoiding additional com-
putational expenses. Their approach includes three different stochastic batch acquisition methods depending
on the perturbation method they use: Softmax, Power, and Soft-rank acquisition where each corresponds to
sampling from the corresponding probability distribution given in Table 1. We generate the sample set St+1
by assuming we sample from a probability distribution without replacement when we make a batch selection.
Under this assumption, the probability that we sample the sequence of elements st+1 = [x1, x2, . . . , xk] in
this order depends on the stochastic sampling method and defined as follows:

• Softmax acquisition

P (st+1 | Dt; θ) = 1
Zt

k∏
i=1

eβa(xi,Dt,θ) where Zt,i ≡
∑

x∈Ut\{x1,...,xi−1}

eβa(x,Dt,θ).

• Power acquisition

P (st+1 | Dt; θ) = 1
Zt

k∏
i=1

a(xi, Dt, θ)β where Zt,i ≡
∑

x∈Ut\{x1,...,xi−1}

a(x, Dt, θ)β .

• Soft-rank acquisition

P (st+1 | Dt; θ) = 1
Zt

k∏
i=1

r−β
i where Zt,i ≡

∑
x∈Ut\{x1,...,xi−1}

r−β

where for all acquisition methods the normalization constant Zt ≡
∏k

i=1 Zt,i, r is the descending ranking
of the acquisition scores a(x, Dt, θ), with the smallest rank being 1, and β > 0 is a temperature parameter:
the higher it is, the closer the selection is to Top-k.

Note that this probability characterizes the sequence of elements we sample, so we use st+1 to distinguish it
from (unordered) set St+1. We also denote by

dt+1 = [(x1, y1), (x2, y2), . . . , (xk, yk)]

the corresponding sequence of collected tuples of data points and labels. Moreover

P (dt+1 | Dt; θ) = P (st+1 | Dt; θ)
k∏

i=1
P (yi | xi; θ), (12)

where D0 ≡ ∅.

We couple our method DMLE with these sample selection procedures. We explicitly model sample de-
pendency and implement it via sampling from the probability distributions given in Table 1 to model
P (Sτ | Dτ−1; θ) term which leads to the objective functions for the following stochastic sampling strate-
gies:

• Softmax acquisition

θ̂DMLE
t+1 = arg max

θ

t+1∑
τ=1

k∑
i=1

[
ln P (yτ,i | xτ,i; θ) + ln eβa(xτ,i,Dτ−1,θ)

Zτ,i

]
(13)

= arg max
θ

∑
(x,y)∈Dt+1

ln P (y | x; θ) +
t+1∑
τ=1

k∑
i=1

ln eβa(xτ,i,Dτ−1,θ)

Zτ,i
(14)

18



Under review as submission to TMLR

• Power acquisition

θ̂DMLE
t+1 = arg max

θ

t+1∑
τ=1

k∑
i=1

[
ln P (yτ,i | xτ,i; θ) + ln a(xτ,i, Dτ−1, θ)β

Zτ,i

]
(15)

= arg max
θ

∑
(x,y)∈Dt+1

ln P (y | x; θ) +
t+1∑
τ=1

k∑
i=1

ln a(xτ,i, Dτ−1, θ)β

Zτ,i
(16)

• Soft-rank acquisition

θ̂DMLE
t+1 = arg max

θ

t+1∑
τ=1

k∑
i=1

[
ln P (yτ,i | xτ,i; θ) + ln

r−β
τ,i

Zτ,i

]
(17)

= arg max
θ

∑
(x,y)∈Dt+1

ln P (y | x; θ) +
t+1∑
τ=1

k∑
i=1

ln
r−β

τ,i

Zτ,i
(18)

Thus, depending on the sampling strategy we follow in active learning, the dependency term that ap-
pears in the model parameter estimation objective varies. For the active learning framework that uses the
Stochastic Softmax acquisition function, equation 14 is utilized for the model parameter estimation objective,
while equation 16 is used for the Stochastic Power acquisition function, and equation 18 for the Stochastic
Soft-rank acquisition function.

Evaluation of the normalization constant: To analyze the relevance of the Zτ,i term in equation 14,
equation 16 and equation 18, we experimented with the MNIST dataset where the trend for the term over
the active learning cycles is observed. Figure 5 shows the evolution of this term for different sample selection
strategies. Notably, the resulting curves are nearly constant for all. These results suggest a simplified
optimization problem where the normalization constant is neglected, which is followed for the experiments
in this manuscript.

0 20 40 60 80 100

Active Learning Cycles
2

1

0

1
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1ln
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DMLE/SSMS
DMLE/SPS
DMLE/SSRS
DMLE/Top-k Sampling

Figure 5: The change of the term
∑t

τ=1 ln(Zτ ) in the model parameter estimation objective function through
the active learning cycles for the MNIST dataset. One can note that the term changes marginally over the
cycles which motivates the elimination of this term from the model parameter estimation while taking into
account the computational expenses it introduces into the process.

B Independent Maximum Likelihood Estimation (IMLE) Derivation in Active
Learning

Due to the sequential collection of the labeled training data, we can write the log-likelihood formula with
the cycle notation as follows:
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θ̂MLE
t+1 = arg max

θ

t+1∑
τ=1

ln P (∂Dτ | Dτ−1; θ) (19)

= arg max
θ

t+1∑
τ=1

ln P (xτ,k, yτ,k, . . . , xτ,1, yτ,1 | Dτ−1; θ) (20)

With the application of product rule:

θ̂MLE
t+1 = arg max

θ

t+1∑
τ=1

[
ln P (yτ,k, . . . , yτ,1 | xτ,k, . . . , xτ,1, Dτ−1; θ) + ln P (xτ,k, . . . , xτ,1 | Dτ−1; θ)

]
(21)

By relying on the modeling assumption of fθ : x→ y:

θ̂MLE
t+1 = arg max

θ

t+1∑
τ=1

[
k∑

i=1
ln P (yτ,i | xτ,i; θ) + ln P (xτ,k, . . . , xτ,1 | Dτ−1; θ)

]
(22)

As Sτ is the samples selected in a cycle for labeling, {xτ,k, . . . , xτ,1} can be written as follows:

θ̂MLE
t+1 = arg max

θ

t+1∑
τ=1

[
k∑

i=1
ln P (yτ,i | xτ,i; θ) + ln P (Sτ | Dτ−1; θ)

]
(23)

The i.i.d. sample assumption in conventional Maximum Likelihood Estimation causes ln P (Sτ | Dτ−1; θ)
term to be a constant during the estimation which leads to the elimination of that term as follows:

θ̂MLE
t+1 = arg max

θ

t+1∑
τ=1

[
k∑

i=1
ln P (yτ,i | xτ,i; θ)

]
(24)

= arg max
θ

∑
(x,y)∈Dt+1

ln P (y | x; θ). (25)

C Proofs

C.1 Proof of Theorem 1.

The Fisher Information matrix quantifies the precision of parameter estimates, where variance is inversely
related to Fisher Information. For simplicity in the proof, we consider a sample selection size of k = 1 at
each cycle, though the result can be extended to larger k.

For IMLE:

LIMLE(θ) =
t∑

τ=1
ln P (yτ | xτ ; θ), (26)

where yτ are labels, and xτ are inputs, and θ is the parameters.

For DMLE:

LDMLE(θ) =
t∑

τ=1
[ln P (yτ | xτ ; θ) + ln P (xτ | Dτ−1; θ)] , (27)
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where P (xτ | Dτ−1; θ) accounts for sample dependency.

The individual Fisher Information terms are given by:

I(y)
τ (θ) = E

[
− ∂2

∂θ∂θT
ln P (yτ | xτ ; θ)

]
, (28)

I(x)
τ (θ) = E

[
− ∂2

∂θ∂θT
ln P (xτ | Dτ−1; θ)

]
. (29)

The Fisher Information matrices for IMLE and DMLE are:

I(θIMLE) =
t∑

τ=1
I(y)

τ (θ), (30)

I(θDMLE) =
t∑

τ=1

[
I(y)

τ (θ) + I(x)
τ (θ)

]
. (31)

Matching corresponding terms, we see:

I(θDMLE) = I(θIMLE) +
t∑

τ=1
I(x)

τ (θ). (32)

Since I
(x)
τ (θ) is positive semi-definite:

I(θDMLE) ⪰ I(θIMLE). (33)

The Cramér-Rao Lower Bound (CRLB) indicates:

Cov(θ̂) ⪰ I(θ)−1. (34)

Since I(θDMLE) ⪰ I(θIMLE):
Cov(θ̂DMLE) ⪯ Cov(θ̂IMLE). (35)

Thus, DMLE yields lower variance guarantees and more precise estimates compared to IMLE. ■

C.2 Proof of Theorem 2.

The expected log-likelihood of the learned model θ̂ over the true data distribution P true is given by:

E(x′,y′)∼P true

[
ln L(θ̂)

]
= E(x′,y′)∼P true

[
ln P (y′ | x′; θ̂) + ln P (x′ | Dt; θ̂)

]
. (36)

where θ̂ = arg maxθ ln P (Dt+1; θ) = arg maxθ

∑
(x,y)∈Dt+1

ln P (y | x; θ) +
∑t+1

τ=1
∑

x∈Sτ
ln P (x|Dτ−1; θ).

Expanding the expectation:

∑
x′

P (x′)
∑
y′

P (y′ | x′)
[
ln P (y′ | x′; θ̂) + ln P (x′ | Dt; θ̂)

]
. (37)

Rewriting as separate summations:
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∑
x′

P (x′)
∑
y′

P (y′ | x′) ln P (y′ | x′; θ̂) +
∑
x′

P (x′) ln P (x′ | Dt; θ̂). (38)

Using KL divergence and entropy identities:

−DKL(P (y′ | x′) ∥ P (y′ | x′; θ̂)) + H(P (y′ | x′))−DKL(P (x′) ∥ P (x′ | Dt; θ̂)) + H(P (x′)). (39)

Since H(P (y′ | x′)) and H(P (x′)) are constants, they can be omitted:

E(x′,y′)∼P true

[
ln L(θ̂)

]
= −DKL(P (y′ | x′) ∥ P (y′ | x′; θ̂))−DKL(P (x′) ∥ P (x′ | Dt; θ̂)). (40)

This result shows that maximizing the expected log-likelihood is equivalent to minimizing the sum of two
KL divergences, ensuring that both the predictive and data distributions of the model remain close to the
true distributions. ■

D Comparison with Farquhar et al. (2021)

We conducted experiments using the MNIST dataset with entropy as the acquisition function and various
sample selection methods. For model parameter estimation, we utilized IMLE, DMLE, and the statistical
bias mitigation approach proposed by Farquhar et al. (2021). The results are consistent with the findings of
Farquhar et al. (2021), which show that mitigating bias with their proposed method leads to performance
degradation with neural networks compared to conventional MLE (IMLE) in active learning. In contrast,
our Dependency-aware MLE (DMLE) enhances model performance.
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Figure 6: The experiments comparing DMLE and IMLE with statistical bias mitigation method proposed
by Farquhar et al. (2021) where different sample selection strategies—SSMS, SPS, SSRS, and Top-k Sam-
pling—are employed. The average test accuracy plots with ±1 standard deviation over cycles are shown for
sample selection size k = 1. The plots demonstrate that DMLE outperforms the bias mitigation method
proposed by Farquhar et al. (2021).

E Additional Results

To further analyze the importance of taking the sample dependencies into account during model parameter
estimation in active learning, we plot the test accuracy plots with ±1 standard deviation for four more
datasets, e.g., Mnist, Fashion-Mnist (FMnist), Emnist, and Cifar-10, where for each we utilize four different
sample selection strategies explained in Section 3.2. In Figure 7, we observe the performance improvement
with DMLE when compared with IMLE in most cases. For the cases where DMLE doesn’t outperform IMLE,
we believe further hyperparameter tuning for β might lead to better performance. For all experiments here,
we use β = 1 as suggested by Kirsch et al. (2021).
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Figure 7: The average test accuracy comparison with ±1 standard deviation for DMLE and IMLE over cycles
for Mnist, Cifar-10, FMnist, and Emnist datasets for different sample selection strategies, namely Stochastic
Softmax Sampling(SSMS), Stochastic Power Sampling(SPS), Stochastic Soft-rank Sampling(SSRS), and Top-
k Sampling where sample selection size is k = 1. In the earlier cycles, DMLE was observed to outperform
IMLE in all cases except for FMnist with SSRS and Top-k which is highly advantageous in active learning.

In addition to providing average test accuracy results in Table 2 for multiple datasets with different k values
used for sampling at each cycle until 100 samples are collected, we also plot the accuracy improvement over
cycles for the Iris dataset to better observe the importance of DMLE. In Figure 8, we observe that when
k = 1, the curves for DMLE and IMLE tend to converge to the same accuracy. However, with k = 5 and
k = 10, using DMLE becomes significantly more important, as the resulting accuracy values for DMLE and
IMLE diverge significantly.

Table 3 is based on the same experimental setup as Table 2 where the only difference is the acquisition
function used for the experiments. For these results, we use the BALD acquisition function. The average
test accuracy improvements resulting from using DMLE over IMLE for different sample selection schemes
are 3.5%, 4.1%, 3.8%, and 5.5% for SSMS, SPS, SSRS, and Top-k respectively. Moreover, for k = 1, k = 5,
and k = 10, the average test accuracy improvements of 7.6%, 5.2%, and 3.8% are attained when DMLE is
employed. Both with different sample selection strategies and sample selection sizes, it is notable that taking
the sample dependency into account via DMLE during model parameter estimation elicits better average
test accuracy performance when compared with IMLE.
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Figure 8: The average test accuracy comparison with ±1 standard deviation for DMLE and IMLE over cycles
for Iris for different sample selection strategies, namely Stochastic Softmax Sampling(SSMS), Stochastic
Power Sampling(SPS), Stochastic Soft-rank Sampling(SSRS), and Top-k Sampling where sample selection
sizes are k = 1, k = 5, and k = 10. As the sample selection size increases, the significance of using DMLE
over IMLE becomes more acute.

In Table 4 we use the same experimental setup as Table 2 with Least Confidence as the acquisition function.
The average test accuracy improvements obtained when DMLE used instead of IMLE for different sample
selection strategies are 4.6%, 3.7%, 2.3%, and 3.8% for SSMS, SPS, SSRS, and Top-k respectively. When
we experiment with different sample selection sizes for sample acquisition at each cycle, we see average test
accuracy improvements of 1.6%, 4.9%, and 5% for k = 1, k = 5, and k = 10 respectively. Both experiments
with different sample selection strategies and sample selection sizes demonstrate the importance of accounting
for sample dependencies during model parameter estimation in active learning.

F Experimental Timing Results

To demonstrate that DMLE does not impose a significant computational burden during training, we measured
elapsed times using a timer. Table 5 presents the mean elapsed times for DMLE versus IMLE, combined with
various sample selection functions and entropy as the acquisition function, with selection sizes of k=1, k=5,
or k=10 on the MNIST dataset. We selected MNIST due to its large unlabeled pool of 30,000 samples. In the
table, the additional time required to include dependency with DMLE is negligible compared to the overall
elapsed times. Additionally, the mean extra time due to DMLE is 1.88 minutes across all combinations,
indicating that the time complexity remains largely unaffected.

As the difference between DMLE and IMLE lies in the objective function, we also plot the loss processing
times per cycle to better observe the computational expense introduced by the dependency term in DMLE,
as shown in Figure 9. This experiment, conducted on the MNIST dataset collecting 500 samples with sample
selection size k = 1, shows that the loss processing time increases for both methods across cycles as more
samples are labeled. Although the difference between DMLE and IMLE grows over time, it remains relatively
small in practice.
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Table 3: Comparison of mean classification test accuracies ±1 standard deviation for different sample selec-
tion sizes (k) during cycles and different sample selection strategies where number of samples in the labeled
set NL = 100. We use BALD for the acquisition function and SSMS (Stochastic Softmax Sampling), SPS
(Stochastic Power Sampling), SSRS (Stochastic Soft-rank Sampling), and Top-k sampling for the sample
selection strategy. The bold text highlights the higher mean accuracy and lower standard deviation when
comparing DMLE and IMLE under various sampling schemes.

Dataset k
SSMS SPS SSRS Top-k

DMLE IMLE DMLE IMLE DMLE IMLE DMLE IMLE

MNIST
1 0.77± 0.02 0.77± 0.03 0.77± 0.03 0.78± 0.03 0.82± 0.02 0.80± 0.03 0.80± 0.05 0.80± 0.04
5 0.76± 0.01 0.75± 0.02 0.76± 0.03 0.73± 0.03 0.79± 0.03 0.78± 0.02 0.80± 0.03 0.79± 0.02
10 0.76± 0.03 0.76± 0.03 0.76± 0.04 0.75± 0.02 0.79± 0.03 0.76± 0.02 0.79± 0.03 0.78± 0.02

EMNIST
1 0.36± 0.02 0.36± 0.03 0.37± 0.02 0.35± 0.04 0.36± 0.03 0.36± 0.03 0.36± 0.03 0.34± 0.01
5 0.38± 0.02 0.38± 0.02 0.36± 0.02 0.37± 0.02 0.35± 0.02 0.35± 0.02 0.36± 0.03 0.37± 0.04
10 0.36± 0.03 0.36± 0.04 0.37± 0.03 0.35± 0.03 0.36± 0.03 0.38± 0.02 0.38± 0.03 0.36± 0.04

REUTERS
1 0.51± 0.02 0.49± 0.02 0.48± 0.03 0.48± 0.02 0.51± 0.02 0.50± 0.03 0.50± 0.01 0.48± 0.04
5 0.51± 0.03 0.51± 0.03 0.51± 0.01 0.51± 0.01 0.49± 0.03 0.48± 0.01 0.48± 0.01 0.47± 0.01
10 0.48± 0.04 0.47± 0.04 0.48± 0.02 0.47± 0.01 0.46± 0.01 0.45± 0.03 0.44± 0.01 0.42± 0.04

SVHN
1 0.28± 0.03 0.26± 0.02 0.31± 0.03 0.25± 0.02 0.30± 0.02 0.28± 0.05 0.26± 0.04 0.22± 0.04
5 0.24± 0.02 0.23± 0.03 0.27± 0.04 0.23± 0.02 0.25± 0.03 0.25± 0.03 0.23± 0.04 0.23± 0.02
10 0.22± 0.03 0.22± 0.03 0.24± 0.03 0.23± 0.03 0.23± 0.05 0.23± 0.04 0.22± 0.03 0.21± 0.03

FMNIST
1 0.73± 0.03 0.72± 0.02 0.70± 0.03 0.69± 0.02 0.72± 0.04 0.73± 0.02 0.70± 0.04 0.72± 0.04
5 0.70± 0.03 0.70± 0.03 0.70± 0.02 0.70± 0.03 0.73± 0.02 0.73± 0.02 0.72± 0.02 0.69± 0.05
10 0.70± 0.03 0.70± 0.03 0.70± 0.02 0.71± 0.03 0.72± 0.02 0.73± 0.02 0.72± 0.04 0.69± 0.05

CIFAR-10
1 0.24± 0.02 0.23± 0.02 0.25± 0.03 0.24± 0.02 0.24± 0.04 0.22± 0.02 0.23± 0.03 0.21± 0.03
5 0.23± 0.04 0.19± 0.03 0.21± 0.04 0.19± 0.02 0.21± 0.02 0.18± 0.02 0.22± 0.02 0.19± 0.04
10 0.20± 0.02 0.18± 0.02 0.19± 0.03 0.19± 0.04 0.20± 0.03 0.16± 0.03 0.20± 0.03 0.17± 0.02

IRIS
1 0.95± 0.02 0.95± 0.02 0.95± 0.02 0.96± 0.02 0.95± 0.02 0.95± 0.02 0.97± 0.01 0.96± 0.01
5 0.94± 0.02 0.86± 0.03 0.90± 0.02 0.83± 0.05 0.94± 0.02 0.86± 0.02 0.94± 0.03 0.86± 0.06
10 0.85± 0.03 0.80± 0.03 0.80± 0.03 0.78± 0.02 0.84± 0.01 0.78± 0.03 0.80± 0.04 0.78± 0.03
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Figure 9: Per-cycle loss processing time for DMLE and IMLE during active learning on MNIST (500 cycles,
sample selection size k = 1). This plot illustrates how the computational cost evolves across cycles, em-
phasizing the impact of DMLE’s dependency-aware loss formulation. While both methods exhibit increased
processing times as the labeled set grows, DMLE shows a steeper rise due to the additional overhead of mod-
eling dependencies. Nonetheless, within the context of active learning, where the objective is to achieve high
performance with a limited number of labeled samples, the overall runtime remains practical, demonstrating
that the additional computational cost of DMLE is manageable in typical active learning scenarios.
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Table 4: Comparison of mean classification test accuracies ±1 standard deviation for different sample selec-
tion sizes (k) during cycles and different sample selection strategies where number of samples in the labeled
set NL = 100. We use Least Confidence for the acquisition function and SSMS (Stochastic Softmax Sam-
pling), SPS (Stochastic Power Sampling), SSRS (Stochastic Soft-rank Sampling), and Top-k sampling for the
sample selection strategy. The bold text highlights the higher mean accuracy and lower standard deviation
when comparing DMLE and IMLE under various sampling schemes.

Dataset k
SSMS SPS SSRS Top-k

DMLE IMLE DMLE IMLE DMLE IMLE DMLE IMLE

MNIST
1 0.80± 0.05 0.77± 0.03 0.78± 0.03 0.78± 0.03 0.78± 0.03 0.79± 0.03 0.78± 0.04 0.72± 0.04
5 0.79± 0.03 0.77± 0.02 0.77± 0.04 0.76± 0.03 0.77± 0.02 0.74± 0.04 0.68± 0.06 0.66± 0.05
10 0.77± 0.03 0.76± 0.03 0.76± 0.02 0.77± 0.03 0.75± 0.04 0.73± 0.05 0.62± 0.08 0.54± 0.07

EMNIST
1 0.35± 0.02 0.35± 0.03 0.37± 0.03 0.37± 0.01 0.37± 0.02 0.35± 0.04 0.31± 0.02 0.33± 0.02
5 0.37± 0.04 0.36± 0.03 0.35± 0.03 0.34± 0.04 0.36± 0.04 0.35± 0.02 0.30± 0.03 0.30± 0.03
10 0.36± 0.02 0.37± 0.03 0.36± 0.02 0.37± 0.03 0.35± 0.03 0.34± 0.04 0.27± 0.02 0.27± 0.02

REUTERS
1 0.50± 0.03 0.49± 0.02 0.49± 0.02 0.48± 0.03 0.48± 0.03 0.49± 0.02 0.40± 0.05 0.40± 0.02
5 0.53± 0.02 0.51± 0.03 0.52± 0.03 0.52± 0.01 0.48± 0.03 0.46± 0.04 0.41± 0.07 0.39± 0.08
10 0.51± 0.03 0.47± 0.04 0.50± 0.02 0.48± 0.02 0.44± 0.07 0.46± 0.04 0.33± 0.10 0.30± 0.09

SVHN
1 0.30± 0.04 0.28± 0.02 0.30± 0.04 0.29± 0.02 0.28± 0.03 0.23± 0.04 0.21± 0.03 0.23± 0.03
5 0.25± 0.02 0.23± 0.04 0.24± 0.03 0.23± 0.03 0.22± 0.04 0.22± 0.04 0.20± 0.02 0.19± 0.04
10 0.23± 0.03 0.23± 0.02 0.23± 0.03 0.23± 0.03 0.21± 0.04 0.20± 0.02 0.20± 0.02 0.20± 0.02

FMNIST
1 0.72± 0.01 0.72± 0.03 0.71± 0.02 0.73± 0.01 0.70± 0.04 0.71± 0.03 0.63± 0.04 0.62± 0.06
5 0.71± 0.04 0.73± 0.01 0.72± 0.02 0.72± 0.04 0.71± 0.03 0.73± 0.04 0.56± 0.11 0.53± 0.06
10 0.71± 0.04 0.70± 0.02 0.72± 0.03 0.71± 0.03 0.69± 0.04 0.70± 0.03 0.52± 0.06 0.51± 0.08

CIFAR-10
1 0.23± 0.02 0.23± 0.03 0.24± 0.03 0.23± 0.02 0.22± 0.02 0.21± 0.02 0.20± 0.05 0.20± 0.03
5 0.22± 0.04 0.18± 0.02 0.23± 0.04 0.20± 0.03 0.20± 0.02 0.19± 0.03 0.19± 0.02 0.18± 0.02
10 0.21± 0.02 0.18± 0.03 0.21± 0.02 0.18± 0.02 0.17± 0.01 0.17± 0.03 0.18± 0.03 0.17± 0.03

IRIS
1 0.95± 0.02 0.96± 0.01 0.96± 0.02 0.95± 0.02 0.97± 0.01 0.97± 0.01 0.96± 0.01 0.95± 0.02
5 0.94± 0.01 0.87± 0.02 0.94± 0.01 0.86± 0.03 0.94± 0.01 0.88± 0.04 0.91± 0.07 0.81± 0.06
10 0.91± 0.03 0.80± 0.03 0.95± 0.02 0.80± 0.03 0.85± 0.03 0.79± 0.02 0.87± 0.06 0.76± 0.06

G Impact Statement

The method we propose may impact fields where acquiring labeled data is scarce, dangerous, or costly by
allowing better performance with less data. This is the case in many problems in the medical, bioinformatics,
remote sensing, and materials fields, to name but a few.

H Dataset/Model Licenses and Sources

All datasets we use are publicly available. Our experiments include Mnist and SVHN datasets both dis-
tributed under the GNU General Public License. Reuters-21578 collection resides with Reuters Ltd. where
Reuters Ltd. and Carnegie Group, Inc. allows free distribution of the dataset for research purposes only.
Additionally, we utilize Emnist, Fashion-Mnist, Cifar-10, and Iris all with MIT License. We download Mnist,
Reuters-21578, Fashion-Mnist, Cifar-10, and Iris from Keras datasets repository; Emnist from Tensorflow
datasets repository, and SVHN from http://ufldl.stanford.edu/housenumbers/. LeNet, one of the mod-
els/neural networks we use, is distributed under MIT License whereas ResNet-50 is under Apache License
2.0.

I Ablation Study for Dependency Approximation under Top-k Sampling

The primary motivation for choosing the Stochastic Softmax approximation is its computational simplicity.
As shown in equation 14, this approximation enables the reuse of already computed acquisition scores
without requiring additional operations. In contrast, the Stochastic Power method (equation 16) involves
computing the logarithm of the scores, while the Stochastic Soft-rank method (equation 18) requires both
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Table 5: Comparison of mean elapsed times for DMLE and IMLE with different sample selection sizes k
and number of cycles T on the MNIST dataset (30000 samples in the unlabeled pool at the beginning). The
table shows the mean elapsed times over 8 experiments per combination for k = 1, k = 5, and k = 10. On
average, DMLE causes an additional 1.88 minutes of elapsed time compared to IMLE for Stochastic Softmax
Sampling (SSMS), Stochastic Power Sampling (SPS), and Stochastic Soft-rank Sampling (SSRS).

k T Sampling Strategy DMLE Time IMLE Time

1 2500
SSMS
SPS

SSRS

465:30.31 min
473:30.78 min
477:17.79 min

462:50.19 min
471:19.08 min
467:51.34 min

5 500
SSMS
SPS

SSRS

92:58.25 min
92:54.06 min
92:28.00 min

92:28.56 min
91:12.24 min
92:48.54 min

10 250
SSMS
SPS

SSRS

46:03.89 min
48:00.51 min
49:03.53 min

45:57.16 min
48:52.36 min
49:18.87 min

sorting and logarithmic computation. These additional steps introduce extra computational overhead during
query selection.

To assess the practical impact of this choice, we conducted empirical comparisons using these distributions
to model the dependency under Top-k selection. In Figure 10, we present results on the MNIST, Iris,
Reuters, and Tiny-ImageNet datasets, which were selected to reflect varying data modalities, complexities,
and sample selection sizes. The results show that the Stochastic Softmax consistently outperforms the other
approximations in terms of average test accuracy under Top-k sampling.

This empirical evidence supports the choice of a softmax-based approximation, highlighting its efficiency and
effectiveness.

J Glossary

This section presents a glossary of variables and notations used throughout the paper, provided in Table 6.
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Figure 10: Comparison of average test accuracy (±1 standard deviation) using different distribution ap-
proximations for the dependency term with Top-k selection: Stochastic Softmax (SSMS), Stochastic Power
(SPS), and Stochastic Soft-rank (SSRS). These methods were evaluated during model parameter estimation
on MNIST, Iris, Reuters, and Tiny ImageNet datasets. The results demonstrate the effect of each approx-
imation across diverse data modalities and complexities, with sample selection sizes of k = 1 for the first
three datasets and k = 5 for Tiny ImageNet.

28



Under review as submission to TMLR

Term / Symbol Definition

X ⊂ Rdx Input feature space with dimension dx

Y = {1, . . . , K} Label space with K possible classes

x Input sample from the feature space X

y Corresponding label of sample x, belonging to the label space Y

Ut = {xi}
Nt

U
i=1

Unlabeled dataset at cycle t, containing N t
U samples

Dt = {(xi, yi)}Nt
L

i=1
Labeled dataset at cycle t, containing N t

L labeled samples

N t
U Number of unlabeled samples at cycle t

N t
L Number of labeled samples at cycle t

St+1 Batch of samples selected for labeling at cycle t

a(x, D) Acquisition function that assigns a score to an unlabeled sample x
based on the current labeled data D

θ ∈ Rdθ Model parameters with dimension dθ

fθ : X → {0, 1}K Prediction function (e.g., deep neural network) parameterized by θ,
outputs scores for K classes

t Current cycle

Table 6: Glossary of terms and symbols used in the active learning framework.
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