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Abstract

Designing experiments for causal effect estima-
tion remains an enduring topic in both machine
learning and statistics. While much of the ex-
isting statistical literature focuses on using cen-
tral limit theorems to analyze asymptotic prop-
erties of estimators, a parallel line of research
has emerged around theoretical tools that provide
finite-sample error bounds, offering performance
on par with—or superior to—the asymptotic ap-
proaches. These finite-sample results are espe-
cially relevant in active sampling settings where
the sample size is limited (for instance, under pri-
vacy or cost constraints). In this paper, we develop
a finite-sample estimator with sample complex-
ity analysis and extend its applicability to social
networks. Through simulations and real-world
experiments, we show that our method achieves
higher estimation accuracy with fewer samples
than traditional estimators endowed with asymp-
totic normality and other estimators backed by
finite-sample guarantees.

1. Introduction
Experimental design has long been regarded as the gold
standard for causal effect estimation, providing a principled
framework to establish causal relationships through con-
trolled interventions. Building on the foundational work of
Kirk (2009), researchers have developed a rich repertoire
of methodologies—including randomized controlled trials
(RCTs), regression-adjusted estimators, and instrumental
variable techniques—that have been widely adopted across

1School of Statistics and Data Science, Shanghai University of
Finance and Economics, Shanghai 200433, P.R. China 2School of
Mathematical Sciences, Peking University 3Center for Data Sci-
ence, Peking University 4 State Key Lab of General AI, School of
Intelligence Science and Technology, Peking University 5Institute
for Artificial Intelligence, Peking University 6Pazhou Laboratory
(Huangpu), Guangzhou, China. Correspondence to: Haoxuan Li
<hxli@stu.pku.edu.cn>, Zhouchen Lin <zlin@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

diverse disciplines such as medicine, economics, and the
social sciences. Despite these advances, the fundamental
challenge of how to design randomized experiments that
estimate treatment effects both accurately and efficiently
under constrained sample budgets remains underexplored.

This challenge is particularly pressing for two reasons. First,
from a practical standpoint, data collection is often expen-
sive, time-consuming, or ethically constrained. For ex-
ample, in clinical trials, it is neither economically viable
nor morally justifiable to administer a new drug uniformly
across all patients to measure its effect, even when detailed
patient profiles are available. Second, from a statistical per-
spective, analyzing the full dataset can sometimes degrade
estimation quality due to overfitting and increased sensi-
tivity to noise. A natural strategy to mitigate these issues
involves active sampling, where a carefully chosen sub-
set of individuals is selected to maximize information gain
while minimizing sample complexity. However, existing
methods often lack finite-sample guarantees, making their
performance unpredictable in real-world, resource-limited
settings.

Finite-sample guarantees are particularly crucial in active
learning settings for two main reasons: (i) they provide ex-
plicit, non-asymptotic assurances on the accuracy of causal
estimators for any given sample size, a property that is par-
ticularly valuable when data collection occurs sequentially
under strict budget constraints, as emphasized by Ghadiri
et al. (2024); and (ii) they offer concrete worst-case er-
ror bounds, ensuring robustness in high-stakes applications
such as healthcare and policy evaluation, where even mi-
nor estimation errors can lead to significant real-world con-
sequences. These considerations naturally lead to a cen-
tral question: How can we achieve the most optimal finite-
sample bounds possible for causal effect estimation within
an active sampling framework?

Existing approaches provide initial insights into this prob-
lem. The seminal work of Efron (1971) analyzed the trade-
off between covariate balance and robustness, laying the
groundwork for later methods. Harshaw et al. (2024) ex-
tended this perspective by developing a Gram–Schmidt
Walk-based (GSW) estimator, which was the first to es-
tablish finite-sample error bounds for average treatment ef-
fect (ATE) estimation in an experimental design context.
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However, their approach focuses on the full population
and does not incorporate regression adjustment. More re-
cently, Addanki et al. (2022); Ghadiri et al. (2024) lever-
aged leverage score sampling to derive finite-sample guar-
antees under active sampling. They demonstrated that ap-
plying leverage score-based sampling to treatment and con-
trol groups yields an ϵ-approximation error with sample
complexities of O(d log(d) + d/ϵ) and O(d log(d) +m′)1,
respectively—both independent of the full sample size n.

While these results represent significant progress, existing
methods do not necessarily achieve optimal dependence on
the covariate dimension d. This gap is particularly critical
in high-dimensional settings and network-dependent scenar-
ios, where each individual’s outcome may be influenced by
treatments administered to their neighbors. Understanding
the optimality of sample complexity is fundamental, as it
establishes theoretical performance limits that can inform
the design of more efficient estimation procedures.

To address these challenges, we introduce a novel active
sampling strategy for treatment effect estimation that inte-
grates partitioning and subsampling under explicit sample
constraints. Our method, termed RWAS, achieves a sample
complexity of only O

(
d
ε

)
, ensuring both efficiency and theo-

retical robustness. Unlike previous approaches, our method
comes with finite-sample guarantees, making it well-suited
for scenarios where large-scale experimentation is infeasi-
ble due to cost, ethical concerns, or logistical constraints.
Furthermore, our framework naturally extends to network
interference settings, addressing the additional complexities
introduced by treatment spillover effects in networked envi-
ronments. Empirical evaluations on synthetic and real-world
datasets demonstrate that RWAS consistently outperforms
existing baseline methods, achieving higher estimation ac-
curacy with fewer samples. These findings establish our
method as a theoretically sound and practically effective
solution for sample-efficient causal inference. Our key con-
tributions are as follows:

• We propose an efficient active sampling method, RWAS,
with a sample complexity constrained by O

(
d/ε
)
, ac-

companied by finite-sample error guarantees.

• We demonstrate the (near) optimality of our sample
size and extend the framework to handle network inter-
ference scenarios.

• We empirically validate our method on synthetic and
real-world datasets, showing that it consistently outper-
forms existing baselines in terms of both accuracy and
efficiency.

Our paper is organized as follows. Section 2 provides the

1m′ is a constant more minor than the full sample size.

literature overview of the finite-sample bound via active sam-
pling and its variants. Section 3 introduces our framework.
Section 4 presents our main result, along with two additional
discussions upon lower bound (optimality) in Section 5.1
and network interference case in Section 6, respectively. Fi-
nally, our method performance is demonstrated by synthetic
and real-world experiments in Section 7, and we end up with
a conclusion and future work in Section 8. Anonymous code
is available at https://github.com/ZHzhang01/
ICML_Finite_sample/settings.

2. Literature review
In the section, we start from our initial setting, Randomized
experiment in causal inference, to briefly review two main
technical challenges in our paper-finite-sample guarantee
and active sampling, along with the formulation of estimator:
Regression-based estimator. To end up, we discuss the
causality estimation under network interference to prepare
for our extension in Section 6.

Randomized experiment in causal inference. Different
from observational studies (Rosenbaum & Rubin, 1983;
Wang et al., 2023; Zhang et al., 2023b; Zhang, 2024; Zhang
& Su, 2024; Wang et al., 2025), randomization in exper-
iments and optimization has been considered an impor-
tant way to provide robustness and balance covariates in
causal inference (Efron, 1971; Kallus, 2018; Zhang, 2022;
Li et al., 2023a;b; Zhou et al., 2025), especially in finite sam-
ples (Bertsimas et al., 2015; Basse et al., 2023; Bai, 2023).
For the first time, Harshaw et al. (2024) explicitly reveals
the balance-robustness trade-off under the Gram-Schmidt
design. Apart from that, rerandomization is also a proper
way to balance covariates (Morgan & Rubin, 2015; Li &
Ding, 2020), but time efficiency is an important issue to be
considered (Johansson & Schultzberg, 2022).

Finite-sample guarantee in experimental design. The
effect of finite sample size to the experimental design has
been discussed for a long time (Kacewicz & Milanese, 1992;
Way et al., 2010). However, to our knowledge, Harshaw
et al. (2024) is the exploring paper to thoroughly induce
the finite sample bound in experimental design. Stepping
forward, Addanki et al. (2022); Ghadiri et al. (2024) extend
the bound, taking account of the sampling procedure.

Active sampling in experimental design. As a form of
importance sampling, active sampling proposed in Chen
& Price (2019) selects samples through weights assigned
to each sample point. Later work extends active sampling
and linear regression to various settings, including online
experiments (Fontaine et al., 2021) or other norm spaces
Musco et al. (2022). In parallel, leverage score is another
effective importance sampling method (Mahoney et al.,
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2011; Drineas et al., 2012), employed in causal inference in
Addanki et al. (2022); Ghadiri et al. (2024). See Tokdar &
Kass (2010); Tabandeh et al. (2022) for reviews on impor-
tance sampling. Another remarkable type of method is to
treat the problem as an active learning task (Jesson et al.,
2021; Toth et al., 2022; Zhang et al., 2023a).

Regression adjustment in causal inference. Regression
adjustment is a common way to improve efficiency in causal
inference (Li & Ding, 2020; Bulbulia et al., 2021; Zhang
et al., 2020). However, few works derive finite sample bound
for causal estimators with regression adjustment, especially
in finite population (Mou et al., 2022), except for Ghadiri
et al. (2024) used as our baseline in the following text.

Causal inference in networked data. Conducting causal
inference in networked data, also known as causal inference
with interference, has been long aware of both statistically
and experimentally (Hudgens & Halloran, 2008; Vander-
Weele et al., 2012; Ogburn & VanderWeele, 2014; Su &
Zhang, 2023; Zhang & Wang, 2024; Li et al., 2024; Yang
et al., 2024). Exposure mapping is a classical way to model
the neighborhood impact on individual outcome (Aronow
& Samii, 2017; Leung, 2022). Although there has been
some works on randomized tests such as A/B testing with
interference (Basse & Airoldi, 2018; Basse et al., 2019), to
our knowledge, there hasn’t been work so far dealing with
interference with limited samples, nor deriving finite sample
bound for causal inference with interference.

3. Framework and notation
In this section, we define the basic notation of the article.
For each individual i, we use Xi ∈ Rd to denote the co-
variates of i-th individual. We represent the total sample
information by X , where X = [X1,X2, ...Xn]

⊤ is an
n ∗ d matrix. Xi,j denotes the (i, j)-th elements of matrix
X , namely, the j-th coordinate of Xi. By performing a
column-wise Gram-Schmidt orthogonalization on X , we
assume without loss of generality that the columns of X
is a set of orthogonal basis in Rn. Here n represents the
number of samples and d represents the sample dimension.
Moreover, Yi(1), Yi(0) denotes the potential outcome on
each individual i when the treatment is chosen to be 0 or 1.
The observed data Yi = 1(zi = 1)Yi(1) + 1(zi = 0)Yi(0).
We denote Y (0) := {Yi(0)}i∈[n] and Y (1) := {Yi(1)}i∈[n].
For each integer k, we use [k] to replace {1, 2, ...k}. More-
over, we denote the treatment assignment as zi ∈ {0, 1} and
Z := {z1, z2, ...zn} for each individual.
Assumption 3.1. (SUTVA assumption) Each individual’s
treatment could not affect other individuals’ outcomes (Im-
bens & Rubin, 2015).
Definition 3.2. (Individual Treatment Effect) (ITE) The
individual treatment effect (ITE) is denoted as the different

between the potential outcome when the treatment is chosen
as 0 or 1. Namely, we denote the ITE of i-th individual
as ti := Yi(1) − Yi(0). Moreover, T = {t0, t1, ....tn}
indicates the vector of individual treatment effect (ITE)
which serves as the ground truth.

Definition 3.3. (Average Treatment Effect) (ATE) We de-
note the average treatment effect as τ := 1

n

∑n
i=1 ti =

1
n (

n∑
i=1

Yi(1)− Yi(0)).

Our question is: Given the covariate information of n sam-
ples, which is denotes as X ∈ Rn∗d, how can we accurately
estimate the individual treatment effect ({ti}ni=1) and aver-
age treatment effect (τ ), using as few sample points (s≪ n)
as possible, with non-asymptotic guarantee?

4. Method
We achieve a new active sampling algorithm with finite-
sample guarantees by adopting a superior beyond-leverage-
score sampling approach. The implementation process con-
sists of two critical steps: (i) Refinement of Design-Based
Results: We first adapt the comprehensive theoretical results
from Chen & Price (2019) within the design-based setting
and formulate them into a novel (Iterative Re-weighting in
Design-based Set- ting) IRD algorithm. This algorithm can
effectively control fitting errors with high probability while
requiring a significantly smaller sample complexity. (ii) In-
tegration into Experimental Design: We then incorporate the
IRD algorithm into the experimental design, leveraging the
regression coefficients obtained from IRD to adjust classical
finite-sample estimators, thereby enhancing the accuracy of
finite-sample bounds. This structured approach allows us to
develop a more efficient and theoretically grounded active
sampling framework with strong finite-sample guarantees.

4.1. Theoretical results on active regression

We first consider the linear case and define the linear func-
tion family as F , namely: H:={h : h(X) = Xβ}, where
β is an arbitrary d × 1 vector. Our goal is to derive a
reweighting strategy that distinguishes individuals who have
a significant impact on the fitting process. This approach
serves as a refinement of Chen & Price (2019), in which we
transfer the strategy (Definition 5 in Chen & Price (2019)) to
the design-based setting; namely, in the finite population, all
randomness originates solely from the assignment process
rather than from inherent data variability.

Definition 4.1. (Good ε-reweighting sampling strategy,
finite-sample version) Consider a sampling procedure with
m(≤ n) iterations. Let ε := (ε1, ε2, ε3). In each iteration
i ∈ [m], we extract one sample whose index is r(i) = j
with probability Pij , where Pij is a probability derived
from Algorithm 2. We introduce the weighting coefficient
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as wi = αi/Pir(i), where αi > 0. We say it is a “good
ε-reweighting sampling strategy” if (i) Defining a matrix
A with elements A(i, j) =

√
wiXr(i),j , i ∈ [m], j ∈ [d],

where Xi,j denotes the j-th coordinate of Xi. Let λ(·)
denote the eigenvalue of the matrix. Then the eigenvalues
of A⊤A can be bounded: with at least 1 − δ probability,

λ(A⊤A) ∈ [1− ε1, 1 + ε1]. (ii)
m∑
i=1

αi/(1 + ε2) ≤ 1, and

moreover, ∀i ∈ [n], we have αi max
k
{

d∑
j=1

X2
k,j/Pir(i)} ≤

ε3.

It is a novel active sampling procedure, blessed by four
properties: (i) Preserving Geometric Structure. By con-
straining the eigenvalues of A⊤A near 1, the algorithm
ensures that key geometric properties (e.g., the covariance
structure) of the original data are retained in the reduced
sample. This allows the small subset of points to be a
reliable proxy for the entire dataset. (ii) Selecting Influ-
ential Points. The sampling probabilities Pij typically
reflect leverage scores or importance weights, emphasiz-
ing the most critical data points for the regression. As
a result, even a limited number of samples can capture
the most “informative” observations in the feature space.
(iii) Correcting for Sampling Bias. The reweighting term
wi = αi

Pir(i)
compensates for uneven sampling probabili-

ties. It assigns smaller weights to frequently sampled points
and larger weights to rarely sampled points, thereby miti-
gating bias and controlling variance under a finite-sample
regime. (iv) Enforcing Bounded Influence. The additional
constraints in (ii)—particularly limiting

∑
αi and bound-

ing maxk

{∑d
j=1 X

2
k,j/Pir(i)

}
—prevent any single point

(or small group of points) from dominating the estimation.
Combined with the geometric and statistical safeguards
above, this bounded influence preserves estimation accu-
racy despite a significantly reduced sample size. Blessed
with properties (i)-(iv), we provide a variant of Theorem 7
of Chen & Price (2019) as follows.
Lemma 4.2 (approximation error of active sam-
pling). Given dataset {Xi, Yi}i∈[n] and de-

fine fopt := argmin
h∈H

n∑
i=1

(Yi − h(Xi))
2. More-

over, for a good ε-reweighing sampling strategy,

fact := argmin
h∈H

m∑
i=1

wi(Yr(i) − h(Xr(i)))
2. Then

∀i ∈ {1, . . . ,m}, with probability 1− δ,
n∑

j=1

Pij(f
act(Xj)−fopt(Xj))

2 ≤ η

n

n∑
j=1

(fopt(Xj)−Yi)
2.

Here η = (1 + ε2)ε3∥X∥2F /(1− ε1) is a small constant2

with related to ε1, ε2, ε3. We refer readers to Appendix A

2Here ∥ · ∥F denotes the Frobenius norm of the matrix.

for the proof details. Lemma 4.2 indicates the approxi-
mation error could be controlled via such active sampling
process in Algorithm 2. Furthermore, we emphasize that
IRD (Algorithm 2) is superior to previous active sampling
techniques such as leverage score sampling (Ghadiri et al.,
2024; Addanki et al., 2022) in terms of sample complexity.
We formulate it in Lemma 4.3.

Lemma 4.3. With probability at least 1 − δ, where δ is a
small constant, Algorithm 2 is a good ε-reweighting sam-
pling strategy and is terminated within O(d/ε3) iterations.

The proof is shown in Appendix B. Such sample complexity
is also demonstrated to be nearly optimal (up to a constant
coefficient) in Section 5.

After this preparation, we propose the total active sampling
algorithm in experimental design, which is called ATE es-
timation via Re-Weighting Active Sampling (RWAS esti-
mator). Our inspiration comes from Harshaw et al. (2024);
Ghadiri et al. (2024); Addanki et al. (2022). Unlike the
objective of Harshaw et al. (2024), we seek to apply their
GSW, a well-known estimator with finite-sample guarantees
mentioned in our introduction, in a finite-sample setting.
We then leverage the coefficients and related covariates
learned from our aforementioned IRD algorithm to perform
regression adjustment, thereby improving the estimator’s ac-
curacy. However, since the IRD algorithm assigns different
importance weights to each individual during its iterative
process, using a subset of covariates to adjust the individ-
ual’s own potential outcome is often biased Ghadiri et al.
(2024). Therefore, we follow Ghadiri et al. (2024)’s idea
by splitting the entire population into two parts, {S, S̄}, and
the total procedure is detailed in Algorithm 1. Here S is
used for Bernoulli active sampling to learn the regression co-
efficients (line 1-4), while S is used to design GSW (line 5).
Based on this partition, we can construct an unbiased esti-
mator (line 6-7). Note that our main difference from Ghadiri
et al. (2024); Addanki et al. (2022) lies in adopting a more
efficient strategy (in terms of sample complexity) in S com-
pared to Leveage score sampling, enabling us to achieve the
lowest sample complexity so far for a regression-adjusted
estimator that induces finite-sample guarantees3.

4.2. Finite-sample bound of ITE & ATE estimation

In this part, we aim to provide the upper bound of ATE
under Algorithm 1. For preparation, it is natural first to
present a coarse upper bound of ITE estimation.

Lemma 4.4 (ITE estimation upper bound). Conditioning
that ∀i, wi ≥ w > 0. Under Algorithm 1, the ITE estimation

3In Algorithm 1, we define X̄∗ :=
1

card(∗)
∑

i∈∗ Xi, where ∗ ∈ [n], which is the average of
the corresponding row values.
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Algorithm 1 RWAS estimator

Require: X ∈ Rn∗d, Y (1),Y (0) ∈ Rn. ε, ϕ ∈ (0, 1).
1: Y = I(Z = 1)Y (1) − I(Z = 0)Y (0), where P(Z = 1) = 0.5.
2: Let X̃ =

[
1 X − X̄

]
, where X̄ is the column-mean matrix of X .

3: Select |S| samples via IRD and induces the weights {w1, w2, ...w|S|}.
4: Compute the coefficient in IRD sampling via β̃act = argminβ∈Rd+1 ∥SY − SX̃β∥22, where S is a diagonal matrix

with the j-th element sj =
√
wi if there exists j such that r(i) = j, and sj = 0 if j /∈ S. Let β̂act be the first

d-dimension of β̃act removing the intercept.
5: Let τ̂S = 2

∑
i∈S Y (I(Z = 1)− I(Z = 0))/|S| be the HT estimator.

6: Uniformly sample m′ samples S̄m′ ∈ S̄ = [n]/S. |S̄m′ | = m′. Obtain τ̂S̄ by HT estimator and deploy GSW design on
S̄m′ with parameter ϕ.

7: Compute τ̂act,1 = τ̂S̄ − 1
|S̄m|

∑
i∈S̄m′

(
Xi − X̄S̄m′

)⊤
β̂act, and let τ̂act,2 = τ̂S .

Ensure: τ̂act = (|S̄|τ̂act,1 + |S|τ̂act,2)/n.

Sample complexity
Addanki et al. (2022) O(dlog(d) + d/ε)
Harshaw et al. (2024) O(n)
Ghadiri et al. (2024) O(dlog(d)/ε2 +m′)

Ours O(d/ε+m′)

Table 1. Comparison of active sampling method in ATE estimation
with finite-sample guarantee. Here ε denotes the relative approxi-
mation error, and m′ is an independent constant lower than n.

bound ∥X̃β̂act − t∥22 could be upper bounded by

(1 + η)min
∥∥∥X̃β − t

∥∥∥2
2
+

d∥µ∥2∞
w

.

with (1− δ) probability. Here wi is a constant.

Here η is identified in Lemma 4.2. We defer the proof in
Appendix C, where we also justify that the condition in
Lemma 4.4 is natural to satisfy. Lemma 4.4 establishes
the relationship between the ITE estimation error, fitting
precision and the dataset scale. According to it, we further
construct the finite-sample ATE bound as follows:

Theorem 4.5 (ATE estimation upper bound). Under Algo-
rithm 1, the variance of ATE estimator could be bounded
by

E[(τ̂act − τ)2] ≤ errorS̄ + errorS̄,GSW + errorS̄,ITE, where

errorS =
Cd∥µ∥2∞

εn2
,

errorS̄,GSW = min
β

[∥∥∥X̃β − µ
∥∥∥2
2

m′nϕ
+

1

(m′)2
ζ2

1− ϕ
∥β∥22

]
,

errorS̄,ITE =
1 + η

m′n
min
β

∥∥∥X̃β − (t− t̄)
∥∥∥2
2
+

d∥µ∥2∞
m′nw

.

with (1− δ) probability under Algorithm 1.

Algorithm 2 IRD, modified from Chen & Price (2019)
Require: Data X = (X1, . . . ,Xn)

⊤.
1: Initialize: γ = min{

√
ε/
√
3.41, 1}, i = 0, B0 =

0, l0 = −2d/γ, u0 = 2d/γ.
2: while ui − li < 8d/γ do
3: Identify the coefficients Φi = tr(uiI − Bi)

−1 +
tr(Bi − liI)

−1, αi = (γ/Φi) ∗ (γ2/2d(1− γ2));
4: Pij = X⊤

j

[
(uiI −Bi)

−1 + (Bi − liI)
−1
]
Xj/Φi;

5: Sample r(i) = j with probability Pij , and let
Xr(i) = Xj ;

6: Update the matrix Bi+1 = Bi + γ/(ΦiPir(i)) ∗
Xr(i)X

⊤
r(i);

7: Update the upper and lower bounds ui+1 = ui +
Φ−1

i γ/(1− γ), li+1 = li+Φ−1
i γ/(1 + γ), i = i+1;

8: end while
Ensure: Terminates at i = m, and produces {wi =

αi/Pir(i)}i∈[m] for each iteration.

Theorem 4.5 reveals that the ATE finite-sample estimation
error inherently consists of three parts, deriving from two
partitions: for S, it induces the upper bound according to
the naive HT estimator; on the other hand, for S̄, it causes
another two kinds of upper bound, corresponding to the
GSW design guarantee and Lemma 4.4, respectively.

Recall that a fundamental result is that when we select n′

samples from the whole population (n samples), the up-
per bound of ATE via the traditional Horvitz-Thompson
(HT) estimator without covariates is E(τ̂ − τ)2 ≤ ∥µ∥2

2

n′n +
∥t−t̄∥2

2

n′n (Ghadiri et al., 2024; Harshaw et al., 2024), where
T̄ is the expectation of T . For comparison, the first term
is optimized via regression-based design technique and for-
malized as errorS,GSW and errorS,ITE using m′ samples, and
the second term is inherited by errorS , with an diminishing
scale of individual set from n to O(d/ε3). We defer a more
thorough comparison with bounds in previous literature in
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Active regression   samples: 

 

O(d)
[Y (1) − Y (0)] ∼ X

IPW-based Estimator

Use Coefficient to improve naive GSW estimator’s efficiency

Select   samples to construct GSW-based EstimatorO(1)

Figure 1. Illustration of our main algorithm.

Appendix I.

5. Additional discussion: lower bound
In the above section, we propose the RWAS estimator and
then analyze its precision. Hence, a natural question arises:
what is the lower bound of the query complexity based on
the dimension d? This section establishes a lower-bound
conditioning that constantly bounds the estimation error,
under a super-population perspective.

Theorem 5.1 (Lower bound). ∀ any fixed dimension d, for
any ϵ ∈ (0, 0.1) sufficiently small, there exists a feasible set
of {Y 1,Y 0} such that for any algorithm whose output τ̂
satisfying |τ̂ − τ | ≤ 0.1 with probability 0.75, need at least
2.86d/ε sample queries.

The detailed explanation is deferred into Appendix E. It
demonstrates that for active sampling algorithms in exper-
imental design, achieving a satisfactory precision level re-
quires a sample complexity at the linear complexity level,
which is not optimizable. This lower bound and the upper
bound differ only by a constant factor, making it nearly
optimal.
Remark 5.2. Despite the seemingly counterintuitive result
that estimation errors can be controlled within 0.1 with some
probability while still requiring a sample size of O(d/ϵ),
this outcome is mathematically grounded. Specifically, even
under mild estimation error conditions, there exist instances
where the estimation process becomes particularly challeng-
ing, requiring significantly more samples. We illustrate this
with a construction where the individual treatment effect
(ITE) τ(Xi) is defined as a function L(Xi) plus Gaussian
noise µ. This setup, while meeting the error bound, demands
a sample size of at least O(d/ϵ). The intuition behind this
lies in the existence of a large number of function mappings
with a nontrivial distance between them, which complicates
the estimation process. As detailed in our proof, this condi-
tion, alongside the mutual information bound derived using
Fano’s inequality and the Shannon-Hartley theorem, results
in the necessity of a sample size proportional to the dimen-
sionality d and inversely proportional to the error tolerance
ϵ.Thus, our analysis confirms that the sample complexity

required for accurate estimation is optimal and cannot be
reduced further without sacrificing precision.

6. Additional discussion: SUTVA assupmtion
In the preceding chapters, we introduced an active sampling
algorithm with a sample complexity of Ω(d) (up to a con-
stant factor) and established its near-optimality by deriving a
corresponding lower bound for the problem. However, these
results rely fundamentally on Assumption 3.1, which asserts
that the treatment assigned to one node does not influence
the outcomes of other nodes. It is well recognized, however,
that this assumption may be violated in many social net-
work settings. For instance, as discussed in the introduction
with the COVID-19 vaccine case, an individual’s health out-
come can be directly affected by the treatment status (e.g.,
vaccination) of those in their immediate surroundings.

This section extends our previous findings to the network
setting by relaxing the SUTVA assumption. Specifically,
we develop an active sampling algorithm that achieves a
finite-sample error bound when treatments and outcomes ex-
hibit network-based dependencies. This advancement lays
the groundwork for analyzing and designing experimental
strategies in social network contexts, where interference
among interconnected units must be considered.

The concept in the above paragraph is inherited. More-
over, the additional notation is the arbitrary neighborhood
interference exposure mapping:

Definition 6.1. (Arbitrary neighborhood interfer-
ence (Kandiros et al., 2024)) We define the ar-
bitrary neighborhood exposure mapping di as
di(T ) := {j ∈ N(i) ∪ {i} : tj = 1}, representing
the index set of treated neighborhoods. Here, N(i) denotes
the set of nodes that share an edge with node i. Additionally,
we denote the adjacency matrix as H.

Assumption 6.2. (Additive Potential Outcome (Kandiros
et al., 2024)) For every unit i ∈ [n] and interventions T ′, T ′′,
if di(T ′) = di(T

′′), then yi(T
′) = yi(T

′′). Equivalently,
for each unit i ∈ [n], there exist coefficients αi,S ∈ R for
S ⊆ Ñ (i) such that the potential outcome function yi can
be expressed as

Yi(T ) =
∑

S⊆Ñ (i)

αi,S ·
∏
j∈S

tj
∏
j /∈S

(1− tj).

In this sense, our causal estimands are defined as

τi = Yi(Zi,(1))− Yi(Zi,(0)), τ =
1

n

∑
i∈[n]

τi.

Analogous to Kandiros et al. (2024), we could artificially set
the definition of exposure mapping di(Z) to degenerate to
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the well-known concepts such as global ATE, direct effect
and spill-over effect. Following the conflict graph construc-
tion strategy in Kandiros et al. (2024), the conflict graph
design is in Algorithm 4, which is deferred in Appendix H.
Under such design, the current estimator is represented as

τ̂ =
1

n

n∑
i=1

(Yi −XG
i β)

(
1
[
E(i,1)

]
P
(
E(i,1)

) − 1
[
E(i,0)

]
P
(
E(i,0)

)) .

(1)
Here E(i,k) = {Ui = ek and Uj = ∗ for all j ∈ N π

b (i)} ac-
cording to Kandiros et al. (2024).

Then, we provide the thorough active sampling algorithm un-
der such network interference network, which is called ATE
estimation via Conflict-Graph Active Sampling (CGAS) in
Algorithm 3. Here XG

i := A (Xi,H) is the aggregated
function, which could be realized by graph neural network
such as Leung (2022); Ma & Tresp (2021); Ma et al. (2022).

We provide the result as follows:

Proposition 6.3. Under Algorithm 6, the variance of
estimator could be bounded by E[(τ̂act − τ)2] ≤
2d2

ε2n2C + 25λ(H)
n2 ( 12∥µ∥

2 + (1 + η)min
∥∥XGβ − 1

2t
∥∥2
2
+

md2∥µ∥2
∞∥X∥2

∞
1−ε1

)2, where C is a constant.

We defer the proof into Appendix F. Proposition 6.3 indi-
cates that our active sampling technique is an intuitive and
generalizable method that seamlessly integrates with net-
work settings. Specifically, it allows for direct regression
adjustment on the latest finite-sample results to enhance esti-
mation accuracy. In contrast to the conclusions in Section 4,
we do not claim that our results are guaranteed unbiased.
This, in turn, reinforces the key insight from Kandiros et al.
(2024): in the absence of additional structural assumptions
about the network, estimators inherently face a bias-variance
trade-off—optimizing for minimal variance alone may intro-
duce significant bias. Striking an optimal balance between
these two competing factors remains an important direction
for our future work.

7. Experiment
In this section, we conduct synthetic and real-world experi-
ments to demonstrate the unbiasedness and efficiency of our
estimator. We aim to present our RWAS estimator could out-
perform the competitive baseline in terms of unbiasedness
and precision, Whether these methods achieve a theoretical
finite-sample error bound (e.g., Ghadiri et al. (2024); Ad-
danki et al. (2022)) or only possess asymptotic normality
(e.g., HT estimator).

Most of the baselines are inherited from Ghadiri et al. (2024).
The difference is that we focus on ATE estimation based
on limited, finite samples instead of the whole population.
Specifically, we compare the following baselines in our ex-

periments: (i) HT estimator, which employs the traditional
Horvitz-Thompson estimator (Horvitz & Thompson, 1952)
taking advantage of the inverse propensity score. (ii) Hajek
estimator, another commonly-used estimator in ATE estima-
tion attributed to Hajek (1971). (iii) Classic Regression
Adjustment (CRA) estimator, which adopts the method
in Li & Ding (2020). In (i)-(iii), the estimators are operated
under finite samples m among the total population via the
random Bernoulli trial with probability 0.5. (iv) Gram-
Schimit Walk design (GSW) The HT estimator following
the GSW design in Harshaw et al. (2024)4. (v) Regression
Adjusted Horvitz-Thompson (RAHT) estimator proposed
in Ghadiri et al. (2024), a method combining GSW design
and leverage score sampling. (vi) Sample-constrained (SC)
estimator in Addanki et al. (2022). Also, 4-Vectors by Mou
et al. (2022), which also adopts similar cross-adjustment
strategy. To ensure fairness, we keep the same amount of
selected samples in all these settings except GSW-Adj. For
GSW-Adj, the sample size is selected as the maximal num-
ber of samples allocated for GSW design among all other
methods. To evaluate the performances of methods in finite
samples, we repeat the method holding the sample fixed,
which is generated in the initial of the experiment.

7.1. Synthetic Experiment

To estimate ATE, the procedure and data-generating process
of the experiment are illustrated as follows:

ATE Dataset Denote the sample size as n and set the
amount of covariates d = 50. The matrix of covariates
X ∈ Rn×d is generated in three steps. First, generate matrix
X̃ ∈ Rn×d, with each entry sampled from uniform distri-
bution in [0, 0.01] independently. Then, a Gram-Schmidt
orthogonalization process is performed on the column space
of X̃ to generate an orthogonal matrix Q ∈ Rn×d satisfy-
ing Q⊤Q = Id. Finally, set X = n/10 ∗Q to recover the
column norm. The potential outcome vector for the control
y(0) is generated uniformly at random from [0, 5], and the
individual treatment effect vector t satisfies t = Xb + r,
with each element of b ∈ Rd be a uniform random number
in [0, 1], and r ∈ Rn follows a mean zero Gaussian distribu-
tion with a standard deviation sd = 0.2. Eventually, y(1) is
generated by t = y(1) − y(0). The ground truth of ATE is
set as τ = 1

n

∑
i∈[n]

ti, with t = (t1, . . . , tn).

Experiment Procedure Generate an ATE dataset with
size n at the start to serve as pre-determined finite samples.
Then, run each relevant method r rounds and get the esti-

4We also conduct naive regression adjustment upon it if its
performance could be better, for better competiveness of such
baseline.
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Algorithm 3 CGAS
Require: X ∈ Rn∗d, H, Y (1),Y (0) ∈ Rn. ε, ϕ ∈ (0, 1).

1: Y = I(E(i,1) = 1)Y (1) − I(E(i,0) = 0)Y (0), where P(Z = 1) = 0.5.
2: Select |S| samples via IRD { 12Y ,XG} and induces the weights {w1, w2, ...w|S|}.
3: Compute the coefficient in active reweighing sampling via β̃act = argminβ∈Rd+1∥SY − SXβ∥, where S is a

diagonal matrix with the j-th element sj =
√
wi if there exists j such that r(i) = j, and sj = 0 if j /∈ S.

4: Set an estimator τ̂S to estimate
∑

i∈S Yi(1)− Yi(0) (could be manually adjusted).
5: Uniformly sample m′ samples S̄m′ ∈ S̄ = [n]/S. |S̄m′ | = m′.For the complement set, conduct CGD

in Algorithm 4 and employ the assignments in to the estimator in (1). Namely, τ̂S̄ := 1
|S̄m′ |

∑
i∈S̄m′ (Yi −

XG
i β

act)

(
1[E(i,1)]
P(E(i,1))

− 1[E(i,0)]
P(E(i,0))

)
.

6: Replicate Line 6− 7 in Algorithm 1.
Ensure: τ̂act = (|S̄|τ̂act,1 + |S|τ̂act,2)/n.

Table 2. Upper: Synthetic experiment: Error(sd) of ATE estimations. Prop. = Proportion of samples used in estimation. sd = Standard
deviation of estimation. The bolded number denotes the smallest absolute bias. The reported errors are multiplied by 10. Lower:
Real-world experiments: Error(sd) of ATE estimations. For the final line, we report the result with scale e−3.

Sample size Prop. HT Hajek CRA GSW RAHT SC 4-Vectors RWAS (Ours)

1000
0.2 1.99 (1.24) 1.89 (1.09) 2.62 (0.66) 2.39 (1.17) 1.81 (1.19) 2.54 (1.54) 1.99 (1.43) 1.84 (1.16)
0.5 1.14 (0.74) 1.03 (0.50) 1.02 (0.39) 0.80 (0.64) 0.80 (0.56) 0.80 (0.68) 0.92 (0.61) 0.71 (0.47)
0.8 0.86 (0.54) 0.69 (0.24) 0.64 (0.26) 0.40 (0.44) 0.43 (0.28) 0.49 (0.52) 0.51 (0.33) 0.40 (0.26)

2000
0.2 2.01 (1.41) 1.76 (0.99) 1.58 (0.74) 1.54 (1.24) 1.91 (1.30) 1.76 (1.43) 1.43 (0.97) 1.29 (0.88)
0.5 0.95 (0.66) 0.91 (0.40) 0.70 (0.35) 0.58 (0.62) 0.70 (0.49) 0.71 (0.42) 0.75 (0.49) 0.59 (0.41)
0.8 0.66 (0.45) 0.52 (0.21) 0.43 (0.22) 0.30 (0.37) 0.32 (0.23) 0.38 (0.35) 0.39 (0.42) 0.30 (0.22)

Dataset Prop. HT Hajek CRA GSW RAHT SC 4-Vectors RWAS (Ours)

Boston
0.2 2.35 (1.92) 2.40 (2.10) 0.80 (0.72) 1.15 (1.00) 1.05 (0.62) 1.08 (0.96) 2.30 (1.94) 0.99 (0.80)
0.5 1.98 (1.63) 2.02 (1.81) 0.68 (0.56) 0.95 (0.84) 0.89 (0.50) 0.91 (0.80) 1.95 (1.65) 0.65 (1.55)
0.8 1.79 (1.45) 1.80 (1.65) 0.54 (0.43) 0.78 (0.69) 0.75 (0.41) 0.75 (0.65) 1.76 (1.54) 0.74 (0.43)

IHDP
0.2 0.42 (0.38) 0.40 (0.35) 0.06 (0.04) 0.08 (0.06) 0.08 (0.06) 0.95 (0.23) 0.44 (0.33) 0.07 (0.06)
0.5 0.35 (0.31) 0.32 (0.29) 0.04 (0.03) 0.07 (0.05) 0.06 (0.05) 0.75 (0.18) 0.36 (0.27) 0.06 (0.05)
0.8 0.29 (0.26) 0.26 (0.25) 0.02 (0.01) 0.05 (0.03) 0.05 (0.04) 0.62 (0.12) 0.30 (0.21) 0.05 (0.04)

Lalonde
0.2 2.10 (1.68) 1.95 (1.50) 1.45 (1.09) 1.45 (1.35) 1.61 (1.23) 1.92 (1.58) 2.07 (1.74) 1.65 (1.54)
0.5 1.82 (1.48) 1.73 (1.34) 1.15 (0.87) 1.36 (1.09) 1.30 (1.00) 1.57 (1.32) 1.80 (1.50) 1.13 (0.88)
0.8 1.60 (1.22) 1.48 (1.16) 0.94 (0.70) 1.08 (0.87) 1.05 (0.79) 1.32 (1.05) 1.57 (1.25) 1.04 (0.70)

Twins
0.2 1.90 (1.42) 2.00 (1.37) 1.55 (1.23) 1.80 (1.43) 1.70 (1.38) 1.88 (1.50) 1.85 (1.53) 1.55 (1.43)
0.5 1.65 (1.24) 1.73 (1.18) 1.35 (1.08) 1.55 (1.27) 1.48 (1.22) 1.61 (1.35) 1.60 (1.38) 1.21 (1.32)
0.8 1.42 (1.04) 1.51 (0.97) 1.21 (0.99) 1.34 (1.03) 1.24 (0.99) 1.39 (1.10) 1.40 (1.12) 1.21 (1.04)

mate τ̂j for ATE τ in round j. The performance is estimated
through Error =

∑
j∈[r]

| τ̂j − τ |/r | τ |.

Result Analysis Table 7 illustrates the performance of
methods with different sample sizes and proportions of
selected samples. Compared with classical estimators
under the Bernoulli trial, our estimator generally has lower
estimation error, with an increasing gap as the proportion
of selected samples enlarges. Our method has an inherited
trade-off between covariate balance and robustness. In finite
samples, robustness is reached once sufficient samples are
selected in the experiment. Therefore, our method achieves
more balanced covariates among treatment and control
groups compared with a completely randomized assignment,
which benefits the performance. Among the estimators with
balancing assignments (GSW-Adj,RAHT,RWAS), our

Table 3. Characteristics of different real-world datasets. To enable
evaluation, we set a true homogeneous ATE for each dataset based
on relevant results. No. Feature: Dimension of features (covari-
ates). Semi-synthetic means to be computed based on manually
pre-defined fixed shift.

Boston IHDP Twins LaLonde
Sample Size 506 747 32,120 445
No. Feature 13 25 50 10
True ATE 0 -4.016 6.4× e−3 Semi-synthetic

estimator generally has lower error compared with RAHT,
which indicates our method is pretty competitive among
relevant methods.
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7.2. Real-world Experiment

We evaluate the performances of methods on the following
real-world datasets: Boston Dataset Harrison Jr & Rubinfeld
(1978), IHDP Dataset Multisite (1990); Dorie (2016), Twins
Dataset Almond et al. (2005) and LaLonde Dataset LaLonde
(1986), whose basic information are shown in Table 7.1.

It illustrated that our method outperforms the previous base-
lines in most cases: (i) Exponential Decay in Estimation
Error and Variance with Increasing Active Samples. As
the number of actively sampled instances increases, both
the estimation error and variance exhibit an exponential de-
cay trend. In particular, when the sample size is relatively
small (e.g., only 20% proportion), the approximation error in
causal queries is susceptible to the number of samples. This
further reinforces our motivation to seek the optimal sample
complexity in active sampling algorithms—since sample
size significantly impacts model performance. (ii) Compa-
rable Performance of CRA and RWAS, but with Theoret-
ical Limitations. In many scenarios, CRA performs com-
parably to our RWAS, suggesting it can be highly effective
in practice. However, such strong empirical performance
remains largely anecdotal, as CRA lacks a well-established
finite-sample theoretical analysis. This highlights a key lim-
itation of CRA when contrasted with theoretically grounded
active sampling techniques. (iii) GSW’s Performance and
Its Trade-offs. Additionally, the performance of GSW is
worth noting. As acknowledged by Ghadiri et al. (2024),
the GSW approach often surpasses RAHT—and, at times
(such as in the Lalonde and Twins dataset), even outper-
forms our RWAS. However, RAHT and RWAS remain of
clear research significance because GSW typically requires
a substantially higher computational complexity. Moreover,
since GSW relies on offline balancing of covariates across
the entire population, it is inherently less adaptable to online
settings. In contrast, both RAHT and RWAS are more read-
ily extendable to online applications, making them more
versatile in dynamic experimental designs.

8. Conclusion and Discussion
Our paper establishes a new finite-sample framework for ac-
tive sampling in causal inference. It advances experimental
design’s theoretical and practical understanding, opening
new directions for efficient design in constrained settings.
For future work, it would be promising to explore further
these two trade-offs: (i) the accuracy-robustness trade-off,
which would inspire more advancing estimators beyond GSW
design, especially for the regression-adjustment cases; (ii)
the bias-variance trade-off, it would shed on more insights
on developing estimators in the network interference.
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Peharz, R., and Von Kügelgen, J. Active bayesian causal
inference. Advances in Neural Information Processing
Systems, 35:16261–16275, 2022.

VanderWeele, T. J., Vandenbroucke, J. P., Tchetgen, E. J. T.,
and Robins, J. M. A mapping between interactions and in-
terference: implications for vaccine trials. Epidemiology,
23(2):285–292, 2012.

Wang, H., Fan, J., Chen, Z., Li, H., Liu, W., Liu, T., Dai,
Q., Wang, Y., Dong, Z., and Tang, R. Optimal trans-
port for treatment effect estimation. Advances in Neural
Information Processing Systems, 36:5404–5418, 2023.

Wang, H., Chen, Z., Liu, Z., Chen, X., Li, H., and Lin, Z.
Proximity matters: Local proximity enhanced balancing
for treatment effect estimation. In Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V.2, 2025.

Way, T. W., Sahiner, B., Hadjiiski, L. M., and Chan, H.-
P. Effect of finite sample size on feature selection and
classification: a simulation study. Medical physics, 37(2):
907–920, 2010.

Yang, W., Wang, H., Li, H., Zou, H., Jin, R., Kuang, K., and
Cui, P. Your neighbor matters: Towards fair decisions
under networked interference. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 3829–3840, 2024.

Zhang, J., Cammarata, L., Squires, C., Sapsis, T. P., and
Uhler, C. Active learning for optimal intervention design
in causal models. Nature Machine Intelligence, 5(10):
1066–1075, 2023a.

Zhang, Z. The maximum intersection number of regular
simplicial partitions. arXiv preprint arXiv:2210.11450,
2022.

Zhang, Z. Tight partial identification of causal effects with
marginal distribution of unmeasured confounders. In
Forty-first International Conference on Machine Learn-
ing, 2024.

Zhang, Z. and Su, X. Partial identification with proxy of
latent confoundings via sum-of-ratios fractional program-
ming. In Proceedings of the Fortieth Conference on Un-
certainty in Artificial Intelligence, pp. 4140–4172, 2024.

Zhang, Z. and Wang, Z. Online experimental design with
estimation-regret trade-off under network interference.
arXiv preprint arXiv:2412.03727, 2024.

Zhang, Z., Hu, W., Tian, T., and Zhu, J. Dynamic window-
level granger causality of multi-channel time series. arXiv
preprint arXiv:2006.07788, 2020.

Zhang, Z., Dai, Q., Chen, X., Dong, Z., and Tang, R. Ro-
bust causal inference for recommender system to over-
come noisy confounders. In Proceedings of the 46th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2349–2353,
2023b.

Zhou, C., Li, Y., Zheng, C., Zhang, H., Zhang, M., Li, H.,
and Gong, M. A two-stage pretraining-finetuning frame-
work for treatment effect estimation with unmeasured
confounding. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining
V.1, pp. 2113–2123, 2025.

11



Active Treatment Effect Estimation via Limited Samples

Supplementary Material for “Active Treatment Effect Estimation via Limited
Samples”

For the sake of simplicity and without introducing any misleading implications, we denote the additional sampled quantity
m′ in GSW as m in the main text.

A. The proof of lemma. 4.2
Proof. We follow the notation and analogy in Chen & Price (2019). Notice that

fact := argmin
h∈F

1

m

m∑
i=1

wi(Yi − h(Xr(i)))
2. (2)

We consider the coefficient of function fact. If we use a d ∗ 1 vector α(·) to denote the coefficient of function on each
orthonormal basis, then we have

α(fact) = argmin
α(h)
∥A ∗ α(h)−w ◦ Ym∥2 = ∥(A⊤A)−1A⊤(w ◦ Ym)∥2.

α(fopt) = ∥(A⊤A)−1A⊤(w ◦ fm)∥2.
(3)

Here A is identified in our main text, w = (
√
w1,
√
w2, ...

√
wm)⊤, Ym = (Yr(1), Yr(2), ...Yr(m))

⊤, fm =

(fopt(Xr(1)), ...f
opt(Xr(m)

))⊤, and ◦ denotes the Hadamard product. Then we have

1

n

n∑
i=1

(
fact(Xi)− fopt(Xi)

)2
=

1

n
∥X[α(fact)− α(fopt)]∥22 ≤

1

n
∥X∥22 · ∥α(fact)− α(fopt)∥22. (4)

According to Eq. (3)-(4),

Er∥α(fact)− α(fopt)∥22 = Er∥(A⊤A)−1A⊤w ◦ (Ym − fm)∥22
≤ Er∥(A⊤A)−1∥22 ∗ Er∥A⊤w ◦ (Ym − fm)∥22

≤ Er∥(A⊤A)−1∥22 ∗ Er

d∑
j=1

(
m∑
i=1

wiXr(i),j(f
opt(Xr(i))− Yr(i))

)2

= Er∥(A⊤A)−1∥22 ∗ Er

d∑
j=1

m∑
i=1

w2
iX

2
r(i),j(f

opt(Xr(i))− Yr(i))
2,

(5)

where Er denotes the expectation taken upon sampling. Since (1, 1, . . . , 1)n is included in the column space of X , the last
equality comes from the fact that

ErwiXr(i),j(f
opt(Xr(i))− Yr(i)) =

n∑
k=1

αiPik

Pik
Xk,j(f

opt(Xk)− Yk) = 0. (6)

Hence
Er∥α(fact)− α(fopt)∥22

≤Er∥(A⊤A)−1∥22 ∗ Er

 max
i∈[m],k∈[n]

wi

d∑
j=1

X2
k,j

( m∑
i=1

αi

Pir(i)
(fopt(Xr(i))− Yr(i))

2

)

=Er∥(A⊤A)−1∥22 ∗ Er

 max
i∈[m],k∈[n]

wi

d∑
j=1

X2
k,j

( m∑
i=1

n∑
k=1

αi(f
opt(Xk)− Yk)

2

)

=Er

(
∥(A⊤A)−1∥22

m∑
i=1

αi

)
∗ Er

 max
i∈[m],k∈[n]

wi

d∑
j=1

X2
k,j

( n∑
k=1

(fopt(Xk)− Yk)
2

)
.

(7)
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Observe that Er∥(A⊤A)−1∥22 ≤ 1
1−ε1

on event λ(A⊤A) ∈ (1− ε1, 1 + ε1), and

max
i∈[m],k∈[n]

wi

d∑
j=1

X2
k,j = max

i∈[m],k∈[n]

d∑
j=1

αi

Pir(i)
X2

k,j ≤ ϵ3. (8)

Therefore, recalling Eq. (4), we finally get

Er∥fact − fopt∥2 ≤ (1 + ε2)ε3∥X∥2F
n(1− ε1)

n∑
k=1

(fopt(Xk)− Yk)
2 (9)

on an event with probability at least 1− δ, which proves Lemma 4.2.

B. The proof of lemma 4.3
We prove Algorithm. 2 is a good ε-reweighting sampling strategy with high probability based on Chen & Price (2019).

Proof. It is equivalent to prove that Algorithm. 2 contains two main properties with high probability in our main text.

For the first property, notice the construction A(i, j) =
√
wi ∗Xr(i),j , i ∈ [m], j ∈ [d] of matrix A, we have

A⊤A =

m∑
i=1

wiXr(i)X
⊤
r(i) =

m∑
i=1

αi

Pir(i)
Xr(i)X

⊤
r(i) = Bm

γ2

2d(1− γ2)
. (10)

Here Xr(i) = (Xr(1),1, . . . ,Xr(1),d)
⊤, and Bm is defined in Algorithm 2.

According to lemma. G.3, we have

λ(A⊤A) ∈ (
γ2

2d(1− γ2)
lm,

γ2

2d(1− γ2)
um). (11)

Moreover, due to Algorithm 2, we have
um + lm
1

1−γ + 1
1+γ

=

m∑
i=1

γ

Φi
. (12)

On the observations (11), (12) above, in order to substitute um, lm in the equations, we aim to bridge the relationship

between
m∑
i=1

γ
Φi

and the coefficient γ2

2d(1−γ2) as follows.

Since the while loop in Algorithm 2 stops at the m-th iteration, we have

um − lm =

m∑
i=1

γ

Φi
(

1

1− γ
− 1

1 + γ
) +

4d

γ
≥ 8d

γ
. Hence

m∑
i=1

γ

Φi
≥ 2d(1− γ2)

γ2
. (13)

In the (m− 1)-th iteration, from the condition of the while loop, we have

m−1∑
i=1

γ

Φi
≤ 4d

γ
/(

1

1− γ
− 1

1 + γ
) =

2d(1− γ2)

γ2
. (14)

Moreover, since the trace of a matrix equals to the sum of its eigenvalues, we have

Φm =

d∑
i=1

[
1

um − λi(Bm)
+

1

λi(Bm)− lm
] ≥ 1

m∑
i=1

(um − lm)
(2d)2 ≥ 1

4d
γ

4d2 = dγ (15)
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Therefore

2d(1− γ2)

γ2
≥

m∑
i=1

γ

Φi
− γ

Φm
≥

m∑
i=1

γ

Φi
− 1

d
=⇒

m∑
i=1

γ

Φi
≤ 2d(1− γ2)

γ2
+

1

d
. (16)

Combined with Eqn. (12), (14) and (16), we have

2d(1− γ2)

γ2
∈

[
m∑
i=1

γ

Φi
− 1

d
,

m∑
i=1

γ

Φi

]
=

[
um + lm
1

1−γ + 1
1+γ

− 1

d
,

um + lm
1

1−γ + 1
1+γ

]
. (17)

Combined with Eqn. (11), we have

λ(A⊤A) ∈

 lm(
um+lm
1

1−γ + 1
1+γ

) , um(
um+lm
1

1−γ + 1
1+γ

)
− 1

d

 =

[
1

1−γ + 1
1+γ

1 + um

lm

,

1
1−γ + 1

1+γ

1 + lm
um
− 1

dum
[ 1
1−γ + 1

1+γ ]

]
. (18)

Moreover, due to

um =
1

1− γ

m−1∑
i=1

γ

Φi
+ u0

Eqn. (16)
≥ 1

1− γ

[
m∑
i=1

γ

Φi
− 1

d

]
+ u0

Eqn. (13)
≥ 1

1− γ

[
2d(1− γ2)

γ2
− 2

d

]
+

2d

γ
. (19)

According to lemma. G.2, with probability (1− δ), we have um

lm
∈ [1, 1 + 8γ], and hence

λ(A⊤A) ∈ [

1
1−γ + 1

1+γ

1 + 1 + 8γ
,

1
1−γ + 1

1+γ

1 + 1− γ2

[(−2d2−1)γ2+d2γ+d2](1+γ)

]. (20)

Note that γ ≤ 1
3 . We have

Lower bound of (20) =
1

1−γ2

1 + 4γ
≥ 1− 4γ,

Upper bound of (20) ≤
2

1−γ2

2− γ2

1+γ
1
d2

≤
2

1−γ

2(1 + γ)− γ2
≤ 2(1 + γ)

2(1 + γ)− γ2
≤ 1 +

γ2

2 + 2γ
.

(21)

Therefore, let ε1 = min{4γ, γ2

2+2γ } yields the first property of lemma 4.3.

For the second property, recalling the main text, we aim to prove
m∑
i=1

αi ≤ 1+ε2, and for ∀i ∈ [m], αi max
k

{
d∑

j=1

X2
k,j

Pir(i)

}
≤

ε3.

From Eq. (15), γ
Φm
≤ 1

d ≤ 1. Therefore,

m∑
i=1

αi =
γ2

2d(1− γ2)

m∑
i=1

γ

Φi
∈ [1, 1 +

γ2

2d2(1− γ2)
]. (22)

Moreover, note that the column of X , ∥ej∥ = 1, and Ki := max
k

d∑
j=1

X2
k,j ≤

∑
k∈[n],j∈[d]

X2
k,j = d,
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αi max
k


d∑

j=1

X2
k,j

Pir(i)


=

γ

Φi

γ2

2d(1− γ2)
max

k

 Φi

X⊤
r(i) [(uiI −Bi)−1 + (Bi − liI)−1]Xr(i)

d∑
j=1

X2
k,j

 .

≤ γ3

2d(1− γ2)

Ki

λmin{(uiI −Bi)−1}+ λmin{(Bi − liI)−1}

≤ γ3

2d(1− γ2)

d
1

ui−li
+ 1

ui−li

≤ γ3

2d(1− γ2)

1

2
∗ 9d

γ
∗ d =

9
4dγ

2

1− γ2
:= ε3,

(23)

where the last inequality comes from Claim 18 in Chen & Price (2019).

Hence Algorithm 2 both satisfies the two properties as in Definition 4.1. Combined with lemma G.2, the proof is done.

C. The proof of Lemma 4.4
Proof. Consider each given fixed Y , we have that with high probability (1− δ),

β̂act := 2(X̃⊤WX̃)−1X̃⊤WY = (X̃⊤WX̃)−1X̃⊤W (t+Z ⊙ µ). (24)

Hence ∥∥∥X̃β̂act − t
∥∥∥2
2
=
∥∥∥X̃(X̃⊤WX̃)−1X̃⊤W (t+Z ⊙ µ)− t

∥∥∥2
2

≤
∥∥∥(X̃(X̃⊤WX̃)−1X̃⊤W − I)t

∥∥∥2
2
+
∥∥∥X̃(X̃⊤WX̃)−1X̃⊤W (Z ⊙ µ)

∥∥∥2
2

≤(1 + ϵ)min
∥∥∥X̃β − t

∥∥∥2
2
+
∥∥∥X̃(X̃⊤WX̃)−1X̃⊤W (Z ⊙ µ)

∥∥∥2
2

≤(1 + ϵ)min
∥∥∥X̃β − t

∥∥∥2
2
+
∑

i:wi ̸=0

li(
√
WX̃)µ2

i

mini wi

≤(1 + ϵ)min
∥∥∥X̃β − t

∥∥∥2
2
+

d∥µ∥2∞
mini wi

≤(1 + ϵ)min
∥∥∥X̃β − t

∥∥∥2
2
+

md2∥µ∥2∞(maxi,j X̃i,j)
2

1− ε1
.

(25)

Here, the penultimate inequality is deferred to Appendix G.5.

D. The proof of Theorem 4.5
Proof of Theorem 4.5. The unbiasedness Notice that Y is sampled from Bernoulli sampling for each individual. We
conduct the expansion via the actively sampled S. We emphasize that the whole randomness of our proposed estimator τact
is derived from three sources: (i) the random treatment assignment, (ii) the stochastic reweighing vector {wr(i)}i∈[m] whose
index (r(i))i∈[m] = S is random, and (iii) the uniform sampling process within the random complementary set S̄. Then

E(τ̂act − τ) := ESE(τ̂act − τ |S) (26)

Here S is obtained from Algorithm 2. Recalling that τ̂S̄ and τ̂S is the unbiased estimation of τ , hence
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τ̂act − τ = − 1

n

[
|S̄| 1

m

∑
i∈S̄m

(
Xi − X̄S̄m

)⊤
+
∑
i∈S

(
Xi − X̄S

)⊤ ]
β̂act. (27)

It leads to (fix S, β̂act)

ESE[τ̂act − τ |S] =− 1

mn
ESE

[
|S̄|
( ∑
i∈S̄m

(
Xi − X̄S̄m

)⊤
β̂act

)
|S
]

=− 1

mn
ES

[
E
[
|S̄|
( ∑
i∈S̄m

(
Xi − X̄S̄m

)⊤ )|S]]β̂act.

(28)

Since S̄ is arbitrarily uniformly selected from [n]/S, it naturally leads to

E
[
|S̄|
( ∑
i∈S̄m

(
Xi − X̄S̄m

)⊤ )|S] = 0. (29)

Hence ESE(τ̂act − τ |S) = 0, and thus E(τ̂act − τ) = 0.

The variance Conditioning on each random S,Y , it leads to (also conditioning on the event where Algorithm 2 could make
an ε-error guarantee). Notice that

τ =
|S̄|
n

τS̄ +
|S|
n

τS , where τ∗ :=
1

n

∑
i∈∗

ti with ∗ ∈ {S̄, S}, S̄ = n/S. (30)

It implies

E[(τ̂act − τ)2|S] = 1

n2
E
[(
|S̄|(τ̂act,1 − τS̄) + |S|(τ̂act,2 − τS)

)2]
= Error1 + Error2 + Error3, (31)

where

Error1 :=
|S̄|2

n2
E
[[(

τ̂S̄ −
1

m

∑
i∈S̄m

(
Xi − X̄S̄m

)⊤
β̂act

)
− τS̄

]2
|S
]
,

Error2 :=
|S|2

n2
E
[(

τ̂S − τS

)2
|S
]
,

Error3 :=
2|S||S̄|
n2

E
[
(τ̂act,1 − τS̄)|S

]
E
[
(τ̂act,2 − τS)|S

]
= 0.

(32)

Error1 Notice that τ̂S̄ is derived from the Gram-Schmidt design in Harshaw et al. (2024). We take advantage of the
Lemma G.6 as follows:

According to Lemma G.6, given the best coefficient β̃S̄ = argmin
β∈Rd

[
1
ϕ ∥XS̄β − µS̄∥

2
2 +

ζ2

(1−ϕ)∥β∥
2
2

]
. It implies that when

β̂act is fixed, we have

Error1

≤
(
|S̄|
n

)2


∥∥∥XS̄β̃

S̄ − µS̄

∥∥∥2
2

m|S̄|ϕ
+

ζ2
∥∥∥β̃S̄

∥∥∥2
2

m2(1− ϕ)
+

∥∥∥(X S̄ −XS̄

)
β̂act −

(
t
S̄ − tS̄

)∥∥∥2
2

m|S̄|


≤|S̄|

n

[(
1

mn

1

ϕ

)∥∥∥XS̄β̃
S̄ − µS̄

∥∥∥2
2
+

1

m2

ζ2

1− ϕ
∥β̃S̄∥22 +

1

mn

∥∥∥(X S̄ −XS̄

)
β̂act −

(
t
S̄ − tS̄

)∥∥∥2
2

]
.

(33)

Here the definition of tS̄ , tS̄ is analogous to that of X
S̄
,XS̄ . We additionally set

β∗ = arg min
β∈Rd

[
m

n
∥Xβ − µ∥22 +

ζ2

1− ϕ
∥β∥22

]
, β̂ = argmin

β∈Rd

[
∥(X −X)β − (t− t)∥22 + λ∥β∥22

]
,
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then

(33) ≤|S̄|
n

[(
1

mn

1

ϕ

)
∥XS̄β

∗ − µS̄∥
2
2 +

1

m2

ζ2

1− ϕ
∥β∗∥22 +

1

mn

∥∥∥(X S̄ −XS̄

)
β̂act −

(
t
S̄ − tS̄

)∥∥∥2
2

]

≤|S̄|
n

[(
1

mn

1

ϕ

)
∥Xβ∗ − µ∥22 +

1

m2

ζ2

1− ϕ
∥β∗∥22 +

1

mn

∥∥∥(X S̄ −XS̄

)
β̂act −

(
t
S̄ − tS̄

)∥∥∥2
2

]
.

(34)

For the third term in the upper bound in (34), according to Algorithm 2, it leads to that with (1− δ) probability,

1

mn

∥∥∥(X S̄ −XS̄

)
β̂act −

(
t
S̄ − tS̄

)∥∥∥2
2
≤ 1

mn

∥∥∥(X −X
)
β̂act −

(
t− t

)∥∥∥2
2
. (35)

Finally, we aim to establish the upper bound of the RHS of (35).

Error2 We could derive the upper bound of the variance of the HT estimator according to Harshaw et al. (2024); Ghadiri
et al. (2024):

Error2 ≤
|S|2

n2

∥
∑

i∈S(Yi(0) + Yi(1))∥22
|S|2

=
∥
∑

i∈S(Yi(0) + Yi(1))∥22
n2

. (36)

Therefore,

E[Error2] = ESE[Error2|S] ≤ (E|S|)∥Yi(0) + Yi(1)∥2∞/n2 ≤ Cd∥µ∥2∞/εn2. (37)

Combining with (32), (35), (37), it achieves that with (1− δ) probability,

E[(τ̂act − τ)2|S]
=ES [E[(τ̂act − τ)2|S]]

≤Cd∥µ∥2∞
εn2

+min
β

[( 1

mn

1

ϕ

)
∥Xβ − µ∥22 +

1

m2

ζ2

1− ϕ
∥β∥22

]
+

1 + ε

mn
min
β

∥∥∥X̃β − t
∥∥∥2
2
+

d∥µ∥2∞
wmn

.

(38)

E. The Proof of lower bound
The sketch of proof. We consider the following constructions: τ(Xi) = L(Xi) + µ. Here L(·) is the pre-fixed function,
selected from the linear family L satisfying ∥L∥D = 15. µ is the i.i.d. Gaussian noise satisfying µ ∼ N(0, 1

ε ). D is
considered as a uniform distribution under the d dimensional Euclidean space. We consider that X is sampled from D, and
then we construct the potential outcome Yi(Xi). On this basis, we extract a specific subset of L ⊆ L:

Lemma E.1. (Sparsity of L) Chen & Price (2019) ∃ a subset {L1, L2, ...Ls} =: L ⊆ L with s ≥ 20.7d, such that
∥Li∥D = 1, ∥Li∥∞ ≤ 1. Moreover, ∥Li − Lj∥D ≥ 0.2.

The sketch of proof of Lemma E.1. We provide the construction as follows: In this procedure, we start with n = 0 and let L
be all functions mapping [d] to {±1}. While L is nonempty, we pick any function h in L , remove from U all functions
within distance 0.2 of h, increment n by one, and name that function fn. After no functions remain, we return the set
L = {L1, . . . , Ls}. In the initialization step, |U | = 2d, then in the above process, according to Chen & Price (2019), we
claim this process remove C0.01d

d ≤ 20.081d each round, and hence it follows that s ≥ 2d/20.081d = 21.919d.

We consider the mutual information between the selected linear function family and our algorithm’s output, i.e., estimator, τ̂ .
On the one hand, we provide the lower bound of such mutual information by Fano’s inequality. Specifically, it leads to

I(Lj ; τ̂) = H(Lj)−H(Lj | τ̂) ≥ log(s)− 1− log(s− 1)/4 ≥ 1.43. (39)

5We define ∥g(·)∥2L := Ex∼D|g(x)|2.
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On the other hand, we aim to provide the upper bound according to the Shannon-Hartley theorem:

I(τ̂ ;Lj) ≤I((τ1, τ2, ...τs);Lj)

=
∑
i∈[s]

I(τi;Lj(Xi) | τ1, ...τi−1)

≤s

2
log

1 +
maxL∈L

[
L (Xi)

2
]

1/ε


=
s

2
log(1 + ε) ≤ sε

2
.

(40)

Combined with (39) and (40), it implies that

s ≥ 2.86d

ε
. (41)

The result follows.

F. The Proof of Proposition 6.3
Proof. Notice that

τ̂S̄ :=
1

|S̄′
m|

∑
i∈S̄m‘

(Yi −XG
i β)

(
1
[
E(i,1)

]
Pr
(
E(i,1)

) − 1
[
E(i,0)

]
Pr
(
E(i,0)

)) .

On this basis, it leads to τ̂act − τ = |S̄|
n (τ̂act,1 − τ) + |S|

n (τ̂act,2 − τ), then it follows that

E[(τ̂act − τ)2] ≤ 2|S̄|2

n2
(τ̂act,1 − τ)2 +

2|S|2

n2
(τ̂act,2 − τ)2

The first part could be bounded by 2d2

ε2n2C, where C is a constant. For the second part, according to Kandiros et al. (2024), it
leads to

|S̄|2

n2

25λ(H)
|S̄|2

∑
j=0,1

∑
i∈|S̄|

(Yi (ej)−XG
i β

act)2.

According to a similar analogy in Theorem 4.4, it follows that ∥XG
i β

act − 1
2 ti∥ ≤

(1 + ϵ)min

∥∥∥∥XGβ − 1

2
t

∥∥∥∥2
2

+
md2∥µ∥2∞∥X∥2∞

1− ε1
.

G. Auxiliary lemmas
Lemma G.1 (Random vector regression (Ghadiri et al., 2024)). . Let y(0),y(1) ∈ Rn and y ∈ Rn be a random vector
such that for each i ∈ [n], yi is independently and with equal probability is either equal to y

(0)
i or y

(1)
i . Moreover, let

b∗ = argminb ∥Xb− y∥22. Let µ := y(1) + y(0). Then

E
[
∥2Xb∗ − µ∥22

]
≤ d

∥∥∥y(1) − y(0)
∥∥∥2
∞

+min
b
∥Xb− µ∥22

Lemma G.2. (Lee & Sun (2018); Chen & Price (2019)) There exists a constant C, such that with at least probability
(1− δ), Algorithm. 2 can be terminated by m ≤ C d

γ2 = O(dε ) iterations and um

lm
∈ [1, 1 + 8γ].

Lemma G.3. (Lee & Sun (2018); Batson et al. (2009)) The eigenvalues of Bi in Algorithm. 2 is bounded, namely
λ(Bi) ∈ (li, ui).
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Figure 2. Illustration for Lemma G.4.

Lemma G.4.

∀γ ∈ [0, 0.1], (1 +
γ2

2d2(1− γ2)
)

2γ2

(1− γ2)(1− δ)(1− 4γ)
≤ 3.41γ2. (42)

Lemma G.5.
wmin ≥

1− ε1
d · a2

.

Proof. The matrix A ∈ Rm×d now has elements: A(i, j) =
√
wiXi,j , where X is an m× d matrix with bounded entries:

Xi,j ∈ [a, b], for some constants a, b > 0.

We aim to find the minimum wi that ensures the eigenvalues of A⊤A satisfy: λ(A⊤A) ∈ [1− ε1, 1 + ε1], with at least
1− δ probability.

Step 1: Matrix A and its structure The matrix A now has entries: A(i, j) =
√
wiXi,j .

The matrix product A⊤A is given by: A⊤A =
∑m

i=1 wixix
⊤
i , where xi is the i-th row of X treated as a vector in Rd.

Thus, A⊤A is a weighted sum of the outer products of the rows of X .

Step 2: Eigenvalue properties of A⊤A The eigenvalues of A⊤A depend on the row vectors xi and their weights wi.
Specifically: λ(A⊤A) = λ

(∑m
i=1 wixix

⊤
i

)
.

Using the Rayleigh quotient for eigenvalues: λmax(A
⊤A) = sup∥v∥2=1

∥∥A⊤Av
∥∥2
2
.

This eigenvalue depends on the magnitude and alignment of the weighted row vectors
√
wixi. If ∥xi∥22 is bounded, this

affects the scaling.

Step 3: Row norm of xi The norm of each row xi is bounded because Xi,j ∈ [a, b]. The maximum and minimum row
norms satisfy: ∥Xi∥22 ∈ [d · a2, d · b2], where: - d · a2: The minimum row norm when all Xi,j = a. - d · b2: The maximum
row norm when all Xi,j = b.

Step 4: Bounds on A⊤A The matrix A⊤A can be written as: A⊤A =
∑m

i=1 wixix
⊤
i .

The eigenvalues of A⊤A are bounded as: λmin(A
⊤A) ≥ mini

(
wi∥xi∥22

)
, λmax(A

⊤A) ≤
∑m

i=1 wi∥xi∥22.

Substituting the bounds on ∥xi∥22: λmin(A
⊤A) ≥ mini

(
wi · d · a2

)
, λmax(A

⊤A) ≤
∑m

i=1 wi · d · b2.

Step 5: Ensuring λ(A⊤A) ∈ [1− ε1, 1 + ε1] To ensure the eigenvalues lie within [1− ε1, 1 + ε1], we require: 1− ε1 ≤
λmin(A

⊤A) and λmax(A
⊤A) ≤ 1 + ε1.

Using the bounds: 1. For λmin(A
⊤A): 1− ε1 ≤ mini

(
wi · d · a2

)
. This gives: wmin ≥ 1−ε1

d·a2 .
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Algorithm 4 Conflict-Graph-Design (CGD, following Kandiros et al. (2024))
Require: Importance ordering π, maximum eigenvalue λ(H), and conflict graphH.

1: Set sampling parameter r = 2
2: Sample desired exposure variables U1, . . . , Un independently and identically as Ui ←

e1 with probability 1
r·2λ(H)

e0 with probability 1
r·2λ(H)

∗ with probability 1− 1
r·λ(H)

3: Initialize the intervention vector Z ← 0.
4: while i = 1, 2, ...n do
5: if Ui ∈ {e1, e0} and Uj = ∗ for all j ∈ N π

b (i) then
6: Update intervention vector: set Zj = Zi,(k)(j) for all j ∈ Ñ(i) where Ui = ek.
7: end if
8: end while

Ensure: Random intervention Z ∈ Z = {0, 1}n.

Method Variance Sample complexity

HT estimator ∥µ∥2
2

mn +
S2
t

m

(
1− m

n

)
m

GSW design (Harshaw et al., 2024) 1
m2 minb∈Rd

[
m
n ·

1
ϕ∥Xb− µ∥22 + 1

1−ϕζ
2∥b∥22

]
+

S2
t

m

(
1− m

n

)
m

RAHT (Ghadiri et al., 2024) 1
mn

1
ϕ ∥Xb∗ − µ∥22 +

1
m2

ζ2

(1−ϕ) ∥b
∗∥22 +

100d·log(d/δ)
n2ϵ2 ∥µ∥2∞ m+O(dlog(d)/ε2)

+(1 + ϵ) ·
(

1
m∥µ∥

2
∞ + 1

mn∥(X−X)b̂− (t− t)∥22 + λ
mn∥b̂∥

2
2

)
Leverage score (Addanki et al., 2022) (mainly consider the absolute bias, and relies on Gaussian noise assumption) O(dlog(d) + d/ε)

Ours errorS̄ + errorS̄,GSW + errorS̄,ITE O(d/ε+m′)

Table 4. Comparison of different active sampling for estimating ATE inherited from Ghadiri et al. (2024). 0 < ϕ < 1, 0 < ϵ < 1 are
parameters in GSW design. Moreover, ζ is the maximum ℓ2 norm over rows of X. St denotes the standard variance of t

Lemma G.6. (Harshaw et al. (2024); Ghadiri et al. (2024)) Let τ̂S be an estimate obtained by the Horvitz-Thompson
estimator on the Gram-Schmidt walk design. Let b̂ be a fixed/preassigned vector and 0 < ϕ < 1. Then, the partial
observation regression-adjusted Horvitz-Thompson estimator with m samples is an unbiased estimator with variance of:

E
[
(τ̂ − τ)2

]
≤ 1

mn

1

ϕ
∥Xb∗ − µ∥22 +

1

m2

ζ2

(1− ϕ)
∥b∗∥22 +

1

mn

∥∥∥(X −X)⊤b̂− (t− t)
∥∥∥2
2
, (43)

where

b∗ = arg min
b∈Rd

[
1

ϕ
∥Xb− µ∥22 +

ζ2

(1− ϕ)
∥b∥22

]
. (44)

Lemma G.7. C0.01d
d ≤ 20.081d.

Proof. To establish a smaller constant c for the inequality
(

d
0.01d

)
≤ 2cd, we use an upper bound involving the binary

entropy function. A well-known result states that for n ∈ N and 0 < p < 1, the binomial coefficient
(
n
pn

)
is bounded

above by 2nH(p), where H(p) = − p log2(p)− (1− p) log2(1− p) is the binary entropy. In our case, with p = 0.01, we
compute H(0.01) ≈ 0.0807. Consequently, for sufficiently large d,

(
d

0.01d

)
≤ 2dH(0.01) ≈ 20.0807d. Hence, by choosing

any c ≥ 0.0807, we guarantee
(

d
0.01d

)
≤ 2cd.

H. Auxiliary algorithms
Seen in Algorithm 4 and Algorithm 5.

I. Comparison with previous bounds
Seen in Table 4.
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Algorithm 5 GSW design (following Harshaw et al. (2024))
Require: Matrix X ∈ Rn×d, 0 < ϕ < 1, vector p ∈ Rn.

Initialize an index j ← 1. Select an initial pivot unit k uniformly at random from [n]. Set ζ ← maxi∈[n] ∥Xi:∥2. Let

B ∈ Rn×(n+d) be a matrix such that Bi: :=

[ √
ϕ · ei

ζ−1
√
1− ϕ ·Xi:

]
, where ei is the i, the basis vector of dimension n.

while z(j) /∈ {−1,+1}n do
Create the set S ←

{
i ∈ [n] :

∣∣∣z(j)i

∣∣∣ < 1
}

.
if k /∈ S then

Select a new pivot k from S uniformly at random.
end if
Compute a step direction as u(j) ← argminu {∥Bu∥2 : ui = 0 for all i /∈ S, uk = 1}.
Let ∆ =

{
δ ∈ R : z(j) + δ · u(j) ∈ [−1, 1]n

}
.

Set δ+ ← |max∆| and δ− ← |min∆|. Pick a random step size δj that is equal to δ+with probability δ−/ (δ+ + δ−),
and is equal to −δ−with probability δ+/ (δ+ + δ−).
Update fractional assignment: z(j+1) ← z(j) + δju

(j).
Increment the index j ← j + 1.

end while
Ensure: Return the assignment vector z(j) ∈ {−1,+1}n.
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